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Calcium Current Inactivation Rather than Pool Depletion
Explains Reduced Exocytotic Rate with Prolonged
Stimulation in Insulin-Secreting INS-1 832/13 Cells

Morten Gram Pedersen'*", Vishal Ashok Salunkhe', Emma Svedin?, Anna Edlund’, Lena Eliasson’

1Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmg, Lund University, Malmo, Sweden, 2 Center for Infectious Medicine,

Department of Medicine, The Karolinska Institute, Huddinge University Hospital, Stockholm, Sweden

Abstract

Impairment in beta-cell exocytosis is associated with reduced insulin secretion and diabetes. Here we aimed to investigate
the dynamics of Ca**-dependent insulin exocytosis with respect to pool depletion and Ca®*-current inactivation. We studied
exocytosis, measured as increase in membrane capacitance (AC,,), as a function of calcium entry (Q) in insulin secreting INS-
1 832/13 cells using patch clamp and mixed-effects statistical analysis. The observed linear relationship between AC,, and Q
suggests that Ca?*-channel inactivation rather than granule pool restrictions is responsible for the decline in exocytosis
observed at longer depolarizations. INS-1 832/13 cells possess an immediately releasable pool (IRP) of ~10 granules and
most exocytosis of granules occurs from a large pool. The latter is attenuated by the calcium-buffer EGTA, while IRP is
unaffected. These findings suggest that most insulin release occurs away from Ca**-channels, and that pool depletion plays
a minor role in the decline of exocytosis upon prolonged stimulation.
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Introduction

Insulin is secreted from the pancreatic beta-cells following an
increase in glucose concentration to mediate uptake of glucose into
target tissue. Failure of the beta-cells to release enough insulin is an
important factor in the development of type-2 diabetes. Recent
genetic data have demonstrated that the expression of genes
involved in the final steps of insulin secretion is reduced in patients
with type-2 diabetes [1,2]. These final steps include influx of Ca®*
through voltage-dependent Ca®" channels triggering exocytosis of
insulin containing granules and release of insulin [3]. Moreover,
four of the top genetic risk variants associated with human type-2
diabetes 1s associated with reduced exocytosis [4]. A better
understanding of the exocytotic process will consequently have
important clinical implications.

As mentioned, the release of insulin from the secretory granules
is a result of calcium-triggered exocytosis, which follows Ca”"
influx through voltage-gated channels [5,6]. Such exocytosis can
be measured as an increase in the cell membrane capacitance
(AC,,) using the voltage-clamp mode of the patch-clamp technique
[7]. Since the membrane capacitance cannot be measured reliably
during a depolarization, voltage pulses of different durations, the
so-called pulse-length protocol, have been applied to study the
kinetics of insulin exocytosis [6,8-12].
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In murine beta-cells, the rate of exocytosis is typically higher in
response to shorter than to longer depolarizations, resulting in a
biphasic capacitance pattern that has been suggested to corre-
spond to biphasic insulin secretion, and to be caused by depletion
of an immediately releasable pool (IRP) of granules located near
Ca" channels [8,10,11,13,14]. A similar decline of the exocytotic
response is seen in rat beta-cells [15] and rat insulinoma insulin-
secreting INS-1 cells [16]. The IRP is a sub-pool of the larger
readily releasable pool (RRP), which contains all granules that can
be released by flash-release of caged-Ca®* [8,17]. However, due to
inactivation of Ca®" currents, Ca®" influx shows a biphasic pattern
resembling the biphasic exocytotic response [6,15], and hence
current inactivation, rather than IRP depletion, has also been
suggested to cause the decline in the exocytotic pattern in response
to depolarizations of increasing lengths [6,18].

In isolated human beta-cells the rate of the exocytotic response
does not decrease but rather increases with prolonged stimulation
[9,19]. We have suggested in a theoretical study that this is
because of the absence of an IRP, and that granules are located
away from Ca®' channels in single human beta-cells [20]. The
situation is different in human islets, where beta-cells in situ show a
decline in the exocytotic response [21].

Recently, a detailed theoretical study showed that to investigate
whether pool depletion occurs, depolarization-evoked exocytosis
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should be studied as a function of Ca®" influx rather than of time
[22]. In general, only a clear deviation from a linear relation
between the depolarization-evoked Ca®" influx, Q, and the
resulting increase in capacitance, AC,,, suggests pool depletion
[22]. Interesting, several studies report a linear relation between Q
and AC,, in beta-cells [8,10,15], a finding that we recently
confirmed by mixed-effects statistical analysis of pulse-length data
obtained from mouse beta-cells by the perforated-patch technique
[20]. In contrast, the exocytotic response of human beta-cells in
intact islets plateaus when analyzed as a function of Q [21], hence
exhibiting the characteristic pattern of pool depletion [22].

Mixed-effects statistical modeling [23] is appropriate for
studying clustered data, e.g., when several depolarizations are
applied to the same cell, as in the case of the pulse-length protocol.
We would expect results from a single cell to be more closely
correlated than data from different cells. Pooling of data from
different cells treats cell-to-cell variation and experimental errors
equally, and neglects natural cell heterogeneity. Mixed-effects
modeling can handle and quantify such biological variation while
at the same time account for within-cell correlation.

