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Preface

In the ideal world there would be no need for this report. The reasons for making the
analysis were purely due to misuse and misunderstandings of how to apply known math-
ematics in a correct manner when dealing with chloride ingress evaluation, modelling
and prediction. The analysis did, however, bring forth a more clear understanding and
terminology.

In fact, the intermediate results were quite unexpected and more general than foreseen.
The most positive result of the study was the opportunity to make a sound, simple and
“correct” approximation of the calculation of chloride profiles where simultaneous time
dependent surface concentration and diffusivity can be treated in a correct manner by
a slight modification of the classical error function solution. Without this analysis we
would never have found that result!

We hope that the report will settle the discussions we have appointed and that a few
readers will take the time needed to study our findings.

December 7, 2009

Jens Mejer Frederiksen

Leif Mejlbro

Lars-Olof Nilsson
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Introduction

This report focuses on models of chloride ingress into concrete that are based on math-
ematical solutions of Fick’s second law. In recent years a lot of confusion has been
identified concerning these models. In some cases time-dependencies of diffusivity have
been used in a mathematically incorrect way. In other cases field and laboratory data
from one way of describing the time-dependency of these diffusivity has been used in
models that are based on another model.

This is now clarified in this report. Some of the clarifications are completely new,
concerning the relationship between the age exponents in the time-dependency of the
“instantaneous” and the “achieved” diffusivity. This part is due to a problem not
foreseen by Poulsen & Mejlbro(2006), and it is due to some mathematical imprecise
formulations by others and it may be an appropriate amendment for the book [13] by
Poulsen & Mejlbro (2006) to be complete.

The need and the idea for the report were made clear after a series of discussions, the
first one being initiated by Dr. Tang Luping, SP/CTH, Sweden, and Mr. Joost Gulikers,
RWS, The Netherlands, after input from Prof. Lars-Olof Nilsson, LTH, Sweden. Initia-
tive for a first meeting to resolve this was taken by Ms. Birit Buhr, COWI, Denmark,
after a notification by Mr. Thomas Frølund, COWI, Denmark. Additional participants
in this first meeting were Carola Edwardsen, Mette Sloth, Jens Mejer Frederiksen, Leif
Mejlbro, Ervin Poulsen, Steen Rostam and Michael H. Faber from Denmark, Peter
Schiessl from Germany and Joost Gulikers from The Netherlands.

After the first meeting it was clear that significant misunderstanding remained. In
another set of meetings this was clarified in depth from discussions between Jens Mejer
Frederiksen, Leif Mejlbro and Lars-Olof Nilsson. The mathematical clarification was
made by prof. emeritus Leif Mejlbro, DTU, Denmark, and this report was edited by all
three os us, Jens Mejer Frederiksen, COWI (from July 2006 to March 2007)/ALECTIA
(from March 2007), Denmark, Lars-Olof Nilsson, LTH, Sweden, and Leif Mejlbro, DTU,
Denmark.
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Chapter 1

Background

Mathematical models for prediction of chloride ingress have developed since the early
1990s in order to adapt better to the observations from exposure in natural envi-
ronments like sea water and de-icing salt exposures. The approach first applied by
Collepardi et al. in 1970 [3] has been dominating – and still is – when chloride ingress
into concrete is modelled or analyzed. Collepardi’s approach (the “Collepardi Model”)
was to use the error function solution to Fick’s second law, i.e. assuming that the
boundary condition and the diffusivity both are constants.

In the late 1980s, observations in the laboratory and in the field showed that the
chloride ingress did not develop in time as it would be predicted by the “Collepardi
Model”. Discussions arose on whether sufficient connectivity of the pore system of e.g.
high performance concrete was present, and Sørensen [15] studied this intensively from
a theoretical point of view. If so, this would restrict the chloride ingress and hence
compromise the use of mathematical diffusion models for prediction of chloride ingress
into concrete. Sørensen demonstrated on computer modelled systems with limited
connectivity that the ingress would appear as ordinary ingress profiles, but they could
not develop in time as estimated by the “Collepardi Model” (with constant diffusivity
and boundary condition) because of the limited pore system. In fact, this theory has
never been rebutted.

In 1993 Poulsen [11] suggested that the diffusivity calculated according the the “Colle-
pardi Model” was regarded as the integral (or the average) of the point-wise diffusivity.
The idea to do this originated from observations made by Maage et al. [8], and Takewaka
et al. [16]. One of the consequences of the diffusivity being a function of time was that
the dependency needed to be observed on the same concrete in the same environment,
before a prediction of the future chloride ingress could be made. This situation has not
yet changed, so there is still a need of data from observations.

9



Since the mid 1990s it has been the state-of-the-art to apply solutions to Fick’s second
law, where the diffusivity is considered to be time dependent. This has led to different
approaches. Analytical solutions on one hand and numerical solutions on the other
hand.

Amongst the analytical solutions it has erroneously [17] been claimed recently that
the approach taken by the DuraCrete Model [5] was based on the application of an
instantaneous diffusivity which could lead to erroneous results. Therefore, a discussion
arose on how the time-dependency of the chloride diffusivity should be handled in a
mathematically correct manner. This discussion is still confusing and contains mathe-
matical errors, cf. e.g. [10] and [17]. Also in numerical solutions of Fick’s second law,
cf. e.g. [7], similar mathematical mistakes are made when using field data as input to
a time-dependent instantaneous diffusivity.

In order to elucidate this, the comprehensive solutions of the problem of transport of
chloride by diffusion into concrete are recapitulated in this report. It should, however,
already here be stated that the DuraCrete Model is not considering an instantaneous
(or point-wise) diffusivity, but instead an achieved (or averaged) diffusivity, so there is
no mathematical error in this model.

The mathematical description needs some ideal (abstract) functions which cannot be
measured in practice, while the functions which can be estimated by safe measurements
in practice cannot be applied directly in the ideal world of Mathematics. Fortunately,
there is a correspondence between the two descriptions, and unfortunately, this corre-
spondence is far from always understood and is therefore often neglected, which may
cause some strange results, which will be demonstrated in this report.

The models dealt with in the following do not intend to model the actual physical
and chemical processes involved in the chloride ingress into concrete. The aim of
the models is solely to describe the result of these physical and chemical processes of
this transport, i.e. the chloride profiles. For practical application the models are all
dependent of calibration against good measurements from the environment and the
concrete type in question.

Chloride ingress into concrete is a slow process. Preferable the ingress of the corrosion
initiating amount of chloride takes place over several decades. Due to this slow process,
and the experiences with premature deterioration of chloride exposed concrete struc-
tures, engineers have found a need for improvements of as well the understanding of the
chloride ingress process as such and of the chosen concrete quality. In fact, the ability
of producing concrete of high quality has improved faster than the improvements of
models for chloride ingress.
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Models for chloride ingress into concrete structures are studied either in the laboratory
or in the field – on real structures or by exposing laboratory manufactured specimens
under natural conditions. What is the more realistic depends on what one is looking
for. Factors influencing chloride ingress in the early stage after the exposure has begun,
are often not regarded as interesting neither for the long term prediction of a chloride
profile nor for the understanding of the interaction between chloride and premature
concrete.

Early observations of chloride ingress can, however, lead to a misinterpretation of the
stipulated service life of a structure. Laboratory tests during production control can
exhibit values that may seem to be unacceptable if a too conservative prediction model
is applied. A similar situation arises if the chloride profile of a new structure is measured
only a few years after the exposure started and hence long time before the service life
is expected to end.

Observations of chloride profiles made on structures that have been in service for many
years are often missing a connection to early data. This makes further extrapolations
uncertain and hence the estimation of the residual service lifetime uncertain.

The advantage of using mathematical models for prediction of the rate of chloride
ingress is that we have the possibility to gain experience by studying the behaviour of
concrete produced under modern conditions with modern materials. The disadvantage
is of course that we can only study the ingress process in the early phases for up to
about 20 years before the test programme is left behind by the development in the
concrete industry.

The time gap between the periods we can study intensively (0–20 years) and the periods
we have interest for (50–300 years) is extremely large. This puts a great responsibility
on the modelers, because the choice of wrong models (too optimistic or too conser-
vative) will lead to high expenses, either at the time of construction or at the time
of repair/reconstruction. Due to the interest rate, the more optimistic models will
often be preferred, because the net present value of future expenses is small. The op-
timal model may be one giving the smallest net present value – i.e. the lowest cost of
construction plus operation and maintenance.

These general considerations apply differently for structures to be constructed and for
structures already in service. This is due to the number of adjustable parameters – a
lot more parameters can be adjusted before construction than after. The demanded
precision of a model for the two purposes is therefore different, but nevertheless it is
preferable to use only one mathematical model for both time periods (0–20 years of
50–300 years).
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Till now, observations of achieved diffusivity decreasing with the exposure time of
the concrete have been widely accepted and published. These findings lead to more
optimistic models for the chloride ingress into concrete. On the other hand, several
observations indicate that also the apparent/achieved surface concentration is time
dependent – a tendency for an increasing apparent surface concentration with time is
observed. This may lead to less optimistic models.

In this report we shall try to present a mathematically correct model that is applicable
on chloride exposed concrete structures. The aim is to have one “master model” in
which as well laboratory test data as field observations can be made useful. The model
can with as little bias as possible be calibrated to observed data (preferable a pool of
good data being the “prior” for other data from an environment (represented by the
“prior”)) and thereby obtain a model that will give “the mean value of our at any time
present experience” rather than a value biased by personal judgements.

The way to avoid the previous misunderstandings is clearly to define what the assump-
tions are, and not to mix “apples and pears”. The latter may be the most difficult part
because one needs to make clear of what nature a parameter is and when to make a
mathematical transformation to get from one category to another one.

Our contribution is to present, based on Fick’s second law, the mathematical models,
solutions and their application. Thereby we hope to have highlighted that misunder-
standings in the application of these models are crucial for the result – as it would be
for any other model.

A large number of alternative models are being used for chloride ingress. Some of
them are utilizing research front knowledge on Physics and Chemistry, but are still too
complicated to use in practical applications [10].

Using Fick’s second law as a mass balance equation for chloride in concrete, we ac-
knowledge that one or a few important assumptions are made [10]. The Physics and
Chemistry are significantly simplified:

1) the flux of chloride ions is solely described by Fick’s first law with a diffusion
coefficient DF2 and the total chloride content C as the flux potential,
or

2) the flux of chloride ions is solely described by Fick’s first law with a diffusion
coefficient DF1 and the “free” chloride content c as the flux potential,
and

3) the binding capacity dC/dc is a constant, i.e. does not change with the concentra-
tion.

12



These assumptions mean that the diffusivity D in the rest of this report is equal to the
diffusivity DF2 in Fick’s second law, where

DF2 =
DF1

dC/dc
.

Other ions than chloride are totally neglected. The interaction between the chloride in
the solution and chloride in the matrix is described in a very simplified way. To include
all ions and other physical and chemical effects, completely different solution methods
are required. This is described in [10].
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Chapter 2

Fick’s second law – traditional
solutions

In Appendix A we have derived Fick’s second law under very modest physical as-
sumptions. Therefore, we may in most cases model the transport by diffusion of heat,
moisture and chloride in a porous material by Fick’s second law of diffusion. The inter-
ested reader is here referred to Appendix A for more details, including a discussion of
why it is so difficult to avoid Fick’s second law. We shall, however, not repeat this dis-
cussion, so we take for granted that the pure mathematical formulation of ingress into
a one-dimensional half infinite space is given by the following initial/boundary value
problem for a parabolic partial differential equation (the heat equation) of constant
coefficients, and a boundary condition, which is a function of time t,

(2.1)



∂C

∂t
=
∂2C

∂x2
, x > 0, t > 0,

C(0, t) = Cs(t), t > 0,

C(x, 0) = 0, x > 0.

Here, C denotes the concentration, t is the time, and x is the distance from the exposed
surface, and the index s denotes the surface.

In (2.1), no diffusivity is yet introduced, and it is considered purely in a mathematical
way with no physical dimension involved. The unique solution of (2.1) is according to
e.g. [1] given by

C(x, t) = −2

∫ t

0

∂K

∂x
(x, t− τ)Cs(τ) dτ, x > 0, t > 0,
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where

K(x, t) =
1

2
√
πt

exp

(
−x

2

4t

)
, t > 0, x ∈ R.

Hence, the solution is given by

(2.2) C(x, t) =
x

2
√
πt

∫ t

0

1

τ
√
τ
Cs(t− τ) exp

(
−x

2

4τ

)
dτ,

a formula, which is well fit for theoretical considerations, but definitely not for practical
applications. We notice that the unique solution of the problem (2.1) is given by (2.2),
which was mathematically derived some 100–150 years ago. With the exception of the
cases mentioned below, one never really cared for how to compute (2.2) in practice.

According to an early edition of Crank [4] it should only be possible to compute (2.2)
explicitly when

Cs,0(t) = Cs,0, Cs,1/2(t) = Cs,1/2
√
t or Cs,1(t) = Cs,1 t,

which can also be written in the form

(2.3) Cs,p(t) = Cs,p t
p, where p ∈

{
0 ,

1

2
, 1

}
.

It can, however, be shown that it follows implicit from Crank [4] and Carslaw &
Jaeger [2] (and it was corrected in a later edition of [4]) that it can actually be computed
explicitly whenever 2p ∈ N0, i.e.

Cs,p(t) = Cs,p t
p, where p ∈

{
0 ,

1

2
, 1 ,

3

2
, 2 ,

5

2
, . . .

}
.

For p = 0 and Cs,0(t) = Cs,0 we get in particular the so-called (complementary) error
function solution,

(2.4) C(x, t) = Cs,0 erfc

(
x

2
√
t

)
,

where the function “erfc” is defined by

erfc(z) = 1− 2√
π

∫ z

0

exp
(
−u2

)
du =

2√
π

∫ +∞

z

exp
(
−u2

)
du

= 1− 2√
π

+∞∑
n=0

(−1)n

(2n+ 1)n!
z2n+1.(2.5)
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Figure 2.1: The graph of erfc(z), cf. (2.5).

In this connection it will also be relevant to show its counterpart, namely the graph
of the simplest possible solution, where we for simplicity choose x = 2. Thus, we shall
only consider the graph of the function erfc(1/

√
t), cf. Figure 2.2.

For completeness we now introduce a constant diffusivity D > 0 into (2.1). Then we
recognize Fick’s second law as it was originally used for modelling chloride ingress,

(2.6)



∂C

∂t
= D

∂2C

∂x2
, x > 0, t > tex,

C(0, t) = Cs,0, t > tex,

C (x, tex) = 0, x > 0,

where Cs,0 is a constant, and tex is the time of first exposure. The solution (2.4) is then
turned into the “error function solution” of Fick’s second law,

(2.7) C(x, t) = Cs,0 erfc

(
x

2
√
D · (t− tex)

)
, x > 0, t > tex.

We note that if we calibrate Figure 2.2, such that we write x2/{4D} instead of 1 on
the horizontal axis, then the graph of (2.7) is again given by Figure 2.2.
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Figure 2.2: The graph of the solution C(2, t) = erfc(1/
√
t) at the depth x = 2. Different

scales on the axes. This figure is actually generic in the sense that we can obtain every
possible chloride profile from this figure by only changing the units on the axes. The
abstract time is taken along the horizontal axis, i.e. “t = 1” corresponds to
“x/
√

4Dt = 1” in the general case, where the diffusivity is D = 1, and the chloride
concentration between 0 and 1 is along the vertical axis. We shall not go further into
this graphical application in this report.
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Chapter 3

The Ψp-functions

In spite of the statement of Crank [4] it was shown by Mejlbro [9] that if one introduces
some special functions, Ψp, only depending on p, it nevertheless becomes possible to
solve (2.1) assuming (2.3) explicitly by using a very simple procedure.

