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Abstract

Duchenne muscular dystrophy (DMD) is the most common childhood myopathy, characterized by muscle loss and
cardiorespiratory failure. While the genetic basis of DMD is well established, secondary mechanisms associated with
dystrophic pathophysiology are not fully clarified yet. In order to obtain new insights into the molecular mechanisms of
muscle dystrophy during earlier stages of the disease, we performed a comparative proteomic profile of the spared
extraocular muscles (EOM) vs. affected diaphragm from the mdx mice, using a label based shotgun proteomic approach.
Out of the 857 identified proteins, 42 to 62 proteins had differential abundance of peptide ions. The calcium-handling
proteins sarcalumenin and calsequestrin-1 were increased in control EOM compared with control DIA, reinforcing the view
that constitutional properties of EOM are important for their protection against myonecrosis. The finding that galectin-1
(muscle regeneration), annexin A1 (anti-inflammatory) and HSP 47 (fibrosis) were increased in dystrophic diaphragm
provides novel insights into the mechanisms through which mdx affected muscles are able to counteract dystrophy, during
the early stage of the disease. Overall, the shotgun technique proved to be suitable to perform quantitative comparisons
between distinct dystrophic muscles and allowed the suggestion of new potential biomarkers and drug targets for
dystrophinopaties.
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Introduction

Duchenne muscular dystrophy (DMD) is the most common and

devastating of the human muscular dystrophies. It is characterized

by progressive muscle weakness and death from cardiorespiratory

compromise around the second or third decade of life [1]–[3]. In

DMD and in the mdx mice model of DMD [4], [5] the genetic

abnormality is in the X chromosome, in which the nucleotide

sequence responsible for the expression of the protein dystrophin is

mutated. In the absence of dystrophin, instability of sarcolemma

leads to progressive myonecrosis, followed by intense inflammation

and fibrosis [1], [6].

Numerous proteomics analysis of dystrophic muscles in mdx and

in DMD have been performed with the aim to unravel the

molecular pathogenesis of muscular dystrophy [7]–[13]. Previous

proteomic studies included the use of the differential gel

electrophoresis (DIGE), which provided important data related

to the nature of the dystrophic proteome and showed a great

number of proteins that were differentially expressed in distinct

dystrophic muscles and ages [7], [10]–[15].

The multidimensional protein identification technology (Mud-

PIT) method is a gel free alternative [16]–[18] to conventional gel-

based methods, which has revolutionized the proteomic field.

Basically, complex proteins mixtures are digested to peptides,

fractionated according to its different chemical properties and

subsequently analyzed by tandem mass spectrometry (MS/MS)

resulting in protein identification. By using MudPIT it is possible

to overcome several drawbacks associated with two-dimensional

gel electrophoresis (2D-PAGE), especially under-representation of

extreme acid/basic proteins [19] and the poor sensitivity for lowly

expressed proteins. Moreover the MudPIT method simplifies

sample handling, avoids sample loss in gel matrix and increases

throughput and data acquisition [20], [21].

Protein quantification is fundamental for any comparative

proteomic study of biological systems. In a proteomic analysis, the

number of extracted proteins in a sample is higher than the

number of identified proteins, which in turn is higher than the

total number of quantified proteins [22]. In MS-based proteomics,

two basic possibilities of quantification exist: (i) a relative

quantification of proteins in compared samples (e.g. control vs.

disease state) or (ii) an absolute quantification [23]. Isobaric mass
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tagging reagents, as tandem mass tags (TMT), allow multiple and

independent measures of protein abundance in the same

experiment, enabling statistical estimates of protein quantification

and comparisons between different samples [24].

In order to obtain new insights into the molecular mechanisms

of muscle dystrophy, we here used a label based shotgun

proteomic approach, combining TMT labels and MudPIT

method to analyze the diaphragm of 2-month-old mdx mice. We

considered the age of 2 months as an early phase of dystrophy,

similar to other proteomic studies [12], given the worsening of

disease overtime. Signs of necrosis have been reported to occur at

about 5 weeks of age in the mdx diaphragm [25]. At 2 months of

age, diaphragm shows active muscle damage, regeneration and

inflammation. However, significant histopathological signs of the

disease, such as extensive fibrosis, are not seen at this age,

suggesting an ability to compensate for muscle degeneration with

cycles of muscle regeneration, as reported for limb muscles [26],

[27]. Fibrosis will be present later in mdx diaphragm, increasing

progressively from 6 months to 1 year of age and onwards, a

timepoint when the muscle mostly resembles DMD myopathy

[13], [26], [28]. In our proteomic analysis we have also searched

for compensatory mechanisms involved in dystrophic muscle

protection against myonecrosis, by comparing the proteomic

profiles from dystrophic mdx diaphragm against the one from mdx

extraocular muscles, which do not show muscle degeneration [29].

Materials and Methods

Animals
Males and females, 2-month-old mdx (C57BL/10ScSn-mdx/J)

mice (n = 15) and age-match wild-type mice (C57BL/10SnJ,

n = 15) were obtained from Jackson Laboratory and maintained

in the animal facilities of Biomedical Center (Lund) according to

the animal care guidelines. All mouse experimentation was

approved by the Malmö/Lund (Sweden) ethical committee for

animal research (permit numbers M62-09 and M122-10).

TMT labelling of mouse muscle samples
Protein extraction and preparing of the samples. Mice

were sacrificed by cervical dislocation and the diaphragm (DIA;

Figure 1) muscle and extraocular muscles (EOM; Figure 1) were

dissected out, frozen in liquid nitrogen and reduced to powder

using a mortar. Three different pools for each group (mdx mice and

wild-type mice) were made, each composed of five animals. The

muscles were lysed in assay lysis buffer (10 mM NaHCO3, 5%

SDS) containing freshly added protease and phosphatase inhib-

itors (Roche - Indianapolis, IN, USA). The samples were

centrifuged for 10 min at 15,682 g, and the soluble fraction was

removed. The protein concentration was determined using BCA

Protein Assay Kit (Pierce).

