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Abstract

Background: Health-economic models of diabetes are complex since the disease is chronic, progressive and there are many
diabetic complications. External validation of these models helps building trust and satisfies demands from decision makers.
We evaluated the external validity of the IHE Cohort Model of Type 2 Diabetes; the impact of using alternative
macrovascular risk equations; and compared the results to those from microsimulation models.

Methods: The external validity of the model was analysed from 12 clinical trials and observational studies by comparing 167
predicted microvascular, macrovascular and mortality outcomes to the observed study outcomes. Concordance was
examined using visual inspection of scatterplots and regression-based analysis, where an intercept of 0 and a slope of 1
indicate perfect concordance. Additional subgroup analyses were conducted on ‘dependent’ vs. ‘independent’ endpoints
and microvascular vs. macrovascular vs. mortality endpoints.

Results: Visual inspection indicates that the model predicts outcomes well. The UKPDS-OM1 equations showed almost
perfect concordance with observed values (slope 0.996), whereas Swedish NDR (0.952) and UKPDS-OM2 (0.899) had a slight
tendency to underestimate. The R2 values were uniformly high (.0.96). There were no major differences between
‘dependent’ and ‘independent’ outcomes, nor for microvascular and mortality outcomes. Macrovascular outcomes tended
to be underestimated, most so for UKPDS-OM2 and least so for NDR risk equations.

Conclusions: External validation indicates that the IHE Cohort Model of Type 2 Diabetes has predictive accuracy in line with
microsimulation models, indicating that the trade-off in accuracy using cohort simulation might not be that large. While the
choice of risk equations was seen to matter, each were associated with generally reasonable results, indicating that the
choice must reflect the specifics of the application. The largest variation was observed for macrovascular outcomes. There,
NDR performed best for relatively recent and well-treated patients, while UKPDS-OM1 performed best for the older UKPDS
cohort.
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Introduction

Economic evaluation identify the likely health and cost

consequences of proposed treatment interventions and is necessary

for making health care decisions that allocate limited resources

efficiently [1]. Economic modelling is used and widely accepted in

economic evaluation, especially for chronic and progressive

diseases like Type 2 Diabetes Mellitus (T2DM), where long time

horizons are required to realize the full costs and consequences of

intervention and where registration-oriented clinical trials are

often relatively short [2,3]. Economic simulation models are

constructed with sets of mathematical equations that synthesize the

available data (frequently from multiple sources) into a coherent

and internally consistent framework. Data sources include short-

run clinical trial for treatment effects and adverse event rates, risk

equations and known physiological relationships to project patient

outcomes over time, and unit cost and quality of life weights from

registry data and surveys.

From a modelling standpoint, T2DM ranks among the most

challenging of disease areas, as it affects multiple inter-related

organ systems (e.g., cardiovascular disease, nephropathy, neurop-

athy, and nephropathy); these complications often take years to

develop and the event rates tend to accelerate over time; and co-

morbid conditions such as hypertension, dyslipidemia, and obesity

are common [2]. Moreover, treatment is routinely multi-factorial,

treatments for different co-morbid conditions frequently work on
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the same set of risk factors, and treatments often have limited

durability and treatment intensification over time is routine.

Given the level of detail in models of T2DM intervention, the

users of model results need to be convinced of the soundness of

model-based predictions. To help allay concerns, the International

Society for Pharmacoeconomics and Outcomes Research (ISPOR)

and the Society for Medical Decision Making (SMDM) have

jointly issued good practice recommendations for model validation

[4]. They emphasize the assurance of face validity (i.e., that the

model reflects current scientific evidence as judged by experts),

verification (i.e., de-bugging, ‘stress-testing’, and other activities

that ensure model calculations are correctly implemented), cross-
validation (i.e., assessing whether different models generate similar

results to a standardized study question), and external (and

predictive) validation (i.e., testing whether the model accurately

predicts actual outcomes observed in patients in clinical trials or

observational registries) [5].

The IHE Cohort Model of Type 2 Diabetes is a new

deterministic, cohort-level cost-effectiveness model of treatment

intervention in T2DM. Briefly, it is constructed of Markov health

states that comprise the key diabetic complications associated with

T2DM: microvascular complications (retinopathy, nephropathy,

and neuropathy) and macrovascular complications (myocardial

infarction (MI), ischemic heart disease (IHD), congestive heart

failure (CHF), stroke, and peripheral vascular disease (PVD)).

