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Abstract

Purpose

Cholesterol lowering statins have been demonstrated to exert anti-tumoral effects on breast
cancer by decreasing proliferation as measured by Ki67. The biological mechanisms behind
the anti-proliferative effects remain elusive. The aim of this study was to investigate potential
statin-induced effects on the central cell cycle regulators cyclin D1 and p27.




Experimental design

This phase II window-of-opportunity trial (Trial registration: ClinicalTrials.gov
NCTO00816244, NIH) included 50 patients with primary invasive breast cancer. High-dose
atorvastatin (80 mg/day) was prescribed to patients for two weeks prior to surgery. Paired
paraffin embedded pre- and post-statin treatment tumor samples were analyzed using
immunohistochemistry for the expression of estrogen receptor (ER), progesterone receptor
(PR), human epidermal growth factor receptor 2 (HER2), and the cell cycle regulators cyclin
D1 and p27. Corresponding frozen tumor sample pairs were analyzed for expression of the
genes coding for cyclin D1 and p27, CCND1 and CDKN1B, respectively.

Results

Forty-two patients completed all study parts, and immunohistochemical evaluation of ER and
PR was achievable in 30 tumor pairs, HER2 in 29 tumor pairs, cyclin D1 in 30 tumor pairs
and p27 in 33 tumor pairs. The expression of ER, PR and HER2 did not change significantly
following atorvastatin treatment. Cyclin D1 expression in terms of nuclear intensity was
significantly decreased (P = 0.008) after statin treatment in paired tumor samples. The protein
expression of the tumor suppressor p27, evaluated either as the fraction of stained tumor cells
or as cytoplasmic intensity, increased significantly (P = 0.03 and P = 0.02, respectively). At
the transcriptional level, no significant differences in mRNA expression were detected for
cyclin D1 (CCNDI) and p27 (CDKN1B). However, CCNDI expression was lower in tumors
responding to atorvastatin treatment with a decrease in proliferation although not
significantly (P = 0.08).

Conclusions
We have previously reported statin-induced anti-proliferative effects in breast cancer. This

study suggests that cell cycle regulatory effects may contribute to these anti-proliferative
effects via cyclin D1 and p27.
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Background

Statins, a major class of drugs for treatment of hypercholesterolemia, are widely used due to a
notable prevention of cardiovascular disease, and accumulating evidence proposes a
promising role of statins in breast cancer [1]. Statins act by inhibiting 3-hydroxy-
3methylglutaryl coenzyme-A reductase (HMGCR), the rate-limiting enzyme of the
mevalonate pathway, thereby reducing intracellular cholesterol production [2]. In addition to
their lipid-lowering capacity, statins exert several other effects mediated by different products
of the mevalonate pathway. These lipid-independent effects include inhibition of
inflammatory responses, immunomodulatory actions, apoptotic and anti-proliferative effects,
which might contribute to the suggested anti-tumoral effects of these agents [3,4]. The
epidemiological evidence projecting statins as anticancer agents is variable, depending on the
particular type of cancer in question as well as the class of statin used [5-9]. Recent data




