
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Approximate Dynamic Programming with Applications

Wernrud, Andreas

2008

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Wernrud, A. (2008). Approximate Dynamic Programming with Applications. [Doctoral Thesis (monograph),
Department of Automatic Control]. Department of Automatic Control, Lund Institute of Technology, Lund
University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/bd85f9a7-02b8-43ad-95c6-f3b1962a296d

Approximate Dynamic Programming with

Applications

Approximate Dynamic Programming
with Applications

Andreas Wernrud

Department of Automatic Control

Lund University

Lund, 2008

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

ISSN 0280–5316
ISRN LUTFD2/TFRT--1082--SE

c© 2008 by Andreas Wernrud. All rights reserved.
Printed in Sweden by Media-Tryck.
Lund 2008

Till Erika

Abstract

This thesis studies approximate optimal control of nonlinear systems. Par-

ticular attention is given to global solutions and to the computation of ap-

proximately optimal feedback controllers. The solution to an optimal con-

trol problem is characterized by the optimal value function. For a large

class of problems the optimal value function must satisfy a Hamilton-

Jacobi-Bellman type equation. Two common methods for solving such

equations are policy iteration and value iteration. Both these methods

are studied in this thesis.

An approximate policy iteration algorithm is presented for both the

continuous and discrete time settings. It is shown that the sequence pro-

duced by this algorithm converges monotonically towards the optimal

value function.

A multivariate polynomial relaxation algorithm is proposed for linearly

constrained discrete time optimal control problems with convex cost.

Relaxed value iteration is studied for constrained linear systems with

convex piecewise linear cost. It is shown how an explicit piecewise linear

control law can be computed and how the resulting look-up table can be

reduced efficiently.

The on-line implementation of receding horizon controllers, even for

linear systems, is usually restricted to systems with slow dynamics. One

reason for this is that the delay between measurement and actuation in-

troduced by computing the control signal on-line can severely degrade sys-

tems with fast dynamics. A method to improve robustness against such

delays and other uncertainties is presented.

A case study on the control of DC–DC converters is given. Feasibility

of a Relaxed Dynamic Programming algorithm is verified by synthesizing

controllers for both a step-down converter and a step-up converter. The

control performance is evaluated both in simulations and in real experi-

ments.

7

Acknowledgments

I would like to use this small space to give my most sincere thanks to the

people who have helped me complete this thesis.

As my thesis supervisor, Anders Rantzer has been excellent. He has

provided guidance at key moments during my work while also allowing

me to work independently most of the time, for which I am especially

grateful. I am also grateful for the suggestions on research topics he gave

me a couple of years ago. Some of those topics are covered later in this

thesis.

Thanks to Anders Robertsson for answering all kinds of questions in

my early days at the department. I appreciate the feedback provided by

Peter Alriksson on some of my work, it was very helpful. Thanks to Karl

Mårtensson for our collaboration on DMPC, hopefully we will continue

with that work.

A special thanks to Stéphane Velut for many valuable discussions.

Also, thanks for sharing your climbing skills with me.

Several persons, Anders Rantzer, Anders Robertsson, Peter Alriksson

and Brad Schofield, have read parts of drafts of this thesis. They have

tracked down typos and given me suggestions on alternative formulations.

Although I did ignore some of those suggestions, the ones I used have

definitely improved the presentation of my work. Thanks a lot!

The Department of Automatic Control is a great place to do graduate

studies. Not only do we have skilled researchers, we also have skilled

secretaries, Eva, Britt-Marie and Agneta and also a competent technical

staff, Leif, Rolf and Anders. Thank you all for making daily work easier!

I thank my collaborators on the benchmark problems in the HYCON

project. In particular, I would like to thank Ulf Jönsson, Stefan Almér,

Andreas Beccuti and Sébastien Mariethoz for editing our papers. A special

thanks to the ETH group for providing me and the other groups with the

opportunity to do experiments at ETH.

I gratefully acknowledge the financial support for this work, provided

9

Acknowledgments

by the Swedish Research Council and HYCON.

I thank my family and friends for all the support they have given me

and still do today. You all mean very much to me.

Finally, the person whom I want to thank the most is Erika. I am

probably too lucky to have you by my side.

Andreas

10

Contents

Preface . 13

Motivation . 13

Outline and Contributions . 14

1. Background . 18

1.1 Introduction . 18

1.2 Optimal Control . 18

1.3 Linear Programming and Extreme Points 25

1.4 Positive Polynomials . 26

2. Approximate Policy Iteration 31

2.1 Introduction . 31

2.2 Continuous Time Version 32

2.3 Application on Input-Affine Systems 37

2.4 Discrete Time Version with Convergence Rate 44

2.5 Summary and Concluding Remarks 48

3. Value Iteration With Polynomial Parametrization 50

3.1 Introduction . 50

3.2 Lower Bound Approximation 50

3.3 Discrete Control . 59

3.4 Summary and Concluding Remarks 65

4. Constrained Control of Linear Systems 67

4.1 Optimal Control of Linear Systems 67

4.2 Problem Formulation . 68

4.3 Dynamic Programming Solution 69

4.4 Computing the Control Law 70

4.5 Controller Reduction . 74

4.6 The Complete Algorithm 76

4.7 Examples . 77

4.8 A Note on Complexity . 81

11

Contents

4.9 Summary and Concluding Remarks 81

5. Dynamic Model Predictive Control 83

5.1 Traditional MPC . 84

5.2 Dynamic MPC . 85

5.3 Example . 90

5.4 Summary and Concluding Remarks 92

5.5 Appendix: The Online Optimization Problem 92

6. Control of DC-DC Converters: A Case Study 98

6.1 Introduction . 98

6.2 Physical Converter Models 100

6.3 Modeling for Control Design 103

6.4 Case Study 1: Control Design for the Step-Down Con-

verter . 106

6.5 Case Study 2: Control Design for the Step-Up Converter 114

6.6 Summary and Concluding Remarks 123

References . 124

12

Preface

Motivation

Optimal control methods can be a very helpful tool when solving synthesis

problems. It allows the control designer to pose the synthesis problem

as a mathematical optimization problem. The solution to the resulting

optimization problem can sometimes be characterized and computed using

systematic methods.

There are two distinct types of optimal control problems, open loop

and closed loop problems. The solution to an open loop problem is an opti-

mal control trajectory, starting from a fixed initial condition. The solution

to a closed loop problem is a feedback controller, i.e. a function mapping

the state to the optimal control value. A solution to an open loop prob-

lem can usually be obtained by solving a two point boundary ordinary

difference or differential equation, derived by applying Pontryagins Mini-

mum Principle, see [Leitmann, 1981]. It is much more complicated to solve
a closed loop problem since the information represented by the optimal

value function is essentially equal to the information obtained by solving

a two point boundary ordinary difference or differential equation from

each point in state space. It turns out that the optimal value function

must satisfy a Hamilton-Jacobi-Bellman(HJB) type equation, a nonlinear
partial difference or differential equation, see [Bellman, 1957; Leitmann,
1981; Fleming and Soner, 1993]. Closed loop problems are also referred to
as global methods since each point in the state space is considered.

Even though modern optimal control has been an active research topic

since the 1950s, there has been little progress in finding constructive

solution techniques for this equation. Almost all proposed techniques are

based on gridding continuous variables. A grid-based solution technique

means that candidate solutions are parametrized by their function values

13

Preface

on a finite number of points. A major advantage with this parametrization

is that it can be applied to almost any type of problem. However, since

the grid size scales exponentially with dimension, gridding is usually not

practical for problems with more than a few states. For problems with

few states it can be a good choice, see [Grüne, 1997]. On the other hand,
methods that use a less flexible parametrization, e.g. a polynomial, can

only be applied to problems with some special structure. Moreover, using

a less flexible parametrization also means that exact solutions are less

likely to be found. It is natural to formulate an approximate solution

strategy. In this thesis, the exact problem is approximated be replacing

equality constraints by inequalities in such a way that the approximation

has certain attractive properties. Moreover, parametrization are chosen

so that all required inequalities can be verified using either semidefinite

programming or linear programming.

Another approach to optimal control is Model Predictive Control or

Receding Horizon Control (RHC). The essential difference between RHC
and the more direct approach discussed above is in terms of implemen-

tation. In RHC all necessary computations are performed on-line, thus

avoiding the difficulties involved in the computation of the optimal value

function. On the other hand, the on-line computation required in RHC can

sometimes be prohibitive e.g. for systems with fast dynamics. A method

to approach this problem is presented in this thesis.

Outline and Contributions

This section contains an outline of the thesis and a summary of the con-

tributions.

Chapter 1: Background

This first chapter gives a short introduction to the vast subject of opti-

mal control. Emphasis is placed on parts of this theory that are most

relevant for this thesis. Also, techniques for non-negativity verification of

polynomials are discussed.

14

Outline and Contributions

Chapter 2: Approximate Policy Iteration

An approximate policy iteration algorithm for both the continuous and

discrete time setting is given in this section. It is shown that the sequence

produced by this algorithm converges monotonically to the optimal value

function.

The theory is applied to optimal control of polynomial input affine

systems with quadratic penalty on control values.

Related Publications

Wernrud, A. (2007): “Strategies for computing switching feedback con-
trollers.” In American Control Conference. New York City, USA.

Wernrud, A. and A. Rantzer (2005): “On approximate policy iteration for
continuous-time systems.” In The 44th IEEE Conference on Decision
and Control and European Control Conference ECC. Seville, Spain.

Chapter 3: Value Iteration With Polynomial Parametrization

In this chapter we consider two types of optimal control problems. We

propose solutions based on relaxed value iteration with multivariate poly-

nomials as value function parametrization. First we consider constrained

control of discrete time systems with continuous control space. To be able

to perform value iteration we impose certain convexity assumptions and

propose a semi-grid-based technique to verify a required inequality.

The second type of problem we consider is control of discrete time

systems with discrete control space, i.e. a switching system. We propose

a simple state weighting relaxation technique.

Related Publications

Wernrud, A. (2006): Computation of approximate value functions for con-
strained control problems. Proc. of the 17th International Symposium
on Mathematical Theory of Networks and Systems, Kyoto, Japan.

Wernrud, A. (2007): “Strategies for computing switching feedback con-
trollers.” In American Control Conference. New York City, USA.

15

Preface

Chapter 4: Constrained Control of Linear Systems

Relaxed value iteration is studied for constrained linear systems with

piecewise linear step cost. It is shown how an explicit piecewise linear

control law can be computed and how the resulting look-up table can be

reduced efficiently.

Related Publications

Wernrud, A. (2008): On constrained optimal control of linear systems with
piecewise linear step cost. Submitted.

Chapter 5: Dynamic Model Predictive Control

The on-line implementation of receding horizon controllers, even for linear

systems, is usually restricted to systems with slow dynamics. One reason

for this is that the delay between measurement and actuation introduced

by computing the control signal on-line can degrade systems with fast

dynamics. Preliminary results and ideas on how to improve robustness

against such delays and other uncertainties are presented.

Related Publications

Mårtensson, K., A. Wernrud (2008): “Dynamic Model Predictive Control”
To appear at the 17th IFAC World Congress.

Chapter 6: Control of DC-DC converters: A Case Study

Power electronic circuits such as the switched mode dc-dc converters rep-

resents a good entry point for the investigation of the control design and

performance benefits that can be brought by hybrid and optimal control

techniques. A case study on the control of DC–DC converters is given.

Feasibility of a Relaxed Dynamic Programming algorithm is verified by

synthesizing controllers for both a step-down converter and a step-up con-

verter.

Related Publications

Almer, S., H. Fujioka, U. Jönsson, C. Y. Kao, D. Patino, P. Riedinger,

T. Geyer, A. Beccuti, G. Papafotiou, M. Morari, A. Wernrud, A.

Rantzer (2007): Hybrid Control Techniques for Switched-Mode DC–
DC Converters, Part I: The Step-Down Topology. Proc. of American

Control Conference.

16

Outline and Contributions

Beccuti, A., G. Papafotiou, M. Morari, S. Almer, H. Fujioka,

U. Jönsson, C. Y. Kao, A. Wernrud, A. Rantzer, M. Baja,

H. Cormerais, J. Buisson (2007): Hybrid Control Techniques for
Switched-Mode DC–DC Converters, Part II: The Step-Up Topology.
Proc. of American Control Conference.

Mariéthoz, S., S. Almér, A. Beccuti, D. Patino, A. Wernrud, T. Geyer,

H. Fujioka, U. Jönsson, C.-Y. Kao, M. Morari, G. Papafotiou,

A. Rantzer, and P. Riedinger (2008a): “Evaluation of four hybrid con-
trol techniques for the synchronous step down buck DC–DC converter.”

To be submitted.

Mariéthoz, S., S. Almér, B. Mihai, A. G. Beccuti, A. Wernrud, H. Fujioka,

U. Jönsson, C.-Y. Kao, H. Cormerais, J. Buisson, G. Papafotiou,

M. Morari, and A. Rantzer (2008b): “Comparative assessment of hybrid
control techniques for the boost DC–DC converter.” To be submitted.

17

1

Background

1.1 Introduction

This chapter is meant to be a background and brief summary to the prob-

lems studied later in this thesis. Detailed treatments of optimal control

can be found in [Bellman, 1957; Leitmann, 1981; Cesari, 1983; Fleming
and Soner, 1993; Bertsekas, 2000; Bardi and Capuzzo-Dolcetta, 1997].
The optimal control problem is stated in both continuous and discrete

time. The classical theorem showing necessity of the Hamilton-Jacobi-

Bellman equation is stated and in fact proved. A proof is given because it

is instructive. It shows the essence of the Dynamic Programming approach

to solve optimal control problems, i.e. the principle of optimality turns

a time trajectory optimization problem into a pointwise in state space

optimization problem.

The key ideas and results of Relaxed Dynamic Programming are re-

viewed, these ideas are used in Chapters 3–4.

Techniques for verification that a polynomial is non-negative are in-

troduced and some illustrating examples are given.

1.2 Optimal Control

The essential question answered by the theory of optimal control is how

to best choose the control input to a dynamical system, where “best” is

defined to be the input that results in minimal state/input trajectory
cost.

Our interest is in global solutions, i.e. we would like to find the best

input for each initial condition from a prescribed set of states, not just a

trajectory from a fixed initial condition.

18

1.2 Optimal Control

Global solutions to optimal control problems can be characterized, and

sometimes computed, by using Dynamic Programming. For discrete time

problems the characterization is given in terms of the solution to the

Bellman equation, a nonlinear difference equation. The corresponding

equation in continuous time, the Hamilton-Jacobi-Bellman equation, is

a nonlinear partial differential equation. Both these equations are direct

consequences of the so called Principle of Optimality:

From any point on an optimal trajectory, the remaining trajectory

is optimal for the corresponding problem initiated at that point.

The HJB-Equation In Continuous Time

Consider a continuous time system

ẋ = f (x,u) (1.1)

with (x,u) ∈ X$U ⊂ Rn $Rm. It is assumed that 0 = f (0, 0). We denote
the instantaneous cost function by l(x,u). The instantaneous cost function
is assumed to be positive definite, in other words l(x,u) > 0 if (x,u) ,= 0
and l(0, 0) = 0. The total cost is defined as

V (x0) =
∫ ∞

0

l(x,u)dt (1.2)

where the initial state x0 := x(0) ∈ X is given. The optimal control prob-

lem we consider is defined by

V ∗(x0) = inf
u(⋅)
V such that (1.1) is satisfied. (1.3)

where u(⋅) denote a time function.
The Principle of Optimality can be encoded in the Dynamic Program-

ming Equation

V ∗(x0) = inf
u(⋅)
{
∫

ǫ

0

l(x(s),u(s))ds+ V ∗(x(ǫ))}

Throughout this thesis, the gradient of a differentiable function f will

be denoted by D f = � f
�x . The gradient is defined to be a column vector.

Using this equation, we can prove the following classical result which

shows that the optimal value function must satisfy the HJB-equation, at

least if it is differentiable.

19

Chapter 1. Background

THEOREM 1.1

Suppose that u∗ attains the minimum in (1.3) and that the corresponding
optimal cost V ∗ is differentiable, then V ∗ satisfies the HJB-equation

min
u
{DV ∗ ⋅ f (x,u) + l(x,u)} = 0 (1.4)

and

u∗(t) = µ(x∗(t)) = argminu{DV ∗ ⋅ f (x,u) + l(x,u)} (1.5)

PROOF 1.1

Let ǫ > 0 and x0 = x(0) be any initial condition

V ∗(x0) = min
u(⋅)
{
∫

ǫ

0

l(x(s),u(s))ds+ V ∗(x(ǫ))}

= min
u(⋅)
{
∫

ǫ

0

l(x(s),u(s))ds+ V ∗(x(0) + f (x(0),u(0))ǫ + o(ǫ))}

= min
u(⋅)
{
∫

ǫ

0

l(x(s),u(s))ds+ V ∗(x(0)) + DV ∗ ⋅ f (x(0),u(0))ǫ + o(ǫ)}

dividing by ǫ and then sending ǫ → 0 we get
min
u(0)

{DV ∗ ⋅ f (x(0),u(0)) + l(x(0),u(0))} = 0

The result follows since x(0) ∈ X was arbitrary.

The second equality follows from writing x(ǫ) = x(0)+ f (x(0),u(0))ǫ+o(ǫ),
the last step uses the assumption that V ∗ is differentiable and therefore

has a first order Taylor expansion at every state.

The next result, which is also a classical one, shows that the HJB-

equation provides a sufficient condition for optimality. The result is some-

times called the Verification Theorem of Dynamic Programming.

THEOREM 1.2

Suppose V is positive definite and satisfies the HJB-equation

min
u
{DV ⋅ f (x,u) + l(x,u)} = 0 (1.6)

Define

µ(x(t)) = argminu{DV ⋅ f (x,u) + l(x,u)} (1.7)
If the solution to ẋ = f (x, µ(x)) does not leave the domain of V ∗ then

V = V ∗, u∗(t) = µ(x(t)) (1.8)

20

1.2 Optimal Control

PROOF 1.2

Integrating both sides of the equation −DV ⋅ f (x, µ(x)) = l(x, µ(x)) gives

V (x(0)) − V (x(t)) =
∫ t

0

l(x, µ(x))dt ≤ V (x(0)) (1.9)

If û is any stabilizing, other than µ(x), control function then
∫ t

0

l(x, µ(x))dt ≤ V (x(0)) − V (x(t)) ≤
∫ t

0

l(x, û)dt (1.10)

in the limit this becomes

∫ ∞

0

l(x, µ(x))dt ≤ V (x(0)) ≤
∫ ∞

0

l(x, û)dt (1.11)

which is an equality if û = µ(x).
We give a simple example which we will use in Chapter 2 to illustrate an

approximation algorithm.

EXAMPLE 1.1

Consider the cost function

V (x0) =
∫ ∞

0

x2 + x4 + u2dt

We would like to minimize this cost under the linear dynamic constraint

ẋ = −x + u

In this case the HJB-equation reduces to

0 = min
u
{DV ⋅ f (x,u) + l(x,u)}

= min
u
{DV ⋅ (−x + u) + x2 + x4 + u2}

= 2x2 + x4 − 1
4
(DV + 2x)2

thus

DV = −2x ± 2pxp
√
2+ x2

21

Chapter 1. Background

integrating this equation and using that V ∗ must be positive definite we

find

V (x) = −x2 + 2 (2+ x
2)3/2 − 2

√
2

3
and

µ(x) = x − x
√
2+ x2

Theorem 1.2 shows that V = V ∗ and µ = µ∗.

Such examples, when equation (1.6) can be solved explicitly, are rare in
higher dimensions. Moreover, both these theorems are useless for many

problems since the optimal value function need not be differentiable. The

Dynamic Programming approach to optimal control is still useful even

if the optimal value function is not differentiable. The most well known

extension to the classical theory is when the value function is allowed

to be a so called viscosity solution to a HJB-type equation, see [Fleming
and Soner, 1993; Bardi and Capuzzo-Dolcetta, 1997]. However, it is still
equally difficult to solve the HJB-equation in this more general theory.

The HJB-Equation In Discrete Time

The notation in the discrete time setting is quite similar to the continuous

case. The dynamic constraint now takes the form

x(k+ 1) = f (x(k),u(k)), x(0) = x0, k ≥ 0 (1.12)
where (x,u) ∈ X $ U. We use the following notation, for each x ∈ X the

subset U(x) ⊂ U denotes those controls such that f (x,u) ∈ X. We assume

that U(x) ,= ∅ ∀x ∈ X, thus the system is assumed to be controlled

invariant. We also assume that f (0, 0) = 0. The total cost associated with
a given input sequence is defined by

V (x0) =
∞∑

k=0
l(xu(k),u(k)))

were the step cost l : X $ U → R is positive definite, i.e. l(0, 0) = 0 and
l(x,u) > 0 if (x,u) ,= 0. The optimal value function is defined by

V ∗(x0) = min
u()
V (x0)

In discrete time the optimal value function can be characterized as the

solution to Bellman’s equation

V ∗(x) = min
u∈U(x)

{V ∗(f (x,u)) + l(x,u)} (1.13)

If we know V ∗, the optimal feedback controller is given by

µ∗(x) = argminu∈U(x){V ∗(f (x,u)) + l(x,u)}

22

1.2 Optimal Control

Solving Bellman’s Equation Value iteration derives from Bellman’s

famous principle of optimality. Consider the cost of controlling system

(1.12) in a finite number of, say N, steps. Doing so in an optimal way
would result in a cost

V ∗
N(x0) = min

u()

N−1∑

k=0
l(xu(k),u(k)) (1.14)

This is the same as

V ∗
N(x) = min

u∈U(x)
{V ∗
N−1(f (x,u)) + l(x,u)} (1.15)

Together with initial function V0 = 0, this iterative functional equation
defines value iteration. Under suitable conditions the limit limN→∞ VN(x)
exists and coincides with V ∗(x). In practice the iteration must, of course,
be terminated after a finite number of iterations. Usually one then ap-

proximates the optimal infinite horizon controller with the time invariant

controller

µ∗
N(x) = argminu∈U(x){V ∗

N−1(f (x,u)) + l(x,u)}

and then uses this to control the system indefinitely. It should be noted

that µ∗
N(x) is not the optimal controller for the finite horizon problem 1.14.

