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Popular summary

Just after the Big Bang, there were only three elements; hydrogen, helium, and a
small amount of lithium. The first generation stars were born in a cloud of these
elements. When these stars died, they exploded as supernovae and ejected heavier
elements into the interstellar medium. The next generation stars were formed from
this enriched medium, and therefore they had more metals. Consecutive cycles of
birth and death of stars enrich the universe with more metals. Stars with low mass,
such as our Sun, produce several light elements during nuclear burning phases and
a range of neutron-capture elements due to slow neutron-capture reactions in their
interiors. These elements are enriched into the stellar atmospheres when they are
dredged-up to the surfaces during the asymptotic giant branch (AGB) phase, be-
fore becoming planetary nebulae. During the planetary nebula phase, their outer
layers are ejected by the stellar winds and the remaining core is called a white dwarf.
Massive stars can produce elements up to iron during their lifetimes and heavier
elements are formed while they explode as supernovae at the end of their lives.

Most of the information we have about stars, is hidden in their light. Astronomers
analyse the light from stars to understand which atoms and molecules are present
in stars and the abundance of these species. As stars in the Galaxy mostly keep the
composition of the interstellar medium in which they were born, these analyses
help us to construct the evolution history of our Galaxy. To analyse the light,
atomic data such as wavelengths and oscillator strengths of transitions are fun-
damental. However, atomic data of some elements are incomplete and/or have
low quality, in particular in the infrared region. This, in turn, makes it difficult
to study the galactic evolution with infrared spectra. My work has been aimed
at providing the missing atomic data and improving the existing data, primarily
focusing on the oscillator strengths.
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To accomplish this, I have performed experimental work and atomic structure
calculations. Experimental measurements have been conducted in the Edlén lab-
oratory at the Astronomy building in Lund, at the High Power Laser Facility at
the Physics Department in Lund, and in the Blackett laboratory at Imperial Col-
lege in London using a high-resolution Fourier transform spectrometer, a hollow
cathode discharge lamp, and lasers. In the laboratory a plasma of the element that
is of interest can be created. By studying the light from this plasma, one can derive
atomic parameters, such as oscillator strengths, which are related to the strengths
of spectral lines, or radiative lifetimes, which are lifetimes of atomic levels before
they decay to lower levels. In cases where different wavelength regions are not
accessible simultaneously with the experimental setup, calculations complement
missing atomic parameters regardless of the wavelength region. Calculations in
this thesis have been performed using large scale atomic structure computer pack-
ages, ATSP2K or GRASP2K, to compute the atomic parameters of interest.

An extensive set of accurate atomic data for a large wavelength region is obtained
by performing both experiments and calculations. The experimental results, which
have small uncertainties, agree well with the previous measurements in the optical
region and/or with the calculations of the current work. In addition, theoretical
calculations complement the experimental values for the unobserved and uncer-
tain transitions. The provided wavelengths help obtaining the elemental compo-
sition, and oscillator strengths and transition rates can be used to determine the
elemental abundances in stars, nebulae, or even planetary atmospheres.
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Populärvetenskaplig
sammanfattning

Precis efter Big Bang fanns endast tre grundämnen: väte, helium och en liten
mängd litium. De första stjärnorna föddes i gasmoln som innehöll dessa ämnen.
När den första generationen stjärnor i slutet av sina liv exploderade som super-
novor spreds de tyngre grundämnena som tillverkats ut i det interstellära mediet.
Nästa generations stjärnor bildades från detta berikade medium, och innehöll där-
för fler metaller. Fortsatta cykler av födsel och död av stjärnor berikar universum
med högre ymnighet av metallerna. I stjärnor med liten massa, som vår sol, bildas
flera lättare ämnen i stjärncentrum, medan neutroninfångningsämnen på grund
av långsamma neutroninfångningsreaktioner bildas i stjärnornas inre. Dessa äm-
nen berikar stjärnatmosfären när de förflyttas upp till ytan under den så kallade
AGB-fasen, innan stjärnan blir en planetarisk nebulosa. Under denna fas skickas
stjärnans yttre lager ut av stjärnvindarna och resterande kärna kallas en vit dvärg.
Stjärnor med stor massa kan producera ämnen upp till järn under sina livstider
och tyngre ämnen bildas medan de exploderar som supernovor i slutet av sina liv.

Majoriteten av informationen vi har om stjärnor är dold i deras ljus. Astronomer
analyserar ljuset från stjärnor för att förstå vilka atomer och molekyler som finns
och i vilka ymnigheter de finns i stjärnorna. Eftersom stjärnor i vår galax of-
tast avspeglar det interstellära medium där de föddes kan analysen av stjärnornas
ljus fungera som ett verktyg för att konstruera den evolutionära historien för Vin-
tergatan. För att analysera ljuset är atomära data såsom våglängder och oscilla-
torstyrkor för övergångar grundläggande. För vissa element är emellertid dessa
data ofullständiga eller av låg kvalitet, särskilt i det infraröda området. Detta gör
det i sin tur svårt att studera den galaktiska utvecklingen med hjälp av infraröda
spektra. Mitt arbete har varit inriktat på bestämma saknad atomdata och förbättra
befintliga data, med fokus på oscillatorstyrkor.
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Teknikerna har varit både experimentella och beräkningsbaserade. Experimentella
mätningar har utförts vid Edlén-laboratoriet vid den astronomiska institutionen,
Lund High Power Laser Facility vid Fysikinstiutionen vid Lunds universitet samt
Blackett Laboratory vid Imperial College i London. Vi har använt högupplösande
Fourier-transformationsspektrometrar med en hålkatodurladdningsljuskälla samt
pulsade lasrar för att mäta livstider. I laboratoriet har vi skapat plasmor med de
grundämnen som vi vill studera. Genom att studera ljuset från dessa plasmor
har de atomära parametrar, såsom oscillatorstyrkor som relaterar till linjernas inre
styrka, och livstider som relaterar till populationen hos atomära tillstånd innan de
faller ner till lägre nivåer, bestämts. I de fall där övergångar faller i våglängdsom-
råden som inte experimentinställningen är känslig för eller för tillstånd som inte
populeras, har vi använt beräkningar för att komplettera saknade atomparametrar.
Genom att utföra storskaliga atomstrukturberäkningar med hjälp av program-
paketen ATSP2K och GRASP2K kan vi bestämma atomparametrar noggrant.

En omfattande uppsättning noggranna atomdata för ett stort våglängdsintervall
har uppnåtts genom att kombinera experiment och beräkningar. De experimentella
resultaten, vilka har små osäkerheter, överensstämmer väl med de tidigare mät-
ningarna i det synliga området och med beräkningar i det aktuella arbetet. Dessu-
tom kompletterar teoretiska beräkningar experimentella värden för ej observerade
eller osäkra övergångar. De rapporterade våglängderna hjälper till att erhålla den
kemiska sammansättningen, medan oscillatorstyrkor och övergångsstyrkor kan an-
vändas för att bestämma ymnigheterna i stjärnor, nebulosor eller till och med plan-
etatmosfärer.
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Part I

Research context





Chapter 1

Introduction

1.1 Connection between astrophysics and atomic physics

Essentially all information about astrophysical objects, in our Galaxy and beyond,
is derived from the radiated light from these objects. The light from stars ap-
proximately follows a blackbody radiation distribution for which the peak wave-
length depends on the temperature of the stellar atmosphere. Imprinted on this
emitted radiation is absorption features from atoms and molecules in the stellar
atmosphere. Absorption features in a blackbody spectrum tell us which atoms
are present and the amount of them in the star. This light, however, cannot be
fully interpreted, if the properties of atoms (and sometimes molecules) are not well
known.

The absorption features were first discovered by Joseph von Fraunhofer in 1814 as
dark lines in the solar spectrum, see Figure 1.1 for an example of such absorption
features. He was not able to explain the origin of these lines, but labeled them
with the letters in the alphabet (von Fraunhofer 1817). For instance, the sodium
D lines, and the calcium H and K lines, are still used with the same labels by as-
tronomers. In the 1850s Kirchhoff & Bunsen showed that these dark lines, which
had emission counterparts in laboratory flames, arose from different chemical ele-
ments. In other words, each element had unique spectral lines, like “fingerprints”.
Kirchhoff & Bunsen were able to identify some of the Fraunhofer lines in the so-
lar spectra from their laboratory experiments. In 1888, J. Rydberg developed a
formula that predicted the wavelength of spectral lines. This formula was based
on fitting a general function that generated all wavelengths of hydrogen-like ele-
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ments. However, it had no physical explanation. The relation between atoms and
spectral lines could not be explained completely until the introduction of quan-
tum mechanics in the beginning of the 20th century.

Figure 1.1: High resolution solar spectrum in the optical wavelength region that was ob-
served with the Fourier Transform Spectrometer at the McMath-Pierce Solar
Facility at the National Solar Observatory on Kitt Peak. Dark lines are the
absorption features from various elements present in the solar atmosphere. In
the courtesy of N.A.Sharp, NOAO/NSO/Kitt Peak FTS/AURA/NSF.

The evolution of the atomic theory, as outlined in Hartree (1957), started with the
discovery of the electron by Thomson (1897). Following that, Rutherford (1911)
discovered the atomic nucleus, surrounded with electrons, by showing that most of
the mass and the positive charge were accumulated in a region very small relative to
the size of the entire atom. With the classical mechanical approach, the electrons
would radiate energy and collapse into the nucleus in a very short time scale. Bohr
(1913) improved Rutherford’s theory by introducing Planck’s theory of “the ele-
mentary quantum of action”. In his model, electrons were in stable orbits around
the nucleus (or stable energy states), and only emitted or absorbed light when they
moved between discrete energy states. Moreover, he assumed that electrons were
in these stationary states in the field of the nucleus and other electrons. Other im-
provements were the electron spin concept formulated by Uhlenbeck & Goudsmit
(1925) and Pauli’s exclusion principle, which stated that two electrons could not

2



have the same quantum numbers n, l,ml,ms. Finally, Schrödinger (1926) de-
veloped wave mechanics following the idea of de Broglie (1925)’s concept of wave
systems, which resulted in formulation of the Schrödinger’s equation. The solu-
tions to the Schrödinger’s equation are the wavefunctions. They describe atomic
states and can be determined using appropriate approximations as discussed in the
further chapters.  