Here we investigated the exocytotic response in INS-1 832/13
to obtain a deeper understanding of the dynamics of exocytosis.
The INS-1 832/13 cells are rat insulinoma cells expressing human
insulin with good glucose responsiveness [24], which are often
utilized to investigate the physiological role of different human
genetic findings [25-28]. We have applied different depolarization
protocols and mixed-effects modeling of AC.,, as a function of Q to
investigate whether depletion of a pool of granules underlies the
decline of the capacitance pattern in response to depolarizations of
different lengths in INS-1 832/13 cells. We find no evidence of
pool depletion contributing to the exocytotic profile and suggest
that the reduced rate of exocytosis is due to inactivation of the
Ca®" current. Inclusion of high concentrations of the Ca®" buffer
ethylene glycol tetraacetic acid (EGTA) does not interfere with the
IRP but lowers the sensitivity of later exocytosis to Ca* entry,
indicating that later fusion occurs away from Ca*" channels.

Methods

Cells and cell culture

Rat insulinoma INS 832/13 cells [24] were grown in 10-cm
tissue culture dishes at 37 °C and 5% CO» and cultured in RPMI
1640 media (ThermoScientific, Hyclone Laboratories Inc, Utah,
US) with 11.1 mM glucose and supplemented with 10% FBS (wt/
vol), 100 U/ml penicillin, 0.1 mg/ml streptomycin, 10 mM
HEPES, 2 mM L-glutamine, 1 mM sodium pyruvate, and
50 UM B-mercaptocthanol. At ~80% confluence the cells were
split 1:8 using Trypsin-EDTA and seeded into 35 mm petri dishes,
where they were left overnight prior to patch-clamp experiments.

Electrophysiology

Whole cell currents and exocytosis were recorded using an
EPC-9 patch-clamp amplifier (HEKA electronics; http://www.
heka.com) and the software Pulse (ver 8.80, HEKA electronics).
Exocytosis was recorded as changes in membrane capacitance
using the standard whole-cell configuration of the patch-clamp
technique.

The extracellular medium contained the following (in mM): 118
NaCl, 20 tetra-ethyl-ammonium chloride (TEA-CI; to block
voltage-gated K*-currents), 5.6 KCI, 2.6 CaCly,1.2 MgCly, 5
glucose, and 5 HEPES (pH 7.4 using NaOH). The standard
pipette solution (IC1) consisted of the following (in mM): 125 Cs-
glutamate, 10 NaCl, 10 CsCl, 1 MgCl,, 0.05 EGTA, 3 Mg-ATP,
0.1 cAMP and 10 HEPES (pH 7.15 with CsOH). In other
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experiments Ca?* buffering was increased by including 10 mM
EGTA and 2.5 IC2) or 7 mM CaCl, (IC3), respectively. The free
Ca®* concentration was estimated using the software Maxchelator
(Ca-Mg-ATP-EGTA  Calculator  v1.0;  http://maxchelator.
stanford.edu; [29]) to be ~60 and ~460 nM, and the calculated
free EGTA concentration was ~7.0 and ~2.8 mM for IC2 and
1C3, respectively. Patch electrodes were pulled from borosilicate
capillaries, coated with Sylgard (Dow Corning Midland), and fire
polished. The pipette resistance was 3—-7 MQ when the pipettes
were filled with intracellular solution.

Exocytosis was detected as changes in membrane capacitance
using the software-based lock-in application (which adds a sine
wave of 500-1,000 Hz to the holding potential) of the amplifier.
Exocytosis was elicited by depolarizations from —70 to 0 mV at
varying pulse durations (5, 10, 20, 40, 80, 160, 320 and 640 ms;
standard pulse length protocol). In another series exocytosis was
evoked by a double pulse protocol, meaning that two 50-ms
depolarizations from —70 to 0 mV separated by a 100-ms interval
were applied. The double pulse experiments were part of a larger
protocol where variations of the double-pulse and pulse-length
protocols were used. In this larger series all depolarizations of
varying pulse duration (50, 100, 200, 400 and 800 ms) were
preceded by a 50-ms depolarization from —70 mV to 0 mV. The
interval between the depolarization of varying length and the pre-
pulse was 100 ms. In addition, a protocol using the combined pre-
pulse pulse length protocol was used and each pair of depolar-
izations was followed by a third 500-ms depolarization from —70
to 0 mV applied either 200 ms (protocol I) or 10 s (protocol II)
after the end of the second pulse. Finally, the responses to a train
of ten 500 ms depolarizations delivered at 1 Hz were studied (train
protocol). Pulses of different lengths were given in varying order,
and no dependency on the order of the pulses was found. All
experiments were conducted at 30-32°C.

Data analysis

Ca®*-currents were inspected visually, and data with large leak
currents or high amounts of noise were discarded for the analysis.
An in-house MATLAB (Mathworks Inc.) script was used to extract
total calcium influx, Q, and increase in capacitance, AC,,,, for each
experiment (available within Data S1-S4). Evoked exocytosis AC,,,
was set in relation to Q to avoid the complication of Ca®" current
inactivation [22].

In a first statistical analysis, we fitted linear models for regression
of AC,, on O, taking the differences between cells into account. As
in our previous studies [20,30] a significant between-cell variation
was present, and we proceeded by fitting linear mixed-effects
models [23], which are more appropriate for representing
clustered data, such as in our case where several observations
are done on each cell.

