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Abstract

This thesis studies several different algorithmic problems in graph theory and in geom-
etry. The applications of the problems studied range from circuit design optimization
to fast matrix multiplication.

First, we study a graph-theoretical model of the so called ”firefighter problem”. The
objective is to save as much as possible of an area by appropriately placing firefight-
ers. We provide both new exact algorithms for the case of general graphs as well as
approximation algorithms for the case of planar graphs.

Next, we study drawing graphs within a given polygon in the plane. We present
asymptotically tight upper and lower bounds for this problem

Further, we study the problem of Subgraph Isormorphism, which amounts to decide
if an input graph (pattern) is isomorphic to a subgraph of another input graph (host
graph). We show several new bounds on the time complexity of detecting small pattern
graphs. Among other things, we provide a new framework for detection by testing
polynomials for non-identity with zero.

Finally, we study the problem of partitioning a 3D histogram into a minimum num-
ber of 3D boxes and it’s applications to efficient computation of matrix products for
positive integer matrices. We provide an efficient approximation algorithm for the par-
titioning problem and several algorithms for integer matrix multiplication. The multi-
plication algorithms are explicitly or implicitly based on an interpretation of positive
integer matrices as 3D histograms and their partitions.
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Preface
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2013. The final part is about matrix multiplication using a geometric decomposition, it
was written during 2014.
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Introduction

0.1 The Firefighter Problem

This section is concerned with the so called ”Firefighter Problem”. The problem mod-
els a fire spreading or other similar processes, for example, a disease spreading in a
population or a computer virus in a network.

The problem is formulated as follows: Given a graph, each vertex can be in one of
three states: on fire, protected or vulnerable. Initially, a distinguished source vertex is
on fire and the remaining vertices are vulnerable.

The fire spreads throughout the graph in discrete time steps, at each time step, the
fire spreads from all vertices on fire to all adjacent vulnerable vertices. We can place
firefighters at vulnerable vertices to make them protected, preventing the fire to spread
to them. A budget integer B, bounds how many firefighters we can place at each time
step. The firefighters are placed before the fire is spreading, so we can save a vertex
adjacent to a burning vertex by placing a firefighter on it. After a vertex has caught fire,
there is no way to save it. Once there are no vulnerable vertices adjacent to burning
vertices, the game is over. We call the vertices not on fire at the end of this process
saved.

The objective is to find a sequence of vulnerable vertices to place firefighters on,
that maximizes the number of saved vertices without exceeding the budget at any time
step.

Input A graph G = (V,E), a vertex s ∈ V and a budget integer B.

Output An ordered sequence of disjoint subsets of V (indicating where to place fire-
fighters at each time step i) S = S1, S2, . . . Sk, |Si| ≤ B, i = 1, 2, . . . , k, such
that the vertices in each set Si are vulnerable at time i and the number of saved
vertices is maximized.

There is another version of this problem studied in the literature, called the spread-
ing model. The definition is the same except for one difference: the firefighters also
spread at each time step in the same manner as the fire, protecting all adjacent vertices

xi



xii Introduction

not already on fire. In case a vulnerable vertex is adjacent to both a vertex protected
by a firefigher as well as a vertex on fire, the spreading of the firefighter has priority.
The problem of finding an optimal placement is known to be NP-hard irregardless of
which model is used and the results in the paper are concerned with both models of the
problem. Note that the spreading model and the standard model are equivalent on trees.

First, we show a reduction of the Firefighter Problem in the spreading model to a
problem called "Maximum Coverage with Group Budgets". This immediately yields
several already known approximation results on the problem for trees in the standard
model and for general graphs in the spreading model.

We show further results for general graphs in the spreading model. Since the prob-
lem remains NP-hard in this model, the time complexity for any exact algorithm is likely
to be exponential. Specifically, we provide an exact 2O(

√
n logn)-time algorithm in the

spreading model. Due to the aforementioned equivalence between the spreading model
and the standard model on trees, we also obtain an O(n

√
n)-time algorithm for trees in

the standard model. This algorithm is significantly more straightforward and simpler to
implement than previously known subexponential algorithms for this problem.

We also show a lower bound on the approximation factor of any approximation
algorithm for the Firefighter Problem on weighted directed graphs in the spreading
model. This is done by a reduction from the so called ”Budgeted Maximum Cover”
problem.

In the standard model, we study the problem on Planar Graphs. If for example,
a forest is on fire, the topology of the terrain can often be described using a plane
graph, which motivates the assumption. Using an assumption on the size of the budget
depending on the maximum degree of the input planar graph, we show that at least 1

3 of
the vertices in the graph can be saved.

Finally, we present an approximation-time trade-off for the so called Directed Lay-
ered Graphs in the standard model. For an integer k, we can either approximate the
optimal solution within 1 − 1

k or we can approximate it within 1
k . The former approx-

imation (which for large k is the most accurate) takes time nO(
√
n), whereas the latter

only requires O(n2) time.

0.2 Poly-line Graph Drawing with constraints

This section deals with Graph Drawing, which in a nutshell aims to draw a graph using
points and lines on the plane to represent the vertices and edges. A usual constraint is
to require the drawing to be free of crossings if the graph is planar (and supplied with a
planar embedding). An example of a more specific constraint is to require the drawing
to be done using only straight lines. There are many other different constraints studied
in the literature as well.
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It is also common to introduce some measurement of quality, for instance, the area
of the smallest square containing the drawing, or the smallest side length of any square
containing the drawing.

We study the problem of drawing a planar graph inside a given polygon when the
vertex locations are fixed beforehand. The edges of the drawing must then be drawn
as sequences of straight-line segments, connected at the endpoints, to form so called
Polylines or ”Polygonal Chains”. The connection between two such segments is called
a bend, and the total number of bends for all edges in the drawing will be used as a
minimization objective.

Input A planar graph G = (V,E) of size n, a set S of points in the plane with rational
coordinates and an injective mapping ρ : V → S, a polygon P with k corners
such that all points of S are strictly in the interior of P .

Output A drawing of G with the vertices placed on the points specified by ρ such that
all edges are drawn without crossings as connected, finite sequences of straight
line segments completely inside P .

We provide bounds on the number of bends needed as a function of both n and k.
Namely, we show that it is always possible to draw a graph according to the constraints
using at most O(kn2) bends in total. We also derive a lower bound, stating that there
exists graphs that require at least Ω(kn2) bends. So, in the asymptotic sense, the bounds
proven are tight.

The method used to show the lower bounds is probabilistic, we do not construct
any explicit graph achieving the lower bound. The upper bound however is shown by
providing an algorithm that draws for a given polygon all the edges according to the
constraints.

0.3 Subgraph Isomorphism

This section is comprised of two papers, both concerned with different versions of the
Subgraph Isomorphism problem. The problem is one of the classic NP-complete prob-
lems: Given two graphs, one called the host graph and another called the pattern graph,
the objective is to decide if the host graph contains a subgraph isomorphic to the pattern
graph.

Input A pair of graphs G,H called ”host” and ”pattern”, with vertex and edge sets
VG, VH and EG, EH respectively.

Output ”yes” if there exists an injective mapping ρ : VH → VG such that {u, v} ∈
EH ⇒ {ρ(u), ρ(v)} ∈ EG, and ”no” otherwise.
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If we instead of the implication in the defintion require equivalence (i.e. {u, v} ∈
EH ⇔ {ρ(u), ρ(v)} ∈ EG), the resulting problem is called Induced Subgraph Isomor-
phism. We distinguish between three variants of both versions of the problem:

• The detection variant, which only requires to state whether such a mapping exists
or not.

• The finding variant, which requires to report such a mapping ρ (provided it ex-
ists).

• The counting variant, which either asks for the total number of such mappings
or the total number of subgraphs that are images of the pattern graph under such
mappings.

0.3.1 Induced subgraph isomorphism: Are some patterns substan-
tially easier than others?

This paper is mainly concerned with the time complexity of the induced subgraph iso-
morphism problem. Two main results are presented, one concerning detection and the
other dealing with counting.

The detection result shows a lower bound in terms of an independent set in the
pattern graph. Specifically, we show that any pattern graph containing a maximum
independent set of size k that is disjoint from other maximum independent sets is at
least as difficult to detect as an independent set of size k. An interesting example
is a cycle of even length, which only has two maximum independent sets (which are
disjoint), each containing half of the vertices. It follows that detecting whether a graph
contains an induced cycle of length 2l requires at least as many operations as detecting
an independent set of size l. Other applications include such natural pattern graphs as
odd paths and complete bipartite graphs.

The second result is concerned with the counting version of the induced subgraph
isomorphism problem (which naturally includes detection). This result is similar in na-
ture to the previous one in the sense that it also determines a lower bound in terms of
a smaller independent set. However, it is concerned with the topology of the pattern
graph, showing that no specific topology is substantially more difficult than any other.
Specifically, for any connected pattern graph H on k vertices, we can create a subdi-
vision of H by subdividing each edge of H into a path of length four and attaching a
path of length three to each vertex of degree one, such that this subdivision is at least as
difficult to detect as an independent set of size k.

Finally, the paper shows a few results on fixed pattern graphs of size 4. We show
that the pattern graphs ”diamond” and ”paw” are at least as difficult to detect as a
triangle. See Figure 1. These results resolve conjectures on the detection problem for
the respective pattern graphs.
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Figure 1: From left: diamond, paw and triangle

0.3.2 Detecting and Counting small pattern graphs

The second paper is concerned with both the detection and counting variants of the
subgraph isomorphism problem when the pattern graph is of constant size.

The main contribution is an innovative technique for detecting an induced subgraph,
we consider a multivariate polynomial where the monomials are in one to one corre-
spondence with the induced instances of different pattern graphs in the host graph. The
idea is to use the evaluation of the polynomial as an implicit method for detecting a pat-
tern graph. The polynomial evaluation relies on a lemma by DeMillo-Lipton-Schwartz-
Zippel, which uses randomization, so the algorithm is randomized.

A lot of the previous progress on subgraph isomorphism for fixed pattern graphs re-
lies on fast matrix multiplication. Unfortunately fast matrix multiplications algorithms
involve huge overheads, which makes them impractical. In contrast, our algorithm
should be more practical as it does not rely on fast matrix multiplication.

We also present an algorithm for the counting variant of the standard subgraph iso-
morphism problem. We measure the time complexity of our algorithmic solution both
in terms of the size of the host graph, the size of the pattern graph as well as the size
of an independent set in the pattern graph. Our algorithm improves/generalizes the pre-
viously known upper time bounds for the counting variant of the problem. This result,
however relies on fast algebraic algorithms for matrix multiplication.

A weighted version of the counting problem is also considered: For a vertex weighted
host graph, count the number of subgraph isomorphism mappings that minimize the to-
tal weight of the image of the pattern graph. We obtain an algorithm with a running
time dependent on both the size of an independent set in the pattern graph as well as the
sizes of the host and pattern graphs. In contrast to the previous result, this algorithm is
combinatorial i.e, it does not rely on fast matrix multiplication.
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0.4 3D Rectangulations and Matrix Products

This section is concerned with two problems and an unexpected relationship between
them. The problems are called: Minimum Polyhedron Rectangulation and Matrix Mul-
tiplication.

The first problem, Mimimum Polyhedron Rectangulation, concerns finding a par-
tition of a rectilinear polyhedron into as few as possible 3D rectangles. Finding the
minimum partition is known to be NP hard for general polyhedra.

We consider a restriction of the problem to a special case of polyhedra called recti-
linear 3D histograms, a generalization of rectilinear 2D histograms to three dimensions.
The complexity and approximation status of this restricted problem is still open.

Input 3D rectilinear histogram H .

Output A partition of H into a minimum number of 3D rectangles.

In the first half of the paper, we present an approximation algorithm that finds a
partition of a 3D rectilinear histogram with m corners that is within 4 times the size of
the optimal partition in O(m log(m)) time.

The second problem deals with computing the product of two matrices as fast as
possible and the focus is on the time complexity of an algorithm computing the product.

Input Two n× n integer matrices A,B.

Output A n× n matrix C such that A×B = C.

The naive multiplication algorithm takes O(n3) time. The exponent of fast matrix
multiplication algorithms for two n× n matrices is denoted with ω. The currently best
known bound for ω ≤ 2.372, due to Le Gall [46]. The known fast matrix multiplication
algorithms are based on algebra and recursion which involve large overheads in the
asymptotic running time. This makes them competitive only for extremely large input
matrices.

We show that if at least one of the input matrices can be decomposed into the sum
of relatively few uniform rectangular matrices, then the product of the matrices can be
efficiently computed using a simple to implement algorithm. Interpret a matrix M with
positive integer entries as a 3D histogram and denote the size of a optimal partition of
the corresponding histogram with rM .

In the second part of this paper we present two matrix multiplication algorithms
with a running time dependent on the size of the minimum partitions, i.e. rA, rB . The
first algorithm uses our 4-approximation algorithm to obtain decompositions of the cor-
responding 3D histograms and then it explicitly uses these decompositions to compute
the product of the matrices. The algorithm has a running time of Õ(n2 + rArB), for
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two n× n matrices A,B, where the Õ notation supresses any polylogarithmic factors.
The second algorithm doesn’t make explicit use of the partitions, instead it uses verti-
cal slices of the two histograms to compute the product and the resulting running time
becomes Õ(n2 + nmin{rA, rB}).

We also give a generalization of the latter upper bound in terms of the minimum cost
of a spanning tree of the slices, where the distance between a pair of slices corresponds
to the cost of transforming one slice into the other.

Our matrix multiplication algorithms is superior to the current fast matrix mul-
tiplication algorithms only when the value of rA or rB is substantially smaller than
nω−1 ≈ n1.372.





Chapter 1

The Firefighter problem

1.1 Introduction

The firefighter problem was first considered by Hartnell [33]. The objective is to de-
termine a deployment of firefighters which maximizes the sum of weights of saved
vertices. Later, several other variants of the firefighter problem have also been studied.

Since the first definition, the problem has received significant attention [2, 9, 25,
33]. We model the underlying network by a directed or undirected graph G = (V,E)

with a distinguished vertex s called the source node (or the root), and nonnegative vertex
weights. Each vertex v ∈ V is either on fire, protected, or vulnerable, where the latter
implies that v is neither protected nor on fire. At time 0 a fire breaks out at the source
node, at each subsequent time step a firefighter may be placed on a vulnerable vertex to
protect it. At each subsequent time step the fire also spreads to all vulnerable vertices
that are adjacent to a burning vertex. At some time, when the fire can no longer spread,
the process ends and all the vertices which are not on fire are considered to be saved.

Anshelevich et al. [2] generalized the classical firefighter problem to include the
possibility of placing up to B firefighters at a single time step. They also considered
the dual problem where the objective is to minimize the budget constraint B in order
to save a given set of nodes T ⊆ V . Furthermore, they also introduced the so called
spreading model [2] for the firefighter problem and its dual. In the spreading model, if
a node u is protected and v is a vulnerable neighbour of u at time step t, then at the next
time step t+ 1, the node v also becomes protected. Note that in this model a firefighter
prevails over possible neighbouring nodes on fire and the adjacent vulnerable node is
protected in the subsequent step.

The introduction of the spreading model stems from the fact that the firefighter
problem can also model a diffusive process, such as an infection, which spreads through
a network. The objective is to stop this infection by using targeted vaccinations (see

1



2 The Firefighter problem

e.g. [2]). Hence, the firefighting problem in the spreading model is highly relevant to
health care efficiency.

Related work

The firefighter problem appeared to be NP-hard even when restricted to trees [25]. It
is hard to approximate within nα in polynomial-time for general undirected graphs, for
any α < 1 while it admits an (1 − e−1)-approximation in polynomial-time for trees
[9]. The greedy heuristic on trees which places a firefighter on a vulnerable vertex that
saves the largest number of vertices is known to achieve 1

2 -approximation factor [34].
Even a subexponential, 2O(

√
n logn)-time, exact algorithm has been designed for trees

on n vertices [9].

In the spreading model, the firefighter problem is much more feasible. For general
graphs it can be approximated within 1− e−1 in polynomial-time [2].

Contributions

To begin with, we observe that essentially all the known approximability results for the
firefighter problem on trees [9, 34] as well as those on general graphs in the spreading
model [2] immediately follow from the known corresponding results for the so called
maximum coverage problem with groups [10].

Our main results are concerned with general graphs in the spreading model.

We provide a very simple exact 2O(
√
n logn)-time algorithm. In the special case of

trees, where the standard and spreading model are equivalent, our algorithm is substan-
tially simpler than that exact subexponential algorithm for trees presented in [9].

On the other hand, we show that the firefighter problem on weighted directed graphs
in the spreading model cannot be approximated within a constant factor better than
1− 1/e unless NP ⊆ DTIME(nO(log logn)).

We also present several results in the standard model.

Firstly, we obtain two approximation results in terms of the degree of the source
vertex for planar graphs, assuming that at least two firefighters can be placed in a single
step.

Secondly, we derive two trade-offs between approximation factors for polynomial-
time solutions and the time complexity of exact or nearly exact solutions for instances
of the firefighter problem for the so called directed layered graphs studied in [2].



1.1 Introduction 3

A reduction to a variant of the Maximum Coverage Prob-
lem

A restriction of the cardinality variant of the problem of Maximum Coverage with
Group Budgets (MCG) has been defined in [10] as follows. There are given subsets
S1, S2, ..., Sm of a ground set X, disjoint subsets G1, ..., Gl of {S1, ..., Sm} called
groups and a positive integer k. The objective is to find H ⊆ {S1, ..., Sm} such that
|H| ≤ k, |H ∩ Gi| ≤ 1 for i = 1, ..., l and the number of elements in X covered by
sets in H is maximized.

Chekuri and Kumar proved the following fact in [10].

Fact 1 The standard greedy heuristic for minimum set cover (stopped when k sets are
already included in the cover) yields 1

2 approximation for the restriction of the cardi-
nality variant of MCG. This problem can be also approximated within 1−e−1 by linear
programming techniques.

Corollary 1.1 The firefighter problem with budget B on trees as well as the firefighter
problem with budget B for general (directed or undirected) graphs in the spreading
model can be approximated within 1 − e−1 in polynomial time. Also, the standard
greedy heuristic that iterates picking a vertex that saves the largest number of not yet
saved vertices yields 1

2 approximation in both cases.

Proof: Given an instance of the firefighter problem with budget B on trees, we define
a corresponding instance of the cardinality variant of MCG as follows.

We root the input tree T at the distinguished vertex and for each other vertex v define
Sv as the set of all descendants of v, including v, in the tree. Thus, the ground set is the
set of all vertices of T different from the source vertex, and the family of sets consists of
the aforementioned sets Sv. We partition the family into groups by accounting into the
same group all sets Sv where v share the same level of T . Finally, we set the parameter
k to B.

Any feasible solutions to the resulting instance of MCG which covers q vertices
is in one-to-one correspondence with a placement of firefighters in T which saves q
vertices (place the firefighters on those v for which Sv are in the set cover) and vice
versa (account to the cover all Sv where a firefighter is placed on v).

This proves the corollary for the firefighter problem on trees.
The proof for general (directed or undirected) graphs G in the spreading model is

analogous. It relies on the observation that the set of vertices saved by a placement
of firefighters in the spreading model is a union of the sets saved by single firefighter
placements included in the placement.

Let d be the maximum distance of a vertex from the fire source in the graph. For
1 ≤ r ≤ d, and each vertex v of G, we define Srv as the set of all vertices of G that
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become directly or indirectly saved if we place a firefighter on the vertex v in the r-
th step. Note that v is included into Srv and this set can be easily computed in time
polynomial in the size of G. For each r, the sets Srv form a separate group. 2

1.2 Firefighting in the spreading model

1.2.1 A subexponential-time algorithm

Our subexponential-time algorithm for general graphs in the spreading model relies on
the two following lemmata.

Lemma 1.2 After the j-th step, all vertices within distance at most j from the source
vertex in the spreading model are either burnt or (directly or indirectly) saved.

Proof: Let v be a vertex at distance of j from the source. If the fire has not reached
v during the j steps then for any shortest path from the source to v, there is a step
1 ≤ t ≤ j at which the t+ 1st vertex on the path has been directly or indirectly saved.
It follows from the assumed model that v must be saved too. 2

Lemma 1.3 After the 2
√
n + 1-st step in any optimal solution all vertices at distance

of 2
√
n+ 1 from the source are saved.

