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Identification of LTV Dynamical Models with
Smooth or Discontinuous Time Evolution
by means of Convex Optimization

Fredrik Bagge Carlson*

Abstract— We establish a connection between trend
filtering and system identification which results in a
family of new identification methods for linear, time-
varying (LTV) dynamical models based on convex
optimization. We demonstrate how the design of
the cost function promotes a model with either a
continuous change in dynamics over time, or causes
discontinuous changes in model coefficients occurring
at a finite (sparse) set of time instances. We further
discuss the introduction of priors on the model pa-
rameters for situations where excitation is insufficient
for identification. The identification problems are cast
as convex optimization problems and are applicable
to, e.g., ARX models and state-space models with
time-varying parameters. We illustrate usage of the
methods in simulations of jump-linear systems, a
nonlinear robot arm with non-smooth friction and stiff
contacts as well as in model-based, trajectory centric
reinforcement learning on a smooth nonlinear system.

I. INTRODUCTION

The difficulty of the task of identifying time-varying
dynamical models of systems varies greatly with the model
considered and the availability of measurements of the
state sequence. For smoothly changing dynamics, linear
in the parameters, the recursive least-squares algorithm
with exponential forgetting (RLS)) is a common option.
If a Gaussian random-walk model for the parameters
is assumed, a Kalman filtering/smoothing algorithm [1]
gives the filtering/smoothing densities of the parameters
in closed form. The assumption of smoothly (Gaussian)
varying dynamics is often restrictive. Discontinuous dy-
namics changes occur, for instance, when an external
controller changes operation mode, when a sudden contact
between a robot and its environment is established, an
unmodeled disturbance enters the system or when a
system is suddenly damaged.

Identification of systems with non-smooth dynamics
evolution has been studied extensively. The book [2]
treats the case where the dynamics are known, but the
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state sequence unknown, i.e., state estimation. In [3],
the authors examine the residuals from an initial con-
stant dynamics fit to determine regions in time where
improved fit is needed by the introduction of additional
constant dynamics models. Results on identifiability and
observability in jump-linear systems in the non-controlled
(autonomous) setting are available in [4]. The main result
on identifiability in [4] was a rank condition on a Hankel
matrix constructed from the collected output data, similar
to classical results on the least-squares identification of
ARX models which appears as rank constraints on the,
typically Toeplitz or block-Toeplitz, regressor matrix.
Identifiability of the methods proposed in this article
are discussed in Sec. V.

An LTV model can be seen as a first-order approxi-
mation of the dynamics of a nonlinear system around a
trajectory. We emphasize that such an approximation will
in general fail to generalize far from the this trajectory,
but many methods in reinforcement learning and control
make efficient use of the linearized dynamics for opti-
mization, while ensuring validity of the approximation
by constraints or penalty terms. An example provided in
Sec. VIII highlights such a method.

An important class of identification methods that has
been popularized lately is trend filtering methods [5],
[6]. Trend filtering methods work by specifying a fitness
criterion that determines the goodness of fit, as well as a
reqularization term, often chosen with sparsity promoting
qualities. As a simple example, consider the reconstruction
§ of a noisy signal y = {y;, € R}L; with piecewise
constant segments. To this end, we may formulate and
solve the convex optimization problem

miniﬂmizeHy—;&Hz—k)\Z@tH — Gy (1)
¢

The first term is the fitness criterion or loss function,
whereas the second term is a sparsity-promoting regular-
izer which promotes small changes between consecutive
samples in the reconstructed signal. The sparsity promot-
ing effect of the 1-norm regularizer is well known, and
stems from the constant length of the gradient whenever
the argument is non-zero [7]. Compare this to the squared
difference, for which the gradient rapidly vanishes as
the argument approaches zero. The squared difference
will thus promote small arguments, whereas the 1-norm
promotes sparse arguments.


github.com/baggepinnen/LTVModels.jl
github.com/baggepinnen/LTVModels.jl

In this work, we will draw inspiration from the trend-
filtering literature to develop new system identification
methods for LTV models, with interesting properties. In
trend filtering, we decompose a curve as a set of polyno-
mial segments. In the identification methods proposed
in this work, we instead decompose a multivariable state
sequence as the output of a set of LTV models, where
the model coeflicients evolve as polynomial functions
of time. We start by defining a set of optimization
problems with a least-squares loss function and carefully
chosen regularization terms. We further discuss how prior
information can be utilized to increase the accuracy of
the identification and end the article with identification
of a nonlinear system with non-smooth friction and an
example of model-based reinforcement learning followed
by a discussion.