The N-step optimal controller is given by

µ∗
j (x), 1 ≤ j ≤ N

which is a time-varying controller. The strategy of using µ∗
N as an approx-

imation to the infinite horizon problem is precisely that used in Receding

Horizon Control (RHC) or in Model Predictive Control (MPC). The total
cost of using this approximation is

Vµ∗
N
(x) =

∞∑

k=0
l(xµ∗

N
(k), µ∗

N(xµ∗
N
(k)))

We directly see that

V ∗
N(x) ≤ V ∗(x) ≤ Vµ∗

N
(x)

Thus, it is in principle possible to check convergence using this simple

inequality. For a recent account on the convergence problem associated

with RHC, see [Grüne and Rantzer, 2006].
Exact value iteration, however, is not easy to perform in practice. It is

almost always necessary to make approximations. One particular way of

formulating an approximation algorithm is presented below.

23

Chapter 1. Background

Relaxed Value Iteration The idea of Relaxed Value Iteration is due to

the authors of [Lincoln, 2003; Lincoln and Rantzer, 2006]. See also [Rantzer,
2006] for applications to switching problems.
The following two statements are slight reformulations from [Lincoln,

2003]. Let V ∗
N be the N-step optimal cost function obtained by using exact

value iteration (1.15). Suppose that VN : X → R satisfies the following

inequalities
min
u∈U(x)

{VN−1(f (x,u)) + β l(x,u)} ≤ VN(x)

VN(x) ≤ min
u∈U(x)

{VN−1(f (x,u)) +α l(x,u)}
(1.16)

Where β ≤ 1 ≤ α ∈ R.

PROPOSITION 1.1

Suppose that V0 = V ∗
0 , then

βV ∗
N ≤ VN ≤ αV ∗

N , ∀N ∈ N (1.17)

We call the iteration (1.16) relaxed value iteration. It turns out that for
some problems it is much easier to find a sequence {VN} that satisfies the
inequalities (1.16), compared to the exact iteration. The inequality form
also has several other useful properties. The relative bounds obtained can

also be used to quantify computation errors made when the exact solution

is sought.

The following result can be used to verify that a function V is close to

the stationary optimal cost function

PROPOSITION 1.2

Let X̃ ⊂ X with 0 ∈ X̃ be any invariant subset. If V ≥ 0 satisfies

min
u∈U(x)

{V (f (x,u)) + β l(x,u)} ≤ V (x)

V (x) ≤ min
u∈U(x)

{V (f (x,u)) +α l(x,u)}
(1.18)

Where β ≤ 1 ≤ α ∈ R, then

βV ∗ ≤ V ≤ αV ∗, ∀x ∈ X̃ (1.19)

24

1.3 Linear Programming and Extreme Points

1.3 Linear Programming and Extreme Points

One of the algorithms in Chapter 4, on constrained control of linear sys-

tems, requires enumeration of the extreme points of a certain polyhedron.

This section shows how that can be achieved.

An extreme point x of a convex set S is a corner point of S. In other

words, if x1, x2 are any other points in S, then x is an extreme point of S

if x = x1+x2
2
implies that x = x1 = x2.

Consider the linear programming problem

min cT x,

s.t. Ax = b, x ≥ 0.

where c, x ∈ Rn, A ∈ Rm$n and b ∈ Rm. The feasible set to this linear

program is given by the polyhedron

P = {x : x ∈ Rn, Ax = b, x ≥ 0} (1.20)

We assume that P is non-empty and that the constraint matrix has linearly

independent rows, rank(A) = m ≤ n. The following two propositions,
which can be found in e.g. [Luenberger, 1984], are fundamental results in
the theory of linear programming

PROPOSITION 1.3

x ∈ Rn is an extreme point of P if and only if there is a permutation

matrix H, note that HHT = I, and an invertible m $m-matrix M such
that

AH = [M N] (1.21)
and

HT x =
[
xM

xN

]
=
[
M−1b

0

]
≥ 0 (1.22)

PROPOSITION 1.4

If the primal linear programming problem has a finite optimal solution it

is attained at an extreme point of P.

These two results show that we can solve a linear program by simply enu-

merating all extreme points of P. The extreme points of P can be computed

as follows: Let

y = [Ak1, . . . , Akm]−1 b

25

Chapter 1. Background

where the Ak j ’s are linearly independent columns in A, if y ≥ 0 then x
defined by

xk j =
{
yj if 1 ≤ j ≤ m
0 else

is an extreme point of P. The number of extreme points in P is bounded

from above by (
n

m

)
= n!

(n−m)!m!

which is equal to the number of matrices on the form [Ak1, . . . , Akm].
Since this number grows very fast jointly in (n,m) it is usually inefficient
to solve linear programs by enumeration as compared to, for example, the

simplex method.

However, observe that for fixed m the number of extreme points in P

grows as a polynomial in n, in fact the asymptotic growth is O(nm). We
shall return to that observation in Chapter 4.

1.4 Positive Polynomials

Consider a polynomial p in variables x ∈ Rn. Suppose that each coefficient

in p depends on a parameter vector via an affine function, i.e. if pj is the

j ’th coefficient of p and t ∈ Rw is a w-dimensional parameter vector we

have the relation

t]→ pj(t) = c0 +
w∑

j=1
cj t j (1.23)

where c0...cw are fixed. Let us denote this parametrized family of poly-

nomials by p(x; t). The goal of this section is to explain how a positiv-
ity constraint on p(x; t) can be cast as a linear matrix inequality. The
presentation will be brief, for a more thorough discussion see [Parrilo,
2003; Prajna et al., 2002].

R[x] is the vector space of polynomials in variables x ∈ Rn. By Rd[x] we
denote the subspace of polynomials of degree at most d. We write Zd(x)
for the column vector consisting of the elements of the canonical basis for

Rd[x], i.e.
Zd(x) = [1 x1 x2 .. xn x1x2 .. xdn]T

A simple observation is that if p ∈ R2d[x] is a sum of squares p =
∑m
k=1 p

2
k

for some pk ∈ Rd[x] then p ≥ 0 for all x ∈ Rn. We denote the set of all sum

of squares of polynomials by Σ[x]. The following proposition characterizes
all such polynomials

26

1.4 Positive Polynomials

PROPOSITION 1.1

p ∈ Σ2d[x] if and only if

p = Zd(x)TQZd(x) (1.24)

for some positive semidefinite matrix Q.

This result is important since it allows us to check in a simple way if a

given polynomial is a sum of squares. Given a polynomial p, checking if p

is a sum of squares can be achieved using semidefinite programming as

follows: First identify coefficients in (1.24), this gives an affine constraint
on the elements of Q, then by taking the intersection with the convex cone

of positive semidefinite matrices results in a convex constraint.

EXAMPLE 1.2

Consider the following polynomial

p = x21x22x23 − 2x21x2x3 − 2x1x2x3 + x21 + 2x1 + 2

To verify that p is a sum of squares we let

Z = [1 x1 x1x2x3]T , Q =




q1 q2 q3

q2 q4 q5

q3 q5 q6




If we equate terms in p and ZTQZ we get

Q =




q1 q2 q3

q2 q4 q5

q3 q5 q6



=




2 1 −1

1 1 −1

−1 −1 1




Since Q can be factorized as

Q =




−1 1

−1 0

1 0






−1 −1 1

1 0 0




27

Chapter 1. Background

we have Q 4 0 and p is a sum of squares

p = (x1x2x3 − x1 − 1)2 + 1

Not only have we proved that p is non-negative we have in fact showed

that p ≥ 1 and moreover this bound is optimal since p(−1, 0, 0) = 1.
It is equally easy to check if a parametrized, as in (1.23), polynomial is a
sum of squares by identifying the coefficients in

p(x; t) = Zd(x)TQZd(x) (1.25)

If we define q = vec(Q), so that the columns in Q are stacked in q, the
constraint (1.25) can be written as

A[tT qT]T = b (1.26)

for appropriate constants A and b.

The other implication is false, i.e. even if a polynomial p is non-negative

p is not necessarily a sum of squares, see [Parrilo, 2003]. Thus the above
procedure gives sufficient conditions for positivity on Rn. This fact shows

that checking global positivity of a polynomial using the outlined method

can be somewhat conservative.

In this thesis we focus on positivity on compact sets, and this case is

less conservative. Consider a set

X = {x : hk(x) ≥ 0, k = 1..m} (1.27)

with hk ∈ R[x]. We associate with X a set of polynomials

GX = {p : p = σ 0 +
m∑

k=1
σ khk, σ k ∈ Σ[x]} (1.28)

Similar to the global case we clearly have

LEMMA 1.1

If p ∈ GX then p ≥ 0 on X.

The following remarkable partial converse, see [Putinar, 1993], will be
useful

THEOREM 1.3—PUTINAR

Let X be as in (1.27). Suppose that there is a real number r such that
r2 −

∑n
k=1 x

2
k ∈ GX, then p ∈ R[x] is positive on X only if p ∈ GX.

28

1.4 Positive Polynomials

EXAMPLE 1.3

The following polynomial

p = −x21x22 − 2x21x2 − 2x1x2 + 2x21 + 2x1 + 1− x41 + x22 − x42

is not non-negative on R2, e.g p(1, 1) = −1. It is, however, non-negative
on the unit disc

X = {x : h1 = 1− x21 − x22 ≥ 0}
To show that we can use the outlined procedure to arrive at the following

identity

p = σ 0 +σ 1h1 = (x1x2 − x1 − 1)2 + (x21 + x22)(1− x21 − x22)

Linear Programming Alternative

We can combine Theorem 1.3 and Proposition 1.1 to optimize polynomials

over compact semialgebraic sets. Doing so requires us to solve convex op-

timization problems with semidefinite constraints. These problems grow

fast in size as the degree of the polynomials grows. Current implemen-

tations of semidefinite program solvers can solve medium-sized problems

very efficiently. Large-scale linear programming problems, however, can

be solved much more efficiently as compared to semidefinite programming

problems. Therefore, when the degrees of the involved polynomials grow

large, it would be advantageous to be able to cast polynomial positivity

constraints as linear inequalities, and thus be able to use linear program-

ming codes to verify positivity. This can in fact be achieved by using the

following theorem of Handelman [Prestel and Delzell, 2001]

THEOREM 1.4—HANDELMAN

Let X be non-empty, and defined as in (1.27). Suppose that the hk’s contain
the subsequence h1 = b1 − aT1 x, ...,hq = bq − aTq x such that the set

{x : hk(x) ≥ 0, k = 1..q}

is compact. Then p ∈ R[x] is positive on X only if p can be written as

p =
∑

0≤ν∈Nq

cν (b− aT x)ν (1.29)

for some finite number of non-negative coefficients cν .

29

Chapter 1. Background

Here we use the notation

(b− aT x)ν =
q∏

k=1
(bk − aTk x)νk

Of course, just as in Lemma 1.1 if p can be written as in equation (1.29)
this implies that p ≥ 0 on X.

We apply this theorem in similar fashion as in the application of The-

orem 1.3. Let p(x; t) be a parametrized in t polynomial, with coefficients
as in equation (1.23), put

p(x; t) =
∑

ν∈D
cν (b− aT x)ν (1.30)

where D is a finite set of vectors in Nq. Identification of coefficients on

both sides gives a linear equality constraint on the variables t1...tw and

ν ∈ D. Adding to this constraint a linear objective function results in a
linear programming problem.

See [Lasserre, 2002] for a comparison of linear programming versus
semidefinite programming relaxation techniques for polynomial optimiza-

tion.

30

2

Approximate Policy Iteration

2.1 Introduction

This chapter is devoted to the development of an approximate policy iter-

ation algorithm, the purpose of the algorithm being to compute approxi-

mate solutions to the stationary HJB-equation. The main idea is to replace

an equality constraint with two inequalities. The novel part of the main

result is to show precisely how to perturb the exact equation to get a mono-

tonically converging algorithm. A convergence proof is given, including the

rate of convergence. We apply the continuous time result to problems with

polynomial dynamics and quadratic penalty on the control variable. The

resulting inequalities are verified using polynomial relaxation techniques.

Policy iteration or successive approximation in policy space and other

similar methods, were already discussed by Bellman in [Bellman, 1957]. A
theoretical analysis of policy iteration in continuous time is given in [Leake
and Liu, 1967]. They show how the solution of the HJB-equation can be
reduced to the solution of a sequence of first order linear partial differen-

tial equations. However, they do not consider any computations. Related

to this is [Kleinman, 1968], where the author presents an algorithm to
solve the algebraic Riccati equation. More recently, the authors of [Beard
et al., 1998] apply the Galerkin spectral method to obtain solutions to the
aforementioned sequence of linear partial differential equations. However,

no bounds on the approximations are given and assumptions which are

difficult to check must be fulfilled. Moreover, the main computational task

in the algorithm proposed by [Beard et al., 1998] is multidimensional in-
tegration, such computations become prohibitive for systems with more

then a few states. On the other hand, an advantage of that method is that

it can be applied to problems where the system dynamics are not neces-

sarily modeled with polynomials. This is in contrast to the computational

31

Chapter 2. Approximate Policy Iteration

method presented in this chapter.

There are several other relevant methods that can be used to com-

pute an approximate solution to the HJB-equation. For example, the work

in [Garrard, 1969; Nishikawa and Itakura, 1971] where the authors use
various power series expansion strategies, with various assumptions, to

obtain approximate solutions to the HJB-equation. These methods can

sometimes be used to compute acceptable local estimates, using only a few

terms. Although higher order approximations are possible to compute, the

complexity is often prohibitive.

Motivated by LQ-control, another approach is to write the nonlinear

system in a linear like representation and derive a state dependent Riccati

equation, see [Huang and Lu, 1996]. This approach is taken in [Prajna
et al., 2004], where the authors use representations of positive polynomials
to derive sufficient conditions for upper bounds on the value function.

In [Markman and Katz, 2000] the authors use a discretization and
interpolation technique. The state space is discretized and the open loop

minimum control is computed for each point. These are then combined to

form a feedback controller. The drawback is that gridding techniques are

expensive in that such methods require computations that scale exponen-

tially in state dimension.

2.2 Continuous Time Version

There are several references, see [Bardi and Capuzzo-Dolcetta, 1997; Flem-
ing and Soner, 1993], in which optimal control theory with weak interpre-
tations of derivatives is developed. The reason for this is that for many

optimal control problems in continuous time the optimal value function

does not have a classical gradient. In the work presented in this chapter

we do not assume that the optimal value function is differentiable, but in-

stead we consider a differentiable sequence of functions that can be shown

to converge monotonically to the optimal cost.

Problem Setup

Consider a continuous time system

ẋ = f (x,u) (2.1)

with (x,u) ∈ X$ U ⊂ Rn $ Rm. The initial state x0 := x(0) ∈ X is given.

We denote the instantaneous cost function by l(x,u). The origin is a fixed
point of system (2.1), so 0 = f (0, 0). The instantaneous cost function l is
continuous positive definite, in other words l(x,u) > 0 for all (x,u) ,= (0, 0)

32

2.2 Continuous Time Version

and l(0, 0) = 0. The total cost is defined as

V =
∫ ∞

0

l(x,u)dt (2.2)

The optimal control problem we consider is defined by

V ∗(x0) = inf
u(⋅)
V such that (2.1) is satisfied. (2.3)

Exact Policy Iteration

Suppose that the cost function Vµ j given by (2.2) is finite on X when

using the feedback controller u(t) = µ j(x(t)). Assume also that Vµ j is

differentiable. The cost can be computed by solving

DVµ j ⋅ f (x, µ j(x)) + l(x, µ j(x)) = 0 (2.4)

Define a new controller by

µ j+1(x) = argminu{DVµ j ⋅ f (x,u) + l(x,u)} (2.5)

The repetition of these two steps constitutes the so called exact policy

iteration. Then, it is not hard to show that

Vµ j ≥ Vµ j+1 (2.6)

i.e. we have monotonic convergence, this fact follows as a special case from

the main result below.

There are at least two problems with this iteration. The cost Vµ j might

not exist as a differentiable function. Even if it is differentiable, it is gen-

erally impossible to find the exact solution to (2.4). If approximate solu-
tions are used convergence may be lost. It is necessary that computational

methods keep track of the successive errors. In the next section such an

approximate iteration is proposed.

Approximate Policy Iteration

In the following section, differentiable functions that approximate the true

cost functions Vµ j are denoted by Vj . Note that we do not assume that the

true costs Vµ j are differentiable.

Assume that there is a feedback controller µ0 and a differentiable
function V0 such that

0 ≥ DV0 ⋅ (f (x, µ0(x)) + l(x, µ0(x)), ∀x ∈ X

Define

Tj(x) = −DVj−1 ⋅ f (x, µ j(x)) − l(x, µ j(x))

33

Chapter 2. Approximate Policy Iteration

THEOREM 2.1—APPROXIMATE POLICY ITERATION

Suppose that the sequence {(α j , µ j ,Vj)} j≥1 with Vj positive definite for
j ≥ 1 satisfies

0 ≥ DVj ⋅ f (x, µ j(x)) + l(x, µ j(x)), (2.7)
0 ≤ DVj ⋅ f (x, µ j(x)) + l(x, µ j(x)) +αTj(x) (2.8)
0 ≤ Tj(x) (2.9)
0 ≤ α j ≤ 1 (2.10)

and that no solution xµ j leaves X. Then for every j ≥ 1 it holds

Vj−1 ≥ Vj ≥ Vµ j

REMARK 2.1

Note that the condition Tj(x) ≥ 0 is redundant if α j > 0.

PROOF 2.1

Let xµ j (t) denote the trajectory as a result of applying µ j and consider
inequality (2.7)

Vj(xµ j (0)) − Vj(xµ j (T))

=
∫ T

0

−DVj(xµ j (t)) ⋅ f (xµ j (t), µ j(xµ j (t)))dt

≥
∫ T

0

l(xµ j (t), µ j(xµ j (t)))dt

Thus

Vj(xµ j (0)) ≥ Vj(xµ j (T)) +
∫ T

0

l(xµ j (t), µ j(xµ j (t)))dt

Since Vj and l are continuous and positive definite it follows that xµ j (t) →
0 as t→∞ and therefore Vj ≥ Vµ j . Also, by inequality (2.8)

0 ≤ DVj ⋅ f (x, µ j(x)) + l(x, µ j(x))
+α j(−DVj−1 ⋅ f (x, µ j(x)) − l(x, µ j(x)))

= DVj ⋅ f (x, µ j(x)) − DVj−1 ⋅ f (x, µ j(x))
− (1−α j)(−DVj−1 ⋅ f (x, µ j(x)) − l(x, µ j(x)))

= DVj ⋅ f (x, µ j(x)) − DVj−1 ⋅ f (x, µ j(x))
− (1−α j)Tj(x)

≤ D(Vj − Vj−1) ⋅ f (x, µ j(x))

34

2.2 Continuous Time Version

the last inequality implies that

Vj−1(xµ j (0)) − Vj−1(xµ j (T))

=
∫ T

0

(−DVj−1 ⋅ f (x, µ j(x)))dt

≥
∫ T

0

(−DVj ⋅ f (x, µ j(x)))dt

= Vj(xµ j (0)) − Vj(xµ j (T))

by sending T →∞ we conclude Vj−1 ≥ Vj .
The result shows that Vj is bounded from below, for by definition Vµ j ≥
V ∗. Moreover {Vj} j≥0 is monotonically non-increasing. To prove global
convergence it is necessary to impose, at least, one more condition on the

sequence {Vj , µ j ,α j}. In the next result we provide such a condition

THEOREM 2.2—GLOBAL CONVERGENCE

Select {µ j} j≥0 according to

µ j+1(x) = argmin
u
{DVj ⋅ f (x,u) + l(x,u)} (2.11)

suppose that {Vj} j≥1 satisfies inequalities (2.7)-(2.8) and in addition

α j < 1

Then, for any x ∈ X

Vj(x) → V ∗(x) (2.12)

PROOF 2.2

Vj−1 ≥ Vj and the fact that Vj is bounded from below Vj ≥ V ∗ shows that

there must be a limit Vj(x) → V̂ (x). We shall show that our choice (2.11)
implies that V̂ (x) = V ∗(x).
Unless there is a point x such that Vj−1(x) > Vj(x), in which case the

sequence {Vj} is strictly improving, we have Vj−1(x) = Vj(x). Now, by
using the inequalities (2.7)-(2.8) and the fact that α j < 1 we have Tj = 0,
therefore

0 = Tj
= −DVj−1 ⋅ f (x, µ j) − l(x, µ j(x))
= −min

u
{DVj−1 ⋅ f (x,u) + l(x,u)}

35

Chapter 2. Approximate Policy Iteration

How To Find an Initializer?

To use Theorem 2.1 in an algorithm one must find an initializer µ0 and
a corresponding V0 such that (2.2) is satisfied. Although any locally sta-
bilizing µ0 could be used for this purpose, it is in general difficult to find
such a µ0 for a non-linear system. We will outline how a computational
procedure could be constructed to simplify the initialization.