suggest that lipophilic statins may be preferable over hydrophilic statins as anticancer agents
[10,11]. In breast cancer, previous studies have shown lipophilic statin use following a breast
cancer diagnosis to be associated with a decreased risk of disease recurrence and with
reduced breast-cancer mortality [8,12,13]. Results from a phase II study with statins
prescribed in the pre-surgical setting have demonstrated reduced tumor cell proliferation and
increased apoptosis in patients with high grade in situ breast cancer [14]. The anti-
proliferative effects of statins were confirmed in invasive breast cancer, as reported in a
previous publication from the same trial on which this study is based [15]. In both studies, the
anti-proliferative effects were described in terms of decreased intra-tumoral levels of Ki67
[14,15]. However, the comprehensive biological mechanisms behind this anti-proliferative
effect are currently not clear. Ki67 is the most widely used clinical biomarker for assessing
the proliferative status of a breast cancer. Ki67 is expressed during all active phases of the
cell cycle (G1, S, G2, M), but is absent in resting cells (GO) [16,17]. The cell cycle is a
complex and strictly controlled series of events, driving cell division and replication of DNA.
In normal cells, progression through the cell cycle is controlled by the cyclin dependent
kinases (CDKs), a family of serine/threonine kinases [18]. The CDKs form complexes with
their regulatory units, cyclins, thereby activating the CDKs, leading to phosphorylation of the
cell cycle regulatory proteins that initiate and regulate progression through the different
phases of the cell cycle [19]. In breast cancer cells, the cell cycle control system is
deregulated at multiple levels, leading to abnormal cell proliferation [20]. Cyclin D1 is a vital
regulator of the G1/S transition, as illustrated in Figure 1. The interaction of cyclin D1 with
CDK4 and CDKG6, leads to phosphorylation and thereby inactivation of the Rb-protein and its
Gl-maintaining function, which culminates in the expression of proliferation-associated
target genes [21,22]. Cyclin DI is overexpressed at the protein level in up to 50% of all
primary breast cancers, in part due to amplification of the cyclin D1 gene, CCND1 [23]. The
CDK inhibitor p27, also known as Kipl, is involved in the regulation of the GO-to-S-phase
transition. p27 interacts with CDK2-cyclin E, CDK4/6-cyclin D, and CDK2-cyclin A
complexes, thereby regulating these complexes strictly [24,25]. The tumor suppressor p27 is
frequently deregulated in breast cancer, and reduced p27 expression has been associated with
increased proliferation, high tumor grade, HER2 amplification as well as estrogen receptor
(ER) and progesterone receptor (PR) negativity [25,26].

Figure 1 The cell cycle, and the main actions of cyclin D1 and p27. Cyclin D1 regulates the
G1/S-phase transition, binds and activates Cdk4/Cdk6 to phosphorylate the retinoblastoma
(pRb) protein. Phosphorylation of Rb leads to separation from E2F, and allows the
transcription of proliferation genes [21]. In GO and early G1, p27 inhibits CDK2-cyclin E,
and in S-phase CDK2-cyclin A. In G1 there is a decrease in p27, allowing CDK2-cyclin E
and CDK2-cyclin A to activate the transcription of genes acquired for the G1-S-transition
[25]. P27 also interacts with CDK4/6-cyclin D comprehensively, p27 acting as both an
inhibitor and as a required assembly factor for the complex, depending on the growth state of
the cell [24].

The aim of this study was to investigate potential statin-induced effects on the central cell
cycle regulators cyclin D1 and p27, to improve the understanding of the statin induced anti-
proliferative effects previously reported. A secondary aim was to evaluate the expression of
clinically established biomarkers, such as the estrogen receptor, progesterone receptor and
HER2 before and after atorvastatin treatment, hypothesizing no statin-induced changes of
their expression. These aims were addressed in a phase II window-of-opportunity trial with
two-week, pre-operative high-dose atorvastatin therapy in 50 patients with primary invasive
breast cancer.



Materials and methods

Trial design

The trial was designed as a window-of-opportunity study, in which the participants were
prescribed the lipophilic statin atorvastatin for two weeks, during the treatment-free window
between breast cancer diagnosis and surgery. The study was opened for recruitment in
February 2009, and the pre-planned number of 50 patients was achieved in March 2012. In
this non-randomized phase II trial, all patients received an equal dose of 80 mg atorvastatin
daily. The trial was conducted as a single center study at Skane University Hospital in Lund,
Sweden.

The Ethical Committee at Lund University and the Swedish Medical Products Agency
approved this trial. The study has been registered at ClinicalTrials.gov (i.e., ID number:
NCTO00816244, NIH). The study adheres to the REMARK criteria [27].

Patients and tumors

Patients diagnosed with primary invasive breast cancer with a minimum tumor size of 15 mm
measured by ultrasound, who were candidates for radical surgery, were eligible for
participation in this study. A performance status below 2 according to the European
Cooperative Oncology Group (ECOG) and normal liver function were also required for
inclusion. Pregnancy, on-going hormonal replacement therapy, cholesterol lowering therapy
(i.e., including statins, fibrates, and ezetemibe), a medical history of hemorrhagic stroke or
allergic reactions attributed to compounds with a similar biological composition to that of
atorvastatin encompassed the exclusion criteria. Complete information regarding the study
inclusion and exclusion criteria, as well as clinical and pathological characteristics of the
patients and tumors have been described in detail previously [15]. Following inclusion, the
participants underwent study specific tumor core biopsies prior to statin treatment initiation
with one core biopsy being formalin-fixed immediately and one being fresh frozen at —80°C.
Subsequent to the two-weeks statin treatment, breast surgery was performed according to
standard surgical procedures, and tumor tissue was retrieved from the primary tumor at the
Department of Pathology at Skane University Hospital, Lund, Sweden. Of the 50 patients
enrolled in the study, a total of 42 patients completed all study parts. Two patients were
excluded from the trial since date of surgery was pre-scheduled after enrollment. Two
patients were excluded due to elevated serum levels of alanine aminotransferase. One patient
was excluded since the diagnose of invasive breast cancer was questioned, one patient left the
study due to nausea and dizziness and two patients left due to personal reasons.