The samples were processed according to the instructions of the

TMT isobaric Mass Tagging Kits and Reagents. In brief, 100 mg

of protein per condition were mixed in six volumes of pre-chilled

(220uC) acetone and precipitated overnight. After centrifugation

at 8,000 g for 10 minutes at 4uC, the pellet was dried. For protein

digestion, 5 ml of 2% SDS, 45 ml of 200 mM TEAB were added to

the sample and the final volume was adjusted to 100 ml with

ultrapure water. Five microliter of 200 mM TCEP were added to

the sample and incubated at 55uC for 1 hour. Then, 5 ml of the

375 mM iodoacetamide (with TEAB) were added and incubated

for 30 min protected from light. To digest proteins, 2.5 mg of

trypsin were added and kept overnight at 30–37uC. For protein

labeling, 41 ml of the TMT Label Reagent were added to each

sample and incubated for 1 h at room temperature. Eight

microliter of 5% hydroxylamine were added and incubated for

15 min. Our labeling design allowed a label swap, in order to

avoid possible bias due to technical errors (Table 1).
SCX fractionation of the pooled TMT labelled

samples. The pooled TMT-labelled samples were fractionated

by strong cation-exchange (SCX, Applied Biosystems) using 500 ml

of buffer A with 30, 60, 90, 120, 240, 300, 420, 500 mM KCl,

respectively and collect as fractions 1–8, respectively. The fractions

were cleaned on Ultra Microspin C18 columns (The Nest Group,

Figure 1. Histological differences between extraocular and
diaphragm muscles. Extraocular (A, B) and diaphragm (C, D) muscles
of control (A, C) and mdx (B, D) mice. In controls (A, C), muscle fibers
show peripheral nuclei. In the spared dystrophic EOM (B), fibers with
peripheral nuclei indicate lack of muscle degeneration-regeneration. In
the mdx DIA (D), fibers with central nuclei (arrows in D; regenerated
fibers), and areas containing muscle fibers in regeneration surrounded
by inflammatory cells (asterisk). Scale bar: 100 mm.
doi:10.1371/journal.pone.0065831.g001

Table 1. Experimental setup for 2 muscles (EOM - extraocular
and DIA - diaphragm) under 2 conditions (control and mdx)
and with 3 biological replicates (Pool 1, 2 and 3).

Groups TMT label

Pool 1 (n = 5) EOM control 127

DIA control 128

EOM mdx 129

DIA mdx 130

Internal standard 126

Pool 2 (n = 5) EOM control 130

DIA control 129

EOM mdx 128

DIA mdx 127

Internal standard 126

Pool 3 (n = 5) EOM control 129

DIA control 130

EOM mdx 127

DIA mdx 128

Internal standard 126

The internal standard is a mixture of all samples.
doi:10.1371/journal.pone.0065831.t001

Proteomics of Affected vs. Spared mdx Muscles
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Southboro, MA, USA), dried and resuspended in 30 ml 0.1%

formic acid.

LC-MS/MS Analysis on LTQ-OrbitrapXL. The fractions

were analyzed on an LTQ-OrbitrapXL (Thermo Fisher Scientific)

interfaced with an in-house constructed nano-LC column. Two-

microliter sample injections were made with an HTC-PAL

autosampler (CTC Analytics AG) connected to an Agilent 1200

binary pump (Agilent Technologies). The peptides were trapped

on a pre-column (4060.075 mm i.d.) and separated on a reversed

phase column, 20060.05 mm. Both columns were packed in-

house with 3 mm Reprosil-Pur C18-AQ particles. The flow

through the analytical column was reduced by a split to

approximately 100 nl/min and the gradient was as followed; 0–

6 min 0.1% formic acid, 6–76 min 7–35% acetonitrile, 0.1%

formic acid, 76–79 min 40–80% acetonitrile 0.1% formic acid.

LTQ-OrbitrapXL settings were: spray voltage 1.4 kV, 1

microscan for MS1 scans at 60 000 resolutions (m/z 400), full

MS mass range m/z 400–2000. The LTQ-Orbitrap XL was

operated in a data-dependent mode with one MS1 FTMS scan of

precursor ions followed by CID (collision induced dissociation) and

HCD (high energy collision dissociation), MS2 scans of the three

most abundant doubly, triply and quadruply protonated ions in

each FTMS scan. The settings for the MS2 were as follows: 1

microscans for HCD-MS2 at 7500 resolution (at m/z 400), mass

range m/z 100–2000 with a collision energy of 50%, 1 microscans

for CID-MS2 with a collision energy of 30%. Dynamic exclusion

of a precursor selected for MS2 was used for 120 s after one

repeat, enabling most of the co-eluting precursors to be selected for

MS2.

Database Search and TMT Quantification. MS raw data

files from all 8 SCX fractions per one TMT set and 3 MS runs

were merged for relative quantification and identification using

Proteome Discoverer version 1.3 (Thermo Fisher Scientific),

respectively. Database search was performed by Mascot search

engine using the following critera: Mus musculus in Swissprot

protein database from April 2012, MS peptide tolerance as

10 ppm, MS/MS tolerance as 0.5 Da, trypsin digestion allowing 1

missed cleavages with variable modifications; methionine oxida-

tion, cysteine methylthiol, and fixed modifications; N-terminal

TMT6-plex label, lysine TMT6-plex label. The detected protein

threshold in the software was set to a confidence using the FDR

1% method and identified proteins were grouped by sharing the

same sequences to minimize redundancy.

For quantification, the ratios of TMT reporter ion intensities in

MS/MS spectra (m/z 126.12, 127.13, 128.13, 129.14, 130.14)

from raw data sets were used to calculate fold changes between

samples via the relative ratio to the reference pool. Only peptides

unique for a given protein were considered for relative quantita-

tion, excluding those common to other isoforms or proteins of the

same family. Only peptides with a score .10 and below the

Mascot significance threshold filter of p = 0.05 were included.

Single peptide identifications required a score equal to or above

the Mascot identity threshold. Normalisation on protein median

was used. The median of peptides was used for protein ratio and

the resulting ratios were then exported into Excel for manual data

interpretation.