Proof: Suppose that there is a vertex v at distance of 2
√
n + 1 from the source that is

not saved after the 2
√
n+ 1-st step. It follows from Lemma 1.2 that it is burnt after this

step. Thus, there must be a shortest path P of length 2
√
n+ 1 from the source to v that

is totally burnt after the 2
√
n+ 1-st step.

On the other hand, among the
√
n firefighters placed during the first

√
n steps, there

exists at least one, say placed at t-th step that saves uniquely at most
√
n of the vertices

in the optimal solution.
Now, if we move the firefighter placed in the t-th step to the t + 1-st vertex on P

(counting from the source) then we save at least 2
√
n + 1 − t ≥

√
n + 1 new vertices

and let to burn at most those
√
n vertices previously uniquely saved by this firefighter.

We obtain a contradiction with the optimality of the solution. 2

Corollary 1.4 Any optimal solution in the spreading model for a graph with n vertices
and a distinguished source vertex places at most 2

√
n+ 1 firefighters.

Proof: By Lemma 1.3, directly after the 2
√
n+ 1-st step, all the vertices at distance of

2
√
n+ 1 from the source are saved. Hence, the more remote vertices will be saved too.

This implies that that there is no need to place firefighters in the next steps. 2

Now, we are ready to derive our main result in this section.
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Theorem 1.5 An optimal solution in the spreading model for a graph with n vertices
and a distinguished source vertex can be found in time O(n2

√
n+3) = 2O(

√
n logn).

Proof: By Corollary 1.4, it is sufficient to enumerate all valid placements of at most
2
√
n+1 firefighters, for each of them compute the number of saved vertices, and chose

the placement maximizing the number of saved vertices. There are O(n2
√
n+1) such

placements and the computation of the number of saved vertices for a given placement
takes time O(n2). 2

1.2.2 A lower bound

The budgeted maximum coverage problem (BMC for short) is as follows. For a budget
k and a family S of sets defined over a domain of n weighted elements, each set having
an associated cost, find a subset S′ of S such that the total cost of sets in S′ does not
exceed k and the total weight of elements covered by S′ is maximized.

Khuller et al. proved the following approximability hardness result on BMC [41].

Fact 2 The unit cost version of the budgeted maximum coverage problem cannot be ap-
proximated within a constant factor better than 1−1/e unless NP⊆DTIME(nO(log logn)).

Lemma 1.6 There is a polynomial-time many-one reduction φ of the unit cost version
of the budgeted maximum coverage problem to the firefighter problem on weighted
directed graphs in the spreading model such that for an instance I of the maximum
coverage problem the maximum number of the elements covered under budget k is
equal to the maximum weight of saved vertices in φ(I) minus 1 (or even equal in case
all elements are covered).

Proof: Let S be the family of sets in I. Form a layered directed graph G(I) with a
distinguished source vertex s as follows. In the bottom layer put vertices in one-to-
one correspondence with the elements in the domain. In the next layer put vertices in
one-to-one correspondence with the sets in S. Direct from each of them edges to all
vertices in the bottom layer corresponding to elements covered by the associated set in
S. Now, connect the source s with each of the vertices v on the next to the bottom layer
by a unique directed path of length k from s to v. Set the weights of the vertices on the
bottom level to one and the weights of all remaining vertices to zero.

Consider a solution to I covering q elements with k sets. Suppose first that it does
not cover all elements. Place a firefighter on each of the unique paths connecting the
source with a vertex on the next to the bottom level corresponding to a set in the solution
to I so no two firefighters are placed at the same distance from s and no firefighter is
placed on s. Such a placement is possible since the paths have length k and it saves
q + k(k+1)

2 vertices of total weight q. Finally, we can save one more vertex of weight 1
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corresponding to an uncovered element by placing a firefighter on it in the last k + 1st
step.

On the other hand, since placement of a firefighter on an ancestor of a vertex is
never worse than such a placement on the vertex, we may easily transform an optimal
solution to G(I) to a normalized one which places k firefighters on the unique paths
connecting the source s with the next to the bottom layer during the first k steps. Such a
normalized placement saves at most k(k+1)

2 vertices on these paths and, say t, vertices
on the bottom layer. In the last, k + 1st step, it places a firefighter on a not yet saved
vertex at the bottom level. It follows that the total weight of saved vertices is t+ 1. By
picking the k sets corresponding to the vertices on the next to the bottom level saved
by the k firefighters placed in the first k steps, we obtain a family of k sets covering t
elements.

In case, a (optimal) solution to I covers all n elements we do not need to place any
firefighter in the k+ 1st step. Then, on the other hand, the firefighters placed in the first
k steps of any normalized optimal solution to G(I) induce a family of k sets covering
t ≥ n− 1 elements while the total weight of saved vertices is n. 2

Fact 2 combined with the proof of Lemma 1.6 yields the following lower bound.

Theorem 1.7 The firefighter problem on weighted directed graphs in the spreading
model cannot be approximated within a constant factor better than 1 − 1/e unless NP
⊆ DTIME(nO(log logn)).

1.3 Firefighting in the standard model

1.3.1 A simple subexponential-time algorithm for trees

Since in the case of trees, there is no difference between the standard model and the
spreading model, our simple subexponential-time algorithm for general graphs in the
spreading model also works for trees in the standard model. This yields both a much
simpler subexponential algorithm as well as analysis for the firefighter problem on trees
than those presented in [9].

Furthermore, if we adopt the derivation of the subexponential algorithm in the
spreading model to the standard firefighter model constrained to trees then we can de-
crease the constant in the exponent of the upper bound derived in the spreading model
substantially.

The following counterpart of Lemma 1.2 is obvious.

Lemma 1.8 In the standard model for trees with a distinguished source vertex, after the
j-th step, all vertices within distance at most j from the source vertex are either burnt
or (directly or indirectly) saved.
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The following counterpart of Lemma 1.3 can be simply obtained by replacing Lemma
1.2 with Lemma 1.8 in the body of the proof.

Lemma 1.9 After the 2
√
n + 1-st step in any optimal solution in the standard model

for a tree with a distinguished source vertex, all vertices at distance of 2
√
n + 1 from

the source are saved.

Similarly, the proof of the following counterpart of Corollary 1.4 can be obtained
by replacing Lemma 1.3 with Lemma 1.9 in the body of the proof.

Corollary 1.10 Any optimal solution in the standard model for trees with n vertices
and a distinguished source vertex places at most 2

√
n+ 1 firefighters.

Finally, the proof of the following counterpart of Theorem 1.5 can be obtained by
replacing Corollary 1.4 with Corollary 1.10 in the body of the proof of Theorem 1.5
and observing that computing the number of saved vertices for a given placement of
firefighters requires time linear in n in case of trees.

Theorem 1.11 An optimal solution in the standard model for a tree with n vertices and
a distinguished source vertex can be found in time O((n4 )

√
nn3/2).

Proof: By Corollary 1.10, it is sufficient to enumerate all valid placements of at most
2
√
n+ 1 firefighters, for each of them compute the number of saved vertices and chose

the placement maximizing the number of saved vertices. We may w.l.o.g consider only
the placements that for i = 1, ..., 2

√
n + 1 place at most one firefighter at distance of

exactly i from the source. The number of the latter placements is at most (n/(2
√
n +

1))2
√
n+1 ≤ n

√
n+ 1

2 2−2
√
n−1. It remains to observe that the computation of the number

of saved vertices for a given placement takes time O(n). 2

1.3.2 Approximate firefighting on planar graphs

Planar graphs and their planar embeddings termed as plane graphs seem to be a very
natural model of a network for the applications of the firefighter problem. If we allow
for placement of more than one firefighter in a single step, we can obtain non-trivial
approximation results based on the good separator properties of planar graphs.

We can rephrase Lemma 2 from [50] for our purposes in terms of plane graphs as
follows.

Lemma 1.12 Let G be a plane graph with nonnegative vertex costs summing to W.
Suppose G has a rooted spanning tree T of radius r. Then the vertices of G can be
partitioned into three sets A, B, C such that no edge joins a vertex in A with a vertex
in B, neither A nor B has total cost exceeding 2W/3, and C consists of vertices on two
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paths towards the root of T starting from vertices v and u on a common face and ending
at their lowest common ancestor. Furthermore, C can be completed to a simple cycle
by the diagonal joining v with u, and the vertices in A lie outside the cycle while those
in B inside the cycle.

Theorem 1.13 The firefighter problem on planar graphs with a source vertex r of de-
gree deg(r) and budget B ≥ max{2, ddeg(r)/2e} + 1 can be approximated within 1

3

in polynomial-time.

Proof: Let G be a planar graph on n vertices with a source vertex r in which fire starts
and let G′ be its planar embedding.

Construct the breadth-first search tree BT of G′ with the root at r. By Lemma 1.12,
there are two vertices v, u in BT such that the set C of vertices on the paths Pv, Pu
from v and u to the lowest common ancestor of v and u in BT splits G′ into two parts
each having at least 1/3 of the total weight of G′.

Now if the aforementioned lowest common ancestor is different from r, for j =

1, 2, ... iterate the following step:
Place firefighters on the at most two vertices of Pv and Pu that are at distance of j from
r.

It follows from Lemma 1.12 that the part of G′ between these two paths of total weight
at least 1/3 of that of G is saved in this way.

Suppose in turn that the lowest common ancestor is at r. In case the number children
of r between Pv and Pu is smaller than deg(r)/2 then in the first step, i.e., for j = 1,we
place at most ddeg(r)/2e + 1 firefighters on the aforementioned children and the two
children on Pv and Pu, and then proceed analogously as in the previous case. Finally,
in case the aforementioned number of children is greater than deg(r)/2 we proceed as
follows. We place at most ddeg(r)/2e + 1 firefighters on all the children of r outside
the cycle induced by the paths Pv and Pu and the children of r on these two paths and
proceed analogously as in the consecutive steps. In this way, we save all the vertices
outside the cycle whose total weight is at least 1

3 of that of G. 2

1.4 Tradeoffs for firefighting on directed layered graphs

The dual, budget variant of the firefighter problem for the so called directed layered
graphs have been studied in [2].

A directed layered graph G with a source s is one whose vertices can be partitioned
into l layers such that s is the only vertex in the 0 layer and for each directed edge (u, v)

there is 0 < i ≤ l where u belongs to the layer i− 1 and v belongs to the layer i.
Note that for a vertex on a layer i placements of firefighters in time steps greater

than i cannot help in saving the vertex.
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Definition 1.14 The (standard) firefighter problem for a directed graphGwith a source
vertex and the upper bound B on the number of vertices on which firefighters can be
placed at a single time step is denoted by FFB(G).

By enumerating all feasible solutions to FF1(G), we obtain the following lemma.

Lemma 1.15 Let G be a layered directed graph on n vertices, with l layers and a
source vertex. An optimal solution to FF1(G) can be computed in time O(n2 +

Πl
j=1|Vj(G)|) ≤ O(n2 +

(
n
l

)
), where Vj(G) is the set of vertices of G on the layer

j.

By the following lemma and the known results on the approximability hardness of
the classical firefighter problem for general undirected graphs, the hard instances have
to have small radius. In the lemma, the eccentricity of a vertex means the maximum
length of a shortest directed path from the vertex to another vertex in the graph.

Lemma 1.16 Let G be a directed graph on n vertices with a source vertex and let d be
the eccentricity of the source. FF1(G) can be approximated within n/d.

Proof: Let P be a shortest directed path from the source vertex to a most distance
vertex from it in G. Note that P has length d. In time step i, place a firefighter on the
i-th vertex of P. Observe that all the d vertices on P different from the source vertex
will be saved. 2

By Lemmata 1.15, 1.16, we obtain the following tradeoff between the approximabil-
ity and the exact time complexity in case of the classical firefighter problem on layered
directed graphs.

Theorem 1.17 LetG be a layered directed graph on n vertices with a source vertex. For
each positive integer k ≥ 2, FF1(G) can be approximated within n/k in polynomial
time or an optimal solution to FF1(G) can be computed in time O(nk).

Proof: Let d be the eccentricity of the source in G. If k < d then by Lemma 1.16,
we obtain an approximation within n/k in polynomial time. Otherwise, we obtain an
optimal solution in time O(nk) by Lemma 1.15. 2

The following combinatorial lemma valid for any directed graph with a source will
be useful.

Lemma 1.18 Let G be a directed graph on n ≥ 4 vertices with a source vertex and
let α > 1. If the eccentricity of the source in G not less than dα

√
ne then there is

i ∈ {1, ..., dα
√
ne} such that the number of vertices of G at distance of i from the root

is at most b2i/α2c.
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Proof: If the theorem does not hold then the number of vertices of G different from
the source vertex is not less than

∑dα√ne
i=2 2i/α2 which in turn is not less than 2

α2 ×
((dα
√
ne+ 1)dα

√
ne/2− 1). Since the latter value is clearly greater than n, we obtain

a contradiction. 2

By using Lemma 1.18, we can also obtain another tradeoff for layered directed
graphs between very close approximability in subexponential time and constant ap-
proximability in polynomial time.

Theorem 1.19 Let G be a layered directed graph on n vertices with a source vertex.
For any integer k > 0, an optimal solution to FF1(G) can be approximated within
(1− 1

k ) in time nO(
√
n) or it can be approximated within 1

k in time O(n2).

Proof: We may assume without loss of generality that the number of layers in G is
not less than dα

√
ne since otherwise FF1(G) can be solved exactly in time nO(

√
n)

by Lemma 1.15. Apply Lemma 1.18 with α =
√

2 to G. Let i be the number of the
layer of G which has at most i vertices. Consider an algorithm which places during the
first i time steps firefighters on the vertices on the i-th layer. If the number of vertices
of G on the layers j ≥ i is at least 1

k of the optimum then the algorithm yields an 1
k

approximation. Otherwise, more than 1− 1
k of the saved vertices are placed on the layers

1 through i− 1 in an optimal solution to FF1(G). Thus, there is at least one placement
of at most

(
n
i−1

)
feasible placements of firefighters on these levels which saves at least

1 − 1
k of the optimal number of vertices. Such a placement can be detected in time

nO(
√
n). 2



Chapter 2

Graph Drawing

2.1 Introduction

Drawing, or embedding, a planar graph in the plane is a well studied problem, and
proofs that we can draw planar graphs with straight lines have been around longer than
computers [63, 24]. One of the first algorithmic result was that all planar graphs have
such a drawing using polynomially bounded integer coordinates [28, 59]. Many other
graph drawing results and models of straight-line drawings have been developed since.

If we introduce the possibility to draw the edges as sequences of straight line seg-
ments, i.e., as poly-lines with bends, then we may be able to incorporate other con-
straints on the drawing. The typical measure of quality is then the number of bends
used while satisfying such constraints. For example, in some applications such as geo-
graphic visualization, vertices (which may represent cities) should be placed at or near
a given location. Hence the following point-embedding problem is of interest: Given
a planar graph G, a set of points S and an injective mapping V → S, can we draw G

without crossing such that the vertices are at the specified locations?
It is quite clear that not all graphs have such drawings with straight lines, and it can

always be done if we allow sufficiently many bends. Pach and Wenger [55] studied this
point-embedding problem and gave bounds on how many bends may be needed. They
showed that it can always be done with O(n2) bends, and Ω(n2) bends are required,
even for a matching, for some mappings of vertices to points. Since then, some variants
of the point-embedding problem have been studied, for example when the mapping of
the vertices to points can be arbitrary [39], or when it is only partially restricted [4, 18].

Here we explore the point-embedding problem with the additional restriction that
the drawing must be within a given polygon. Thus, we are given a planar graph G, a
point set S, a polygon P that contains all points of S in its interior, and an injective
mapping from the vertices to S. We would like to create a planar graph drawing of G

11
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that lies entirely inside P and that has the vertices at the specified locations. Since we
require the points of S to be in the strict interior of P , it is clear that such a drawing
always exists if we allow bends, but how many bends are needed?

We cam across this problem when studying maps, and give two motivating exam-
ples. Consider Figure 2.1(left), which shows a hand-drawn (1910) cartogram of the
United States, with states skewed so that the area reflects population. The adjacencies
in this map are hilariously wrong (especially for Pennsylvania), but nevertheless, the
reader has no difficulty in recognizing the United States, simply because the boundary
is correct. We are currently doing research on how to create cartograms that use given
boundaries and other identifying features such as rivers, and encountered the problem
studied in the current paper as a sub-problem. A second example is in Figure 2.1(right),
which shows a flight map of some intra-Canadian flights. Does the flight from Toronto
to Sault Ste. Marie enter US airspace? How about the one from North Bay to Thunder
Bay?1 This flight map is drawn with straight lines, while flights paths are often zig-zag
lines depending on location of control towers. So this map cannot be trusted to answer
the question, and a map that distinguish clearly between flights that remain entirely
inside Canada and those that do not may be useful.

Figure 2.1: (left) A cartogram of the United States. (right) A flight map of parts of Canada.

The topic of drawing at fixed locations inside a polygon is also related to the lo-
cal routing problem in VLSI design (see for example [47].) Here the modules of a
chip have been placed already, and the routes of connections between the pins of the
modules must be placed in the remaining free space. However, the research on local
routing is quite different from our research for two reasons: (1) Pins are located on the
modules, and hence at the boundary of the drawing region. This makes planar drawings
impossible in almost all cases. In contrast, we demand that points are strictly inside P ,
precisely so that a planar drawing is always feasible. (2) The VLSI community focuses
on minimizing area as main objective. In contrast, we focused on minimizing the num-

1If yes, then due to the recently passed Bill C-42, data about the passengers may be forwarded to the US
government, and passengers on the US no-fly list may be denied boarding. So the question may be of interest
to some people.
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ber of bends. (Area considerations of the resulting drawings are an interesting problem,
but this remains for future studies.)

We give in this paper upper and lower bounds on the number of bends needed for a
planar drawing on a given set of points inside a polygon. Our results resemble the ones
by Pach and Wenger [55], but (as is to be expected) also include the size of the bounding
polygon. Presume we are given an n-vertex planar graph G and a k-sided polygon P
with points S inside P , and a mapping from V to S. A drawing with O(nk) bends per
edge would be quite easy to achieve: Take the drawing with O(n) bends per edge from
[55] that ignores P , and then re-route each segment of an edge to be a polyline inside
P with at most k bends. We show here that we can use far fewer bends than that: there
always exists a planar drawing of G inside P with vertices at pre-specified points of S
that has O(k + n) bends per edge. We also show that this is tight: Ω(n) edges need
Ω(k + n) bends for some choice of G, S and P .

Our lower bound builds directly on the lower bound of Pach and Wenger, endowed
with a suitable polygon; see Section 2.2. Our upper bound is also somewhat similar
to the upper-bound method used in [55] where all edges are routed in parallel channels
around the drawing. However, instead of “channels” we use cyclic levels, similarly as
was done by Bachmeier et al. [3]. We then map the cyclic levels to line segments inside
the polygon that contain the points of S and satisfy some other conditions to make such
a mapping possible.

To minimize the number of bends, we need to minimize the number of times an edge
needs to do a “turn”, i.e., a change of direction from clockwise to counter-clockwise or
vice versa in a cyclic level drawing. We show that any edge needs at most two turns.
This is also of interest for so-called upward drawings (where directed graphs are drawn
such that edges go monotonically from smaller to a larger y-coordinate). Not every
planar directed acyclic digraph (dag) has an upward drawing with straight lines, and
testing whether it does is NP-hard [30]. Our results imply that any planar dag has a
planar drawing where the y-coordinate of each tail is smaller than the y-coordinate of
the head, and every edge consists of at most 3 y-monotone pieces.

2.2 Lower bound

In this section, we argue our lower bounds: for some n-vertex graph graph G, point set
S inside a k-sided polygon P and mapping V → S, Ω(n) edges have Ω(n+ k) bends
each.

Our lower bound builds directly on the lower bound given by Pach and Wenger for
the point-embedding problem [55]. They showed that for any planar graph that has a
matching of size m, and any random assignment of the vertices to points in convex
position, almost surely there are at least m

20 matching-edges that have at that have at
least m/(40)2 bends each.
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For our lower bound, let G be the graph that is a matching of size m := n/2. As
bounding polygon B, we use a k-sided polygon that has two regions R1 and R2 with
Ω(k) link-distance, i.e., any path from a point in R1 to a point in R2 that stays inside B
has k/2 − 1 bends. See Figure 2.2. We choose the points in S such that there are n/2
points in each of these two regions, and the points in S are in convex position.