We shall in this chapter only define these functions and note that they in spite of their
apparent complicated structure in fact are very easy to implement in practice. We
leave for a moment their applications in the solution of (2.1) and (2.3) to the following
chapter. The interested reader is referred to either Mejlbro [9] or Poulsen & Mejlbro [13]
for further properties of the Ψp-functions.

The Ψp-functions are defined as follows,

(3.1) Ψp(z) =
+∞∑
n=0

p(n)(2z)2n

(2n)!
− Γ(p+ 1)

Γ(p+ 0.5)

+∞∑
n=0

(p− 0.5)(n)(2z)2n+1

(2n+ 1)!
,

where Γ(y) is the Gamma function defined by

Γ(y) :=

∫ +∞

0

uy−1e−u du, for y > 0,

and the factorial power , e.g. p(n) in (3.1), is defined by

(3.2) p(0) =1; p(1) =p; p(2) =p(p− 1); . . . ; p(n) =p(p−1)(p−2) · · · (p−n+1),

where p(n) contains n ≥ 1 decreasing factors. Note that the parameter p the exponent
in (3.2) is the same p as in (2.3).

One can also describe Ψp for p ≥ −0.5 as the unique solution of the ordinary initial
value problem

(3.3) Ψ′′p(u) + 2uΨ′p(u)− 4pΨp(u) = 0, Ψp(0) = 1, Ψ′p(0) = −2
Γ(p+ 1)

Γ
(
p+ 1

2

) .
19



The proof of (3.3) can be found in Poulsen & Mejlbro [13].

It follows in particular from either (3.1) or (3.3) combined with (2.5) that we have the
important identification

Ψ0(z) = erfc(z).

Putting

z :=
x

2
√
D · t

, D > 0 constant,

it will be shown in the next chapter that if the boundary condition is a constant times
tp, then tpΨp(z) in general plays a similar rôle in the solution of Fick’s second law, as
erfc(z) = t0Ψ0(z) does in the case of a constant boundary condition. For that reason
it is quite natural to call the Ψp(z) the generalized (complementary) error functions.

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

z

Figure 3.1: The graphs of the functions Ψp, for p = 0 (= erfc(z), thick line), for p = 1
2

(dashed line) and p = 1 (dotted line).
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Chapter 4

The abstract (mathematical) Fick’s
second law for Cp(0, t) = tp

The idea of an alternative solution of the problem (2.1) of constant diffusivity is to ben-
efit from the linearity, so we can use the principle of superposition of partial solutions.
We therefore search some special problems, which can be used as building stones in
the general solution. Of these, only the error function solution (2.7) has been applied
isolated in practice as a first approximation. However, by adding linear combinations
of these special solutions one obtains an extremely flexible model, which includes the
error function solution as a very special case.

In order to obtain the right mathematical solution from the very beginning we here strip
the usual Fick’s second law of all its physical dimensions and formally put the diffusivity
D = 1. Thus, in this chapter – and only in this chapter – we shall not interpret t as the
time variable and x as the length variable. They are just dimensionless mathematical
variables.

The solutions of these special problems, where we choose Cs(t) = tp, p ≥ 0, and Ci = 0,
will be denoted by Cp(x, t). They are therefore defined as the unique bounded solution
of the special initial/boundary value problem

(4.1)



∂Cp
∂t

=
∂2Cp
∂x2

, x > 0, t > 0,

Cp(0, t) = Cp,s(t) = tp, t > 0, p ≥ 0 (constant),

Cp(x, 0) = 0, x > 0.
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It was proved by Mejlbro [9] that the unique solution of (4.1) is given by

(4.2) Cp(x, t) = tpΨp

(
x

2
√
t

)
,

[
=

x

2
√
πt

∫ t

0

(t− τ)p
1

τ
√
τ

exp

(
−x

2

4τ

)
dτ

]
.

The expression in the squared parentheses is the integral of (2.2) which is no longer
needed, because the simple procedure is just to multiply the power function tp of the
boundary condition by the factor Ψp(x/

√
4t), where the index p is the same as the

exponent of the simple boundary condition.
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Figure 4.1: The graphs of the solutions Cp(2, t) = tp · Ψp(1/
√
t), at the depth x = 2

for p = 0 (i.e. erfc(1/
√
t), full line), for p = 1

2
(dashed line) and for p = 1 (dotted line).

Notice that the graphs intersect, and that erfc(1/
√
t) is dominating for small t, while

Ψ1(1/
√
t) becomes dominating for large t. Cf. also Figure 2.2.

For general fixed x > 0 we scale the time unit of the figure, such that “t = (x/2)2” is
represented by 1 on the time scale on the figure, and we have with this remark shown
that the figure can be applied for general x > 0.

As observed above we have Ψ0(z) = erfc(z), so we shall only get a solution containing
erfc(z) when the exponent p = 0. If this is not the case, then erfc cannot enter the
exact solution, though it may be possible to find a reasonable approximation by erfc
using the methods of Chapter C.5 in Appendix C.
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Figure 4.1 also gives the hint that when the error function solution is not satisfactory,
then one should in the next approximation choose Cs(t) as simple as possible, e.g.

Cs(t) = S · tp,

or in general,

Ci(t) = Ci + S · tp, if C(0, x) = Ci.

This means that the HETEK model, cf. Appendix B.5, is a very natural generalization
from the (complementary) error function model, also called the Collepardi Model.

Remark 4.1 Once (4.1) has been solved by (4.2), it is not hard by superposition to
find an approximating solution of the more general problem (2.1), provided that the
boundary condition Cs(t) is continuous in t. However, in order not to confuse the
reader for the time being, as long as the easy solution technique (4.2) of problem (4.1)
is not well-known, we have decided not to bring the full solution formula in this report.
♦
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Chapter 5

Introduction of time-dependent
diffusivity

We now introduce a diffusivity D(t) > 0 depending of time t and consider the more
realistic problem

(5.1)



∂C

∂t
=

∂

∂x

{
D(t)

∂C

∂x

}
= D(t)

∂2C

∂x2
, x > 0, t > tex,

C(0, t) = Cs(t), t > tex,

C (x, tex) = 0, x > 0,

where tex denotes the time of first exposure. Such a model was suggested by Takewaka
et al. [16], and later by Poulsen [11].

In order not to get into trouble with the physical dimensions later on we may, whenever
necessary, assume that we have chosen a time unit and a length unit etc. and that all
variables in (5.1) are measured with respect to these chosen units. This trick will make
the problem (5.1) dimensionless.

It is here of paramount importance for the understanding of where the pitfalls are
in this theory that we recognize that the differential equation of (5.1) is referring to
points (x, t) ∈ R+ × ]tex,+∞[. In fact, we shall later also consider another, closely
related diffusivity which very often is confused with the present one in (5.1). We shall
therefore here give it a name. We call D(t) from the differential equation of (5.1) the
instantaneous (or point-wise) diffusivity. We consider the instantaneous diffusivity
D(t) as an ideal function, which somehow can be specified for each given and fixed
time t ≥ 0. We see that it enters in a natural way in the differential equation of (5.1),
which is also point-wise in its structure, while the other diffusivity to be introduced
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later, the so-called average diffusivity, is not suited for the differential equation of (5.1).
There are, however, a couple of drawbacks in the properties of the instantaneous D(t).
It is very difficult to measure within a given prescribed tolerated error ε > 0, and it
does not enter the solution in a nice way. We shall come back to this later, because
the other diffusivity fulfils these requirements.

The notation of (5.1) is that t denotes the real time, and that tex is the age at exposure.
This means that the duration of the exposure is always represented by an interval, e.g.:
The concentration is measured at a given time tin (most often simply written as “t”).
The duration of the exposure is then the length tin − tex of the exposure time interval
[tex, tin]. Following Poulsen [11] we shall in most of this report not put tex equal to 0
(zero). We note that we often have tin � tex and therefore tin − tex ≈ tin.

If we change the variable in the following way

(5.2) T = T (t) :=

∫ t

tex

D(τ) dτ, t > tex > 0,

then the problem, equation (5.1), is transformed into

(5.3)



∂C̃

∂T
=
∂2C̃

∂x2
, x > 0, T > 0,

C̃(0, T ) = Cs(t) = C̃s(T ), T > 0,

C̃(x, 0) = 0, x > 0,

where we have applied the notation of the “one-to-one” correspondence

C̃(x, T ) = C̃

(
x,

∫ t

tex

D(τ) dτ

)
= C(x, t), i.e. C(x, t) = C (x, t(T )) = C̃(x, T ),

because (5.2) is monotone, so the inverse t = t(T ) exists and is unique. In this way
we have transferred the problem and the solution of it back to a known one, namely
(2.1), so we immediately get the solution expressed in the new variable T . The only
difference is that we are now forced to consider the integral of the diffusivity over the
exposure time interval [tex, tin] instead of D · (t− tex), when D is constant.

We note in particular in the special case where the boundary condition Cs(t) = Cs,0 > 0
is constant that (5.1) is reduced to the simpler problem

(5.4)



∂C

∂t
= D(t)

∂2C

∂x2
, x > 0, t > tex,

C(0, t) = Cs,0, constant, t > tex,

C (x, tex) = 0, x > 0.
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Using the transformation (5.2) we get the following simplification of (5.3),

∂C̃

∂T
=
∂2C̃

∂x2
, x > 0, T > 0,

C̃(0, T ) = Cs,0, T > 0,

C̃(x, 0) = 0, x > 0,

the solution of which is

(5.5) C(x, t) = C̃(x, T ) = Cs,0 erfc

(
x

2
√
T

)
= Cs,0 erfc

 x

2
√∫ t

tex
D(τ) dτ

 .
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Chapter 6

Time-dependent diffusivity and
time-dependent surface
concentration

We saw in Chapter 5 that the work of Takewaka et al. [16] and later Poulsen [11]
suggested the introduction of a diffusivity D(t) depending on time t. For some reasons
which will be explained in a later chapter they chose D(t) such that

1

t− tex

∫ t

tex

D(τ) dτ := Daex

{
tex
t

}α
, t > tex 0 ≤ α < 1.

However, although it was a step forward, it could not be used in all cases to predict
the chloride ingress into concrete. Then Uji et al. [18] suggested in 1990 for constant
diffusivity that also the surface concentration of chloride profiles might be regarded as
a continuous increasing function like (6.1) below

(6.1) Cs(t) = C0(t) = C(0, t) = S
√
t,

where S denotes a “surface chloride content coefficient” of the unit 1/
√

time. As
mentioned earlier in this report, Crank [4] presented the solution of Fick’s second law
in this special case.

Other investigations showed immediately that the square root function would not al-
ways fit the actual data, but the fact that the surface chloride content changed with
time was again and again found to be the reality. For these reasons a more flexible
structure was asked for.
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Figure 6.1: From Uji et al. [18], (figure 5). The figure shows the “Relationship between
surface chloride content and the years in service “for the inspected structures”. The
time scale is square root of time. This is a natural choice, and it will be generalized in
Appendix C. The observed grouping of the local environments: Tidal zone — Splash
zone — Atmospheric zone, are marked with the straight lines where the different values
of the parameter S are given.

When we combine Takewaka’s and Uji’s ideas, the problem is described by

∂C

∂t
= D(t)

∂2C

∂x2
, x > 0, t > tex,

C(0, t) = Cs(t), t > tex,

C (x, tex) = 0, x > 0.

By the change of variable (5.2) from Chapter 5, i.e.

T = T (t) :=

∫ t

tex

D(τ) dτ, 0 < tex < t,

we build the diffusivity D(t) into the new variable T , so the problem is transformed
into the basic problem of (2.1) in the new variable T instead of t. In particular, we see
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that the boundary condition is now written

Cs(t) = Cs(t(T )) = C̃s(T ).

Our solution method described in Chapter 4 relies on the assumption that we can
transform the problem into the generic equation (4.1). Therefore, we shall assume that
the boundary condition above has the simple structure in the new variable T ,

(6.2) Cs,p(t) = C̃s,p(T ) = T p =

{∫ t

tex

D(τ) dτ

}p
.

It follows from Chapter 4 that this particular problem has a unique solution, which
can be found by introducing (6.1) into (4.2), when t is replaced by T :=

∫ t
tex
D(τ) dτ ,

C(x, t) = C̃(x, T ) =

{∫ t

tex

D(τ) dτ

}p
Ψp

 x

2
√∫ t

tex
D(τ) dτ


(6.3)

= Cs,p(t) ·Ψp

 x

2
√∫ t

tex
D(τ) dτ

 .

Example 6.1 For the time being no data is available, so in order to get a qualita-
tive understanding of what happens, when we combine the two models, we have for
convenience put tex = 0 and chosen D(t), such that∫ t

0

D(τ) dτ := t · 1

tα
,

i.e. we are using a slightly different model of D(t) than the one given above, and we
also assume that the constant Daex = 1. We shall fix p = 1

2
and we choose for simplicity

x = 2, such that x/2 = 1, hence we consider the analogue of (6.3) given by

(6.4) Cα, 1
2
(2, t) :=

{∫ t

0

D(τ) dτ

}p
Ψp

 x

2
√∫ t

0
D(τ) dτ

 = t(1−α)/2 ·Ψp

(
t−(1−α)/2

)
.

Keeping p = 1
2

and x = 2 fixed, the graphs of Cα, 1
2
(2, t) are given on Figure 6.2 for

α = 0, 1
4
, 1

2
and 3

4
. It is seen that in the (abstract time) interval ]0, 1[ on the abscissa

axis the curves are given from below in the order α = 0, 1
4
, 1

2
and 3

4
. They all intersect
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at t = 1, and for t > 1 the order is reversed, i.e. from below, α = 3
4
, 1

2
, 1

4
and 0. We

also see that the differences are quite dramatic for the different values of α. Clearly, if
we also vary p, we obtain by combining these two ideas a very flexible model, which is
coined in the HETEK model, cf. Appendix B.5.

For general x, formula (6.4) is written

Cα, 1
2
(x, t) = t(1−alpha)/2 ·Ψp

(x
2
· t−(1−α)/2

)
=
x

2
· u(1−α)/2Ψp

(
u−(1−α)2

)
,

where we have put u(1−α)/2 = 2
x
·t(1−α)/2, i.e. u = (2/x)2/(1−α) ·t. Therefore, if we change

scales on the axis of Figure 6.2, writing (2/x)2/(1−α) instead of 1 on the horizontal axis,
and x/2 instead of 1 on the vertical axis, we also obtain Figure 6.2 in the general
situation. Hence, Figure 6.2 with x = 2 may be considered as giving a qualitative
picture of what happens, when p and x are kept fixed, while α varies. ♦
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Figure 6.2: The graphs of four solutions of (6.4) for p = 1
2
, x = 2 and α = 0, 1

4
, 1

2
, 3

4

illustrating a case of time-dependent diffusivity and surface chloride content.

In more general cases, we can of course again use the principle of superposition.

In other words, it is convenient to express Cs(t) as a sum of power functions of the
type

(6.5)

{∫ t

tex

D(τ) dτ

}p
.

It suffices of course in the first approximation to use a constant times (6.5). It may
be added here that we in this way get the motivation for the HETEK model, cf. e.g.
Appendix B.5.
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Chapter 7

Different diffusivities – definitions

The time-dependent diffusivity D(t) in Fick’s second law (5.1) is not used directly in
analytical solutions. The other occurring diffusivities need to be clearly defined, and the
relationships between them must be identified, to avoid misuse and misunderstanding.

7.1 The average diffusivity Dav(t)

When we compare (2.6) and (5.1) with (6.2) and their solutions (2.7) and (6.3), we see
that the variable in (2.7) is

x

2
√
D · (t− tex)

, D constant,

while it in (6.3) is

x

2
√∫ t

tex
D(τ) dτ

, D(t) time dependent.