Statistical analysis was performed by Student’s t-test, with p

values #0.05, with protein ratios smaller than 21.25 or greater

than 1.25 and a coefficient of variation of less than 20%

considered significantly different. For correction of false-positive

values the FDR (false discovery rate) with estimated q-values was

used [30].

Western blot analysis
Verification of the proteomic findings was carried out by

comparative Western blot analysis. The levels of galectin-1 (Gal),

annexin A5 (ANXA 5), b-dystroglycan (b-DG), calmodulin I

(CaM) and calsequestrin-1 (CSQ) were quantified in DIA and EO

muscles of control (n = 6) and mdx (n = 6) mice. The method was

previously described [28], [31]. Muscles were lysed in assay lysis

buffer containing freshly added protease and phosphatase

inhibitors (1% Triton, 10 mM sodium pyrophosphate, 100 mM

NaF, 10 mg/ml aprotinin, 1 mM PMSF, and 0.25 mM Na3VO4).

The samples were centrifuged for 20 min at 12,581 g, and the

soluble fraction was resuspended in 50 ml Laemmli loading buffer

(2% SDS, 20% glycerol, 0.04 mg/ml bromophenol blue, 0.12 M

Tris-HCl, pH 6.8, and 0.28 M ß-mercaptoethanol). An amount of

60 mg of total protein homogenate was loaded onto 8%–15%

SDS-polyacrylamide gels. Proteins were transferred from the gels

to a nitrocellulose membrane using a submersion electrotransfer

apparatus (Bio-Rad Laboratories, Hercules, California, USA).

Membranes were blocked for 2 h at room temperature with 5%

skim milk/Tris-HCl buffered saline-Tween buffer (TBST; 10 mM

Tris-HCl, pH 8, 150 mM NaCl, and 0.05% Tween 20). The

membranes were incubated with the primary antibodies overnight

at 4uC, washed in TBST, incubated with the peroxidase-

conjugated secondary antibodies for 2 h at room temperature,

and developed using the SuperSignal West Pico Chemilumines-

cent Substrate kit (Pierce Biotechnology, Rockford, Illinois, USA).

To control for protein loading, Western blot transfer and

nonspecific changes in protein levels, the blots were stripped and

re-probed for glyceraldehyde-3-phosphate dehydrogenase

(GAPDH). The signal from western blotting bands was captured

(G:Box iChemi camera; Syngene, Cambridge, UK) and quantified

using the software Gene Tools Version 4.01, Syngene, Cambridge,

UK.

The following primary antibodies were used: annexin A5,

galectin-1, calmodulin I and GAPDH (Santa Cruz Biotechnology,

Santa Cruz, California, USA); b-dystroglycan (Novocastra Labo-

ratories Ltd., Benton Lane, Newcastle Upon Tyne, UK); and

calsequestrin-1 (Affinity Bioreagents, Golden, Colorado, USA).

The corresponding secondary antibody was peroxidase-labeled

affinity-purified mouse or rabbit IgG antibody (H+L) (KPL,

Gaithersburg, Maryland, USA).

Results

Shotgun proteomic analysis of DIA and EOM
By using the shotgun with MudPIT and TMT methodology, a

total of 857 proteins were identified (DIA plus EOM). From this,

about 48% (415 out of 857; Table S1) were common to the

muscles studied, i.e., they were detected in both EOM and DIA,

from both conditions (control and mdx) and in the three biological

replicates. The criteria to identify proteins as being significantly

changed between samples were proteins ratios with p-value #0.05

(Student’s t-test), q-value #0.025 and protein ratios smaller than

21.25 or greater than 1.25. About 10% (42 out of 415; Table 2) of

the proteins showed an altered expression pattern in the

dystrophic DIA compared with the control DIA. We did not

observe any proteins that had differential abundance of peptide

ions in the mdx EOM (compared to control EOM), according to

our established criteria. Overall, the proteins identified could be

grouped into several biological processes such as immune system

processes, energy and metabolism, sarcomeric and cytoskeletal

proteins.

Proteomics of Affected vs. Spared mdx Muscles
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Comparative proteomic profiling: mdx DIA versus control
DIA

By comparing dystrophic DIA with control DIA, we found that

most of the proteins detected were present in the sarcoplasm or in

the cytoskeleton. Mitochondrion was the organelle that displayed

the highest percentage of proteins with altered levels, followed by

the nucleus and the sarcoplasmic reticulum (Table 3). The

majority of the identified proteins belonged to the class of

metabolic proteins or to the class of immune system processes. All

8 protein metabolism-related ribosomal proteins had increased

expression in the mdx DIA in comparison to control DIA.

Regarding the immune system process, 2 proteins involved in

responses to toxins (glutathione S-transferase P1 and glutathione

Table 2. The identified proteins that exhibit change in abundance in mdx diaphragm in comparison to control diaphragm.