The linear mixed-effects models included treatment group as
fixed effect and cell as random effect. The appropriate mixed-
effects model for each experimental protocol was found by a step-
wise procedure; where at each step the non-significant term with
the highest p-value was excluded. We verified at each step that the
simplified model was preferable to the larger model by a likelihood
ratio test and the Akaike Information Criterion.

We found no statistical differences between the groups with high
EGTA concentrations and ~60 nM or ~460 nM free Ca®* for
any of the protocols. Hence, they were considered as a single
treatment group (“EGTA”) to be compared to the control
(“CTRL®) group for the final analyses.

The final model for analysis of the standard pulse-length
protocol with depolarizations of 5, 10, 20, 40, 80, 160, 320 and
640 ms was of the form
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AC, ;i =(ACno + boi) + (BgroupGROUP; + b]i)Qij + &,
&j ~N(0,5),bg; ~ N(0,610),bj ~ N(0,0b1),

for observation j of cell i, where AC,,( is the intercept representing
an increase in capacitance in the limit of zero Ca% entry, Beroup
(= Bcrre, PegTa) s the slope of the relation between Q and AC,,
representing the efficacy of Ca®* entry in the control and EGTA
groups. Moreover, g; is a normally distributed error term,
GROUP; is a covariate indicating whether cell 1 was in the
“CTRL* or “EGTA” group, by; and by; are factors allowing for
cell-to-cell variation, and the parameters AC.,0, BoTre, BEGTA> O)
O},0 and Oy, are to be estimated.

The mixed-effects model describing the data from the two
50 ms pulses of the double-pulse protocol was

AC ik =ACmo k + (BoroupGROUP; + by) Ok + €ik,
ik ~N(0,05),b; ~N(0,641)

for pulse k=1,2 of cell i. Parameters are as in Eq. 1, except that
the intercept (AC,,0y) is allowed to differ between the two pulses.

For the experiments where each pulse of a pulse-length protocol
(50, 100, 200, 400 and 800 ms depolarizations) was preceded by a
50 ms prepulse, the data from the pulses of varying lengths
following the prepulse were well-described by a model with no
intercept of the form

ACh i = (BoroupGROUP; +by;) Q5 + &5,

(3)
&;j~N(0,5),bj; ~N(0,01),

for observation j of cell i, Parameters are as in Eq. 1.

The final model for the data from the third pulses, following
50 ms prepulses and pulses of varying length (200, 400 or 800 ms),
and either 200 ms (protocol I) or 10 s (protocol II) rest, did not
include any effect of the protocol,

ACp ;= (ACpo +bygi) + (B+bi;) O; + i

4)
&ij ~N(0,5),bg; ~N(0,610),b1; ~N(0,01 ),

for observation j of cell i, Parameters are as in Eq. 1, except that
the Ca”" current sensitivity B was the same for all cells, since these
protocols were only applied under control conditions.

Data from the train protocol was analyzed by relating
cumulative increase in membrane capacitance, (XAC,,); = AC,,
+... + AC,, i, to cumulative calcium entry, (ZQ); = Qi1 +... + Qj,
for pulse j of cell 1. The final model was similar to Eq. 4,

(ZACn);j= ((ZACm)y +boi) + (B+b1i) (2Q);; + &
&ij ~N(0,5),bgi ~N(0,649),b1; ~N(0,0p1).

To investigate whether pool depletion occurred, we added a
quadratic term yQ,-jz to the models describing pulse-length data
without (Eq. 1) or with (Eq. 3) a prepulse, to test whether there was
a significant concave (downward curvature) deviation from
linearity in the data, which would be indicative of pool depletion
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[22]. In no cases was the quadratic term significantly smaller than
zero.

The statistical software R [31] was used for data analysis, in
particular the Ime function of the nlme R-package [23,32].
Parameter estimates are given with standard errors and p-values
from two-sided t-tests. P-values <0.05 were considered statistically
significant.

Results

The linear relationship between exocytosis and Ca**

influx does not deviate in presence of EGTA

First, we were interested in investigating kinetics of exocytosis
using an experimental setting used previously [8,33]. Accordingly,
single INS-1 832/13 cells were subject to capacitances measure-
ments using the whole-cell configuration of the patch-clamp
technique. Capacitance increases were evoked by the pulse-length
protocol, which depolarizes the membrane potential from —
70 mV to 0 mV during voltage-clamp periods of varying length.
Pulses of different duration were applied in varying order, and no
dependence on the order was found. The capacitance increase
(AC,,) reflecting exocytosis showed a biphasic relation to the pulse
length such that the average rate of exocytosis was higher during
short than during longer pulses (Fig. 1A) [12,34]. This biphasic
pattern has been suggested to be caused by depletion of IRP
located near Ca®" channels [8,33]. However, because of Ca?"
current inactivation, the amount of Ca** (Q) that enters the cell
during each depolarization does not have a simple relationship to
pulse length (Fig. 1B). It might be that the biphasic pattern of the
Increase in membrane capacitance is caused by current inactiva-
tion rather than IRP depletion, and to investigate this question one
should relate AC,, to Q rather than to pulse length [18,22].
Indeed, experiments performed on INS-1 cells has previously
demonstrated that a depolarization of the same size and duration
(300 ms) can give rise to large differences in Ca®* influx measured
as charge (Q). Plotting AC,, to Q in this case gave a linear
relationship [35]. Our data showed a near-linear AC,, to Q
relation (Fig. 1C), as previously observed in mouse beta- [8,10,20]
and alpha-cells [30,36]. In contrast, human beta-cells in situ show
a nonlinear, concave AC,, to Q relation [21].