Now choose a random assignment from the vertices ofG to the points of S. By Pach
and Wenger’s result, almost surely at least m

20 edges have at least m/(40)2 bends. Let
E′ be those edges, and let E′′ ⊆ E′ be all those edges in E′ that connect a point in R1

with R2. By construction, any edge in E′′ has Ω(k) bends because of the link-distance,
and Ω(m) = Ω(n) bends because it is in E′, and hence Ω(n + k) bends total. So all
that remains to do is to bound the size of E′′.

We know |E′| ≥ m
20 almost surely. Any edge connects the two different regions

with probability ≈ 1/2. The expected number of edges in E′′ is hence ≥ 1
2
m
20 . Since

the variance of whether an edge connects two difference regions is≈ 1
4 , so the variance

of |E′′| is ≈ 1
4
m
2 . Hence by Chebyshev’s inequality the probability that |E′′| < 1

2
m
20 −√

m/80
√

1
4
m
20 is at most 80/m. So the probability that |E′′| < m/80 = n/160 goes

to 0 as n goes to infinity. In conclusion, almost surely at least n/160 edges have at least
n/40 + (k − 6)/2 bends each, which proves:

Theorem 2.1 Let G = (V,E) be a plane graph that contains a perfect matching and P
be the bounding polygon with points in it as in Figure 2.2. Then any random mapping
of vertices to points requires Ω(n) edges to bend Ω(n+ k) times almost surely.

Figure 2.2: The bounding polygon used in Theorem 2.1; it has k/2 − 1 reflex vertices, and any
path from R1 to R2 must detour around all of them.

2.3 Upper bound

To obtain an upper bound of O(n + k) bends per edge, we need some intermediate
results. We first give an overview of the algorithm here, and then explain the individual
steps below.

So presume we are given a graph G, a point set S, a bounding polygon P , and an
injective mapping of V to S. We first create a ordered set of disjoint line segments
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LS (which we call skewed levels) inside P that contain all points of S (with at most
one point per segment) and have some other useful properties. The injective mapping
V → S then naturally gives an injective mapping V → LS .

Next, we consider what we call cyclic levels, which is a set LC of disjoint line
segments on rays from the origin. We have |LC | = |LS |, and a natural 1-to-1 corre-
spondence LS ↔ LC , which gives an injective mapping V → LC . We want a cyclic
level drawing of G (previously studied in [3]) where each vertex is placed somewhere
on the cyclic level that it maps to. Our objective is to minimize the number of turns
done by each edge. We show that every graph has a cyclic level drawing such that every
edge has at most two turns.

With this drawing in hand, we then easily obtain a drawing of G on S inside P by
mapping the cyclic levels back to the skewed levels. Since every edge has at most two
turns, it crosses every level at most 3 times, and hence has O(|LS |) = O(k+n) bends.

2.3.1 Cyclic level drawings and turns

We first start by explaining the cyclic level drawings. A cyclic level setLC = {l1, . . . , lM}
is a set of disjoint line segments such that li lies on the ray from the origin with angle
2iπ/M . See Figure 2.3. Let bi be the endpoint of li closer to the origin, and ti be the
other endpoint. Note that {b1, . . . , bM} and {t1, . . . , tM} form a polygon (with one
hole), which has a natural quadrangulation defined by the segments. For ease of de-
scription, we will assume that all cyclic levels have the same length and distance from
the origin, so the quadrangles formed by them are trapezoids.

In the following section, we are given a set of cyclic levels, a planar graphG, and an
injective mapping of vertices to cyclic levels. We want a poly-line drawing of G such
that each vertex is placed on its cyclic level (but it does not matter where along that
level.) Furthermore, the drawing of G should be entirely within the polygon defined by
the endpoints of the levels. Cyclic level drawings of planar graphs were first studied
by Bachmeier et al. [3] with the objective of testing whether a planar graph has such
a drawing such that directed edges make no turns at all. In our work, we create such
drawings where every edge makes at most 2 turns. Here, a turn is a change of direction
of the edge with respect to the cyclic levels. More precisely, we say that an edge makes
a turn whenever it crosses the same cyclic level twice without crossing any other cyclic
level inbetween; see Figure 2.3.

Theorem 2.2 Given a planar graph G = (V,E), a set of cyclic levels LC and an
injective mapping l : V → LC . Then G can be drawn inside the polygon formed
by the cyclic levels such that any vertex v is drawn somewhere on l(v), and any edge
has O(|LC |) bends and at most 2 turns.

The proof of this theorem proceeds in two steps. We first prove a weaker result,
where we assume that G has a Hamiltonian cycle C = {v1, v2 . . . vn}. In this case we
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Figure 2.3: Cyclic levels (dashed), the polygon defined by them (dotted), and an edge drawn with
one turn.

use a technique similar to the one used by Kaufmann and Wiese [39], who studied how
to draw a planar graph on a point set but without specifying which vertex goes to which
point.

Our drawing is illustrated in Figure 2.4. To draw C, we imagine the interior of
each level li to be subdivided with with n points, say pli1 , . . . , p

li
n at equal distance,

in order towards the origin. Draw v1 on the outermost point pl(v1)
1 of its level, v2 on

the second point pl(v2)
2 on its level, and so on. To route the edge (v1, v2), assume

first that l(v1) > l(v2). Then route the edge by adding a bend on every level i with
l(v1) > i > l(v2), placing the bend somewhere between pi1 and pi2 on level i. Thus we
form a counter-clockwise arc from v1. If l(v2) > l(v1) then we route similarly but in
clockwise direction from v1, adding bends on every level i with l(v2) > i > l(v1). All
other edges of the Hamiltonian cycle are routed similar: go either counter-clockwise
or clockwise along the level, in such a way that none of the added edge-segments pass
through the trapezoid between the last and first level.

Finally, to close up the Hamiltonian cycle, we need to route edge (v1, vn); we do so
by routing counter-clockwise from l(v1) (outside all points) and clockwise from l(vn)

(inside all points) until both parts reach the trapezoid between the last and first level.
There the parts can be connected with a segment, without introducing a crossing, since
this trapezoid is empty.

Now we need to draw all remaining edges, each of which is inside or outside of the
Hamiltonian cycle. Let (vi, vj) be an inside edge, i < j. Route it by going clockwise
from vi, always staying near the ith point on each level, until we are past the smallest
level ` used by vi+1, . . . , vj−1. Similarly route clockwise from vj . Finally add one
bend at a point just beyond ` and connect the two routes; edge (vi, vj) makes a turn at
this bend. Route the outside edges similar, except go counterclockwise. All edges can
be routed in this fashion with at most one turn per edge. So we have:
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Lemma 2.3 A planar Hamiltonian graph has a cyclic level drawing where edges of the
Hamiltonian cycle have no turn and all other edges have at most one turn.

Figure 2.4: (Left) The drawing of the Hamiltonian cycle. Only (vn, v1) is allowed to use the
trapezoid between the last and first level. (Right) Adding inner and outer edges (thick dashed,
green) with one turn.

Now we turn to graphs that are not Hamiltonian. It is well known that a planar
triangulated graph is Hamiltonian if it does not contain a separating triangle, i.e., a
triangle that has vertices both inside and outside. Moreover, a Hamiltonian cycle can
be found in linear time [12]. Both Pach and Wenger [55] and Kaufmann and Wiese
[39] describes methods to augment G to make it Hamiltonian in linear time. We use the
method in [39], which removes a separating triangle by subdividing an edge in it, and
then connect the subdivision vertex to the third vertex on the two adjacent faces. Doing
this to all separating triangles results in a Hamiltonian graph that has O(n) vertices and
every edge has been subdivided at most once.

Thus presume we have made graph G into a Hamiltonian graph G′. Add extra
cyclic levels and assign the subdivision vertices to them in an arbitrary manner. Draw
G′ on these cyclic levels as explained above. Then remove the added edges and restore
the original edges by replacing subdivision vertices by bends. All desired properties of
the resulting drawing of G are easily verified, except for the number of turns. A naive
argument would say that an edge e of G has at most 3 turns, since e may have consisted
of two edges e1 and e2 in G′, each of those could have acquired one turn in G′, and
removing the subdivision vertex v′ that was common to e1 and e2 might add another
turn. However, in fact e has at most two turns:

• If e1 belonged to C, then it had no turn in G′, hence we have at most 2 turns total
in e. Similarly we have at most 2 turns if e2 belonged to C.
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• Not both e1 and e2 can be outside edges. For the subdivision vertex v′ has degree
4 and e1 and e2 are not consecutive at v′, so if both e1 and e2 are outside edges,
then there is only one edge at v′ that could be on or inside the Hamiltonian cycle,
but there must be at least two (the two on the Hamiltonian cycle.)

Similarly not both e1 and e2 can be inside edges.

• So the only remaining case is if e1 is an inside edge and e2 an outside edge, or
vice versa. Since we route inside edges clockwise and outside edges counter-
clockwise, then e does not acquire a turn when removing the subdivision vertex
v′.

We have thus proved Theorem 2.2: every planar graph has a drawing on cyclic
levels such that every edge turns at most twice.

2.3.2 Skewed levels inside P

We now show how to create skewed levels inside P that contain the given points S on
distinct level. The ultimate goal is to be able to map the cyclic level drawing obtained
above onto these levels, which will require the following conditions:

Definition 2.4 Let P be a polygon. A set LS of line segments is called a skewed level
set inside P if there exists polygons P ′′ ⊂ P ′ ⊆ P and a triangulation T of P ′ − P ′′
such that:

1. the dual of triangulation T is a cycle,

2. every segment in LS lies on an interior edge of T ,

3. for every interior edge of T , there is exactly one edge of LS that lies on it.

Put differently, the segments in LS are all disjoint, and connecting their endpoints
up in order gives a polygon with exactly one hole and for which the segments define a
convex quadrangulation. See also Figure 2.5.

Note that the dual of the triangulation defines a cyclic order of the skewed levels.
They could hence be viewed as a set of cyclic levels, except that they have been de-
formed as to fit inside P ; we will exploit this correspondence later.

Lemma 2.5 Let P be a polygon and S a set of points in the interior of P . Then there
exists a skewed level set of size O(|P | + |S|) inside P such that each point in S is on
one of the levels, and no level contains two points of S.

Proof: To prove this, it will be helpful to assume that no three points of S ∪ P lie
on a line, unless they all belong to S. This is not a restriction: We can change P by
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Figure 2.5: A polygon P with skewed levels (thick dotted, green) that are on the inner edges of a
triangulation (dashed) of the polygon P ′ − P ′′.

moving points of P inward. Recall that S is strictly inside P , so with a sufficiently
small movement we still have all of S inside the new polygon, and a skewed level set
inside the new polygon is also one inside P . We will also assume that P is simple (has
no holes); if there is a hole then we can remove it by removing a thin channel from P

that connects from the outside to the hole and does not contain a point in S. We can do
this for all holes without affecting the asymptotic size of the bounding polygon.

Now triangulate P ; none of the triangulation edges contains a point of S by the
above. On each triangulation edge, place another subdivision point. Inside each face of
the triangulation place a face-point and connect it to all polygon-corners and subdivision
points of the face. We choose the positions of face-points in such a way that none of the
lines incident to a face-point contains a point in S, and such that no line through two
points of S contains a face-point.

The connections from face-points to the subdivision points form a tree T (which is
a subdivision of the dual tree of the triangulation.) Observe that P − T is a polygon
with a (degenerate) hole, and it has O(k) corners. Also, the triangulation edges of P
and the edges from the face points form a triangulation of the polygon P − T , and it
is easy to see that the dual of this triangulation is a cycle (effectively, we are “walking
around tree T ”.) See Figure 2.6.

For each point in s ∈ S, we now construct one line segment l(s). By construction s
is inside P − T , so it belongs to one of the triangles F in the constructed triangulation
of P − T . One side of F belongs to either P or T ; let c be the corner of F that is not
on that edge. Let l(s) be the maximal open line segment that goes through s and c and
stays within F .

Point c is either a corner of P or a face point. By our assumptions on P and con-
struction of face points, the line segment l(s) therefore contains only one point from S.
Our set of skewed levels now consists of these O(n) line segments l(s) for s ∈ S, as
well as the O(k) line segments in the triangulation of P − T that belong to neither P
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Figure 2.6: A polygon (solid, black) with its triangulation (dashed, blue), the subdivision and
face points (black dots), the tree between them (bold, black), and edges from the face points to
the corners (dotted, red). (Right) A close-up shows how to add one skewed segment per point in
S (marked by an x.)

nor T . One easily verifies that this is a skewed level set.2 2

2.3.3 Mapping the levels

We are now ready for the main result, where we show that we can create a mapping
from a drawing on cyclic levels onto the skewed levels obtained when triangulating the
polygon.

Theorem 2.6 Any planar graph G can be drawn with vertices at prespecified points S
inside a given polygon P such that any edge has at most O(|V |+ |P |) bends.

Proof: Start by creating a skewed level set LS inside P for the point set S according
to Lemma 2.5. Next create a set of cyclic levels LC of cardinality |LS |. Map the
(cyclically ordered) set LS to LC , and with it, obtain a mapping from V to LC . Create
a drawing of G on LC that has at most two turns per edge and respects this mapping
(Theorem 2.2.)

Now we explain how to map this drawing back onto the skewed levels. Assume
vertex v is drawn on cyclic level lc at the point that is a λ-proportion away from the
inner endpoint (i.e., if lc = [b, t] with b closer to the origin, then v is drawn at λb +

(1−λ)t). Let ls be the level that corresponds to lc, i.e., ls contains the point s on which
we are supposed to draw v. Retract the ends of ls in such a way that point s is a λ-
proportion away from the endpoint closer to the “inner polygon” P ′′. Call the resulting
line segment l′s. See Figure 2.7.

Let l1c and l2c be two consecutive cyclic levels; the area Rc between them is a trape-
zoid. Let l1s and l2s be the corresponding skewed levels, and (l1s)

′ and (l2s)
′ be their

retractions as explained above (we only retract those levels that contain a vertex.) The
areaRs between (l1s)

′ and (l2s)
′ is a convex quadrilateral since l1s and l2s were on sides of

2This uses a degenerate polygon for P ′′, which is allowed. One could make it non-degenerate by thick-
ening T into T ′ and then re-triangulating P − T ′.
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a triangle by definition of a skewed level set. We now map fromRc toRs in the obvious
way, by mapping the four corners of the trapezoid to the corresponding corners in the
convex quadrilateral, and mapping all other points by interpolation. See Figure 2.7.

Figure 2.7: Mapping the cyclic levels to skewed levels that have been retracted such that each
vertex v lands on its corresponding point s.

This maps each vertex to its desired point in S by construction. Let p be any point
on l1c where an edge e crossed l1c . This point maps to some point p′ on (l1s)

′, which
will (usually) become a bend in the resulting drawing of e. Any bend that e had inside
Rc (e.g., because e made a turn inside Rc) will be mapped into a bend in Rs as well.
We complete the drawings of edges by putting in straight-line segments between these
created bends and endpoints.

Since the drawing inside Rs is a linear mapping of the drawing in Rc, we do not
create any crossing inside Rs. Since each quadrilateral of consecutive skewed levels
was inside a face of a triangulation of P ′ − P ′′, no crossings can occur between two
segments in two different quadrilaterals. Therefore we obtain a planar drawing.

In the cyclic level drawing, edges had O(|LC |) = O(n+ k) bends. Mapping to the
skewed levels does not introduce new bends (all edges already had bends where they
crossed levels.) So every edge had O(n+ k) bends, which proves the theorem. 2

2.3.4 Counting the bends

In the previous section, we were only concerned with asymptotic bounds on the number
of bends. However, it is possible to give more precise bounds for the actual construction
(if we do not consider the additional corners/vertices resulting from making polygon P
simple or making graph G Hamiltonian.) The main observation is that bends only
happen at turns or when an edge crosses a level, and we can bound these events.

Lemma 2.7 For any set S of n points inside a simple k-sided polygon P , there exists
a set of n+ 5k − 12 skewed levels.
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Proof: Every point in S gives rise to one skewed level. In addition, we added skewed
levels from the triangulation of P , and we count their number now.

The triangulation of P had k − 3 edges. Each of those obtains a subdivision point
and hence gives rise to 2(k−3) skewed levels. The triangulation also had k−2 interior
faces. Each of those obtains a face point which is connected to three corners, hence
adding 3(k− 2) skewed levels. In total we hence have 2(k− 3) + 3(k− 2) = 5k− 12

skewed levels. 2

Since every edge makes at most 2 turns, it can traverse each level at most 3 times.
For each traversal, the edge may only bend n + 5k − 122 times, for a total of at most
3n + 15k − 36 bends plus one bend at each turn, which gives the precise bounds for
Hamiltonian graphs.

Theorem 2.8 Any Hamiltonian planar graph G can be drawn with vertices at pre-
specified points S inside a given simple polygon P such that any edge has at most
3|V |+ 15|P | − 34 bends.

2.4 Conclusions and open problems

In this paper, we studied the problem of drawing a planar graph with vertices at specified
locations inside a given polygon. We provide lower bounds for the number of bends,
and give a construction that matches these lower bounds asymptotically.

Our construction was done with the theoretical objective of matching the lower
bounds; we make no claims as to it being aesthetically pleasing or useful in practice. In
particular our method of dealing with holes in the polygon by simply forbidding some
region to be used at all would be unsatisfactory in a practical setting. One should also
apply post-processing heuristics to remove many unnecessary bends.

We leave some open questions:

• Our lower bound uses a polygon that is unlikely to occur in practice. Can better
bounds be shown for special polygons? For example, if a polygon can be split
into K convex pieces (not necessarily triangles), can we create planar drawings
at specified points inside the polygon with O(n+K) bends per edge?

• What are area considerations? In particular, what area is required for our draw-
ings, presuming all corners of P and points in S are at integer coordinates (say
of size O(n))?



Chapter 3

Subgraph Isomorphism

3.1 Are some patterns easier than others?

3.1.1 Introduction

The induced subgraph isomorphism problem is to detect if a host graph has an induced
subgraph that is isomorphic to a pattern graph. Its counting variant asks for the number
of induced subgraphs of the host graph isomorphic to the pattern graph. The well known
independent set and clique problems are special cases of the induced subgraph isomor-
phism problem which consequently is generally NP-complete [29]. When the pattern
graph is of fixed size, induced subgraph isomorphism can be solved in polynomial time
even by exhaustive search.

In the literature, there are only a few examples of pattern graphs of fixed size k for
which the induced subgraph isomorphism admits lower asymptotic time upper bound
in terms of the number of vertices of the host graph than those known for the k-clique
problem (for general host graphs). The oldest and most striking example is P4, a path
on four vertices, which can be detected in O(n + m) time, where n, m stand for the
number of vertices and edges in the host graph [15]. The other is P3, the path on three
vertices which can be detected inO(n+m) time [61], the third example is the diamond,
obtained by removing a single edge from K4, which can be detected in O(n + m3/2)

time [22] (cf. [42] ). The fourth example is a paw which is a triangle connected to the
fourth vertex by an edge, i.e., K3 + e. It can be detected in O(n2.376) time

(In fact, by considering the complement graph, the analogous bounds hold for the
pattern graphs consisting of two adjacent vertices and one or two isolated vertices, or
two incident edges and one isolated vertex, respectively.) In comparison, K3 and K4

can be detected and counted in O(n2.376) time [38] and O(n3.334) time [22], respec-
tively. Interestingly, such a gap between the time upper bounds for P4 and K4, for

23
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P3 and K3, and for the diamond and K4, respectively, is not possible in the counting
variant by [42, 44].