With the help of quantum (wave) mechanics, astrophysical spectral lines can be

Figure 1.2: Schematic figure of two types of radiative transitions.

explained. Observed astrophysical spectral lines result from the transitions be-
tween energy levels of an atomic system. These transitions occur by absorbing or
emitting photons. There are two types of transitions important for astrophysical
analyses as shown in Figure 1.2. The first one is called the spontaneous emission,
which happens when an atom in the excited level, E2, decays to the lower level,
E1, by emitting a photon that has the same energy as the difference between the
upper and lower levels, E2 −E1. The other one is called absorption, which takes
place when an atom moves to the upper level, E2, from the lower level, E1, by
taking the energy of a photon that is exactly equal to the energy difference between
the upper and lower levels. Observationally these transitions correspond to two
different cases:

• If one examines the light from a hot thin gas cloud, only the emitted wave-
lengths from that source will be visible, hence an emission spectrum, as in
nebulae spectra.

• If one gathers the light from a hot opaque object blocked by a thin cooler
gas cloud, a continuous spectrum with absorption lines is observed, as in
most of the stellar spectra.

3



Additionally, if one observes a hot opaque source, for example a star with no at-
mosphere, the collected light from this source will give a continuous spectrum, in
other words, one can see light in all wavelengths as in a blackbody spectrum. In
either type of spectra, the presence of spectral lines, the fingerprints of an atom,
tells us about the composition of an object. On the other hand, the amount of
the emitted light, or the amount of the absorbed light, tells us about the quantity
of atoms in an object. To convert the observed absorption to an abundance, one
needs to know the atomic oscillator strength and create a model of the stellar at-
mosphere. Figure 1.3 shows an example of an absorption spectrum. In this figure,
the position of an absorption line answers the question of which element gives rise
to this line, and the depth, or equivalent width, of the line gives information about
the amount of this element in the source.
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Figure 1.3: Example of an absorption spectrum. The position/wavelength of the lines
is related to a specific element whereas the depth of the lines tells about the
amount of that element. Figure from Thorsbro (2016).

The connection between the stellar element abundance and the oscillator strength,
for a weak line is given by the equation below (Gray 2005),

log

(
EW

λ

)
= log(Abundance) + log(λgf) + C + other parameters (1.1)

where EW is the equivalent width of the spectral line, which is directly deter-
mined from an observed spectrum and is the width of a rectangle that has the
same area as the area between the spectral line and the continuum level, λ is the
wavelength of the spectral line, g is the statistical weight of the lower level (atomic
parameter), f is the oscillator strength, known as the f -value, and the constant
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C and other parameters are not important at this point. The projects in this the-
sis are focused on determining the f -value and this value is an atomic parameter
related to the intrinsic strength of a transition. As seen from Eq. 1.1, the derived
abundance depends on an accurate measurement of the equivalent width and on
the use of high-quality atomic data. If the log(gf) value is incorrect by 0.5 dex
(decimal exponent, notation for 100.5), approximately by a factor of three, and
other parameters are fixed, this will cause an overestimate/underestimate of the
true abundance by 0.5 dex. Therefore, it is important to have correct and accu-
rate log(gf) values. Stellar spectroscopists aim at abundance analyses with un-
certainties smaller than 0.1 dex. This, in turn, motivates us to provide log(gf)
values with small uncertainties, roughly a maximum of 0.1 dex. This uncertainty
in log(gf) values corresponds to a 25% relative uncertainty in f -values. In the
present thesis, this goal is achieved with uncertainties as low as 5%, corresponding
to 0.02 dex in log(gf) values.

1.2 Astrophysics and the need for accurate and complete
atomic data

Analysing stellar spectra helps us to understand in what environments stars are
born. This, in turn, helps us to find out the formation and evolution of our own
Galaxy. As discussed in the previous section, the interpretation of stellar spectra
relies on high-quality atomic data. For this purpose, there are several groups mak-
ing line lists with the best available atomic data (Piskunov et al. 1995; Heiter et al.
2015; Shetrone et al. 2015; Thorsbro 2016; Ryde et al. 2016). Yet, there is still a
need of additional and more accurate atomic data. The new generation advanced
astrophysical instruments have improved the quality of the observed astrophysical
spectra and opened up new wavelength regions, which, in turn, requires ever in-
creasing accuracy on the atomic parameters and the stellar models .

The CRIRES+ at VLT will operate (2018) in the infrared region with a resolving
power of 50 000−100 000 (Dorn et al. 2014). The APOGEE-2 survey (Zasowski
et al. 2017) observes in the infrared region with two different telescopes: the Sloan
Foundation Telescope at Apache Point Observatory and the Irénée du Pont Tele-
scope at Las Campanas Observatory in Chile (in the southern hemisphere and in
the northern hemisphere, respectively) aiming at an elemental abundance preci-
sion of 0.1 dex. The Gaia-ESO (Gilmore et al. 2012) survey observes in the optical
region with FLAMES at VLT, which has two different spectrographs: GIRAFFE
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with intermediate or high resolution and UVES with high resolution (Pasquini
et al. 2002). The 4MOST survey will start operating in 2021 and plan to observe
25 million stars in a five year period in the optical region (de Jong et al. 2016;
Feltzing et al. 2017), and not to mention the HST’s STIS (Riley 2017) that has
been operating since 1997 (with a break between 2004-2009) with a high spatial
resolution echelle spectroscopy in the UV region.

The common request of these instruments is the improved atomic data for the
analyses of astrophysical spectra from the infrared region to the UV region. In
particular in the infrared region, there are many observed lines, but the atomic
data needed to identify and to analyse many of these lines are missing. Improved
atomic data in this region is one of the achievements that has been accomplished
with the research presented in this thesis. For example, there were no experimen-
tal Sc i oscillator strengths in the infrared region before Paper I and only three
laboratory oscillator strengths of Mg i were known before Paper II. In addition,
the lifetimes of the highly excited levels of Sc ii have been measured for the first
time in Paper III. An extensive set of high-quality oscillator strengths of the Si i
and Si ii lines has been lacking until Paper IV. Furthermore, a gravitational-wave
and an associated γ-ray burst were detected simultaneously in August 2017, which
boosted interest is the neutron star mergers. These events are thought to be the
production site of many of the heavy elements, and the analysis of the ejecta can
put light on the chemical yield from these events. A recent study of a kilonova
spectrum, associated with a gravitational-wave source and γ-ray burst, found sig-
natures of r-process elements (heavy elements that only form with rapid neutron
capture) production. However, there is a lack of atomic data preventing these el-
ements from being identified in the ejecta (Pian et al. 2017). Common for all of
the above is that with the development of new instruments and state-of-the-art
science exploring new territories, there is a great demand for high-quality atomic
data. The urgent need of atomic data has been pointed out in a Nature (2013)
editorial as one of the low-cost but high priorities for new observations.

1.3 Determination of atomic data

Atomic data needed for astrophysical spectral analyses, specifically wavelengths
and oscillator strengths, can be derived from high-resolution experiments or can
be calculated with atomic structure state-of-the-art codes, such as ATSP2K (Froese
Fischer et al. 2007) and GRASP2K (Jönsson et al. 2017). The strength of this the-
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sis is to use and combine both methods, and thereby provide the combination of
experimental and calculated atomic data.

Both methods have their own strengths and limitations for the atoms and ions
we study in the thesis, i.e. the neutral and singly ionised ions. It is more accu-
rate to determine wavelengths and energy levels from experiments. However, the
number of lines accessible is limited by the difficulties to populate highly excited
levels and to detect lines appearing in different wavelength regions simultaneously.
The importance of the latter is due to the fact that all the lines from the same up-
per energy level should be observed in order to derive the oscillator strengths, as
explained in Chapter 2. On the other hand, if the lines from the same upper level
are close in wavelength, the branching fractions can be determined with very small
uncertainties since the uncertainty from the calibration basically disappears, and
the main limitation is the lifetime uncertainties.

Calculations are able to provide values for lines that are not easily accessed in
experiments. They have no limitations on the wavelength range, and the oscillator
strengths can often be determined accurately for atomic systems that are not too
complicated. The challenge for the calculations is to find accurate representations
of the wavefunctions of the targeted states. The concern is the computational
limitations. For example, large computational power is needed for calculations
including highly excited atomic states or heavy atoms with low ionisation stages.
The comparisons of calculated values with experimental values give an indication
of the accuracy of the combined atomic data set. In addition, internal consis-
tency of the calculations helps estimating uncertainties of the computed values, as
discussed in Section 3.8.
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Chapter 2

Measurements of atomic
parameters

Atomic parameters, which are important for astrophysical applications are energy
levels, wavelengths, radiative lifetimes, transition probabilities, and oscillator strengths.
Energy levels cannot be observed directly but, the difference between two energy
levels can be measured and is given by, ∆E = hc/λ, where h is Planck’s constant,
c is the velocity of light and λ is the wavelength of the corresponding photon. In
spectroscopy, wavenumbers are commonly used and related to wavelengths by
σ = 1/λ with a unit of cm−1. Since only energy level differences are measurable,
knowing the energy level structure of an atom is crucial to predict the wavelengths
of transitions. The energy level structure is constructed relative to the ground level
(the lowest possible level). For this reason, the ground level is set to zero energy to
make all excited levels have positive energy values (Thorne et al. 1999). Figure 2.1
shows an example of a partial energy level diagram presenting the levels with 3snl
configurations of neutral magnesium up to n = 7. The energy values are from
the references in Martin & Zalubas (1980). The horizontal dashed line shows
the ionisation limit for neutral magnesium, Mg i, which is at the same time the
ground level of singly ionised magnesium, Mg ii. The x-axis displays the terms
with their corresponding levels in the same column and these labels are based on
the quantum numbers: the total orbital momentum and the total spin momen-
tum quantum numbers, L and S, respectively. The y-axis is energy values in
cm−1. The ground level of Mg i is 3s2 1S0 and energy needed to move an electron
from the ground level to an excited level, such as 3s3p 1P1, is called the excitation
energy. From energy levels in a diagram, possible transitions are predicted. The
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transitions from excited levels in Mg i, reported in Paper II, are marked with the
dashed lines in the figure. The unobserved lines either have very low transition
probabilities or the upper level they radiate from is not populated enough or are
out of the instruments wavelength range, to be described later.
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Figure 2.1: Partial energy level diagram of Mg i. On the x-axis, configurations with the
same term grouped together and y-axis shows the corresponding energy val-
ues. Transitions from all the levels shown in this diagram have been calculated
in Paper II. In addition, dashed lines show the transitions that have been mea-
sured in Paper II.