Accession Description MW [kDa] SCoverage S# Peptides Fold Change

Q5SX39 Myosin-4 222.7 57.9 133 21.49

P13707 Glycerol-3-phosphate dehydrogenase [NAD+], cytoplasmic 37.5 15.5 5 21.45

Q8BW75 Amine oxidase [flavin-containing] B 58.5 2.7 2 21.42

Q80XN0 D-beta-hydroxybutyrate dehydrogenase, mitochondrial 38.3 8.8 3 21.35

P19157 Glutathione S-transferase P 1 23.6 12.9 2 21.33

P10649 Glutathione S-transferase Mu 1 26.0 28.9 6 21.32

P28665 Murinoglobulin-1 165.2 3.1 5 21.30

P68134 Actin, alpha skeletal muscle 42.0 58.1 22 21.30

P09542 Myosin light chain 3 22.4 45.1 8 21.30

Q924D0 Reticulon-4-interacting protein 1, mitochondrial 43.3 3.3 1 21.30

P07310 Creatine kinase M-type 43.0 55.4 21 21.29

Q9D0F9 Phosphoglucomutase-1 61.5 10.0 5 21.29

O09165 Calsequestrin-1 45.6 23.8 10 21.29

Q91V92 ATP-citrate synthase 119.7 3.2 3 21.29

Q9CQ62 2,4-dienoyl-CoA reductase, mitochondrial 36.2 27.2 8 21.28

P20801 Troponin C, skeletal muscle 18.1 37.5 5 21.27

P05064 Fructose-bisphosphate aldolase A 39.3 44.5 18 21.26

O70250 Phosphoglycerate mutase 2 28.8 24.5 8 21.26

P14152 Malate dehydrogenase, cytoplasmic 36.5 28.1 7 21.25

Q9CQN1 Heat shock protein 75 kDa, mitochondrial 80.2 4.4 2 1.26

P19253 60S ribosomal protein L13a 23.4 3.9 1 1.28

P20029 78 kDa glucose-regulated protein 72.4 10.2 5 1.28

P35980 60S ribosomal protein L18 21.6 6.9 1 1.31

P09103 Protein disulfide-isomerase 57.1 12.8 7 1.32

Q8VDD5 Myosin-9 226.2 6.3 11 1.33

P47915 60S ribosomal protein L29 17.6 5.0 1 1.41

Q9Z1N5 Spliceosome RNA helicase Bat1 49.0 1.4 1 1.41

Q9CZX8 40S ribosomal protein S19 16.1 18.6 3 1.42

Q9D1R9 60S ribosomal protein L34 13.3 6.0 1 1.45

Q91VR5 ATP-dependent RNA helicase DDX1 82.4 1.8 1 1.47

P47955 60S acidic ribosomal protein P1 11.5 14.0 1 1.54

P14148 60S ribosomal protein L7 31.4 12.2 3 1.59

Q8CGP6 Histone H2A type 1-H 13.9 27.3 3 1.61

P19324 Serpin H1 46.6 10.8 3 1.62

P48036 Annexin A5 35.7 23.2 8 1.65

P17742 Peptidyl-prolyl cis-trans isomerase A 18.0 35.4 6 1.71

Q8CI43 Myosin light chain 6B 22.7 34.3 7 1.75

P20152 Vimentin 53.7 43.4 18 1.77

P51881 ADP/ATP translocase 2 32.9 38.9 12 1.95

P16045 Galectin-1 14.9 5.9 1 2.02

Q61171 Peroxiredoxin-2 21.8 14.7 2 2.03

P10107 Annexin A1 38.7 10.4 3 2.19

doi:10.1371/journal.pone.0065831.t002
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S-transferase Mu1) were decreased in the mdx DIA compared to

control DIA while 7 proteins were increased in the mdx DIA

compared with control DIA, including proteins involved in

responses to stress (heat shock protein 75 kDa, mitochondrial

and 78 kDa glucose-regulated protein), induction of apoptosis

(galectin-1), oxidative (ROS) processes (peroxiredoxin-2) and

finally serine-type endopeptidase inhibitors (serpin H1 and

murinoglobulin-1). Proteins involved in cellular respiration were

also decreased in the mdx DIA, with 3 engaged in glycolysis

(phosphoglucomutase-1, fructose-bisphosphate aldolase A and

phosphoglucerate mutase 2), 2 in tricarboxylic acid cycle (ATP-

citrate synthase and malate dehydrogenase) and 1 from the

respiratory electron transport chain (amine oxidase [flavin-

containing] B).

Comparative proteomic profiling: DIA versus EOM
About 13% (54 out of 415; Table 4) of the proteins showed

differential abundance of peptide ions when comparing control

DIA with control EOM and 15% (62 out of 415; Table 5)

increased or decreased in the mdx DIA compared with the mdx

EOM. By performing a further double comparison (i.e., control

DIA6control EOM with mdx DIA6mdx EOM), 21 proteins were

found in common, and may represent constitutive proteins related

to embryological, morphological or functional differences between

DIA and EOM muscles, rather than related to the pathogenesis of

dystrophy per se. Among these 21 proteins, only annexin A1

showed a distinct pattern of change (increased or decreased)

depending on the comparison (39% decreased in control DIA vs.

control EOM and 51% increased in mdx DIA vs. mdx EOM). The

remaining 20 proteins, most [11] were decreased in DIA vs. EOM

(collagen alpha-1 and alpha-2; myosin 3, 4 and 11; SERCA 1;

calsequestrin 1; sarcalumenin; aspartate aminotransferase; tropo-

myosin alpha -3 and mitochondrial 2-oxoglutarate/malate carrier

protein), with a few [9] proteins increased in DIA6EOM (voltage-

dependent anion selective channel protein 1; myosin 1, regulatory

light chain 2 and light chain 3; uncharacterized protein C1orf93

homolog; isocitrate dehydrogenase (NADP) mitochondrial; L-

lactate dehydrogenase B chain; C-X-C chemokine receptor type 1,

and SERCA 2).

Some proteins [41] were found exclusively in the comparison of

the mdx DIA with the mdx EOM and therefore are more likely to

be directly involved in the processes of muscle degeneration-

regeneration or to the protection against myonecrosis. Regarding

their biological processes classifications, most of them (37.2%)

were related to carbohydrate, lipid or protein metabolism. Some

were related to the immune system processes: in the dystrophic

DIA, 3 proteins (HSP beta-6, glutathione peroxidase 3 and

ceruloplasmin) were decreased and 5 proteins (HSP 90-beta, HSP

beta-1, peptidyl-prolyl cis-trans isomerase A, elongation factor 1-

gamma and galectin-1) were increased.