II. LTI IDENTIFICATION

We start by considering the case of identification of the
parameters in an LTI model on the form

Ti41 — A$t + But + Vt, te [1,T] (2)
where x € R™ and v € R™ are the state and input
respectively. A discussion around the noise term v is
deferred until Sec. IV-A, where we indicate how statistical
assumptions on v; influence the cost function and the
properties of the estimate. If the state and input sequences
are known, a plethora of methods for estimating the
parameters exists. A common method for identification
of systems that are linear in the parameters is the least-
squares (LS) method, which in case of Gaussian noise, v,
coincides with the maximum likelihood (ML) estimate.
To facilitate estimation using the LS method, we write
the model on the form y = ®k, and arrange the data
according to

T1

y= c R
_xT

k=vec([A" BT)) e RE
[ I, ® z]) I, ® uj)

(I) — . . c RTHXK
n®@xp_y In®@up_,

where ® denotes the Kronecker product and K = n? +
nm is the number of model parameters, and solve the
optimization problem (3) with closed-form solution (4).

E* :argminH@kfsz (3)
k
= (0'D) "Dy (4)
III. TIME-VARYING DYNAMICS

We now move on to the contribution of this work, and
extend our view to systems where the dynamics change

with time. We limit the scope of this article to models on
the form

o1 = Ay + Brug + vy (5)
ke = vec ([A]  Bjf])

where the parameters k are assumed to evolve according
to the dynamical system

ki1 = Hiky +wy (6)

Y = (In ® [x{ uﬂ )kt

where, if no prior knowledge is available, the dynamics
matrix H; can be taken as the identity matrix; H = 1
implies that the model coefficients follow a random
walk dictated by the properties of wy, i.e., the state
transition density function p,(kt+1|k:). The emission
density function p,(ziy1|Te, us, ki) is determining the
drift of the state, which for the parameter estimation
problem can be seen as the distribution of measurements,
given the current state of the system. We emphasize here
that the state in the parameter evolution model refers
to the current parameters k; and not the system state
T, hence, p, is called the emission density and not the
transition density. Particular choices of p, and p,, emit
data likelihoods concave in the parameters and hence
amenable to convex optimization.

The following sections will introduce a number of opti-
mization problems with different regularization functions,
corresponding to different choices of p,,, and different reg-
ularization arguments, corresponding to different choices
of H. We also discuss the quality of the identification
resulting from the different modeling choices.

A. Low frequency time evolution

A slowly varying signal is characterized by small first-
order time differences. To identify slowly varying dynamics
parameters, we thus penalize the squared 2-norm of the
first-order time difference of the model parameters, and
solve the optimization problem

b+ 2 ke — kel (7)

t

minikmize ||y -9

where ), denotes the sum over relevant indices ¢, in this
case t € [1,T —1]. This optimization problem has a closed
form solution given by

F* = (@ + A2DID,) eV (8)

k =vec(ky, ..., kr)

where ® and Y are appropriately constructed matrices
and the first-order differentiation operator matrix D;
is constructed such that A2 ||Dll~c||z equals the second
term in (7). The computational complexity O((TK)?)
of computing k* using the closed-form solution (8)
becomes prohibitive for all but toy problems. We note
that the cost function in (7) is the negative data log-
likelihood of a Brownian random-walk parameter model
with H = I, which motivates us to develop a dynamic

programming algorithm based on a Kalman smoother,
detailed in Sec. IV-B.



B. Smooth time evolution

A smoothly varying signal is characterized by small
second-order time differences. To identify smoothly time-
varying dynamics parameters, we thus penalize the
squared 2-norm of the second-order time difference of the
model parameters, and solve the optimization problem

minikmize Hy - ;UH; + A2 zt: Hkt+2 = 2kt + kt”; (9)

Also this optimization problem has a closed form so-
lution on the form (8) with the corresponding second-
order differentiation operator Dy. Equation (9) is the
negative data log-likelihood of a Brownian random-walk
parameter model with added momentum and H derived
in Sec. IV-C.2, where a Kalman smoother with augmented
state is developed to find the optimal solution. We also
extend problem (9) to more general regularization terms
in Sec. IV-B.