To obtain spatial information of the exocytotic machinery, the
Ca** buffer EGTA (10 mM) was included in the patch-pipette.
Under these conditions the general patterns of AC,, and Q were
unchanged, but the amount of exocytosis was reduced while Ca**
entry increased. EGTA is a relatively slow Ca®" buffer, and
10 mM EGTA chelates Ca®" ions at a typical distance of
~100 nm away from Ca®' channels [37]. EGTA inclusion led
to a reduction in the slope of AC,, as a function of Q, from
~0.8 fI/pC in control cells to ~0.3 fF/pC in the presence of
intracellular EGTA. Interesting, there was no difference between
the responses in groups with 10 mM EGTA and ~60 nM or
~460 nM free Ca®’, excluding that the effect of EGTA was
because of lower Ca®"-stimulated granule recruitment due to a
reduction of basal [Ca®*]. We thercfore united the two EGTA
pools in Fig. 1.

Mixed-effect model analysis reveals unaffected IRP and
reduced Ca" current sensitivity in presence of EGTA
The data representation in Fig. 1 pools the responses from
different cells together, in which case natural cell-to-cell hetero-
geneity 1s neglected and considered merely as experimental errors.
Responses to the various depolarizations applied to the same cell
are likely correlated, while responses in different cells are not, but
reflect genuine biological heterogeneity. In order to handle this
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Figure 1. Summary of the standard pulse-length protocol data from the control (n=17 cells; solid) and EGTA (n =15 cells; dashed)
groups. Data are means = SEM for data pooled according to pulse-length. A: Evoked capacitance increases AC,, for each depolarization of varying
length (t). B: Evoked Ca*" influx Q for each pulse length (t). C: AC,,, vs. Q for each pulse length. The gray lines indicate the Ca®" current sensitivity in
the control (solid) and EGTA (dashed) groups, as estimated by the linear mixed-effects model (see Fig. 2).

doi:10.1371/journal.pone.0103874.g001

scenario appropriately, we applied statistical mixed-effects mod-
eling, as done previously in our studies of exocytosis in mouse beta-
and alpha-cells [20,30].

The data was well described by a linear mixed-effects model
with fixed effects describing the Ca®" current sensitivity in the
control and EGTA group, respectively. We use the terminology
“Ca®" current sensitivity” to mean “the sensitivity of exocytosis to
Ca®" entry via Ca®' channels”, which is different from the
biochemical Ca** sensitivity of exocytosis [38].

Likelihood ratio test confirmed that the data did not show
evidence of differences between the two EGTA groups with
~60 nM or ~460 nM free [Ca*"] (p=0.89). Morcover, the data
could be fitted with a model with common intercept (AC,,) for the
control and EGTA groups. This intercept reflects exocytosis in the
limit of zero Ca®" entry. The random effects describe cell-
deviation from the group estimates for the intercept and Ca®*
current sensitivity (Fig. 2).

The common intercept for the control and EGTA groups was
estimated to be 6.5%x1.6 {I, significantly larger than zero (p<
0.001, n=32 cells), corresponding to ~10 granules based on a
mean single-granule capacitance of 0.6 fF in INS-1 832/13 cells
[34]. The Ca”" current sensitivity was 0.79+0.10 fF/pC in the
control group and it was significantly lower in the EGTA group
(0.36%0.09 f¥/pC; p=0.002). Thus, EGTA interfered with
granule fusion caused by larger amounts of Ca”* entry, suggesting
that later exocytosis occurred away from Ca”* channels [37]. In
contrast, increased Ca”" buffering by EGTA did not interfere with
the small pool, which is likely located very near Ca®" channels, and
corresponds to IRP. There was substantial cell-to-cell variation
with estimated standard deviations of 6.7 fI and 0.32 {F/pC for
the random effects of the intercept and the Ca®" current sensitivity,
respectively. There was no evidence for a deviation from linearity
in the data (p =0.39).

A 50-ms pre-pulse depletes IRP but not later exocytosis

An alternative to the pulse-length protocol for the study of pool
depletion is the double-pulse protocol [15,39], where two
depolarizations are applied separated by a short resting period,
and the capacitance responses are measured. To investigate pool
depletion from another angle we wused this protocol and
accordingly applied two 50 ms depolarizations to 0 mV from —
70 mV separated by a 100 ms interval, in absence (control) and
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presence of 10 mM EGTA in the patch pipette (Fig. 3). Gillis et al.
[39] suggested adjusting the voltage between pulses, such that
calcium channel inactivation is balanced by stronger channel
activation during the second pulse. However, the degree of
inactivation is unknown until the experiment is performed, which
complicates the choice of the voltage to apply during the second
pulse.