There are three types of bound-bound radiative transitions: absorption, sponta-
neous emission, and stimulated emission. In the experimental part of the projects
in this thesis, only spontaneous emission is considered. However, one should keep
in mind that the absorption is observed in most of the stellar spectra, whereas neb-
ular spectra show emission features, as explained in Section 1.1.
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Oscillator strengths have an important role in the determination of elemental
abundances in stars and they are used in absorption line analyses. The goal of
the projects in this thesis has been to determine this parameter for a large number
of transitions for various atoms. The f -value is a measure of the intrinsic strength
of a transition and is related to the transition probability, Aul, by,

f =
gu

gl

ε0mc3

2πe2ν2
Aul, (2.1)

where gu and gl are the statistical weights of the upper, (u), and lower levels (l),
respectively, εo is the permittivity of vacuum, m is the electron mass, e is the
elementary charge and ν is the frequency of the transition (Thorne et al. 1999).
In order to determine the f -value, one should know the transition probability,
Aul value, of the transition which is a measure of strength of emission lines.

Figure 2.2: Example of possible decay channels from the upper level, 3s4s 3S1, of Mg i.

The branching fraction of a line is defined as the transition probability of the emis-
sion line divided by the sum of transition probabilities of all emission lines from
the same upper level (Huber & Sandeman 1986),

BFul =
Aul∑
iAui

. (2.2)
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For example, the branching fraction of the “transition 1”, 3s3p 3P2 - 3s4s 3S1,
in Figure 2.2 is BF1 = A1

A1+A2+A3
. For an optically thin plasma, the intensity

of an emission line is proportional to the population of the upper level, Nu, the
statistical weight of the upper level, and the transition probability of the transi-
tion, Iul ∝ NuguAul. As all the lines decay from the same upper level, Nu and
gu are the same for all lines and the BF simply becomes the relative intensity ra-
tio, BFul = Iul/

∑
i Iui. Thus, it is possible to derive BF s by measurements of

relative intensities of all transitions from the same upper level. The integrated in-
tensities of the observed lines have been determined by the FTS analysis software
GFit (Engström 1998, 2014). However, observation of all lines from the same
upper level can be problematic if the lines decay in different wavelength regions,
such as infrared and UV, or if some of the lines are too weak to be detectable.
These issues can be resolved with the help of theoretical calculations which make
it possible to predict contributions from missing lines to the sum of transition
probabilities.

The Aul value can be derived from the experimentally determined BF and the
lifetime of the upper level, τu,

Aul =
BFul

τu
. (2.3)

Since a BF is a relative intensity ratio, it has no units and a lifetime has a unit of
s. As a result, the unit of Aul is s−1.

The radiative lifetime of a level is the expected time that an atom spends in an
excited level before it decays to a lower level via spontaneous emission. It is related
to the sum of transition probabilities from the same upper level by,

τu =
1∑
iAui

, (2.4)

which means that the transition probabilities of all possible decays from the same
upper level contribute to the lifetime of that level. For example, the lifetime of the
Mg i level 3s4s 3S1 in Figure 2.2 can be computed from τ = 1

A1+A2+A3
. This

parameter can be measured using different techniques such as the time resolved
laser induced fluorescence or beam foil. In Paper III, the two-step time resolved
laser induced fluorescence (TR-LIF) method has been used as described in Sec-
tion 2.2.
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Table 2.1: Selection rules for E1, M1, and E2 transitions.

E1 M1 E2
General rules independent from the labelling scheme

Parity change No parity change No parity change
∆J = 0,±1 ∆J = 0,±1 ∆J = 0,±1,±2
(J = 0 ↛ 0) (J = 0 ↛ 0) (J = 0 ↛ 0, 1; 1/2 ↛ 1/2)

LS coupling rules
∆S = 0 ∆S = 0 ∆S = 0

∆L = 0,±1 ∆L = 0 ∆L = 0,±1,±2
(L = 0 ↛ 0) (L = 0 ↛ 0, 1)

The dominant type of radiation is the electric dipole radiation (E1). In an E1
transition, an odd parity level can decay only to an even parity level, and vice
verse. The parity of an atomic state can be derived by, P = (−1)

∑
i li , where l is

the orbital momentum quantum number for each electron in an N -electron sys-
tem, and P = 1 or −1 means even or odd parity, respectively. The strongest E1
transitions connecting the ground level to the opposite parity low excitation levels
are called the resonance lines. Following the E1 transitions, the magnetic dipole
(M1) transitions and the electric quadruple (E2) transitions are important. They
are the transitions which connect levels with the same parity. These transitions
are not allowed by E1 transitions, and thus the corresponding lines are called for-
bidden. Forbidden lines are much weaker than the lines from E1 transitions, and
thus the upper levels have several orders of magnitude longer lifetimes in neutral
and near-neutral atoms. For example, the M1 transition 2s22p2 3P1−2s22p2 3P2

in [Oiii] has a transition probability of 9.7× 10−5 s−1 (Galavis et al. 1997) and
the E2 transition 2s22p2 3P0 − 2s22p2 1D2 in [Oiii] has a transition probability
of 1.7 × 10−6 s−1 (Galavis et al. 1997) (note that this transition does not fol-
low a pure LS coupling, therefore the spin change rule is relaxed), whereas the E1
transition probability of the 2s22p2 3P2 − 2s2p3 3Po

2 transition is 1.4× 109 s−1

(Nussbaumer & Storey 1981). In addition to the parity rule, there are other con-
strains including the total angular momentum change and the LS coupling rules,
e.g. E2 transitions can occur between states with larger difference in J , compared
to M1 transitions. These rules are given in Table 2.1 (Cowan 1981).

13



2.1 Experimental setup for BF measurements

Transition probabilities and f -values can be measured with different methods.
In the projects of this thesis, I have combined radiative lifetimes with BF s to
determine f -values. For some projects available experimental lifetimes from the
literature and for others the calculated lifetimes have been combined with the
experimental BF s. The BF measurements have been performed using a hollow
cathode discharge lamp as a light source and a Fourier transform spectrometer to
record the spectra. Equipments that have been used during the measurements and
the experimental set-up are described briefly below.

2.1.1 Hollow cathode discharge lamp

Figure 2.3: Picture of the hollow cathode lamp built in Lund.

A hollow cathode discharge lamp (HCL) has been used to produce plasma of dif-
ferent atoms and ions. The HCL in the present project is a custom-made glass tube
with anodes on both ends and a cathode in the middle, see Figure 2.3, for a photo
of the HCL running with magnesium and neon, and Figure 2.4 for a schematic
cross-section of the lamp. The cathode itself is about 4 cm long with an inner
diameter about 8mm. It is made from the element of interest when possible, but
otherwise a small piece of the element to be studied is placed inside or a powdered
form is smeared on the wall of the cathode. The material of the glass window de-
pends on the studied wavelength region. A sapphire window is transparent to the
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Figure 2.4: Cross-section of a hollow cathode lamp (Courtesy of U. Litzen).

infrared light which makes it useful when the measurements are performed in the
infrared region whereas quartz is used for measurements in the ultraviolet region.
The lamp is water-cooled to reduce the heating of the cathode.

Before measurements, the system is evacuated. The lamp is filled with a carrier gas,
argon or neon in the present projects, with a pressure of 0.3− 1.0 Torr (0.4− 1.3
mbar). The best working pressure depends on the carrier gas as well as the element
of interest. When a voltage is applied, free electrons are accelerated and collide
with the carrier gas atoms which get ionised. The ions are accelerated towards the
cathode and hit the inner walls of the cathode and the sample of the element placed
in the cathode. These collisions release atoms from the cathode material and the
sample element to the plasma. This mechanism is called sputtering. The released
atoms in the plasma are not only excited by collisions, mostly with electrons, but
also through charge transfer with the carrier gas ions (Johansson & Litzen 1978,
1980).

In this thesis, different measurements have been performed with varying applied
currents, usually between 0.1 A and 1.0 A. Increasing the applied current increases
the number density in the plasma. This, in turn, increases the intensity of emission
lines, see Figure 2.5. Although a high-current helps weak lines to be visible, it may
cause a self-absorption effect on the strongest lines. This is a reabsorption of the
same transition in another atom of the same species and is a radiative transfer ef-
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Figure 2.5: Illustration of the change in the line intensity with different applied current
for the Si i 3p4s 3P2 − 3p4p 3D3 line at 8309.24 cm−1.

fect. Section 2.3 describes what a self-absorption effect is and how to correct for it.

Due to the design of the HCL, lines seen in the spectra are from neutral and
singly ionised atoms which belong to the element of interest, the carrier gas, and
the cathode material. The carrier gas lines can be used for wavenumber calibration
as described in Section 2.4.1.

The HCL in Lund has been used for all of the projects but for Sc ii measure-
ments. For the Sc ii project, measurements have been performed with a HCL at
Imperial College, that is based on the Lund HCL design.