Endpoints and tumor evaluation

The primary endpoint of the clinical trial was statin-induced anti-proliferative tumor response
measured by a decrease in Ki67 expression, as previously reported [15]. The purpose of this
sub-study was to investigate potential effects of statin treatment on the expression of ER, PR,
and HER2 as well as the expression of the cell cycle regulators cyclin D1 and p27.



Immunohistochemistry

Formalin-fixed and paraffin-embedded tumor tissue from core biopsies and surgical samples
were cut into 3 to 4 um sections and transferred to glass slides (Menzel Super Frost Plus),
dried at room temperature, and baked in a heated chamber for 2 hours at 60°C. De-
paraffinization and antigen retrieval was performed using PT Link (Dako Denmark A/S)
using a high pH buffer. Staining was performed in an Autostainer Plus (Dako) using a di-
amino-benzidine (DAB) based visualization kit (K801021-2, Dako). Counterstaining was
performed using Mayer’s hematoxylin with antibodies against ER (SP1, Thermo Scientific,
diluted 1:200), PR (Dako M3569, diluted 1:200), HER2 (4B5, Ventan BenchMark Ultra,
Ventana Medical Systems, Inc. Tucson, Arizona, R.U.), cyclin D1 (Dako M3635, diluted
1:40), and p27 (Dako M7203, diluted 1:100).

Tumor biomarker assessment

ER and PR expression was evaluated as the fraction of stained nuclei, using a five-grade scale
(i.e. 0-1%, 2-10%, 11-50%, 51-75% and >75% of stained cells). HER2 was evaluated using
the HercepTest guidelines (DAKO, Carpinteria, CA) for scoring of HER2. No staining
observed in <10% of the tumor cells was scored 0, faint staining observed in >10% of the
tumor cells was scored 1+, weak to moderate staining in >10% of the tumor cells was scored
2+, and strong staining in >10% of the tumor cells was scored 3+, according to the
guidelines. Assessment of cyclin D1 and p27 protein expression was evaluated by
considering the fraction of stained nuclei, using a five-grade scale (i.e. 0-1%, 2-10%, 11-
50%, 51-75% and >75% of stained cells), and nuclear intensity and cytoplasmic intensity,
using a four-grade scale (i.e. negative, weak, moderate or strong) (Additional file 1: Figure
S1 and Additional file 2: Figure S2). For Ki67 assessment, 400 tumor cells were evaluated
and Ki67 expression recorded as the fraction of positive nuclei using a continuous scale from
0 to 100 [15].

RNA extraction

Total RNA was extracted from fresh frozen tumor samples using the Allprep DNA/RNA
mini kit (QIAGEN, Valencia, CA) in a QIAcube (Qiagen) according to the manufacturer's
instructions. The RNA integrity was assessed on an Agilent 2100 Bioanalyzer (Agilent, Santa
Clara, CA) and RNA quantification was performed using a NanoDrop ND-1000 (NanoDrop
Products, Wilmington, DE). The samples were hybridized to Human HT-12 v4.0 Expression
BeadChips (Illumina Inc, San Diego, CA) in two batches at the SCIBLU Genomics Center at
Lund University, Sweden (www.lu.se/sciblu). The Illumina probes were re-annotated using
the R package illuminaHumanv4.db [28]. The microarray study was conducted within
another sub-study of the trial and comprehensive analyses of the data are subject of currently
unpublished work. Thus, in this study only analyses concerning the expression of the probes
representing cyclin D1 and p27 are reported herein.