In the extreme case, when the pattern graph is a set of k isolated vertices, the induced
subgraph isomorphism is equally hard as the k-clique problem if the time complexity
is a function of the number of vertices. (This is in sharp contrast with the general
subgraph isomorphism problem which for the aforementioned pattern becomes trivial.)
Therefore, we can naturally pose the following conjecture:
There exists a constant C such that the time complexity of the problems of detecting
(counting) the induced subgraphs isomorphic to a given k-vertex pattern graph in an
n-vertex host graph is lower bounded by that of detecting (counting) the induced sub-
graphs of an n-vertex graph isomorphic to an independent set on k/C vertices.
In the counting variant, one could strongly conjecture C = 1 while in the detection
variant the smallest value of C that one could conjecture is 2 in view of the result on P4

[15].
By time complexity in the conjecture and throughout the paper, we mean the worst-

case asymptotic time complexity in terms of the number n of vertices in the host graph
under the assumption that the size of pattern graph is fixed. This allows for reductions
of fixed independent set problems to induced fixed subgraph problems which are linear
with respect to the number of vertices but not necessarily preserve graph sparsity so
their time complexity can be even quadratic in the number of vertices.

Importantly, we assume arbitrary host graphs in the conjecture. Otherwise, one can
easily come up with examples of classes of host graphs for which the topology of the
pattern graph on k vertices affects the complexity of induced subgraph isomorphism.
E.g., counting independent sets of size k for k ≥ 5 in a planar graph does not seem to
be an easy task while counting occurrences of Kk for k ≥ 5 in a planar graph is trivial.

A related conjecture would be to claim that the hardness of induced subgraph iso-
morphism depends on the maximum sizes of an independent set and a clique in the
pattern graph.

In the context of our conjecture, let us recall that the problems of detecting an in-
dependent set on k vertices and detecting a clique on k vertices in a host graph on
n vertices are known to be W[1]-hard in the theory of parametrized complexity and
believed to require nΩ(k) time [20].

Known results supporting the conjecture. Already in 1985, Nes̆etr̆il and Poljak
showed in [53] that the detection and counting versions of the induced subgraph isomor-
phism with fixed pattern graph on k vertices are easily reducible to the corresponding
versions of the k-clique problem (or, equivalently, the k-independent set problem) in
O(kn2) time, where n is the number of vertices of the host graph.

More recently, Chen and Flum [11] adapted the reduction of log clique to log chord-
less path due to Papadimitriou and Yannakakis [56] to show that detecting an induced
path of length 4k − 1 is not easier than (i.e., its time complexity is lower bounded by
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subgraph time complexity reference

K4 (4K1) O(n3.334) (O(m1.682)) Eisenbrand-Grandoni [22]
K4 \ e (K2 + 2K1) O(m3/2) Eisenbrand-Grandoni [22]

C4 (2K2) O(n3.334) Eisenbrand-Grandoni [22]
K3 + e (P3 +K1) O(nω) Olariu [54]
K1,3 (K3 +K1) O(m(ω+1)/2) Kloks et al. [42]

O(n3.334) Eisenbrand-Grandoni [22]
P4 (P4) O(n+m) Corneil et al. [15]

Table 3.1: Known upper time bounds for detecting induced subgraphs on 4 vertices in an undi-
rected, unweighted graph on n vertices. The complement pattern graphs are given in parentheses.

that of) detecting an independent set on k vertices.
They also showed that a induced cycle on 4k, C4k, is not easier to detect than an

independent set on k vertices. A stronger result for C5 showing that it is not easier to
detect than K3 (equivalently, 3K1) is folklore. Also, it is easy to observe that the claw
on four vertices, i.e., a graph consisting of three edges all sharing the same vertex, is
not easier to detect than K3.

In [42], Kloks, Kratsch and Müller showed that in the induced case if the occur-
rences of some pattern graph on 4 vertices can be counted in T (n) time then the oc-
currences of any other pattern graph on 4 vertices can be counted in O(nω + T (n))

time, where ω is the exponent of fast matrix multiplication known to be not greater
than 2.376 [14]. Recently, Kowaluk et al. generalized the aforementioned result in [44]
by showing that the knowledge of the number of occurrences of any pattern graph on
k vertices as an induced subgraph is sufficient to compute the number of occurrences
of any other pattern graph on k vertices both as induced and non-necessarily induced
subgraph in time O(nω(d(k−2)/2e,1,b(k−2)/2c)), where ω(p, q, r) is the exponent of fast
arithmetic matrix multiplication of an np × nq matrix by an nq × nr matrix [13, 36].

The aforementioned generalization is interesting solely for fairly small k in view of
the following fact: the detection and counting versions of the induced subgraph isomor-
phism problem for k-vertex pattern graphs can be solved in timeO(nω(bk/3c,d(k−1)/3e,dk/3e)

[22] (cf. [42, 53] ).

Examples of surprisingly fast algorithms for fixed size induced subgraph isomor-
phism.

The most striking result is clearly that on detection of induced P4 inO(n+m) time
[15].

The aforementioned O(n+m)-time algorithm for the detection of induced P3 [61]
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and O(n+m3/2)-time algorithm for the detection of induced diamond have been gen-
eralized to an O(n+m(k−1)/2)-time algorithm for the detection of induced Kk with a
single missing edge, denoted by Kk \ e, by Vassilevska in [61]. Observe that P3 and
the diamond can be denoted as K3 \ e and K4 \ e, respectively. By considering the
complement graph, we obtain also an analogous time bound O(nk−1) for the detection
of the pattern graph consisting of a pair of adjacent vertices and k − 2 isolated ver-
tices, denoted by K2 + (k − 2)K1. The generalized upper bound O(nk−1) for Kk \ e
and K2 + (k − 2)K1 is however subsumed for k > 5 by that universal upper bound
O(nω(bk/3c,d(k−1)/3e,dk/3e) [22] valid for all pattern graphs on k vertices.

Furthermore, in a recent manuscript [35], the authors prove an analogous O(n +

m(k−1)/2)-time bound for the problem of detection of induced path on k vertices, Pk.

Our contributions. We present two main results on the hardness (i.e., the time com-
plexity) of detecting and counting induced subgraphs of fixed size.

For detection, we provide a substantially more general and stronger result than those
on chordless induced path and cycle from [11].

We show that any fixed pattern graph with a maximum independent set of size k that
is disjoint from other maximum independent sets is not easier to detect as an induced
subgraph than an independent set of size k. It follows in particular that an induced path
on 2k − 1 vertices is not easier to detect than an independent set on k vertices and that
an induced cycle on 2k vertices is not easier to detect than an independent set on k
vertices. We can also conclude that an induced complete bipartite graph Kp,q is not
easier to detect than an independent set on max{p, q} vertices.

Our second result is concerned with both detection and counting. It can be regarded
as a generalization of the aforementioned results on chordless induced path and cycle
[11], basically showing that no pattern topology is easier to detect or count.

For an arbitrary pattern graph H on k vertices with no isolated vertices, let H ′ be
the subdivision of H obtained from H by splitting each edge into a path of length four
and attaching a distinct path of length three at each vertex of degree one. We show that
H ′ is not easier to detect or count than an independent set on k vertices, respectively.

Finally, we show that the diamond and paw are not easier to detect as induced
subgraphs than an independent set on three vertices.

Organization. In the next section, we present our lower bound on detecting induced
subgraphs isomorphic to restricted pattern graphs in terms of the size of independent set
that is not easier to detect. In Section 3.1.3, we provide our lower bound on detecting
and counting induced subgraphs isomorphic to restricted pattern graphs in terms of the
size of independent set that is not easier to detect or count, respectively. In Section 3.1.4,
we present simple lower bounds implying that the diamond and paw are not easier to
detect as induced subgraphs than a triangle. We conclude with final remarks.
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3.1.2 Lower bounds on detecting induced subgraphs

Chen and Flum demonstrated the hardness of the induced path and induced cycle prob-
lems in [11]. We can state precisely their results as follows.

Fact 1. Let G be an arbitrary graph on n vertices and m edges. In O(kn2 + k2m)

time, one can construct a graph G′ on O(kn) vertices and O(kn2 + k2m) edges such
that G′ has an induced subgraph isomorphic to a path on 4k − 1 vertices iff G has an
independent set of cardinality k.

Similarly, one can construct a graph G′′ on O(kn) vertices and O(kn2 + k2m) edges
such that G′′ has an induced subgraph isomorphic to a cycle on 4k vertices iff G has
an independent set of cardinality k.

In this section, we provide a general equivalence which works in case of detection
for arbitrary pattern graphs with a maximum independent set disjoint from other maxi-
mum independent sets. It supports our conjecture if such a maximum independent set is
relatively large. Our equivalence also subsumes that of Chen and Flum in the particular
case of odd paths and even cycles.

Theorem 3.1 Let G be an arbitrary graph on n vertices and m edges, and let H be a
pattern graph on h vertices. Suppose that there is a maximum independent set of size k
that is disjoint from all other maximum independent sets inH. InO(kn2 +hkn+k2m)

time, one can construct a graph G∗ on O(h+ kn) vertices and O(kn2 + hkn+ k2m)

edges such that G∗ has an induced subgraph isomorphic to H iff G has an independent
set of cardinality k.

Proof: Let G = (V,E) and H = (VH , EH). Next, let S be a maximum independent
set that is disjoint from the other maximum independent sets in H.

G∗ consists of k = |S| cliquesG∗(i) on V ×{i}, where i ∈ S, and the subgraphH ′

of H induced by all vertices in VH outside S. (Note that H ∩G∗ = H ′.) Additionally,
G∗ contains the following edges between the k cliques and H ′. Two vertices (v, i),

(u, j) from two different cliques G∗(i) and G∗(j) form an edge if {v, u} ∈ E or
v = u. Each vertex l of H ′ is connected by an edge with each vertex of each clique
G∗(i), where {l, i} ∈ EH and i ∈ S. There are no other edges in G∗. See Fig. 1 for an
example.

Suppose that G has an independent set {v1, v2, ..., vk} on k vertices. Then, we map
each vertex i ∈ S on the vertex (vi, i). Next, we map each vertex in VH \ S on itself.
The image of H under this mapping is easily seen to induce a subgraph isomorphic to
H in G∗.

Conversely, suppose that G∗ has an induced subgraph H∗ such that there is an
isomorphism between H and H∗.

Consider a maximum independent set U of H∗. Let U ′′ be the subset of U outside
of H ′ and let U ′ be the subset of U within H ′.
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Figure 3.1: An example of a pattern graph (A) with a maximum independent set disjoint from
others marked and the corresponding graph G∗ (B), where the large vertices represent cliques
and the dotted lines represent the edges of G between vertices from different cliques.

Since U ′′ is an independent set, then its vertices are in disjoint cliques G∗(i). Let
U ′′S be the set of i for which there is a node of U ′′ in G∗(i).

Now consider H. Observe that VH \ S is the set of vertices of H ′. U ′ ⊂ VH \ S
and U ′′S ⊂ S together form a maximum independent set of H. It properly intersects S,
which yields a contradiction, unless U ′′S = S or U ′′S = ∅. In the former case, we are
done.

It remains to consider the situation where for each maximum independent set U of
H∗, U ′′S = ∅. This would however mean that H∗ has all its maximum independent sets
in the common subgraph H ′ of G∗ and H . Consequently, H would have at least one
more maximum independent set (S is outside H ′ ) than H∗. This would contradict the
isomorphism between H∗ and H.

2

Note that a path on 4k−1 vertices as well as a cycle on 4k vertices have an indepen-
dent set of cardinality 2k. Odd paths as well as even cycles have at most two maximum
independent sets, and they are always disjoint. Thus, Theorem 3.1 provides stronger
lower bounds in terms of the size of independent set than Fact 1 in the particular case
of induced odd paths and even cycles.

Corollary 3.2 If H is a fixed pattern graph with a maximum independent set of cardi-
nality k which is disjoint from other maximum independent sets (e.g., a path on 2k− 1

vertices or a cycle on 2k vertices) then the asymptotic complexity of the detection of an
induced subgraph isomorphic to H in terms of the number of vertices of the host graph
is not less than that of an independent set on k vertices.

It is folklore that the detection ofK3 can be easily reduced to that of claw, i.e. K1,3,

by considering the complement graph expanded by an auxiliary vertex connected to all
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vertices in the complement graph.
We obtain immediately the following much more general corollary from Theorem

3.1 and Corollary 3.2.

Corollary 3.3 The time complexity of the detection of an induced subgraph isomorphic
to the complete bipartite graph Kq,r is lower bounded by that of an independent set on
max{q, r} vertices.

3.1.3 Lower bounds on detecting and counting induced subgraphs

We can also generalize the equivalence of Fact 1 to work not only for paths and cycles
but for subdivisions of arbitrary pattern graphs without isolated vertices too, importantly
both in case of detection and counting. The subdivisions replace each edge with a path
with three additional inner vertices and attach an additional path at each vertex of degree
one. Our next result basically shows that no pattern topology is easier to detect or count.

Theorem 3.4 Let G be an arbitrary graph on n vertices and m edges, and let H be a
pattern graph with h vertices and l edges and no isolated vertices. Next, let Hd be the
subdivision of H obtained by placing three auxiliary vertices on each edge of H, and
attaching at each leaf, i.e., vertex of degree 1, of H a distinct additional path of length
three. In O(hn2 + ln+ h2m) time, one can construct a graph G(h) on O(hn) vertices
and O(hn2 + ln+ h2m) edges such that the induced subgraphs of G(h) isomorphic to
Hd are in one-to-one correspondence with the independent sets in G of cardinality h.

Proof: We form a graph G(h) which basically consists of h copies of a clique on
V , linked according to G. The h copies are additionally linked via auxiliary vertices in
one-to-one correspondence with the edges ofH. Furthermore, a path on three additional
vertices is attached to each clique copy that corresponds to a leaf of H.

Let G = (V,E) and H = (VH , EH), and let L be the set of leaves in H. The vertex
set of the i-th clique copy is V × {i} for i ∈ VH . The set V (h) of vertices of G(h)

is the union of V × VH with the sets {aij , bij , cij}, where i and j, i < j, are adjacent
vertices of H, and the sets {ai, bi, ci}, where i is a leaf of H.

The set E(h) of edges of G(h) is the union of the following edge sets (see Fig. 2
for an illustration):

⋃
i∈VH{{(u, i), (v, i)}|u, v ∈ V&u 6= v}⋃

{i,j}⊂VH

{{(u, i), (v, j)}|i 6= j&u, v ∈ V&(u = v ∨ {u, v} ∈ E)}

⋃
{i,j}⊂VH

{{(u, i), aij}|i < j&(aij defined)}

⋃
{i,j}⊂VH

{{aij , bij}|(aij defined)&(bij defined)}
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{i,j}⊂VH

{{bij , cij}|(bij defined)&(cij defined)}

⋃
{i,j}⊂VH

{{cij , (v, j)}|i < j&(cij defined)}

⋃
i∈L
{{(u, i), ai}}

⋃
i∈L
{{ai, bi}}

⋃
i∈L
{{bi, ci}}

Claim. Suppose that an embedding φ of Hd in G(h) satisfies the following three con-
ditions:

• for l ∈ VH , φ(l) is a vertex in V × {l},

• for any two adjacent vertices i and j ofH, where i < j, φ maps the three vertices
between i and j on the path onto the three vertices in {aij , bij , cij} so to form a
path {φ(i), aij}, {aij , bij}, {bij , cij}, {cij , φ(j)},

• for any leaf of Hd, the path leading to the associated leaf i of H is mapped on
{ci, bi}, {bi, ai}, {ai, φ(i)}.

Then,
(a) φ(Hd) is a subgraph of G(h) isomorphic to Hd,

(b) φ(Hd) is an induced subgraph in G(h) iff
⋃
l∈VH{φ1(l)} is an independent set in

G, where φ1(l) stands for the first coordinate of φ(l),

(c) each induced subgraph of G(h) isomorphic to Hd can be defined as the image of
such an embedding φ composed with an automorphism of Hd,

(d) if µ is another embedding of Hd in G(h) satisfying the aforementioned conditions
and both φ(Hd) and µ(Hd) are induced subgraphs of G(h) then

⋃
l∈VH{φ1(l)} and⋃

l∈VH{µ1(l)} are different independent sets.
The (a) part follows directly from the specification of φ. Also by the specification, the
image φ(Hd) is not an induced subgraph of G(h) iff for some i, j ∈ VHd , the vertices

Figure 3.2: Example of the vertices and edges ofG(h), the large vertices V1, V2, . . . Vh represent
the cliques of size n, one for each vertex in the pattern graph. The dotted lines represent the edges
of G between vertices from different cliques.
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φ(i) and φ(j) are adjacent in G(h). Since each of them belongs to a different copy of
the clique on V, this can only happen if φ1(i) = φ1(j) or φ1(i) is adjacent to φ1(j) in
G. In the first case, the set {φ1(1), ..., φ1(h)} has size less than h, in the second one, it
is not an independent set.

To prove part (c), consider an induced subgraph F of G(h) isomorphic to Hd. The
following observations will be useful:
(1) No vertex of F whose degree is at least three can be of the form ai,j or bi,j , or ci,j ,
or ai, or bi, or ci since then either it would form a triangle with two vertices in the i-th
or j-th copy of the clique on V or it would have degree at most two.
(2) All the vertices aij , bij , cij as well as all the vertices ai, bi, ci, where i is a leaf of
H, have to belong to F. It follows in particular that each leaf of Hd has to be mapped
on some ci in the isomorphism.

To see (2), denote by Vi the set V ×{i} extended by the adjacent vertices aij , when
i < j, and the adjacent vertices cki, when i > k, and halves of the in between vertices
bij , as well as the vertices ai, bi, ci in case i ∈ L.

Note that V × {i} can accommodate at most two vertices of F because the tri-
angles do not occur in Hd. However, if V × {i} contains two vertices of F then the
only additional vertices of F that can be accommodated by Vi are those placed at bijs
counted as halves, again because of the absence of triangles, as well as bi and ci in
case i is a leaf of H. If only one vertex of F is in V × {i} then Vi can accommodate
additionally 1.5degH(i) vertices, plus three vertices in case i is a leaf of H, by fully
using the vertices in Vi \V ×{i}. The latter number of accommodated vertices is larger
than that when V × {i} contains two vertices of F but for the case where deg(i) = 1,
when the numbers are equal. In fact, each Vi has to accommodate the aforementioned
maximum number in order to cover all vertices of F. Therefore, in particular all the
vertices ai, bi, ci for leaves i of H have to be used by F. Hence, no bij can be used as
a vertex of degree 1 which implies that each V × {i} contains exactly one vertex of F,
and consequently all the vertices aij , bij , cij have to be used by F. This proves (2).

Suppose first that H is different from a simple cycle.

Consider a maximal path P with inner vertices of degree at most 2 in F. Suppose
first that P has both endpoints of degree at least three. Let p1 be the vertex on P within
distance four from an endpoint p of P. By (1), p is in V ×{i} for some i. If P does not
continue from p through some aij , bij , cij or vice versa then by (2) the degree of p in
H has to be larger than the number of such paths linked to V ×{i}. This in turn means
that there is l ∈ VH , where no all paths of this form linked to V × {l} are used by F.
We obtain a contradiction by (2). We conclude that P continues to p1 in V × {j} by a
path in one of the two aforementioned forms. By iterating this argument for p1 etc., we
infer that the vertices of P corresponding to the vertices of H are in distinct V × {l},
whereas the vertices between are mapped on some triples aij , bij , cij .
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If P has an endpoint of degree 1 then it has some vertex cl as an endpoint. Hence,
the vertices bl, al and some vertex p in V × {l} corresponding to a leaf of H have
to follow. Then, we can continue with p similarly as in the previous case. In case
the other endpoint is also of degree 1 then when P reaches a vertex in some V × {q}
corresponding to another leaf of H, it has to have aq, bq and cq as a suffix.

In caseHd is a simple cycle, we pick an arbitrary vertex of F in some V ×{l} as the
start and endpoint of a path P with inner vertices of degree 2 and proceed analogously
as in the previous cases. Then every fourth following vertex of F will be also in some
V × {l}. If these vertices are not images of the original vertices of H , we need to
compose an embedding φ satisfying the three conditions with an automorphism (shift)
of Hd.

This completes the proof of the (c) part of the claim.
Now (d) follows by (b) from the fact that an embedding φ satisfying the three con-

ditions is uniquely determined by the choice of the second coordinates of the clique
vertices. The claim yields the theorem. 2

Corollary 3.5 Let H be a fixed graph on h vertices, and let its subdivision Hd be
defined as in Theorem 3.4. The problems of detecting and counting induced subgraphs
isomorphic to Hd have asymptotic time complexity in terms of the number of vertices
of the host graph not less than those for the corresponding problems for independent set
on h vertices, respectively.