We note that if D is constant, then∫ t

tex

D dτ = D · (t− tex) ,

so the two expressions are actually of the same type. It is therefore tempting to give
these two arguments the same structure. Thus, we introduce a new function Dav(t) by

(t− tex)Dav(t) :=

∫ t

tex

D(τ) dτ, t > tex,

or

(7.1) Dav(t) :=
1

t− tex

∫ t

tex

D(τ) dτ, t > tex,
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which clearly can be interpreted as the average of the diffusivity D(t) over the interval
tex < τ < t. We shall therefore call this new function Dav(t) the average diffusivity. To
distinguish D(t) from Dav(t) we call D(t) the instantaneous or point-wise diffusivity.

A very good reason for using the average diffusivity Dav(t) is that e.g. the solution (6.3)
can then be written in two ways,

C(x, t) =

{∫ t

tex

D(τ) dτ

}p
Ψp

 x

2
√∫ t

tex
D(τ) dτ

(7.2)

= {(t− tex)Dav(t)}p Ψp

(
x

2
√

(t− tex)Dav(t)

)
.(7.3)

If we here model the instantaneous diffusivity, i.e. we assume a simple structure of
D(t), it follows from (7.1) that the expression of the unique solution is far from simple,
because we shall still integrate D(t) in (7.2). If, however, from our measured data we
choose to model the average diffusivity instead, then Dav(t) is given a simple structure,
and we shall just insert the chosen Dav(t) into (7.3) without any further integration.

As mentioned previously, the average diffusivity Dav(t) was introduced by (7.1), i.e.

Dav(t) :=
1

t− tex

∫ t

tex

D(τ) dτ, t > tex.

Now, assume that we have modelledDav(t) by some continuously differentiable function,
for convenience also called Dav(t). Then

∫ t

tex

D(τ) dτ = (t− tex)Dav(t),

where the right hand side is a continuously differentiable function. Hence, we recon-
struct the corresponding instantaneous diffusivity by the formula (7.4) below, which is
obtained by differentiation,

(7.4) D(t) = Dav(t) + (t− tex)Dav
′(t), t > tex.

There is a general agreement that Dav(t) is decreasing, so Dav
′(t) < 0. This implies by

(7.4) that we for such decreasing Dav(t) always have that D(t) < Dav(t), so for that
reason alone one must be very careful never to confuse the two diffusivities.
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Let us now consider the problem

(7.5)



∂C

∂t
= D(t)

∂2C

∂x2
, x > 0, t > tex,

C(0, t) = Ci + S ·
{∫ t

tex
D(τ) dτ

}p
, t > tex,

C (x, tex) = Ci, x > 0,

which is a simple special case of (5.1), so its solution is easily derived from (6.3), i.e.

(7.6) C(x, t) = Ci + S ·
{∫ t

tex

D(τ) dτ

}p
Ψp

 x

2
√∫ t

tex
D(τ) dτ

 .

We see that if the average diffusivity Dav(t) is modelled, then (7.5) and (6.4) are
transformed into the problem

(7.7)



∂C

∂t
= {Dav(t) + (t− tex)Dav

′(t)} ∂
2C

∂x2
, x > 0, t > tex,

C(0, t) = Ci + S · {(t− tex)Dav(t)}p , t > tex,

C (x, tex) = Ci, x > 0,

the solution of which is

C(x, t) = Ci + S · {(t− tex)Dav(t)}p Ψp

(
x

2
√

(t− tex)Dav(t)

)
.

Therefore, by modelling Dav(t), we obtain a simple solution (because Dav(t) is assumed
given) at the expense of a complicated differential equation.

The pitfall here is that one is inclined to model the instantaneous diffusivity D(t)
instead of the average diffusivity Dav(t). By correct computations one should then end
up with the messy formula (7.2), which in practice is not nice to apply for a given
simple D(τ). It is even worse, if one confuses the two diffusivities D(t) and Dav(t).
Then the “result” will be wrong as will be explained in the next sections.

Given a model for Dav(t), then

D(t) = Dav(t) + (t− tex)Dav
′(t).
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The correct stated problem of Fick’s second law is then (7.7), but one would in practice
of course prefer the following mixed variant

(7.8)



∂C

∂t
= D(t)

∂2C

∂x2
, (instantaneous),

C(0, t) = Ci + S · {(t− tex)Dav(t}p , (average),

C (x, tex) = Ci,

where we have emphasized that the instantaneous diffusivity given above only enters the
differential equation, while the average diffusivity enters both the boundary condition
and the solution.

7.2 The achieved diffusivity Dach(t)

The term “achieved diffusivity”, a name already coined by Ervin Poulsen [11], refers to
the regression parameter D that is quantified by curve-fitting equation (2.7) (an error
function “solution”) to a measured chloride profile. That regression parameter D is
then “achieved” from exposure data, by assuming that D is the average diffusivity in
the time-interval [tex, tin], where tin is the time when the chloride profile was measured.
For different ages tmeas a time-dependent Dach(t) is obtained. Consequently, if p = 0,
then the regression parameter that is obtained is a measure of the average diffusivity
Dav(t) in equation (7.1).

7.3 Model for the time-dependent average diffusiv-

ity

It was mentioned in the Introduction and Chapter 5 that Takewaka et al. [16] suggested
handling the change in time for the (average) diffusivity as a power function as given
in (7.9),

(7.9) Dav(t) = Dav,ex

{
tex
t

}α
.

Here, Dav,ex and α are constants, where Dav,ex is the reference diffusivity (Dav,ex > 0) at
the beginning of the exposure tex, and 0 ≤ α < 1 (note that α < 1) is a dimension-free
parameter. Takewaka et al. based their suggestion on an analysis of chloride profiles
from natural exposure, i.e. the derived the diffusivities in the traditional way by using
Collepardi’s Model [3].
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A number of other authors have published the same tendency, namely that the achieved
or average diffusivity decreases with the time of exposure. When the diffusivity is
plotted versus the logarithm of time, the data often fit quite well to a straight line, so
a function like (7.9) will describe the data well for t away from tex.

The empirical formula (7.9) is the same in the models of LIGHTCON [8], Mejlbro [9],
Poulsen [12], DuraCrete [5], etc. — The basis parameter D0 is an average diffusiv-
ity (i.e. measured over a time interval) and α ∈ [0, 1[ is a dimension-free parameter
describing the decrease in time of the averaged diffusivity Dav(t).

We shall in the next section discuss the case of (7.9) and also show that we by a small
change of the definition (7.9) may obtain even more convenient formulæ.

We have also noted previously that experience shows that we in general can assume
that Dav(t) is decreasing in t, which again implies that

D(t) = Dav(t) + (t− tex)Dav
′(t) < Dav(t) for t > tex.

We can therefore expect that a confusion of D(t) and Dav(t) may have quite a dramatic
effect on the solution. This is actually true, and it will be demonstrated in the next
sections.

7.4 Alternative model 1 for Dav(t)

We end this chapter by introducing two alternative models of Dav(t). If we instead of
(7.9) choose the model

(7.10) Dav(t) = D̃av,ex

{
tex

t− tex

}α
, t > tex, 0 ≤ α < 1,

then of course Dav(t) → +∞ for t → tex+. The reader may wonder why we introduce
+∞ for t = tex. This is of no importance, because it is shown in Appendix A that the
flow of chloride ions is non-Fickean for t > tex close to tex, so none of the models in
this report, including the error function model, is reliable for t close to tex, i.e. for

(7.11) tex < t < tex + const. · 4D

x2
,

where the constant is still to be found empirically. We may therefore choose Dav(t) in
this interval, such that the result becomes reliable for t > tex + const. · 4D/x2, and
such that it at the same time is easy to handle. Therefore, we may allow (7.10) as a
model of Dav(t), because none of the models makes sense for t = tex for other reasons.
A more detailed description is given in Appendix D.
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7.5 Alternative model 2 for Dav(t)

The DuraCrete model [5] for chloride ingress uses a time-dependent average diffusion
coefficient Dav (tex; t), which is slightly different from (7.9),

Dav (tex; t) = D0

{
t0
t

}α
,

where t0 is the age, when D0 is measured. Usually D0 is quantified by measuring a
DRCM in 24 hours with a rapid chloride migration test at an age of t0 = 28 days. Then
D0 is found by correcting the DRCM with an “environmental factor” ke, i.e.

D0 = ke ·DRCM.

Since the age t0 of testing is different from the age tex at exposure, this is another way of
describing Dav (tex; t). The parameter tex does not even appear in the equation, in spite
of the exponent α being evaluated from exposure tests with a certain age at exposure,
usually different from 28 days.

The relationship between this alternative way of describing the average diffusion coef-
ficient is of course

D0 = Dav,ex

{
tex
t0

}α
.

This gives a simple relationship between the Dav,ex derived from exposure tests and the
D0 determined from a rapid chloride migration test.
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Chapter 8

Instantaneous diffusivity D(t) versus
average diffusivity Dav(t)

8.1 Introduction

We shall once more emphasize the differences between D(t) and Dav(t). It is obvious
that care must be taken when we convert from one diffusivity to another one.

In order to clarify how the practical application of the models above should be handled
to be consistent with mathematics, we shall try to clarify how each parameter should
be understood – and thereby avoid both wrong interpretations of results (e.g. chloride
profiles from real structures) and wrong use of the derived parameters, e.g. the use of
the age parameter α in finite element models.

When we consider the relation between the point-wise, or instantaneous, diffusivity
D(t), and the average diffusivity Dav(t) we get the following equations which define the
mathematical relationships between the average diffusivity and the point-wise diffusiv-
ity:

Dav(t) :=
1

t− tex
∫ t
tex
D(τ) dτ,

t > tex,
D(t) = Dav(t) + (t− tex)Dav

′(t).

We recall that problem (7.5), i.e.

∂C

∂t
= D(t)

∂2C

∂x2
, x > 0, t > tex,

C(0, t) = Ci + Cs(t), t > tex,

C (x, tex) = Ci, x > 0,
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is then precisely the same as the strange looking equation

∂C

∂t
= {Dav(t) + (t− tex)Dav

′(t)} ∂
2C

∂x2
, x > 0, t > tex,

C(0, t) = Ci + Cs(t), t > tex,

C (x, tex) = Ci, x > 0,

with the same solution, and it is different from the erroneous equation

∂C

∂t
= Dav(t)

∂2C

∂x2
, x > 0, t > tex,

C(0, t) = Ci + Cs(t), t > tex,

C (x, tex) = Ci, x > 0,

with different (and in our context wrong) solution, where we have replaced the in-
stantaneous D(t) erroneously by the average Dav(t). That it indeed is wrong, is easily
checked by simply inserting the supposed solution into the differential equation.

In order to study the isolated effect when we have a point-wise diffusivity being time
dependent and also a boundary condition being time dependent, we shall again start
by considering one of our building stones. Hence we consider the very special problem
(with indexed solution):

(8.1)



∂Cp
∂t

=
∂

∂x

{
D(t)

∂Cp
∂x

}
, x > 0, t > tex, (instantaneous),

Cp(0, t) = {(t− tex)Dav(t)}p , t > tex, (achieved),

Cp (x, tex) = 0, x > 0,

so the concentration is normalized.

We notice that even though we start with at point-wise diffusivity in the differential
equation, we have to consider the average diffusivity, if we want to model the surface
boundary condition in a way that will lead us to a solution of the type (6.3). Fur-
thermore, in order to solve (8.1) we need to chance the variable as in (5.2), and we
eventually get the solution (7.3) with Ci = 0 and S = 1,

Cp(x, t) = C̃p(x, T ) = {(t− tex)Dav(t)}p Ψp

{
x

2
√

(t− tex)Dav(t)

}
, (achieved),

where the average diffusivity applies.
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8.2 Modelling Dav(t)

Using (7.9), i.e.

Dav(t) = Dav,ex

{
tex
t

}α
,

and applying the previously found relationship

D(t) = Dav(t) + (t− tex)Dav
′(t) < Dav(t) for t > tex,

we see that the relationship between the average and the point-wise diffusivity in this
special case is given by

(8.2) D(t) = Dav,ex

(
(1− α)

{
tex
t

}α
+ α

{
tex
t

}α+1
)
.

It follows immediately from (7.9) and (8.2) that

D(t) =

{
1− α + α · tex

t

}
Dav(t) ≈ (1− α)Dav(t) for large t.

The relationship is illustrated in Figure 8.1.

These results show that D(t) and Dav(t) are very different (unless α is close to 0), so
they must not be interchanged.

Clearly, since D(t)/Dav(t) → 1 − α for t → +∞, we shall get very different results if
we by accident put Dav(t) into the diffusion differential equation instead of D(t).

8.3 Modelling D(t)

For completeness we mention that if we instead of the average diffusivity introduced
the point-wise diffusivity (assuming that it was possible to measure it within given
limits) in the form

(8.3) D(t) = D0

{
tex
t

}n
,

where we have replaced α in (7.9) by n in order to distinguish between the two models,
when they are compared, then we derive that the average diffusivity is given by

(8.4) Dav(t) =
tex

t− tex
· D0

1− n

({
t

tex

}1−n

− 1

)
,
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of the quotient

D(t)

Dav(t)
=

1

2

{
1 +

1

t

}
≈ 1

2
for large t,

(full line) and its asymptote (dotted line).

which does not fit well into the structure of the solution, or into the procedure of either
(2.4) or (4.2).

Here it must be emphasized that the analysis above shows that the problems become
very different, according to whether we use (7.9) or (8.3) as our assumption. However,
both descriptions make formally sense, and there is no mathematical error in either
of the two derived models (8.2) and (8.3). There are probably larger measurement
problems in establishing (8.3) than in (7.9), and there are definitely much larger math-
ematical problems in the analytical solution process, if we adopt the nice structure (8.3)
of the instantaneous diffusivity, instead of choosing to model the average diffusivity by
(7.9). But it must be admitted that it is very strange that the problem (8.1) should
be described by both the instantaneous and the average diffusivities at the same time,
if one also wants an easy solution procedure.

Numerical solutions are also easier to find, if we choose the model (7.9).
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Chapter 9

Age exponents in time-dependent
diffusivities

9.1 Age exponents n and α for the instantaneous

and the average diffusivity

Some papers use the model (7.9), while others use (8.3) instead, cf. Section 8.3. There-
fore, we felt that it is necessary also to derive the relationship between the exponents
α of (7.9) and n of (8.3) in order to get some form of “translation” from one model to
the other. The relationship is given by

(9.1) n = f(α, t) = α +

ln

{
(1− α) + α

tex
t

}
ln

(
tex
t

) = α +
ln{(1− α) + α · u}

lnu
,

where 0 < u :=
tex
t
< 1. Thus it is obvious that

1) The correspondence between α and n is not a simple function.

2) The correspondence is time dependent.

3) The parameter α is always smaller than n.

4) If the time dependency of the point-wise diffusivity is calculated by the use of
the parameter α belonging to the averaging diffusivity, then the time dependent
point-wise diffusivity will at every time t become bigger than it should be.
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Figure 9.1: The relationship between the two “age exponents” from equation (9.1).

9.2 Age exponents for the average and the achieved

diffusivity

If we assume that the average diffusivity can be described by equation (7.9), i.e.

Dav (tex; t) = Dav,ex

{
tex
t

}α
,

and that the surface chloride concentration Cs(t) is time-dependent as described by
equation (6.2), then the chloride profiles C(x, t) can be predicted using the Ψ-functions
as in equation (6.3). If this is assumed to describe correctly the true chloride ingress,
then it is important to know what possible errors are made if the erfc model is used
for curve-fitting measured chloride profiles, without considering the time-dependency
of the surface chloride level.

Since the time-dependency of the Cs value means that the chloride profiles are some-
what more “curved” than the erfc model is able to describe, cf. Figure 9.3, there must
be a clear difference between a chloride profile and a corresponding erfc curve used
for curve-fitting. The first question that arises is whether the age exponents for the
two diffusivities are different and, if so, what the relationship looks like. This is here
analyzed in two different ways, first a numerical analysis and then an analytical one.
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9.3 Numerical analysis of age exponents for the av-

erage and the achieved diffusivity

The numerical analysis is performed in the following way:

1) The average diffusivity Dav (tex; t) is assumed to follow equation (7.9), with an age
exponent called αψ, cf. Figure 9.2.