Statistical analysis

All assessed immunohistochemical tumor variables were measured on ordinal scales.
Changes in ER, PR, HER2, cyclin D1 and p27 protein expression between pre- and post-
atorvastatin treatment samples were evaluated using the Wilcoxon matched-pairs signed-rank
test. Spearman’s rho was used as a measure of the correlation between change in cyclin D1



and Ki67, and p27 and Ki67, respectively. To test for subgroup differences, the Linear-by-
linear association was used. All tests were two-sided and differences with P-values below 5%
were considered significant. The software packages Stata version 12.1 (StataCorp LP,
College Station, TX, 2012) and IBM SPSS Statistics Version 19, were used for the data
analysis.

For microarray data analysis, all data were initially pre-processed and normalized using the
Quantile Normalization method [29]. The GenomeStudio Software V2011.1 was used for the
analyses. Probe sets with signal intensity below the median intensity of negative control
signals in 80% of the samples were excluded. Replicate probe sets were merged by the
median of signal intensity values. A Significance Analysis of Microarrays (SAM) analysis
was performed using the TMeV v4.9 software to identify differences in expression of
CCNDI and CDKNI1B between paired pre- and post- statin treatment samples. Furthermore,
changes in the expression of CCND1 and CDKNI1B between tumor pairs stratified into two
groups according to statin-induced changes in Ki67 expression were evaluated using the
Mann—Whitney U-test. Changes in tumor proliferative rate, quantified by IHC analysis of the
expression of Ki67, have been previously reported [15].

Results

Patient characteristics and tumor data

Fifty patients entered the trial; a total of 41 patients were reported as postmenopausal and
nine patients as premenopausal. Forty-two patients completed all study parts. No serious
adverse events were reported. At the time of diagnosis, the average age among all 42 patients
was 63 years (range 35-89 years). The average pathological tumor size was 21 mm, ranging
from 6 to 33 mm and all 42 tumors were invasive breast cancers. Most tumors were ductal
cancers, and the majority of tumors were histological grade 2 or 3 (Table 1).



Table 1 Patient- and tumor characteristics

Patients completed all study parts n =42
Age years (mean, range) 63 (35-89)
Tumor size mm (mean, range) 21 (6-33)
Positive nodal status 17 (41%)
Tumor grade (NHG)

I 9 (21%)

II 17 (41%)

I 16 (38%)
Mitotic index

1 23 (55%)

2 5 (12%)

3 14 (33%)
ER (n=30)

Positive 27 (90%)

Negative 3 (10%)
PR (n=30)

Positive 24(80%)

Negative 6 (20%)
HER2 (n=29)

0 7 (24%)

1+ 10 (34%)

2+ 7 (24%)

3+ 5 (17%)
Ki67 index (n =26)

Low 15 (58%)

High 11 (42%)
HMGCR (n = 38)

Positive 24 (63%)

Negative 14 (37%)

NHG Nottingham histologic grade I-III (post-treatment pathological report), Mitotic index
according to Nottingham criteria (post-treatment pathological report).

Baseline tumor data (pretreatment): ER (estrogen receptor), PR (progesterone receptor),
HER2 (human epidermal growth factor receptor 2), Ki67 high if >20%, HMGCR positive if
any cytoplasmic staining.

Changes in the expression of ER, PR, HER2

The evaluation of ER and PR was achievable in 30 tumor pairs and HER2 in 29 pairs,
respectively, whereas the remaining pre-treatment biopsies showed insufficient amount of
tumor tissue for immunohistochemical evaluation of these markers. The baseline expression
of ER, PR and HER2 is shown in Table 1. When contrasting the pre-and post-treatment
samples, neither ER, PR nor HER2 changed significantly (Wilcoxon matched-pairs signed-
rank test P =0.68, P =0.19, and P = 0.08 for ER, PR and HER respectively; Table 2) and the
null hypothesis of equal expression before and after statin treatment was retained.



Table 2 Change in tumor expression from baseline (i.e. before atorvastatin treatment) to time of surgery (i.e. after
atorvastatin treatment)

Complete pairs Decreasing Unaltered  Increasing P-value
ER n =30 2 25 3 0.68
PR n =30 3 21 6 0.19
HER2 n =29 7 20 2 0.08
Cyclin D1 nuclear fraction n =230 4 19 7 0.12
Cyclin D1 nuclear intensity n =230 14 13 3 0.008*
Cyclin D1 cytoplasmic intensity n =230 10 14 6 0.48
p27 nuclear fraction n =33 2 22 9 0.03
p27 nuclear intensity n =233 9 18 6 0.35
p27 cytoplasmic intensity n =233 3 18 12 0.02

P-values from Wilcoxon matched-pairs signed-ranks test.
ER estrogen receptor, PR progesterone receptor, HER2 human epidermal growth factor receptor 2.
*Significant even after Bonferroni adjustment for multiple testing within the marker, P = 0.02.