3.1.4 Simple lower bounds

We can expand the list of lower bounds on detection for pattern graphs on four vertices
in terms ofK3 (forK1,3 cf. Corollary 3.3) by the following ones for the diamondK4\e
and the paw K3 + e

Theorem 3.6 Let k ≥ 4. The time complexity of the detection of an induced subgraph
isomorphic to Kk \ e is lower bounded by that of an independent set on k − 1 vertices
(Kk−1 equivalently).

Proof: Augment an arbitrary host graph G with single copies of its vertices. For a copy
v′ of a vertex v, add edges between v′ and all neighbours of v in G. Let G′ denote the
resulting graph, where the copy vertices form an independent set.

If G contains a Kk−1 induced by (u, ..., w) then G′ contains the subgraph induced
by (u, ..., w, u′) which is a Kk \ e. Conversely, if G′ contains an induced Kk \ e then
the latter either includes a Kk−1 of G or it is induced by a sequence (u′, v, ..., w, z′). In
the latter case, G contains the subgraphs induced by (u, v, ..., w) and (v, ..., w, z), both
are Kk−1. 2
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By Kk + e, we denote a graph consisting of a clique on k vertices and an additional
vertex connected by a single edge with the clique. In particular, the paw is K3 + e.

Theorem 3.7 Let k ≥ 3. The time complexity of the detection of an induced subgraph
isomorphic to Kk + e is lower bounded by that of an independent set on k vertices (Kk

equivalently).

Proof: Augment an arbitrary host graph G with single copies of its vertices adjacent
solely to their original counterparts to form a graph G′. Observe that G contains a Kk

iff G′ contains Kk + e. 2

3.1.5 Final remarks

The fast universal algorithms for induced subgraph isomorphism with a fixed pattern
graph given in [22, 42, 53] are generalizations of the method of detecting or counting
triangles via fast matrix multiplication [38]. Our conjecture is strongly related to the
fact that the aforementioned algorithms work equally well for all possible pattern graphs
of a given size.

It is an interesting open problem if our lower bound on induced subgraph isomor-
phism in terms of the size of maximum independent set that is required to be disjoint
from other maximum independent sets (i.e., Theorem 3.1) can be generalized by skip-
ping the latter requirement.

3.2 Detecting and counting small pattern graphs

3.2.1 Introduction

The problems of detecting subgraphs or induced subgraphs of a graph that are isomor-
phic to another given graph are classical in algorithmics. They are generally termed as
subgraph isomorphism and induced subgraph isomorphism problems, respectively.

In particular, they include special cases such as well-known NP-hard problems as
the independent set, clique, Hamiltonian cycle or Hamiltonian path problems.

Recently, the detection and/or counting variants of subgraph isomorphism and/or
induced subgraph isomorphism have found several applications, e.g., in bio-molecular
networks [1], social networks [58], automatic design of processor systems and network
security [32]. In these applications pattern graphs are typically of fixed size which
allows for polynomial-time solutions.

The fastest known general algorithms for the detection and counting variants of
subgraph isomorphism and induced subgraph isomorphism, where the pattern graph has
k vertices while the host graph has n vertices, run in time O(nω(bk/3c,d(k−1)/3e,dk/3e)
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[22, 42, 53], where ω(p, q, r) denotes the exponent of fast matrix multiplication for
rectangular matrices of size np × nq and nq × nr, respectively [45]. For special graph
classes faster algorithms are known (e.g., see [27, 44, 62]).

In the first part of our paper (Section 3.1.3), we study the detection variant of the
induced subgraph isomorphism problem for pattern graphs of fixed size k, while in
the second part (Section 3.1.4), we study counting variants of the general subgraph
isomorphism problem for such pattern graphs. We denote the number of vertices and
edges in the host graph by n and m.
Detection of small induced subgraphs: In the literature, besides the naive O(nk)-
time method for the induced subgraph isomorphism, the method reducing the prob-
lem to triangle detection, or counting, respectively, is known when the pattern graph
is an arbitrary fixed graph on k vertices. The underlying triangle problem can be
solved by fast (rectangular) matrix multiplication which yields the upper bound of
O(nω(bk/3c,d(k−1)/3e,dk/3e) for the induced subgraph isomorphism [22, 42, 53]. Be-
cause fast matrix multiplication algorithms rely on algebra, the aforementioned method
can be classified as non-combinatorial. Since fast matrix multiplication algorithms in-
volve large overheads, the method is not very practical. The other drawback is that it is
not sensitive to the topology of the pattern graph and yields the same upper bound for
any k-vertex pattern graph (e.g., Kk, i.e., the k-clique).

There are a few known examples of pattern graphs of fixed size k for which one
succeeded to design specific algorithms for induced subgraph isomorphism yielding
asymptotic time upper bounds in terms of n lower than those offered by the aforemen-
tioned triangle based method. The oldest and most striking example is P4, a path on
four vertices, which can be detected in O(n+m) time [15].

The other is P3, the path on three vertices which can be also detected in O(n+m)

time [61], the third example is the diamond, obtained by removing a single edge from
K4, which can be detected in O(n+m3/2) time [22] (cf. [42] ). The fourth example is
a paw which is a triangle connected to the fourth vertex by an edge, i.e., K3 + e. It can
be detected in O(n2.373) time [54, 64]. (Analogous upper bounds hold for the pattern
graphs that are the complement to one of the aforementioned pattern graphs.)

Furthermore, an induced subgraph isomorphic to the generalized diamond Kk − e,
i.e., Kk with a single edge removed, as well as an induced subgraph isomorphic to the
path on k vertices, Pk, can be detected in O(nk−1) time [35, 61] which improves the
triangle based bound from [22] for k ≤ 5.

For recent relative hardness results on detection of specific pattern graphs (e.g.,
Pk, Kp,q, Kk−1 + e, Kk − e, C4) in the induced setting, see [26].

The triangle based method was refined by the use of fast rectangular matrix multipli-
cation in [22] a decade ago. Since then no new general approaches to induced subgraph
isomorphism for fixed pattern graphs have been presented.

We present a new framework for detecting an induced subgraph of fixed size k
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in a host graph on n vertices (Section 3.1.3). We associate a multivariate polynomial
to a family of pattern graphs on k vertices that share both a subgraph on l vertices and
the edges between the common subgraph and the remaining k − l vertices outside the
subgraph. The monomials of the polynomial are in one-to-one correspondence with
the pattern graphs in the family and their coefficients are computed on the basis of the
corresponding pattern graphs.

If all the coefficients but one share a prime factor p, we can detect the pattern graph
corresponding to the monomial whose coefficient is not divisible by p, by verifying the
polynomial for non-identity with zero over a field of characteristic p. The crucial part
of our proof is showing that the polynomial can be evaluated in O(nl+1) time, which
enables us to use the DeMillo-Lipton-Schwartz-Zippel lemma for the verification of the
polynomial.

By applying our method, we can list sixteen pattern graphs on five vertices that can
be detected in O(n4) time. With the exception of P5 [35] and K5 − e [61], our upper
bounds of O(n4) are new and in particular improve the bounds yielded by the triangle
based method (Corollary 3.17). We can obtain also the upper time bound of O(nk−1)

for plenty of pattern graphs on k > 5 vertices. Although for so large pattern graphs, we
cannot improve the upper bounds yielded by the triangle based method, the application
of our combinatorial method not relying on fast matrix multiplication can be still be of
practical interest.

For all graphs on four vertices except K4, K1,3 and C4, and their complements,
our method yields the upper bound of O(n3), which is better than that yielded by the
triangle based method.

Although our upper bounds for pattern graphs on four vertices do not improve the
known bounds based on different specific methods [22, 42, 54], they have the advantage
of not relying on the fast matrix multiplication algorithms and of being sensitive to the
topology of the pattern graph. Similarly, for pattern graphs on three vertices, our method
yields the upper bound of O(n2) in all the cases for which an upper time bound lower
than that yielded by the triangle based method is known.

Our main technical contribution in the first part of our paper is as follows.
Let Hk denote the family of single representatives of all isomorphism classes of

undirected graphs on k vertices, and let Hk(l) stand for its subfamily comprised of all
graphs inHk having an independent set of size at least k− l. Consider H ∈ Hk(l) and
an induced subgraph Hsub of H on l vertices such that the k − l vertices in H \Hsub

form an independent set. Let Hk(Hsub, H) stand for the family of all supergraphs H ′

of H (including H) such that H ′ has the same vertex set as H , Hsub is also an induced
subgraph of H ′, and the set of edges with endpoints in both Hsub and H ′ \Hsub is the
same as that with endpoints in both Hsub and H \Hsub (see Fig 3.3(a,b)).

Finally, for each H ′ ∈ Hk(Hsub, H), let B(Hsub, H,H
′) denote the number of

isomorphisms between Hsub and an induced subgraph of H ′, say Hf
sub, that can be
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extended to an isomorphism between H and the subgraph of H ′ consisting of Hf
sub, all

edges of H ′ incident to Hf
sub and all the remaining vertices of H ′.

We obtain the following result (Theorems 3.12, 3.13).

Let F ∈ Hk(Hsub, H), where k = O(1). Suppose that there is a prime number p that
is a factor of B(Hsub, H,H

′) for all H ′ ∈ Hk(Hsub, H), except for H ′ = F. There
is a randomized algorithm that detects if a graph on n vertices contains an induced
subgraph isomorphic to F, with one-sided error of probability polynomially small in n
(i.e., O(n−α) for α > 1), in O(nl+1) time. Importantly, for k − l = 2, Hk(Hsub, H)

contains two graphs and it is sufficient to require that p is a prime factor of the number
of automorphisms for the other graph inHk(Hsub, H) but it is not a prime factor of the
number of automorphisms of F.

The idea of associating a polynomial over a finite field to the sought structure has
been already used by Edmonds to detect a perfect matching [21]. It appears in several
recent papers that exploit also the idea of monomial cancellation [7, 43].
Counting subgraph isomorphisms for fixed pattern graphs: Vassilevska and Williams
studied the counting variant of subgraph isomorphism under the assumption that the k-
vertex pattern graph has an independent set of size s [62]. They designed combinatorial
algorithms (i.e., not relying on fast matrix multiplication) for this counting problem run-
ning in time O(f(s)nk−s+2) where f is an exponential or super-exponential function
depending only on s. Subsequently, Kowaluk et al. [44] designed an algorithm for the
corresponding detection problem using fast rectangular matrix multiplication and run-
ning in time O(nω(d(k−s)/2e,1,b(k−s)/2c)) ≤ O(nk−s+1) when k = O(1). They also
established an analogous upper bound for the counting variant when the size s of the
independent set is 2.

By a subgraph isomorphism between the pattern graph and the host graph, we shall
mean a one-to-one mapping of vertices in the pattern graph into vertices of the host
graph that preserves vertex adjacency.

In the second part of our paper (Section 3.1.4), we present an algorithm for counting
subgraph isomorphisms between a pattern graph with k vertices and an independent set
of cardinality s and a host graph with n vertices. It runs in timeO(nω(d(k−s)/2e,1,b(k−s)/2c))

which matches the upper bound for detection from [44] and largely extends that for
counting showed only for s ≤ 2 in [44].

Our algorithm relies on a solution to the so called (k − s)-neighbourhood problem
from [44], which in turn relies on fast rectangular matrix multiplication.

We also consider a weighted version of the counting problem, where real weights
are assigned to the edges and/or vertices of the host graph, and the task is to count the
number of subgraph isomorphisms between the pattern graph with k vertices containing
an independent set of cardinality s and the host graph with n vertices that minimize the
total weight of the images of the pattern graph. For this more general counting problem
we design a slightly slower combinatorial algorithm running in O(nk−s+1 log n) time
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when k = O(1).

In the literature, various weighted versions of the counting variants of subgraph
isomorphisms have been studied solely in terms of the sizes of the pattern and host
graphs, and without any explicit assumption on the size of independent set in the pattern
graph [16, 62].

3.2.2 Preliminaries

An isomorphism between two graphs F andG is a one-to-one mapping f of the vertices
of F onto vertices of G such that {u, v} is an edge of F iff {f(u), f(v)} is an edge of
G. If F = G then an isomorphism between F and G is called an automorphism of F.
F is isomorphic to G if there is an isomorphism between F and G.

A subgraph of a graph G = (V,E) is a graph G′ = (V ′, E′) such that V ′ ⊆ V and
E′ ⊆ E. Such a subgraph G′ of G is induced if E′ = (V ′ × V ′) ∩ E.

A subgraph isomorphism between two graphs F and G is an isomorphism between
F and a subgraph of G.

The detection version (or equivalently, the decision version) of the subgraph iso-
morphism problem is to decide for a host graph and a pattern graph if the host graph
has a subgraph isomorphic to the pattern graph.

The counting version of subgraph isomorphism asks for reporting the total number
of subgraphs of the host graph isomorphic to the pattern graph or just the total number
of subgraph isomorphisms between these two graphs. The corresponding versions of
induced subgraph isomorphism are defined analogously by replacing “subgraph” with
“induced subgraph”.

Let S be a subgraph of G with an order on its l vertices, or just an ordered subset of
l vertices of G. The S-neighbourhood type of a vertex of G is a binary vector b with l
coordinates such that b(i) = 1 iff v is adjacent to the i-th vertex of S for i = 1, ..., l.

The l-neighbourhood problem is to determine, for each ordered l-tuple α of vertices
of G and each binary vector b with l coordinates, the number of vertices v in G outside
α such that their α-neighbourhood type is b.

Fact 1 [44]. The l-neighbourhood problem for a graph on n vertices can be solved in
O(n) time for l = 1 and in O(2lnω(dl/2e,1,bl/2c)) time for l ≥ 2.

3.2.3 A new method of detecting small induced subgraphs

Let H be a pattern graph on k vertices in Hk(l) (see the introduction) and let Hsub be
an induced subgraph of H on l vertices such that the k − l vertices in H \Hsub form
an independent set. Recall the definition of the family Hk(Hsub, H) of supergraphs of
H and the definition of the quantities B(Hsub, H,H

′), for H ′ ∈ Hk(Hsub, H), given
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in the introduction. Let SHk(Hsub, H) stand for the family of single representatives of
all isomorphism classes inHk(Hsub, H), i.e., one graph from each isomorphism class.

Finally, for a pattern graph H and a host graph G, let SI(H,G) be the set of all
subsets of V (G) on |H| vertices that induce a subgraph of G isomorphic to H. Next,
let PI(H,G) denote the multivariate polynomial

∑
S∈SI(H,G)

∏
v∈S xv.We define the

multivariate polynomialP (Hsub, H,G) by
∑
H′∈SHk(Hsub,H)B(Hsub, H,H

′)PI(H ′, G).

To state our key lemma, for a prime number p, H ∈ Hk(l) and Hsub ∈ Hl, we
define the subset Hpk(Hsub, H) of Hk(Hsub, H) as the set of all H ′ ∈ Hk(Hsub, H)

for whichB(Hsub, H,H
′) is divisible by p. Also, recall that the characteristic of a ring

or a field is the minimum number of 1 in a sum of ones that yields 0.

Lemma 3.8 Let H ∈ Hk(l) and let Hsub be an induced subgraph of H on l vertices
such that the k− l vertices in H \Hsub form an independent set. For a prime number p,
a host graph G contains an induced subgraph isomorphic to a graph in Hk(Hsub, H) \
Hpk(Hsub, H) iff the polynomial P (Hsub, H,G) is not identical to zero over a field of
characteristic p.

Proof: All the monomials with coefficientsB(Hsub, H,H
′), whereH ′ ∈ Hpk(Hsub, H),

vanish over any field of characteristic p. On the other hand, those with the coefficient
B(Hsub, H,H

′), where H ′ ∈ Hk(Hsub, H) \ Hpk(Hsub, H), (if any) remain with a
non-zero coefficient equal to B(Hsub, H,H

′) mod p. It follows from the definition of
the polynomial P (Hsub, H,G) that it is not identical to zero iff G contains an induced
subgraph isomorphic to a graph inHk(Hsub, H) \ Hpk(Hsub, H). 2

The following lemma on polynomial identity testing has been shown independently
by DeMillo and Lipton, Schwartz, and Zippel.

Lemma 3.9 [17, 60] Let Q(x1, x2, ..., xm) be a non-zero polynomial of degree d over
a field of size r. Then, for f1, f2, ...,fm chosen independently and uniformly at random
from the field, the probability thatQ(f1, f2, ..., fm) is not equal to zero is at least 1− d

r .

The second part of Section 3.1.3 is devoted to the proof of the following key theo-
rem.

Theorem 3.10 Let p be a fixed prime number. ForH ∈ Hk(l) and an induced subgraph
Hsub of H on l vertices such that the k − l vertices in H \Hsub form an independent
set. The polynomial P (Hsub, H,G) can be evaluated for a given assignment of values
over a field FpO(logn) of characteristic p in O(nl+1) time.

By combining Lemmata 3.8, 3.9, and Theorem 3.10, we obtain our first main result.

Theorem 3.11 Let H ∈ Hk(l), let Hsub be an induced subgraph of H on l vertices
such that the k − l vertices in H \ Hsub form an independent set, and let p be a fixed
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Figure 3.3: (a) An example of a graph H composed of the induced subgraph Hsub and the vertex
set {v1, v2, v3} that forms an independent set in H . (b) An example of a supergraph H ′ of Hsub

inHk(Hsub, H). (c) An example of a set of (k − l)-tuples of vertices in G which are connected
with the l-tuple α by edges corresponding to those between H \Hsub and Hsub.

prime number. There is a randomized algorithm that detects if a graph on n vertices
contains an induced subgraph isomorphic to a graph in Hk(Hsub, H) \ Hpk(Hsub, H),
with one-sided error probability polynomially small in n, in O(nl+1) time.

Proof: By Lemma 3.8, it is sufficient to show how to test if the polynomialP (Hsub, H,G)

is not identical to zero, with one-sided error probability polynomially small in n, in
O(nl+1) time.

Note that the polynomial P (Hsub, H,G) is of degree k. We can use Lemma 3.9
with a field Fpc logn of characteristic p to obtain a randomized test of the polynomial
P (Hsub, H,G) for not being identical to zero with one side errors of probability not
larger than k

pc logn . For sufficiently large constant c, the error probability is not larger
than 1

nα , α > 1.

By Theorem 3.10, the test can be performed in O(nl+1) time. 2

Theorem 3.12 Let H ∈ Hk(l), let Hsub be an induced subgraph of H on l ver-
tices such that the k − l vertices in H \ Hsub form an independent set, and let F ∈
Hk(Hsub, H), where k = O(1). Suppose that there is a prime number p that is a fac-
tor of B(Hsub, H,H

′) for all H ′ ∈ Hk(Hsub, H), except for H ′ = F. There is a
randomized algorithm that detects if a graph on n vertices contains an induced sub-
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graph isomorphic to F, with one-sided error of probability polynomially small in n, in
O(nl+1) time.

Note that in Theorem 3.12, if k − l = 2 thenHk(Hsub, H) contains two graphs.

Theorem 3.13 Let H ∈ Hk(k − 2), let Hsub be an induced subgraph of H on k − 2

vertices such that the two vertices in H \ Hsub form an independent set, and let F ∈
Hk(Hsub, H), where k = O(1). Suppose that there is a prime number p that is a factor
of the number of automorphisms of the other H ′ ∈ Hk(Hsub, H) and that is not a
prime factor of the number of automorphisms of F. There is a randomized algorithm
that detects if a graph on n vertices contains an induced subgraph isomorphic to F, with
one-sided error of probability polynomially small in n, in O(nk−1) time.

Proof: Let H ′ ∈ Hk(Hsub, H), and let F be the set of all isomorphisms f between
Hsub and an induced subgraph of F satisfying the requirements from the definition of
B(Hsub, H,H

′).

Consider an extension of f ∈ F to an isomorphism between H and the subgraph of
H ′ composed of Hf

sub, all edges of H ′ incident to Hf
sub, and all other vertices of H ′.

If H ′ = H then f ′ is an automorphism of H ′. Otherwise, H ′ is the other member of
Hk(Hsub, H) obtained by adding the edge between the two independent vertices of H
outside Hsub. Then, f ′ is also an automorphism of H ′ since the only edge in H ′ not
incident toHf

sub has to connect the images by f ′ of the aforementioned two independent
vertices in H.