2.1.2 The Fourier transform spectrometer

Two different high-resolution Fourier transform spectrometers (FTSs) have been
used to record the spectra analysed in the projects of this thesis: HR-IFS125
Bruker at the Lund Observatory (Edlén Laboratory) operating in the optical and
infrared regions and Chelsea Instrument FT500 at the Imperial College (Blackett
Laboratory) operating in the optical and UV regions.

The Lund instrument covers the wavenumber range of 50 000 − 2000 cm−1

(200 − 5000 nm) and has the maximum resolving power of R = σ/∆σ = 106

at 2000 cm−1. Due to the insensitivity of the optical elements in the instru-
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Figure 2.6: Illustration of an FTS based on the Michelson interferometer.

ment, such as mirrors, to higher wavenumbers, only the wavenumber region up
to 20 000 cm−1 has been recorded using a resolution of 0.02 cm−1 in Paper I
and IV, and 0.01 cm−1 in Paper II. The Imperial College instrument covers the
wavenumber range 71 500 − 8700 cm−1 (140 − 1150 nm) and has the maxi-
mum resolving power of R = 2·106 at 50 000 cm−1. In Paper III, measurements
have been performed with this instrument in the wavenumber region 23 500 to
63 100 cm−1 and using a resolution of 0.039 cm−1.

The dominant broadening mechanism of spectral lines in a HCL is the Doppler
broadening due to the thermal motions of the atoms. Doppler broadening has a
full width at half maximum, FWHM, per wavelength/wavenumber of,

∆λ

λ
=

∆σ

σ
= 7.16× 10−7

√
T

M
(2.5)

where T is the ion temperature and M is the atomic mass number of the species.
With a temperature around 2000K and the atomic mass of 21 as in the case for Sc i,
the required resolving power (λ/∆λ) is 145 000 to resolve the Doppler broaden-
ing. The effect of the instrument function on the recorded line shape and width
is negligible, if the resolving power is a factor of two or three greater than the re-
quired power derived from Doppler broadening (Thorne 1987).
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Figure 2.7: Schematic figure of the Bruker IFS 125 HR infrared FTS (Courtesy of G.
Ljung).

An FTS is based on the Michelson Interferometer concept which is illustrated in
Figure 2.6. The light beam from the source, S, splits into two beams at the beam
splitter. Half of the beam goes through the beam splitter and is reflected from the
moving mirror. The other half is reflected from the beam splitter, goes to the fixed
mirror and reflected back from the fixed mirror. The two beams recombine at the
beamsplitter and are registered at the detector. Since one of the mirrors moves
along the axis of the beam, the path lengths will be different for the two beams
and be varied throughout the movement. The recorded intensity at the detector
as a function of the optical path difference can be written as,

I(x) =

∫ ∞

−∞
B(σ) cos(2πσx)dσ (2.6)

where x is the path difference between the two beams, B(σ) is the spectral distri-
bution of the incoming light and σ is the wavenumber (Thorne et al. 1999; Davis
et al. 2001). This recorded intensity as a function of path difference is called an
interferogram which is a Fourier transform of a spectrum. Therefore, taking an
inverse Fourier transform of an interferogram will give a spectrum,

B(σ) =

∫ ∞

−∞
I(x) cos(2πσx)dx. (2.7)
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This transformation has been performed either by the computer programme OPUS
supplied by the BRUKER company and used for the measurements at Lund Ob-
servatory or with the computer software XGREMLIN (Nave et al. 2015) for the
measurements carried out at Imperial College.

The FTS concept is based on a Michelson interferometer but with more sophisti-
cated set-up, see Figure 2.7 for a drawing on the Lund Observatory HR-IFS125
Bruker instrument. Before any measurements, the instrument is evacuated to
avoid turbulences and vibrations, and molecules in the instrument. The HeNe
laser in the instrument traces the mirror movement, thus the path difference, and
gives a multiplicative wavenumber scale. However, the finite aperture size and the
non-parallel alignment of the incoming beam and the laser beam may affect the
wavenumber scale (Learner & Thorne 1988). This can be corrected by a wavenum-
ber calibration as described in Section 2.4.1.

In addition to the high wavenumber accuracy derived from the HeNe laser, an FTS
has two more advantages: multiplexing and large throughput (Svanberg 2001).
The former means that an FTS can record a spectrum at all wavelengths simulta-
neously. This, in turn, implies a shorter measurement time compared to scans for
one wavelength at a time, such as diffraction gratings. The radius of the collima-
tion mirror (the first optical element) determines the amount of throughput. A
large radius means a large throughput, throughput ∝ r2, which in turn allows
more light reach to the detector. A drawback with multiplexing is the noise level,
since the noise from strong features is distributed on all wavelength regions. Using
filters is thus an important tool to increase the signal-to-noise ratio.

2.1.3 Experimental set-up and other equipments

The experimental set-up used during the measurements is shown in Figure 2.8.
Light from the HCL enters to the FTS through the aperture with the help of a
folding mirror. It goes through a filter and reaches the detector. It is important to
have all these components aligned for two reasons: i) to make maximum amount
of the photons reach to the detector, ii) to make photons from different sources
have the same optical path. Misaligned components may affect the results.

In addition to the HCL light source, a calibration lamp is placed at the same
distance as the HCL to the FTS. A folding mirror helps changing between light
sources, either the HCL or the calibration lamp, without moving the lamps. The
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Figure 2.8: Experimental set-up for branching fraction measurements.

calibration lamp has two roles: to control if anything has changed between dif-
ferent measurements and to help determining the response function of the instru-
ment. Its spectra are taken before and after every HCL lamp recording, and in this
way one can confirm the response function does not change during the measure-
ments. To determine the intrinsic relative intensity of the spectral lines, one should
know the response function which is the wavelength dependent transmission of the
optical components and detector of the instrument. It can be determined from the
true radiance and the observed spectrum of the calibration lamp. This calibration
procedure is described in Section 2.4.2 in detail. In this thesis projects, tungsten
lamps and a deuterium lamp have been used along with a blackbody emitter with
known temperature. One of the tungsten lamps has been calibrated by the Swedish
National Laboratory (SP) for the range 40 000− 4000 cm−1 (250− 2500 nm)
and has been used in Paper I, II, and IV. The other tungsten lamp was cali-
brated by the UK National Physical Laboratory for the 33 000− 12 500 cm−1

(300− 800 nm) wavenumber region which has been used in Paper III. The deu-
terium lamp has been calibrated by Physikalisch-Technische Bundesanstalt (PTB),
in Berlin for the spectral region 86 200− 24 390 cm−1 (116− 410 nm).

The spectra have been recorded with different detectors and filters sensitive to pho-
tons in the wavelength region of interest. This helps to reduce the noise as light

20



from other regions is blocked. Noise can have different sources, the dominating
ones are the photon noise and the detector noise (Thorne et al. 1999; Davis et al.
2001). In the optical and UV region, the noise usually arises from the photon noise
and this can be reduced by using filters and detectors only sensitive to a specific
wavelength region. In the IR region, in addition to the photon noise, there is the
detector noise. The noise level can be decreased by using detectors sensitive to this
region and by cooling. In the measurements out to 2000 cm−1, we observe that
the blackbody radiation of the hollow cathode contributes to the noise of the mea-
sured spectrum. In Paper I, II, and IV, we have used an indium antimonide (InSb)
detector sensitive to the photons in the wavenumber region 1850−11 000 cm−1,
an indium gallium arsenide (InGaAs) detector sensitive to the photons between
6000 and 15 000 cm−1, a silicon (Si) detector sensitive to the photons between
8000 and 21 000 cm−1, and a photomultiplier tube (PMT) detector sensitive to
the photons in the wavelength region 12 000 − 21 000 cm−1. In Paper III, we
have used two different PMT detectors sensitive to 23 700− 47 400 cm−1 and
31 500− 63 000 cm−1 regions.

Moreover, molecules in the humid air, such as water and carbon-dioxide, have
absorption bands in the infrared wavelength region. Those bands are visible on
spectra of the calibration lamp, and thus affect the observed spectra of the species
studied in this thesis. For this reason, we isolated a part of the experimental set-
up, where the calibration lamp and the HCL are, and placed liquid nitrogen to
trap the molecules. This set-up reduced the amount of molecules and hence the
absorption from them.

2.2 Lifetime measurements with TR-LIF method

Lifetime measurements are complementary to BF measurements, because the
transition probability of a line is derived as the ratio between the BF of the
line and the lifetime of the upper level. In Paper III, reported radiative lifetimes
have been measured with the two-step Time-Resolved Laser Induced Fluorescence
(TR-LIF) method at the Lund High Power Laser Facility. The two-step excitation
method allows to excite the levels that are not directly possible to reach from the
ground level, such as the highly excited levels which would require lasers with
short wavelengths or the levels with the same parity as the ground or lower excita-
tion states. The latter cannot be excited from the lower levels since the excitation
is not possible with a E1 transition and must be through a M1 or E2 transition.
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Figure 2.9: Lifetime measurements set-up at the Lund High Power Laser Facility with
two-step excitation.

The transition probability is then much lower compared to the allowed transitions.

The experimental set-up, used in Paper III, is illustrated in Figure 2.9. A solid
piece of the target element is placed on a rotating plate just below the detection
area and laser pulses (from the top laser in the figure) are directed perpendicular
to the target to produce the plasma with the free atoms and ions targeted in the
measurements. Two additional lasers (middle and bottom lasers) are responsible
for the two-step excitation. The laser light is tuned to match the desired excitation
wavelength. In other words, the laser light wavelength is adjusted to populate the
intermediate level or the final level. In cases when a shorter wavelength (or higher
frequency) than the wavelength that can be achieved with the dye lasers is needed
to reach the desired levels, KDP and BBO crystals are used to double or triple the
frequency, respectively.