Changes in the expression of cyclin D1

Immunohistochemical evaluation of cyclin D1 was achievable in 30 of the 42 paired samples
restricted by insufficient amount of tumor tissue in the remaining core biopsies. Table 3
shows cyclin D1 expression in the pre-treatment samples. A comparison of the expression of
cyclin DI between pre-and post-treatment samples is shown in Figure 2. In general, the
majority of samples expressed cyclin D1. However, the nuclear intensity of the protein
expression was significantly decreased (P = 0.008, Wilcoxon matched-pairs signed-rank test)
following statin treatment (Table 2). Furthermore, cyclin DI expression was assessed
regarding the fraction of stained nuclei as well as the intensity of cytoplasmic staining, but
neither the nuclear fraction nor the cytoplasmic intensity changed significantly following
treatment. No significant association was found between the pre-treatment tumor

characteristics in relation to the change in cyclin D1 following atorvastatin treatment
(Additional file 3: Table S1).



Table 3 Cyclin D1 and p27 tumor expression in the pre-treatment setting

Patients completed all study parts n=42
Cyclin D1 nuclear fraction (n = 30)

Negative 2 (7%)

Low (1-50%) 12 (40%)

High (51-100%) 16 (53%)
Cyclin D1 nuclear intensity (n = 30)

Negative 2 (7%)

Weak 5 (12%)

Moderate 14 (33%)

Strong 9 (30%)
Cyclin D1 cytoplasmic intensity (n = 30)

Negative 11(37%)

Weak 14 (47%)

Moderate 2 (7%)

Strong 3 (10%)
p27 nuclear fraction (n = 33)

Negative 0

Low (1-50%) 8 (24%)

High (51-100%) 25 (76%)
p27 nuclear intensity (n = 33)

Negative 0

Weak 3 (9%)

Moderate 18 (55%)

Strong 12 (36%)
p27 cytoplasmic intensity (n = 33)

Negative 17 (52%)

Weak 14 (42%)

Moderate 2 (6%)

Strong 0

Figure 2 Change in tumor expression of cyclin D1 from baseline (i.e., before atorvastatin
treatment) to time of surgery (i.e., after atorvastatin treatment). A) Fraction of stained nuclei;
B) Nuclear intensity; C) Cytoplasmic intensity. To reduce the problem of completely
overlapping lines in the spaghetti plot, for each pair of pre/post-treatment samples, a random
number from a uniform distribution over the interval [—0.15, 0.15] was added, shifting the
corresponding line at most 15%, upwards or downwards, of a step on the integer-valued score
scale.

Changes in the expression of p27

Immunohistochemical evaluation of p27 could be performed for 33 of the 42 paired tumor
samples. Prior to atorvastatin treatment, all samples demonstrated tumor cells expressing p27
to a different extent as shown in Table 3. Following atorvastatin treatment there was a
significant increase in the fraction of tumor cells expressing p27 (P = 0.03, Wilcoxon
matched-pairs signed-rank test, Table 2 and Figure 3). The nuclear intensity of p27 did not



change significantly (P = 0.35). Further, the cytoplasmic intensity of p27 was significantly
increased after atorvastatin treatment (P = 0.02, Wilcoxon matched-pairs signed-rank test).
Baseline tumor characteristics in relation to the change in p27 expression following
atorvastatin treatment are summarized in Additional file 4: Table S2, for which no significant
associations were found.

Figure 3 Change in tumor expression of p27 from baseline (i.e., before atorvastatin
treatment) to time of surgery (i.e., after atorvastatin treatment). A) Fraction of stained nuclei;
B) Nuclear intensity; C) Cytoplasmic intensity. To reduce the problem of completely
overlapping lines in the spaghetti plot, for each pair of pre/post-treatment samples, a random
number from a uniform distribution over the interval [—0.15, 0.15] was added, shifting the
corresponding line at most 15%, upwards or downwards, of a step on the integer-valued score
scale.