It follows that each f ∈ F can be identified with the class of all automorphisms of
H ′ that are equal to each other on Hsub. Conversely, each such class yields a distinct
member in F .

We conclude that B(Hsub, H,H
′) is equal to the number of automorphisms of H ′

divided by the number of automorphisms of H ′ that are identity on Hsub. It remains to
observe that the latter number is the same for both members in Hk(Hsub, H). Simply,
for each H ′ ∈ Hk(Hsub, H), the set of automorphisms of H ′ that are identity on Hsub

contains either only the identity automorphism or also the automorphism that switches
the two vertices of H ′ outside Hsub in case their Hsub-neighbourhoods types are equal.

2

Efficient evaluation of P (Hsub, H,G): We shall define a polynomial equivalent with
P (Hsub, H,G) (more precisely, a different decomposition ofP (Hsub, H,G)) and show
that it can be efficiently evaluated. To begin with, we need the following notation and
lemma.

Let α be a fixed ordered l-tuple of vertices of the graph H that induces the sub-
graph Hsub and for any b ∈ {0, 1}l, let ηα,H(b) be the number of vertices of the α-
neighbourhood type b in H. By the definition ofHk(Hsub, H), we obtain the following
lemma.
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Hsub

(a) (b)

GH
v1

v6

v2 v5 v2 v1
v1

v6

v3 v4 v8v7v8v4v3v7

Figure 3.4: An example of a graph H isomorphic to K1,3 + 4K1, its induced subgraph Hsub

isomorphic to K2, and a graph G containing three subgraphs isomorphic to H . Note that G has
only two automorphisms.

Lemma 3.14 Let f be an isomorphism between a graph H ′ ∈ Hk(Hsub, H) and a
subgraph ofG induced by a set S of k vertices in V (G) and let αf = (f(α1), ..., f(αl)).

The number of vertices of the αf -neighbourhood type b in S equals ηα,H(b).

For an ordered l-tuple γ of l different vertices in V (G) and for b ∈ {0, 1}l, let
V (γ, b) be the set of all vertices of the γ-neighbourhood type b in V (G) \ γ. The
polynomial Q(γ,H,G) is defined by

l∏
i=1

xγi
∏

b∈{0,1}l&ηα,H(b)6=0

 ∑
U⊆V (γ,b)∧|U |=ηγ,H(b)

∏
v∈U

xv

 .

Lemma 3.15 Let γ be an ordered l-tuple of vertices in V (G) inducing a subgraph ofG
isomorphic to Hsub, and let S be a set of k vertices in V (G). The monomial

∏
v∈S xv

occurs (exactly once) in Q(γ,H,G) iff S includes the vertices of γ and there is an
isomorphism between a graph in Hk(Hsub, H) and the subgraph of G induced by S
that maps the i-th vertex of the l-tuple α on the i-th vertex of the l-tuple γ.

Proof: To begin with, observe that each monomial ofQ(γ,H,G) is unique. If
∏
v∈S xv

occurs in Q(γ,H,G) then S has to include the vertices of γ by the definition of
Q(γ,H,G). Specify a mapping g : V (H) → S such that g(αi) = γi for i = 1, ..., l,

and for each b ∈ {0, 1}l, g maps the j-th vertex of the α-neighbourhood type b in
V (H) onto the j-th vertex of the γ-neighbourhood type b in S for j = 1, .., ηα,H(b)

(for any orderings of the vertices of the respective type b). Now, observe that g defines
an isomorphism between some graph inHk(Hsub, H) and that induced by S in G.

Conversely, if there is an isomorphism f between some graph inHk(Hsub, H) and
the subgraph of G induced by S that maps αi on γi for i = 1, .., l, then the l-tuple αf
in Lemma 3.14 equals γ and hence by this lemma and the definition of Q(γ,H,G),∏
v∈S xv occurs in Q(γ,H,G). 2
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Let L be the set of all l-tuples γ of different l vertices such that there is an iso-
morphism between Hsub and the subgraph of G induced by γ that maps αi on γi for
i = 1, ..., l. Next, let Q(Hsub, H,G) =

∑
γ∈LQ(γ,H,G).

The idea behind the following key lemma is as follows. Consider a monomial that
corresponds to a subgraph G′ of G isomorphic to H ′ ∈ Hk(Hsub, H) and occurs
with the coefficient B(Hsub, H,H

′) in P (Hsub, H,G). It occurs once in each of the
Q(β,H,G) forming Q(Hsub, H,G), where there is an extension of the function map-
ping the i-th vertex of α on the i-th vertex of β to a subgraph isomorphism between H
and G′, satisfying the requirements from the definition of B(Hsub, H,H

′). Hence, the
number of such β is B(Hsub, H,H

′).

Lemma 3.16 The equality P (Hsub, H,G) = Q(Hsub, H,G) holds.

Proof: By the definition of P (Hsub, H,G), if
∏
v∈S xv is a monomial of this polyno-

mial then there is an isomorphism f between a graph in SHk(Hsub, H) and the sub-
graph of G induced by S. Let αf = (f(α1), ..., f(αl)). Then,

∏
v∈S xv is a monomial

in Q(αf , H,G) and hence also in Q(Hsub, H,G).

Conversely, if
∏
v∈S xv is a monomial in Q(Hsub, H,G), i.e., a monomial in

Q(γ,H,G) for some γ ∈ L, then it follows from Lemma 3.15 that the subgraph of G
induced by S is isomorphic to a graph H ′ in SHk(Hsub, H). Hence, it is also a mono-
mial in P (Hsub, H,G). To show the equality, it remains to show that the monomial
occurs B(Hsub, H,H

′) times in Q(Hsub, H,G), i.e., that are B(Hsub, H,H
′) l-tuples

β such that
∏
v∈S xv is a monomial in Q(β,H,G).

An occurrence of
∏
v∈S xv as a monomial in Q(β,H,G) is in one-to-one corre-

spondence with the class of all subgraph isomorphisms between H and the subgraph
G′ of G induced by S that map αi on βi for i = 1, ..., l. It follows from the definition
of B(Hsub, H,H

′) that the number of such l-tuples β is equal to B(Hsub, H,H
′).

2

Proof of Theorem 3.10. Proof:
By Lemma 3.16, it is sufficient to show that Q(Hsub, H,G) can be evaluated over

the field in the claimed time.
The set L of all ordered l-tuples γ of different l vertices such that there is an iso-

morphism between Hsub and the subgraph of G induced by γ that maps αi on γi for
i = 1, ..., l, can be easily computed in O(l2l!nl) = O(nl) time.

For all γ ∈ L, and all b ∈ {0, 1}l, we can compute the sets V (γ, b) of vertices
v ∈ V that have γ-neighbourhood of type b in O(2llnl+1) = O(nl+1) time in total.

By the definition of Q(Hsub, H,G), it is sufficient to show that for an arbitrary γ ∈
L, the polynomial Q(γ,H,G) can be evaluated in O(n) time (recall that k = O(1)).

This in turn by l = O(1) reduces to showing that for an arbitrary b ∈ {0, 1}l,
the polynomial

∏l
i=1 xγi

∑
U⊆V (γ,b)∧|U |=ηα,H(b)

∏
xv∈U xv, can be evaluated inO(n)

time.



3.2 Detecting and counting small pattern graphs 43

For i = 1, ..., n, let Xi be the set of variables x1, ..., xi.

Next, for a positive integer q, let Cq(Xi) denote the elementary symmetric polyno-
mial of degree q, i.e.,

∑
T⊆Xi∧|T |=q

∏
xj∈T xj . For convention, we let C0(Xi) to be 1

in the field. Cq(Xn) can be evaluated for a given assignment of values over the field by
the recurrence Cq(Xi+1) = xi+1C

q−1(Xi) + Cq(Xi).
For q = O(1), we can evaluate all Cq(Xi) using this recurrence by dynamic pro-

gramming in lexicographic order of (q, i) in O(n) time.
It follows from ηα,H(b) = O(1) that the polynomial∏l

i=1 xγi
∑
U⊆V (γ,b)∧|U |=ηα,H(b)

∏
xv∈U xv, can be evaluated in O(n) time. 2

Applications to pattern graphs on at most six vertices.

Corollary 3.17 The method of Theorem 3.13 can be used to detect K2 + 3K1, 2K2 +

K1, P3 + 2K1, K3 + e+K1, fork, cricket, P5, (3, 2)− lollipop, banner, W5 − e,
K4 − e + K1, dart, kite, houseX, W5, and K5 − e as an induced subgraph, with
one-sided error of probability polynomially small in n, in O(n4) time.

With the exception of P5 [35] and K5−e [61], our upper bounds of O(n4) are new.
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γ γ-neighbourhood type 00 γ-neighbourhood type 10 Q(γ,H,G)

(1, 2) 4, 7, 8 5, 6 0

(2, 1) 4, 7, 8 3 0

(1, 5) 3, 7, 8 2, 6 0

(5, 1) 3, 7, 8 4 0

(1, 6) 3, 4, 7, 8 2, 5 x1x2...x8

(6, 1) 3, 4, 7, 8 0

(2, 3) 5, 6, 8 1 0

(3, 2) 5, 6, 8 4, 7 0

(3, 4) 1, 6 2, 7 0

(4, 3) 1, 6 5, 8 0

(4, 5) 2, 6, 7 3, 8 0

(5, 4) 2, 6, 7 1 0

(3, 7) 1, 5, 6, 8 2, 4 x1x2...x8

(7, 3) 1, 5, 6, 8 0

(4, 8) 1, 2, 6, 7 3, 5 x1x2...x8

(8, 4) 1, 2, 6, 7 0

Table 3.2: The monomials of the polynomialQ(Hsub, H,G) for the graphsHsub, H,G depicted
in Fig. 2. The polynomial P (Hsub, H,G) has only one monomial, x1x2...x8, correspond-
ing to H ′ ∈ Hk(Hsub, H) isomorphic to G. Since B(Hsub, H,H

′) = 3, P (Hsub, H,G) =

Q(Hsub, H,G) holds.



3.2 Detecting and counting small pattern graphs 45

Example 1: We obtain the following pairs of graphs H,H ′ in H5, sharing a common
subgraph Hsub ∈ H3, such that H ∈ H5(3), H ′ ∈ H5(Hsub, H), and the number of
automorphisms (in parentheses) for one of them has a prime factor that is not a prime
factor of the other one.

• 5K1(120), K2 + 3K1(12)

• K2 + 3K1(12), 2K2 +K1(8)

• K2 + 3K1(12), P3 + 2K1(4)

• K1,3 +K1(6), K3 + e+K1(2)

• K1,3 +K1(6), fork(2)

• K1,4(24), cricket(4)

• P5(2), C5(10)

• K3 +K2(12), (3, 2)− lollipop(2)

• banner(2), K2,3(12)

• K2,3(12), W5 − e(4)

• K4 − e+K1(4), K4 +K1(24)

• dart(2), (3, 2)− fan(12)

• dart(2), K4 + e(6)

• kite(2), K4 + e(6)

• (3, 2)− fan(12), houseX(4)

• W5(8), K5 − e(12)

• K5 − e(12), K5(120)

In all the cases where an upper bound better than that forK4 is known except for the
case of P4 and K1,3, our combinatorial method yields the upper bound of O(n3) that
is also better than that known for K4. Similarly, for pattern graphs on three vertices,
our method yields the upper bound of O(n2) in all the cases for which an upper bound
better than that for K3 is known.

Example 2: We obtain the following polynomials P (Hsub, H) (for brevity, we skip the
parameter G), where Hsub is either 2K1 or K2, and H ∈ H4(2)
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1) P (2K1, 4K1) = 24PI(4K1) + 2PI(K2 + 2K1)

2) P (K2,K2 + 2K1) = 2PI(K2 + 2K1) + 4PI(2K2)

3) P (2K1,K1,2 +K1) = 2PI(K1,2 +K1) + 6PI(K1,3)

4) P (2K1, 2K2) = 8PI(2K2) + 2PI(P4)

5) P (K2,K3 +K1) = 6PI(K3 +K1) + 2PI(K3 + e)

6) P (K2, P4) = 2PI(P4) + 8PI(C4)

7) P (K2,K1,3) = 3PI(K1,3) + PI(K3 + e)

8) P (2K1, C4) = 4PI(C4) + 2PI(K4 − e)

9) P (K2,K3 + e) = 2PI(K3 + e) + 4PI(K4 − e)

10) P (K2,K4 − e) = 2PI(K4 − e) + 12PI(K4)

In Example 2, several polynomialsP (Hsub, H,G) with explicit coefficientsB(Hsub, H,H
′)

are listed for graphs H on four vertices. By applying Theorem 3.12 to these polynomi-
als, we obtain the following corollary.

Corollary 3.18 The method of Theorem 3.12 can be used to detect K3 + e, K4 − e
and their complements as an induced subgraph, with one-sided error of probability
polynomially small in n, in O(n3) time.

We obtain also the following corollary from Theorem 3.13 confirming in part the
upper bounds from [35, 61].

Corollary 3.19 The method of Theorem 3.13 can be used to detect Pk if k has a prime
factor larger than 2, and Kk − e if k or k − 1 is a prime number larger than 2, as
an induced subgraph, with one-sided error of probability polynomially small in n, in
O(nk−1) time.

Proof: Pk and Ck differ by a single edge. To use Theorem 3.13, set Hsub = Pk−2

with the endpoints of Pk outside Hsub. Let q be a prime factor of k larger than 2. The
number of automorphisms of Ck is divisible by q while that of Pk is not divisible by q.

Similarly, Kk−e and Kk differ by a single edge. To use Theorem 3.13, set Hsub =

Kk−2. The number of automorphisms of Kk is divisible by k and k − 1 while that of
Kk − e is not divisible by k or k − 1 if k or k − 1 respectively is a prime number. 2

Note that Corollary 3.19 yields in particular the upper bound of O(n2) on the de-
tection of P3, or equivalently K3− e, and the complement graph as induced subgraphs,
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Figure 3.5: Pairs of pattern graphs on six vertices forming a family H6(Hsub, H), where the
common subgraph Hsub has three vertices and the corresponding numbers of automorphisms
have different prime factors. Each of the graphs in the bottom row can be detected as an induced
subgraph by our method in O(n5) time

confirming all the known sub-O(nω) time upper bounds on detection of pattern graphs
on three vertices [22, 42, 61].

We can also apply the method of Theorem 3.13 to several pattern graphs on more
than five vertices. Although we cannot improve the triangle based upper bounds [22] as
for the asymptotic time complexity for so large pattern graphs, our method not relying
on fast matrix multiplication may be still more practical. For example, see the three
pairs of pattern graphs on six vertices in Fig. 3.2.3 It follows from Theorem 3.12 that
each of the graphs in the bottom row can be detected as an induced subgraph by our
method in O(n5) time.

3.2.4 Counting subgraph isomorphisms

Our first method for counting subgraph isomorphisms relies on Fact 1, see Prel.

Theorem 3.20 The number of subgraph isomorphisms between a fixed graph with k
vertices and with an independent set on s vertices and a host graph on n vertices can be
computed in time O(nω(d(k−s)/2e,1,b(k−s)/2c)).

Proof: sketch. Let H be the pattern graph on k vertices with an independent set I on
s vertices. Next, let Hsub be the subgraph of H induced by all its l = k − s vertices
outside I .

For a vertex v ∈ I, let b(v) denote the Hsub-neighbourhood type of v. For w ∈
{0, 1}l, let tw be the number of vertices v in I for which b(v) = w.

Let G = (V,E) be the host graph on n vertices. Consider an ordered l-tuple α of
vertices in G such that the function fα mapping the i-th vertex of Hsub onto the i-th
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Figure 3.6: (left) An example of the pattern graph H and its subgraph Hsub within the dotted
circle. The vertices of the independent set outside Hsub are labelled with their respective Hsub-
neighbourhood type. (right) An example of the host graph G and an (encircled) ordered l-tuple
α of its vertices. The vertices of G outside α are labelled with their α-neighbourhood types
respectively.

vertex of α is a subgraph isomorphism between Hsub and G.
We shall count the number of different subgraph isomorphisms between H and G

that are extensions of the subgraph isomorphism fα between Hsub and G.
For this purpose, we denote the α-neighbourhood type of a vertex u in G by bα(u).

For w ∈ {0, 1}l, let nw(α) be the number of vertices u in G outside α for which
bα(u) = w. Also, for two vectors c, d ∈ {0, 1}l, we say that d dominates c if for
i = 1, ..., l, ci ≤ di. For a vector c ∈ {0, 1}l, the vector directly following c in the
lexicographic order (if any) is denoted by suc(c).

Observe that by our definitions, the number of extensions of the subgraph isomor-
phism fα betweenHsub andG to a subgraph isomorphism betweenH andG is equal to
the number of ways we can choose for each w ∈ {0, 1}l an ordered tuple of tw vertices
u inG such that bα(u) dominates w. It is sufficient to consider solely those w for which
tw 6= 0, i.e., there are vertices in H \Hsub whose Hsub-neighbourhood type is w.

The extensions can be counted by a straightforward recursive algorithm provided
that the numbers tw and nb(α) are known. If H has O(1) vertices then the algorithm
runs in O(1) time. Also, the numbers tw can be computed in O(1) time if H has O(1)

vertices.
Note that for two such distinct l-tuples α, the subgraph isomorphisms fα between

Hsub and G are different and thus their extensions to a subgraph isomorphism between
H andG have to be different too. Thus, it is sufficient to sum the numbers of extensions
over such l-tuples α.

We can list all such l-tuples α where the function fα mapping the i-th vertex of
Hsub on the i-th vertex of α is a subgraph isomorphism between Hsub and G in O(nl)

time if l = O(1). Finally, all the numbers nw(α) can be obtained by solving the l-
neighbourhood problem in time O(2lnω(dl/2e,1,bl/2c)) by Fact 1. 2

Alternatively, we could formulate the problem of counting the extensions as follows.
We are given a bipartite graph with vertices in one-to-one correspondence with buckets.
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In the first set of buckets (vertices), we have initially empty buckets Hbucw, w ∈
{0, 1}l, of capacity tw. In the other set, we have buckets Gbuc(α)b, b ∈ {0, 1}l,
filled respectively with n(α)b distinct balls. There is an edge between Hbucw and
Gbuc(α)b iff b dominates w. The task is to count the number of ways in which we
can fill simultaneously each Hbucw with an ordered sequence of exactly tw balls taken
from possibly different Gbuc(α)b, where there is an edge between b and w.

The following algorithm, involving the recursive procedure COUNT , counts the
extensions.

Algorithm 1
input for all w ∈ {0, 1}l, the numbers tw and nw(α).

1. for w ∈ {0, 1}l do
n∗w ← nw(α);

2. return COUNT (0l, {n∗q}q∈{0,1}l)

The procedure COUNT is defined as follows.

procedure COUNT (w, {n∗q}q∈{0,1}l)
input w ∈ {0, 1}l and a sequence {n∗q}q∈{0,1}l of nonnegative integers.

1. if tw = 0 then if w 6= 1l then return COUNT (suc(w), {n∗q}q∈{0,1}l) else
return 1;

2. sum← 0;

3. for all decompositions of tw into the sum of nonnegative integers nwq , where
q ∈ {0, 1}l dominates w and nwq ≤ n∗q do

(a) ways← (tw)!
∏
q dominates w

(n∗q
nwq

)
(b) for all q ∈ {0, 1}l that dominate w do

ifw 6= 1l then sum← sum+ways×COUNT (suc(w), {n∗q−nwq }q∈{0,1}l)
else sum← sum+ ways

4. return sum

Suppose that the edges and/or vertices of the host graph G have some real weights.
For the problem of counting lightest subgraph isomorphisms between the pattern graph
H and G, i.e., the isomorphisms between H and lightest subgraphs isomorphic to H,
we obtain the following theorem.