Figure 9.2: The input data for the numerical analysis; the time-dependent average
diffusivity according to Equation (7.9) with a series of age exponent values αψ. The
different values of p have no influence on the Dav,ψ, only on the surface chloride content
Cs(t).

2) The surface chloride content Cs(t) is assumed to follow equation (6.2) with the
parameter p.

3) Chloride profiles C(x, t) are predicted analytically from equation (6.3) for exposure
times between 1 and 100 years for a series of values of the age exponent αψ and the
parameter p. A value of Dav,ex,ψ = 500 mm2/year is chosen.

4) The chloride profiles are curve-fitted by a regression analysis to the erfc model,
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equation (5.5) with the two regression parameters Csa and Dav,erfc (tex; t) for a number
of exposure times t. An example is shown in Figure 9.3.

Figure 9.3: An example of the curve-fitting procedure for α = 0 and p = 1.2.

5) From this curve-fitting, a series of achieved diffusivities Dav,erfc (tex; t) are obtained
for the various exposure times for each combination of age exponent αψ and p
values, cf. Figure 9.4.

6) Each series of these achieved diffusivities D av,erfc (tex; t) are then fitted to the time-
dependency similar to equation (7.9), but with the age exponent called αerfc and
the diffusivity parameter called Dav,ex, erfc.

7) The two age exponents αψ and αerfc are finally compared.

The input data for this numerical analysis is shown in Figure 9.2.

For each series of αψ and p-values these achieved diffusivities Dav,erfc (tex; t) are fitted to
the time-dependency similar to equation (7.9), but with the age exponent called αerfc

and the diffusivity parameter called Dav,ex,erfc. The two age exponents αerfx and αψ are
compared in Figure 9.6.
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Figure 9.4: A graphical representation of the minimizing problem of equations (9.2),
(9.3) and (9.4). The solution is found when the integral of the curve is zero.

From the numerical analysis it seems as if the age exponents are equal! The differences
in Figure 9.6 for αψ = 0 are due to uncertainties in the curve-fitting when the diffusivity
is assumed to be constant. These results are further validated by an analytical analysis,
cf. Section 9.4 below and Appendix C.

9.4 Analytical analysis of age exponents for the av-

erage and the achieved diffusivity

The numerical analysis in Section 9.3 is complemented with an analytical analysis,
cf. Appendix C. The principle used is to minimize the differences between chloride
profiles obtained from the two models, as in a curve-fitting procedure, i.e. minimize
the differences between the two functions Cψ(x, t) and Cerfc(x, t) of (9.2) and (9.3)
below. The initial chloride content Ci is here set to zero and the symbols are somewhat
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Figure 9.5: The output data for the numerical analysis; the time-dependent achieved
diffusivity for the series of age exponent values αψ and p values.

different from those in Appendix C,

(9.2)


Cψ(x, t) = Cs(t, p) ·Ψp

(
x

2
√
Dav,ψ · (t− tex)

)
,

Dav,ψ = Dav,ex,ψ ·
{
tex
t

}αψ
,

where Dav,ψ is the average diffusivity in Fick’s second law, and

(9.3)


Cerfc(x, t) = Csa · erfc

(
x

2
√
Dav,erfc · (t− tex)

)
,

Dav,erfc = Dav,ex,erfc ·
{
tex
t

}αerfc

,

where Dav,erfc is the time-dependent “achieved diffusivity” in the error function solution
of Fick’s second law with a constant surface chloride content Csa.
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Figure 9.6: A comparison between the age exponents in the average (αψ) and the
achieved diffusivity (αerfc).

Equations (9.2) and (9.3) constitute a “special case” where the diffusivities are ex-
pressed by special functions. In Appendix C this problem is solved for a general case,
where the time-dependent average diffusivity could be expressed by general equations.
Finally, the solution of the special case of the equations (9.2) and (9.3) is found.

As seen in Appendix C, the minimizing problem can be expressed through

(9.4)

∫ +∞

0

{
Ψp(u)− 4u · Γ(p+ 1)

Γ(p+ 0.5)
·Ψp−0.5(u)

}
erfc(µp · u) du = 0,

also illustrated in Figure 9.4.

The solution is found to be independent of t, see Equation (9.5),

(9.5) Dav,erfc(t) =
1

µ2
p

Dav,ψ(t),

where µp only depends on p and not on t! The factor µp is quantified in Chapter 10 as
well as by the tables of Appendix C.8.
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In the special case, as expressed by equations (9.2) and (9.3), it is proved mathemat-
ically in Appendix C that the relationship between the two age exponents becomes
remarkably simple:

(9.6) αerfc = αψ.

The relationship between the absolute values of the two diffusivities is shown in Chap-
ter 10.

52



Chapter 10

Average diffusivity Dav,ψ(t) versus
achieved diffusivity Dav,erfc(t)

The results of Chapter 9 showed that the achieved diffusivity Dav,erfc(t) is different from
the average diffusivity Dav,ψ(t), even though the two age exponents are identical! This
is further discussed in the present chapter.

10.1 Numerical analysis

According to the numerical analysis of Section 9.3 the relationship between the two
diffusivities can be evaluated. The output data in Figure 9.2 and the input data in
Figure 9.5 are compared in Figure 10.1.

There is a significant effect of the parameter p on the relationship, and none on the
age exponent α, i.e. a significant effect on the time-dependency of the surface chloride
content Cs(t). For large p values the achieved diffusivity may be as small as some 30
% of the average diffusivity! Values of p between 0.3 and 1.1 in the submerged have
been observed in the submerged zone from 10-years field exposure tests.

As mentioned in Section 9.3 there is a scatter for α = 0, due to large uncertainties in
the curve-fitting procedure for constant D values.

10.2 Analytical analysis

From the analytical analysis described in Section 9.4 with the results (9.5) and (9.6) it
is quite clear that the relationship between the achieved and the average diffusivity is
reduced to a relationship between the parameters
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Figure 10.1: The relationship between the parameters Dach,ex and Dav,ex in the achieved
and average diffusivity, respectively, from the numerical analysis.

(10.1) Dav,ex,erfc =
1

µ2
p

Dav,ex,ψ.

The values of µp are found by using the minimizing procedure available in Excel to solve
Equation (9.4), shown graphically in Figure 9.4. The results are shown in Figure 10.2,
as values of µp and of 1/µ2

p.

The results from the analytical analysis correspond very well with the results of the
numerical analysis, cf. Figures 9.4 and 10.1.

Consequently, the analysis shows that there is a significant effect of the time-dependency
of the surface chloride content on the results obtained from a curve-fitting procedure
where this is neglected. These findings lead to significant consequences for many prac-
tical applications. This is quantified in Chapter 11.
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Figure 10.2: The relationship 1/µ2
p between the parameters Dach,ex and Dav, ex in the

achieved and average diffusivity, respectively, from the numerical analysis, cf. Equation
(10.1). The two sets of curves correspond to whether we are using (C.17) or (C.19) in
the iteration process. The two formulæ are equivalent, but (C.19) has better numerical
properties than (C.17).
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Chapter 11

Numerical examples of
consequences

A number of chloride ingress models do not consider the time-dependency of the surface
chloride content Cs(t). High quality exposure data, where this effect is not hidden by a
large scatter, demonstrate the effect very well. An early example is shown in Figure 6.1.

In spite of this, the parameters in those models are quantified by assuming the surface
chloride content Cs to be constant in time. From the analysis of the sections 10.1 and
10.2 it is now quite clear that this will lead to significant errors in the parameter values,
especially those parameters that are related to the parameter Daex,ex.

By using short term exposure data, and neglecting the time-dependency of the value
of Cs, a value of Dav,ex could be obtained which is 1.5-2 times too low. This causes
significant errors when applying such a model for extrapolations. Service lives being
1.5-2 times too long could be obtained!

Predictions with the erfc-model, using regression parameters from curve-fitting expo-
sure data up to a certain exposure time, may be very erroneous.

11.1 Assumptions

The assumptions used are the following. Chloride ingress is correctly described by
the Ψ model with a time-dependent surface chloride content given by the parameter
p. After an exposure time of tin − tex a chloride profile is “measured”, without any
errors at all. That chloride profile is curve-fitted to the erfc model, which gives the
two regression parameters Dach (tin) and Csa (tin). We have already a series of data at
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shorter exposure times, which means that we can evaluate the time-dependency

Dach(t) = Dach,erfc ·
{
tex
t

}α
.

11.2 Predictions

For predicting the chloride ingress after the last exposure time we first use the surface
chloride content Csa at the last “measurement” andDaex,erfc and α in the time-dependent
diffusivity equation above. The prediction is made until an age of the “end of the service
life” tTL, with Dach (tLT) and Csa. The chloride ingress is predicted with the erfc model
as the chloride content at a depth of xcr (e.g. the depth of the reinforcement). This is
called the ordinary estimate.

The chloride concentration at the depth xcr at time tLT is then predicted by means of
the Ψ model, with Dav (tLT) and Cs(t). This is called the Ψp estimate.

The relation between the ordinary estimate and the Ψp estimate is then shown as
functions of (tin − tex) for α = 0.0, 0.3 and 0.6, and for p = 0.3, 0.6, 0.9, 1.2 and 1.5.
For p = 0 the erfc estimate is of course equal to the Ψp estimate.

11.3 Results

One example of the comparison is shown in Figure 11.1, for a cover depth xcr of 45
mm and a service life tLT of 100 years.
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Figure 11.1: Comparison of the erfc estimate and the Ψp estimate for a cover depth of
45 mm and a service life of 100 years, from data up to different inspections times tin.
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Chapter 12

The λµ-modification of the erfc
solution to approximate the Ψ
solution

Finally, we shall consider the possibility of approximating a Ψ-solution by a modified
erfc-solution, since erfc-functions are more widely available in e.g. spreadsheet programs
etc.. In spite of what has been said previously, this is actually possible. Surprisingly,
this possibility was discovered by making the analysis in this report, and as the climax
of this report this result is briefly sketched out below. The mathematical derivation of
this modification and approximation is given in Appendix C.

The Ψ-solution is shown before, cf. equation (6.3) and equation (9.2). Its structure
may be written in the following way

(12.1) CΨp(x, t) = Cs(t, p) ·Ψp (z) ,

where

Cs(t, p) = S · (Dav,Ψ · (t− tex))p

and

z =
x

2
√
Dav,Ψp · (t− tex)

.

As shown by the rather complicated mathematical elucidation in Appendix C, it turns
out that an approximation of equation (12.1) to an erfc-solution only requires two
universal modification factors to be included. We denote these factors λp and µp as
they only depend on the parameter p, i.e. they are independent of the time and the
magnitude of the diffusivity. They are tabulated in Appendix C, and good polynomial
approximations for these factors are given below.
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The advantage of this approximation is that the approximation allows for a surface
boundary concentration increasing with time according to the exact same models for
Cs as used in the Ψ-model. Thus, the possibility for taking an increasing surface
boundary concentration into account can be made using the erfc-function instead of
the Ψp-functions (the generalised erfc-functions).

The parameters p and S are decisive for the way the surface boundary condition in-
creases with time.

From the curve-fitting example in Figure 9.3 it is obvious that in order to obtain a
better approximation the erfc-profile must be somewhat more curved. This is achieved
by introducing the factor µ2

p in the argument for the erfc-function. The modification
factor µp for the argument in the erfc-function varies between approximately 0.3 and
1, depending on the p-value, cf. Figure 10.2.

The additional modification factor λp is multiplied on the value of the erfc-function.

Values of λp are given by the equations (C.22) or (C.23) in Appendix C, and shown to
depend only on p. The values are shown in Figure 12.1 to vary between 1.00 to some
0.92.
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Figure 12.1: The correction factor λp of Csa(t) in the erfc-approximation, from equa-
tion (C.22). The approximation formula here is

λp = 1− 0.1287p+ 0.1104p2 − 0.0509p3 − 0.0093p4,

and R2 = 0.9998. Note that the vertical scale goes from 0.93 to 1.
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With these two factors included, the erfc-approximation is

(12.2) Capprox(x, t) = Csa(t) · erfc (µp · Z) = λp · Cs(t, p) · erfc (µp · Zp) .

The small errors in this approximation are quantified in Appendix C.
The disadvantage of using this approximation is that values close to the surface and
near the deep (horizontal) part of the chloride profile cannot be calculated with the
required accuracy. The unmodified erfc-argument, z must lie in the interval

0.0625 < z =
x

2
√
Dav,Ψp · (t− tex)

< 2.

In practice this means that the chloride profile must be represented by points in that
interval. Points outside the same interval are more or less wasted.

Calculations equivalent to those made in Chapters 9 and 10 were made using the
modified erfc-solution.
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Chapter 13

Conclusions

The solutions of Fick’s second law, for chloride ingress into concrete, have to be treated
with care. There are various solutions, depending on the assumptions that are made.
Since the diffusivity and the surface chloride content both are time-dependent, the
traditional solutions are not valid, neither for curve-fitting exposure data nor for pre-
dictions.

The main conclusions of the work presented in this report are:

1) Since it has become the state-of-the-art to consider the diffusivity to be time-
dependent, we must always carefully specify, if we are considering the “instan-
taneous diffusivity” D(t), or the “average diffusivity” Dav(t). As demonstrated in
this report it is disastrous for the result, if these two different, though equivalent
diffusivities are confused and put in the wrong places in either the formulation of
Fick’s second law, or in the solution formula.

2) The age exponent n (of the “instantaneous diffusivity” D(t)) and α (of the “aver-
age diffusivity” Dav(t)) are quite different and must never be confused. The time
dependent relationship between them has been quantified.

3) In realistic cases with a value of α ≈ 0.6 the error on the age exponent will be
a factor of 1.25 ! Having in mind that the age exponent is the overall dominant
parameter in chloride ingress modelling with a time dependent diffusivity such an
error therefore is unacceptable.

4) The age exponent α of diffusivity derived from exposure data by use of the tradi-
tional erfc-solution with a time-dependent diffusivity, is actually equal to the age
exponent α of the diffusivity derived by use of the more advanced Ψp-solution!
Even though the time-dependency of the surface chloride content is neglected when
evaluating the achieved diffusivity, the age exponent will still be correct.
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5) This is not true for the other parameters in the models.

6) The time-dependent achieved diffusivity from curve-fitting chloride profiles, with-
out considering the time-dependency of the surface chloride concentration, is very
different from the “average diffusivity”! In realistic cases where the value of p is
0.4-1.1 the error on the derived diffusivity will be a factor 1.5-2.

7) This means that in the past a significant error has often been introduced in the dif-
fusivity obtained from exposure data! And therefore, in e.g. the DuraCrete model,
the environmental factor is quantified erroneously! Consequently, service-life pre-
dictions in such cases may be too optimistic and up to two times overestimated!

8) Most observations of chloride ingress over time indicate that the surface chloride
content is time-dependent. Consequently, any model for chloride ingress must in-
clude such a description. The Ψ-model (cf. [6], [9], [12]) gives a mathematically
correct solution to Fick’s second law for these conditions.

9) A solution using the (λ, µ)-modification of the erfc function as suggested for the
first time in this report has shown to be a mathematically sound way to overcome
any computational difficulties with the Ψ-model. This is exemplified in the report.

If any future time-dependency of the surface chloride content is neglected when mod-
elling chloride ingress into concrete, the service life will be significantly overestimated!
As long as we are missing chloride ingress models expressing a fundamental under-
standing of the physical and chemical processes involved, prediction models must be
founded on long term chloride ingress data of high quality.

Any chloride prediction is of course of little value if knowledge on chloride threshold
values for initiation of steel in concrete are missing. For the time being more focus
on the decisive parameters for chloride threshold values are needed in order to make
service life modelling meaningful – both for new structures and for existing structures.