We assume that there is a constant C > 0 such that

l(x,u) ≥ C(pxp2 + pup2)

and that the minimum in (2.3) is attained at µ∗ and that the optimal tra-

jectory (x∗(t), µ∗(x∗(t))) is a well defined, piecewise continuous, solution
to (2.1). As a consequence of these assumptions, the optimal cost function
V ∗ is positive definite and continuous on its domain, i.e. at points in

Σ∗
∞ = {x : x ∈ Rn,V ∗(x) < ∞}

Moreover, each sub-level set

Σ∗
ρ = {x : x ∈ Rn,V ∗(x) ≤ ρ}

is a connected compact subset of Σ∗
∞, thus ∪ρ Σ∗

ρ = Σ∗
∞ For each T > 0 and

x(0) ∈ Σ∗
∞ we have

ρ0 = V ∗(x(0)) = V ∗(x∗(T)) +
∫ T

0

l(x∗(t), µ∗(x∗(t)))dt > V ∗(x(T)) (2.13)

thus x(T) ∈ Σ∗
ρ0
. It follows that for any ρ ≥ 0, the set Σ∗

ρ is forward

invariant for each solution x∗(t) to ẋ = f (x∗, µ∗(x)).
Consider now the case when the system dynamics (2.1) and instanta-

neous cost are twice continuously differentiable, define

A = fx(0, 0)
B = fu(0, 0)
Q = lxx(0, 0)
R = luu(0, 0)

Suppose that (A, B) is stabilizable and that Q > 0,R > 0. Consider the
LQ-problem for the linearized system

VLQ = minu
∫∞
0
xTQx + uTRudt,

such that ẋ = Ax + Bu

36

2.3 Application on Input-Affine Systems

Let VLQ = xTPx be the optimal cost and let µLQ = LT x be the corre-
sponding optimal feedback controller. It has been shown in [Lukes, 1969]
that the controller µLQ stabilizes the nonlinear system (2.1) on some set
W that contains the origin its interior and for each x ∈ W

V ∗(x) = VLQ + o(pxp2)
µ∗(x) = µLQ + o(pxp)

We can choose W = Σ∗
ρ for some ρ > 0. Consider now a sequence

{(µ j ,Vj)} j≥1 that satisfies Theorem (2.1), and µ j continuous, selected as
in(2.11). The Vj ’s are assumed differentiable across the boundary of the
invariance region Σ∗

ρ . Due to compactness, µ j → µ∗ uniformly on Σ∗
ρ . Every

optimal trajectory starting outside of Σ∗
ρ points into Σ∗

ρ at its boundary.

With these facts one could hope that also each xµ j would point into Σ∗
ρ , at

least in the limit, and with this find a larger invariance region Σ∗
ρ̂ ⊃ Σ∗

ρ .

We could repeat the procedure to obtain a sub sequence Vµ jk
valid on

growing nested sequence Σ∗
ρk
and conclude that µ j → µ∗ on Σ∗

ρ for all

ρ. However, the outlined construction would require several additional
regularity assumptions.

2.3 Application on Input-Affine Systems

We would like to deduce an algorithm from the results in the previous

section. These results are valid for general continuous systems. However,

from a computational point of view, it is too difficult in general to do

the pointwise minimization in (2.11). We therefore consider input-affine
systems

ẋ = f (x) + �(x)u (2.14)
and we take the instantaneous cost to be quadratic in the control variable

l(x,u) = q(x) + uTRu

with q(x) > 0 if x ,= 0 and q(0) = 0, also R > 0. With this choice there is
a unique minimizer in (2.11), given by

µ j+1(x) = argminu{DVj ⋅ (f (x) + �(x)u) + q(x) + uTRu}

= −1
2
R−1�(x)TDVj

37

Chapter 2. Approximate Policy Iteration

Denote by P(µ j) the following optimization program:

P(µ j)]→ minα j ,

such that Vj(0) = 0 and ∀x ∈ X

0 ≥ DVj ⋅ (f (x) + �(x)µ j(x)) + l(x, µ j(x))

0 ≤ DVj ⋅ (f (x) + �(x)µ j(x)) + l(x, µ j(x)) +α jTj(x)

Vj ≥ 0

We would like to be able to solve P(µ j) repeatedly, and to do that we
need more structure. First, the exact cost functions Vµ j belong, in gen-

eral, to an infinite dimensional space. To be able to do computations it

is necessary to restrict the search for an approximation Vj to a subspace

Hdj ⊂ C1(X,R) of dimension dj . Moreover, the inequality constraints ap-
pearing in P(µ j) are intractable to verify in general. To get something
that is tractable we consider systems (2.14) that are modeled by polyno-
mials, f ,� ∈ R[x], also we take Hdj ⊂ R[x]. For notational simplicity, let
us assume that X can be described with only one polynomial, for example a

closed ball centered at the origin with radius a, i.e. X = {x : a2−pxp2 ≥ 0}.
Moreover, let sL, sU , sV ∈ Σm[x]. We now specialize P(µ j) to:

P(µ j ,dj)]→ minα j ,

such that

−(DVj ⋅ (f (x) + �(x)µ j(x)) + l(x, µ j(x))) − sL(a2 − pxp2) ∈ Σ[x]

(DVj ⋅ (f (x) + �(x)µ j(x)) + l(x, µ j(x)) +α jTj(x)) − sU (a2 − pxp2) ∈ Σ[x]

Vj − sV (a2 − pxp2) ∈ Σ[x]

sL, su, sV ∈ Σm[x]

Vj(0) = 0

By the discussion in Chapter 1 this is a semidefinite program, which can

be solved efficiently as long as the dimension of Hdj is not too high.

We summarize the discussion in the following pseudo code

38

2.3 Application on Input-Affine Systems

ALGORITHM 2.1—APPROXIMATE POLICY ITERATION

1: Let µ0 be any locally stabilizing feedback controller.
2: repeat

3: repeat

4: Solve P(µ j ,dj) for Vj .
5: if P(µ j ,dj) is not feasible then
6: increase dj
7: end if

8: until P(µ j ,dj) is feasible
9: µ j+1 = − 12R−1�(x)TDVj
10: until "convergence"

Examples

In this section we give two examples of the proposed method. The first

example is simple in the sense that we can obtain an analytic solution

to the HJB-equation for comparison. The second example is adopted from

[Beeler et al., 2000], which in turn originates from [Garrard and Jordan,
1977]. In [Beeler et al., 2000] the authors compare some of the existing
methods for computation of suboptimal controllers to nonlinear systems.

Both examples were implemented in Yalmip [Löfberg, 2004], with Se-
dumi [Sturm, 1999] as the underlying semidefinite programming solver.

EXAMPLE 2.1

Consider the one dimensional linear system

ẋ = −x + u (2.15)

with instantaneous cost l(x,u) = x2+x4+u2, note that q(x) = x2+x4 is not
quadratic in the state. The exact solution to this problem was computed

in Chapter 1. The optimal value function is

V ∗(x) = −x2 + 2 (2+ x
2)3/2 − 2

√
2

3
(2.16)

and the optimal feedback controller is

µ∗(x) = x − x
√
2+ x2 (2.17)

We took µ0 = 0 as the initial controller and X = [−1, 1] as the approxi-
mation region. Approximations to the value function with degree 4 and 6

39

Chapter 2. Approximate Policy Iteration

were computed

V 4 = 0.4176x2 + 0.1650x4

V 6 = 0.4149x2 + 0.1739x4 − 0.01030x6;
(2.18)

with associated controls

µ4 = −0.4176x − 0.3300x3

µ6 = −0.4149x − 0.3478x3 + 0.03090x5
(2.19)

For both degree 4 and 6 the main loop in Algorithm 2.1 was successfully

executed four times, but at the fifth iteration problem P(µ j ,dj) became
infeasible. Recall that at iteration j the α j -parameter can be interpreted
as a measure of how good Vj approximates Vµ j . The α -parameter versus
iteration is shown in Table 2.1. Consider first the row corresponding to

degree 4. That the sequence of α values is monotonically increasing means
that is becomes more and more difficult to improve the approximation. At

the fifth iteration no more improvements are possible if the degree of Vj
is kept fixed. Consider now the second row in Table 2.1, corresponding to

a degree 6 approximation. That the α value in each iteration is less than
the corresponding value for the degree 4 approximation means that the

convergence is faster for the degree 6 approximation, as expected.

To compare the presented algorithm with power series methods, con-

sider the Taylor expansion of the exact solution at the origin

V ∗(x) = 0.4142 x2 + 0.1768 x4 − 0.01473 x6 + o(x7)

and

u∗(x) = −0.41421 x − 0.3536 x3 + 0.04419 x5 + o(x6)
The reason for the differences between the computed approximations

and the Taylor expansion is that the method presented in this chapter

computes a uniform approximation whereas the Taylor expansion is a local

approximation. For the sixth degree approximation we have the following

estimate

max
x∈X

pV ∗(x) − V 6(x)p (10−2max
x∈X

pV ∗(x) − VT(x)p (2.20)

where VT is the sixth degree Taylor polynomial. Although this is a sim-

ple example, it gives some indication of the usefulness of our method as

compared to power series expansion methods.

40

2.3 Application on Input-Affine Systems

Deg\Iter. 1 2 3 4

4 1e-4 0.03960 0.5547 0.9945

6 1e-4 0.002900 0.04840 0.2968

Table 2.1 α -parameter vs. iteration in example 1.

EXAMPLE 2.2

In this example we consider a flight control problem. The system is mod-

eled with three states x1 is the angle of attack, x2 is the flight path angle

and x3 the rate of change of flight path angle. The control variable u is the

tail deflection angle. The states and control variable should be interpreted

as deviations from some setpoint. The model is as follows

f1(x) = − 0.877x1 + x3 + 0.47x21 − 0.088x1x3 − 0.019x22
+ 3.846x31 − x21x3

f2(x) =x3
f3(x) = − 4.208x1 − 0.396x3 − 0.47x21 − 3.564x31

(2.21)

and

�T = [−0.215 0 − 20.967] (2.22)
In this example the instantaneous cost is l(x,u) = 0.25xT x + u2. Approx-
imations were computed on

X = {x :− 0.1 ≤ x1 ≤ 25(π/180) + 0.1, x22 + x23 ≤ 0.1}

To evaluate the computed controllers we used compared their ability to

bring the system to rest after an initial perturbation in the angle of attack,

xT0 = [25(π/180) 0 0]. The algorithm was initialized with µ0 equal to
the LQ-controller for the linearized system.

The results are summarized in Figures 2.1-2.3. The discussion about

the α -parameter versus iteration in the previous example also applies in
this example. In fact, the pattern is even more pronounced in this example,

as shown in Figure 2.3.

Moreover, the results can also be compared to the results obtained in

[Beeler et al., 2000] for the same problem. The best controller for this
problem were obtained with a discretization-interpolation method. The

performance of that controller is about the same as that we obtained

with the third degree approximation using the method presented in this

chapter. The reported computation time required for the discretization-

interpolation method is about 6000 seconds, compared to the method in

41

Chapter 2. Approximate Policy Iteration

this chapter which required 60 seconds. Also, our controller is a third

degree polynomial, to be compared with the complicated representation for

the discretization-interpolation method. Note, the numerical computations

in [Beeler et al., 2000] was done on a platform that is similar to the one
we used for our computations.

0 2 4 6 8 10 12 14

−0.1

−0.05

0

0.05

Time (s)

LQ

Deg. 6

u

Figure 2.1 Control signal for different degrees of approximation in Example 2.

42

2.3 Application on Input-Affine Systems

0 2 4 6 8 10 12 14

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time (s)

LQ

Deg. 6

x
1

Figure 2.2 State x1 for different degrees of approximation in Example 2.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

Deg. 3

Deg. 4

Deg. 5

Deg. 6

α

Figure 2.3 α -parameter vs. iteration in Example 2.

43

Chapter 2. Approximate Policy Iteration

2.4 Discrete Time Version with Convergence Rate

The approximate policy iteration is also valid in discrete time. Although

the proofs are similar to the ones in continuous time, with integrals sub-

stituted for summations, they are given here for completeness. Moreover,

the rate of convergence is also given in this section.

Consider a discrete time system

x(k+ 1) = f (x(k),u(k)) (2.23)

with (x(k),u(k)) ∈ X $ U ⊂ Rn $ Rm. The initial state x0 := x(0) ∈ X

is given. We denote the step cost function by l(x,u). The origin is a fixed
point of system (2.23), that is 0 = f (0, 0). The step cost function l is
continuous positive definite, in other words l(x,u) > 0 for all (x,u) ,= (0, 0)
and l(0, 0) = 0. The total cost is defined as

V =
∞∑

k=0
l(x(k),u(k)) (2.24)

The optimal control problem we consider is defined by

V ∗(x0) = inf
u(⋅)
V such that (2.23) is satisfied. (2.25)

Suppose that the cost function Vµ j given by (2.24) is finite on X when

using the controller µ j . The cost can be computed by solving

Vj(x) = Vj(f (x, µ j(x))) + l(x, µ j(x)) (2.26)

Define a new controller by

µ j+1(x) = argmin
u
{Vj(f (x,u)) + l(x,u)} (2.27)

The repetition of these two steps constitutes the exact policy iteration in

discrete time.

Approximate Policy Iteration in Discrete Time

Assume that there is a feedback controller µ0 and a function V0 such that

V0(x) ≥ V0(f (x, µ0(x)) + l(x, µ0(x)), ∀x ∈ X

Define

Tj(x) = Vj−1(x) − Vj−1(f (x, µ j(x)) − l(x, µ j(x)).

44

2.4 Discrete Time Version with Convergence Rate

THEOREM 2.3—APPROXIMATE POLICY ITERATION

Suppose that the sequence {(µ j ,Vj)} j≥1 with Vj positive definite satisfies

Vj(x) ≥ Vj(f (x, µ j(x))) + l(x, µ j(x)) (2.28)
Vj(x) ≤ Vj(f (x, µ j(x))) + l(x, µ j(x)) +α jTj(x) (2.29)
0 ≤ Tj(x) (2.30)
0 ≤ α j ≤ 1 (2.31)

Then for every j ≥ 1 it holds

Vj−1 ≥ Vj ≥ Vµ j

REMARK 2.2

Note that the condition Tj(x) ≥ 0 is redundant if α j > 0.

PROOF 2.3

Now let xµ j (k) denote the trajectory as a result of applying µ j and consider
inequality (2.28)

Vj(xµ j (0)) − Vj(xµ j (t+ 1))

=
t∑

k=0
(Vj(xµ j (k)) − Vj(xµ j (k+ 1)))

≥
t∑

k=0
l(xµ j (k), µ j(k))

Thus

Vj(xµ j (0)) ≥ Vj(xµ j (t+ 1)) +
t∑

k=0
l(xµ j (k), µ j(k))

Since Vj ≥ 0 and l(x,u) > 0 if (x,u) ,= 0 we have xµ j (t) → 0 as t → ∞
and therefore Vj ≥ Vµ j . Also

Vj(x) ≤ Vj(f (x, µ j(x))) + l(x, µ j(x))
+α (Vj−1(x) − Vj−1(f (x, µ j(x)) − l(x, µ j(x)))

= Vj(f (x, µ j(x))) + Vj−1(x) − Vj−1(f (x, µ j(x))
− (1−α)(Vj−1(x) − Vj−1(f (x, µ j(x))) − l(x, µ j(x)))

≤ Vj(f (x, µ j(x))) + Vj−1(x) − Vj−1(f (x, µ j(x))

45

Chapter 2. Approximate Policy Iteration

the last inequality implies that

Vj−1(xµ j (0)) − Vj−1(xµ j (t+ 1))

=
t∑

k=0
(Vj−1(xµ j (k)) − Vj−1(xµ j (k+ 1))

≥
t∑

k=0
(Vj(xµ j (k)) − Vj(xµ j (k+ 1))

= Vj(xµ j (0)) − Vj(xµ j (t+ 1))

by sending t→∞ we conclude Vj−1 ≥ Vj .
The result shows that Vj is bounded from below, for by definition Vµ j ≥
V ∗. Moreover {Vj} j≥0 is monotonically non-increasing. To prove global
convergence it is necessary to impose, at least, one more condition on the

sequence {Vj , µ j ,α j}. In the next result we provide such a condition

THEOREM 2.4

Select {µ j} j≥1 according to

µ j+1(x) = argmin
u
{Vj(f (x,u)) + l(x,u)} (2.32)

suppose that {Vj} j≥1 satisfies inequalities (2.28)-(2.29) and in addition

α j < 1

Then, for any x ∈ X

Vj(x) → V ∗(x)

PROOF 2.4

Vj−1 ≥ Vj and the fact that Vj is bounded from below Vj ≥ V ∗ shows that

there must be a limit Vj(x) → V̂ (x). We shall show that our choice (2.32)
implies that V̂ (x) = V ∗(x).
Unless there is a point x such that Vj−1(x) > Vj(x), in which case the

sequence {Vj} is strictly improving, we have Vj−1(x) = Vj(x). But then
we can use inequalities (2.28)-(2.29) and the fact that α j < 1 to show that
Tj = 0, therefore

0 = Tj
= Vj−1 − Vj−1(f (x, µ j)) − l(x, µ j(x))
= Vj−1 −min

u
{Vj−1(f (x,u)) + l(x,u)}

46

2.4 Discrete Time Version with Convergence Rate

Moreover, if {µ j} j≥1 is selected as in the last theorem we can establish a
linear convergence rate

THEOREM 2.5—SPEED OF CONVERGENCE

Suppose that there is a parameter γ > 0 such that V ∗(f (x,u)) ≤ γ l(x,u)
for all (x,u) and that V0 ≤ δ V ∗. Define sup j α j = α̂ . If {Vj , µ j ,α j} is
selected according to Theorem 2.32 then for every j

Vj ≤ (1+ (δ − 1)
[

γ + α̂

γ + 1

] j
)V ∗

PROOF 2.5

Fix j ≥ 1 and assume that Vj−1 ≤ δ j−1V ∗ for all x. First observe that for

any numbers a and b

δ j−1a+ b+ (γ b− a)
δ j−1 − 1

γ + 1 = δ j−1γ + 1
γ + 1 (a+ b)

Consider inequality (2.29)

Vj(x) ≤ Vj(f (x, µ j(x))) + l(x, µ j(x))
+α j(Vj−1(x) − Vj−1(f (x, µ j)) − l(x, µ j(x)))

≤ Vj(f (x, µ j(x))) + l(x, µ j(x))
+ α̂ (Vj−1(x) − Vj−1(f (x, µ j)) − l(x, µ j(x)))

≤ α̂Vj−1(x) + (1− α̂)(Vj−1(f (x, µ j)) + l(x, µ j(x)))
= α̂Vj−1(x) + (1− α̂)min

u
{Vj−1(f (x,u)) + l(x,u)}

≤ α̂δ j−1V ∗(x)
+ (1− α̂)min

u
{δ j−1V ∗(f (x,u)) + l(x,u)

+ (γ l(x,u) − V ∗(f (x,u)))δ j−1 − 1
γ + 1 }

= α̂δ j−1V ∗(x) + (1− α̂)δ j−1γ + 1
γ + 1 V ∗(x)

= [α̂δ j−1 + (1− α̂)δ j−1γ + 1
γ + 1]V ∗(x)

= [δ j−1(γ + α̂) + 1− α̂

γ + 1]V ∗(x)

47

Chapter 2. Approximate Policy Iteration

Hence

δ j =
δ j−1(γ + α̂) + 1− α̂

γ + 1
We can find δ j by back substitution

δ j =
δ j−1(γ + α̂) + 1− α̂

γ + 1

= δ j−1

[
γ + α̂

γ + 1

]
+
[
1− α̂

γ + 1

]

= δ 0

[
γ + α̂

γ + 1

] j
+
[
1− α̂

γ + 1

] j−1∑

k=0

[
γ + α̂

γ + 1

]k

= δ 0

[
γ + α̂

γ + 1

] j
+
[
1− α̂

γ + 1

] 1−
[

γ + α̂

γ + 1

] j

1−
[

γ + α̂

γ + 1

]

= δ 0

[
γ + α̂

γ + 1

] j
+ 1−

[
γ + α̂

γ + 1

] j

using δ 0 = δ , we get

δ j = 1+ (δ − 1)
[

γ + α̂

γ + 1

] j

Observe that the case with α̂ = 0 corresponds to exact policy-iteration,
this case gives the fastest convergence according to the formula in the last

theorem. Note also that at the other extreme, i.e. when α̂ = 1, the formula
gives no information about the convergence rate, in accordance with the

assumption in Theorem 2.32.

2.5 Summary and Concluding Remarks

This chapter has presented a new approximate policy iteration algorithm.

A key feature of the algorithm is the monotonic convergence, a highly

desirable property of an approximation algorithm. Moreover, the fact that

no differentiability assumptions on exact cost functions are made makes

these results applicable to wide range of problems.

Using the main result, we deduced an algorithm for input affine poly-

nomial systems with quadratic penalty on control variables. For this spe-

cial case, the algorithm can use the sum of squares framework to verify

48

2.5 Summary and Concluding Remarks

required inequalities. The examples given for this special case illustrates

another important feature. The algorithm can be executed with a value

function parametrization that can not represent the exact cost. Yet, we

get an improved approximation in each iteration.

49

3

Value Iteration With

Polynomial Parametrization

3.1 Introduction

In Chapter 1 Relaxed Value Iteration was defined by

min
u∈U(x)

{VN−1(f (x,u)) + β l(x,u)} ≤ VN(x)

VN(x) ≤ min
u∈U(x)

{VN−1(f (x,u)) +α l(x,u)}
(3.1)

It is obvious that to find a VN that satisfies these two inequalities some

structure must be imposed on f , l and U(x).
In this chapter we consider two types of optimal control problems,

and we propose solutions with multivariate polynomials as value function

parametrization. First we consider constrained control of discrete time sys-

tems with continuous control space. To be able to perform value iteration

we impose certain convexity assumptions and propose a semi-grid-based

technique to verify (3.1). The second type of problem we consider is con-
trol of discrete time systems with discrete control space, i.e. a switching

system. We propose a simple state weighting relaxation technique.