Theorem 3.21 Let H be a pattern graph on k vertices with an independent set on s
vertices, and let G be a host graph on n vertices with vertex and/or edge real weights.
If k = O(1) then the number of lightest subgraph isomorphisms between H and G can
be computed by a combinatorial algorithm in O(nk−s+1 log n) time.
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Figure 3.7: (up left) An example of the pattern graph H and its subgraph Hsub within the dotted
circle. (up right) An example of an edge weighted host graph G. (down) Two examples of an
ordered l-tuple within G marked with a dotted circle. The vertices of G outside the l-tuple are
labelled with the total weight of the edges that connect them with the l tuple and are relevant if the
first or the second vertex of H outside Hsub, respectively, is mapped on them under a subgraph
isomorphism. If such a mapping is not possible, the corresponding label is “inf”.

Proof:
Consider first the problem of finding a lightest subgraph of G isomorphic to H.
Let α be an ordered l-tuple of vertices in G such that the mapping fα of the i-

th vertex of Hsub on the i-th vertex of α for i = 1, ..., l, is a subgraph isomorphism
between Hsub and G. For each 0− 1 vector b of length l and any vertex v of G outside
α, whose α-neighbourhood type dominates b, define the combined weight wb(v) as
follows. The weight wb(v) is the sum of the weight of v (if any) and the weights of the
edges connecting v with the vertices in α whose numbers j in α correspond to 1’s in b,
i.e., satisfy bj = 1. Let Lb(α) be a list of all such vertices v sorted by the weight wb(v)

in non-decreasing order.
All the sorted lists Lb(α) and corresponding ranks of vertices can be easily com-

puted by at most 2l examinations and sorting of vertices inG outside α inO(2lln log n)

time.
Now the following observation is crucial: to find a lightest extension of the subgraph

isomorphism fα between Hsub and G to a subgraph isomorphism between H and G it
is sufficient to consider solely vertices of G that have rank at most s = k − l on any
of the lists Lb(α). The observation follows immediately from the fact that we need to
define the extension for only the s = k − l independent vertices in H \Hsub. See Fig.
6.

Thus, the subgraph G∗(α) of G induced by α and all the aforementioned at most
2ls vertices includes a lightest extension of the subgraph-isomorphism between Hsub
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and α. Consequently, a lightest extension of the subgraph-isomorphism can be found
easily by enumerating all possible mappings between the vertices inH \Hsub and those
in G∗(α) outside α in time O(s!

(
2ls
s

)
) = O(1).

Finally, we can list all such α l-tuples, whose number is O(nl), in O(l2nl) time.
Hence, we conclude that one can find a lightest subgraph isomorphism between H and
G in O(nl+1] time when k = O(1). 2

We can easily extend our method of finding a lightest subgraph isomorphism be-
tween H and G to include counting lightest subgraph isomorphisms between H and G
as follows.

First, we find all lightest subgraph isomorphisms f between H and G that are ex-
tensions of the mapping fα of the i-th vertex of Hsub on the i-th vertex of an ordered
l-tuple α, and that are constrained to the finite induced subgraph G∗(α). This can be
done by an immediate adaptation of our method for finding a lightest subgraph isomor-
phisms between H and G in O(nl+1) overall time.

The only case when we could miss some lightest extensions in the aforementioned
enumeration is as follows.

Suppose that for some of the found lightest extensions f there is b ∈ {0, 1}l such
that f maps some vertices v of H \Hsub whose Hsub-neighbourhood type b(v) equals
b onto vertices f(v) of G whose α-neighbourhood type dominates b and whose weight
wb(f(v)) is equal that of the vertex of rank s on Lb(α). Next, suppose that there are
some other vertices u of higher ranks on Lb(α) such that wb(f(v)) = wb(u). Then, we
can obtain other lightest extensions by partially using the vertices u instead.

We can identify such cases. On the other hand, it would be to costly to include the
aforementioned missing lightest extensions in the enumeration. Instead, we propose a
method to just count the number of missing lightest extensions (if any).

We shall call any of the enumerated lightest extensions f canonical iff for all b ∈
{0, 1}l, f satisfies the following condition:
if f maps two vertices v1, v2 in H \Hsub whose Hsub-neighbourhood type is b on two
vertices in G whose α-neighbourhood type dominates b, and wb(f(v1)) and wb(f(v2))

are equal to the corresponding weight of the vertex of rank s on Lb(α), then whenever
v1 has a smaller number than that of v2 in H , f(v1) has a smaller rank than that of
f(v2) in Lb(α).

Now for each found canonical lightest extension f, we count the number of lightest
extensions that can be obtained as follows. We replace for each b ∈ {0, 1}l, some
vertices v ofG∗(α) that are images of vertices with theHsub-neighbourhood type equal
to b and that have rank at most s = k − l on Lb(α), and whose weight wb(v) equals
that of the vertex of rank s in Lb(α) by some other vertices u in Lb(α) whose rank is
not necessarily smaller than s but still wb(u) = wb(v).

While producing the lists Lb(α), for b ∈ {0, 1}l, we can precompute for all S ⊂
{0, 1}l, the number nS(α) of all vertices u that occur on the lists Lb(α), for all b ∈ S,
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and that have the weights wb() equal to that of the vertex of rank s on Lb for b ∈ S,
and that do not have these properties for any b /∈ S. The precomputation takes time
proportional to that required by sorting under assumption that l = O(1).

Next, suppose that for b ∈ {0, 1}l, there are rb vertices ofG that under the canonical
extension f are images of vertices in H \ Hsub whose Hsub-neighbourhood type is b
and whose weight wb() is equal to that of the vertex of rank s on Lb(α).

Knowing the numbers nS(α) and rb, we can compute the number of the afore-
mentioned possible replacements in the canonical lightest extension f by running the
following algorithm.

Algorithm 2

1. for S ⊆ {0, 1}l do
n∗S ← nS(α);

2. return REPLACE(0l, {n∗S}S⊆{0,1}l)

Algorithm 2 involves the procedure REPLACE similar to the COUNT procedure
from Algorithm 1.

procedure REPLACE(b, {n∗S}S⊆{0,1}l)
input b ∈ {0, 1}l and a sequence {n∗S}S⊆{0,1}l of nonnegative integers.

1. if rb(α) = 0 then if b 6= 1l then return return REPLACE(b, {n∗S}S⊆{0,1}l)
else return 1

2. sum← 0;

3. for all decompositions of rb(α) into the sum of nonnegative integers nbS , where
b ∈ S and nbS ≤ n∗S do

(a) ways← (rb(α))!
∏
b∈S

(n∗S
nbS

)
(b) for all S ⊆ {0, 1}l where b ∈ S do

i. if b 6= 1l then sum ← sum + ways × REPLACE(suc(b), {n∗S −
nbS}q∈{0,1}l) else sum← sum+ ways

4. return sum

By taking the sum of the number of replacements over the lightest found canonical
extensions, we obtain the total number of lightest subgraph isomorphisms.



Chapter 4

3D Rectangulations and Matrix
Products

4.1 Introduction

This paper considers two intriguing and at a first glance unrelated problems.
The first problem lies at the heart of three-dimensional computational geometry. It

belongs to the class of polyhedron decomposition problems, whose applications range
from data compression and database systems to pattern recognition, image processing,
and computer graphics [40, 57]. The problem is to partition a given rectilinear polyhe-
dron into a minimum number of 3D rectangles. Dielissen and Kaldewai have shown this
problem to be NP-hard [19]. In contrast, the problem of partitioning a rectilinear (pla-
nar) polygonal region into a minimum number of 2D rectangles admits a polynomial-
time solution [40, 49]. Formally, the NP-hardness proof by [19] is for polyhedra with
holes, but the authors remark that the proof should also work for simple polyhedra. To
the best of our knowledge, no non-trivial approximation factors for minimum rectan-
gular partition of simple rectilinear polyhedra are known, even in restricted non-trivial
cases such as that of a 3D histogram (a natural generalization of a planar histogram, see
Section 4.2).

The second problem we consider is that of multiplying two n × n matrices. There
exist fast algorithms that do so in substantially subcubic time, e.g., a recent one due
to Le Gall runs in O(n2.3728639) time [46], but they suffer from very large overheads.
On the positive side, input matrices in real world applications often belong to quite
restricted matrix classes, so a natural approach is to design faster algorithms for such
special cases. Indeed, efficient algorithms for sparse matrix multiplication have been
known for long time. In the Boolean case, despite considerable efforts by the algorithms
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community, the fastest known combinatorial algorithms for Boolean n×n matrix mul-
tiplication barely run in subcubic time (inO(n3(log log n)2/(log n)9/4)) time [5], to be
precise), but much faster algorithms for Boolean matrix product for restricted classes
of Boolean matrices have been developed [8, 31, 48]. For example, when at least one
of the input Boolean matrices admits an exact covering of its ones by a relatively small
number of rectangular submatrices, the Boolean matrix product can be computed effi-
ciently [48]; similarly, if the rows of the first input Boolean matrix or the columns of
the second input Boolean matrix can be represented by a relatively cheap minimum cost
spanning tree in the Hamming metric (or its generalization to include blocks of zeros
or ones) then the Boolean matrix product can be computed efficiently by a randomized
combinatorial algorithm [8, 31].

Our first contribution is an O(m logm)-time, 4-approximation algorithm for com-
puting a minimum 3D rectangular partition of an input 3D histogram withm corners. It
works by projecting the input histogram onto the base plane, partitioning the resulting
planar straight-line graph into a number of 2D rectangles not exceeding its number of
vertices, and transforming the resulting 2D rectangles into 3D rectangles of appropriate
height. Importantly, the known algorithms for minimum partition of a rectilinear poly-
gon with holes into 2D rectangles [40, 49] do not yield the aforementioned upper bound
on the number of rectangles in the more general case of planar straight-line graphs.

Our second contribution is a new technique for multiplying two matrices with non-
negative integer entries. We interpret the matrices as 3D histograms and decompose
them into blocks that can be efficiently manipulated in a pairwise manner using the in-
terval tree data structure. Let A and B be two n× n matrices with nonnegative integer
entries, and let rA and rB denote the minimum number of 3D rectangles into which the
3D histograms induced by A and B can be partitioned.

By applying our 4-approximation algorithm above, we can compute

A× B in Õ(n2 + rArB) time, where Õ suppresses polylogarithmic (in n) factors.
Furthermore, by using another idea of slicing the histogram of A (or B) into parts
corresponding to rows of A (or columns of B) and measuring the cost of transforming
a slice into a consecutive one, we obtain an upper bound of Õ(n2 + nmin{rA, rB}).

We also give a generalization of the latter upper bound in terms of the minimum cost
of a spanning tree of the slices, where the distance between a pair of slices corresponds
to the cost of transforming one slice into the other.

Organization: Section 4.2 presents our 4-approximation algorithm for a partition of
a 3D histogram into a minimum number of 3D rectangles. Section 4.3 presents our
algorithms for the arithmetic matrix product. Section 4.4 concludes with some final
remarks.
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4.2 3D Histograms and Their Rectangular Partitions

A 2D histogram is a polygon with an edge e, which we call the base of the histogram,
having the following property: for every point p in the interior of histogram, there is
a (unique) line segment perpendicular to e, connecting p to e and lying totally in the
interior of the histogram. In this paper, we consider orthogonal histograms only. For
simplicity, we consider the base of a histogram as being horizontal, and all other edges
of the histogram lying above the base. In this way, a 2D histogram can also be thought
of as the union of rectangles standing on the base of the histogram.

A 3D histogram is a natural generalization of a 2D histogram. To define a 3D
histogram, we need the concept of the “base plane", which for simplicity we define as
the horizontal plane containing two of the axes in the Euclidean space. A 3D histogram
can then be thought of as the union of rectilinear 3D rectangles, standing on the base
plane. The base of the histogram is the union of the lower faces (also called bases) of
all these rectangles.

Definition 4.1 A 3D histogram is a union of a finite set C of rectilinear 3D rectangles
such that: (i) each element in C has a face on the horizontal base plane; and (ii) all
elements in C are located above the base plane.

(In the literature, what we call a 3D histogram is sometimes termed a 2D histogram
or a 1D histogram when used to summarize 2D or 1D data, respectively [52].)

By a rectangular partition of 3D histogram P , we mean a rectilinear partition of P
into 3D rectangles.

In Section 4.2.2 below, we consider the problem of finding a rectangular partition
of a given 3D histogram P into as few 3D rectangles as possible. We present a 4-
approximation algorithm for this problem with time complexity O(m logm), where m
denotes the number of vertices in P . The algorithm partitions P into less than m′ 3D
rectangles, wherem′ is the number of vertices in the vertical projection of P (i.e.,m′ <
m), by applying a subroutine described in Section 4.2.1 that partitions any rectilinear
planar straight-line graph (PSLG) with m′ vertices into less than m′ 2D rectangles.
Finally, the approximation factor is derived by observing that any rectangular partition
of P must contain at least m′/4 3D rectangles.

4.2.1 Partitioning a Rectilinear PSLG into 2D Rectangles

The problem of partitioning a rectilinear polygon into rectangles in two dimensions has
been well studied in the literature [40, 49]. An optimal solution for this problem can
be computed in polynomial time [40, 49]. However, to use the result in 3D, we need
a bound on the number of produced rectangles, expressed in terms of the number of
vertices. Therefore, it is not so crucial for our purposes to compute an optimal solution
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for the 2-dimensional problem, but instead, we need to partition planar straight-line
graphs (PSLGs) into at most m′ rectangles, where m′ denotes the number of vertices in
the input PSLG. We will show that a simple algorithm suffices to obtain this bound.

Since this subsection considers 2D only, we use the term “horizontal” for line seg-
ments parallel to theX-axis. By “vertical” lines, we mean lines or line segments parallel
to the Y -axis. Each vertex in the planar graphs in our application has degree 2, 3, or 4.

Definition 4.2 A planar straight-line graph (PSLG)PG = (V,E), as used in this paper,
is a planar graph where every vertex has an x- and a y-coordinate. Each edge is drawn
as a straight line segment, all edges meet at right angles, and each vertex has degree 2,
3, or 4. A rectangular partition of PG is a partition R = (V ∪ VR, E ∪ ER) that adds
edges and vertices to PG so that R is still a PSLG while every face in R is a rectangle.

Given a PSLG PG, we denote m′ = |V |. We say that a vertex v of PG is concave
if it has degree 2, its two adjacent edges are perpendicular to each other, and the corner
at v which is of 270 degrees does not lie in the outer, infinite face of PG. Any vertex
which is not concave is called convex.

We use a sweep line approach to generate a partition into less than m′ rectangles.
We perform a horizontal sweep with a vertical sweep line [6], using the vertices of PG
as event points. Whenever the sweep line reaches a concave vertex v, we insert into the
graph PG a vertical line segment s connecting v to the closest edge of PSLG upwards or
downwards, thus cancelling the concavity at v and transforming v into a convex vertex
of degree 3. Hence, if there was already an edge of PG below v, then the new segment
s is inserted above v, otherwise it is inserted below v. To preserve the property that
the resulting graph is still a PSLG, the other endpoint of s may have to become a new
vertex of the PSLG. This is a standard procedure for trapezoidation; see, e.g., [6] for
more details. After the sweep is complete, all concave vertices have been eliminated.
(Remark: In a special case it may happen that two concave vertices with the same x-
coordinate are connected by a single vertical segment that is disjoint from the rest of the
input PSLG. In this case, the plane sweep algorithm will produce this segment. Thus,
no two segments produced by the algorithm overlap or touch each other.)

The correctness of the algorithm is easy to see: it eliminates all concave corners of
PG by adding vertical line segments. Hence, in the resulting PSLG, each face, except
for the outer face, is a rectangle. The running time of this algorithm is dominated by
the cost of the plane sweep, which is O(m′ logm′) according to well-known methods
in computational geometry; see, e.g., [6].

We need to relate the number of vertices in the input PSLG to the number of 2D
rectangles. This is done in the following lemma:

Lemma 4.3 Any PSLG PG = (V,E) with |V | = m′ and minimum vertex degree 2

can be partitioned into b rectangles with b < m′ using O(m′ logm′) time.
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Proof: Let R denote the set of rectangles in the rectangular partition produced by the
plane sweep algorithm described above. We use a “charging scheme” to prove the stated
inequality. The charging scheme starts by giving each vertex v ∈ V four tokens; thus,
a total of 4m′ tokens are used. Each vertex v then distributes its tokens in a certain
way to the rectangles in R that are adjacent to v. We will show that every rectangle
in R receives at least four tokens. Since we started by giving a total of 4m′ tokens to
the vertices, this will prove that there exist at most m′ rectangles, and thus b ≤ m′.
Moreover, vertices adjacent to the outer face do not give away more than three tokens.
We will thus obtain the strict inequality b < m′.

Now, we describe the details of the charging scheme. (More explanations and illus-
trating figures are included in the full version.) Let v be any vertex of V . The vertex
v gives one token to each rectangle r in R which in any way is adjacent to it, with one
exception. The exception occurs when v is a concave vertex; then, v is partitioned by a
vertical segment er added by the algorithm. This segment partitions the three quadrants
at the concave corner around the vertex so that one rectangle occupies one quadrant
and one occupies the two others. Then v distributes two tokens to the new rectangle
occupying only one quadrant, which therefore has a corner at v, and only one token to
each one of the other rectangles of R adjacent to v.

We now show that each rectangle receives at least four tokens. Let r be any rectangle
in R. First note that each vertical segment added by the algorithm has at least one
endpoint at a vertex in V . Moreover, for any rectangle r in R, each of the vertical sides
of r includes at least one vertex of V . Therefore, each rectangle is adjacent to at least
two vertices of V . We distinguish three cases, depending on the number of vertices of
V adjacent to r. Observe that the adjacencies are not necessarily at the corners of r.

• Case 1: r is adjacent to at least four vertices of V . Since r will receive at least
one token from each of them we are done.

• Case 2: r is adjacent to precisely three vertices of V . Then at one of the vertical
sides of r there is only one vertex of V . Moreover, this vertex v must be at a
corner of r and fulfils the criteria for giving two tokens to r. The remaining two
adjacent vertices of V give at least one token each, so we are done.

• Case 3: r is adjacent to precisely two vertices of V . This must mean that both
vertical sides of r are segments added by the algorithm, and that one of the end-
points of each of these sides is a vertex of V at a corner of r. This corresponds to
the condition for receiving two tokens mentioned earlier. So in total, r receives
four tokens from the two corners, and we are done.

2
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4.2.2 Partitioning a 3D Histogram into 3D Rectangles

We now explain how to obtain the projected PSLG from the 3D histogram P and how to
use the rectangular partition of this PSLG to yield a good partition into 3D rectangles.

Definition 4.4 The planar projection PP is an orthogonal projection of the input 3D
histogram P along the “down” direction onto the base plane in Definition 4.1.

We can interpret PP as a PSLG where each corner and each subdividing point on
a line segment corresponds to a vertex. The edges naturally correlate to the connecting
line segments between vertices. Each vertex in PP is the vertical projection of at least
two vertices of P . Two edges of the 3D histogram may partially overlap in the 2D
projection, but the edges in the 2D projection are considered as non-overlapping. Thus,
an edge of the 3D histogram may split into several edges in the 2D projection, since
vertices should only appear as endpoints of edges.

Remark Every vertex in PP must have at least two neighbours. This follows from the
fact that each vertex of P (and of any orthogonal polyhedron) has at least two incident
horizontal edges. It may happen that some vertex of PP is the vertical projection of up
to four vertices of P , so those four vertices of P may have a total of eight neighbours
in P . But since PP is an orthogonal PSLG, no vertex of PP has more than four
neighbours.

Now we are ready to show the main theorem of this section.

Theorem 4.5 For any 3D histogram P with m corners, a 4-approximation R of a par-
tition of P into as few 3D rectangles as possible can be computed in O(m logm) time.

Proof: We use the projection in Definition 4.4, let PG = PP , and apply Lemma 4.3 to
compute a planar partitionR′. The final 3D partitionR is obtained fromR′ by reversing
the projection so that each 2D rectangle corresponds to the top of a 3D rectangle in R.

To analyse the approximation factor, denote the number of 3D rectangles in an op-
timal solution R∗ by OPT and the number of 3D rectangles produced by the algorithm
described above by b. We denote by m′ the number of vertices in PP . By Lemma 4.3,
we have b < m′ since each 2D rectangle corresponds to one 3D rectangle. Every vertex
of P must be adjacent to at least one vertical edge of a 3D rectangle in R∗. Hence,
each vertex in PP has to be at a corner of the vertical projection of at least one 3D
rectangle in R∗ onto the base plane. Since each 3D rectangle in R∗ only has 4 vertical
edges, its vertical projection can be adjacent to at most 4 vertices of PP . It follows that
m′ ≤ 4OPT and b < m′ ≤ 4OPT .