Correlation between change in Ki67 and change in cyclin D1 or p27

Spearman’s correlation was used to evaluate whether a change in the expression of cyclin D1
or p27 was accompanied by a change in proliferation as determined by Ki67. We observed
that a decrease in Ki67 corresponded positively with a decrease in cytoplasmic intensity of
cyclin DI (N =25, P =0.03, Spearman’s rho = 0.43), as illustrated in Figure 4. No significant
associations were detected between the decrease in Ki67 and the change in nuclear fraction or
nuclear intensity of cyclin D1, or the change in Ki67 and the change in p27 irrespective of
cellular localization or staining intensity.

Figure 4 Correlation between change in Ki67 and change in cyclin D1 (cytoplasmic
intensity) after treatment with atorvastatin. Marker color and filling represents
immunohistochemical scoring of cyclin D1 cytoplasmic intensity in the pre-treatment
samples; filled red circles (strong cyclin D1 intensity), red empty circles (moderate cyclin D1
internsity), green empty circles (week cyclin D1 intensity), green filled circles (no cyclin D1
expression).

mRNA expression of proliferation associated genes

Initially, we compared the expression of CCND1 and CDKN1B between paired pre-and post-
treatment samples. Good quality gene expression data were available for twenty-five tumor
pairs; no statistically significant difference in the expression of these genes was noted. Next,
a sub-analysis comparing the mRNA levels of CCND1 and CDKNIB was performed after
dividing samples into two groups based on changes in Ki67 expression as assessed by IHC.
Ki67 expression was decreased in 15 samples while 10 samples showed an increased
expression as previously reported [15]. Separate analyses were performed for the pre- and
post-treatment samples. As illustrated in Figure 5A, the expression of CCNDI1 in the pre-
treatment samples was significantly correlated to response in tumor cell proliferation (P =
0.02; Mann—Whitney). Correspondingly, in the post-treatment samples, a marginally lower
CCNDI1 expression was observed among the tumors responding with a decrease in Ki67
compared to tumors with an increase in Ki67 (Figure 5B; P = 0.08; Mann—Whitney).
CDKNIB mRNA expression did not differ significantly between tumors responding with a
Ki67 response or not (Figure 5C-D; P = 0.3, 0.06: Mann—Whitney).



Figure 5 Expression of CCND1 and CDKNI1B pre- and post-atorvastatin treatment, divided
into tumors responding with a decrease or increase in proliferation (Ki67) following statin
treatment. A) Pre-treatment CCND1 expression, B) Post-treatment CCND1 expression, C)
Pre-treatment CDKN1B expression, D) Post-treatment CDKN1B expression.

Discussion

In the present study, we investigated the effects of short-term administration of a high-dose of
atorvastatin on the conventional breast cancer pathological markers ER, PR, HER2, as well as
the cell cycle regulators cyclin D1 and p27. Our results indicate that ER, PR and HER2
expression remain stable following treatment with atorvastatin. However, a significant
decrease in cyclin D1 expression and a significant increase in p27 expression were observed,
indicating that the anti-proliferative effects of statins may be driven by the cell cycle
regulatory effects of cyclin D1 and p27.

There is a rising interest in statins, due to their effects extending beyond their well-known
lipid-lowering capacity [3]. As previously reported from this trial, a significant decrease in
tumor proliferation, in terms of decrease in Ki67 expression, was noted especially in the sub-
set of tumors expressing HMGCR at baseline [15]. This difference in proliferation may be
driven by changes in the cell cycle regulators cyclin D1 and p27, as has been addressed in
this study. It has been proposed that the anti-proliferative and pro-apoptotic effects of statins
are due to the inhibition of downstream isoprenoid intermediates, such as farnesyl-
pyrophosphate (FPP) and geranyl-geranyl-pyrophosphate (GGPP) [30-32]. FPP and GGPP
are molecules which post-translationally modify a number of proteins by creating a
hydrophobic domain, thereby allowing the proteins to anchor to cell membranes and perform
their normal functions, a process known as protein prenylation [33]. Protein prenylation is
necessary for the activation of many proteins participating in signaling pathways on which
tumors depend, such as the RAS/Rho superfamily. RAS-dependent pathways regulate the
expression of both p27 and cyclin DI, the assembly of cyclin D1 with CDK4/6, and the
growth factor-induced regulation, transcription, and stabilization of cyclin D1 [34].