3.2 Lower Bound Approximation

Our strategy for handling the lower bound

min
u∈U(x)

{VN−1(f (x,u)) + β l(x,u)} ≤ VN(x) (3.2)

50

3.2 Lower Bound Approximation

in Equation (3.1) is by piecewise approximations. Given a set of points
{x1, . . . , xs} ⊂ X ⊂ Rn. Let {X j} be a partition of X. Each member of such

a partition is defined by the convex hull of m points,

X j = conv(vj1, . . . ,vjm), with vjk ∈ {x1, . . . , xs}

here

n+ 1 ≤ m ≤ s
Moreover, we construct these sets such that

∪X j = X and int(X j ∩ Xi) = ∅, j ,= i

and all points in {x1, . . . , xs} must be a vertex point of some X j . Having

obtained such a partition, we define a piecewise affine approximation of

a function � : X → R as

ĥ(x) =
m∑

i=1
�(vji)λ(vji), for x ∈ X j (3.3)

with

x =
m∑

i=1
vjiλ(vji),

m∑

i=1
λ(vji) = 1, λ(vji) ≥ 0 (3.4)

any x ∈ X can be written this way. We say that ĥ is a piecewise affine

approximation of �, PWAA for short, defined by the points {x1, . . . , xs}.
The functions that we will approximate are all convex, obtained through

partial minimization as in the following

THEOREM 3.1

Suppose that the function F : X$U→ R is jointly convex in the arguments

and bounded below. Suppose also that c : X$ U → Rn is convex, define

Û(x) = {u : c(x,u) ≤ 0,u ∈ U}

Then the function � : X → R, defined by

�(x) = inf
u∈Û(x)

F(x,u) (3.5)

is convex.

51

Chapter 3. Value Iteration With Polynomial Parametrization

PROOF 3.1

Let x1, x2 ∈ X and ǫ > 0, by definition there are two points u1 ∈ U(x1)
and u2 ∈ U(x2) such that F(x1,u1) ≤ �(x1) + ǫ and F(x2,u2) ≤ �(x2) + ǫ.

For a given x ∈ X our assumption on c means that u ∈ Û(x) if and only
if c(x,u) ≤ 0. Then for any 0 ≤ λ ≤ 1 we have

λu1 + (1− λ)u2 ∈ U(λx1 + (1− λ)x2)

hence

�(λx1 + (1− λ)x2) ≤F(λx1 + (1− λ)x2,λu1 + (1− λ)u2)
≤λF(x1,u1) + (1− λ)F(x2,u2)
≤λ(�(x1) + ǫ) + (1− λ)(�(x2) + ǫ)
=λ�(x1) + (1− λ)�(x2) + ǫ

since ǫ > 0 was arbitrary the result follows.
The following corollary is an consequence of Theorem 3.1

COROLLARY 3.1

Consider value iteration, with V0 = 0, for a problem with convex step cost
l and linear dynamic update equation f (x,u) = Ax + Bu. If the state
dependent constraint Û(x) can be represented as {u : c(x,u) ≤ 0,u ∈ U}
with c convex, then the optimal cost function V ∗

N is convex for all N ≥ 0.

PROOF 3.2

Apply Theorem 3.1 with F(x,u) = VN−1(f (x,u)) + l(x,u)
Since the exact computation of

� = min
u∈U(x)

{VN−1(f (x,u)) + β l(x,u)}

is not, in general, feasible, we need to find a computable approximation.

Replacing � with an upper approximation h, inequality (3.2) becomes

�(x) ≤ h(x) ≤ VN(x) (3.6)

If this approximation is done in every step of iteration (1.16) the conclusion
of Proposition 1.1 clearly holds. On the other hand, if �(x) > h(x) at any
point, this conclusion can not be drawn.

To construct such an upper approximation h, we should select an ap-

propriate parametrization for h. To be useful, such a parametrization

52

3.2 Lower Bound Approximation

should have certain properties. In particular, if a given approximation

is not sufficiently tight it should be easy to improve it. Moreover, it would

be desirable to known a priori that the approximation can be made ar-

bitrarily good. We next show that the piecewise approximation defined

above have all these properties

LEMMA 3.1

Suppose that � : X → R is convex. Let h be a PWAA of �, then

�(x) ≤ h(x), ∀x ∈ X (3.7)

PROOF 3.3

By definition of convex function.

If we add any point to a given vertex set the new approximation will be

better everywhere

LEMMA 3.2

Let � be convex. Suppose that h and ĥ are PWAAs of � defined by W and

Ŵ respectively. If W ⊂ Ŵ then

ĥ(x) ≤ h(x), ∀x ∈ X (3.8)

PROOF 3.4

Since X is bounded epi(h) and epi(ĥ) have the same extreme directions.
If x ∈ epi(h) then x is a conic combination of extreme directions plus a
convex combination of its extreme point, i.e. the points in W. The same

is true for points in epi(ĥ) with convex combination taken from Ŵ. Since

W ⊂ Ŵ, it follows that epi(h) ⊂ epi(ĥ). Hence ĥ ≤ h.
Next we conclude that as the partition gets finer the approximations tend

pointwise to the function to be approximated

THEOREM 3.2

Suppose that � : X → R is continuous. Let {hk} be a sequence of PWAA’s
of � with corresponding partitions {X jk}. If

sup
j

diam(X jk) −→ 0 (3.9)

then

hk(x) −→ �(x), x ∈ X (3.10)

53

Chapter 3. Value Iteration With Polynomial Parametrization

PROOF 3.5

Let x ∈ X. In the sequence of partitions there is, by assumption, a sub-

sequence {X jpkp} of sets such that x ∈ X jpkp and X jpkp ⊃ X jp+1kp+1for all

p. Define S = ∩pX jpkp. By compactness, S is a non-empty compact set.

By construction x ∈ S, suppose that there is another point y ∈ S. Then,

diam(S) > 0 and X jpkp ⊃ S implies that diam(X jpkp) ≥ diam(S) > 0, which
is a contradiction. Continuity shows that hk(x) −→ �(x).
And finally, with an additional assumption the convergence is uniform

THEOREM 3.3

Let � : X → R be convex and continuous. Suppose that {hk} and {X jk} are
as in Lemma 3.2 with corresponding sets of definition {Wk}, such that
Wk ⊂ Wk+1. If X is compact, then

hk −→ �

the convergence is in the supremum norm.

PROOF 3.6

For any ǫ > 0, define Sk = {x : hk(x) ≥ �(x) + ǫ} ⊂ X. Being a subset of

X, Sk is bounded and since hk and � are continuous it is also closed, i.e.
compact. Now, as Wk ⊂ Wk+1 Lemma 3.2 implies hk+1(x) ≤ hk(x), hence
Sk+1 ⊂ Sk. For any x ∈ X, consider the sequence of real numbers {hk(x)},
by Theorem 3.2 it converges to �(x). Therefore, there is an N such that
for k ≥ N it holds x /∈ Sk, we conclude x /∈ ∩Sk and this holds for all

x ∈ X. Since Sk are compact this can only hold if Sm = ∅ for some m, and

thus for all k ≥ m. This shows that 0 ≤ hk(x) − �(x) < ǫ for all x ∈ X and

all k ≥ m. This completes the proof.

Convex Polynomials

Let X ⊂ Rn be a convex set. Recall that a twice differentiable function

p : X → R is convex if and only if

yT∇2p(x)y ≥ 0, ∀(x, y) ∈ X$ Rn (3.11)

It will be useful for us to restate this condition in the following equivalent

form. Let Y ⊂ Rn be any compact convex set containing 0 in its interior,

then condition (3.11) is equivalent to

yT∇2p(x)y ≥ 0, ∀(x, y) ∈ X$ Y (3.12)

54

3.2 Lower Bound Approximation

Now, if p ∈ Rd[x] then h ∈ Rd[x, y] defined by

h(x, y) = yT∇2p(x)y (3.13)

is a polynomial of the same degree as p in n more variables. If X and Y

are defined appropriately, we can apply Theorem 1.3 or Theorem 1.4 to

check if p is convex, using convex optimization.

The Full Algorithm

Although the algorithm is not restricted to systems with linear dynamics

we will focus on that.

First, let us see how the constraints on control variables propagate. At

time k the state propagates according to the dynamic equation

x(k+ 1) = Ax(k) + Bu(k), k ≥ 0 (3.14)

Constraints on state and control variables are defined by polytopes

X = {x : 1− Cx ≥ 0}, U = {u : 1− Fu ≥ 0} (3.15)

Both X and U are assumed to be non-empty, convex and compact with

(0, 0) ∈ int(X $ U). To fulfill the constraints we must ensure that X is

invariant. If x ∈ X we must have Ax + Bu ∈ X after applying u, that is

1 ≥ CAx + CBu

For x ∈ X the feasible control set U(x) is thus,

U(x) = {u : 1 ≥ CAx + CBu} ∩ {u : 1− Fu ≥ 0}

Let {X j} be a given partition of X, with points of definitionW = {w1 . . .wm}
and suppose that VN−1 ∈ Rd[x] satisfies (1.16). To find a PWAA that sat-
isfies (3.6) we need to solve the following m problems

�(wi) = min
u∈U(wi)

{VN−1(Awi + Bu) + β l(wi,u)}

where i = 1..m and

U (wi) = {u : 1 ≥ CAwi + CBu} ∩ {u : 1− Fu ≥ 0}

We consider only the case with l a convex polynomial, thus these m prob-

lems are convex if VN−1(Ax+Bu) is convex, this is so if VN−1(x) is convex.
Solutions to these problems can be obtained quickly if the degrees of the

55

Chapter 3. Value Iteration With Polynomial Parametrization

involved polynomials are moderate. It remains to derive a convex feasibil-

ity problem using Theorem 1.3 or Theorem 1.4. Each polygon X j can be

written as

X j = {x : x = wj1 +W jλ j ,λ j 4 0, 1 ≥ 1Tλ j}
here

λ j = [λ j2, . . . ,λ jm j]T

and the columns in W j = [wj2 . . .wjm j] are the vertex points of X j . The

obtained PWAA, after the minimization in (3.2), can then be written as

h j(λ j) =
m j∑

k=1
λ jk�(wjk), λ j1 = 1 (3.16)

Now, to execute one iteration of (1.16) we need to find a VN ∈ Rd[x] such
that

h j(x) ≤ VN(x), ∀x ∈ X j , j = 1..p,
VN(x) ≤ VN−1(Ax + Bu) +α l(x,u)

∀(x,u) ∈ X$U(x)
0 ≤ yT∇2xVN(x)y, ∀(x, y) ∈ X $ Y

(3.17)

where p is the number of partitions. Observe that we can not have VN−1(0) =
VN(0) = h(0) = 0 and VN−1(x) ≤ h(x) ≤ VN(x) since h is not differen-
tiable. To resolve this, a small set around the origin has to be removed

from X when verifying

h j(x) ≤ VN(x) (3.18)
See the partition in Figure 3.1.

Let us take

Y = {y : Hy≤ 1}
And parametrize VN as, ∑

β 1+...+β n≤d
νβ x

β (3.19)

Application of theorem 1.3, we find that the first inequality in (3.17) be-
comes ∑

β 1+...+β n≤d
νβ [wj1 +W jλ j]β − h(λ j)

=σ j0 +σ j1 ⋅ (1− 1Tλ j) +
m∑

k=2
σ jk ⋅ λ jk

with σ jk ∈ Σ[λ j]. In this equality expression both sides are a polynomial
in variables λ j . The variables defining the optimization problem are the

56

3.2 Lower Bound Approximation

coefficients in the σ jk’s and the coefficients {νβ} in the polynomial VN .
The other two inequalities in (3.17) define similar equalities in the poly-
nomial variables x,u and x, y respectively. We note in particular that this

algorithm only requires a vertex representation of each polytope.

We illustrate the ideas with a small example.

EXAMPLE 3.1

Consider the problem of controlling the double integrator

x(k+ 1) =
[
1 1

0 1

]
x(k) +

[1
2

1

]
u(k), k ≥ 0

The set X was chosen as in Figure 3.1. The corresponding matrix in equa-

tion (3.15) is given by

C = 1

25




−1 −5
1 5

1 0

−1 0

0 5

0 −5




In addition, the control signal was bounded as

−1 ≤ u(k) ≤ 1

It has been shown in [Gutman and Cwikel, 1986] that this system is
controlled invariant on X.

The step cost was chosen as

l(x,u) = pxp2 + 1

100
pup2

During the iterations the degree of the VN polynomials were fixed to

4. Moreover, the degree of the σ jk polynomials were fixed to 2. The initial
partition was chosen according to Figure 3.1.

The algorithm was iterated 25 times. During the iterations it was

necessary to add points to the partition. At the last iteration the partition

consisted of 40 pieces, making the computation intense. However, we were

able to verify the inequality (1.18) on

X ∩ {x : px1p ≥ 4, px2p ≥ 2}

with β = 0.23 and α = 7.1. The resulting value function is shown in
Figure 3.2. From any given initial state we can easily compute the open

57

Chapter 3. Value Iteration With Polynomial Parametrization

−25 −20 −15 −10 −5 0 5 10 15 20 25
−5

−4

−3

−2

−1

0

1

2

3

4

5

x
1

x
2

Figure 3.1 Initial partition of X in Example 3.1. The non-triangular region around

the origin is removed when the inequalities (3.18) are verified.

−25 −20 −15 −10 −5 0 5 10 15 20 25
−5

0

5

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

−...+5231815410410769/4503599627370496 x
2

4

x
1

x
2

Figure 3.2 Approximate value function in Example 3.1.

loop optimal trajectory by solving a quadratic program. In Figure 3.3 we

compare the open loop optimal trajectory with a trajectory obtained by

using the just computed suboptimal feedback controller.

58

3.3 Discrete Control

0 5 10 15 20 25 30
−5

0

5

10

15

x
1

k

0 5 10 15 20 25 30
−5

0

5
x

2

k

0 5 10 15 20 25 30
−1

−0.5

0

0.5

1

u

k

Figure 3.3 Dashed plots corresponds to the optimal open loop trajectory, and full

plots to approximate feedback trajectory. The initial condition was x(0) = [−2,5]T .
The state trajectories are almost overlapping everywhere but there is a slight dif-

ference in the control signal.

3.3 Discrete Control

In the rest of this chapter we assume that f and l are polynomials and

that X = {x : h1(x) ≥ 0, . . . ,hp(x) ≥ 0} where each hk is a polynomial. Let
VN−1 be given and consider the upper inequality

VN(x) ≤ min
u∈U(x)

{VN−1(f (x,u)) +α l(x,u)} (3.20)

this inequality holds if and only if

VN(x) ≤ VN−1(f (x,u)) +α l(x,u), ∀u ∈ U(x) (3.21)

Here we may consider the right hand side as polynomial in (x,u), and thus
we may apply the results from Section 1.4 in Chapter 1 to obtain a finite

dimensional constraint on VN . However, as we are interested in switched

problems in this section we now consider the case with a finite control

set U, say pUp = m. Application of theorem 1.3 gives m finite dimensional
constraints on VN

−VN(x) + VN−1(f (x,uk)) +α l(x,uk) = σ k0 +
p∑

j=1
h jσ k j (3.22)

59

Chapter 3. Value Iteration With Polynomial Parametrization

where each σ k j is a sum of squares in x.
The lower inequality

�(x) = inf
u∈U(x)

{VN−1(f (x,u)) + l(x,u)} ≤ VN(x) (3.23)

is again more difficult, we need to approximate � from above. In the case
of finite U we may consider a simpler approach, compared to the method

proposed in the previous section. To this end, consider the set of all poly-

nomial partitions of unity

W = {(w1, ..,wm) :
m∑

k=1
wk(x) = 1,

0 ≤ wk(x) ∀x ∈ X, wk ∈ R[x]}

Then we have

PROPOSITION 3.1

Let (w1, ..,wm) ∈ W then ∀x ∈ X

�(x) ≤
m∑

k=1
wk(x)[VN−1(f (x,uk)) + l(x,uk)]

PROOF 3.7

For any uk ∈ U we have by definition of �

�(x) ≤ [VN−1(f (x,uk)) + l(x,uk)], x ∈ X

multiplying both sides by wk(x) ≥ 0 and summing over k we get

�(x) =
m∑

k=1
wk(x)�(x) ≤

m∑

k=1
wk(x)[VN−1(f (x,uk)) + l(x,uk)], x ∈ X

The idea is to relax the lower inequality (3.23) and replace it with

m∑

k=1
wk(x)[VN−1(f (x,uk)) + l(x,uk)] ≤ VN(x), ∀x ∈ X

60

3.3 Discrete Control

And just as for the upper bound we can write this as

VN(x) −
m∑

k=1
wk(x)[VN−1(f (x,uk)) + l(x,uk)] = σ 0 +

p∑

j=1
h jσ j

where each σ j is sum of squares in x. This constraint on VN together
with equations (3.22) defines the constraints that the sequence {VN} in
the relaxed value iteration must satisfy.

Note, that the strategy of replacing � with this weighted sum is a
natural relaxation considering the following

PROPOSITION 3.2

Let U be compact and F : U → R continuous. Let M(U) be the set of all
probability measures supported on U. Then

min
u∈U
F(u) = min

µ∈M(U)

∫
F(u)dµ(u)

Examples

The following two examples are both application of relaxed value iteration.

EXAMPLE 3.2

The following example is also used in [Lincoln, 2003], where the synthe-
sis was done using relaxed dynamic programming with a very different

parametrization of the value function. We shall see that the resulting con-

trol law is much simpler using the method proposed in this chapter. The

problem involves a DC-DC converter, we will consider control synthesis for

similar circuits in some detail in Chapter 6. Consider the continuous-time

model

ẋ1 =
1

c
(x2 − iload)

ẋ2 =
1

l
(−x1 − rx2 + s(t)vin)

where x2 denotes current i through the inductor, x1 denotes voltage vc
over the capacitor and s(t) ∈ {−1, 1} is the sign of the switch. The pri-
mary control objective is to find a feedback switching sequence so that the

load voltage is constant despite changes in load current and input load

variations. To make it robust, integral action is added to the model

ẋ3 = vre f − x1

61

Chapter 3. Value Iteration With Polynomial Parametrization

Switch
Loadvin

c

r l

vc

iload

+ +
i

Figure 3.4 Circuit in Example 3.2.

Switching can only occur at a fixed sampling frequency, so the control

problem is to select between two autonomous linear systems. After sam-

pling, the system can be written as

xe(k+ 1) = Φixe(k)

with xe = [xT 1]T
A reasonable step cost is given by

l(x) = qp(x1 − vre f)2 + qix23 + qd(x2 − iload)2

with positive weighting constants qp, qi and qd. Note that l > 0 for all
x except for x̂ = [vre f , iload, 0]T but [x̂, 1] ,= Φ1[x̂, 1]T ,= Φ2[x̂, 1]T so for
any switching sequence the total cost becomes

∑
l(x(k)) = ∞. Consider

instead the average cost

V (x) =
∞∑

k=0
λkl(x(k))

with 0 < λ < 1. Actually, this is a (scaled) average since

1 = (1− λ)
∞∑

k=0
λk

Sometimes λ is also called forgetting factor. Bellman’s equation for the
average cost function is

V ∗ = min
u
{λV ∗(f (x,u)) + l(x,u)}

Solving Bellman’s equation with an average cost function using value iter-

ation is similar to the case with total cost, we just multiply the appropriate

term with λ .
We solve the problem for states in {x : 15− pxp2 ≥ 0}. The constraints

take the form

−VN(x) + λVN−1(Φ1xe) +α l(x) = σ 10 +σ 11(15− pxp2)
−VN(x) + λVN−1(Φ2xe) +α l(x) = σ 20 +σ 21(15− pxp2)

62

3.3 Discrete Control

−2

−1

0

1

2

−2

−1

0

1

2

−10

−5

0

5

10

15

Figure 3.5 Each side of the plane corresponds to one switch position.

And the lower inequality becomes

VN(x) −σ 32λVN−1(Φ1xe) − (1−σ 32)λVN−1(Φ2xe) − l(x)
= σ 30 +σ 31(15− pxp2)

with

1−σ 32 = σ 40 +σ 41(15− pxp2)

all σ ’s being sum of squares in x.
After 50 iterations with λ = 0.96, α = 4.1 and deg(Vk) = 4 we have

VN (VN−1. The controller which is given by

s(x) = argmin1,2{V50(Φ1xe),V50(Φ2xe)}

is almost a switch-plane, see Figure 3.5. The performance of the closed

loop is very similar to that in [Lincoln, 2003], but the controller appears
much simpler.

EXAMPLE 3.3

The following example is from [Koutsoukos and Antsaklis, 2002]. We con-
sider the following switched discrete-time system

x(k+ 1) = Aqx(k), q ∈ {1, 2} (3.24)

63

Chapter 3. Value Iteration With Polynomial Parametrization

0 100 200 300 400 500 600 700 800 900 1000
0.2

0.4

0.6

0 100 200 300 400 500 600 700 800 900 1000
−1

0

1

0 100 200 300 400 500 600 700 800 900 1000
0.2

0.4

0.6

0.8

0 100 200 300 400 500 600 700 800 900 1000
1

1.5

2

Figure 3.6 Top: output voltage. Next to top: current. Next to bottom: integral

state. Bottom: Switch position. Reference voltage was Vre f = .5. At k = 200 the load
current changes from its nominal value 0.3A to 0.1A, at k = 300 it changes to -0.2A
and at k = 600 it changes back to its nominal value 0.3A.

where

A1 =



1.7 4

−0.8 −1.5


 , A2 =



0.95 −1.5

0.75 −0.55




We now consider the problem of computing a switching feedback controller

for this system. We define the cost as

V (x) =
∞∑

k=0
x(k)T x(k)

Applying the proposed algorithm the equations are similar to those in

the previous example. In this example X = {x : 10 − pxp2 ≥ 0}. After 6
iterations VN satisfy Proposition 1.2 with α = 1.7 and deg(Vk) = 4. The
controller is given by

q(x) = argmin1,2{V6(A1x),V6(A2x)}

The interesting thing about this example is that it is relatively simple to

find a high performance feedback controller using the proposed relaxation.

The closed loop trajectory that is shown in Figure 3.7 is almost identical

to the one shown in [Koutsoukos and Antsaklis, 2002].