To circumvent this issue without neglecting the problem of Ca®*
current inactivation, we analyzed the capacitance increases AC,,
as a function of Ca™ entry Q, derived under control conditions
and in the presence of EGTA. A simple linear regression model
with slope depending on both the group (CTRL/EGTA) and the
pulse number revealed no statistically significant dependence on
the pulse number (estimated slopes for the CTRL group:
1.18+0.28 vs. 0.42%0.31 {F/pC (p=0.075); EGTA: 0.33%0.19
vs. 0.25+0.21 fF/pC (p=0.79)). The data from the two groups
were therefore further analyzed by a linear mixed-effects model
with a slope depending on whether EGTA was present or not, but
independent of the pulse number. In contrast, the intercept
depended on the pulse number, but was not influenced by EGTA,
and therefore common for the control and EGTA groups (Fig. 4).
For the first pulse, the common intercept for the two groups was
larger than zero (p<<0.001) and estimated to be 6.94%+1.68 fI. In
contrast, for the second pulse the common intercept was estimated
to be —0.40%+1.59 {F, not statistically different from zero (p =0.8),
showing that the first pulse depleted the small pool. EGTA lowers
the Ca”" current sensitivity from 0.92+0.28 {F/pC in the control
group to 0.26%0.19 fF/pC in the EGTA group (p<<0.001).
Together, these results confirm the presence of an IRP of
~7 {F, which is unaffected by EGTA and depleted by the first
depolarization. The exocytotic response to higher amounts of Ca**
entry is reduced by EGTA and similar for the first and the second
pulse, indicating that the first pulse does not deplete the pool
responsible for later exocytosis.

The double-pulse data set analyzed above is a subset of a larger
dataset where 50 ms prepulses followed by 100 ms resting periods
at —70 mV and depolarizations of varying lengths (50, 100, 200,
400 and 800 ms), were applied to each cell (Fig. 5).

We reasoned that if the cells possessed a limited pool
corresponding to a capacitance increase of 20-30 fF (cf. Fig. 1A),
then a prepulse of 50 ms evoking a capacitance increase of ~10 {F
(cf. Fig. 1A) would change the Ca®' current sensitivity of the
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Figure 2. Mixed-effects analysis of pulse-length data in the control and EGTA groups. The panels show capacitance data plotted against
Ca*" influx measured as charge (Q) from individual cells with single-cell fits indicated by solid lines, while group fits (fixed-effects) are given by the

dashed lines. Ctrl (panel 1-18), EGTA (panel 19-34).
doi:10.1371/journal.pone.0103874.g002

second pulses of varying length compared to the case of the pulse-
length protocol with no prepulse (Figs. 1 and 2), since the
inflowing Ca®" would have fewer granules to act upon because of
pool depletion.

Linear mixed-effects modeling of AC,, as a function of Q for the
second pulse (Fig. 6) showed that the data could be fit with an
mtercept of zero, confirming that the prepulse depleted the small
pool of ~10 granules. The Ca®" current sensitivity in the control
group was 1.17£0.19 {fF/pC (n=13 cells), while it was signifi-
cantly lower in the EGTA group (0.35%0.15 {fI'/pC, n= 18 cells;
p<<0.001 by t-test). Cell-to-cell variation was rather large as
quantified by the standard deviation of 0.62 fF'/pC for the random
effect on Ca®' current sensitivity. In summary, in the control
group the Ca?' current sensitivity was not reduced following a

PLOS ONE | www.plosone.org 5

50 ms prepulse (if anything, it tended to be slightly increased,
1.17%0.19 vs. 0.79%0.10 fF/pC, p=0.088 by two-tailed t-test).
Similarly, the application of a prepulse did not affect the Ca®"
current sensitivity in the EGTA group (0.35%£0.15 ws.
0.36x0.09 fF/pC, p=0.95). These results speak against pool
depletion causing the capacitance pattern seen in Iig. 1A.
Interestingly, the AC,,-Q relation did not show any concave
deviation from linearity as expected in the absence of pool
depletion, but rather a convex relation as indicated by a positive
estimate (0.0013%0.0004 {F/(pC~2), p=0.0021, n=31 cells) of
the coeflicient ¥ of the quadratic term (see Methods). Such a
convex relation between AC,, and Q can arise from exocytosis
occurring away from Ca?* channels in a more general submem-
brane domain [21]. In support of this idea, further analysis showed
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Figure 3. Demonstration of the double-pulse protocol. Single cells were depolarized from a holding potential of =70 mV to 0 mV during
50 ms. This was followed by a resting period of 100 ms and a second 50-ms depolarization from —70 mv to 0 mV (top trace). The evoked Ca**
currents were measured and the charges for the first (Q;) and second (Q,) pulses were estimated (middle trace). In addition, the increases in
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Figure 4. Analysis of the double-pulse data. The exocytotic
response (AC,,) is plotted against Ca?*-influx (charge; Q). Capacitance
increases and Ca®" influxes evoked by the first 50 ms-depolarization
(Pulse 1) are shown as open symbols with fixed-effects fits indicated by
dashed lines, while data evoked by the second 50-ms depolarization
(Pulse 2) are plotted as filled symbols with their fixed-effects fits given
by the solid lines. The colors and symbols indicate the groups (Black
circles and lines: CTRL; Blue triangles and lines: EGTA). The graph
contains data from n=14 and n =18 experiments from the control and
EGTA group, respectively.

doi:10.1371/journal.pone.0103874.g004
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that the positive curvature was present in the control group
(y=10.0038%0.0007 {F/(pC»2), p<0.001, n=13 cells) but not in
the EGTA group (y=0.0003%+0.0005 fF/(pC"2), p=0.49, n=18
cells), which might be because of EGTA suppressing Ca*"
clevations and exocytosis mainly away from Ca®* channels.