In order to base future design and reassessment of chloride exposed concrete structures
on firm knowledge rather than solely on experience more research, development, data
and test methods in this field are needed.
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Appendix A

Fick’s laws of diffusion

A.1 Introduction

When one considers chloride ingress into concrete, Fick’s second law is a very important
model. It is, however, difficult to solve in general, and there is also a serious problem
of adopting the most convenient diffusion coefficient for given measured data, so one
has only considered some special cases of Fick’s second law in the literature. Because
the measured data far from always does fit anyone of these known special cases, these
apparent failures have unfortunately created a tendency among some engineers to reject
Fick’s second law in general. We shall in this chapter of the Appendix show that this
is a very hasty conclusion. In fact, it will be demonstrated that if

1) the flow of chloride ions is slow, i.e. it is a flow without vortices so it can be described
by a gradient field,

2) and Fick’s first law is assumed to hold,

then the flow also obeys Fick’s second law for some (known or unknown) diffusion
coefficient D(x, t).

Therefore, if one rejects Fick’s second law, then either one has chosen a wrong diffusion
coefficient, or the flow contains vortices, so it cannot be described by a gradient field,
or Fick’s first law must be rejected.

The sections following after the argumentation mentioned above will deal with some
special variants of Fick’s second law from the literature and their unique solutions.
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A.2 Scalar potential, diffusion coefficient and flux

In order to do things right we shall here start in full generality by considering a flow
of chloride ions in a three-dimensional space. Once we have derived the necessary
results for our purposes, we shall specialize and restrict ourselves to the simpler one-
dimensional case.

Let 0 ≤ C(x, t) ≤ 1 denote the density of chloride ions at the point x := (x1, x2, x3) ∈ Ω
in the given region Ω ⊆ R3 at time t. Since the flow of chloride ions in general is very
slow, we may without loss of generality assume that the flow is without vortices, hence
it can be described as a gradient field with a corresponding scalar potential H. A
sound physical assumption is that H is proportional to the density C(x, t), i.e. the
scalar potential is of the structure

(A.1) H = D(x, t, · · · )C(x, t)

for some factor D(x, t, · · · ) depending on x and t, and possibly some other variables like
e.g. the temperature, or pH-value, or the density C(x, t) itself, etc.. The equation (A.1)
formally defines the function D(x, t, · · · ), which naturally is called the (instantaneous)
diffusion coefficient of Ω, so in some sense it describes the physical properties of Ω at
the point (x, t). We note in particular that the rôle of the diffusion coefficient in (A.1)
is to transform the random microscopic diffusion, chemical, etc. processes at x into a
simple macroscopic model, which describes the overall trend of the flow at the point
(x, t), neglecting the confusing and irrelevant random processes which only will blur
the description.

Since D(x, t, · · · ) is considered as a model, the strategy is always to choose it as simple
as possible and only adjust it to more complicated variants, when one particular version
does not fit with the observations made.

Given the scalar potential H by (A.1), the flow of the chloride ions is then described
by the vector field V = (V1, V2, V3), which is obtained by taking the gradient of the
potential H. It is in potential theory always customary to change the sign. Hence, the
flow is described by

(A.2)

V := −grad H = −
(
∂H

∂x1

,
∂H

∂x2

,
∂H

∂x3

)
= −

(
∂(D · C)

∂x1

,
∂(D · C)

∂x2

,
∂(D · C)

∂x3

)
.

At the point (x, t) the vector V(x, t) indicates the direction of the flow through the
point x at time t, and the length ‖V(x, t)‖ of V(x, t) indicates the speed of the flow
through x at time t. Hence, V(x, t) can be interpreted as the velocity of the flow at
time t and at the point x.
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We shall next introduce the flux of the flow given by (A.2) through a point x on a
surface S in Ω, where we furthermore assume that S is smooth at x, so a unit normal
vector n = n(x), ‖n‖ = 1, of S exists at x. We define the flux of the vector field V,
given by (A.2), through S at x and time t as

(A.3) FS(x, t) = n(x) ·V(x, t), n(x) perpendicular to S at x,

where the dot denotes the scalar product of two vectors.

We note that if the surface S1 is perpendicular to e.g. the x1-axis, and x = (x1, 0, 0) ∈ S1

is a point on both S1 and the x1-axis, then we may choose n(x) = (1, 0, 0). Then it
follows from (A.3) and (A.2) that

(A.4) FS1 (x1, 0, 0) = − ∂

∂x1

(D · C),

and similarly for the other two axes. By adding all contributions we conclude that we
in general have

∂C

∂t
= −div {grad(D · C)} = −∆(D · C),

where ∆ is the Laplacian,

∆ =
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

.

This remark shows that we without loss of generality may constrict ourselves to only
considering the one-dimensional case. The reduced model is the familiar positive half-
line R+ on the real axis, so (A.1), (A.2), (A.3) and (A.4) reduce to the simpler one-
dimensional model

H = D(x, t, · · · )C(x, t), x > 0, t > 0, potential,

F (x, t, · · · ) = − ∂

∂x
{D(x, t, · · · )C(x, t)}, x > 0, t > 0, flux.

Summary. Considering the one-dimensional case we have in this section only assumed
that the flow of chloride ions is given by a scalar potential H, which is proportional to
C(x, t). The factor of proportion D(x, t, · · · ) is the instantaneous diffusion coefficient.
The flux at x ∈ R+ at time t > 0 is then given by

(A.5) F = − ∂

∂x
{D · C}.
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A.3 Fick’s first law and non-Fickean flows

When we compute the right hand side of (A.5), we get the flux

(A.6) F = −D(x, t, · · · ) ∂C
∂x
− ∂D

∂x
C(x, t).

As mentioned previously, D(x, t, · · · ) gives a macroscopic model of the microscopic
random processes. In most cases we apply our model on an object which is almost ho-
mogeneous in its chemical composition and structure, so one would expect D(x, t, · · · )
not to vary much in x, i.e. ∂D/∂x must be very small. Under this assumption (A.6)
can be written

(A.7) F ≈ −D(x, t, · · · ) ∂C
∂x

, or just F = −D ∂C

∂x
for short.

Thus, by assuming almost homogeneity of the concrete on the half-line representing the
concrete we have proved the essential step of

Fick’s first law. The flow in concrete of chloride ions through a unit area of a section
of the concrete per unit of time (i.e. the flux F ) is proportional to the density gradient
of the chloride ions measured normally to the section.

We shall in the next section show that if we accept Fick’s first law as our model, then
Fick’s second law is easily derived from this first law. Therefore, if a flow cannot be
modelled by some version of Fick’s second law, then we are forced to reject (A.7) and
go back to the analysis of (A.6) or (A.5).

We define the flow to be non-Fickean, if Fick’s first law does not apply, i.e. when (A.7)
does not hold. Thus, for non-Fickean flows, |∂D/∂x| is either very large, or D(x, t, · · · )
may even be discontinuous at x, so the partial derivative with respect to x does not
exist. The latter is e.g. the case, when x = 0 is the boundary point, or x = x0 > 0
separates two parts of the concrete of different chemical composition or geometrical
structure, like essentially more pores to the left at x0 than to the right.

A.4 Fickean flows and Fick’s second law

Once Fick’s first law has been accepted as the model of a given flow, we say that
we have a Fickean flow. For completeness we mention that the Fickean flows again
formally can be subdivided into the following two classes:

1) The Fickean flow is called a simple Fickean flow if the diffusion coefficient D(x, t)
does only depend on x and t, possibly in the form of the density C(x, t) of the
chloride ions, in which case we get a non-linear equation later on. All investigations
in the literature are dealing with examples of simple Fickean flows.
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2) In reality no Fickean flow is simple, because they are characterized by D(x, t, · · · )
also depending on some other variables, like e.g. the temperature, the pH-value
etc.. For each such new variable we must go back to the physical considerations in
order to set up an additional differential equation. However, the few investigations
available indicate that D(x, t, · · · ) always at least depends on the temperature,
though the fluctuations in the temperature do not influence the overall trend. By
this we mean that if the temperature T is the same at t = t1 and t = t2 > t1 at
some fixed point, and C (x, t1, T ) is known, then C (x, t2, T ) can be predicted by
the chosen model of Fick’s second law by simply assuming that the temperature is
kept fixed for t1 < t < t2. This extra variable, the temperature, only changes the
balance between the chloride atoms and the chloride ions and have nothing to do
with the ingress of chloride ions from the outside world.

As the model always should be kept as simple as possible, we shall only consider the
simple Fickean flows in the following.

The next result, the mass balance equation is a general result which is proved without
any assumption of the flow being Fickean or non-Fickean.

The mass balance equation. The change in chloride per unit time is equal to the
change of flux per unit length.
In the one-dimensional case this is expressed mathematically in the form

(A.8)
∂C

∂t
= −∂F

∂x
.

In fact, consider an element parallel to the chloride diffusion into a semi-infinite volume
of concrete. We choose for convenience the element of area of the cross-section per-
pendicular to the x-axis as dA = 1. Between two consecutive sections at the distance
dx the volume of the tube becomes dV = dx. The amount of chloride per unit time,
dt = 1 which diffuses into this volume dV is by definition the flux F . Similarly, the
amount of chloride which diffuses out from the volume dV is the flux at the abscissa
x+ dx. Hence, the flux changes along the x-axis at the amount of ∂F/∂x per unit on
the x-axis. During the time dt = 1 the increase of chloride in the volume becomes

∂C

∂t
dx = F −

{
F +

∂F

∂x
dx

}
= −∂F

∂x
dx,

and (A.8) follows without any further assumption.

Combining the equations (A.4) and (A.8) we see that if we only assume that the flow
is given by a gradient field, then we must have the equation

(A.9)
∂C

∂t
=

∂2

∂x2
{D(x, t)C(x, t)},
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no matter whether we consider a Fickean or non-Fickean flow. However, one does not
consider (A.9) in the literature, because it in general is difficult to solve mathematically.
The mathematical solution methods become easier, if we can replace (A.9) by

(A.10)
∂C

∂t
=

∂

∂x

{
D(x, t)

∂

∂x
C(x, t)

}
.

It is for that reason that we have emphasized the importance of Fick’s first law. In fact,
when we combine (A.7) and (A.8) we immediately get (A.10). This is Fick’s second
law, which thus is derived from Fick’s first law.

Fick’s second law. The change in chloride content per unit time is equal to the change
per unit length of the product of the diffusion coefficient D and the density gradient of
the chloride ions.
In one dimension this is expressed by (A.10), i.e.

∂C

∂t
=

∂

∂x

{
D(x, t)

∂

∂x
C(x, t)

}
.

We shall here emphasize that if the flow contains vortices, then we still get equation
(A.9), which in structure is of the same type as (A.10). The only difference is that
D(x, t) is put at different places in the two equations. Therefore, equations of this type
cannot be avoided, unless we consider really violent flows.
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Appendix B

A catalogue of models based on
Fick’s second law

B.1 Introduction

We shall in the following only consider (simple) Fickean flows, hence the differential
equation is given by Fick’s second law, or more precisely by the equation (A.10) in one
dimension. In order to obtain a unique mathematical solution we have to specify the
initial conditions and the boundary conditions. If tex denotes the time of first exposure,
then the typical initial/boundary problem for Fick’s second law is written

(B.1)



∂C

∂t
=

∂

∂x

{
D(x, t)

∂

∂x
C(x, t)

}
, x > 0, t > tex, differential equation,

C(0, t) = ϕ(t), x = 0, t ≥ tex boundary condition,

C (x, tex) = χ(x), x ≥ 0, t = tex, initial condition,

where ϕ(t) and χ(x) are prescribed functions. Note that D(x, t) here could be replaced
by D(x, t, C(x, t)), where the diffusion coefficient also depends on the concentration of
the chloride. This gives us a nonlinear partial differential equation, which does not look
too nice for a first approach, so we shall avoid this case in the following. Then under
very weak mathematical assumptions (which are always fulfilled in the engineering
sciences) this initial/boundary problem (B.1) has a unique solution. The problem is
“only” to find it.

We see in this model that we shall choose – or if possible, specify by measurements –
the three functions D(x, t), ϕ(t) and χ(x). It turns up that the initial condition χ(x) is
the least important for both mathematical and engineering reasons. If the concrete is
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homogeneous in composure then it should be a constant, and this constant reappears
as the same constant in the solution formula.

In this chapter we shall list some of the most commonly used special models based
on the general Fick’s second law. We emphasize in order to avoid misunderstandings
that if some of the following models – and even if all of them – do not fit in practice,
one cannot conclude that Fick’s second law does not hold. One should instead try
to generalize the classical models below to also cover a given case which cannot be
described by one of these special examples of models of Fick’s second law.

B.2 Collepardi’s model

The most reasonable approach for setting up a model is to ask the following question

What is the simplest form of the problem (B.1) above?

The answer is Collepardi ’s model [3] from the beginning of the 1970s, in which he put
D(x, t) = D0 > 0 and ϕ(t) = Cs and χ(x) = Ci all constants. Hence, (B.1) reduces to

Collepardi’s model (also called the error function model):

(B.2)



∂C

∂t
= D0

∂2C

∂x2
x > 0, t > tex, differential equation,

C(0, t) = Cs, x = 0, t ≥ tex boundary condition,

C (x, tex) = Ci, x ≥ 0, t = tex, initial condition.

Its familiar unique solution, which most civil engineers have used as a model, is given
by the complementary error function below

(B.3) C(x, t) = Ci + (Cs − Ci) erfc

(
x

2
√
D0 · (t− tex)

)
, x ≥ 0, t ≥ tex.

B.3 Takewaka and Matsumoto’s model

Collepardi ’s model was a big step forward in understanding the dynamics of flows of
chloride ions into concrete. However, it did not last long, before one realized that
it had some shortcomings by putting D(x, t), ϕ(t) and χ(x) all constants. Takewaka
& Matsumoto [16] pointed out in 1988 that one would get a better model (the next
iteration) by assuming that D(x, t) = D(t) > 0 is a function in t alone. Hence, we get
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Takewaka a nd Matsumoto’s model:

(B.4)



∂C

∂t
= D(t)

∂2C

∂x2
x > 0, t > tex, differential equation,

C(0, t) = Cs, x = 0, t ≥ tex boundary condition,

C (x, tex) = Ci, x > 0, t = tex, initial condition,

the solution of which is easily proved to be

(B.5) C(x, t) = Ci + (Cs − Ci) erfc

 x

2
√∫ t

tex
D(τ) dτ

 , x ≥ 0, t ≥ tex.

One particular important case of this model was later used in the HETEK model with
the average diffusion coefficient Dav(t) given by

(B.6) Dav(t) :=
1

t− tex

∫ t

tex

D(τ) dτ = Daex

{
tex
t

}α
, t > tex, 0 ≤ α < 1.

B.4 The Ψp-function model

Another modification was suggested by Swamy et al. [14], and also by Uji et al. [18],
who obtained better results, when the boundary condition was assumed to be a power
function of exponent 1/2, 1, 3/2, etc.. This led Mejlbro [9] to examine the more general
case of putting ϕ(t) = tp, where just p ≥ −1/2. In order not to have too many irrelevant
constants at large, Mejlbro considered the simplified model

Mejlbro’s model:

(B.7)



∂Cp
∂t

=
∂2Cp
∂x2

x > 0, t > 0 differential equation,

Cp(0, t) = tp, x = 0, t ≥ 0, p ≥ −1
2
, boundary condition,

Cp(x, 0) = 0, x ≥ 0, t = 0, initial condition,

where D = 1, tex = 0 and χ(x) = 0. In order to emphasize that Cp(x, t) is the solution
of a very special (and generic) problem only depending on one parameter, namely the
exponent p, we have added the index p to the solution.