64

3.4 Summary and Concluding Remarks

−3 −2 −1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 3.7 Closed loop trajectory starting from x0 = [−1.75 1.75]T . The trajectory
cost is bounded form above by 1.7V∗(x0).

3.4 Summary and Concluding Remarks

In this chapter, two new algorithms for approximate dynamic program-

ming have been presented. The underlying approximation methodology is

relaxed dynamic programming.

The first method applies to problems where each function in the lower

bound sequence is convex. The main step is to approximate a convex func-

tion from above by piecewise linear functions and apply sum of squares

techniques for verification of the resulting inequalities. The method can

be thought of as a semi-grid-based technique. Due to the slack intro-

duced by the relaxed dynamic programming formulation, the grid could

be kept sparse. As a special case we considered a linearly constrained,

linear system with quadratic step cost. Solving this problem exactly is in-

tractable. With the proposed method, an approximately optimal solution,

with bounds, could be computed. To make the method more efficient a

systematic partitioning algorithm was needed.

The second problem considered was optimal control of switch systems.

An algorithm was constructed for polynomial systems by combining a sim-

ple state weighting relaxation with the sum of squares framework for ver-

65

Chapter 3. Value Iteration With Polynomial Parametrization

ification of inequalities. It was shown that this relaxation was natural

from a theoretical point of view. Also, two examples were given to illus-

trate the method. In particular, the control law obtained in the DC-DC

converter example appears to be simpler then previous result reported in

the literature.

66

4

Constrained Control of

Linear Systems

This chapter considers a Relaxed Dynamic Programming solution to the

constrained optimal control problem of linear systems with convex piece-

wise linear step cost. The unconstrained problem has been considered be-

fore in [Lincoln, 2003; Lincoln and Rantzer, 2006], and therefore several
parts of this chapter overlaps with that work. However, several extensions

are presented. We incorporate constraints on states and control variables.

A formula for an explicit state feedback controller is given. We also present

a reduction technique that can be used to simplify the resulting controller

lookup table. See also [Shamma and Xiong, 1997; Bemporad et al., 2000],
and the references therein, for related problems.

To compress notation we use

e(x) := [xT 1]T

e(x,u) := [xT uT 1]T

to denote extended vectors.

4.1 Optimal Control of Linear Systems

We start out by defining the class of step-cost functions considered in this

section.

Convex Piecewise Linear Functions

Let P be a finite set of vectors in Rn+1. The function

max
p∈P

〈p, e(x)〉 (4.1)

67

Chapter 4. Constrained Control of Linear Systems

is convex. Any other convex function can be approximated to arbitrary

precision using a max of linear function, a fact that makes this class of

functions flexible when designing a step cost. Let Q be a finite set of

vectors in Rn+m+1. Consider the step-cost defined by

l(x,u) = max
q∈Q

〈q, e(x,u)〉 (4.2)

By choosing Q appropriately, l can be constructed to give high penalty on

specific regions in state space. This can, for example, be used to approx-

imate hard constraints with soft constraints. A special case of interest is

when Q is chosen to represent a weighed l1- or l∞-norm. For example, a
weighed l∞-norm can be written as

ppWe(x,u)pp∞ = max
j
pwj e(x,u)p

= max{w1e(x,u),−w1e(x,u), ...,wnW e(x,u),−wnW e(x,u)}

where wj denotes the rows in W . So in this case

Q = {w1,−w1, ...,wnW ,−wnW}

4.2 Problem Formulation

Consider a linear system

x(k+ 1) = Φx(k) + Γu(k) +ν , k ≥ 0 (4.3)

where Φ ∈ Rn$n, Γ ∈ Rn$m and ν ∈ Rn. We consider problems were the

state and control variable are required to satisfy linear constraints of the

form

x ∈ X = {A1x ≤ C1}, u ∈ U = {B1u ≤ C2} (4.4)

Given any point x ∈ X the feasible control set is given by those u ∈ U

such that

Φx + Γu +ν ∈ {x : A1x ≤ C1}
that is to say

u ∈ U(x) = {u : B1u ≤ C2, A1(Φx + Γu +ν) ≤ C1} (4.5)
:= {u : Ax + Bu ≤ C} (4.6)

68

4.3 Dynamic Programming Solution

This set is assumed to be non-empty throughout this chapter, therefore

system (4.3) is assumed to be controlled invariant on X.

We are now ready to formally state the linearly constrained optimal

control problem as

min
u[k]∈U(x[k])

∞∑

k=0
max
q∈Q

〈q, e(x[k],u[k])〉, ∀x[0] ∈ X

subject to

x(k+ 1) = Φx(k) + Γu(k) +ν

4.3 Dynamic Programming Solution

We shall show that the following representation

V (x) = max
p∈P

〈p, e(x)〉, x ∈ X (4.7)

is invariant under value iteration. To take one step of the value iteration

algorithm we need to compute

V+(x) = min
u∈U(x)

{V (Φx + Γu+ν) + l(x,u)} (4.8)

Where U(x) is given by (4.5). Let P̂ be the set of vectors given by

p̂ :=
[

Φ Γ ν

0 0 1

]T
p, ∀p ∈ P. (4.9)

Using this, we see that (4.8) becomes

V+(x) = min
u∈U(x)

{max
p∈P̂

〈p, e(x,u)〉 +max
q∈Q

〈q, e(x,u)〉} (4.10)

Let [Qx Qu Qc] be the matrix obtained by stacking the elements of Q

on top of each other, and similar for P̂. For fixed x ∈ X the value V+(x)
is given by the optimal solution to the linear program

min
u,t1,t2

t1 + t2 (4.11)

Qxx + Quu+ Qc ≤ t11 (4.12)
Pxx + Puu+ Pc ≤ t21 (4.13)

Ax + Bu ≤ C (4.14)

69

Chapter 4. Constrained Control of Linear Systems

with dual

max
(λ q,λ p,λ f)∈E

λTq (Qxx + Qc) + λTp (Pxx + Pc) + λTf (Ax − C) (4.15)

(4.16)

where E is the polytope



PTu QTu BT

1T 0 0

0 1T 0







λ p

λq

λ f


 =



0

1

1


 (4.17)

λq,λ p,λ f 4 0 (4.18)

Observe that E is independent of the state. Theorem 1.4 shows that the

optimal value of the dual is attained at an extreme point of E. As a

consequence, V+ can be computed by forming the set E consisting of points

p =



Px Pc

Qx Qc

A −C




T 


λ p

λq

λ f


 (4.19)

for each extreme point [λTp λTq λTf]T ∈ E. Then by definition

V+(x) = max
p∈E

〈p, e(x)〉

4.4 Computing the Control Law

The number of rows in the constraint matrix defining the polytope E

is equal to m + 2, where m is the number of inputs, let us denote this
matrix by H and the corresponding right hand side by h. In particular,

this implies that every extreme point has at most m+ 2 nonzero entries.
Now let x be a given point in X. If we evaluate V+ at x the maximum is
attained at a point p ∈ E with corresponding extreme point λ . Of course,
we may assume that

λ = [λTy λTz]T = [λ1...λm+2 0..0]T

with non-zero values only in the first m+2 entries. Let the corresponding
partition of H be H = [Y Z], with Y ∈ Rm+2$m+2 invertible. Moreover,

70

4.4 Computing the Control Law

let c = [cTy cTz]T be the corresponding partition of the cost vector in
(4.15), i.e. a partition of



Px Pc

Qx Qc

A −C


 e(x) (4.20)

LEMMA 4.1

If λ is optimal then
cTz 5 cTy Y−1Z

PROOF 4.1

By inserting

λ y = Y−1h− Y−1Zλ z

into the cost function we have

cTy (Y−1h− Y−1Zλ z) + cTz λ z

= cTy Y−1h+ (cTz − cTy Y−1Z)λ z

Since λ 4 0 is optimal and we know that it is optimal to choose λ z = 0,
the result follows.

THEOREM 4.1

If for a given x ∈ X the maximum in V+ is attained at p, where p is given
by (4.19), then the optimal feedback controller value is given by

µ(x) = (−Y−T cy) j , 1 ≤ j ≤ m

where Y and cy are defined as above.

PROOF 4.2

First we show that the point −Y−T cy is feasible for problem (4.11).[
YT ZT

]
(−YT cy) =

[
−cy − ZTYT cy

]
, thus by the above lemma

[YT ZT](−YT cy) ≤ [−cy − cz], verifying the constraint in (4.11). To see
that −Y−T cy is optimal note that

−cTy Y−1h = −cTy λ y = −cTλ ≥ −hT p (4.21)

where, by weak duality, the last inequality holds for all p that are feasible

for (4.11). The result follows by selecting pT = −Y−T cy.

71

Chapter 4. Constrained Control of Linear Systems

Note that Y is a constant matrix and cy = We(x) where W is constant,
therefore the corresponding controller can be written as

µ(x) = LTp(x)e(x) (4.22)

where p(x) = argmaxp∈P〈p, e(x)〉. It follows that the controller is piecewise
linear.

Although the elements in the set P that defines V+ are unique, it
should be noted that the corresponding controller table need not be unique.

The degree of non-uniqueness depends on the particular choice of step

cost and constraint. A simple procedure to remove redundant entries in

the controller is presented below in section 4.5.

Removing Redundancy in the Cost Table

Using the above technique to compute the value function by enumerating

extreme points usually produces a lot of redundancy in the representation

of V . There are usually points in E that do not attain the maximum in

maxp∈E〈p, e(x)〉 for any x ∈ X. Such points are easy to find and discard.

Let w ∈ P and P̂ = P− {w} then

max
p∈P

〈p, e(x)〉 = max
p∈P̂

〈p, e(x)〉, ∀x ∈ X (4.23)

if and only if there is no point x ∈ X such that

〈w, e(x)〉 > 〈p, e(x)〉, ∀p ∈ P̂ (4.24)

That is true if and only if the linear program

L(P̂,w) : max
t,x

t

〈w, e(x)〉 ≥ 〈p, e(x)〉 + t, ∀p ∈ P̂

A1x ≤ C1

has nonpositive optimal solution. Thus, a simple way to compute a mini-

mal representation of a max of linear function is

72

4.4 Computing the Control Law

replacements

V(x)
〈p1, e(x)〉

〈p2, e(x)〉 〈p3, e(x)〉

〈p4, e(x)〉

x

Figure 4.1 Redundancy illustration.

ALGORITHM 4.1

1: for all w∈ P do

2: P̂← P− {w}
3: q← L(P̂,w)
4: if q ≤ 0 then
5: P← P− {w}
6: end if

7: end for

A related question is if there exist an x ∈ X such that V1(x) > V2(x),
where V1 = maxp∈P1〈p, e(x)〉 and V2 = maxp∈P2〈p, e(x)〉 are two max of
linear functions. This is a highly non-convex feasibility problem. Fortu-

nately, the problem can easily be decomposed into a sequence of linear

feasibility problems

ALGORITHM 4.2

1: for all w∈ P1 do

2: solve q← L(P2,w)
3: if q > 0 then
4: return true

5: end if

6: end for

if label 4: is reached we have found an x such that V1(x) > V2(x), otherwise
L(P2,w) ≤ 0 for all w ∈ P1 and consequently V1(x) ≤ V2(x) for all x ∈ X.

73

Chapter 4. Constrained Control of Linear Systems

4.5 Controller Reduction

As we have seen, the controller corresponding to a value function V =
maxp∈P〈p, e(x)〉 can be represented as

µ(x) = LTp(x)e(x) (4.25)

where p(x) = argmaxp∈P〈p, e(x)〉, the corresponding controller table is
denoted by C. We shall refer to an entry Lp in the controller table as

redundant if Lp and the corresponding p can be removed from C and P

respectively, in such a way that controller value µ(x) is equal before and
after removal. As noted above, if we have computed V = maxp∈P〈p, e(x)〉
the corresponding controller table C do not need not be unique. If the

controller table is not unique one may suspect that some entries are re-

dundant, as we shall see this may or may not be the case. The algorithm

below can be motivated by two simple examples.

EXAMPLE 4.1

Consider the linear system

x(k+ 1) = x(k) + u(k)

where x(k),u(k) ∈ R. If the step cost is

l(x,u) = pp
[
x

u

]
pp∞ = max{pxp, pup}

the unconstrained optimal cost is V ∗(x) = pxp and the optimal controller
is µ∗(x) = −x since

min
u
{px + up +max{pxp, pup}}

=min{ min
{u:pxp≥pup}

{px + up + pxp}, min
{u:pup≥pxp}

{px + up + pup}}

=pxp

The corresponding tables are given by

P∗ =
[
1 0

−1 0

]
, C∗ =

[
−1 0

−1 0

]
.

Any one of the rows is redundant.

74

4.5 Controller Reduction

EXAMPLE 4.2

Consider the situation in figure 4.1. When pj is active, i.e. when x belongs

to

{x : 〈pj , e(x)〉 ≥ 〈pi, e(x)〉, i ,= j}
the corresponding controller value is 〈Lpj , e(x)〉. Suppose that Lp1 = Lp2 =
Lp4 and that Lp1 ,= Lp3 , in particular Lp3 is not redundant. Moreover, if p4
is removed from P all points x where p4 would be active, will instead be

active at p3. Since, L3 ,= L4 it follows that Lp4 is not redundant. For the
same reason, Lp2 is also not redundant. If p1 is removed from P all points

x where p1 would be active will instead be active at p2, since Lp1 = Lp2 ,
Lp1 is redundant.

So essentially the idea is that it might be possible to reduce the complexity

of the controller table by deleting neighboring control laws.

We now state this idea as a formal algorithm. Let ∪C j = C be a par-

tition such that all elements in C j are equal. Let ∪P j = P be the corre-

sponding partition of the cost table. A(p,P) denotes the active set of p ∈ P,

relative to X, that is

A(p,P) = X ∩ {x : 〈p, e(x)〉 ≥ 〈p̂, e(x)〉,∀p̂ ∈ P− {p}}

As part of the algorithm below we will have to test if for a given s there

is an x ∈ A(p,P) such that

〈s, e(x)〉 > 〈p, e(x)〉, ∀p ∈ P̂ (4.26)

That is true if and only if the linear program

L(A(p,P), P̂, s) : max
t,x

t

〈s, e(x)〉 ≥ 〈p, e(x)〉 + t, ∀p ∈ P̂

x ∈ A(p,P)

has positive solution.

75

Chapter 4. Constrained Control of Linear Systems

We summarize the discussion in

ALGORITHM 4.3—REDUCTION

1: for each k do

2: Sk ← ∪ j ,=kP j
3: for each p ∈ Pk do

4: P ← P− {p}
5: for each s ∈ Sk do

6: P̂ ← P− {s}
7: q← L(A(p,P), P̂, s)
8: P̂ ← P+ {s}
9: if q > 0 then
10: P ← P+ {p}
11: goto 3:

12: end if

13: end for

14: end for

15: end for

4.6 The Complete Algorithm

Recall from Chapter 1 that at each iteration of relaxed value iteration we

are given an approximate receding horizon cost function V . What we need

to find is a V̂ such that

Vl = min
u
{V (f (x,u))+α l(x,u)} ≤ V̂ (x) ≤ min

u
{V (f (x,u))+β l(x,u)} = Vu

Now, if V is given by a max of linear functions we have seen in the previous

section that Vl and Vu are also max of linear functions. Thus when these

have been found we only have to find a V with the same representation

satisfying Vl ≤ V ≤ Vu. Naturally, the goal is to find such a V with lower
complexity than the lower and upper bounds. To find a V with the lowest

possible complexity appears to be intractable from a computational point

of view. The following non-optimal approach is simple, and works well as

a compromise.

Given Vl = maxp∈Pl〈p, e(x)〉 and Vu = maxp∈Pu〈p, e(x)〉. Set P = {0}.

76

4.7 Examples

ALGORITHM 4.4

1: while Pl ,= ∅ and Pu ,= ∅ do

2: Pick any w∈ Pl
3: q← L(P,w)
4: if q ≤ 0 then
5: Pl ← Pl − {w}
6: else

7: z← argmaxp∈Pu〈p, e(xw)〉
8: P← P+ {z}
9: Pu ← Pu − {z}
10: end if

11: end while

The point xw used on line 7: is the optimal solution found on line 5:. The

algorithm simply adds elements from the upper bound until the lower

bound is satisfied.

To prove that a function V is close to the stationary optimal cost func-

tion we need to verify

Vl = min
u
{V (f (x,u))+α l(x,u)} ≤ V (x) ≤ min

u
{V (f (x,u))+β l(x,u)} = Vu

This can be done by simply applying Algorithm 4.2 two times, first to

check Vl ≤ V and then V ≤ Vu.
The full algorithm consists of using equation (4.8) to compute Vl and

Vu and then applying Algorithm 4.4 to find an approximation. It is usually

a good idea to reduce the approximation in each iteration, by applying

Algorithm 4.3. When the close to stationary test above is successful the

algorithm completes by computing and reducing the control law.

4.7 Examples

We give two examples to illustrate the ideas in this chapter. The algo-

rithms have been implemented on top of the linear programming code

CLP [CLP, 2007].

EXAMPLE 4.3

Consider a linear system with

Φ =
[
1 1.1

−1.1 1

]
, Γ =

[
0

1

]
, ν =

[
0

0

]
.

77

Chapter 4. Constrained Control of Linear Systems

We consider the unconstrained optimal control problem for this system

with

l(x,u) = pp
[
x

u

]
pp∞

The optimal stationary cost function and controller can be found after

five value function iterations, they are given by

P∗ =




1.9690 3.4200 0

−1.9690 −3.4200 0

2.7590 2.6300 0

−2.7590 −2.6300 0

3.0091 2.2100 0

−2.2000 −0.2100 0

−3.0091 −2.2100 0

2.2000 0.2100 0

−1.4196 −3.7716 0

1.4196 3.7716 0




, C∗ =




0.0000 −1.0000 0

0.0000 −1.0000 0

−1.0000 0.0000 0

−1.0000 0.0000 0

0.1909 −2.0000 0

0.1909 −2.0000 0

0.1909 −2.0000 0

0.1909 −2.0000 0

0.6955 −1.4450 0

0.6955 −1.4450 0




,

Figure 4.2 shows the regions where the different entries in the op-

timal controller are active. µ5 and µ8 are equal and they are neighbors
but Algorithm (4.3) fails to simplify the controller since according to our
definition they are not redundant.

Now let us solve the same problem using relaxed value iteration. First

we take α = 1.0 and β = 0.6. The relaxed value iteration algorithm
converges to a stationary solution in nine iteration. The approximation

turns out to be very simple

P9 =




−1.5582 −0.3880 0

−1.0687 −2.5016 0

−1.9135 −1.4448 0

1.0687 2.5016 0

1.5582 0.3880 0

1.9135 1.4448 0




, C9 =




0.4079 −1.7613 0

0.4079 −1.7613 0

0.4079 −1.7613 0

0.4079 −1.7613 0

0.4079 −1.7613 0

0.4079 −1.7613 0




,

By inspection, an equivalent controller is given by

µ9(x) =
[
0.4079 −1.7613

]
x, ∀x

78

4.7 Examples

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

10
1

3

5

8

9

2

4

7

6

Figure 4.2 The numbers mark the regions where the corresponding entry in the

optimal control table is active 4.3.

Note that the reduction algorithm can be used to deduce this single feed-

back gain from table 4.3. By using this linear feedback controller the

closed loop system is guaranteed to have a performance given by

V ∗(x) ≤ Vµ9(x) ≤
1

0.6
V ∗(x), ∀x

This is, indeed, an interesting example showing the complexity versus

performance trade-off.

EXAMPLE 4.4

Consider a sampled double integrator

Φ =
[
1 1

0 1

]
, Γ =

[
0.5

1

]
, ν =

[
0

0

]
.

79

Chapter 4. Constrained Control of Linear Systems

0 2 4 6 8 10 12
0

2

4

6

8

10

12

Figure 4.3 Cost function complexity during value function iteration. The upper

curve corresponds to exact value iteration, the lower curve corresponds to relaxed

iteration.

With constraints

1

25




−1 −5
1 5

1 0

−1 0

0 5

0 −5




x ≤ 1 and pup ≤ 1

Take the l1-norm as step cost

l(x,u) = px1p + px2p + pup

First an attempt to solve the problem using exact value iteration was

made. The complexity of the value function during fifteen iterations is

shown in Figure 4.4. The complexity grows monotonically. At the fifteenth

iteration, with a table size of 405, the number of potential extreme points

is about 107.

The lower curve in Figure 4.4 corresponds to the complexity during

relaxed value iteration, β = 0.7 and α = 1
β . After 30 iterations the value

function is stationary with a table size of 87. By applying the controller

reduction procedure the controller table was reduced by 41% to size of 51.

80

4.8 A Note on Complexity

0 5 10 15 20 25 30
0

50

100

150

200

250

300

350

400

450

Iteration count

S
iz

e
 o

f
V

−
ta

b
le

Figure 4.4 Cost function complexity during value function iteration. The upper

curve corresponds to exact value iteration, the lower curve corresponds to relaxed

iteration.

4.8 A Note on Complexity

For a polytope such as E in section 4.3 we have seen, in Chapter 1, that

the maximum number of extreme points is o(nm+2), where in the case of
this chapter m is the number control variables. Thus, for a given synthesis

problem it is only n that varies between each value iteration. The point

of the relaxed dynamic programming algorithm is to introduce a slack so

that the complexity of the value functions can be kept low, in other words

to keep n small. We have seen in the examples that this is precisely what

happens if we chose a sufficiently large slack. Thus, it is feasible to do

extreme point enumeration in this case.

4.9 Summary and Concluding Remarks

This chapter has presented some extensions to the relaxed dynamic pro-

gramming algorithms for linearly constrained linear systems with piece-

wise linear convex step cost. A formula for computing an explicit feedback

81

Chapter 4. Constrained Control of Linear Systems

control law was given. A simple algorithm for reducing the complexity of

the controller lookup table was also presented. Some interesting examples,

illustrating the complexity and performance tradeoff, were given.