To select proteins that could be directly involved in dystrophic

muscle degeneration we made a further double comparison (mdx

DIA vs. control DIA with mdx DIA vs. mdx EOM) and found 19

proteins in common. Among these proteins, the majority (11

proteins; protein disulfide isomerase, 40S ribosomal protein S19;

peptidyl-prolyl cis-trans isomerase; 60S ribosomal protein L7, L29

and L34; 60S acidic ribosomal protein P1; annexin A1; serpin H1;

galectin-1 and ADP/ATP translocase 2) were increased in the mdx

DIA (which presents muscle degeneration-regeneration in com-

parison to mdx EOM). Fewer (6 proteins; myosin-4, calsequestrin

1, ATP-citrate synthase, glycerol-3-phosphate dehydrogenase,

fructose bisphosphate aldolase A, reticulon-4-interacting protein

1) were increased in control DIA and in the mdx EOM (which do

not show muscle degeneration). Two myosins were increased or

decreased depending on the comparison: myosin light chain 3 was

30% decreased in mdx DIA vs. control DIA and 124% increased in

mdx DIA vs. mdx EOM and myosin light chain 6B was 76%

increased in mdx DIA vs. control DIA and 37% decreased in mdx

DIA vs. mdx EOM.

Western blot analysis
Western blot was performed in order to independently validate

the identification and quantification of some proteins in DIA and

EOM muscles of control and mdx mice (Figure 2). Western blot

analysis indicated that galectin-1 levels were significantly higher in

mdx DIA compared to control DIA (75% increase) and to mdx

EOM (60% increase; p#0.05, ANOVA; Figure 2). This is in

agreement with the proteomic analysis showing a significant

increase of galectin-1 in mdx DIA compared with control DIA (fold

change of 2.02, Table 2) and with mdx EOM (fold change of 1.63,

Table 5).

Annexin A5 also presented similar changes as those detected

with MudPIT-TMT for most of the comparisons, mainly the

increased (20%) levels of this protein in mdx DIA vs. control DIA

(Table 2) and no differences in mdx EOM vs. control EOM

(Figure 2). While Western blot analysis showed lower (20%) levels

of annexin A5 in control DIA in relation to control EOM,

proteomics showed comparable levels of annexin A5 between

these muscles (Figure 2, Table 4).

The proteins related to calcium homeostasis, calmodulin I and

calsequestrin-1, also displayed similar expression changes using

both Western blot and proteomics analyses. Calmodulin levels

Table 3. Localization of shotgun identified proteins with altered expression in the comparisons: mdx diaphragm (DIA)6control (ct)
DIA; ct DIA6ct extraocular (EO); mdx DIA6mdx EO.

mdx DIA6ct DIA ct DIA6ct EO mdx DIA6mdx EO

Sarcoplasm 20.9% 19.4% 30.0%

Cytoskeleton 30.2% 21.0% 14.3%

Extracellular Matrix 7.0% 3.2% 10.0%

Mitochondrion 18.6% 29.0% 17.1%

Nucleus 14.0% 9.7% 4.3%

Sarcolemma 2.3% 8.1% 15.7%

Sarcoplasmic reticulum 4.7% 6.5% 8.6%

Peroxisome 2.3% 3.2% 0.0%

doi:10.1371/journal.pone.0065831.t003
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Table 4. The identified proteins that exhibit change in abundance in control diaphragm in comparison to control extraocular
muscle.

Accession Description MW [kDa] SCoverage S# Peptides Fold Change

P08121 Collagen alpha-1(III) chain 138.9 0.8 1 24.12

P13541 Myosin-3 223.7 31.8 66 23.42

O08638 Myosin-11 226.9 4.6 8 22.44

Q8CI43 Myosin light chain 6B 22.7 34.3 7 22.31

Q01149 Collagen alpha-2(I) chain 129.5 4.7 6 22.28

Q7TQ48 Sarcalumenin 99.1 27.8 18 22.18

Q9CR62 Mitochondrial 2-oxoglutarate/malate carrier protein 34.1 12.4 4 22.04

Q5SX39 Myosin-4 222.7 57.9 133 21.87

Q8R429 Sarcoplasmic/endoplasmic reticulum calcium ATPase 1 109.4 31.7 31 21.76

Q6PIE5 Sodium/potassium-transporting ATPase subunit alpha-2 112.1 10.9 11 21.63

P05202 Aspartate aminotransferase, mitochondrial 47.4 22.8 10 21.51

P10922 Histone H1.0 20.8 20.6 4 21.43

P10107 Annexin A1 38.7 10.4 3 21.39

Q8CGP6 Histone H2A type 1-H 13.9 27.3 3 21.36

P21107 Tropomyosin alpha-3 chain 32.8 49.3 21 21.35

O09165 Calsequestrin-1 45.6 23.8 10 21.33

Q00896 Alpha-1-antitrypsin 1–3 45.8 22.3 11 21.28

Q6PB66 Leucine-rich PPR motif-containing protein, mitochondrial 156.5 3.1 5 21.28

Q60714 Long-chain fatty acid transport protein 1 77.9 19.9 12 21.25

O88346 Troponin T, slow skeletal muscle 31.3 7.6 2 1.25

P97447 Four and a half LIM domains protein 1 31.9 16.1 5 1.26

Q8BMS1 Trifunctional enzyme subunit alpha, mitochondrial 51.4 29.5 14 1.27

P50544 Very long-chain specific acyl-CoA dehydrogenase, mitochondrial 70.8 13.0 7 1.27

P51174 Long-chain specific acyl-CoA dehydrogenase, mitochondrial 47.9 25.8 12 1.28

Q07417 Short-chain specific acyl-CoA dehydrogenase, mitochondrial 44.9 10.2 3 1.28

Q99JY0 Trifunctional enzyme subunit beta, mitochondrial 82.6 25.7 19 1.32

P10649 Glutathione S-transferase Mu 1 25.9 28.9 6 1.32

P58771 Tropomyosin alpha-1 chain 32.7 72.2 34 1.34

Q9CQ62 2,4-dienoyl-CoA reductase, mitochondrial 36.2 27.2 8 1.35

Q99LX0 Protein DJ-1 20.0 8.0 2 1.35

P15626 Glutathione S-transferase Mu 2 25.7 16.1 4 1.35

Q60932 Voltage-dependent anion-selective channel protein 1 32.3 41.6 10 1.37

Q9DB60 Uncharacterized protein C1orf93 homolog 21.7 4.0 1 1.39

Q91WC3 Long-chain-fatty-acid–CoA ligase 6 78.0 2.7 2 1.39

P07310 Creatine kinase M-type 43.0 55.4 21 1.40

Q924X2 Carnitine O-palmitoyltransferase 1, muscle isoform 88.2 4.3 3 1.40

Q99LC5 Electron transfer flavoprotein subunit alpha, mitochondrial 35.0 19.8 5 1.42