Mejlbro [9] defined in this connection the class of generalized error functions Ψp(u),
which could be found independently of (B.7), where erfc(u) = Ψ0(u) is a special case,
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and where the solution of (B.7) was obtained by multiplying the boundary condition
tp by the function Ψp(u), where u = x/{2

√
t}. Thus, the solution of (B.7) becomes

(B.8)

Cp(x, t) = tp Ψp

(
x

2
√
t

)
, in particular C0(x, t) = erfc

(
x

2
√
t

)
where t0 = 1.

Clearly, Mejlbro’s model could by linearity be extended to the more general

(B.9)

∂C

∂t
= D(t)

∂2C

∂x2
x > 0, t > tex differential equation,

C(0, t)=Ci + S
(∫ t

tex
D(τ) dτ

)p
, x = 0, t ≥ tex, p ≥ −1

2
, boundary condition,

C (x, tex) = Ci, x ≥ 0, t = tex, initial condition,

where S > 0 is a constant. The solution of (B.9) is easily found by combining the
previous results,

(B.10) C(x, t) = Ci + S

(∫ t

tex

D(τ) dτ

)p
Ψp

 x

2
√∫ t

tex
D(τ) dτ

 , x ≥ 0, t > tex.

Equation (B.9) and its solution (B.10) is to date the most general version of Fick’s
second law using a simple solution method. It should here be mentioned that there
exists some very difficult solution procedures for the more general problem (B.1). These
are unfortunately not of practical use for the time being. The theory above could also
be enhanced by adding two or more problems for different p of (B.9) from which one
obtains the solution by superposition. However, as long as (B.9) and (B.10) are not
common knowledge, there is no need here to bring this extension.

B.5 The HETEK model

Mejlbro’s investigation above was originally aimed at solving the HETEK model, cre-
ated by Frederiksen et al. [6]. This is an important special case of Mejlbro’s model,
because one has only to specify five constants in its application. Since the average dif-
fusion coefficient Dav(t) is used here, the strict formulation of the HETEK model may
look strange at the first glance. The different rôles of the average and the instantaneous
diffusion coefficients are discussed elsewhere in this report, so we shall not repeat this
discussion.
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The HETEK model:

We choose the average diffusion coefficient Dav(t), such that

(B.11) Dav(t) :=
1

t− tex

∫ t

tex

D(τ) dτ = Daex

{
tex
t

}α
, for t > tex,

where Daex > 0 and α ∈ [0, 1[ are constants. When we multiply by t − tex and then
differentiate the result, it follows easily from (B.11) that the instantaneous diffusion
coefficient D(t) is given by

(B.12) D(t) = Daex

{
tex
t

}α(
1− α + α · tex

t

)
.

Since∫ t

tex

D(τ) dτ = Daex (t− tex)
{
tex
t

}α
,

it follows that the HETEK model is best formulated in the following way

(B.13)

∂C

∂t
= D aex

{
tex
t

}α(
1− α + α · tex

t

)
∂2C

∂x2
, x > 0, t > tex diff. eq.,

C(0, t) = Ci + S

(
Daex (t− tex)

{
tex
t

}α)p
, x = 0, t > tex, bd. cond.,

C (x, tex) = Ci, x ≥ 0, t = tex, init. cond.,

because the solution of (B.13) is found in a very simple way,

(B.14) C(x, t) = Ci + S

(
Daex (t− tex)

{
tex
t

}α)p
Ψp

 x

2

√
Daex (t− tex)

{
tex
t

}α
 ,

for x ≥ 0, t > tex. The introduction of the exponent α more or less compensates for
the fact that the flow is non-Fickean close to the boundary.

Note that the HETEK model only contains five unknown parameters, namely the
constants Daex, α, p, S and Ci. Furthermore, one should not rely on measurements
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corresponding to t close to tex, where we cannot trust the model, because the flow is
here non-Fickean.

In fact, it was mentioned in section A.3 that the flow is always non-Fickean near the
boundary, e.g. for 0 < x < ∆. Diffusion is a slow process, so during some small time
interval tex < t < tex + δ, where δ > 0 depends of ∆ as well as in some sense of the
diffusion coefficient D(x, t), most of the chloride ions of the process will still remain in
the non-Fickean x-interval [0,∆], so the process is non-Fickean shortly after t = tex.
This is only proving the existence of such a constant δ. Its size is not known for the
time being and is for further study. However, a qualified guess is that δ ≈ tex, so we
guess that the flow is non-Fickean for tex ≤ t ≤ 2tex, and Fickean for t > 2tex.

Since the flow always is non-Fickean for t very close to the time of first exposure tex,
when most of the ions from the flow are very close to the boundary, we cannot rely on
the description given by the model for such t. Therefore, we can allow D(t) and Dav(t)
to be very large close to tex and even infinity at t = tex, as long as (t− tex)Dav(t) → 0
for t → tex. This idea was already considered by the creators of the HETEK model
as a possibility, but unfortunately rejected, “because the diffusion coefficient cannot
be infinite”. As indicated above, since the flow is non-Fickean in the beginning of the
exposure, when the chloride ions are still close to the boundary, this is not a serious
objection, because on never considers the model, when tex < t < 2tex. We can therefore
set up the following modified HETEK model, which is easier to handle in practice:

The modified HETEK model:

We here replace (B.11) by

(B.15) Dav(t) = D∗aex (t− tex)−α , t > tex.

Then∫ t

tex

D(τ) dτ = D∗aex (t− tex)1−α ,

and

D(t) = (1− α)Dav(t) = (1− α)D∗aex (t− tex)−α ,

so the problem is written in the form

(B.16)



∂C

∂t
=

(1− α)D∗aex
(t− tex)α

∂2C

∂x2
, x > 0, t > tex, diff. eq.,

C(0, t) = Ci + S
{
D∗aex (t− tex)1−α}p , x = 0, t > tex, bd. cond.,

C (x, tex) = Ci, x > 0, t = tex, init. cond..

78



Clearly, (B.16) is less complicated than the original HETEK model (B.13). Also the
solution

(B.17)

C(x, t) = Ci + S
{
D∗aex (t− tex)1−α}p Ψp

 x

2
√
D∗aex (t− tex)1−α

 , x > 0, t > tex,

of (B.16) is simpler than (B.14), and it can furthermore be proved that (B.16) and
(B.14) are almost equal, when t is large compared with tex. In this case we also have
only five unknown parameters, which should be specified by measurements.

Although the HETEK model is specified by only five constants, it is not hard to show
by computer simulation, cf. e.g. Figure 6.2, that it covers a lot of cases, which have not
yet been studied in details.

Remark B.1 Finally, it should be mentioned that if the auxiliary variable T , which
intrinsically is entering the problem, is given by

T := D∗aex (t− tex)1−α ,

then we can always express the original variable t explicitly in T ,

t = tex +

{
T

D∗aex

}1/(1−α)

,

a fact, which is quite useful in the practical computations (not shown here). This is
not possible in the original HETEK model, where T is given by

T = Daex (t− tex) ·
{
tex
t

}α
,

which is an equation that in general cannot be explicitly solved with respect to t. ♦

B.6 Conclusions

It has been argued that it in general is very difficult to reject Fick’s second law as a
model for chloride ingress into concrete.

A general initial/boundary value problem (B.1) for Fick’s second law is given, and
some special cases are discussed with their solutions.
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Note, however, that none of the special initial/boundary value problems shown here
exhaust all possibilities of general problem (B.1), although the HETEK model may
cover many cases. The reason is that even the models presented here are not too
well-known in public. It should be mentioned that if the diffusion coefficient D(t)
only depends on t and is continuous in t, then the problem (B.1) can be solved with
this diffusion coefficient by extending the methods of Mejlbro’s model by e,g, using
Weierstraß’s approximation theorem.
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Appendix C

Comparison of C(x, t) and Capprox(x, t)

C.1 Introduction

Traditionally engineers prefer to use the well-known error function solution instead of
the more correct Ψp-solutions, because one is not yet quite familiar with the latter
ones. However, if one is not careful in the setup, one can easily obtain some very
wrong predictions. In this chapter of the Appendix we shall in details discuss the
difference between the exact solution C(x, t) and the approximating error function so-
lution Cerfc(x, t). We shall even find a reasonable approximation of the correct solution
by a “twisted” error function solution, where we shall need the tables of Section C.8,
where we guess from the graphs that the relative error of such an approximation is of
the size of λp for T large, given in one of the above mentioned tables. These results
are here published for the first time.

C.2 Specification of the assumptions

We shall consider Fick’s second law in its special form

(C.1)



∂C

∂t
= D(t)

∂2C

∂x2
, x > 0, t > tex

C(0, t) = Ci + S ·
{∫ t

tex
D(τ) dτ

}p
, t > tex,

C (x, tex) = Ci, x > 0,

where p ≥ 0 and Ci > 0 and S > 0 are constants, and the diffusion coefficient D(t) > 0
is a function of time t alone.
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Remark C.1 When D(t) = D > 0 is a constant and p = 0, then we get the usual
complementary error function solution, so the classical case is included in this model.
As argued in the main body of this report it has long been recognized that the diffusion
coefficient in practice is a function of t. The first successful examples are of the type
D(t) ∼ constant times t−α, where α ∈ ]0, 1[ is a constant.

The structure of the term S ·
{∫ t

tex
D(τ) dτ

}p
of the boundary condition is chosen

for convenience. It can be shown that it is ∼ a constant times tp. By choosing the

“neighbouring”
{∫ t

tex
D(τ) dτ

}p
instead of the simpler function tp we obtain an easy

solution formula (C.2) below. ♦

It follows from the general theory that the unique solution of (C.1) is given by

(C.2) C(x, t) = Ci + S ·
{∫ t

tex

D(τ) dτ

}p
Ψp

 x

2
√∫ t

tex
D(τ) dτ

 .

Notice that if D(t) = D > 0 is a constant, and p = 0 in (C.1), then (C.2) becomes the
classical solution

C(x, t) = Ci + S · {D · (t− tex)}0 ·Ψ0

(
x

2
√
D · (t− tex)

)

= Ci + S · erfc

(
x

2
√
D · (t− tex)

)
,

because Ψ0 = erfc.

We shall in the following assume Fick’s second law in the form (C.1) and its uniquely
determined solution (C.2). Or more precisely, we pretend that we by some measure-
ments only know the graphs of the chloride profiles (C.2), and then we shall approxi-
mate these graphs by known classical solutions. Finally, we shall compare the derived
solution with the exact solution (C.2).

Let us assume that we do not know D(t), S, p and Ci of (C.1), and that we by
measurements only know a finite number of finite parts of the chloride profiles given
by (C.2). A traditional civil engineer would then by the latter measured data using
e.g. regression analysis construct an approximating solution by adopting the usual
complementary error function as the underlying structure function. Thus, our civil
engineer would find an approximating solution of the form

(C.3) Capprox(x, t) = Ci,approx + Cs,approx · erfc

 x

2
√∫ t

tex
Dapprox(τ) dτ

 .
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This approximating function Capprox(x, t) is implicitly constructed, such that its differ-
ence from the exact solution C(x, t) is “more or less” minimized in “mean square”.
We shall later return to the precise meaning of this apparently vague statement. Here
we just note that we by statistical methods explicitly can find the constants Ci,approx

and Cs,approx and the approximating diffusion coefficient Dapprox(t) from our measured
data. Hence, Ci,approx and Cs,approx and Dapprox(t) in (C.3) can be assumed known in the
following.

Remark C.2 Note that the introduction of the approximating diffusion coefficient
Dapprox(t) in (C.3) relies heavily on the fact that a solution of Fick’s second law always
is depending on the variable

u :=
x

2
√∫ t

tex
D(τ) dτ

,

so we adopt the same structure of the approximating solution. ♦

It will in the following be convenient to refer to a new function µp(t) > 0, which is
defined by

(C.4)

∫ t

tex

D(τ) dτ = {µp(t)}2

∫ t

tex

Dapprox(τ) dτ.

Remark C.3 As mentioned above we have already derived Dapprox(t) from our mea-
sured data. If we can find µp(t) explicitly, then we also know

∫ t
tex
D(τ) dτ , from which

we obtain D(t) itself by a differentiation. The function µp(t) is therefore important for
our reconstruction of the original problem (C.1), if this is possible.

That µp(t) also depends on the index p is due to the fact that since (C.3) is approx-
imating a Ψp-solution (C.2), the approximating diffusion coefficient Dapprox(t) must
necessarily depend on p. Since D(t) is independent of p, we conclude that µp(t) is also
depending on p. Clearly, the definition (C.4) indicates that one may expect that µp(t)
is a function of t. The surprising result is that µp(t) = µp does neither depend on D(t)
nor on t, but only on p. This is an unexpected and deep result, the proof of which is
given in Section C.4. ♦

It follows from (C.4) that (C.3) can now be written in the form

(C.5) Capprox(x, t) = Ci,approx + Sapprox · erfc

µp(t) · x

2
√∫ t

tex
D(τ) dτ

 ,
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where we for later theoretical reasons have switched back to the (yet unknown) diffusion
coefficient D(t).

Another convenient notation in the following is

(C.6) Sp(t) := S ·
{∫ t

tex

D(τ) dτ

}p
.

Then the exact solution (C.2) is written

(C.7) C(x, t) = Ci + Sp(t) ·Ψp

 x

2
√∫ t

tex
D(τ) dτ

 .

Remark C.4 Clearly, (C.7) and (C.5) are formally of the same structure. When
p = 0, formula (C.7) reduces to

C(x, t) = Ci + S0(t) · erfc

 x

2
√∫ t

tex
D(τ) dτ

 ,

which is already expressed by an error function solution, so they must coincide in this
case. Hence, if p = 0, then

Ci,approx = Ci, Sapprox = S0(t) a constant, γ0(t) = 1. ♦

Problem C.1 For given p ≥ 0, find the best approximation of the form (C.5) and
(C.2) [or equivalently of (C.7)] in some sense of minimizing in mean square.

C.3 Analysis of Problem C.1

As usual, mean square approximation means mathematically that one shall minimize
the improper plane integral∫ +∞

0

{∫ +∞

tex

{Capprox(x, t)− C(x, t)}2 dt

}
dx

with respect to the unknown constants Ci,approx and Sapprox, and the unknown function
µp(t), cf. (C.5). This is, however, not possible, because the inner integral with respect
to t is clearly infinite when p > 0. In fact, it follows for every fixed x > 0 that
C(x, t)→ +∞ for t→ +∞, while Capprox(x, t) is always bounded.

The problem is not well-posed in this setup. Fortunately, there is a slightly different
approach which can be applied with success. We shall allow the “constant”
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Sapprox = Sapprox(t) to be a function of t, and then consider t as a constant. We shall
therefore more modestly minimize

(C.8)

∫ +∞

0

{Capprox(x, t)− C(x, t)}2 dx for every fixed t > tex.

Amazingly, this problem can be solved.

Since we consider t ≥ tex as a constant parameter, we can make the change of variable
x←→ u by the definition

(C.9) u :=
x

2
√∫ t

tex
D(τ) du

.

Then (C.8) is computed in the following way∫ +∞

0

{Capprox(x, t)− C(x, t)}2 dx

=

∫ +∞

0

Ci,approx + Sapprox(t) erfc

µp(t) x

2
√∫ t

tex
D(τ)dτ


−Ci − Sp(t) Ψp

 x

2
√∫ t

tex
D(τ) dτ


2

dx

= 2

√∫ t

tex

D(τ) dτ ·
∫ +∞

0

{Ci,approx − Ci + Sapprox(t) · erfc (µp(t) · u)− Sp(t)Ψp(u)}2 du.

Thus we have reduced the problem to minimizing

(C.10)

∫ +∞

0

{Ci,approx − Ci + Sapprox(t) · erfc (µp(t) · u)− Sp(t) ·Ψ(u)}2 du

for every fixed t > tex.

Since Sapprox(t) and Sp(t) are to be considered as finite constants for fixed t > tex,
and erfc (µp(t) · u) and Ψp(u) are bounded functions of u, we conclude that we not so
surprisingly must have

Ci,approx = Ci.