Since the projection can be obtained by contracting each corner in P and all of its
vertical neighbours into one vertex, the projection can be implemented in O(m) time.
Thus, the O(m logm)-term from Lemma 4.3 will dominate the time complexity. 2
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4.3 Geometric Algorithms for Arithmetic Matrix Prod-
uct

4.3.1 Geometric Data Structures and Notation

Our algorithms for arithmetic matrix multiplication use some data structures for interval
and rectangle intersection. An interval tree is a leaf-oriented binary search tree that
supports intersection queries for a set Q of closed intervals on the real line as follows:

Fact 1 [51]. Suppose that the left endpoints of the intervals in a set Q belong to a
subset U of real numbers of size l and |Q| = q. An interval tree T of depth O(log l) for
Q can be constructed in O(l + q log lq) time using O(l + q) space. The insertion or
deletion of an interval with left endpoint in U into T takes O(log l + log q) time. The
intersection query is supported by T in O(log l + r) time, where r is the number of
reported intervals.
Remark The interval tree of Fact 1 ([51]) can easily be generalized to the weighted

case, where with an interval to insert or delete an integer weight is associated. It can
be done by maintaining in each node of the interval tree the sum of weights of intervals
whose fragments it represents. In effect, the generalized interval insertions or deletions
as well the intersection query have the same time complexity as those in Fact 1. More-
over, the generalized interval tree supports a weight intersection query asking for the
total weight of the intervals containing the query point in O(log l + log q) time.

We use the following data structure, easily obtained by computing all prefix sums:

Fact 2. For a sequence of integers a1, a2,. . . ,an, one can construct a data structure
that supports a query asking for reporting the sum

∑j
k=i ak for 1 ≤ i ≤ j ≤ n in O(1)

time. The construction takes O(n) time.

In the rest of the paper,A andB denote two n×nmatrices with nonnegative integer
entries, and C stands for their matrix product. We also need the following concepts:

1. For an n×nmatrixD with nonnegative integer entries, consider the [0, n]×[0, n]

integer grid whose unit cells are in one-to-one correspondence with the entries
ofD. The grid cell between the horizontal lines i − 1 and i (counting from the
top) and vertical lines j − 1 and j (counting from the left) corresponds to Di,j

(see Fig. 4.1). Then, his(D) stands for the 3D histogram whose base consists of
all unit cells of the [0, n]× [0, n] integer grid corresponding to positive entries of
D and whose height over the cell corresponding to Di,j is the value of Di,j (see
Fig. 4.2).

2. For the n × n matrix D, nonnegative integers 1 ≤ i1 ≤ i2 ≤ n, 1 ≤ k1 ≤
k2 ≤ n, and h1, h2, where h1 < h2 ≤ Di,j for i1 ≤ i ≤ i2 and j1 ≤ j ≤ j2,
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Figure 4.1:
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Figure 4.3: (a) A matrix D on a grid, and (b) its corresponding histogram his(D).

recD(i1, i2, k1, k2, h1, h2) is the 3D rectangle with the corners (i1−1, k1−1, hl),

(i1−1, k2, hl), (i2, k1−1, hl), (i2, k2, hl), where l = 1, 2, lying within his(D).

3. For the matrix D, rD is the minimum number of 3D rectangles
recD(i1, i2, k1, k2, h1, h2) which form a partition of his(D).Note that rD ≤ n2.

4.3.2 Algorithms

Our first geometric algorithm for nonnegative integer matrix multiplication relies on the
following key lemma.

Lemma 4.6 Let PA be a partition of the matrix A into 3D rectangles
recA(i1, i2, k1, k2, h1, h2) , and let PB be a partition of the matrixB into 3D rectangles
recB(k′1, k

′
2, j1, j2, h

′
1, h
′
2). For any 1 ≤ i ≤ n, 1 ≤ j ≤ n, the entry Ci,j of the matrix

product C of A and B is equal to the sum of (h2−h1)(h′2−h′1)×#[k1, k2]∩ [k′1, k
′
2].

over rectangle pairs recA(i1, i2, k1, k2, h1, h2) ∈ PA, recB(k′1, k
′
2, j1, j2, h

′
1, h
′
2) ∈

PB satisfying i ∈ [i1, i2] and j ∈ [j1, j2].

Proof: For 1 ≤ l1 < l2 ≤ n and 1 ≤ m1 < m2 ≤ n, let I(l1, l2,m1,m2) be the n× n
0− 1 matrix where I(l1, l2,m1,m2)i,k = 1 iff l1 ≤ i ≤ l2 and m1 ≤ k ≤ m2.

Clearly, we have A =
∑
recA(i1,i2,k1,k2,h1,h2)∈PA(h2 − h1)I(i1, i2, k1, k2). Simi-

larly, we have B =
∑
recB(k′1,k

′
2,j1,j2,h

′
1,h
′
2)∈PB (h′2 − h′1)I(k′1,

′ k2, j1, j2).

It follows that C = A × B is the sum over pairs recA(i1, i2, k1, k2, h1, h2) ∈ PA,
recB(k′1, k

′
2, j1, j2, h

′
1, h
′
2) ∈ PB of (h2−h1)(h′1−h′2)I(i1, i2, k1, k2)×I(k′1, k

′
2, j1, j2).

It remains to observe that (I(i1, i2, k1 + 1, k2)× I(k′1, k
′
2, j1 + 1, j2))i,j = #[k1, k2]∩

[k′1, k
′
2] if i1 < i ≤ i2 and j1 < j ≤ j2 and it is equal to zero otherwise. 2
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Algorithm 1
Input: Two n× n matrices A, B with nonnegative integer entries.
Output: The arithmetic matrix product C of A and B.

1. Find a partitionPA of his(A) into 3D rectangles recA(i1, i2, k1, k2, h1, h2) whose
number is within O(1) of the minimum.

2. Find a partition PB of his(B) into 3D rectangles recB(k′1, k
′
2, j1, j2, h

′
1, h
′
2)

whose number is within O(1) of the minimum.

3. Initialize an interval tree S on the k-coordinates of the rectangles in PA and PB .
For each 3D rectangle recA(i1, i2, k1, k2, h1, h2) ∈ PA insert [k1, k2], with a
pointer to A(i1, i2, k1, k2, h1, h2), into S.

4. Initialize interval lists Startj , Endj , for j = 1, . . . , n. For each rectangle
recB(k′1, k

′
2, j1, j2, h

′
1, h
′
2) ∈ PB report all intervals [k1, k2] in S that intersect

[k′1, k
′
2]. For each such interval [k1, k2],with pointer to recA(i1, i2, k1, k2, h1, h2),

insert the interval [i1, i2] with the weight (h2 − h1) × (h′2 − h′1) ×#[k1, k2] ∩
[k′1, k

′
2] into the lists Startj1 and Endj2 .

5. Initialize a weighted interval tree U on endpoints 1, . . . , n. For j = 1, . . . , n,

iterate the following steps. For j > 1, remove all weighted intervals [i1, i2] on
the list Endj−1 from U. Insert all weighted intervals [i1, i2] on the list Startj
into U. For i = 1, . . . , n, set Ci,j to the value returned by U in response to the
weight query at i.

Lemma 4.7 Let int(PA, PB) stand for the number of pairs recA(i1, i2, k1, k2, h1, h2) ∈
PA, recB(k′1, k

′
2, j1, j2, h

′
1, h
′
2) ∈ PB , for which [k1, k2] ∩ [k′1, k

′
2] 6= ∅. Algorithm 1

runs in time Õ(n2 + int(PA, PB)) = Õ(n2 + rArB).

Proof: To implement steps 1 and 2 in Õ(n2) time, use the algorithm from the preceding
section (Theorem 4.5). Step 3 can be implemented in Õ(n+ rA + rB) = O(n2) time
by Fact 1. In Step 4, the queries to S take Õ(int(PA, PB)) time by Fact 1.

In Step 5, the initialization of the data structure U takes Õ(n) time by Lemma 4.6.
Next, the updates of the data structure U take Õ(int(PA, PB)) time by Lemma 4.6,
while computing all columns of C takes Õ(n2) time by Remark 4.3.1. 2

Theorem 4.8 The matrix product of two n×nmatricesA, B with nonnegative integer
entries can be computed in Õ(n2 + rArB).

Proof: Algorithm 1 yields the theorem. Its correctness follows from Lemma 4.6 that
basically says that for each pair of 3D rectangles, recA(i1, i2, k1, k2, h1, h2) ∈ PA and
recB(k′1, k

′
2, j1, j2, h

′
1, h
′
2) ∈ PB , Ci,j should be increased by (h2−h1)× (h′2−h′1)×
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#[k1, k2] ∩ [k′1, k
′
2] for i ∈ [i1, i2] and j ∈ [j1, j2]. In Step 4, two identical intervals

[i1, i2] corresponding to the left and right edge of the submatrix of C whose entries
should be increased by the aforementioned value are inserted in the lists Startj1 and
Endj2 , respectively. In both cases, they are weighted by the aforementioned value. In
Step 5, in iteration j1, the weighted interval [i1, i2] from Startj1 is inserted into the
weighted interval tree U , and in iteration (j2 + 1), it is removed from U as its copy is
in Endj2 . In the iterations j = j1, . . . , j2 in Step 5, when the interval [i1, i2] is kept
in the weighted interval tree, U and the entries of the submatrix Ci,j , i1 ≤ i ≤ i2,
j1 ≤ j ≤ j2, are evaluated, the weight of the interval contributes to their value. The
upper time bound follows from Lemma 4.7. 2

When only one of the matrices A and B admits a partition of its 3D histogram into
relatively few 3D rectangles and we have to assume the trivial partition of the other one
into n2 3D rectangles, the upper bound of Theorem 4.8 in terms of rA, rB and n seems
too weak. In this case, an upper bound in terms of int(PA, PB) and n in Lemma 4.7
may be much better. To derive a better upper bound in terms of just min{rA, rB} and
n, we shall design another algorithm based on the slicing of the 3D histogram admitting
a partition into relatively few 3D rectangles.

For an n × n matrix D with nonnegative integer entries and i = 1, . . . , n, let
slicei(D) stand for the part of his(D) between the two planes perpendicular to the
Y axis whose intersection with the XY plane are the horizontal lines i− 1 and i on the
[0, n] × [0, n] grid. In other words, slicei(D) is a 3D histogram for the i-th row. Also
note that a slicei(D) can be identified with a rectilinear 2D histogram; see Fig. 4.6 for
an example. We define a geometric distance between two rectilinear 2D histograms H1

and H2 with a common base as the number of maximal vertical strips s such that:

1. for i = 1, 2, s contains exactly one maximal subsegment ei of an edge of Hi

different from and parallel to the base of the histograms, and

2. the subsegments e1 and e2 do not overlap.

See Fig. 4.6. We shall call such strips differentiating strips. For slicei(D) and
slicek(D), we define the geometric distance gd(slicei(D), slicek(D)) as that for the
corresponding rectilinear 2D histograms.

Lemma 4.9 For an n× n matrix D with nonnegative integer entries,∑n−1
i=1 gd(slicei(D), slicei+1(D)) = O(rD) holds.

Proof: Each differentiating strip contributes, possibly jointly with one or two neigh-
bouring differentiating strips, to two vertices in the projected planar graph considered
in the proof of Theorem 4.5. Thus, it contributes to the parameter m′ in the afore-
mentioned proof with at least 1. It follows

∑n−1
i=1 gd(slicei(D), slicei+1(D)) ≤ m′.

Hence, the inequality m′ ≤ 4OPT established in the proof of Theorem 4.5 yields the
thesis. 2



4.3 Geometric Algorithms for Arithmetic Matrix Product 63

Figure 4.4:
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Figure 4.6: Let slice1(D) be the 2D histogram on the left and slice2(D) the 2D histogram on
the right. Differentiating strips are shaded. Here, gd(slice1(D), slice2(D)) = 2.

Algorithm 2
Input: Two n× n matrices A and B with nonnegative integer entries.
Output: The matrix product C of A and B.

1. For i = 1, . . . , n−1, find the differentiating strips for slicei(A) and slicei+1(A)

and for each such strip s the indices k1(s) and k2(s) of the interval of entries
Ai,k1(s), . . . , Ai,k2(s) in the i-th row of A corresponding to it, as well as the
difference h(s) between the common value of each entry inAi,k1(s), . . . , Ai,k2(s)

and the common value of each entry in Ai+1,k1(s), . . . , Ai+1,k2(s).

2. For j = 1, . . . , n, iterate the following steps:

(a) Initialize a data structure Tj for counting partial sums of continuous frag-
ments of the j-th column of the matrix B.

(b) Compute C1,j .

(c) For i = 1, . . . , n− 1, iterate the following steps:

i. Set Ci+1,j to Ci,j .

ii. For each differentiating strip s for slicei(A) and slicei+1(A), compute∑k2(s)
k=k1(s)Bk,j using Tj and setCi+1,j toCi+1,j+h(s)

∑k2(s)
k=k1(s)Bk,j .

Lemma 4.10 Algorithm 2 runs in Õ(n(n+ rA)) time.
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Proof: Step 1 can be easily implemented in O(n2) time. Step 2 (a) takes Õ(n) time
according to Fact 2 while Step 2 (b) can be trivially implemented inO(n) time. Finally,
based on Step 1, Step 2 (c) (ii) takes Õ(gd(slicei(D), slicei+1(D)) time. It follows
that Step 2 (c) can be implemented in Õ(

∑n−1
i=1 gd(slicei(A), slicei+1(A))) time, i.e.,

in Õ(rA) time by Lemma 4.9. Consequently, Step 2 takes Õ(n(n+ rA)) time. 2

Theorem 4.11 The arithmetic matrix product of two n × n matrices A, B with non-
negative integer entries can be computed in Õ(n(n+ min{rA, rB})) time.

Proof: The correctness of Algorithm 2 follows from the observation that a differentiat-
ing strip s for slicei(A) and slicei+1(A) yields the difference h(s)

∑k2(s)
k=k1(s)Bk,j be-

tween Ci+1,j and Ci,j just on the fragment corresponding to Ai,k1(s), . . . , Ai,k2(s) and
Ai+1,k1(s), . . . , Ai+1,k2(s), respectively. Lemma 4.10 yields the upper bound Õ(n(n+

rA)). The symmetric one Õ(n(n+ rB)) follows from the equalities AB = (BTAT )T ,
his(B) ≡ his(BT ), and consequently rB = rBT . 2

In Algorithm 2, the linear order in which the Ci,j are updated to Ci+1,j for i =

1, . . . , n− 1, along the row order of the matrix A is not necessarily optimal. Following
the Boolean case [8, 31], it may be more efficient to update Ci,j while traversing a
minimum spanning tree for the slices of his(A) under the geometric distance. Here,
however, we encounter the difficulty of constructing such an optimal spanning tree or a
close approximation in substantially subcubic time. The next lemma will be useful.

Lemma 4.12 Consider the family of rectilinear planar histograms with the base [0, n],
n ≥ 2 and integer coordinates of its vertices in [0, 2M − 2], M = O(log n). There is a
simple O(n)-time transformation of any histogram H in the family into an 0− 1 string
t(H), such that for any H1 and H2 in the family gd(H1, H2) ≤ ch(t(H1), t(H2)) ≤
Mgd(H1, H2), where ch( , ) stands for the Hamming distance.

Proof: Any histogram H in the family is uniquely represented by the vector
(H[1], . . . ,H[n]) ∈ {1, . . . , 2M − 1}n, where H[1], . . . ,H[n] are the values of Y
coordinates of the points on the “roof” of H increased by one with X coordinates
0.5, 1.5, . . . , n− 0.5 respectively.

For any y ∈ {0, . . . , 2M − 1} denote its binary representation of length exactly M
(padded with leading zeros if necessary) as bin(y).

Let f(H, i) =

{
bin(H[i]), i = 1 ∨ i > 1 ∧H[i] 6= H[i− 1]

bin(0), otherwise.



4.3 Geometric Algorithms for Arithmetic Matrix Product 65

The transformation t is then defined as t(H) = f(H, 1) . . . f(H,n). We have
ch(t(H1), t(H2)) =

∑n
i=1 ch(f(H1, i), f(H2, i)) and

gd(H1, H2) =

{
1, H1[1] 6= H2[1]

0, otherwise
+

+

n∑
i=2

{
1, (H1[i] 6= H1[i− 1] ∨H2[i] 6= H2[i− 1]) ∧ (H1[i] 6= H2[i])

0, otherwise.

Consider all possibilities that contribute exactly one to gd(H1, H2):

1. H1[1] 6= H2[1]. In this case f(H1, 1) = bin(H1[1]), f(H2, 1) = bin(H2[1]) and
0 ≤ ch(bin(H1[1]),bin(H2[1])) ≤M .

2. 2 ≤ i ≤ n∧H1[i] 6= H1[i−1]∧H2[i] = H2[i−1]∧H1[i] 6= H2[i]. In this case
f(H1, i) = bin(H1[i]), f(H2, i) = bin(0) and 1 ≤ ch(bin(H1[i]),bin(0)) ≤
M .

3. 2 ≤ i ≤ n∧H1[i] = H1[i− 1]∧H2[i] 6= H2[i− 1]∧H1[i] 6= H2[i]. See case 2.

4. 2 ≤ i ≤ n∧H1[i] 6= H1[i− 1]∧H2[i] 6= H2[i− 1]∧H1[i] 6= H2[i]. See case 1.

To complete the proof, observe that in all other cases ch(f(H1, i), f(H2, i)) = 0. 2

Fact 3 [37]. For ε > 0, a (1 + ε)-approximation minimum spanning tree for a set
of n points in Rd with integer coordinates in O(1) under the L1 or L2 metric can be
computed by a Monte Carlo algorithm in O(dn1+1/(1+ε)) time.

By combining the transformation of Lemma 4.12 with Fact 3 applied to the L1 metric
in {0, 1}n and selecting ε = log n, we obtain a Monte Carlo O(log2 n)-approximation
algorithm for the minimum spanning tree of the slices of his(A) under the geometric
distance, which runs in Õ(n2) time. This yields a generalization of Algorithm 2 to
Algorithm 3, described in the full version of our paper. By an analysis of Algorithm
3 analogous to that of Algorithm 2 and a proof analogous to that of Theorem 4.11, we
obtain a randomized generalization of Theorem 4.11:

Theorem 4.13 Let A, B be two n×n matrices A, B with nonnegative integer entries
in [0, nO(1)]. Next, for D ∈ {A,BT }, let MD be the minimum cost of a spanning
tree of slicei(D) for i = 1, . . . , n. The arithmetic matrix product of A and B can be
computed by a randomized algorithm in Õ(n(n + min{MA, MBT })) time with high
probability.
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4.4 Final Remarks

A natural question is: Would it help to apply an algorithm that optimally rectangulates
the 2D projection in Section 4.2.2? Although it would yield improved results in certain
cases, it would not give a better approximation factor than 4 in general for the minimum
rectangular 3D partition. An example of this is when the optimal 3D partition consists
of k cubes lying on top of each other. Then the 2D projection is k concentric squares
of different sizes and an optimal rectangulation of the corresponding 2D projection
consists of 4k − 3 rectangles. Hence, for large k, the approximation factor tends to 4.

The 4-approximation algorithm for minimum rectangular partition of a 3D his-
togram in case the histogram is his(D) for an input n × n matrix D with nonnegative
integer entries can easily be implemented in O(n2) time. Also note that the resulting
partition of his(D) can be used to form a compressed representation of D requiring
solely Õ(rD) bits if the values of the entries in D are nO(1)-bounded.

Our geometric algorithms for integer matrix multiplication can also be applied to
derive faster (1 + ε)-approximation algorithms for integer matrix multiplication; if the
range of an input matrix D is [0, nO(1)], then round each entry to the smallest integer
power of (1 + ε) that is not less than the entry. The resulting matrix D′ has only a
logarithmic number of different entry values and hence rD′ may be much less than rD.

Our algorithms and upper time bounds for integer n × n matrix multiplication can
easily be extended to include integer rectangular matrix multiplication.
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