Q9DCW4 Electron transfer flavoprotein subunit beta 27.6 31.4 9 1.43

P35550 rRNA 29-O-methyltransferase fibrillarin 34.3 9.2 2 1.43

Q921G7 Electron transfer flavoprotein-ubiquinone oxidoreductase, mitochondrial 68.0 2.4 2 1.44

P41216 Long-chain-fatty-acid–CoA ligase 1 77.9 19.9 12 1.51

P50247 Adenosylhomocysteinase 47.7 9.5 4 1.59

Q8BW75 Amine oxidase [flavin-containing] B 58.5 2.7 2 1.66

Q8CI51 PDZ and LIM domain protein 5 18.0 35.4 6 1.67

Q91Z83 Myosin-7 222.7 36.5 81 1.73

P19157 Glutathione S-transferase P 1 23.6 12.9 2 1.78

P16125 L-lactate dehydrogenase B chain 36.5 31.1 12 2.07

Q5SX40 Myosin-1 223.2 59.9 148 2.15

Proteomics of Affected vs. Spared mdx Muscles

PLOS ONE | www.plosone.org 6 June 2013 | Volume 8 | Issue 6 | e65831



were similar among the groups (blot and proteome), with a

tendency to be increased in the mdx EO compared to control EO

(significance only detected by Western blot analysis) (Figure 2), in

agreement with our previous work [31]. Calsequestrin-1 was

reduced in mdx DIA compared with control DIA (23% reduction)

and with mdx EO (42% reduction; Figure 2) in line with the

proteomic finding showing a significant decrease of calsequestrin-1

in mdx DIA compared with control DIA (fold change of 21,29,

Table 2) and with mdx EO (fold change of 21.78, Table 5).

Western blot analysis of b-dystroglycan expression confirmed

previous studies [32] demonstrating a persistent expression of this

protein in the mdx EO concomitant with a significant decrease in

the affected muscle (mdx DIA; Figure 2C). We also found that

dystroglycan (a and b) expression was decreased in mdx DIA

compared with mdx EO (21.12) and control EO (21.11) and

similar results were described in a recent proteomic study [33].

Discussion

Shotgun proteomic analysis
By using the shotgun proteomic analysis, we have here

identified a total of 857 proteins in the DIA and EOM from

control and dystrophic mdx mice at 2 months of age. Out of the

857 proteins, 42 had differential abundance of peptide ions in the

DIA of the mdx mice. Previous studies using the DIGE proteomic

analysis detected 2398 2D spots of which 19 [7] or 35 [8] proteins

showed a differential abundance of spots in mdx DIA compared to

control DIA. By using the 2D gel-based proteomic technique, one

protein made from one gene may exhibit an average of 10–15

different spots [34] due to pos-translational modifications and

protein degradation [35], [36]. Additionally, spots could appear in

the gels due to disulfide bridges because the current DIGE

protocol does not require alkylation during the isoelectric focusing

step [34]. Therefore, the fact that multiple spots correspond to one

protein may explain the difference between the number of spots

detected by DIGE and the number of proteins detected in the

present study. Nevertheless, the present study demonstrates that

the shotgun methodology allowed the identification and quanti-

fication of most proteins present in a small amount of muscle

(100 mg) and in a short period of time (one run in the mass

spectrometer).

In the dystrophic DIA, we observed that some proteins already

displayed abnormal levels at this early stage of the disease (2

months of age). Some of the changed proteins detected in the DIA

had not been described before in other proteomic studies, such as

galectin-1, annexin, serpin H1 and periostin. We also found

proteins that had been described by other proteomic techniques.

For instance, by using DIGE analysis, malate dehydrogenase,

myosin light chain 3, myosin light chain 6B, myosin-4, myosin-9

and vimentin were found to be altered in the mdx diaphragm at 9

weeks of age [7], [8]; phosphoglucomutase-1 and phosphoglycer-

ate mutase 2 were changed in the 4–7 week old mdx gastrocnemius

[12] and 2,4-dienoyl-CoA reductase mitochondrial, myosin light

chain 3 and peroxiredoxin were affected in the 9 months of age

mdx heart [10]; troponin T slow skeletal muscle and four and a half

LIM domains protein 1 expression was also affected in mdx

muscles when comparing the proteomic profile of dystroglycan-

interacting proteins [33]. Therefore, the shotgun technique proves

to be effective in demonstrating new altered proteins as well as

proteins already described by the seminal DIGE studies [7]–[10],

[12], [13], [37]. Furthermore, given that the analysis of different

samples is performed at one run in the mass spectrometer, we were

able to compare the proteomic profile of two different muscles: the

affected DIA and the non-affected EOM.

The MudPIT technique has never been used before to

investigate the molecular aspects of dystrophin absence in the

mdx mice. In the present study, we demonstrate that this technique

contributes to new insights to the pathophysiology of dystrophy.

However, it is important to note that, as with any other technique,

the shotgun proteomics has its weaknesses. For improved

proteome coverage, optimization of fractionation processes and

enrichment of purified organelles could allow a more comprehen-

sive view of the molecular aspects of the disease [20], [38], [39].

For instance, in a recent study of mdx limb muscles, immunopre-

cipitation coupled with shotgun proteomics allowed proteomic

analyzes of the dystrophin-associated protein complex per se and

identification of new dystroglycan-associated proteins [33]. In

addition, the combination of different proteomic approaches could

lead to a more complete coverage of the proteomic profile [38].