Experience from numerical computations shows that the algorithms

in this chapter, in particular enumeration of extreme points, can be nu-

merically unstable. Future work should address such problems.

The representation of the control law as presented in this chapter is

not unique. For example, it is possible to represent the lookup table as

a search for a particular region in statespace. It would be interesting to

compare different representations from a complexity point of view. Also,

different representations may have different robustness properties when

it comes to lookup errors.

Extending the work in this chapter to include optimal control of lin-

early constrained piecewise linear systems would be very interesting. That

class of problems appears to be much more difficult to solve than the ones

considered in this chapter.

82

5

Dynamic Model Predictive

Control

Model predictive control (MPC), see, e.g. [Maciejowski, 2002; Garcia et al.,
1989], has been used by the industry for several years, e.g. in the chemical
industry and other industries where the processes have slow dynamics.

The main reason for the success of MPC is the ability to control con-

strained multivariable systems. The MPC controller often relies on an on-

line solution of a finite horizon optimal control problem, in each sample.

Usually, the optimal control problem is reformulated as finite dimensional

convex optimization problem. For example, a linear system with linear

constraints on states and control variables and a quadratic step cost can

be formulated as a quadratic optimization problem. There is a rich class

of convex optimization problems which are guaranteed to be solvable in

polynomial time. Even with increasing computer power, on systems with

fast dynamics this is not fast enough for MPC. Since, if the system must be

sampled too fast, the MPC controller will not be able to finish its required

computations in time. This is one reason why model predictive control is

most successful on slow processes.

Moreover, in practice the optimization solver can have quite unpre-

dictable execution times, the computations can exceed the time of one

sample or even a few samples. This obviously leads to reduced perfor-

mance of the system and might even lead to instability. One approach to

handle such problems has been studied in [Heriksson, 2006], see also the
references therein.

Work that relate to ours can be found in [Löfberg, 2003] where the
author studies robust MPC. This approach was later extended in [Goulart
et al., 2006]. These two references consider problems that are similar to
the ones considered in this chapter, but our approach is different from

theirs.

To compensate for computational delays, a new approach is presented

83

Chapter 5. Dynamic Model Predictive Control

in this chapter. Instead of calculating an optimal sequence of control in-

puts, an optimal dynamic controller is computed in each sampling in-

stance. With the use of the Youla-parametrization, [Youla et al., 1976a;
Youla et al., 1976b], the MPC problem in its original form can be refor-
mulated to depend on the parameters of the controller in such a way that

the optimization problem can be solved with the same complexity as the

original problem. Without computational delays, the resulting dynamic

controller can be shown to be equivalent with the controller obtained from

the original MPC formulation. With this setup, when computational time

delays occur, there is now a feedback controller which controls the process.

This will improve performance since the system operates in closed loop at

all times. This is contrary to traditional MPC, which will operate in open

loop.

The outline of this chapter is as follows: In section 5.1 a short introduc-

tion to traditional MPC is given. The main idea of the chapter is presented

in section 5.2. The structure of the controller is described and the MPC

formulation is revised to fit the new structure. Difficulties that arise when

computational delays are present are discussed. A case study of a double

integrator is studied in section 5.3. In section 5.5 a short summary of the

required on-line computation needed in Dynamic MPC is given.

5.1 Traditional MPC

Consider the discrete, time-invariant, linear plant P

x(k+ 1) = Φx(k) + Γ1w(k) + Γ2u(k)
z(k) = C1x(k) + D11w(k) + D12u(k)
y(k) = C2x(k) + D21w(k)

where u is the control input and w the disturbances. The z vector is re-

ferred to as the controlled output, it contains those signals that we will

include in the system performance index and those that we will put con-

straints on. For example states, tracking errors or control variables. The

output y is the measured output that can be used for feedback. Notice that

we do not allow a direct term of the control input to y. This is due to the

fact that to determine u(k), a measurement of y(k) is needed and hence
y(k) cannot depend on u(k).
In model predictive control a finite horizon optimal control problem is

solved in each sample. The cost function is defined as

V (x(0),u) =
N−1∑

i=0
{(z(i)) + F(x(N)) (5.1)

84

5.2 Dynamic MPC

where z(i) are the controlled outputs of P when the control sequence
u = (u(0), . . . ,u(N−1)) is applied to the system with initial state x(0). The
functions { and F are the stage cost and the terminal cost, respectively.
The stage cost { is assumed to satisfy {(z) ≥ cpzp2. Notice that if a terminal
cost is included in the cost, it operates on the terminal state.

The objective in MPC is to minimize the cost function (5.1) with respect
to the control sequence u, subject to constraints on both state variables

and the control sequence

min
u
V (x(0),u)

u(i) ∈ U, 0 ≤ i < N
x(i) ∈ X, 0 ≤ i ≤ N

(5.2)

where U and X are the sets of allowed control sequences and states, respec-

tively. To be able to guarantee a unique optimum, U is usually a convex,

compact set and X a convex, closed set, each with the origin included.

When the optimal control sequence u0 has been determined, only the first

control input u0(0) is applied to the plant P and the MPC procedure is
repeated in the next sample.

If the step cost is convex and piecewise linear or quadratic and the sets

U and X are convex polytopes the optimization problem (5.2) is convex and
can be solved in a relatively efficient way.

5.2 Dynamic MPC

The idea of Dynamic MPC, which is presented below, is similar to tra-

ditional MPC. The main goal is to obtain an optimal control sequence

which minimizes a certain cost function. The difference is that instead of

directly calculating an optimal control sequence in each sample, an opti-

mal dynamic controller is computed. Moreover, we do not optimize over

the control values directly, instead these are parametrized via a dynamic

compensator which in turn is linearly parametrized in a finite number of

parameters. Our optimization goal is the same as before, i.e. to solve (5.2)
in each step. We will give the details below.

Formulation and Setup

If the plant P is both stabilizable and detectable, there exist matrices

K and L such that both Φ − Γ2L and Φ − KC2 are stable. It is known,
see [Youla et al., 1976a; Youla et al., 1976b; Boyd and Barratt, 1991], that

85

Chapter 5. Dynamic Model Predictive Control

Observer

P

L C2

Q(z)

∑ ∑

w z

u y

er

x̂

+

+

−

−

Figure 5.1 Block diagram of the Youla-parametrization.

the observer based nominal controller

x̂(k+ 1) = Φ x̂(k) + Γ2u(k) + K e(k)
u(k) = r(k) − Lx̂(k)
e(k) = y(k) − C2 x̂(k)

(5.3)

combined with r = Q(z)e for a stable Q(z), gives a stable system. If Q is
viewed as parameter, this construction is called the Youla-parametrization

or Q-parametrization. A diagram of the system can be found in Figure 5.1.

An important condition in the Youla-parametrization is that the trans-

fer function Ter " 0, i.e. the transfer function from r to e is equal to zero.
This condition is easily verified for the system described by P with the

controller in (5.3). Using this condition, the transfer function of the system
can be expressed as

Gzw(z) = Tzw(z) + Tzr(z)Q(z)Tew(z)

where Tzw(z), Tzr(z) and Tew(z) are the transfer functions of the system
when Q(z) is removed. An illustrative diagram is found in Figure 5.2.
Since the MPC procedure is performed in each step, and since the

initial state is changed in every step, care has to be taken when the initial

86

5.2 Dynamic MPC

Tzw(z)

Tew(z) Tzr(z)Q(z)

∑
w z

e r

Figure 5.2 Block diagram of the Youla-parametrization in the general form.

state of the system does not equal zero. Consider the system

x(k+ 1) = Ax(k) + B1w(k) + B2r(k)
z(k) = C1x(k)
e(k) = C2x(k)

If the system has the initial state x(0) ,= 0 then, at time k, the outputs
are

z(k) = C1{Akx(0) +B1w} + C1B2r
e(k) = C2{Akx(0) +B1w} + C2B2r

(5.4)

where B1 and B2 are appropriate matrices, w = [w(0), . . . ,w(k− 1)]T and
r = [r(0), . . . , r(k− 1)]T . It follows from (5.4) that the initial state x(0)
should only be associated with one of the input transfer functions. Since

Ter " 0, the initial state must be associated with the transfer function for
w, i.e. the transfer functions Tzw(z) and Tew(z).
Consider the plant P with the controller (5.3) combined with a Q(z)

given by

Q(z) = q0 + q1z−1 + . . .+ qN−1z−(N−1)

where qj ∈ Rnu$ny . It is clear that the closed loop is affine in the parame-
ters qj . In fact we shall show in section 5.5 that given an initial condition

x(0), the output at time i can be written as

z(i) = t(i) + h(i)q (5.5)

where q contains all the parameters in the filter Q(z). Consider now the
following optimization problem

min
q
V (x(0),q)

u(i) ∈ U, 0 ≤ i < N
x(i) ∈ X, 0 ≤ i ≤ N

(5.6)

87

Chapter 5. Dynamic Model Predictive Control

where the cost function is given by

V (x(0),q) =
N−1∑

i=0
{(z(i)) + F(x(N)) (5.7)

and each z(i) is given by (5.5).
From an optimization point of view the two problems (5.6) and (5.2)

are similar, in particular in the standard convex MPC formulation they

are equally easy to solve. Moreover, these two problems are equivalent

from a control point of view

THEOREM 5.1

Let V ∗
d (x(0)) and u∗

d(i) be the optimal cost and input trajectory corre-
sponding to problem (5.6), let V ∗

s (x(0)) and u∗
s(i) be the optimal solution

to (5.2). Then

V ∗
d(x(0)) = V ∗

s (x(0)), and u∗
d(i) = u∗

s(i), 0 ≤ i ≤ N − 1

PROOF 5.1

Let x∗
s(k), 0 ≤ k ≤ N be the states of P corresponding to the input se-

quence u∗ = (u∗
s(0), . . . ,u∗

s(N − 1)). What has to be shown is that there
exists a

Q∗(z) = q∗
0 + q∗

1z
−1 + . . .+ q∗

N−1z
−(N−1)

such that the system with the controller described by (5.3) also produces
the input sequence u∗, since if the sequence is the optimum of (5.2) then
Q∗(z) must be the optimum of (5.6).
Let x̃∗(k) = x∗(k) − x̂∗(k), it can be shown that

e∗(k) = C2 x̃∗(k) + D21w(k)

Define e∗k = (e∗(0), . . . , e∗(k)) for 0 ≤ k < N. If we use u∗
d(k) = r∗(k) −

Lx̂∗(k) and r∗ = Q∗(z)e∗, it is easy to see that Q∗(z) can chosen to satisfy

u∗
d(k) + Lx̂∗(k) = Q∗(z)e∗k

REMARK 5.1

An implication of the theorem is that stability is insured under the same

conditions as for the traditional MPC with the same cost function and

constraints. Such conditions can be found in e.g. [Mayne et al., 2000].
If constraints on the parameters of Q(z) are included, the system will be
bounded-input bounded-output stable.

88

5.2 Dynamic MPC

THEOREM 5.2

Assume that for the plant P with initial state x(0), the problem (5.6)
combined with the constraints pqip ≤ cq, 0 ≤ i ≤ N − 1, is feasible for all
times k ≥ 0. The resulting system when controlling P with Dynamic MPC
is BIBO stable.

PROOF 5.2

Let Q0k(z) be the optimal solution to (5.6) at time k. As will be seen in
section 5.5

Gzw(z) =
[
A B

Ck Dk

]

where A and B are constant for all times and Ck and Dk are linearly

dependent on the parameters of Q0k(z). Since the Youla-parametrization
gives stable system, it is obvious that for bounded inputs w(k) the states
x(k) will be bounded. By the restriction of the parameters of Q0k(z) it is
also clear that qCkq2 ≤ c and qDkq2 ≤ d (for some c and d), for all k ≥ 0.
This gives

qz(k)q2 ≤ qCkq2 ⋅ qx(k)q2 + qDkq2 ⋅ qw(k)q2
≤ cqx(k)q2 + dqw(k)q2

Hence the system is BIBO stable.

Since the Dynamic MPC is equivalent to traditional MPC, when there are

no computational delays, the advantages of Dynamic MPC shows up when

such delays are introduced. Assume that at some time k, the time required

to find the optimal solution to the MPC problem is longer than the sample

time. Not to leave the system uncontrolled, the optimal solution from the

previous time instant k− 1 needs to be used. A straight-forward strategy
in traditional MPC is to let the second control signal in the optimal control

sequence be used as input to the system. This strategy is relying on open

loop control, since the input does not depend on current measurement of

the output. Dynamic MPC uses feedback to determine each control input.

That is, even though no new optimal solution has been found yet, this

strategy takes into account recent measured outputs when computing the

next input. Hence, deviations of the measured outputs from the predicted

outputs will be taken into account when the input is determined.

A FIR-filter Q(z) that is not ready at the time interval it was initially
supposed to be optimal for, is in some sense outdated. Since the filter is

optimized for the initial state at the time instant when the optimization

began, it is most likely not optimal at the current state. To improve the

performance of the system, we can update the complete controller by sim-

ulating it for the time when the optimization took place. Assume that the

89

Chapter 5. Dynamic Model Predictive Control

filter is delayed d samples and let umeas(k) be the inputs to the plant and
ymeas(k) be the measured outputs of the plant for the time during which
the filter is being calculated, i.e. 0 ≤ k < d. Using the representation of
the observer in (5.3), the update is performed according to

x̂(k+ 1) = Φ x̂(k) + Γ2umeas(k) + K e(k)
xQ(k+ 1) = AQxQ(k) + BQ e(k)

e(k) = ymeas(k) − C2 x̂(k)

where AQ and BQ come from the state space representation of Q(z). Now
x̂(d) and xQ(d) are the updated states that should be used to initialize
the controller.

5.3 Example

To illustrate the presented ideas, an example of the double integrator will

be examined. The double integrator is

ẋ =
[
0 1

0 0

]
x +

[
0

1

]
u

y = [1 0] x

which is discretized with a sample interval of h = 0.1s. The discrete model
is set up according to Figure 5.1, such that w contains the reference value,

r, and z contains both y and the tracking error, r − y. The objective is to
minimize the cost

N∑

k=1
(r(k) − y(k))2 +

N∑

k=1
p ⋅ (∆u(k))2

under constraints on the velocity, px2p ≤ 0.1, and on the inputs, pup ≤ 0.3.
The position y is to follow the reference trajectory r = 0.3. ∆u(k) is the
difference between the current and the previous input signal, i.e. ∆u(k) =
u(k) − u(k − 1). The prediction horizon N is set to 30 and the weight
p = 0.3.
As seen by Proposition 5.1, if there is no computational delay, the

system will be equivalent to a system controlled by a traditional MPC

controller. The response of the reference trajectory r = 0.3 is found in
Figure 5.3(a). The corresponding velocity and control input are found in
Figures 5.3(b) and 5.3(c), respectively.

90

5.3 Example

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(a) The position of the double integrator.

0 1 2 3 4 5 6 7 8 9 10
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

(b) The velocity of the double integrator.

0 1 2 3 4 5 6 7 8 9 10
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(c) The input to the double integrator.

Figure 5.3 Plots of the position, velocity and input of the double integrator con-

trolled with traditional or Dynamic MPC, without computational delay.

Now, suppose that there is a constant computational delay of 5 sam-

ples, i.e. if the optimization starts at time k, it will not be finished until

time k + 5. Note that a constant computational delay is often not en-
countered. Depending on which constraints are active, the computations

91

Chapter 5. Dynamic Model Predictive Control

in the optimization take different time to perform. But varying computa-

tional delays will not in general be different compared to constant delays,

assuming that the controller does not know that the computational delay

is not constant.

If traditional MPC is used to control the process, with the strategy

that for an input sequence u computed for time k (and therefore ready to
be used at time k+ 5), the input that is used at time k+ i for 5 ≤ i ≤ 9,
is u(i). The resulting system will be unstable. The response to the step
r(k) = 0.3 is shown in Figure 5.4(a). The velocity and the applied control
signal can be found in Figures 5.4(b) and 5.4(c).
Now, consider a Dynamic MPC controller. A controller that is computed

during the time interval [k k+5] is used to control the process during the
interval [k+ 5 k+ 9]. Before the controller can be used, at time k+ 5, the
controller states must be updated. This is done as explained in the last

section.

The position is shown in Figure 5.5(a), the reference was set to 0.3.
Figure 5.5(b) shows the velocity of the system and Figure 5.5(c) shows
the control signal.

5.4 Summary and Concluding Remarks

In this chapter, a dynamic version of MPC was presented. We showed that

the presented method is equivalent to the standard formulation of MPC in

the case when no computational delays are present. The idea is to update

a feedback controller instead of an open loop trajectory, as in standard

MPC.

We presented an illustrating example that showed the differences be-

tween two strategies to handle computational delays. The open loop solu-

tion became unstable whereas the Dynamic MPC solution achieved per-

formance similar to the case with no delay.

We believe that these preliminary results and ideas can be useful when

approaching the problem with computational delays.

5.5 Appendix: The Online Optimization Problem

The purpose of this section is to give a brief review of how to exploit the

Youla-parametrization for numerical computation, see [Boyd and Barratt,
1991; Boyd et al., 1988]. In particular, we will show that the computational
work required to solve the Dynamic MPC problem is similar to the work

required in the traditional MPC formulation.

92

5.5 Appendix: The Online Optimization Problem

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) The position of the double integrator.

0 5 10 15 20 25 30
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

(b) The velocity of the double integrator.

0 5 10 15 20 25 30
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

(c) The input to the double integrator.

Figure 5.4 Plots of the position, velocity and input of the double integrator con-

trolled with traditional MPC, with a constant computational delay of 5.

We have seen that the closed loop of any stabilizable linear system

takes the form

Gzw(z) = Tzw(z) + Tzr(z)Q(z)Tew(z)
where Tzw(z),Tzr(z) and Tew(z) are stable LTI-systems, depending only

93

Chapter 5. Dynamic Model Predictive Control

0 1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(a) The position of the double integrator.

0 1 2 3 4 5 6 7 8 9
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

(b) The velocity of the double integrator.

0 1 2 3 4 5 6 7 8 9
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(c) The input to the double integrator.

Figure 5.5 Plots of the position, velocity and input of the double integrator con-

trolled with Dynamic MPC, with a constant computational delay of 5.

on the plant P and the nominal controller. Now consider the mapping

94

5.5 Appendix: The Online Optimization Problem

between wj and zi

Gziwj (z) = Tziwj (z) + Tzir(z)Q(z)Tewj (z)

= Tziwj (z) +
nu∑

k=1

ny∑

s=1
Qks(z)Tzirk(z)Teswj (z)

For the discussion in this section we may assume that nu = 1 and ny = 1,
it is trivial to go from this case to the general MIMO case. Moreover,

we will drop the channel indices for notational simplicity. Accordingly, we

denote the transfer function for any channel by

Gzw(z) = Tzw(z) + Q(z)Tzr(z)Tew(z)

with scalar transfer functions. The only constraint on the free parameter

Q is that it should be a stable rational LTI transfer function, i.e. Q ∈ RH∞.
Thus the search space is infinite dimensional. To do numerical computa-

tions we need to restrict the search to a finite dimensional subspace. A

simple choice is a FIR-base, z−l for 0 ≤ l ≤ N−1. Consider the candidate
parametrization

Q(z) =
N−1∑

l=0
ql z

−l =
[
AQ BQ

CQ DQ

]

where AQ is the right shift matrix, BQ is the first unit vector and

CQ = [q1 q2 ... qN−1] , DQ = q0

Note that AQ and BQ are fixed. Let

Tzr(z)Tew(z) =
[
A B

C D

]

then we can take

H = Q(z)Tzr(z)Tew(z) =



AQ BQC BQD

A 0 B

CQ DQC DQ




=
[

Ã B̃

CQ DQC DQD

]

95

Chapter 5. Dynamic Model Predictive Control

Finally we define

Tzw(z) =
[
Azw Bzw

Czw Dzw

]

Now, if the input to Gzw is w(0) . . .w(k), z(k) is given by

z(k) = t(k) + [CQ DQC] (Ãkx0 +
k−1∑

p=0
Ãk−1−pB̃w(p)) + DQ

where t(k) is output of Tzw. We can write this more compact as

z(k) = t(k) + h(k)q

where

qT = [DQ CQ] = [q0 . . . qN−1]
Also note that a realization of Gzw is given by




Ã 0 B̃

0 Azw Bzw

CQ DQCp Czw Dzw + DQD




Constraints in Time-Domain

Recall that the composition of a convex function and a linear function

is a convex function. Let cik for 1 ≤ i ≤ m be convex functions. Since
the controlled output z(k) is a linear function of the decision variables q,
constraints of the form

cik(z(k)) ≤ 0
are convex in q. If the step cost l(z(k)) is convex the finite horizon Dynamic
MPC problem that we have defined in this chapter can therefore be solved

as a static finite dimensional convex optimization problem.

If the Dynamic MPC problem is formulated with only time-domain

constraints, it is sufficient to use a FIR- filter to parametrize Q(z). We
consider only Q(z)’s such that

Q(z) ∈ span{1, z−1, .., z−(N−1)} ⊂ RH∞

If we choose N larger then the optimization horizon Nh, non of the terms

qj z
− j with Nh ≤ j ≤ N − 1 will affect the achieved optimal cost nor the

constraint satisfaction. On the other hand, if we include frequency-domain

constraints the length of the FIR-filter will in general affect the outcome.

96

5.5 Appendix: The Online Optimization Problem

Constraints in Frequency-Domain

Again let c be a convex function. A robustness constraint of the form

c(Gzw(z)) ≤ W(z), z = eiω ,ω ∈ [−π ,π]

can be well approximated by restricting the last inequality to a finite set of

points ω i. Each such constraint is convex in q. Some important frequency-
domain constraint can be treated without the need of gridding. Consider

for example the Bounded Real lemma. It says that if A is stable then

ppC(zI − A)−1B + Dpp∞ < γ

if and only if



AT X A− X AT X B CT

BT X A BT X B − γ I DT

C D −γ I


 < 0

Note that this inequality is linear in X ,C and D. We have noted that in

the realization of Gzw the decision variables enter only in the C and D

matrices, thus frequency domain peak bounds result in convex constraints.