C. Piecewise constant time evolution

In the presence of discontinuous or abrupt changes
in the dynamics, estimation method (9) might perform
poorly. A signal which is mostly flat, with a small number
of distinct level changes, is characterized by a sparse
first-order time difference. To detect sudden changes in
dynamics, we thus formulate and solve the problem

minikmizeHy—@Hz+)\Zt:|‘kt+1 _ktHz (10)

We can give (10) an interpretation as a grouped-lasso cost
function, where instead of groups being formed out of
variables, our groups are defined by differences between
variables. We thus have a penalty on the 1-norm on the
length of the difference vectors k;y1 — k¢ since || ||H2||1 =
||H ,- The 1-norm is a sparsity-promoting penalty, hence
a solution in which only a small number of non-zero first-
order time differences in the model parameters is favored,
i.e., a piecewise constant dynamics evolution. At a first
glance, one might consider the formulation

minikmizeHy—@H;+)\;Hkt+1 — k|, (11)

which results in a dynamics evolution with sparse changes
in the coefficients, but changes to different entries of k;
are not necessarily occurring at the same time instants.
The formulation (10), however, promotes a solution in
which the change occurs at the same time instants for all
coefficients in A and B, i.e., k;y1 = k; for most ¢.

1) Implementation: Due to the non-squared norm
penalty >, ||kt+1 — kt”z? problem (10) is significantly
harder to solve than (9). An efficient implementation using
the linearized ADMM algorithm [8] is made available in
the accompanying repository.

TABLE 1
SUMMARY OF OPTIMIZATION PROBLEM FORMULATIONS. D,, REFERS
TO PARAMETER VECTOR TIME-DIFFERENTIATION OF ORDER n.

Norm D, Result

1 1 Small number of steps (piecewise constant)
1 2 Small number of bends (piecewise affine)

2 1 Small steps (slowly varying)

2 2 Small bends (smooth)

D. Piecewise constant time evolution with known number
of steps

If the number of switches in dynamics parameters, M,
is known in advance, the optimal problem to solve is

: (12)

Z ki1 # R} <M

t

minimize ||y -9
k

subject to (13)
where 1{-} is the indicator function. This problem is non-
convex and we propose solving it using dynamic program-
ming (DP). For this purpose we modify the algorithm
developed in [9], an algorithm frequently referred to as
segmented least-squares [10], where a curve is approxi-
mated by piecewise linear segments. The modification
lies in the association of each segment (set of consecutive
time indices during which the parameters are constant)
with a dynamics model, as opposed to a simple straight
line.! Unfortunately, the computational complexity of
the dynamic programming solution, O(T?K?), becomes
prohibitive for large 7.2

E. Piecewise linear time evolution

A piecewise linear signal is characterized by a sparse
second-order time difference, i.e., it has a small number
of changes in the slope. A piecewise linear time-evolution
of the dynamics parameters is hence obtained if we solve
the optimization problem.

minikmize |y — :E/Hz + )\zt: ||kt — 2keqr + ktH2 (14)

F. Summary

The proposed optimization problems are summarized
in Table I. The table illustrates how the choice of regu-
larizer and order of time-differentiation of the parameter
vector affects the quality of the resulting solution.

G. Two-step refinement

Since many of the proposed formulations of the opti-
mization problem penalize the size of the changes to the
parameters, solutions in which the changes are slightly
underestimated are favored. To mitigate this issue, a two-
step procedure can be implemented where in the first step,

lIndeed, if a simple integrator is chosen as dynamics model and
a constant input is assumed, the result of our extended algorithm
reduces to the segmented least-squares solution.

2For details regarding the DP algorithm and implementation, the
reader is referred to the source-code repository accompanying this
article.



change points (knots) are identified. In the second step,
the penalty on the one-norm is removed and equality
constraints are introduced between consecutive time-
indices for which no change in dynamics was indicated
by the first step.

The second step can be computed very efficiently
by noticing that the problem can be split into several
identical sub-problems at the knots identified in the first
step. The sub-problems have closed-form solutions if the
problem in Sec. ITI-C is considered.