Proteins related to protection against myonecrosis
The comparison of EOM with DIA muscle revealed altered

expression of cytoskeletal proteins (myosin and troponin) and of

extracellular matrix components, such as collagen. Furthermore,

proteins related to calcium homeostasis and ion channels also

exhibited different expression levels. The differential levels of

calequestrin1, SERCA1 and SERCA2 observed here, possibly

related to fiber type, suggest a better calcium homeostasis, and

consequent protection against myonecrosis, in the EOM com-

pared with DIA. This finding is in agreement with previous

observations in the mdx EOM using Western blotting analysis [31].

Other mdx spared muscles, such as the intrinsic laryngeals, also

show higher levels of SERCA1 in comparison to normal ILM

muscles [40]. Moreover, we observed that the calcium buffering

proteins sarcalumenin and calsequestrin 1 [41], [42] were

increased in EOM compared to DIA, even in the control group.

Therefore, the present results support previous observations (with

Western blotting, ELISA and immunocytochemistry techniques)

that constitutional properties of the EOM compensate for the lack

Table 4. Cont.

Accession Description MW [kDa] SCoverage S# Peptides Fold Change

P54071 Isocitrate dehydrogenase [NADP], mitochondrial 50.9 30.7 13 2.25

Q8R0Y6 10-formyltetrahydrofolate dehydrogenase 98.6 0.9 1 2.57

P51667 Myosin regulatory light chain 2, ventricular/cardiac muscle isoform 18.9 22.9 3 2.67

O55143 Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 114.8 17.5 19 2.73

P09542 Myosin light chain 3 22.4 45.1 8 3.28

Q810W6 C-X-C chemokine receptor type 1 40.0 1.71 1 3.78

doi:10.1371/journal.pone.0065831.t004
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Table 5. The identified proteins that exhibit change in abundance in mdx diaphragm in comparison to mdx extraocular muscle.

Accession Description MW [kDa] SCoverage S# Peptides Fold Change

P08121 Collagen alpha-1(III) chain 138.9 0.8 1 23.64

Q5SX39 Myosin-4 222.7 57.9 133 23.46

O08638 Myosin-11 226.9 4.6 8 23.36

P32848 Parvalbumin alpha 11.9 74.6 15 22.86

P13541 Myosin-3 223.7 31.7 66 22.73

Q8R429 Sarcoplasmic/endoplasmic reticulum calcium ATPase 1 109.4 31.7 31 22.03

Q01149 Collagen alpha-2(I) chain 129.5 4.7 6 21.99

P11087 Collagen alpha-1(I) chain 137.9 4.9 6 21.88

O09165 Calsequestrin-1 45.6 23.8 10 21.78

Q91V92 ATP-citrate synthase 119.7 3.2 3 21.75

P21550 Beta-enolase 47.0 28.6 14 21.72

Q9Z1E4 Glycogen [starch] synthase, muscle 83.9 7.6 5 21.63

Q7TQ48 Sarcalumenin 99.1 27.8 18 21.63

P13707 Glycerol-3-phosphate dehydrogenase [NAD+], cytoplasmic 37.5 15.5 5 21.62

P05202 Aspartate aminotransferase, mitochondrial 47.4 22.8 10 21.62

P21107 Tropomyosin alpha-3 chain 32.8 49.3 21 21.62

P22599 Alpha-1-antitrypsin 1–2 45.9 24.5 10 21.59

P19096 Fatty acid synthase 272.3 3.2 7 21.53

Q00898 Alpha-1-antitrypsin 1–5 45.9 22.3 10 21.52

Q5EBG6 Heat shock protein beta-6 17.5 21.0 3 21.46

P46412 Glutathione peroxidase 3 25.4 15.9 3 21.44

Q3UV70 [Pyruvate dehydrogenase [acetyl-transferring]]-phosphatase 1, mitochondrial 61.1 1.9 1 21.42

Q6P8J7 Creatine kinase S-type, mitochondrial 47.4 29.1 13 21.42

P07759 Serine protease inhibitor A3K 46.8 17.5 6 21.42

P05064 Fructose-bisphosphate aldolase A 39.3 44.5 18 21.41

Q8CI43 Myosin light chain 6B 22.7 34.3 7 21.37

Q9WUB3 Glycogen phosphorylase, muscle form 97.2 34.6 30 21.32

Q9CRB8 Mitochondrial fission process protein 1 18.3 14.5 2 21.29

Q61147 Ceruloplasmin 121.1 1.5 1 21.28

Q9CR62 Mitochondrial 2-oxoglutarate/malate carrier protein 34.1 12.4 4 21.28

Q8BH59 Calcium-binding mitochondrial carrier protein Aralar1 74.5 31.2 15 21.25

Q924D0 Reticulon-4-interacting protein 1, mitochondrial 43.3 3.3 1 21.25

P11499 Heat shock protein HSP 90-beta 83.3 24.6 17 1.25

P09103 Protein disulfide-isomerase 57.1 12.8 7 1.26

Q60932 Voltage-dependent anion-selective channel protein 1 32.3 41.6 10 1.29

Q9CZX8 40S ribosomal protein S19 16.1 18.6 3 1.30

Q62009 Periostin 93.1 1.7 1 1.33

Q9CXT8 Mitochondrial-processing peptidase subunit beta 54.6 3.7 2 1.34

P14602 Heat shock protein beta-1 23.0 27.3 5 1.35

Q8VDD5 Myosin-9 226.2 6.3 11 1.36

P15864 Histone H1.2 21.3 33.0 9 1.40

P17742 Peptidyl-prolyl cis-trans isomerase A 18.0 35.4 6 1.43

P14148 60S ribosomal protein L7 31.4 12.2 3 1.44

O09161 Calsequestrin-2 48.2 12.1 5 1.45

Q5SX40 Myosin-1 223.2 59.9 148 1.46

Q9D1R9 60S ribosomal protein L34 13.3 6.0 1 1.47

P47955 60S acidic ribosomal protein P1 11.5 14.0 1 1.49

Q9D0K2 Succinyl-CoA:3-ketoacid-coenzyme A transferase 1, mitochondrial 56.0 8.3 3 1.50

P10107 Annexin A1 38.7 10.4 3 1.51
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Table 5. Cont.