The lifetimes in Paper III are in the range 1.09 − 3.80 ns, whereas the pulses
from the excitation lasers have widths of 10 ns. The laser pulses are thus too long
to be able to measure the interesting levels. To shorten the laser pulses of the sec-
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Figure 2.10: Example of a recorded decay (+) that is a convolution of the second step
excitation laser pulse (dashed line) and the single exponential decay of the
excited level. The solid line shows the fitted convolution curve. The small
figure shows the delay between the first step laser pulse (broad curve) and
the second laser pulse (narrow curve) (Lundberg et al. 2016).

ond excitation laser (middle one in the figure), a stimulated Brillouin scattering
(SBS) cell is applied. This is a water cell which temporally compresses the laser
pulse to widths around 1 ns making shorten lifetimes accessible.

The timing between the ablation laser pulse producing the plasma, the first ex-
citation pulse, and finally the second step excitation pulse is crucial. The delay
unit controls not only the timing between the plasma generating laser and the first
step excitation laser but also the delay between the first and second step excitation
lasers. The first delay is used to time the measurements to parts of the plasma
where the plasma conditions are optimal, such as recombination background and
atom dynamics. The latter delay is to time the second step laser pulses to a time
when the population of the intermediate level is at its maximum and not varying,
as seen in Figure 2.10.

The fluorescence signal from the final level is filtered out with a grating monochro-
mator and recorded by a photomultiplier tube detector. The recorded signal is a
convolution of the second step excitation laser pulse and the exponential decay
of the excited level, see Figure 2.10. Because of this reason, the laser pulse and

23



Figure 2.11: Example of a two step excitation from the ground state 3d4s 3D3 to 4p2 3P2

in Sc ii.

fluorescence signal are recorded simultaneously for each measurements. By fitting
a convolution curve, one can determine the lifetime of the excited level. Studies of
complex spectra with many levels and lines, such as Sc ii, requires a tuneable and
narrow-line excitation laser to ensure that only one level is excited at a time which
makes the blending less problematic. Despite this fact, the dense level structure
makes blending an issue. A careful analysis of the lines in both the excitation chan-
nel and the fluorescence is needed. When utilising a two-step excitation scheme, as
in the present study, blending by decays from intermediate level decays, or cascade
decays from the level studied is a possibility. Analyses of several decay channels of
the same levels are used when possible.

Figure 2.11 shows an example of a two-step excitation measurement. After the
ablation laser has created the plasma, the first step excitation laser populates the
intermediate level 3d4p 3P2 from the ground level 3d4s 3D3. The second step
laser excites the atom from the intermediate level to the final level 4p2 3P2. The
decay signal has been observed in three channels from decays to 4s4p 3P2, 3P1,
and 3D3 levels.
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2.3 Self-absorption analysis
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Figure 2.12: Self-absorption test for Mg i lines. a) Intensity ratios of the lines from the
upper level 4d1D2 shows no change as a function of the applied discharge
current. This indicates that the lines are self-absorption free. b)Intensity ra-
tios of the lines from the upper level 4s3S1 decreases as the applied discharge
current decreases. This clearly indicates the presence of self-absorption.

An emitted photon from one atom might be absorbed by another atom of the same
element before it escapes from the plasma; this is known as self-absorption. The
probability of self-absorption depends on the physical dimensions of the plasma
and the absorption coefficient which in turn depends on the transition strength
and the density of the plasma (Kunze 2009; Gray 2005).

The self-absorption reduces the intensity of a line, therefore the observed inten-
sity will be too low compared to the true intensity. This, in turn, will affect the
BF s and the derived oscillator strengths will be incorrect. In the spectroscopic
experiments, it is important, often needed, to apply high discharge current as it
helps improving the signal-to-noise ratio (SNR) by increasing the number density
in the plasma. However, this increases the effect of self-absorption, too. In ad-
dition, transitions to the ground level or to the metastable levels are more likely
to be affected by self-absorption due to the high population of the lower levels of
these transitions.

Different plasma conditions cause different amount of self-absorption. To in-
vestigate self-absorption effects, the measurements are carried out with different
applied disharge currents. These effects are determined by studying the intensity
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ratios of the lines from the same upper level as a function of the applied current.
If the ratio does not change, it means there is no self-absorption. However, if
the ratio varies systematically with the current, this indicates the presence of self-
absorption. The self-absorption effects can be compensated by correcting the line
intensities or line ratios. This is done by extrapolating a line ratio to the ratio at zero
current, where the true line ratio is assumed to be not affected by self-absorption.
This method was tested by Sikström et al. (2002) where their extrapolated zero
current Fe i line ratios agreed very well with the Blackwell et al. (1979) absorption
measurement values.

Figure 2.12 shows an example of normalised intensity ratios plotted as a function
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Figure 2.13: Alternative example of a self-absorption test for the same lines as in
Figure 2.12. The intensity ratio is between the sum of the intensities from
the weaker lines and the intensity of the strongest line from the same upper
level. Note that the lines from the 4d 1D2 level are not strong enough to be
measured with 100 mA.

of applied currents for Mg i lines. In Figure 2.12a, the normalised intensity ratios
of 3p 1P1 - 4d 1D2 and 4p 1P1 - 4d 1D2 lines do not show any change with in-
creasing current, and thus these lines are not affected by self-absorption. On the
other hand, Figure 2.12b shows the normalised intensity ratios of the transitions
from the 4s3S1 level and it is clear that the ratios change with increasing intensity.
This plot implies that the lines are affected by self-absorption. Alternatively, one
can plot the intensity ratios as the sum of intensities of the weaker lines from the
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same upper level divided by the strongest line intensity from the same upper level,
as seen in Figure 2.13 for the same lines as in the previous example. In this plot,
the change in the intensity ratio indicates that the strongest line is affected by self-
absorption. To correct this effect, a line has been extrapolated to the zero current
value. The uncertainty of the fit has been included in the total uncertainty of the
line intensities. The zero current value (intercept) has been used in the derivation
of the BF , and is then corrected for the self-absorption effect on the strongest
line.

2.4 Calibration

2.4.1 Wavenumber calibration

The HeNe laser in the FTS keeps track of the mirror movement in the instrument
and gives a linear wavenumber scale to the recorded spectrum. The accuracy of the
wavenumbers is usually enough to identify lines. However, for a higher accuracy
one has to calibrate the wavenumbers. The shift in the wavenumber arises from
two reasons: the finite size aperture and the imperfect alignment of the laser beam
and the incoming light beam (Learner & Thorne 1988; Salit et al. 1996). It can
be calibrated with a correction factor,

σtrue = (1 + keff)σapparent (2.8)

where σtrue is the true wavenumber, keff is the correction factor, and σapparent is
the measured wavenumber (Davis et al. 2001). Usually, the correction factor is
obtained by an internal light wavenumber standard, such as the carrier gas lines
produced in the HCL. One of the advantages of using the internal gas lines for
wavelength calibration is the same optical path which does not introduce further
uncertainties. In principle, it is enough to use only one line to put the wavenum-
bers on an absolute scale (Learner & Thorne 1988), nevertheless using many lines
will help to improve the accuracy and to avoid systematic errors. The correction
factor of a line i is derived from Eq. 2.8,

keff,i =
σtrue,i

σapparent,i
− 1. (2.9)
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For n different calibration lines, the correction factor can be determined from the
mean of all correction factors weighted by the inverse variance,

keff =

n∑
i=1

keff,i u
−2(keff,i)

n∑
i=1

u−2(keff,i)

(2.10)

where u(keff,i) is the uncertainty in the correction factor which is determined from
the propagation of errors,

u2(keff,i)

(keff,i + 1)2
=

(
u2(σtrue,i)

σ2
true,i

+
u2(σapparent,i)

σ2
apparent,i

)
. (2.11)

In Paper II, the correction factor has been determined with Ar i lines. Eq. 2.8 has
been applied to obtain the true wavenumbers of Sc ii lines. Ar ii lines were too
weak to calibrate the lines in the wavenumber region of interest. When calibrated,
the total uncertainty in the wavenumber is the combination of the uncertainty in
the observed central position of each line and the uncertainty in the correction
factor,

u2(σ)

σ2
=

(
u2(σobs)

σ2
obs

+
u2(keff)

(1 + keff)2

)
. (2.12)

The typical total wavenumber uncertainty is usually very small ∼0.001 cm−1.

2.4.2 Intensity calibration

To determine the true relative intensities, one should calibrate for the response
of the instrument. All optical elements in the FTS contribute to the instrument
response. This can be compensated by measuring a spectrum of a reference light
source with a known radiance, using the same experimental setup and the equiva-
lent optical path. In Paper I, II, and IV, a tungsten filament lamp has been used as
a reference light. This lamp has been calibrated in the range 40 000− 4000 cm−1

(250 − 2500 nm). In addition to that, in Paper II and IV, a blackbody lamp has
been used to extend the calibration to longer wavelengths (λ > 2500 nm). In Pa-
per III both a tungsten filament lamp and a deuterium lamp have been used since
the experiments were performed between 23 500−63 100 cm−1 (425−158 nm).
The deuterium lamp has some emission structure on its continuum, therefore the
measured deuterium lamp spectrum has been binned to match the reference data.
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Figure 2.14: Response functions of the instrument normalised to the peak of each curve.
The dashed line was acquired with the Si detector and the solid line with the
InSb detector.

The calibration procedure starts with recording the spectrum of the calibration
lamp with the same optical set-up and conditions as the BF measurements. Di-
viding the recorded calibration lamp spectrum with the known spectral radiance
will give the response of the instrument for the specific set-up. Figure 2.14 shows
the resulting response functions of the Bruker IFS 125 HR instrument at Lund
Observatory obtained for different detectors, namely the InSb and the Si. In cases
where lines from the same upper level are at different wavelength region, the lines
in the overlapping region of the detectors can be used to connect the relative in-
tensities of the two wavelength regions.