To identify the points at which the dynamics change,
we observe the argument inside the sum of the reg-
ularization term, i.e., a;; = Hkt+1 — ktH2 or ap =
||kt+2 —2ki1 + kt||2. Time instances where a; is taking
non-zero values indicate change points.

IV. DYNAMICS PRIOR AND KALMAN FILTERING

The identifiability of the parameters in a dynamical
model hinges on the observability of the dynamics sys-
tem (6), or more explicitly, only modes excited by the
input u will be satisfactorily identified. If the identification
is part of an iterative learning and control scheme, e.g.,
ILC or reinforcement learning, it might be undesirable
to introduce additional noise in the input to improve
excitation for identification. This section will introduce
prior information about the dynamics which mitigates
the issue of poor excitation of the system modes. The
prior information might come from, e.g., a nominal model
known to be inaccurate, or an estimated global model
such as a Gaussian mixture model (GMM). A statistical
model of the joint density p(wii1, ¢, ur) constructed
from previously collected tuples (x¢41, 2, u:) provides
a dynamical model of the system through the conditional
pdf p(@iyq|as, ug).

We will see that for priors from certain families, the
resulting optimization problem remains convex. For the
special case of a Gaussian prior over the dynamics
parameters or the output, the posterior mean of the
parameter vector is conveniently obtained from a Kalman-
smoothing algorithm, modified to include the prior.

A. General case

If we introduce a parameter state k (c.f., (5)) and a
prior over all parameter-state variables p(k¢|z;), where
the variable z; might be, for instance, the time index ¢
or state z;, we have the data log-likelihood

T
log p(k, yla, 2)1.0 = Y _ log p(yeky, x1)
t=1
T-1 T (15)
+ logp(kesalke) + > logp(kelz)
t=1 t=1

which factors conveniently due to the Markov property
of a state-space model. For particular choices of density
functions in (15), notably Gaussian and Laplacian, the
negative likelihood function becomes convex. The next
section will elaborate on the Gaussian case and introduce

a recursive algorithm that solves for the full posterior
efficiently. The Laplacian case, while convex, does not
admit an equally efficient algorithm, but is more robust
to outliers in the data.

B. Gaussian case

If all densities in (15) are Gaussian and k is modeled
with the Brownian random walk model (6) (Gaussian
vt), (15) can be written on the form (scaling constants
omitted)

T
—log p(k,yle, )1 = 3 [lye = §ke, )| 1
t=1

T-1
3 [kesn = el (16)
t=1

T
+ ; HMO(Zt) - kt”;gl(zt)

for some function g (2¢) which produces the prior mean
of k given z;. ¥,, ¥, X (2;) are the covariance matrices
of the state-drift, parameter drift and prior respectively
and H$H224 =2 1.

In this special case, we introduce a recursive solution
given by a modified Kalman smoothing algorithm, where
the conditional mean of the state is updated with the
prior. Consider the standard Kalman filtering equations,
reproduced here to establish the notation

Byp—1 = AZy_1p—1 + Bug (17)
Pty = AP,y 1 AT+ Ry (18)
Ki =Py 1C"(CPy 1C"+Ry) ™ (19)
T = Type—1 + Ky (yt - Cit\tfl) (20)
Pt\t = Pt\tfl - KtCPt|t71 (21)

where x is the state vector, with state-drift covariance Ry
and C'is a matrix that relates z to a measurement y = Cx
with covariance Rs. The first two equations constitute the
prediction step, and the last two equations incorporate the
measurement y; in the correction step. The modification
required to incorporate a Gaussian prior on the state
variable p(x¢|vy) = N (po(ve), Xo(ve)) involves a repeated
correction step and takes the form

_ -1

K= Py, (Pt\t + EO(Ut)) (22)
Ty = & + Ko (po(ve) — 24pt) (23)
Py, = Py — K¢ Py, (24)

where - denotes the posterior value. This additional correc-
tion can be interpreted as receiving a second measurement
to(ve) with covariance Xg(v¢). For the Kalman-smoothing
algorithm, Z;; and Py, in (23) and (24) are replaced with
jtlT and Pt\T'

A prior over the output of the system, or a subset
thereof, is straight forward to include in the estimation
by means of an extra update step, with C, Ry and y being
replaced with their corresponding values according to the
prior.