In concordance with our results, statins have been shown to inhibit cell growth, with G1
arrest, leading to reduced transition to the S and G2/M phases of the cell cycle [35]. Both
cyclin D1 and p27 are involved in the regulation of these transitions, cyclin D1 through the
association with CDK4 and CDK6, and p27 by interacting with the CDK2/cyclin E,
CDK2/cyclin A, and CDK4/6-cyclin D complexes. A decrease in cyclin D1 entails that p27 is
released from the CDK4/6-cyclin D complex, and instead able to assemble with, and inhibit
CDK2, thereby promoting cell cycle arrest and inhibit proliferation [24]. This suggests that a
statin induced cell cycle arrest at Gl could be the result from a decrease in cyclin DI
expression, and a corresponding increase in p27 as suggested by our data. Previous in vitro
studies have shown similar results with a statin induced up-regulation of p27 [36-38] and
reduced levels of cyclin DI [39] in various tumor cell lines. Cyclin D1 and p27 are both
regulated by a plethora of different signal transduction pathways [25,40], and the underlying
mechanisms of the observed decrease of cyclin D1 and increase of p27 in this study is not
evident. Given the suggested effects of statins on cell cycle regulators and the recent approval
of a CDK4/6-inhibitor for first-line treatment of advanced ER positive breast cancer [41],
further studies examining the potential synergistic effects of statins and CDK4/6 inhibitors
would be of clinical importance.



The expression of clinically established biomarkers such as ER, PR and HER2 was evaluated
in both pre-and post-treatment samples to establish whether these markers were affected by
statin treatment. The vast majority of samples pairs remained unchanged. Recently, the
cholesterol metabolite 27-hydroxycholesterol (27HC), has been revealed to increase ER-
dependent growth in mouse models of breast cancer [42]. In the endocrinological field of
research, 27HC has been linked to a decrease in bone mineral density, in part due to its ability
to bind to and modulate the transcriptional activity of ER [43]. An in vitro study showed that
simvastatin exerted osteoinductive effects, partly achieved through an increase in ER
expression [44]. Regarding HER2, signaling through this receptor is dependent on the
cholesterol content of the lipid rafts [45]. Thus, statins may theoretically enable changes in
the expression of both steroid receptors and HER2. Such changes were not detected in this
study. However, the treatment duration of only two weeks might be insufficient to induce
changes in ER or PR expression, due to their relatively stable nature [46,47]. The absence of
a significant change in the expression of ER, PR and HER2 might be of clinical interest,
indicating that statin treatment can be administrated safely to breast cancer patients without
altering clinically used prognostic and treatment predictive markers. In the
immunohistochemical evaluations of cyclin D1 and p27, expression was scored for both
percentage of positive nuclei, nuclear intensity and cytoplasmic intensity. Currently,
established scoring systems for immunohistochemical evaluation of cyclin D1 and p27 are
not available. In a review by Chu et al., [25] most prognostic studies scored p27 based on the
percentage of positive tumor nuclei, with various cut-offs. Others scored both the percentage
of positive nuclei and the intensity of the staining. Most studies however omitted scoring of
cytoplasmic expression of p27. In this study, immunohistochemical evaluations demonstrated
significant changes regarding the cyclin D1 nuclear intensity, fraction of p27 stained cells,
and the cytoplasmic intensity of p27. Both cyclin D1 and p27 exert their effects on the G1/S
transition control when localized to the nucleus [25,48] A decrease of cyclin DI, results in
p27 no longer being sequestrated by the CDK4/6-cyclin D complex to the same extent. Data
suggest that the cell favours maintainance of low levels of p27 in the nuclear space, and
subsequently mislocalize p27 to the cytoplasmic compartment when levels of nuclear p27 are
increased [24], which may explain the concurrent increase in expression of p27 in both the
nuclear and cytoplasmic compartments in this study. Importantly, data from functional
studies suggest that cytoplasmic translocation of p27 can change its function in tumor cells
[49], thus promoting other functions opposite to its tumor suppressor role, e.g. cell migration
[50]. A review by Guan et al. concluded that further studies were needed to understand the
role of cytoplasmic p27 in breast cancer [26]. However, the significance of the cellular
localization of p27 cannot be explained based on the results from this study. The cytoplasmic
intensity of cyclin D1 was associated with Ki67 (Figure 4), although expression did not
change significantly during treatment. During G1, cyclin D1 accumulates in the nucleus, but
is exported to the cytoplasmic space when the cell enters S-phase [48], possibly implying a
more intense cytoplasmic cyclin D1 staining in high proliferating aggressive tumors, a
correlation found in pancreatic adenocarcinoma [51], and suggestively explaining the positive
correlation with Ki67. Further, gene expression analyses of paired tumor samples were
performed. Only marginal changes in CCDNI1 and CDKNIB expression were observed
following two weeks of statin treatment. However, the cell cycle-dependent changes in cyclin
D1 and p27 can both ensue through other mechanisms, including post transcriptional
deregulation. [23,25]. The gene expression of CCND1 was found to be significantly
correlated to response in tumor cell proliferation, indicating a difference in the response to
statins between cancers with or without CCND1 overexpression.