Another example is shown in Figure 2.15. The left figure shows the partial radi-
ances of the tungsten and the deuterium lamps in the region 23 000− 39 000 cm−1

and the right figure shows the response functions derived from the two lamps
radiances and observed spectra. In Paper III, we have measured Sc ii lines in
the region where both of the calibration lamps were needed to cover the full
region. Therefore, the spectra of the lamps have been recorded one after the
other for the same experimental set-up. The overlapping wavenumber region
is 24 390− 33300 cm−1. As seen in Figure 2.15b, the acquired normalised re-
sponse functions from the two lamps are very similar, as expected. In this way,
the full wavenumber range needed for the intensity calibration of the Sc ii lines
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Figure 2.15: a) Partial radiances of the tungsten lamp and the deuterium in the region
24 390−33 300 cm−1. b) Response functions of the instrument determined
from the tungsten lamp and the deuterium lamp.

has been covered. In addition, this figure indicates that the systematic errors are
very small.

2.5 Oscillator strengths

Oscillator strengths, f -values, in the projects of this thesis have been obtained
from BF s and radiative lifetimes. The BF s have been measured either with the
Lund FTS or London FTS using a HCL as a light source. Moreover, the radia-
tive lifetimes have been measured with a two-step TR-LIF method at Lund High
Power Facility when possible (Paper III), taken from measurements in the litera-
ture (Paper I and II) or calculated using the atomic structure codes ATSP2K and
GRASP2K (Paper II and IV).

After correcting the relative line intensities for instrument response function and
self-absorption, the BF s have been obtained from,

(BF )ul =
Aul∑
iAui

=
Iul∑
i Iui

. (2.13)

The latter equality follows from the fact that all the lines decay from the same upper
level and the intensity of a transition is proportional to the transition probability
of that transition, the statistical weight of the upper level, and the population of
the upper level, therefore BF s can be determined as relative intensity ratios.
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Combining BF s with radiative lifetimes, transition probabilities have been de-
termined from,

Aul =
BFul

τu
. (2.14)

Finally, using Eq. 2.1, f -values have been derived from,

f =
gu

gl
λ2Aul1.499× 10−16, (2.15)

where gu and gl are the statistical weights of the upper and lower level, respectively,
λ is in Å and Aul is in s−1.

2.6 Uncertainties

The uncertainty in the transition probability and therefore in the f -value includes
the uncertainty in the upper level lifetime, τu, and the uncertainty in the BF .
From the propagation of errors, the relative uncertainty is,(

u(f)

f

)2

=

(
u(A)

A

)2

=

(
u(BF )

BF

)2

+

(
u(τ)

τ

)2

. (2.16)

The main contribution to the uncertainty in the experimental τu is usually the
variation between measurements, since the statistical uncertainties from the fitted
lifetimes are very low (Palmeri et al. 2008) compared to the day-to-day variations.
The uncertainty in theBF further contains the uncertainty in the measurement of
line intensity, uncertainty in the calibration lamp, and uncertainty in the normali-
sation factor that connects different spectral regions if different detectors are used.
The uncertainty in the intensity includes the uncertainty of the self-absorption
correction. The uncertainty of the calibration lamp includes the calibration un-
certainty and the variation between the repeated calibration lamp measurements.
The final total uncertainties have been derived from the methods described in Sik-
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ström et al. (2002) assuming the contributions are uncorrelated,(
u(Ak)

Ak

)2

= (1− (BF )k)
2

(
u(Ik)

Ik

)2

+
∑

j ̸=k(in P)

(BF )2j

((
u(Ij)

Ij

)2

+

(
u(cj)

cj

)2
)

+
∑

j ̸=k(in Q)

(BF )2j

((
u(Ij)

Ij

)2

+

(
u(cj)

cj

)2

+

(
u(nf)

nf

)2
)

+

(
u(τ)

τ

)2

, (2.17)

where u(Ik) is the uncertainty of the line intensity including the uncertainty of
self-absorption correction, u(c) is the uncertainty in the calibration lamp and
u(nf) is the uncertainty in the normalisation factor. The second line of the equa-
tion includes the intensity uncertainties of other lines from the same upper level
detected within the spectral region of the same detector P, and the third line in-
cludes the intensity uncertainties of other lines from the same upper level detected
with detector Q.

In addition, all the lines from the same upper level may not be visible due to
the low transition probability. In these cases their residuals are determined from
calculations (usually < 10%) and the relative uncertainty of these lines has been
estimated to 50% and added in the uncertainty budget.

In the projects of this thesis, the relative uncertainties of the f -values are between
5% for the strong lines and 25% for the weak lines or for the lines with high
uncertainty in their radiative lifetime.
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Chapter 3

Calculations of oscillator strengths

In order to calculate atomic data, such as oscillator strengths, between the lowest
states of an N-electron system, the corresponding wavefunctions, Ψ(q1, . . . , qN ),
where q = (r, σ) represents both the space and spin coordinates of an elec-
tron, should be known. The wavefunctions are solutions to the time-independent
Schrödinger equation,

HΨ(q1, q2, . . . , qN ) = EΨ(q1, q2, . . . , qN ), (3.1)

where the Hamiltonian operator, H, depends on the quantum mechanical for-
malism; a relativistic system or a non-relativistic system. It is convenient to use
atomic units here on, where the unit of length is defined by the Bohr radius,
a0 = 4πε0ℏ2/me2, the unit of mass is the rest-mass of the electron, the unit
of charge is set to the magnitude of the electron charge, and the angular momen-
tum ℏ, is equal to unity (Hartree 1957). A non-relativistic H in atomic units is
defined as,

H =
N∑
i=1

(
−1

2
∇2

i −
Z

ri

)
+

N∑
i>j

1

rij
, (3.2)

where Z is the nuclear charge, ri is the distance from the nucleus and rij is the
distance between two electrons. The first term is the kinetic energy, the second
term arises from the potential energy of the electrons and the third one accounts
for the interaction between the electrons.

During calculations we need to keep in mind the properties of the wavefunctions
as described in Froese Fischer et al. (1997):
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• The wavefunctions belonging to the discrete spectrum part of the Hamilto-
nian represent bound states. These wavefunctions are square integrable and
can be normalised.

• Electrons are indistinguishable, therefore the wavefunctions should be an-
tisymmetric.

• The non-relativistic Hamiltonian commutes with the squares and projec-
tions of the total orbital and spin angular momentum operators. Therefore,
the wavefunction should be simultaneous eigenfunctions to all H, L2, Lz ,
S2, Sz . The eigenvalues of these operators are E, L(L+1), ML, S(S+1),
and Ms, respectively and the wavefunction is labelled by the angular mo-
mentum quantum numbers, L, ML, S, and MS .

• The wavefunction should be an eigenfunction to the parity operator, Π, as
the parity operator commutes with the angular momentum operators and
the Hamiltonian operator.

Although, Eq. 3.1 seems to be easy to solve, it is computationally challenging
and some approximations are needed. Hartree (1957) explained the necessity of
approximations in atomic structure calculations with an example. In this thesis
case, if we consider Mg i with 12 electrons, each electron has its own 3D-space,
therefore there will be 12 × 3 = 36 space variables. If we want to numerically
represent the wavefunction by giving the function values on a grid with ten values
(which is still very modest), in each space dimension we will need 1036 values.
This is impossible to handle even with supercomputers. This example shows the
need for approximations in atomic structure calculations for systems with more
than four electrons. Approximate solutions to Eq. 3.1 for many electron systems
are all constructed from one electron solutions.

3.1 One-electron solution

The Schrödinger equation in spherical coordinates and in a general spherical po-
tential U(r) for one-electron system is (Hartree 1957),

Hϕ(r, θ, φ, σ) = Eϕ(r, θ, φ, σ), (3.3)

where the Hamiltonian in atomic units is,

H = −1

2

(
1

r2
∂

∂r

(
r2

∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2

)
+U(r).

(3.4)
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U(r) = −Z/r+V (r) and V (r) is the central potential. This Schrödinger equa-
tion can be solved by the separation of variables method and the solutions are of
the form of

ϕ(r, θ, φ, σ) =

(
1

r

)
P (r)Y (θ, φ)χms(σ). (3.5)

The angular equation becomes,

1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1

sin2 θ

∂2Y

∂φ2
+ λY = 0 (3.6)

where λ = l(l + 1) with l = 0, 1 . . .. Y are the spherical harmonics that are
eigenfunctions to both the orbital angular momentum operator and the parity
operator, and characterised by l and m. This part is simple enough to solve and the
derivations can be found in many text books (see for example Pradhan & Sultana
2011). The radial part is more complicated to solve. Bound state solutions to(

d2

dr2
− 2U(r)− l(l + 1)

r2
+ 2E

)
P (r) = 0 (3.7)

should satisfy the boundary conditions P (0) = 0 and P (∞) = 0, and P (r)
must be normalised. Such solutions can be found only for certain discrete energy
values, E, and they depend on the principal quantum number, n, and the orbital
quantum number, l. Derivations of analytical and numerical solutions can be
found in Cowan (1981). The one-electron wavefunctions can be written as,

ϕ(r, θ, φ, σ) =

(
1

r

)
P (nl; r)Ylml

(θ, φ)χms(σ), (3.8)

and are known as spin-orbitals.

3.2 Variational method

For many-electron systems, we need approximate methods to determine wave-
functions. These methods usually rely on the variational method. Determining
a normalised solution to Eq. 3.1 is equivalent to determining a function Ψ that
leaves the functional,

F(Ψ) = ⟨Ψ|H|Ψ⟩+ λ⟨Ψ|Ψ⟩, (3.9)

stationary to first order with respect to all variations, δΨ, in Ψ. λ is a so called
Lagrange multiplier and is determined such that the normalisation condition,
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⟨Ψ|Ψ⟩ = 1 is fulfilled (Froese Fischer et al. 1997).