Recovery of Ca®* current inactivation is enough to reset

the exocytotic response

To address the question whether pool depletion or Ca*
channel inactivation is the cause of the declined exocytotic
response from another perspective, we generated another set of
data. In this experiment the protocol started with two depolariza-
tions, prepulse plus pulse-length protocol, as in the previous
experiment. The difference was that these two depolarizations
were followed by a third 500-ms depolarization to 0 mV after a
rest interval at —70 mV lasting either 200 ms (protocol I) or 10
seconds (protocol II). Our idea was based on the fact that the Ca**
current recovers much faster [40] from inactivation than the RRP
recovers from depletion, which takes almost a minute to refill [41].
If the first two pulses do not deplete the RRP, then current
recovery would dictate the exocytotic response evoked by the third
depolarization, and we should expect the Ca®" current sensitivity
between protocols I and II for the third depolarization to be equal,
and Ca®" current sensitivity similar to the pulse-length protocols
investigated above. In contrast, if the current recovers in 10
seconds but the pool does not, then the Ca®* current sensitivity
should be lower for the third pulse in protocol II than for the
pulse-length protocols. Moreover, the current would recover to
some extent while the pool would not during a 200 ms rest period.
Thus, the Ca®" current sensitivity for the third pulse should be
even lower in protocol I than in protocol II if the pool of granules
is depleted.
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Figure 5. lllustration of the protocol where a 50 ms prepulse is followed by depolarizations of varying length (50, 100, 200, 400,
and 800 ms). The applied changes in membrane potential due to the depolarizations (V; top) evoke Ca**-currents (ICa; middle) and increases in
membrane capacitance (ACm; bottom). The panels show the data from a single cell in response to 3 (50 ms prepulse + 50, 200 or 800 ms
depolarization) of the 5 double-pulses applied to the cell. We analyzed the data from the depolarizations of varying length following the prepulse.

doi:10.1371/journal.pone.0103874.g005

To investigate current recovery in our data, we calculated for
each cell the amount of Ca”" influx during the first 50 ms of the
third pulse (Q350 ms), and related it to the Ca”" influx during the
50 ms prepulse (Q,). Mean recovery was then defined as the
average of the ratios Q3 50 ms/ Q). We found that following a 50 ms
prepulse and a 50 or 100 ms second pulse, the Ca®* current did
not inactivate much, and hence recovered substantially (mean
recovery >75%; Fig. 7) in just 200 ms. In contrast, following
longer second pulses the current did not recover much during
200 ms resting period (protocol I, squares in Fig. 7), but recovered
almost fully in 10 s (protocol II; crosses in Fig. 7). For example,
following the 50 ms prepulse and 800 ms second pulse, mean
current recovery was 0.31%0.02 in protocol I and 0.87*0.01 in
protocol II. This is in agreement with investigations of Ca®*
current recovery in mouse beta-cells [40].

Since our argumentation is based on substantial Ca®* current
inactivation, we limited our analysis to third pulses following a 50-
ms prepulse and a second depolarization lasting =200 ms. These
longer pulses would also favor the unmasking of any pool
depletion, if it should occur. Mixed-effects modeling with AC,,
as a function of Q for third-pulse data with the second
depolarization lasting =200 ms revealed no evidence of any
difference between protocols I and II (p =0.48 by likelihood ratio
test, confirmed by the Akaike Information Criterion, between a
model with intercept and slope depending on the protocol, and a
simple model without protocol effect; Fig. 8). Moreover, the

PLOS ONE | www.plosone.org

analysis gives results for the Ca®" current sensitivity similar to the
previous analyses of pulse-length data with or without prepulse
(0.76%0.10 fF/pC). In summary, the exocytotic response recovers
in parallel to Ca** currents, and the Ca®" current sensitivity is
unaffected by the two preceding pulses. These findings speak
against pool depletion.

A train of 500 ms depolarizations does not empty the

RRP

Having established that short depolarizations deplete a small
IRP of ~10 fF, but do not exhaust subsequent exocytosis resulting
from a larger pool, we analyzed if more intense stimulation, in the
form of the widely used train protocol consisting of 500 ms pulses
delivered at 1 Hz, could deplete the larger pool, likely the RRP.