In fact, if Ci,approx 6= Ci, then (C.10) would again become infinite. Hence, instead of the
impossible Problem C.1 we shall solve
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Problem C.2 For given p ≥ 0 and

Sp(t) := S

{∫ t

tex

D(τ) dτ

}p
,

minimize for every fixed t > tex the function

(C.11) Φ (S∗, γ) :=

∫ +∞

0

{S∗ · erfc(γ · u)− Sp(t) ·Ψp(u)} du

with respect to (S∗, γ).

We note that if (S∗, γ) is a solution of Problem C.2, then

Sapprox(t) = S∗ and µp(t) = γ.

C.4 Solution of Problem C.2

The function Φ (S∗, γ) defined by (C.11) is differentiable, and it can be proved that we
may differentiate the integrand under the integral sign. The function is positive, and
it is not hard to prove – though quite tedious – that the minimum exists and that it
is attained at an inner point (S∗, γ), i.e. 0 < S∗ < +∞ and 0 < γ < +∞. It follows
from Elementary Calculus that the minimum is attained at a stationary point, i.e. the
system of equations of the minimum is given by the two equations

(C.12) 0 =
∂Φ

∂S∗
= 2

∫ +∞

0

{S∗ erfc(γ · u)− Sp(t) Ψp(u)} erfc(γ · u)du,

(C.13) 0 =
∂Φ

∂γ
= 2

∫ +∞

0

{S∗ erfc(γ · u)− Sp(t) Ψp(u)} ·
{
− 2√

π
u exp

(
−γ2u2

)}
du.

We multiply (C.12) by γ/2. Then we get by a rearrangement and the change of variable
ζ := γ · u in the integral not containing Ψp(u),

(C.14) S∗
∫ +∞

0

{erfc(ζ)}2dζ = Sp(t) · γ ·
∫ +∞

0

Ψp(u) erfc(γ · u)du.

We note that

∂

∂u
erfc(γ · u) =

2√
π
γ exp

(
−γ2u2

)
=
γ

u

{
− 2√

π
u exp

(
−γ2u2

)}
=
γ

u

∂

∂u
erfc(γ · u).
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If (C.13) is multiplied by γ2, then by the same change of variable ζ = γ · u as above,

(C.15) 2S∗
∫ +∞

ζ=0

ζ erfc(ζ) d(erfc(ζ)) = 2Sp(t)

∫ +∞

ζ=0

ζ ·Ψp

(
ζ

γ

)
d{erfc(ζ)}.

The left hand side of (C.15) becomes by integrating by parts,

2S∗
∫ +∞

ζ=0

ζ · erfc(ζ) d{erfc(ζ)} = S∗
∫ +∞

ζ=0

ζ d
{

(erfc(ζ))2
}

= S∗
{

[ζ · (erfc(ζ))2]+∞0 −
∫ +∞

0

{erfc(ζ)}2dζ

}
= −S∗

∫ +∞

0

{erfc(ζ)}2dζ,

which is equal to the left hand side of (C.14) of the opposite sign. Hence, it follows
from this computation and (C.14) and (C.15) that

−2Sp(t)

∫ +∞

ζ=0

ζ ·Ψp

(
ζ

γ

)
d{erfc(ζ)} = +Sp(t) · γ

∫ +∞

0

Ψp(u) erfc(γ · u) du,

or, when we divide by Sp(t) > 0 and integrate by parts,

γ

∫ +∞

0

Ψp(u) erfc(γ · u) du = −2

∫ +∞

ζ=0

ζ ·Ψp

(
ζ

γ

)
d{erfc(ζ)}

= −2

{[
ζ ·Ψp

(
ζ

γ

)
· erfc(ζ)

]+∞

0

−
∫ +∞

0

{
Ψp

(
ζ

γ

)
+
ζ

γ
·Ψ′p

(
ζ

γ

)}
erfc(ζ) dζ

}

= 2γ

∫ +∞

0

{
Ψp(u) + u ·Ψ′p(u)

}
· erfc(γ · u) du.

Since γ > 0, we conclude that

(C.16)

∫ +∞

0

Ψp(u)erfc(γ · u) du = 2

∫ +∞

0

{
Ψp(u) + u ·Ψ′p(u)

}
erfc(γ · u) du,

which is reduced to

(C.17)

∫ +∞

0

{
Ψp(u) + 2u ·Ψ′p(u)

}
· erfc (µp(t) · u) du = 0.

Clearly, the right hand side of (C.17) does not depend on t, and since t formally only
appears in µp(t), it is easy to conclude that γ′p(t) = 0, so

(C.18) µp(t) = µp is independent of t.
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The identity (C.17) can now be written

(C.19)

∫ +∞

0

{
Ψp(u) + 2u ·Ψ′p(u)

}
· erfc (µp · u) du = 0.

We note that even if the variable of integration u given by (C.9) depends on t and
D(t), it is a so-called “dummy variable” in (C.19), so it is removed by the integration,
since the limits of the integral do not depend on t or D(t). Hence, equation (C.19)
is independent of D(t) and t. Thus, in principle (C.19) can be used to find µp as a
function of p.

In practice this is not an easy task, because both Ψp(u) and Ψ′p(u) ∼ Ψp−0.5(u) occur
in (C.19). Instead, it follows from an integration by parts of the right hand side of
(C.16) that∫ +∞

0

Ψp(u)erfc(γ · u) du = 2

∫ +∞

0

{
Ψp(u) + u ·Ψ′p(u)

}
· erfc(γ · u) du

= 2

∫ +∞

0

d

du
{u ·Ψp(u)} · erfc(γ · u) du

= 2 [u ·Ψp(u) · erfc(γ · u)]+∞0 − 2

∫ +∞

0

u ·Ψp(u) · d
du
{erfc(γ · u) du

=
4√
π

∫ +∞

0

u ·Ψp(u) · γ · exp
(
−γ2u2

)
du.

Hence, (C.19) is equivalent to

(C.20)

∫ +∞

0

Ψp(u) ·
{

erfc (µp · u)− 4√
π
· u · µp · exp

(
−µ2

pu
2
)}

du = 0,

which is easier to use numerically, when we find γ = µp as a function of p.

Remark C.5 Note that (C.18) is easy to derive from (C.17) and difficult from the
equivalent formula (C.20), while γ = µp is easier to compute from (C.20) than from
(C.17). ♦

Finally, it follows from (C.14) and (C.6) that

S∗ = S∗p(t) = Sp(t) · µp ·
∫ +∞

0
Ψp(u)erfc (µpu) du∫ +∞

0
{erfc(ζ)}2dζ

= S ·
{∫ t

tex

D(τ) dτ

}p
· µp ·

∫ +∞
0

Ψp(u)erfc (µpu) du∫ +∞
0
{erfc(ζ)}2dζ

.(C.21)
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We immediately derive the important result that the quotient

(C.22) λp :=
S∗(t)

Sp(t)
= µp ·

∫ +∞
0

Ψp(u)erfc (µpu) du∫ +∞
0
{erfc(ζ)}2dζ

only depends on p and not on t [or D(t)]. Since Sp(t) is increasing in t for fixed p, the
same is true for S∗p(t).

It is not hard to prove by a partial integration that∫
{erfc(t)}2dt = t{erfc(t)}2 − 2√

π
erfc(t) · exp

(
−t2
)

+

√
2

π
· erfc

(√
2 t
)
,

so the denominator of (C.22) becomes∫ +∞

0

{erfc(t)}2dt =
2√
π
−
√

2

π
=

√
2

π

(√
2− 1

)
=

√
2

π

1(√
2 + 1

) ,
and (C.22) is simplified to

(C.23) λp =

√
π

2
·
(√

2 + 1
)
· µp ·

∫ +∞

0

Ψp(u)erfc (µpu) du,

which makes it easier to compute in practice.

These observations can now be applied in the following way. Let us for simplicity
assume that Ci = 0 in (C.1), so the exact solution is given by

C(x, t) = Sp(t) Ψp

 x

2
√∫ t

tex
D(τ) dτ

 ,

while the best approximating error function “solution” is given by

Capprox(x, t) = S∗p(t) · erfc

µp · x

2
√∫ t

tex
D(τ) dτ

 .

We see that we have the same expression

(C.24) u =
x

2
√∫ t

tex
D(τ) dτ

:=
1

T
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occurring in both expressions, so the relative error of using Capprox(x, t) instead of the
exact solution C(x, t) is derived from the quotient

(C.25)
Capprox(x, t)

C(x, t)
=
S∗p(t)

Sp(t)
·

erfc
(µp
T

)
Ψp

(
1

T

) = λp ·
erfc

(µp
T

)
Ψp

(
1

T

) .

A comparison of the graphs of Ψp

(
1

T

)
and λp ·erfc

(µp
T

)
for some values of p indicates

that the relative error of applying the approximating function λp · erfc
(µp
T

)
instead of

the exact solution Ψp

(
1

T

)
is at most λp. Hence, it is important to compute tables of µp

and λp, using the implicit formulæ (C.20) and (C.23). These are given in Section C.8,
page 98 at the end of Chapter C.
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Figure C.1: The graphs of Ψ0.5(1/T ) (full line) and the approximation
0.9577erfc(1.2399/T ) (dotted line).
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Figure C.2: The graphs of Ψ1(1/T ) (full line) and the approximation
0.9400erfc(1.4481/T ) (dotted line).

C.5 The general results

Given Fick’s second law in the special form

∂C

∂t
= D(t)

∂2C

∂x2
, x > 0, t > tex

C(0, t) = S ·
{∫ t

tex
D(τ) dτ

}p
:= Sp(t), t > tex,

C (x, tex) = Ci, x > 0,

the exact solution of which is given by

C(x, t) = S ·
{∫ t

tex

D(τ) dτ

}p
ψp

 x

2
√∫ t

tex
D(τ) dτ

 = Sp(t) ·Ψp

 x

2
√∫ t

tex
D(τ) dτ

 .

This exact solution is approximated by a function of the type

Capprox(x, t) = λp(t) · Sp(t) · erfc

µp(t) · x

2
√∫ t

tex
D(τ) dτ

 .
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Figure C.3: The graphs of Ψ1.5(1/T ) (full line) and the approximation
0.9305erfc(1.6330/T ) (dotted line).

The main results are

1) The function µp(t) := µp is constant in the variable t, and increasing in the param-
eter p. It is numerically found from the implicit expression (C.20), i.e.∫ +∞

0

Ψp(u) ·
{

erfc (µp · u)− 4√
π
· u · µp · exp

(
−µ2

pu
2
)}

du = 0.

2) The “approximating diffusion coefficient” D∗(t) is given by

D∗(t) =
1

µ2
p

D(t),

and the relationship between the averaged diffusion coefficient Dav(t) and the achieved
diffusion coefficient Dach(t) is similarly given by

Dach(t) =
1

µ2
p

Dav(t),
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Figure C.4: The graphs of Ψ2(1/T ) (full line) and the approximation
0.9247erfc(1.8004/T ) (dotted line).

3) The factor λp(t) of the approximating solution is constant in the variable t and a
decreasing function in the parameter p. It is given by

Capprox(x, t)

C(x, t)
= λp ·

erfc

µp x

2
√∫ t

tex
D(τ) dτ


Ψp

 x

2
√∫ t

tex
D(τ) dτ

 = λp ·
erfc

(µp
T

)
Ψp

(
1

T

) ,

where

T :=
2

x

√∫ t

tex

D(τ) dτ .

We note that the square root occurs naturally, which is the already mentioned gen-
eralization of Uji’s observation, cf. also Figure 6.1. It is numerically determined
from the implicit relation

λp =

√
π

2
·
(√

2 + 1
)
· µp ·

∫ +∞

0

Ψp(u) erfc (µpu) du.

93



0

0.2

0.4

0.6

0.8

2 4 6 8 10 12

T

Figure C.5: The graphs of Ψ0.5(1/T ) (full line) and the approximation
0.9577 erfc(1.2399/T ) (dotted line) for 0 < T < 12.

4) There are graphical indications of that the relative error of using Capprox(x, t) instead
of C(x, t) is smaller than 1−λp, for large T , cf. Figures C.1–C.4. In the case where
2 < T < 16 the approximations are even much better, cf. Figures C.5–C.8

C.6 An important special case

It is customary to model the averaged diffusion coefficient Dav(t) by a power function,
i.e.

Dav =
1

t− tex

∫ t

tex

D(τ) dτ := Daex ·
{
tex
t

}α
,

from which we derive by a differentiation that the point-wise diffusion coefficient is
given by

D(t) = Dav(t) + (t− tex)D′av(t).

Then it follows by the general results in the previous section that

D∗av(t) = D∗aex

{
tex
t

}α∗

=
1

µ2
p

Dav(t) =
Daex

µ2
p

{
tex
t

}α
,

94



0

0.2

0.4

0.6

0.8

2 4 6 8 10 12

T

Figure C.6: The graphs of Ψ1(1/T ) (full line) and the approximation
0.9400 erfc(1.4481/T ) (dotted line) for 0 < T < 12.

so by identification,

D∗aex =
1

µ2
p

D aex and α∗ = α.

C.7 The limits of the approximation (C.26) when

2 < T < 16.

When we consider the Figures C.5–C.8) we see that the modified erfc approximation

(C.26) Capprox(x, t) = λp · Sp(t) · erfc

µp · x

2
√∫ t

tex
D(τ) dτ


has a very small relative error, when it is compared with the correct solution

(C.27) C(x, t) = Sp(t) ·Ψp

 x

2
√∫ t

tex
D(τ) dτ
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Figure C.7: The graphs of Ψ1.5(1/T ) (full line) and the approximation
0.9305 erfc(1.6330/T ) (dotted line) for 0 < T < 12.

for 2 < T < 16. It is indicated in Appendix C that the relative error for large T ∈ R+

is ≤ 1 − λp, but if we restrict ourselves to this smaller interval 2 < T < 16, then
the relative error becomes much smaller. It is therefore worth while to investigate
under what circumstances the variable T lies in this desirable and moderate interval
2 < T < 16.

Since

(C.28) T =
2

x

√∫ t

tex

D(τ) dτ > 0 for t > tex,

it follows that 2 < T < 16, if

(C.29) x2 <

∫ t

tex

D(τ) dτ < 64x2.

Assume that D(t) ≤ D∗ for some constant D∗ > 0. Then∫ t

tex

D(τ) dτ ≤ D∗ · (t− tex) ≤ D∗ · t,
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Figure C.8: The graphs of Ψ2(1/T ) (full line) and the approximation
0.9247 erfc(1.8004/T ) (dotted line) for 0 < T < 12.

so the right hand side of (C.29) is fulfilled, if

(C.30) t <
64x2

D∗
= t0 (x,D∗) = t0.

Thus, for tex < t < t0 (x,D∗) we may in the first approximation successfully use the
modified erfc “solution” (C.26), and in this way avoid the Ψp function.

In Table C.1 we have computed the upper bound t0 yr from (C.30) for various values
of x mm and D∗ mm2/yr.

In Table C.2 and Table C.3 we have computed the relative error

Capprox(x, t)− CΨ(x, t)

CΨ(x, t)
· 100 %,

of the approximative solution Capprox(x, t), when 1 ≤ T ≤ 16, from which follows that
the relative approximation is very poor for T = 1 and not for 2 ≤ T ≤ 16, and in many
cases even for 2 ≤ T < +∞.