In practise, the variational problem can not be solved exactly. Instead, we choose a
variational function Ψv that depends on a various parameters, α = (α1, ...,αn)

Ψv = Ψv(α; q1, ..., qN ). (3.10)

Then these parameters are determined from the stationary condition of the func-
tional, F(α) = ⟨Ψv|H|Ψv⟩ + λ⟨Ψv|Ψv⟩, with respect to variations of the pa-
rameters,

∂F(α)

∂αi
= 0 i = 1, . . . , n (3.11)

with λ determined from the normalisation constraint, ⟨Ψv|Ψv⟩ = 1 (Froese Fis-
cher et al. 1997). This is a problem that can be solved on a computer. The vari-
ational function, Ψv, represents the best approximate solutions of the Eq. 3.1
within the function space spanned by the variational function. In addition, the
variational function should have the same properties as the exact eigenfunction
described in the beginning of this Chapter.

3.3 Hartree-Fock method

The simplest variational function, that has the correct qualitative features, is the
Hartree-Fock wave function. In this method (Hartree 1928; Fock 1930a,b), the
variational function is taken as a product of one-electron functions, or spin-orbitals.
The product of one-electron functions is antisymmetrized and is a linear combina-
tion of antisymmetrized product functions with different combinations of ml and
ms quantum numbers to form a function that is also an eigenfunction of L2, Lz ,
S2, Sz . Such a function is called a configuration state function (CSF), Φ(γLS),
where γ specifies the principal and orbital quantum numbers of the spin-orbitals
used in the construction and in addition gives information on how the individual
angular momenta are coupled together to give the final total angular momenta L
and S.

Applying the variational principle with respect to the variations in the radial func-
tion, P (nl; r) and using the energy functional,

F( P) = E(γLS) +
∑
a⩽b

δlalbλab⟨P (a; r)|P (b; r)⟩ (3.12)
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where a and b are the short notations for nala and nblb, one gets a set of coupled
integrodifferential equations, known as the Hartree-Fock equations,(

d2

dr2
+

2

r
[Z − Y (a; r)]− la(la + 1)

r2
− εaa

)
P (a; r) =

2

r
X(a; r) +

m∑
b=1
b ̸=a

δlalbεabP (b; r). (3.13)

for unknown radial functions. The quantities εaa and εab are the diagonal and off-
diagonal energy parameters, respectively, related to the Lagrange multipliers, λab,
introduced in the functional to preserve the orthogonality of the radial orbitals.
The equations are coupled to each other through, Y (a; r), the direct potential,
that can be interpreted as a screening of the nucleus, and the exchange potential
X(a; r) that arises from the anti-symmetrisation of the variational function. The
derivations of these equations can be found in the many text books (such as Cowan
1981; Froese Fischer et al. 1997).

The Hartree-Fock equations are solved iteratively in the so-called self-consistent
field procedure: estimate the radial orbitals and solve the equations repeatedly
until the radial functions do not change any more.

3.4 Multiconfiguration Hartree-Fock method

In the Hartree-Fock method, electrons move independently in the field of the nu-
cleus and of the other electrons, however, in reality this is not the case. The method
does not include the correlation in the motion of the electrons, hence electrons do
not interact with each other. The solutions derived from the Hartree-Fock (HF)
method are not the exact solutions of the Schrödinger equation. Because of this
reason, Löwdin (1955) introduced the so-called correlation energy,

Ecorr = Eexact − EHF , (3.14)

where the Eexact is the exact solution of the Schrödinger’s equation. The HF
method can be improved by the multiconfiguration Hartree-Fock method (MCHF)
in which the electron correlation is taken into account and the total wavefunction
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is assumed to be a linear combination of CSFs,

Ψ(γLS) =

M∑
i=1

ciΦ(γiLS), (3.15)

where ci is called a mixing coefficient and
M∑
i=1

c2i = 1 (Froese Fischer et al. 1997).

Consequently, the problem expands to determining ci coefficients and orbitals as
an extension to the HF method (Froese Fischer et al. 2016). In this method, both
ci coefficients and radial parts of the spin-orbitals are varied for a stationary energy
(Froese Fischer et al. 2016). The energy functional for this method becomes,

F(P, c) = ε(γLS) +
∑
a⩽b

δlalbλab⟨P (a; r)|P (b; r)⟩ − E

M∑
i=1

c2i . (3.16)

For given radial functions, applying variations to the mixing coefficients leads to
a matrix eigenvalue equation in the form of,

Hc = Ec, (3.17)

where H is a matrix with matrix elements given by ⟨Φ(γiLS)|H|Φ(γjLS)⟩ and
c is a column vector of the mixing coefficients. For given mixing coefficients, vari-
ations in the radial function yields coupled differential equations, similar to the
Hartree-Fock equations given in Eq. 3.13. The difference is that the X(a; r) term
arises both from the exchange of electrons within the same CSF and the interac-
tion of electrons between different CSFs (Froese Fischer et al. 1997).

The procedure starts by estimating initial radial functions, and is followed by;
i) solving the eigenvalue equation Hc = Ec , ii) finding the potentials X and Y ,
iii) solving the MCHF equations for improved radial functions, and iv) repeating
the procedure from (i) with the new radial functions determined in (iii) until the
convergence. The MCHF method can be extended to determine the wavefunc-
tions for many states at the same time. The variations are now on the weighted
energy average of the targeted states and the mixing coefficients of the states are
the different eigenvectors of the matrix eigenvalue equation.

3.5 Some comments on the relativistic calculations

The relativistic calculations in this thesis have been based on the multiconfigura-
tion Dirac-Hartree-Fock (MCDHF) method, where the Hamiltonian is defined
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as,

HDC =

N∑
i=1

(
c αi · pi + (βi − 1)c2 − Vnuc(ri)

)
+

N∑
i>j

1

rij
, (3.18)

where c is the speed of light, α and β are the Dirac matrices, p is the momentum
operator, and Vnuc is the nuclear potential (Jönsson et al. 2017). The total orbital
momentum and the spin angular momentum are coupled to the total angular mo-
mentum, J = L + S. The wavefunction does not commute with L2, Lz , S2 or
Sz , but instead with J2, Jz giving the angular momentum quantum numbers,
J and MJ , where the latter is often suppressed in the notation. The total wave-
function can be written similar to the MCHF method as a linear combination of
CSFs

Ψ(γJ) =
M∑
i=1

ciΦ(γiJ). (3.19)

The CSFs are built from relativistic one-electron orbitals in the form of

ϕnκ,m(r) =
1

r

(
Pnκ(r)χκ,m(θ, φ)

iQnκ(r)χ−κ,m(θ, φ)

)
, (3.20)

where Pnκ(r) and Qnκ(r) are the large and small components of the radial wave-
function and χ±κ,m(θ, φ) are two component spin-orbit functions. The energy
of a relativistic CSF can be expressed in terms of coefficients and radial integrals
similar to the non-relativistic theory. By applying variational principle, one gets
a set of differential equations similar to the non-relativistic case and the matrix
eigenvalue equation in the form of Hc = Ec. These equations can be solved in
a similar way as in the non-relativistic case with additional conditions between
the large and the small components of the radial functions at the origin to avoid
the solutions belonging to the negative energy continuum. Once a set of radial
orbitals are calculated, additional corrections can be included to account for the
full relativistic effects in the configuration interaction calculation where only the
expansion coefficients of the CSFs are determined. The final wavefunctions give
the energy values for the fine structure states (with J quantum number), rather
than LS averages. When the wavefunctions are determined, the computation of
the oscillator strengths looks similar as in the non-relativistic case. More details
can be found in many literature (see for example Grant 2007; Jönsson et al. 2017).
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3.6 Oscillator strengths

Once the wavefunctions are known, the transition probability and the f -value of a
spectral line can be computed. Let Ψu and Ψl be the wavefunctions for the upper
and lower states of an E1 transition. The probability for the transition is then
given in Cowan (1981),

A =
64π4e2a2oσ

3

3h

∑
q

|⟨Ψu|E(1)
q |Ψl⟩|2 (3.21)

where E
(1)
q =

∑N
i=1 e

(1)
q (i) is the electric dipole operator. The electric dipole

matrix element has three alternative forms. The most common forms are,

⟨Ψu|
N∑
i=1

riC
(1)
q (i)|Ψl⟩ (3.22)

1

(Eu − El)
⟨Ψu|

N∑
i=1

∇(1)
q (i)|Ψl⟩ (3.23)

where C(1)
q denotes the renormalised spherical harmonics of rank 1 and Eu and El

are the energy values of the u and l states (Cowan 1981). The first form is called
the length form and the second one is the velocity form. Both of these forms give
the same result if the exact wavefunctions are used. However, for approximate
wavefunctions, the values normally differ. The agreement between the velocity
and the length form are usually considered as a quality criteria of the calculations,
see Section 3.8 for more details on accuracy of the calculations.

The E1 line strength, S, in the length form is defined as,

S = |⟨Ψu|
N∑
i=1

riC
(1)
q (i)|Ψl⟩|2 (3.24)

which is independent of the wavenumber, σ. The total transition probability,
A-value, becomes,

A ∝ σ3S (3.25)

that is dependent on the wavenumber, σ. Finally the oscillator strength is

f ∝ σS (3.26)
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which depends also on the transition energy σ. f -values calculated using the non-
relativistic formalism are term averages. In Paper II, these values have been multi-
plied with the square of the line factor (Cowan 1981) to yield the f -values for the
transitions between fine structure levels.

3.7 Systematic calculations

Calculations have been performed with the non-relativistic ATSP2K package (Froese
Fischer et al. 2007) for Mg i in Paper II and the relativistic GRASP2K package
(Jönsson et al. 2013, 2017) for Si i and Si ii in Paper IV. Although, the relativistic
effects in Si i and Si ii were thought to be small, the choice of the relativistic code
relied on the author’s desire to learn how to use this package. After the test cal-
culations, we realised that, in fact, these atomic systems are considerably affected
by relativistic effects. For the relativistic calculations, everything described in the
non-relativistic part is almost the same with a difference of relativistic orbitals. In
addition, the total orbital momentum and the spin angular momentum are cou-
pled to the total angular momentum, J = L + S.