97

6

Control of DC-DC

Converters: A Case Study

6.1 Introduction

Switch-mode DC-DC converters is a class of power electronic circuits with

a wide variety of applications, for example they can be found in all kinds

of power supplies. Switch-mode converters are usually a good choice, as

compared to non-switched converters, due to their high efficiency.

Power electronic circuits such as the switched mode DC-DC converters

represent a good entry point for the investigation of the control design and

performance benefits that can be brought by hybrid and optimal control

techniques. Although these circuits may appear physically simple, high

performance control design is nevertheless a challenging task. It is easy

to find good mathematical models of the physical converters. Unfortu-

nately, these models are highly nonlinear and they are parametrized by

uncertain parameters. In addition to complicated models, the control de-

sign is further complicated by the fact that the control signal is physically

constrained to an interval. Moreover, from a practical point of view it is

necessary to limit system states as well, e.g. to impose current limitations.

As a consequence some trade offs must be done.

Control design for switch mode power converters typically rely on the

so called state space average model. This averaging methodology was out-

lined by Middlebrook et al. in [Middlebrook and Cuk, 1976], where the
basic ideas of state-space averaging were introduced and the so-called

small signal modeling was proposed for control design purposes. Detailed

treatments of the averaging technique can be found in [Krein et al., 1999]
and [Lehman et al., 1996].
The notion of averaging implies that only the dynamics of the DC

98

6.1 Introduction

components of the circuit variables are taken into account. These are by

definition quite slow compared to the switching period. On the other hand,

the term small signal analysis describes the linearization of the resulting

nonlinear state equations around the operating point. The average/small
signal technique is convenient to use but it has several drawbacks. It has

been noted, see [Fuad et al., 2004] and references therein, that the classi-
cal average model need not capture the stability properties of the system,

the average model can be stable even though the actual system is not.

Also, a typical design specification is hard bounds on system variables,

e.g. bounds on peak currents, since the state and the output ripple are

underestimated in the average model such a specification must typically

be handled by trial and error.

In practice, the design procedure for switched DC-DC converters is typ-

ically to first design a controller based on the averaged dynamics and then

perform extensive numerical simulations to verify performance. Recently

there has been a number of papers addressing the issues of stability, rip-

ple estimation and harmonic analysis of switch mode power converters.

For example, in [Almèr et al., 2004; Geyer et al., 2004] the authors perform
stability analysis using sampled data techniques which take the switched

nature of the system into account. The sampled data modeling results in

a discrete time system which gives an exact description of the state at

the switching instants. However, the resulting system is highly nonlinear

and none of the classical design techniques can be applied. In the previ-

ous HYCON benchmark, see [Morari et al., 2006] for initial definition of
these problems, it has been shown that hybrid design techniques such as

hybrid model predictive control and relaxed dynamic programming can be

successfully employed for synthesis based on such sampled data models,

see [Almer et al., 2007; Beccuti et al., 2007; Geyer et al., 2004; Lincoln
and Rantzer, 2002; Wernrud, 2006].
In this case-study we will present an extended version of the results

reported in [Beccuti et al., 2007; Almer et al., 2007]. The problem we con-
sider is control design of a fixed-frequency step-up converter, operating in

continuous current mode, and a fixed-frequency step-down converter. The

approach presented is to approximate the exact nonlinear sampled data

model of the converters by a discrete time affine model and then apply the

control design techniques presented in Chapter 4. Using this approach we

can systematically incorporate both input and state constraints. Recently

the work in [Beccuti et al., 2007; Almer et al., 2007] has been evaluated in
real experiments. Some of these results will be discussed in this chapter,

but a thorough description of the experiments and the results will appear

in [Mariéthoz et al., 2008b; Mariéthoz et al., 2008a].

99

Chapter 6. Control of DC-DC Converters: A Case Study

6.2 Physical Converter Models

The class of DC-DC converters that we will consider can be described by

a nonlinear differential equation of the form

ẋ(t) = (A0 + (A1 − A0)su(t))x(t) + B0 + (B1 − B0)su(t)

where x(t), Bi ∈ Rn, Ai ∈ Rn$n and i = 0, 1. The value of the switch-
ing function su(⋅) at any time is either 0 or 1. It is the definition of the
switching function that characterizes the converter. For fixed-frequency

converters, the switching function is defined by the duty cycle u as fol-

lows: At fixed sample times kTs the duty cycle u(kTs) takes a value in
the interval [0, 1], which is the ratio of the interval [kTs, (k+ 1)Ts] during
which the switching function su(⋅) is equal to 1. In other words

su(t) =
{
1, t ∈ [kTs, (k+ u(kTs))Ts)
0, t ∈ [(k+ u(kTs))Ts, (k+ 1)Ts)

Therefore, the dynamic equation will switch between two affine systems

ẋ(t) =
{
A1x(t) + B1, t ∈ [kTs, (k+ u(kTs))Ts)
A0x(t) + B0, t ∈ [(k+ u(kTs))Ts, (k+ 1)Ts)

(6.1)

The states of the converter can be controlled by manipulating the duty

cycle. Since, by definition, the duty cycle can only act at the beginning

of each sampling interval the controlled system is inherently discrete. A

discrete time model

x((k+ 1)Ts) = Φ(u(kTs))x(kTs) + Γ(u(kTs)) (6.2)

for the exact state propagation between time kTs and (k + 1)Ts can be
found by integrating equation (6.1) over one period. The matrices in this
model are given by

Φ(u(kTs)) = Φ0(u(kTs))Φ1(u(kTs))
Γ(u(kTs)) = Φ0(u(kTs))Γ1(u(kTs)) + Γ0(u(kTs))

where

Φ1(u(kTs)) = eA1Tsu(kTs)

Φ0(u(kTs)) = eA0Ts(1−u(kTs))

Γ1(u(kTs)) = A−11 (eA1Tsu(kTs) − I)B1
Γ0(u(kTs)) = A−10 (eA0Ts(1−u(kTs)) − I)B0

100

6.2 Physical Converter Models

xl

xc
ro

rc

rl

vs +
−

vo

S0

S1

Figure 6.1 Synchronous buck converter.

The Step-Down Converter The topology of a step-down converter is

shown in Figure 6.1. ro denotes the ohmic output load, rc the Equivalent

Series Resistance (ESR) of the capacitor, r{ denotes the internal resis-
tance of the inductor, x{ and xc denotes the inductance and the capaci-
tance respectively, and vs denotes the input voltage. The state vector is

define as x(t) = [i{(t) vc(t)]T , where i{(t) is the current in the inductor
and vc(t) is the voltage over the capacitor. The fixed switching period is
denoted by Ts. During the time interval [kTs (k+u(kTs))Ts) the switch in
Figure 6.1 is in position S1. In the remaining part of the interval, i.e. in

[(k+u(kTs))Ts, (k+1)Ts)), the switch is in position S0. The corresponding
matrices in equation (6.1) are given by

A1 = A0 =



− 1
x{
(r{ +

rorc

ro + rc
) − 1

x{

ro

ro + rc
1

xc

ro

ro + rc
− 1
xc

1

ro + rc




B1 =



1

x{
0


 , B0 = 0.

The output voltage vo(t) across the load ro is expressed as a function of
the states through

vo(t) = Cx(t) with C = ro

ro + rc

[
rc 1

]
.

The circuit parameters that have been used in simulation and in the real

experiments are given in Table 6.2. The values for ro and vs are nominal

values.

101

Chapter 6. Control of DC-DC Converters: A Case Study

xrmc 100e-6 F

x{ 2e-3 H

rc 0.5 Ω

r{ 0.25 Ω

ro 50 Ω

vs 40.0 V

Ts 5e-5 s

Table 6.1 Circuit parameter values for the buck converter

S0

S1r{x{
rc

xc vo

+
−

ro

Figure 6.2 Topology of the boost (step-up) converter

The Step-up Converter The topology of a step-up converter is shown

in Figure 6.2. The circuit parameters are the same as for the step-down

topology. During the time interval [kTs (k+ u(kTs))Ts) the switch in Fig-
ure 6.2 is in position S1. In the remaining part of the interval, i.e. in

[(k + u(kTs))Ts, (k + 1)Ts)), the switch is in position S0. For the boost
converter, the corresponding matrices in the model (6.1) are given by

A1 =



− r{
x{

0

0 − 1
xc

1

ro + rc


 ,

A0 =



− 1
x{
(r{ +

rorc

ro + rc
) − 1

x{

ro

ro + rc
1

xc

ro

ro + rc
− 1
xc

1

ro + rc


 ,

B1 = B0 =



1

x{
0


 vs.

102

6.3 Modeling for Control Design

The output voltage vo(t) across the load ro is

vo(t) =
{
C1x(t), t ∈ [kTs, (k+ u(kTs))Ts)
C0x(t), t ∈ [(k+ u(kTs))Ts, (k+ 1)Ts)

with

C1 =
[
0

ro

ro + rc
]

and

C0 =
[rorc

ro + rc
ro

ro + rc
]
.

The values of circuit parameters used in simulation and in the real ex-

periments for the boost converter are shown in Table 6.2. The values for

ro and vs are nominal values.

xc 104e-6 F

x{ 2e-3 H

rc 2 Ω

r{ 1.0 Ω

ro 200 Ω

vs 20.0 V

Ts 5e-5 s

Table 6.2 Circuit parameter values for the boost converter.

6.3 Modeling for Control Design

As mentioned in the introduction, we will design our controllers using the

methods developed in Chapter 4. Since those methods require that the

system dynamics is affine we need to approximate the converter dynam-

ics (6.2) with such a system. The modeling technique presented below,
which may be refereed to as robust affine approximation, is proposed in

order to take into account, already at the modeling stage, the switched

nature of the converters and the fact that the converters are usually

parametrized by unknown parameters.

Robust Affine Approximation

Consider again the state update equation

x((k+ 1)Ts) = Φ(u(kTs), ro)x(kTs) + Γ(u(kTs), ro) (6.3)

103

Chapter 6. Control of DC-DC Converters: A Case Study

where

Φ(u, ro) = Φ0(u, ro)Φ1(u, ro)
Γ(u, ro) = Φ0(u, ro)Γ1(u, ro) + Γ0(u, ro)

are the matrices in (6.2). The load parameter ro has been appended to
emphasize that the matrices depend on the load.

Our approach is to approximate the nonlinear dynamics by a constant

affine system

x((k+ 1)Ts) = Φx(kTs) + Γu(kTs) +ν (6.4)

When the model (6.2) is approximated with (6.4) the largest pointwise
error can be expressed as

J = sup ppΦx + Γu +ν − (Φ(u, ro)x + Γ(u, ro))pp

where the supremum is taken over (x,u, ro) ∈ X$ U$ L, where X is the

set of states on which the model should be approximated. L is the set of

values that the load can assume. Naturally, we would like to minimize J.

The robust approximation problem is to compute

min J(Φ,Γ,ν) (6.5)

over (Φ,Γ,ν). Our ability to solve this problem depends on the choice of
norm and the description of the set X $ U $ L, the candidates are those

that correspond to a finite dimensional convex optimization problem. For

the purpose of this chapter we shall consider a simple choice. To be able to

write this problem in a familiar form we introduce the Kronecker product

of two matrices A ∈ Rm$n and B ∈ Rp$q

A⊗ B =




a11B . . . a1nB

...
. . .

...

am1B . . . amnB


 ∈ Rmp$nq

also the vectorization operation of a matrix A ∈ Rm$n is defined as

vec(A) = vec([a1 . . . an]) =




a1
...

an


 ∈ Rmn

i.e. the columns in A are stacked into one column vector.

104

6.3 Modeling for Control Design

Define a finite grid of points G ⊂ X$ U$ L. For any

� = [xT� u� r�] ∈ G define

b(�) = Φ(u�, r�)x� + Γ(u�, r�), and A(�) = � ⊗ I

If we also take y = vec([Φ Γ ν]), the approximation problem becomes

min
y
max
�∈G

ppA(�)y− b(�)pp

which is the same as

min
y,t

t

ppA(�)y− b(�)pp ≤t, ∀� ∈ G

if the norm is either pp⋅pp∞ or pp⋅pp1 this is an LP, if norm is pp⋅pp2 the problem
is a second order cone problem. In any case, it is an easily solvable finite

dimensional convex optimization problem.

A small example is provided to verify that it might be useful to consider

the proposed approximation.

EXAMPLE 6.1

We consider the problem to approximate the buck converter dynamics

with an affine system. First consider an approximation based on the as-

sumption of constant load ro = 50. The problem (6.5) was solved, using
the 2-norm, on a grid given by

G = {0.2 j, j ∈ [−1, 13]} $ { j, j ∈ [0, 30]} $ {0.2 j, j ∈ [0, 5]} $ {50}.

For a given input sequence u(k), 0 ≤ k ≤ 99 and initial conditions
x(0) = xa(0) = [0 0]T let xa(k) be the solution to (6.4). Let x(k) be the
solution to (6.3) when the true load ro(k) is given by a square wave

ro(k) =
{
100, 21 ≤ k ≤ 40 or 61 ≤ 80
50, else

As a measure of how good the model approximation is we use the following

F̂(j) = EF(x j(k) − xaj (k),u(k))

where E(⋅) is the expectation operator and

F(x j(k) − xaj (k),u(k)) =

√√√√ 1
N

N∑

1

px j(k) − xaj (k)p2

105

Chapter 6. Control of DC-DC Converters: A Case Study

and u(k) is uniformly distributed in [0, 1] for each k. Sampling F 10000
times gives the estimates

F̂(1) (0.2922
F̂(2) (0.7801

The mean value of F(x1(k),u(k)) was approximately 1 and the mean of
F(x2(k),u(k)) was approximately 22. Consider the same setup except that
the grid is extended by adding an extra point ro = 100 in the load direction

G = {0.2 j, j ∈ [−1, 13]} $ { j, j ∈ [0, 30]} $ {0.2 j, j ∈ [0, 5]} $ {50, 100}.

In this case an error estimate is given by

F̂(1) (0.1624
F̂(2) (0.5090

Thus, the expected error in the first coordinate is reduced by approx-

imately 44% and in the second coordinat by 35%. The mean values of

F(x1(k),u(k)) and of F(x2(k),u(k)) were approximately the same as be-
fore.

6.4 Case Study 1: Control Design for the Step-Down
Converter

The main control objective is to regulate the DC component of the output

voltage to its reference vo,ref. The duty cycle should be kept constant during

steady-state operation in order to avoid undesired phenomena such as sub-

harmonic oscillations. The closed loop should be designed so that regula-

tion can be maintained in the presence of both measurable voltage source

variations and unmeasurable output load disturbances. Moreover, for the

step-down converter we have imposed a current limit of i{,max = 2.5 A,
the hard constraint on the duty cycle, i.e. 0 ≤ u(kTs) ≤ 1, must of course
be satisfied too. The control problem is further complicated by the un-

certainty and variation of the component values on which the controller

synthesis process is based on.

The following tests were used to evaluate the closed loop performance.

1. General performance: Given the initial state x(0) = [0, 0]T and
vs = 50 V we test the speed of the closed loop by setting the reference
to 20 V, 25 V and 30 V.

106

6.4 Case Study 1: Control Design for the Step-Down Converter

2. Sensitivity to load variations: the load is often subject to large vari-

ations during the operation, the closed loop must be robust against

load transients. The nominal load is ro = 50 Ω, for each setpoint

in the first test we double the load when stationary conditions have

been reached and reset it again.

3. Sensitivity to line variations: the supply voltage is subject to large

variations during the operation, the closed loop must be robust against

line transients. Robustness is tested by applying a drop in the nom-

inal supply voltage vs = 50 V to 35 V and then reset it again.
4. Robustness to parameter variation is tested by varying the capacitor

during closed loop operation.

Control Design

For the step down converter, the Φ-matrix in the nonlinear model (6.2) is
independent of the duty cycle and the Γ-matrix is essentially linear in the
duty cycle. Thus, the model (6.2) can be well approximated with a linear
system

x((k+ 1)Ts) = Φx(kTs) + Γu(kTs) +ν (6.6)

The Relaxed Dynamic Programming procedure of Chapter 4 was used to

synthesize a controller µ(x) such that the total cost V =∑k l(x(kTs),u(kTs))
was approximately minimized under an additional constraint on the in-

ductor current, x1(kTs) ≤ 2.5 A and on the duty cycle 0 ≤ u(kTs) ≤ 1. The
step cost was chosen as

l(x,u) = q1pvo(kTs) − vo,refp + q2pu(kTs) − u((k− 1)Ts)p

where q1 and q2 are positive weights. Note that the step cost can be rep-

resented as a max of linear functions

l(x,u) = max
q∈Q
qT e(x,u)

as required in Chapter 4

The penalty on consecutive control values was introduced to force the

duty cycle to become constant when vo(kTs) reached the output voltage
reference. Thus, an extra state xe(kTs) = u((k− 1)Ts) was introduced.
Due to the fact that on the real plant there is one sample delay between

measurement and actuation the model used to compute the controller was

[
x((k+ 1)Ts)
xe((k+ 1)Ts)

]
=
[

Φ Γ

0 0

] [
x(kTs)
xe(kTs)

]
+
[
0

1

]
u(kTs) +

[
ν

0

]

107

Chapter 6. Control of DC-DC Converters: A Case Study

A stationary approximate value function V̂ 26 was found after 26 re-

laxed value iterations, with guaranteed bounds

0.6V ∗ ≤ V̂ 26 ≤ 2.6V ∗

where V ∗ is the optimal total cost function. The approximate value func-

tion was given by a max of 136 linear functions. By applying the controller

reduction algorithm in Chapter 4 the controller table could be reduced to

a size of 106 entries.

The errors introduced by the model approximation were handled by an

outer integrator loop that was used to adjust the voltage reference. The

integrator was activated only when the output voltage was sufficiently

close to its reference value: If the test

pvo,ref − vo(kTs)p
vo,ref

≤ 5%

was true the integrator state I was updated to

I((k+ 1)Ts) = I(kTs) + kI(vo,ref − vo(kTs))

otherwise no update was made. This strategy was employed to ensure that

the integrator only was used to correct small gain errors.

Finally, the measurable source voltage was used in a feedforward loop

to adjust the input gain according to

vs,nom

vs(kTs)
µ(x(kTs))

Simulation Results for the Buck Converter

Figures 6.3-6.6 show the simulation results for the buck converter. The

simulations were performed with one full sampling period delay.

In Figure 6.3 the system is started from zero initial condition and

three different voltage references are applied. For each transient response

a response to a step in the load from the nominal value 50 Ω up to 100 Ω

and then back again is also shown. Figure 6.4 shows the transient and the

response to a step in the source voltage from the nominal 50 V down to

35 V and then back again. Figure 6.5 shows how the transient varies for

different values of the capacitance. The nominal capacitance is xc,nom =
100 µF, corresponding to the black curve. The gray curve corresponds to
a value on the capacitance of 0.5xc,nom and finally the light-gray curve

corresponds to 2xc,nom. The simulation in Figure 6.6 shows the response

108

6.4 Case Study 1: Control Design for the Step-Down Converter

to a step in the source voltage from the nominal 50 V down to 35 V and

then back again for a design with no computational delay, i.e. the model

[
x((k+ 1)Ts)
xe((k+ 1)Ts)

]
=
[

Φ 0

0 0

] [
x(kTs)
xe(kTs)

]
+
[

Γ

1

]
u(kTs) +

[
ν

0

]

was used to compute the controller. The response is similar to that in

Figure 6.4 and shows that the control design is robust to computational

delays.

The simulation results show excellent performance. The success of the

outlined synthesis procedure can largely be explained by the fact that we

approximate the infinite horizon optimal controller. As such, our approx-

imation inherits robustness properties from the stationary optimal con-

troller. So even though we use a relatively coarse model during synthesis

the closed loop turns out to have good performance.

109

Chapter 6. Control of DC-DC Converters: A Case Study

0 0.005 0.01 0.015
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Time (s)

C
u
r
r
e
n
t

(
A
)

(a) Inductor current

0 0.005 0.01 0.015
0

5

10

15

20

25

30

35

40

Time (s)

V
o
l
t
a
g
e

(
V
)

(b) Output voltage

0 0.005 0.01 0.015
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

D
u
t
y

c
y
c
l
e

(c) Duty cycle

Figure 6.3 Step response and response to a step in the load; inductor current

(top), output voltage (middle) and duty cycle (bottom). We let vs = 50 V, vref =
20,25, 30 V, and there is a step in the load from ro = 50 Ω to ro = 100 Ω and then

back again.

110

6.4 Case Study 1: Control Design for the Step-Down Converter

0 0.005 0.01 0.015
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Time (s)

C
u
r
r
e
n
t

(
A
)

(a) Inductor current

0 0.005 0.01 0.015
0

5

10

15

20

25

30

35

40

Time (s)

V
o
l
t
a
g
e

(
V
)

(b) Output voltage

0 0.005 0.01 0.015
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

D
u
t
y

c
y
c
l
e

(c) Duty cycle

Figure 6.4 Step response and response to a step in the source; inductor current

(top), output voltage (middle) and duty cycle (bottom).

111

Chapter 6. Control of DC-DC Converters: A Case Study

0 0.005 0.01 0.015
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Time (s)

C
u
r
r
e
n
t

(
A
)

(a) Inductor current

0 0.005 0.01 0.015
0

5

10

15

20

25

30

35

40

Time (s)

V
o
l
t
a
g
e

(
V
)

(b) Output voltage

0 0.005 0.01 0.015
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

D
u
t
y

c
y
c
l
e

(c) Duty cycle

Figure 6.5 Step response for capacitance 0.5xc,nom = 50 µF (light-gray), xc,nom =
100 µF (black) and 2xc,nom = 200 µF (gray); inductor current (top), output voltage
(middle) and duty cycle (bottom).