C. Kalman filter for identification

We can employ the Kalman-based algorithm to solve
two of the proposed optimization problems:

1) Low frequency: The Kalman smoother can be used
for solving identification problems like (7) by noting
that (7) is the negative log-likelihood of the dynamics
model (6). The identification problem is thus reduced to
a standard state-estimation problem.

2) Smooth: To develop a Kalman-filter based algorithm
for solving (9), we augment the model (6) with the state
variable ki = k; — k;_, and note that ki, ; — ki = ki1 —
2k + ki _1. We thus introduce the augmented-state model

i) b m bl
w=lmeld a) o] e

which is on a form suitable for filtering/smoothing with
the machinery developed above.

3) General case: The Kalman-filter based identifica-
tion method can be generalized to solving optimization
problems where the argument in the regularizer appearing
in (9) is replaced by a general linear operation on the
parameter vector, P(z)k, and we have the following
proposition

Proposition 1: Any optimization problem on the form

minikmizeHy—ng;Jr)\Q;HP(Z)ktH; (27)

(25)

where P(z) is a polynomial of degree n > 0 in the time
difference operator z with z~"P(1) = 0, can be solved
with a Kalman smoother employed to an autonomous
state-space system.

Proof: Let P*(z71) = 27" P(z). We assume without
loss of generality that P*(0) = 1 since any constant
P*(0) can be factored out of the polynomial. Q(z~ 1) =
P*(z71)71 is a strictly proper transfer function and has
a realization as a linear, Gaussian state-space system of
degree n. Since Q(z71) is strictly proper, the realization
has no direct term. The negative data log-likelihood of
Q(z71) is equal, up to constants idenpendent of k, to the
cost function in Eq. (27), hence the Kalman smoother
applied to @ optimizes Eq. (27). [ |
For (9) P(z) equals 22—2z+1 and Q(z~ 1) has a realization
on the form (25).

V. WELL-POSEDNESS AND IDENTIFIABILITY

To assess the well-posedness of the proposed identi-
fication methods, we start by noting that the problem
of finding A in x;y; = Az given a pair (2441, %) is an
ill-posed problem in the sense that the solution is non
unique. If we are given several pairs (xs11, 2¢), for different
t, while A remains constant, the problem becomes over-
determined and well-posed in the least-squares sense,
provided that the vectors {xy)}le span R". The LTI-
case in Sec. II is well posed according to classical results,
when @ has full column rank.

When we extend our view to LTV models, the number
of free parameters is increased significantly, and the
corresponding regressor matrix ® will never have full
column rank and the introduction of a regularization
term is necessary. Informally, for every n measurements,
we have K = n?+ nm free parameters. If we consider the
identification problem of Eq. (10) and let A — oo, the
regularizer terms essentially becomes equality constraints.
This will enforce a solution in which all parameters in k
are constant over time, and the problem reduces to the
LTI-problem. As A decreases, the effective number of free
parameters increases until the problem gets ill-posed for
A = 0. We formalize the above arguments as

Proposition 2: Optimization problems (7) and (10)
have unique global minima for A > 0 if and only if the
corresponding LTI optimization problem has a unique
solution.

Proof: The cost function is a sum of two con-
vex terms. For a global minimum to be non-unique,
the Hessians of the two terms must have intersecting
nullspaces. In the limit A — oo the problem reduces
to the LTI problem. The nullspace of the regularization
Hessian, which is invariant to A\, does thus not share any
directions with the nullspace of ®"® which establishes the
equivalence of identifiability between the LTI problem
and the LTV problems. [ ]

Proposition 3: Optimization problems (9) and (14)
with higher order differentiation in the regularization
term have unique global minima for A > 0 if and only if
there exists no vector v € R*™™ such that

T T
Cruy = | T vt (28)
ULy  UtUy

Proof: Again, the cost function is a sum of two convex
terms and for a global minimum to be non-unique, the Hes-
sians of the two terms must have intersecting nullspaces.
In the limit A — oo the regularization term reduces to a
linear constraint set, allowing only parameter vectors that
lie along a line through time. Let @ # 0 be such a vector,
parametrized by ¢t as o = [07 207 T iT]T e RTK
where v = Vec({v}f) € RX and v is an arbitrary vector
€ R, € null (®'®) implies that the loss is invariant
to the pertubation ot to k for an arbitrary a € R.
(®7®) is given by blkdiag({I, ® C’f“}lT) which means that
o € null (B7®) <= at(l, @ C¥")o = 0 Y(a,t) <= 0 €
null (I,, ® C7*) Vt, which implies v € null C¥" due to the
block-diagonal nature of I,, ® C7*

|

For the LTI problem to be well-posed, the system
must be identifiable and the input w must be persistently
exciting of sufficient order [11].