Both in Paper II and Paper IV, we have started with HF calculations describing the
targeted states and continued with the MCHF method. Note that, in Paper IV,
instead of the latter we have used MCDHF method with relativistic orbitals. For
Mg i, in Paper II, the targeted states are up to n = 7 and l = g such as from
1s22s22p63s2 to 1s22s22p63s7g. After the test runs, we have observed that the
difference between the velocity and the length form of A-values has been large for
the transitions involving highly excited states, for instance states with n = 7. For
this reason, we have included configurations with n = 8 and n = 9 in the initial
HF calculations to obtain orbitals with large radii even though these configura-
tions do not belong to our targeted states.

We have performed MCHF calculations by adding more and more CSFs to ac-
count for electron correlation. The orbitals of the targeted states have been kept
fixed and CSFs have been systematically extended to orbitals with higher principle
quantum numbers, n. This expansion has been done by single and double excita-
tions with some restrictions (depending on the atomic system) from a set of ref-
erence configurations, referred as the multireference (MR), to an extended orbital
set. The MR includes at least the configurations of the targeted states (including
n = 8 and n = 9) but can be extended by additional important configurations.
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The orbital set is extended layer by layer, which means that excitations have been
allowed also to orbitals with n+ 1 and n+ 2 and so on. Similar procedures have
been followed for the Si i and Si ii calculations in Paper IV, i.e. adding more con-
figurations in the MR and increasing the orbital set systematically. The accuracy
of calculations depends on the size of the MR, the size of the extended orbital
set to which we do excitations, and on the rule for excitations. A large MR and
a large orbital set together with a less restrictive rule for excitations means large
CSF expansions and this needs to be balanced against the available computational
resources.

For example, to calculate the wavefunction for the 3s2 1S state in Mg i, as a first
step we only consider 1s22s22p6 as a closed core and allow single and double ex-
citations from the valence electrons. This type of models account for the valence-
valence correlation (VV) (Froese Fischer et al. 1997) and has the form of

Ψ(2p63s2 1S) = c1|(2p63s2 1S⟩+ c2|(2p63s4s 1S⟩+ · · ·+ ck|(2p63s10s 1S⟩+ . . .

+ cl|(2p63p2 1S⟩+ cm|(2p63d2 1S⟩+ · · ·+ co|(2p610g2 1S⟩+ . . .

+ cp|(2p63p4p 1S⟩+ . . . cr|(2p63d4d 1S⟩+ . . . cs|(2p69g10g 1S⟩
+ . . . (3.27)

The first line represents the single excitations such that an electron from the 3s or-
bital moves to the 4s orbital and the second line represents the double excitations
from the valence shell 3s2, such that two electrons in the 3s orbital move to the
3d orbital, and so on. In addition, the third line gives the double excitation from
the 3s orbital to the 3p and 4p orbitals, and so on.

Additionally, allowing one excitation from the 2p6 core along with one excita-
tion from the valence extends the model to include core-valence (CV) correlation
(Froese Fischer et al. 1997). For instance,

Ψ(2p63s2 1S) = c1|(2p63s2 1S⟩+ VV excitations

+ ct|2p53s23p 1S⟩+ cu|2p53s24f 1S⟩+ . . .

+ cv|2p53s3p3d 1S⟩+ cw|2p53s3p5g 1S⟩+ . . .

(3.28)

The second line is an example of a single excitation and the third line is a double
excitation accounting for the CV correlation. In the Mg i case, we have added

42



four orbital layers accounting for the VV and CV correlations and enlarged the
number of CSFs to 2 474 744. For Si i, we have had five layers of correlation or-
bitals where we have accounted for the VV and the CV correlations. The number
of CSFs has extended to 17 886 964. For Si ii, we have expanded number of the
CSFs to 11 850 176 with five layers of VV+CV correlation.

Figure 3.1 shows how the computed energy levels of Si i improve when more CSFs
are added. The dashed lines show the experimental energy levels corresponding to
the calculated energy levels in the same colour. Adding more CSFs improves the

n1 n2 n3 n4 n5 CV
Layers

47200

47400

47600

47800

48000

48200

E
ne

rg
y 

le
ve

l (
cm

1 )

3p4p 3D1

3p4p 3D2

3p4p 3D3

Figure 3.1: Improvement of computed energy levels in the VV correlation model as more
layers of orbitals added. CV shows the energy levels when the model has
been extended to include core-valence correlation. Dashed lines show the
experimental energy levels for the given states.

calculations and pushes the energy values towards the experimental values. Ideally,
more CSFs are desired, but there are computational limitations.

In Paper II, for the first time, we discuss the problem with the length and ve-
locity form of the oscillator strengths. Contrary to the common knowledge, the
velocity form, that weights more to the inner part of the wavefunctions, shows
better convergence patterns with respect to the increasing orbital sets and is the
preferred form. The same pattern has been observed for Si i and Si ii in Paper IV.
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The lifetime of a level is the inverse sum of all transition probabilities from that
level as given in Eq. 2.4. From the computational point of view, the lifetimes
can be calculated accurately as they are dominated by the strong transitions. In
other words, the main contributions come from the large A-values and the weak
transitions become relatively negligible.

3.8 Uncertainties

There are several accuracy indicators for the quality assessment of the calculations:

• Comparisons of lifetimes and transition probabilities (or f -values) with the
experimental studies when possible.

• Comparisons of calculated energy values with the experimental energy val-
ues.

• Agreement between the length- and velocity forms.

The first and the second accuracy indicators are of course only possible to use
when the experimental values are reported. Even though experimental values are
reported, sometimes the uncertainties are too large to be of any practical use. For
this reason, one should be aware of the quality of experiments when comparing
with the calculated values. The agreement between the length- and velocity form
is a necessary but not sufficient criteria for accuracy estimations (Froese Fischer
2009). In addition, one should include the energy differences in the accuracy esti-
mations. Froese Fischer (2009) suggested that a reasonable uncertainty estimation
of the transition probability is given by,

δA′ = (δE + δS)A′ (3.29)

where A′ is the computed transition probability, δE = |Ecalc − Eobs|/Eobs the
relative uncertainty of the energy value, and δS = |Slen−Svel|/max(Slen, Svel)
the relative difference between the length- and velocity form of the linestrength.
An alternative estimation was given by Ekman et al. (2014) as the relative differ-
ence of A-values in the two different forms,

δA′ =
|A′

len −A′
vel|

max(A′
len, A

′
vel)

. (3.30)

In Paper II, we have estimated the uncertainties by i) comparing the calculated
energy values with the experimental values, comparing the lifetimes with the ex-
perimental lifetimes when possible, ii) comparing the experimental log(gf) values
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with the calculated ones, and iii) comparing the log(gf) values with the most ac-
curate previous calculations. In Paper IV, we have done the same comparisons and
in addition, we have given Eq. 3.30 values in the tables as uncertainty indicators.
Figures 3.2a and 3.2b show examples of a comparison between the Mg i exper-
imental and theoretical log(gf) values of Paper II and the relative energy value
difference between the experimental and calculated values of Si i in Paper IV, re-
spectively. The agreement in Figure 3.2a is very good except from two log(gf)
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Figure 3.2: a) Comparison of the experimental and theoretical log(gf) values of Mg i
lines. b) Comparison of the Si i energy value difference between the experi-
ments and the calculated values. The dashed lines show the 2% difference.

values of Mg i on the lower part of the figure. The experimental uncertainties of
these weak lines are larger than 20% due to the blending of these two lines with
each other. For this reason, we recommend the calculated values. Figure 3.2b
shows that the energy difference between the experimental values and the calcu-
lated values are better than 2% relative difference.
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Chapter 4

Outlook

The aim of this thesis is to target radiative atomic data important for astrophysical
applications. It has evolved into four papers on determining the oscillator strengths
and lifetimes for Sc i, Sc ii, Mg i, Si i, and Si ii using high-resolution experimental
measurements and high-quality calculations. As pointed out by several astronom-
ical projects, the lack of high-accuracy data is crucial to interpret the astronomical
observations (Nature 2013). The new instruments and surveys such as Gaia-ESO
(Gilmore et al. 2012), 4MOST (de Jong et al. 2016), and APOGEE-2 (Zasowski
et al. 2017) have been/will be observing a great number of stars that need to be
analysed. Atomic data needed for analyses should match the high quality and
completeness requirements, especially in the infrared region. This work is an at-
tempt to improve and extend the set of these requested atomic data and to allow
for more accurate interpretation of the astrophysical spectra.

The focus of the future projects should be on the atomic data for: i) highly excited
light atoms; and ii) heavy atoms with more complicated atomic structures, such
as iron group elements and neutron capture elements. It is experimentally chal-
lenging to excite high n levels and the spectra of heavy atoms look very complex.
Nevertheless, careful analysis in combination with the large wavelength region cov-
erage can overcome these problems. On the computational side, a large number of
CSFs should be added to obtain highly excited levels and the electronic structure
of the heavier atoms are very complicated requiring large CSF expansions. This,
in turn, means that an extensive computer power with large memory is needed.
New computational methodologies, such as PCFI (Verdebout et al. 2013), that
decrease the number of CSFs needed for the construction of the wavefunctions,
can make the calculations faster.
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The traditional way of determining experimental f -values is to combine the exper-
imental BF s with the experimental lifetimes. Unfortunately, there are not many
laboratory groups left who perform experimental lifetime measurements. New
projects of lifetime measurements together with the calculations will be valuable
for the determination of accurate f -values.

Performing both experimental and computational methods results in a more ex-
tended set of reported atomic data. In addition, comparing two methods strength-
ens the accuracy of the atomic data and complements each other. Developing new
projects using both methods will enhance the quality of atomic data.
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