Accession Description MW [kDa] SCoverage S# Peptides Fold Change

P19324 Serpin H1 46.6 10.8 3 1.52

P47915 60S ribosomal protein 17.6 5.0 1 1.52

Q9D8N0 Elongation factor 1-gamma 50.0 7.8 4 1.56

P16045 Galectin-1 14.9 5.9 1 1.63

Q9DB60 Uncharacterized protein C1orf93 homolog 21.7 4.0 1 1.71

P51881 ADP/ATP translocase 2 32.9 38.9 12 1.81

P54071 Isocitrate dehydrogenase [NADP], mitochondrial 50.9 30.7 13 1.82

P16125 L-lactate dehydrogenase B chain 36.5 32.6 11 1.87

P51667 Myosin regulatory light chain 2, ventricular/cardiac muscle isoform 18.9 75.7 15 2.07

P11404 Fatty acid-binding protein, heart 14.8 48.9 7 2.19

P09542 Myosin light chain 3 22.4 45.1 8 2.25

Q810W6 C-X-C chemokine receptor type 1 40.0 1.7 1 3.27

O55143 Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 114.8 17.5 19 3.91

doi:10.1371/journal.pone.0065831.t005

Figure 2. Western blot analysis of some proteins revealed by proteomics. Quantification of galectin-1 (Gal-1), annexin A5 (ANXA5), b-
dystroglycan (b-DG), calmodulin I (CaM I) and calsequestrin-1 (CSQ-1) by Western blot analysis in crude extracts of diaphragm (DIA) and extraocular
(EO) muscles from control (ct) and dystrophic (mdx) mice. In A, Western blot of proteins. In B, the same blot reprobed for GAPDH as a loading control.
Graphs represent the level of proteins expressed in pixels. Bars represent standard deviation. a Significantly different from ct DIA (p#0.05, ANOVA). b

Significantly different from mdx EOM (p#0.05, ANOVA).
doi:10.1371/journal.pone.0065831.g002
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of dystrophin, allowing a better response against myonecrosis [11],

[43].

Proteins related to degeneration and regeneration
Oxidative stress and fibrosis. Proteins involved in the

oxidative stress response (HSP 75 kDa, 78 kDa glucose-related

protein, serpin H1 or HSP 47 and peroxiredoxin-2) were increased

in the mdx DIA compared to control DIA. While peroxiredoxins

are antioxidant enzymes that control peroxide levels induced by

cytokines [44], the HSPs have chaperone functions [45]. The

higher levels of these proteins may reflect an attempt of the

dystrophic DIA to control oxidative stress at this stage of the

disease [46], [47]. However, HSP 47 is also related to increased

collagen production and fibrosis [48], which will be morpholog-

ically prominent in the mdx DIA but only at later stages of the

disease [28], as demonstrated by proteomics [13]. Interestingly,

several proteins related to fibrosis that were demonstrated to be

increased in the old mdx DIA muscle compared with younger mdx

DIA, such as collagen a1 (VI) chain, minecan and actinin-a2 [13]

had no differential abundance of peptide ions at the age studied

here (comparing mdx DIA6control DIA in the present study). This

suggests that time-related changes of the proteomic profile occur

and this may be of relevance for future studies of drug therapy for

DMD.
Inflammation, apoptosis and regeneration. We detected

an increased level of the annexins A1 and A5 in mdx DIA. The

annexins bind to negative charged phospholipids in a calcium-

dependent manner and participate in many physiological

processes, such as cell shape changes, transport and organization

of vesicles, exocytosis and endocytosis [49]. Annexin A1 prevents

muscle degeneration due to sarcolemma resealing repair [50],

[51]. Extracellular annexins act in fibrinolysis, coagulation and

apoptosis [52], [53]. The annexins A1 and A2 are overexpressed

in different forms of muscular dystrophies, possibly related to their

anti-inflammatory activity [54]. Annexin A1 is a glucocorticoid-

inducible protein [55], [56] able to mimic the anti-inflammatory

effects of glucocorticoids in several experimental models of

inflammation both in vivo and in vitro [57]. Besides participating

in apoptotic processes, annexin A5 presents anti-inflammatory

properties by inhibiting phospholipase A2 and phosphadylserine-

catalyzed inflammation [58], [59]. Therefore, the increased level

of annexins early in the mdx DIA may suggest a potential ability of

the dystrophic DIA to modulate inflammation.

Reticulon-4-interacting protein 1 is a mitochondrial protein that

reduces the anti-apoptotic activity of Bcl-2 and Bcl-XL [60], [61]

and was decreased in the mdx DIA compared to control DIA. This

finding indicates that apoptosis may be involved in mdx pathology

[62]–[66], at least during the early phase, although apoptotic

fibers have not been consistently detected in the mdx, at later stages

[67], [68]. Galectin-1 was also overexpressed in mdx DIA. This

protein is produced by myoblasts and other cell types [69], [70],

and participates in muscle regeneration [71]–[76], and may be

involved in the regenerative ability of the dystrophic DIA during

this period, since at later stages fibrosis is a hallmark of diaphragm

dystrophy. Galectin-1 also has a protective effect on skeletal

muscle by reducing inflammation [77].

Conclusions
In the present study we demonstrated that the shotgun

proteomics approach adds to the former proteomic techniques

[7]–[10], [12], [13], [37] as a suitable alternative to track possible

changes in the levels of proteins in dystrophic muscles, during the

early phase of the disease. We would like to highlight some

advantages of the technique that include the small amount of

sample required, the relatively short time to accomplish the

analysis and the possibility to perform qualitative and quantitative

comparisons between distinct muscles and experimental groups.

The current proteomics study of the dystrophic DIA, in the

phase prior to more advanced disease [13], [26], demonstrates an

increase in proteins involved in muscle regeneration (galectin-1

[76], [77]), calcium handling (calsequestrin 1 [31]), inflammation

(annexin A1 [50], [51], [54]) and fibrosis (HSP 47 [48]), making

them valuable candidates for being potential drug targets and

exploratory biomarkers.

Supporting Information

Table S1 Proteins identified in extraocular and dia-
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