112

6.4 Case Study 1: Control Design for the Step-Down Converter

0 0.005 0.01 0.015
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Time (s)

C
u
rr

e
n
t
(A

)

0 0.005 0.01 0.015
0

5

10

15

20

25

30

35

40

Time (s)

V
o

lt
a

g
e

 (
V

)

0 0.005 0.01 0.015
0

0.2

0.4

0.6

0.8

1

Time (s)

D
u

ty
 c

y
c
le

Figure 6.6 Step response and response to a step in the source for the case with

zero computational delay; inductor current (top), output voltage (middle) and duty
cycle (bottom).

113

Chapter 6. Control of DC-DC Converters: A Case Study

6.5 Case Study 2: Control Design for the Step-Up
Converter

The main control objective is to regulate the DC component of the output

voltage to its reference vo,ref. The duty cycle should be kept constant dur-

ing steady-state operation in order to avoid undesired phenomena such as

subharmonic oscillations. The closed loop should be designed so that reg-

ulation can be maintained despite measurable voltage source variations

and unmeasurable output load disturbances. Moreover, for the step-up

converter we have imposed a current limit of i{,max = 2.5 A, the hard
constraint on the duty cycle, i.e. 0 ≤ u(kTs) ≤ 1, must of course be sat-
isfied too. The control problem is further complicated by the uncertainty

and variation of the component values on which the controller synthesis

process is based and by the non-minimum phase behaviour of the output

voltage with respect to the duty cycle.

The following tests have been used to evaluate the closed loop perfor-

mance.

1. Load transient: The controller is switched on and steers the output

voltage to its reference, thereafter the load is subjected to a step-

down variation of 50% i.e. ro is set to 100 Ω, and is then restored

back to its original value. The scenario was run for 3 different supply

voltages of 15, 20 and 25 V.

2. Robustness to capacitor variations: The controller steers the output

voltage to its reference. The scenario was run for a supply voltage of

20 V and with 3 different values of xc equal to 50, 100 and 200 µF.

3. Line transient: First vs = 25 V and the controller steers the output
voltage to its reference, thereafter the supply is decreased to 15 V

and then restored to its original value.

Control Design

The design procedure used for the step-down converter was also used for

the step-up converter. For the step-up converter, however, the synthesis

was more difficult for several reasons.

First, the boost converter dynamics has non-minimum phase behaviour

from the duty cycle to the output voltage, which was captured by our model

approximation. As a consequence, the convergence rate of value iteration

was slower than for the step-down converter. This, in turn, resulted in a

more complex value function.

Also, even though our model approximation did capture the non-minimum

phase behaviour of the nonlinear model, it was not as good as for the step-

down converter.

114

6.5 Case Study 2: Control Design for the Step-Up Converter

Despite these problems we were able to find a good design, after con-

siderable tuning of the design parameters. The step cost was chosen as

l(x,u) = q1pvo − vrefp + q2pu(kTs) − u((k− 1)Ts)p

with q1/q2 = 1/5, compared to q1/q2 = 1/2 which was used for the buck.
The relaxed value iteration algorithm was executed 38 times resulting in

a stationary approximation which satisfied

0.4V ∗ ≤ V̂ 38 ≤ 3.2V ∗

The approximate value function were given by a max of 166 linear func-

tions By applying the controller reduction algorithm in Chapter 4 the

controller table could be reduced to a size of 121 entries.

Experimental Setup

The controller design described in the previous section has been evaluated

in real experiment. The design and configuration of the converter hard-

ware will not be discussed here1, but see [Mariéthoz et al., 2008b; Mar-
iéthoz et al., 2008a] for a description.
The controller was implemented on a DSP control board consisting of

a 16 bit 600 MHz fixed point processor from Analog Device Blackfin. The

realtime process can be summarized as:

1. The controller samples the converter state and performs analog to

digital conversion.

2. Execute the control algorithm.

3. Actuate at the end of the sampling interval.

The employed sampling frequency was 20 kHz, i.e. the sampling interval

was 50 µs. It took about 5 µs to sample the state and perform A/D-
conversion. The computation time required by the control algorithm was

about 15 µs.

Evaluation of Boost Converter Design

Figures 6.7–6.10 show the simulation and experimental results for the

boost converter. Each simulation was performed with one full sampling

period delay to account for the measurement, conversion and controller

computation times.

Figures 6.7(a)–6.7(f) show the transient and the response to a step
in the load from the nominal value 200 Ω down to 100 Ω and then back

1The hardware has been built and is maintained by the control group at ETH, Zurich

115

Chapter 6. Control of DC-DC Converters: A Case Study

again for 3 different voltage supply values. The black curve corresponds

to 15 V, gray corresponds to 20 V and finally 25 V corresponds to the

light-gray curve.

Figures 6.9(a)–6.9(f) show the transient for different values of the ca-
pacitance. The gray curve corresponds to the nominal capacitance xc,nom =
100 µF, the black corresponds to 0.5xc,nom and the light-gray corresponds
to 2xc,nom.

Figures 6.8(a)–6.8(f) show the response to a step in the source voltage
from 25 V down to 15 V and then back again, see Figure 6.11.

Finally, the same scenario, but with a zero delay assumption in the

controller synthesis phase, is shown in Figure 6.10. The response is similar

to left column in Figure 6.8 and shows that the control design is robust

to computational delays.

Just as for the buck, the simulation results show excellent perfor-

mance.

Overall, the experimental results also agrees qualitatively with the

simulated results. For example, good transient response and voltage track-

ing were achieved in all scenarios. Moreover, the current limit is respected

in each test.

The undesirable scattering in the duty cycle is believed to be due to

noise, parametric uncertainty, quantization errors related to the A/D con-
version. Moreover, the fact that the controller was implemented on a fixed

point platform introduces a precision loss in the controller tables due to

quantization. Extensive simulations in fixed point indicate that the scat-

tering in the duty cycle may also be caused by that. See Figure 6.12 for a

simulation when the controller is implemented in fixed point.

116

6.5 Case Study 2: Control Design for the Step-Up Converter

0 0.02 0.04
−1

0

1

2

3

(a) Inductor current
0 0.01 0.02 0.03 0.04

−1

0

1

2

3

(b) Inductor current

0 0.02 0.04
0

10

20

30

40

50

60

(c) Output voltage
0 0.01 0.02 0.03 0.04

0

10

20

30

40

50

60

(d) Output voltage

0 0.02 0.04
0

0.2

0.4

0.6

0.8

1

(e) Duty cycle
0 0.01 0.02 0.03 0.04

0

0.2

0.4

0.6

0.8

1

(f) Duty cycle

Figure 6.7 Step response and response to a step in the load. Simulation results

left and experimental results right.

117

Chapter 6. Control of DC-DC Converters: A Case Study

0 0.02 0.04
−1

0

1

2

3

(a) Inductor current
0 0.01 0.02 0.03 0.04

−1

0

1

2

3

(b) Inductor current

0 0.02 0.04
0

10

20

30

40

50

60

(c) Output voltage
0 0.01 0.02 0.03 0.04

0

10

20

30

40

50

60

(d) Output voltage

0 0.02 0.04
0

0.2

0.4

0.6

0.8

1

(e) Duty cycle
0 0.01 0.02 0.03 0.04

0

0.2

0.4

0.6

0.8

1

(f) Duty cycle

Figure 6.8 Result for a steps in the voltage supply: The left column shows simu-

lations and the right column shows experimental results.

118

6.5 Case Study 2: Control Design for the Step-Up Converter

0 0.005 0.01 0.015 0.02
−1

0

1

2

3

(a) Inductor current
0 5 10 15

−1

0

1

2

3

(b) Inductor current

0 0.005 0.01 0.015 0.02
0

10

20

30

40

50

60

(c) Output voltage
0 5 10 15

0

10

20

30

40

50

60

(d) Output voltage

0 0.005 0.01 0.015 0.02
0

0.2

0.4

0.6

0.8

1

(e) Duty cycle
0 5 10 15

0

0.2

0.4

0.6

0.8

1

(f) Duty cycle

Figure 6.9 Results for variations in the capacitor. The left column shows results

from simulations, right column shows results from experiments.

119

Chapter 6. Control of DC-DC Converters: A Case Study

0 0.02 0.04
−1

0

1

2

3

Time (s)

C
u

rr
e

n
t

(A
)

(a) Inductor current

0 0.02 0.04
0

20

40

60

Time (s)

V
o

lt
a

g
e

 (
V

)

(b) Output voltage

0 0.02 0.04
0

0.2

0.4

0.6

0.8

1

Time (s)

D
u

ty
 c

y
c
le

(c) Duty cycle

Figure 6.10 Simulation results for steps in the voltage supply with zero delay.

120

6.5 Case Study 2: Control Design for the Step-Up Converter

0 0.01 0.02 0.03 0.04
0

5

10

15

20

25

30

(a) Supply voltage

Figure 6.11 Steps in the voltage supply used in experiments.

121

Chapter 6. Control of DC-DC Converters: A Case Study

0 0.02 0.04
−1

0

1

2

3

(a) Inductor current
0 0.01 0.02 0.03 0.04

−1

0

1

2

3

(b) Inductor current

0 0.02 0.04
0

10

20

30

40

50

60

(c) Output voltage
0 0.01 0.02 0.03 0.04

0

10

20

30

40

50

60

(d) Output voltage

0 0.02 0.04
0

0.2

0.4

0.6

0.8

1

(e) Duty cycle
0 0.01 0.02 0.03 0.04

0

0.2

0.4

0.6

0.8

1

(f) Duty cycle

Figure 6.12 The left column shows simulations with quantized lookup tables, the

right column shows data from the real experiment.

122

6.6 Summary and Concluding Remarks

6.6 Summary and Concluding Remarks

This chapter has presented a case study for the synthesis of high perfor-

mance controllers for fixed frequency boost and buck DC–DC converters.

The circuits used present a number of challenges. First, the switched na-

ture of the system dynamics makes them highly nonlinear. The nonmin-

imum phase behaviour for the boost converter and the input and state

constraints additionally complicate the controller design process.

A controller design based on relaxed dynamic programming has been

presented. The controllers have been evaluated in simulations for both

the boost and the buck converter. In addition, the design for the boost

converter has been evaluated in experiments.

The simulation results showed that the proposed design was feasible

for both types of converters. In particular all the design specifications

were met.

The experimental results for the boost converter agreed qualitatively

with the simulations. It is believed that the undesirable scattering in the

duty cycle is a consequence of quantization errors and noise.

123

References

Almer, S., H. Fujioka, U. Jönsson, C.-Y. Kao, D. Patino, P. Riedinger,

T. Geyer, A. Beccuti, G. Papafotiou, M. Morari, A. Wernrud, and

A. Rantzer (2007): “Hybrid control techniques for switched-mode DC-
DC converters, part I: The step-down topology.” In American Control
Conference. New York City, USA.

Almèr, S., U. Jönsson, C.-Y. Kao, and J. Mari (2004): “Global stability
analysis of DC-DC converters using sampled-data modeling.” In Pro-

ceedings of the American Control Conference, pp. 4549–4554. Boston,

MA, USA.

Bardi, M. and I. Capuzzo-Dolcetta (1997): Optimal Control and Viscosity
Solutions of Hamilton-Jacobi-Bellman Equations. Birkhäuser.

Beard, R., G. N. Saridis, and J. T. Wen (1998): “Approximate solutions
to the time-invariant Hamilton-Jacobi-Bellman equation.” Journal of
Optimization Theory And Applications, 96:3, pp. 589–626.

Beccuti, A., G. Papafotiou, M. Morari, S. Almer, H. Fujioka, U. Jönsson,

C.-Y. Kao, A. Wernrud, A. Rantzer, M. Baja, H. Cormerais, and

J. Buisson (2007): “Hybrid control techniques for switched-mode DC-
DC converters, part II: The step-up topology.” In American Control
Conference. New York City, USA.

Beeler, S. C., H. T. Tran, and H. T. Banks (2000): “Feedback control
methodologies.” J. of Optimization Theory and Application, 107:1,

pp. 1–33.

Bellman, R. (1957): Dynamic Programming. Princeton University Press.
Bemporad, A., F. Borrelli, and M. Morari (2000): “The explicit solution of
constrained LP-based receding horizon control.” In IEEE Conference
on Decision and Control. Sydney, Australia.

124

Bertsekas, D. P. (2000): Dynamic Programming and Optimal Control: Vol.
1. Athena Scientific.

Boyd, S. and C. H. Barratt (1991): Linear Controller Design: Limits of
Performance. Prentice Hall.

Boyd, S. P., V. Balakrishnan, C. Barratt, N. Khraishi, X. Li, D. Meyer, and

S. Norman (1988): “A new CAD method and associated architectures
for linear controllers.” IEEE Trans. on Automatic Control, 33, pp. 268–

283.

Cesari, L. (1983): Optimization-Theory and Applications. Springer-Verlag.
CLP (2007): “Coin-or linear program solver, clp-160.” http://www.coin-
or.org/Clp/index.html.

Fleming, W. H. and H. M. Soner (1993): Controlled Markov Processes and
Viscosity Solutions. Springer, Applications of Mathematics.

Fuad, Y., W. L. de Koning, and J. van der Woude (2004): “On the stability
of the pulsewidth-modulated cuk converter.” IEEE Trans. Circuits
Syst., 2:51, pp. 412–420.

Garcia, C. E., D. Prett, and M. Morari (1989): “Model predictive control:
Theory and practice - a survey.” Automatica, 25, pp. 335–348.

Garrard, W. (1969): “Additional results on suboptimal feedback control of
nonlinear systems.” Int. J. of Control, 10:6, pp. 657–663.

Garrard, W. L. and J. Jordan (1977): “Design of nonlinear automatic flight
control systems.” Automatica, 13, pp. 497–505.

Geyer, T., G. Papafotiou, and M. Morari (2004): “On the Optimal Control of
Switch-mode DC-DC Converters.” Hybrid Systems: Computation and

Control, 2993, March, pp. 342–356.

Goulart, P., E. Kerrigan, and J. Maciejowski (2006): “Optimization over
state feedback policies for robust control with constraints.” Automatica,
42:4, pp. 523–533.

Grüne, L. (1997): “An adaptive grid scheme for the discrete Hamilton-
Jacobi-Bellman equation.” Numerische Mathematik, 75:3, pp. 319–337.

Grüne, L. and A. Rantzer (2006): “Suboptimality estimates for receding
horizon controllers.” In The 17th International Symposium on Mathe-

matical Theory of Networks and Systems. Kyoto,Japan.

Gutman, P. O. and M. Cwikel (1986): “Admissible sets and feedback
control for discrete-time linear dynamical systems with bounded

controls and states.” IEEE Transactions on Automatic Control, 31,

pp. 373–376.

125

References

Heriksson, D. (2006): Resource-Constrained Embedded Control and Com-
puting Systems. PhD thesis ISRN LUTFD2/TFRT--1074--SE, Depart-
ment of Automatic Control, Lund Institute of Technology, Sweden.

Huang, Y. and W. M. Lu (1996): “Nonlinear optimal control: Alternatives
to Hamilton-Jacobi equation.” In Proc. IEEE Conf. on Decision and

Control.

Kleinman, D. L. (1968): “On an iterative technique for Riccati equation
computations.” IEEE Transactions on Automatic Control, 13, pp. 114–

115.

Koutsoukos, X. D. and P. J. Antsaklis (2002): “Design of stabilizing
switching control laws for discrete and continuous-time linear systems

using piecewise-linear Lyapunov functions.” International Journal of
Control, 75:12, pp. 932–945.

Krein, P., J. Bentsman, R. M. Bass, and B. L. Lesieutre (1999): “On the
use of averaging for the analysis of power electronic systems.” IEEE
Trans. Power Electron, 5:2, pp. 182–190.

Lasserre, J. B. (2002): “Semidefinite programming vs. lp relaxations for
polynomial programming.” Math. Oper. Res., 27:2, pp. 347–360.

Leake, R. J. and R.-W. Liu (1967): “Construction of suboptimal control
sequences.” SIAM J. Control and Optimization, 5:1, pp. 54–63.

Lehman, B. A., , and R. M. Bass (1996): “Extensions of averaging theory
for power electronic systems.” IEEE Trans. Power Electron., 11:4,
pp. 542–553.

Leitmann, G. (1981): The Calculus of Variations and Optimal Control.
Plenum Press.

Lincoln, B. (2003): Dynamic Programming and Time-Varying Delay
Systems. PhD thesis ISRN LUTFD2/TFRT--1067--SE, Department of
Automatic Control, Lund Institute of Technology, Sweden.

Lincoln, B. and A. Rantzer (2002): “Suboptimal dynamic programming
with error bounds.” In Proc. 41st IEEE Conference on Decision and
Control.

Lincoln, B. and A. Rantzer (2006): “Relaxing dynamic programming.”
IEEE Transactions on Automatic Control, 51:8, pp. 1249–1260.

Löfberg, J. (2003): “Approximations of closed-loop minimax mpc.” In IEEE
Conference on Decision and Contro. Hawaii, USA.

Luenberger, D. G. (1984): Linear and Non-linear Programming. Prentice
Hall.

126

Lukes, D. L. (1969): “Optimal regulation of nonlinear dynamical systems.”
SIAM Journal on Control, 7:1, pp. 75–100.

Löfberg, J. (2004): “Yalmip : A toolbox for modeling and optimization in
MATLAB.” In Proceedings of the CACSD Conference. Taipei, Taiwan.

Maciejowski, J. M. (2002): Predictive control: with constraints. Prentice
Hall.

Mariéthoz, S., S. Almér, A. Beccuti, D. Patino, A. Wernrud, T. Geyer,

H. Fujioka, U. Jönsson, C.-Y. Kao, M. Morari, G. Papafotiou,

A. Rantzer, and P. Riedinger (2008a): “Evaluation of four hybrid con-
trol techniques for the synchronous step down buck DC-DC converter.”

Submitted.

Mariéthoz, S., S. Almér, B. Mihai, A. G. Beccuti, A. Wernrud, H. Fujioka,

U. Jönsson, C.-Y. Kao, H. Cormerais, J. Buisson, G. Papafotiou,

M. Morari, and A. Rantzer (2008b): “Comparative assessment of hybrid
control techniques for the boost DC-DC converter.” Submitted.

Markman, J. and I. Katz (2000): “An iterative algorithm for solving
hamilton-jacobi equations.” SIAM J. Sci. Comput., 22, pp. 312–329.

Mayne, D. Q., J. B. Rawlings, C. V. Rao, and P. O. Scokaert (2000): “Con-
strained model predictive control: Stability and optimality.” Automat-

ica, 36:6, pp. 789–814.

Middlebrook, R. D. and S. Cuk (1976): “A general unified approach to
modeling switching-converter power stages.” In Proc. IEEE Power
Electronics Specialists Conf. (PESC), pp. 18–34.

Morari, M., J. Buisson, B. de Schutter, and G. Papafotiou (2006):
“Report on the assessment of hybrid control methods for electric

energy management problems.” Technical Report IST contract number

511368. HYCON Deliverable.

Mårtensson, K., A. Wernrud (2008): “Dynamic Model Predictive Control”
To appear at the 17th IFAC World Congress.

Nishikawa, Y., N. S. and H. Itakura (1971): “A method for suboptimal
design of nonlinear feedback systems.” Automatica, 7, pp. 703–712.

Parrilo, P. A. (2003): “Semidefinite programming relaxations for semialge-
braic problems.”Mathematical Programming Ser. B, 96:2, pp. 293–320.

Prajna, S., A. Papachristodoulou, and P. Parrilo (2002): “Introducing
SOSTOOLS a general purpose sum of squares programming solver.”

Proc. IEEE Conf. on Decision and Control.

127

References

Prajna, S., A. Papachristodoulou, and F. Wu (2004): “Nonlinear con-
trol synthesis by sum of squares optimization: A Lyapunov-based ap-

proach.” Proceedings of the Asian Control Conference (ASCC), Mel-

bourne, Australia.

Prestel, A. and C. N. Delzell (2001): Positive polynomials. Springer-Verlag.
Putinar, M. (1993): “Positive polynomials on compact semi-algebraic sets.”
Indiana Univ. Math. J., 42:3, pp. 969–984.

Rantzer, A. (2006): “Relaxed dynamic programming in switching systems.”
IEE Proceedings - Control Theory & Applications, 153:5, pp. 567 – 574.

Shamma, J. S. and D. Xiong (1997): “Linear nonquadratic optimal
control.” IEEE Transactions on Automatic Control, 42:6, pp. 875–879.

Shor, N. Z. (1987): “Class of global minimum bounds of polynomial

functions.” Cybernetics, 23:6, pp. 731–734.

Sturm, J. F. (1999): “Using SeDuMi 1.02, a MATLAB toolbox for opti-
mization over symmetric cones.” Optimization Methods and Software,

11–12, pp. 625–653. Special issue on Interior Point Methods (CD sup-
plement with software).

Wernrud, A. and A. Rantzer (2005): “On approximate policy iteration for
continuous-time systems.” In The 44th IEEE Conference on Decision
and Control and European Control Conference ECC. Seville, Spain.

Wernrud, A. (2006): “Computations of approximate value functions for
constrained control problems.” In The 17th International Symposium

on Mathematical Theory of Networks and Systems. Kyoto,Japan.

Wernrud, A. (2007): “Strategies for computing switching feedback con-
trollers.” In American Control Conference. New York City, USA.

Wernrud, A. (2008):“On constrained optimal control of linear systems with
piecewise linear step cost.” Submitted.

Youla, D. C., H. A. Jabr, and J. J. Bongiorno (1976a): “Modern Wiener-
Hopf design of optimal controllers. part 1: The single-input case.” IEEE

Trans. on Automatic Control, 21, June.

Youla, D. C., H. A. Jabr, and J. J. Bongiorno (1976b): “Modern Wiener-
Hopf design of optimal controllers. part 2: The multivariable case.”

IEEE Trans. on Automatic Control, 21, June.

128