VI. EXAMPLE — JUMP-LINEAR SYSTEM

We now consider a simulated example. We generate a
state sequence from the following LTV system, where the
change in dynamics, from

0.95 0.1 0.2
A [ 0.0 0.95}7 B = [ 1.0]
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Fig. 1. Piecewise constant state-space dynamics. True values

are shown with dashed, black lines. Gaussian state-transition and
measurement noise with o = 0.2 were added.

to
0.5 0.05 0.2
At‘{o.o 0.5 ] B = { 1.0}
occurred at t = 200. The input was Gaussian noise

of zero mean and unit variance, state transition noise
and measuremet noise of zero mean and o = 0.2 were
added. Figure 1 depicts the estimated coefficients in the
dynamics matrices for a value of A chosen using the L-
curve method [12].

VII. EXAMPLE — NON-SMOOTH ROBOT ARM WITH
STIFF CONTACT

To illustrate the ability of the proposed models to
represent the non-smooth dynamics along a trajectory
of a robot arm, we simulate a two-link robot with
discontinuous Coulomb friction. We also let the robot
establish a stiff contact with the environment to illustrate
both strengths and weaknesses of the modeling approach.

The state of the robot arm consists of two joint
coordinates, ¢, and their time derivatives, ¢. Figure 2
illustrates the state trajectories, control torques and
simulations of a model estimated by solving (10). The
figure clearly illustrates that the model is able to capture
the dynamics both during the non-smooth sign change
of the velocity, but also during establishment of the stiff
contact. The learned dynamics of the contact is however
time-dependent, which is illustrated in Figure 3, where
the model is used on a validation trajectory where a
different noise sequence was added to the control torque.
Due to the novel input signal, the contact is established
at a different time-instant and as a consequence, there is
an error transient in the simulated data.

VIII. EXAMPLE — REINFORCEMENT LEARNING

In this example, we use the proposed methods to iden-
tify LTV dynamics models for reinforcement learning. The
goal of the task is to dampen oscillations of a pendulum
attached to a moving cart by means of moving the cart,
with bounds on the control signal and a quadratic cost
on states and control. Due to the nonlinear nature of the

pendulum dynamics, linear expansions of the dynamics
in the upward (initial) position and downward (final)
position have poles on opposite sides of the imaginary
axis. To this end, we employ a reinforcement-learning
framework inspired by [13], where we perform a series of
rollouts whereafter each we 1) fit a dynamics model along
the last obtained trajectory, 2) optimize the cost function
under the model using iterative LQG (differential dynamic
programming),® an algorithm that calculates the value
function exactly under the LTV dynamics and a quadratic
expansion of the cost function. In order to stay close to
the validity region of the linear model, we put bounds on
the deviation between each new trajectory and the last
trajectory. We compare three different models; the ground
truth system model, an LTV model (obtained by solving
(9)) and an LTT model. The total cost over T' = 500 time
steps is shown as a function of learning iteration in Fig. 4.
The figure illustrates how the learning procedure reaches
the optimal cost of the ground truth model when an
LTV model is used, whereas when using an LTI model,
the learning diverges. The figure further illustrates that
if the LTV model is fit using a prior (Sec. IV-B), the
learning speed is increased. The prior in this case was
constructed from the true system model, linearized around
the last trajectory. This strategy is unavailable in a real
application, but the experiment serves as an indication
of the effectiveness of inclusion of a prior in this example.
Future work is targeting the incremental estimation of
these priors.