Whether and how the dose or duration of statin treatment influences the here presented results
is unclear and cannot be further elucidated from this trial, as all patients in the study were
given atorvastatin for two weeks at the maximum recommended dose to optimize the drug
delivery into the breast cancer cells. No serious adverse events were observed, and only one
patient withdrew from the study due to side effects, indicating that the treatment with high-
dose atorvastatin was well-tolerated during the two-week administration. To gain more
insight regarding the statin-induced effects on expression of cell cycle regulators, prolonged
treatment duration may be neccessary to demonstrate the maximal effect on cell cycle
regulators. However, due to ethical considerations, this window-study was not able to extend
the time from diagnosis to surgery, which restricted the duration of statin treatment to two
weeks. Thus, as implied in the trial design and purpose of window-trials, these trials can
generate adequate hypotheses which should preferably be evaluated in larger phase III trials
[52]. As recently proposed by Ahern et al., the existing evidence supporting a protective
effect of statins on breast cancer prognosis, is considered sufficient to launch a clinical phase
III trial with statins in the adjuvant setting [1].

Conclusions

In conclusion, the results from this window-of-opportunity study indicate a statin induced
effect on central cell cycle regulators, in terms of an up-regulated expression of the tumor
suppressor p27 and down-regulated expression of the oncogene cyclin D1 in breast cancer.
The results are concordant with previous trial results, and suggest that cell cycle regulatory
effects may be contributing to the anti-proliferative effects via cyclin D1 and p27.
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Additional files provided with this submission:

Additional file 1: Figure S1. Examples of immunohistochemical cyclin D1 staining with negative nuclear and cytoplasmic
expression (a), weak nuclear and cytoplasmic expression (b), moderate nuclear and cytoplasmic expression (c), and strong
nuclear and weak cytoplasmic expresssion (d), respectively (334kb)
http://www.translational-medicine.com/content/supplementary/s 12967-015-0486-0-s 1.pdf

Additional file 2: Figure S2. Examples of immunohistochemical p27 staining with weak nuclear and negative cytoplasmic
(a), moderate nuclear and weak cytoplasmic (b), moderate nuclear and cytoplasmic (c¢), and strong nuclear and moderate
cytoplasmic (d) expression, respectively (244kb)

http://www.translational-medicine.com/content/supplementary/s 12967-015-0486-0-s2.pdf

Additional file 3: Table S1. Core biopsy tumor characteristics in relation to the change in cyclin D1 nuclear fraction,
nuclear intensity and cytoplasmic intensity, pre- to post-atorvastatin (11kb)
http://www.translational-medicine.com/content/supplementary/s 12967-015-0486-0-s3.xIsx

Additional file 4: Table S2. Core biopsy tumor characteristics in relation to the change in p27 nuclear fraction, nuclear
intensity and cytoplasmic intensity, pre- to post-atorvastatin (11kb)

http://www.translational-medicine.com/content/supplementary/s 12967-015-0486-0-s4.xlsx


http://www.translational-medicine.com/content/supplementary/s12967-015-0486-0-s1.pdf
http://www.translational-medicine.com/content/supplementary/s12967-015-0486-0-s2.pdf
http://www.translational-medicine.com/content/supplementary/s12967-015-0486-0-s3.xlsx
http://www.translational-medicine.com/content/supplementary/s12967-015-0486-0-s4.xlsx