97



D∗ \x 5.00 10.00 20.00 30.00 40.00 50.00 75.00 100.00

5 180.00 720.00
10 90.00 360.00
15 60.00 240.00 960.00
20 45.00 180.00 720.00
25 36.00 144.00 560.00
50 18.00 72.00 288.00 648.00
100 9.00 36.00 144.00 324.00 576.00 900.00
150 6.00 24.00 96.00 216.00 384.00 600.00
200 4.50 18.00 72.00 162.00 288.00 450.00
250 3.60 14.40 57.60 129.60 230.40 360.00 810.00
300 3.00 12.00 48.00 108.00 192.00 300.00 675.00
350 2.57 10.29 41.14 92.57 164.57 257.14 578.57
400 2.25 9.00 36.00 81.00 144.00 225.00 506.25 900.00
450 2.00 8.00 32.00 72.00 128.00 200.00 450.00 800.00
500 1.80 7.20 28.80 64.80 115.20 180.00 405.00 720.00
600 1.50 6.00 24.00 54.00 96.00 150.00 337.50 600.00
700 1.29 5.14 20,57 46.29 82.29 128.57 289.29 514.29
800 1.13 4.50 18.00 40.50 72.00 112.50 253.13 450.00
900 1.00 4.00 16.00 36.00 64.00 100.00 225.00 400.00

1000 0.90 3.60 14.40 32.40 57.60 90.00 202.50 360

Table C.1: Table of the upper bound t0 = 36x2/D∗ for the time t (in years), for which
the modified erfc approximation (C.26) can be applied with a small relative error. This
approximation can be successfully applied, when D(t) ≤ D∗ and tex < t ≤ t0 (x,D∗)
When t0 > 1000 years, it is omitted.

C.8 Tables of µp and λp

The tables below were first found by using numerical methods on the formulæ (C.20)
and (C.22). Once the tables were calculated we derived the following approximating
polynomials, which may also be useful,

(C.31) λp ≈ 1− 0.1287 p+ 0.1104 p2 − 0.0509 p3 + 0.0093 p4

and

(C.32) µp ≈ 1 + 0.5194 p− 0.0876 p2 + 0.0185 p3 − 0.0022 p4.
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p \T 1 2 3 4 5 6 7 8 9 10

0.1 -2.11 0.97 0.79 0.48 0.23 0.04 -0.11 -0.23 -0.32 -0.40
0.2 -4.74 1.73 1.50 0.96 0.50 0.15 -0.13 -0.36 -0.54 -0.69
0.3 -7.74 2.31 2.16 1.43 0.81 0.31 -0.08 -0.39 -0.65 -0.86
0.4 -11.03 2.73 2.74 1.89 1.12 0.50 0.02 -0.38 -0.70 -0.96
0.5 -14.50 3.02 3.27 2.33 1.44 0.72 0.15 -0.31 -0.69 -1.00
0.6 -18.10 3.17 3.75 2.74 1.76 0.95 0.30 -0.22 -0.65 -1.01
0.7 -21.79 3.20 4.16 3.14 2.07 1.18 0.47 -0.11 -0.59 -0.98
0.8 -25.50 3.14 4.53 3.51 2.38 1.43 0.65 0.02 -0.49 -0.93
0.9 -29.19 2.98 4.86 3.86 2.68 1.67 0.84 0.17 -0.39 -0.86
1.0 -32.85 2.73 5.13 4.19 2.98 1.91 1.04 0.32 -0.27 -0.77
1.1 -36.43 2.40 5.37 4.49 3.25 2.14 1.22 0.47 -0.16 -0.68
1.2 -39.92 2.09 5.57 4.78 3.52 2.37 1.42 0.63 -0.03 -0.58
1.3 -43.32 1.56 5.74 5.05 3.78 2.61 1.61 0.79 0.11 -0.47
1.4 -46.59 1.05 5.87 5.29 4.03 2.83 1.80 0.95 0.24 -0.36
1.5 -49.76 0.49 5.97 5.52 4.26 3.04 1.99 1.11 0.38 -0.24
1.6 -52.78 -0.12 6.05 5.73 4.49 3.25 2.18 1.27 0.51 -0.13
1.7 -55.68 -0.77 6.10 5.93 4.71 3.46 2.36 1.44 0.66 -0.00
1.8 -58.49 -1.47 6.11 6.11 4.91 3.65 2.54 1.59 0.79 0.11
1.9 -61.07 -2.19 6.11 6.28 5.12 3.86 2.72 1.75 0.94 0.24
2.0 -63.57 -2.95 6.08 6.43 5.31 4.04 2.89 1.91 1.07 0.36

Table C.2: The relative error in % of the modified erfc approximation for 1 ≤ T ≤ 10
and 0.1 ≤ p ≤ 2.0.

99



p \T 11 12 13 14 15 16 ∞
0.1 -0.48 -0.53 -0.58 -0.63 -0.66 -0.70 -1.23
0.2 -0.81 -0.92 -1.01 -1.09 -1.16 -1.22 -2.22
0.3 -1.04 -1.19 -1.32 -1.43 -1.53 -1.62 -3.02
0.4 -1.18 -1.37 -1.53 -1.68 -1.80 -1.91 -3.68
0.5 -1.27 -1.49 -1.68 -1.85 -2.00 -2.13 -4.23
0.6 -1.31 -1.56 -1.78 -1.98 -2.14 -2.29 -4.70
0.7 -1.31 -1.60 -1.84 -2.06 -2.25 -2.41 -5.10
0.8 -1.29 -1.60 -1.87 -2.10 -2.31 -2.49 -5.44
0.9 -1.25 -1.58 -1.87 -2.13 -2.35 -2.55 -5.74
1.0 -1.19 -1.55 -1.86 -2.13 -2.36 -2.57 -6.00
1.1 -1.13 -1.51 -1.84 -2.12 -2.37 -2.60 -6.24
1.2 -1.05 -1.45 -1.80 -2.10 -2.36 -2.60 -6.45
1.3 -0.96 -1.38 -1.74 -2.06 -2.34 -2.58 -6.63
1.4 -0.87 -1.31 -1.68 -2.01 -2.31 -2.56 -6.80
1.5 -0.77 -1.23 -1.62 -1.96 -2.27 -2.53 -6.95
1.6 -0.67 -1.14 -1.55 -1.91 -2.22 -2.50 -7.09
1.7 -0.57 -1.05 -1.47 -1.84 -2.16 -2.45 -7.21
1.8 -0.47 -0.97 -1.40 -1.78 -2.12 -2.41 -7.33
1.9 -0.36 -0.87 -1.31 -1.70 -2.05 -2.36 -7.43
2.0 -0.25 -0.78 -1.24 -1.64 -1.99 -2.31 -7.53

Table C.3: The relative error in % of the modified erfc approximation for 0.1 ≤ p ≤ 2.0
and for 11 ≤ T ≤ 16 (and 1− λp when T = +∞).
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p +0.00 +0.01 +0.02 +0.03 +0.04 +0.05 +0.06 +0.07 +0.08 +0.09

0.0 1.0000 1.0052 1.0103 1.0155 1.0206 1.0257 1.0308 1.0359 1.0409 1.0460
0.1 1.0510 1.0560 1.0610 1.0660 1.0710 1.0759 1.0808 1.0858 1.0907 1.0955
0.2 1.1004 1.1053 1.1101 1.1149 1.1197 1.1245 1.1293 1.1341 1.1389 1.1436
0.3 1.1483 1.1530 1.1577 1.1624 1.1671 1.1717 1.1763 1.1810 1.1856 1.1902
0.4 1.1948 1.1993 1.2039 1.2084 1.2130 1.2175 1.2220 1.2265 1.2310 1.2354
0.5 1.2399 1.2443 1.2487 1.2532 1.2576 1.2620 1.2663 1.2707 1.2751 1.2794
0.6 1.2837 1.2881 1.2924 1.2967 1.3009 1.3052 1.3095 1.3137 1.3180 1.3222
0.7 1.3264 1.3306 1.3348 1.3390 1.3432 1.3473 1.3515 1.3556 1.3598 1.3639
0.8 1.3680 1.3721 1.3762 1.3802 1.3843 1.3884 1.3924 1.3964 1.4005 1.4045
0.9 1.4085 1.4125 1.4165 1.4205 1.4244 1.4284 1.4323 1.4363 1.4402 1.4441
1.0 1.4481 1.4519 1.4558 1.4597 1.4636 1.4675 1.4713 1.4752 1.4790 1.4828
1.1 1.4867 1.4905 1.4943 1.4981 1.5019 1.5056 1.5094 1.5132 1.5169 1.5207
1.2 1.5244 1.5281 1.5319 1.5356 1.5393 1.5430 1.5468 1.5504 1.5541 1.5577
1.3 1.5614 1.5650 1.5686 1.5722 1.5759 1.5795 1.5831 1.5867 1.5903 1.5939
1.4 1.5975 1.6011 1.6047 1.6086 1.6118 1.6153 1.6189 1.6224 1.6259 1.6294
1.5 1.6330 1.6365 1.6400 1.6434 1.6469 1.6504 1.6539 1.6573 1.6608 1.6642
1.6 1.6677 1.6711 1.6746 1.6780 1.6814 1.6848 1.6882 1.6916 1.6950 1.6984
1.7 1.7018 1.7051 1.7085 1.7119 1.7152 1.7185 1.7219 1.7253 1.7286 1.7319
1.8 1.7353 1.7385 1.7419 1.7452 1.7485 1.7517 1.7550 1.7583 1.7616 1.7648
1.9 1.7681 1.7714 1.7746 1.7779 1.7811 1.7843 1.7876 1.7908 1.7940 1.7972
2.0 1.8004

Table C.4: Table of µp.
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p +0.00 +0.01 +0.02 +0.03 +0.04 +0.05 +0.06 +0.07 +0.08 +0.09

0.0 1.0000 0.9986 0.9972 0.9960 0.9947 0.9935 0.9922 0.9911 0.9899 0.9888
0.1 0.9877 0.9866 0.9855 0.9845 0.9835 0.9825 0.9815 0.9806 0.9796 0.9787
0.2 0.9778 0.9770 0.9761 0.9752 0.9744 0.9736 0.9728 0.9721 0.9713 0.9706
0.3 0.9698 0.9691 0.9684 0.9677 0.9671 0.9664 0.9657 0.9651 0.9645 0.9638
0.4 0.9632 0.9626 0.9620 0.9615 0.9609 0.9604 0.9598 0.9593 0.9588 0.9582
0.5 0.9577 0.9572 0.9567 0.9562 0.9558 0.9553 0.9548 0.9544 0.9539 0.9535
0.6 0.9530 0.9526 0.9522 0.9517 0.9514 0.9510 0.9506 0.9502 0.9498 0.9494
0.7 0.9490 0.9487 0.9483 0.9480 0.9476 0.9472 0.9469 0.9466 0.9463 0.9459
0.8 0.9456 0.9453 0.9450 0.9446 0.9443 0.9440 0.9437 0.9434 0.9432 0.9429
0.9 0.9426 0.9423 0.9420 0.9418 0.9415 0.9412 0.9410 0.9407 0.9404 0.9402
1.0 0.9400 0.9397 0.9394 0.9392 0.9390 0.9388 0.9385 0.9383 0.9381 0.9378
1.1 0.9376 0.9374 0.9372 0.9370 0.9368 0.9366 0.9364 0.9361 0.9359 0.9357
1.2 0.9355 0.9353 0.9352 0.9350 0.9348 0.9346 0.9344 0.9342 0.9341 0.9339
1.3 0.9337 0.9335 0.9333 0.9331 0.9330 0.9328 0.9326 0.9325 0.9323 0.9322
1.4 0.9320 0.9318 0.9317 0.9316 0.9314 0.9312 0.9311 0.9309 0.9308 0.9306
1.5 0.9305 0.9304 0.9302 0.9301 0.9299 0.9298 0.9297 0.9295 0.9294 0.9292
1.6 0.9291 0.9290 0.9289 0.9287 0.9286 0.9285 0.9283 0.9282 0.9281 0.9280
1.7 0.9279 0.9277 0.9276 0.9275 0.9274 0.9273 0.9272 0.9271 0.9269 0.9268
1.8 0.9267 0.9266 0.9265 0.9264 0.9263 0.9262 0.9261 0.9260 0.9259 0.9258
1.9 0.9257 0.9256 0.9255 0.9254 0.9253 0.9252 0.9251 0.9250 0.9249 0.9248
2.0 0.9247

Table C.5: Table of λp.
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Figure C.9: The graph of µp and its polynomial approximation.
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Figure C.10: The graph of λp and its polynomial approximation.
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Appendix D

Alternative model 1 for Dav(t)

For completeness we return to the alternative model 1 for Dav(t), already mentioned
in Section 7.4. We choose the model

(D.1) Dav(t) = D̃av,ex

{
tex

t− tex

}α
, t > tex, 0 ≤ α < 1.

Then the change of variable (5.2) becomes

T :=

∫ t

tex

D(τ) dτ = (t− tex)Dav(t) = D̃av,ex (t− tex) ·
{

tex
t− tex

}α
= D̃av,ex · tαex · (t− tex)

1−α , t > tex.(D.2)

It follows from the assumption 0 ≤ α < 1 that 0 < 1 − α ≤ 1, hence we can find the
inverse of (D.2), which is given by

(D.3) t = tex +

{
T

D̃av,ex · tαex

}1/(1−α)

= tex + const. T 1/(1−α), T ≥ 0.

In other words, by choosing the model (D.1) instead of (7.9) it becomes possible ex-
plicitly to find the inverse t = t(T ) as a function (D.3) of T .

Notice that if we allowed α = 1, then (D.2) would degenerate to T = constant, and we
could not use T as a new variable. Thus, we have to exclude α = 1.

Using the same model (D.1), problem (7.5) is then written with obvious modifications
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of notation,

(D.4)



∂C

∂t
= D(t)

∂2C

∂x2
, x > 0, t > tex,

C(0, t) = Ci + Sα,p · (t− tex)(1−α)p , t > tex,

C (x, tex) = Ci, x > 0,

where

(D.5) D(t) = (1− α)D̃av,ex

{
tex

t− tex

}α
= (1− α)Dav(t) and Sα,p = S · D̃p

av,ex · tαpex .

The solution of (D.4) is then

(D.6) C(x, t) = Ci + Sα,p (t− tex)1−α ·Ψp

 x

2
√
Sα,p (t− tex)1−α

 ,

which is easier to handle in practice than (7.9), where [cf. the definition of Dav(t)]

(D.7)

T :=

∫ t

tex

D(τ) dτ = (t− tex)Dav(t) = Dav,ex · tex

({
t

tex

}1−α

−
{
tex
t

}α)
, t > tex.

Notice that none of the two models is wrong. They are different from each other and
therefore must give different results.

The advantages of using (D.1) instead of (7.9) are as follows:

1) We refer the model of diffusivity to the time of first exposure and not to the time
of casting.

2) The change of variable (D.2), i.e.

T = D̃av,ex · tαex · (t− tex)
1−α , t > tex., 0 ≤ α < 1,

is simpler in its structure than (D.7).

3) The inverse of (D.2) is explicitly given by (D.3), i.e.

t = tex +

{
T

D̃av,ex · tαex

}1/(1−α)

= tex + const. T 1/(1−α), T ≥ 0,

while the inverse of (D.7) can only be found explicitly for α = 0, 1
2
, (and with some

knowledge of Cardano’s formulæ, also for α = 1
3
, 2

3
, and α = 1

4
, 3

4
, but the formulæ

of these four additional values of α are extremely difficult to implement).

106



4) Since the inverse of (D.2) is explicitly given by (D.3), so t = t(T ) is a known
function, it will in the future be possible to extend problem (D.4) to cases, where
the boundary condition is more general like

C(0, t) = Ci + Sp(t), t > tex, n ≤ α < 1,

by simply inserting t = t(T ) and then approximate the new function in the variable
T . In the case of (7.9), this is only possible for the very special values of α already
mentioned in 3) above.

5) The structure of solution for the model (D.2), i.e. (D.6), is simpler than the solution
when (7.9) is chosen as our model.

6) The relationship between D(t) and Dav(t) is very simple for the model (D.2), namely

D(t) = (1− α)Dav(t), t > tex, 0 ≤ α < 1.
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