Previous results [12] showed that in INS-1 832/13 cells the
capacitance Increases caused by the depolarizations do not
diminish during the train. Here, we related the cumulative
increase in membrane capacitance evoked by the depolarizations
to the cumulative calcium influx with mixed-effects modeling. In
case of pool depletion, we expect a concave, downward-curving,
relation between cumulative capacitance and cumulative Ca**
entry [22], as for the shorter pulses (note that the opposite, i.c.
positive curvature, is to expect if the individual capacitance jumps
is analyzed as a function of the calcium entry during each pulse

[22]).
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When analyzing all ten pulses of the train, we found no sign of
pool depletion, and an intercept not different from zero
(—3.1%15.1 fF, n=7 cells, p=10.84). The Ca®" current sensitivity
was estimated to be 1.81%0.48 fF/pC. However, when we
analyzed the responses to the first three pulses only, it was clear
that the data showed a non-zero intercept (29.1%8.6 {F,
p = 0.005), because the first pulse released relatively more granules
than the second and third pulses. This finding is in agreement with
the IRP from the data analyzed in the previous sections. The Ca®*
current sensitivity was estimated to be 1.46%0.62 fI'/pC for the
first three pulses. Cell-to-cell variation was big with estimated
standard deviations of the random effects amounting to 17.9 {F for
the intercept, and 1.55 for the Ca®" current sensitivity. In the full
data set including all ten pulses the non-zero intercept was
masqueraded by an upward curvature towards the end of the
train, since a linear fit tends to lower the intercept and increase the
slope in order to approximate the last data points. Our results are
similar to the patterns observed in rat beta-cells stimulated by a
train of 40 ms depolarizations delivered at 10 Hz [15].

Discussion

In this work we have carefully studied the basic mechanisms
underlying the coupling of Ca?" entry to insulin release using an

August 2014 | Volume 9 | Issue 8 | e103874



Capacitance [fF]
0 20 40 60 80

[ [ [ [ [

0 20 40 60 80
Q [pC]

Figure 8. No difference in Ca?' current sensitivity between
protocol | and protocol Il. Capacitance increases are plotted vs. Ca®*
influx Q for the third 500-ms depolarizations following a 50 ms
prepulse, a second pulse of either 200 ms (squares), 400 ms (circles)
or 800 ms (triangles), and a resting period of either 200 ms (protocol |,
black) or 10 s (protocol II, gray). The line indicates the fixed-effects fit
from the linear mixed-effects model, which fitted the entire data set
(both protocols).

doi:10.1371/journal.pone.0103874.g008
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accepted model cell system, with the main finding that the RRP in
INS-1 832713 cells is not as casily depleted as previously thought,
and that Ca®" current inactivation can masquerade as pool
depletion. INS-1 832/13 cells are a commonly used cell line in
confirming human findings. We are most aware that cell lines are
not primary cells and that there are large differences between
murine and human beta-cells [9,42-46]. However, the source of
human and primary cells is limited, and accordingly to the 3Rs
(http://www.nc3rs.org.uk) we should strive to work as much as
possible in cell lines [47] and to use mathematical models [48].
Hence, besides providing valuable insight in the control of
exocytosis in its own right, it is important to understand the basic
mechanisms in the cell-line model to be aware of limitations when
comparing with the human setting.

Using patch-clamp, capacitance measurements and mixed-
effect modeling, we showed by three different protocols that pool
depletion plays a negligible role in shaping the decline in the
exocytotic response seen in INS-1 832/13 cells when AC,, is
related to pulse duration (Fig. 1A). The observed AC,, profile is
instead mostly determined by the kinetics of Ca®' current
inactivation (Fig. 1B and C). Modifying Ca**-channel kinetics by
mutating domain involved in inactivation, or pharmacologically
e.g. with the Ca?*-channel agonist BayK [8] could provide further
insight concerning the role of Ca®' currents in shaping the
exocytosis patterns. Interestingly, BayK did not modify the linear
relation between AC,, and Q in mouse beta-cells [8].

In agreement with the lack of depletion in the pulse-length
protocols, we found that intense stimulation by the train protocol did
not deplete the RRP. These conclusions are in line with the fact that
INS-1 8382/13 cells show a slow, graded Ca®* response to elevation in
the glucose concentration [49] and the absence of biphasic insulin
secretion [50], in contrast to the INS-1 mother cell line, which shows
biphasic Ca®" patterns and insulin release [51]. Thus, these previous
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Figure 9. Mixed-effects analysis of the train protocol. Cumulative capacitance data is plotted against cumulative Ca®* influx measured as
charge, for individual cells with single-cell fits indicated by solid lines, while group fits (fixed-effects) are given by the dashed lines. Model fit to all
cumulative data from all 10 pulses is given in gray, while the fit to the first three pulses is given in black.

doi:10.1371/journal.pone.0103874.g009
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findings [49-51] suggest that the difference between the two cell lines
with respect to secretory dynamics can largely be explained by the
different Ca* profiles with no need for pool depletion.

We found evidence of a tiny pool of granules of ~7 {F, or ~10
granules, that could be released my minimal amounts of entering
Ca?". It is therefore likely that this pool (IRP) is situated near Ca®*
channels, and is similar to IRP measured in murine cells, although
ten times smaller in size. Our finding that EGTA does not
interfere with release from this small pool supports this conclusion.
Similarly, Yang and Gillis [52] found evidence of an IRP that was
exhausted by 10 ms depolarizations in INS-1 cells.