IX. DISCUSSION

This article presents methods for estimation of linear,
time-varying models. The methods presented extend
directly to nonlinear models that remain linear in the
parameters. When estimating an LTV model from a
trajectory obtained from a nonlinear system, one is
effectively estimating the linearization of the system
around that trajectory. A first-order approximation to a
nonlinear system is not guaranteed to generalize well as
deviations from the trajectory become large. Many non-
linear systems are, however, approximately locally linear,
such that they are well described by a linear model in a
small neighborhood around the linearization/operating
point. For certain methods, such as iterative learning con-
trol and trajectory centric reinforcement learning, a first-
order approximation to the dynamics is used for efficient
optimization, while the validity of the approximation is
ensured by incorporating penalties or constraints between
two consecutive trajectories.

The methods presented allow very efficient learning
of this first-order approximation due to the prior belief
over the nature of the change in dynamics parameters,
encoded by the regularization terms. By postulating a
prior belief that the dynamics parameters change in a
certain way, less demand is put on the data required

3Implementation made available at github.com/baggepinnen/Dif-
ferentialDynamicProgramming.jl
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Fig. 2. Simulation of non-smooth robot dynamics with stiff contact — training data vs. sample time index. The sign change in velocity,
and hence a discontinuous change in friction torque, occurs in the time interval 50-100 and the contact is established in the time interval
100-150. For numerical stability, all time-series are normalized to zero mean and unit variance, hence, the original velocity zero crossing is
explicitly marked with a dashed line. The control signal plot clearly indicates the discontinuity in torque around the unnormalized zero
crossing of ga.
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Fig. 3. Simulation of non-smooth robot dynamics with stiff contact — validation data vs. sample time index. The dashed lines indicate the
event times for the training data, highlighting that the model is able to deal effortless with the non-smooth friction, but inaccurately
predicts the time evolution around the contact event which now occurs at a slightly different time instance.
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Fig. 4. Reinforcement learning example. Three different model
types are used to iteratively optimize the trajectory of a pendulum
on a cart. Due to the nonlinear nature of the pendulum dynamics,
linear expansions of the dynamics in the upward and downward
positions have poles on opposite sides of the imaginary axis, why
the algorithm fails with an LTI model.

for identification. The identification process will thus
not interfere with normal operation in the same way
as if excessive noise would be added to the input for
identification purposes. This allows learning of flexible,
over-parametrized models that fit available data well. This
makes the proposed identification methods attractive in
applications such as guided policy search (GPS) [13],
[14] and non-linear iterative learning control (ILC) [15],
where they can lead to dramatically decreased sample
complexity.

When faced with a system where time-varying dynam-
ics is suspected and no particular knowledge regarding the
dynamics evolution is available, or when the dynamics are
known to vary slowly, a reasonable first choice of algorithm
is (9). It is also by far the fastest of the proposed methods
due to the Kalman-filter implementation of Sec. IV-B.*
Example use cases include when dynamics are changing
with a continuous auxiliary variable, such as temperature,
altitude or velocity. If a smooth parameter drift is found
to correlate with an auxiliary variable, LPV-methodology
can be employed to model the dependence explicitly.

Dynamics may change abruptly as a result of, e.g., sys-
tem failure, change of operating mode, or when a sudden
disturbance enters the system, such as a policy change
affecting a market or a window opening affecting the
indoor temperature. The identification method (10) can
be employed to identify when such changes occur, without
specifying a priori how many changes are expected.

For simplicity, the regularization weights were kept
as simple scalars in this article. However, all terms
A HAkHz = (AK)"(AMI)(Ak) can be generalized to

4The Kalman-filter implementation is often several orders of
magnitude faster than solving the optimization problems with an
iterative solver.

(AK)TA(AEK), where A is an arbitrary positive definite
matrix. This allows incorporation of different scales
for different variables with little added implementation
complexity.

X. CONCLUSIONS

We have proposed a framework for identification of
linear, time-varying models along trajectories of nonlinear
dynamical systems using convex optimization. We showed
how a Kalman smoother can be used to estimate the dy-
namics efficiently in a few special cases, and demonstrated
the use of the proposed LTV models on three examples,
highlighting their efficiency for trajectory-centric, model-
based reinforcement learning, iterative learning control
(ILC), and jump-linear system identification. We have
also demonstrated the ability of the models to handle
non-smooth friction dynamics as well as analyzed the
identifiability of the models.
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