In contrast, later exocytosis was strongly affected by EGTA,
which lowered the Ca** current sensitivity of exocytosis by more
than 50%. This suggests that in INS-1 832/13 cells most
exocytosis occurs away from Ca?* channels from a granule pool
that is not depleted by depolarizations lasting even up to a second.
Either this pool is very large or is very rapidly refilled. The
exocytotic responses is of similar magnitude in INS-1 832/13 cells
as in primary cells, but electron micrographs from insulinoma cells
demonstrate that these cells have fewer granules and of smaller
size [34,53] as compared to primary cells [4,17]. It is therefore
most likely that INS-1 832/13 cells have machinery that requires a
more rapid refilling from a large pool that cannot be depleted by
the prolonged stimuli used here. Yang and Gillis [52] found that
the RRP, as determined by flash-released Ca®"-induced exocyto-
sis, 1s ~100 fF in INS-1 cells. Accordingly, one half of this pool is
released by a 640 ms depolarization (Fig. 1A), if we assume no
refilling during the pulse. However, we favor the interpretation
that refilling is rapid and occur during each depolarization.

Interestingly, and supporting our conclusion, repeated 500-ms
pulses did not lead to the exhaustion of the increases in membrane
capacitance in INS-1 832/13 cells (Fig. 9) [12]. However, we did
find evidence of an exhaustible pool since our analysis of the first
three pulses revealed a non-zero intercept ~30 fF, which likely
corresponds to the IRP found in the pulse-length and double-pulse
protocols. It is not clear why the cells used for the train protocol
have larger IRP, but the Ca®" current sensitivity was also
increased, suggesting that these cells were generally highly
responsive. Note also that there was a large uncertainty in the
estimate of the size of the IRP (standard error 8.6 fI) and a large
cell-to-cell variation (the standard deviation of the random effect
was 17.9 {F), indicating that the train protocol is not appropriate
for determining the size of the IRP.

Late exocytosis was not reduced by the train of pulses, but rather
tended to increase when Ca?* entry was taken into account. This
convex AC,, vs. Q relation could result for example from residual
Ca®* from the first pulses increasing the Ca®* current sensitivity (less
Ca? entry was needed to trigger exocytosis, since it was
summarized on the residual Ca*"), or residual Ca®* could increase
the rate of docking and refilling, which are Ca?" dependent
processes. Moreover, in INS-1 cells a train of 500-ms depolariza-
tions did not provoke pool depletion at temperatures similar to the
ones used here, but at lower temperature (24°C) capacitance
increases were markedly reduced after the first two pulses [54]. In
the latter study, it was suggested that vigorous, random movement
of granules are needed to sustain late exocytosis in INS-1 cells, in
line with the findings and interpretations presented here.

Away from Ca®" channels the Ca”" concentration reaches a few
pM [20,46,55]. Consequently, if most of exocytosis occurs away
from Ca®' channels, the fusing granules must be “highly Ca”"
sensitive” in order to be released. Yang and Gillis [52] described a
highly Ca”" sensitive pool (HCSP) in INS-1 cells, and it seems
likely that the HCSP is also present in INS-1 832/13 cells and is
responsible for most of the exocytosis seen in our experiments.
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Moreover, the data suggest that this pool in INS-1 832/13 cells
not only have high Ca®* sensitivity but is also difficult to deplete.

It has been suggested [56] that HCSP fusion corresponds to
“newcomer granules”, i.e., granules that undergo exocytosis near-
instantly when arriving at the plasma membrane [57-62].
Following this hypothesis, one would expect that most exocytosis
in INS-1 832/13 cells is due to newcomers, as observed in INS-1
cells [62]. This would also provide a possible explanation of the
lack of depletion seen in our experiments: if exocytosis occurs by
newcomer fusion, then granules located away from the plasma
membrane are releasable in addition to membrane-docked
granules, which would allow for a larger total pool of releasable
granules. This is also in agreement with ultrastructural data [53].
In this context it is worth noting that our experiments were done
with cAMP in the patch pipette, and that cAMP has been shown
to enhance both the HCSP [52] and newcomer fusion [59].

A linear relation between AC,,, and Q, as observed in the INS-1
832/13 cells, is also seen in pulse-length data from mouse beta-
cells [8,20], indicative of the absence of pool depletion [22].
However, mouse islets have prominent biphasic insulin secretion
patterns not only in response to high glucose, but also when
stimulated by high extracellular concentrations of K* [63]. This
fact indicates a clear role for pool depletion in mouse beta-cells,
which is supported by capacitance measurements showing a clear
RRP in these cells [17,41]. Similarly, human islets show biphasic
insulin secretion when depolarized by sulfonylureas or K* [64,65],
suggesting that pool depletion is important in human beta-cells.
Clorrespondingly, capacitance measurements from human beta-
cells in situ provide evidence of an IRP [21], and recordings from
isolated human beta-cells reveal an RRP [19,66].

In summary, we demonstrate that the release mechanism in
INS-1 832/13 is different from primary cells, in particular that the
RRP in INS-1 832/13 is not easily depleted. Our findings
underline that the interplay between RRP depletion and phasic
Ca?* dynamics must be taken into account for a better elucidation
of the biphasic nature of insulin secretion.

Supporting Information

Data S1 Pulse length protocol (5-640 ms) AC,, vs. Q
data (Figs. 1 and 2).
(DAT)

Data S2 50 ms prepulse followed by pulse length
protocol (50-800 ms) AC,, vs. Q data (Figs. 4 and 6).
(DAT)

Data S83 50 ms prepulse followed by pulse length
protocol (50-800 ms) and a third 500 ms pulse after
200 ms or 10 s (Figs. 7 and 8).

(DAT)

Data S4 Train AC,, vs. Q data (Fig. 9).
(DAT)
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