Progression to more severe health states is evaluated on annual

basis based on event risks that are tailored to the current values of

time-varying cohort characteristics (e.g., age, gender, disease

duration, and key bio-markers such as HbA1c and systolic blood

pressure) using risk equations. For macrovascular disease, the user

can choose between the original United Kingdom Prospective

Diabetes Study Outcomes Model (UKPDS-OM1) [6], the revised

UKPDS Outcomes Model (UKPDS-OM2) [7], or the Swedish

National Diabetes Register (NDR) risk equations [8]. Microvas-

cular complication risks are largely as in the seminal National

Institutes of Health (NIH) model [9] as updated in the DiDACT

model [10]. Treatment interventions are applied initially and

updated over the course of the user-specified time horizon

(maximum of 40 years) to meet pre-specified HbA1c goals,

generating treatment-arm-specific health profiles and hence

differences in micro- and macrovascular outcomes. Unit costs

and QALY disutility weights are applied to the cohort outcomes

and summed, then the cost-effectiveness ratio and net monetary

benefits are calculated. Uncertainty in the model parameters, often

called 2nd order uncertainty, is captured with the inclusion of

(optional) probabilistic sensitivity analysis (PSA). Further descrip-

tion of the model is available in Supporting Information: File S1.

Most models of T2DM have adopted the micro-simulation (i.e.,

patient-level) approach, including, for example, 10 of the 12

models adopted by Tarride and colleagues [11] and 7 of the 8

models participating at an international congress for economic

models of T2DM (the 5th Mt. Hood Challenge) [12]. As noted in

the ISPOR/T2DM modeling recommendations, micro-simulation

models are better able to track complex disease histories and thus

account for interdependence in complications (which is important

in multi-organ-system diseases such as T2DM) [13]. The

downsides of micro-simulation models in T2DM, however, relate

to the complexity required and the often long run times required

to generate robust simulation results. The IHE Cohort Model of

Type 2 Diabetes uses the cohort approach because it was easier to

develop (reducing the risk of programming or logical errors),

debug, and communicate to non-experts. Moreover, the run times

for The IHE Cohort Model of Type 2 Diabetes are short when

compared to most micro-simulation models of T2DM (which

frequently run in hours), which is an advantage in evaluating

T2DM interventions where hundreds of simulations are routinely

required (given multiple indications and treatment comparators

and the need for extensive sensitivity analysis).

It is important to ensure that these potential benefits are not

associated with a reduction in performance versus micro-

simulation models. The objective of this paper, thus, is to test

the external validity (i.e., accuracy of model predictions versus

actual observed outcomes) of the IHE Cohort Model of Type 2

Diabetes. In addition, we use the opportunity to explore

differences in predictive accuracy for the three sets of competing

macrovascular risk equations.

Materials and Methods

We test the external validation of The IHE Cohort Model of

Type 2 Diabetes according to the recommendations of ISPOR/

MSDM [5]. Because the model is claimed as a general multi-

application ‘general diabetes’ model, it was not calibrated to any of

the individual studies included in the validation exercises and the

same model version was used for each validation exercise.

Specifically, our methodology consisted of:

N Identify a suitable sample of validation studies to replicate.

Studies were selected to provide a distribution geographically,

trial vs. non-interventional observational naturalistic data

collection, studies used in model construction (‘‘dependent’’)

vs. not used in model construction (‘‘independent’’), and

studies used in other validation examples in T2DM.

N Load the IHE Cohort Model of Type 2 Diabetes the with

mean baseline patient (demographic and clinical) characteris-

tics of each of the included validation studies (including sub-

groups where applicable), one study at a time. In some

instances, the published material did not include information

on specific model parameters and we used corresponding data

from studies with similar patient populations (Supporting

Information: Table S1). The model was loaded separately for 4

sub-groups with important CVD risk implications (female

smokers, female non-smokers, male smokers, and male non-

smokers) and the weighted average was calculated for each

outcome.

N Load the model with the effects of intervention (if any) and the

changes in bio-marker parameters over time. We assumed that

treatment effects reported from trials reached full effect during

the first year.

N Simulate the scenario for the same time horizon as the mean

duration of follow-up in the study for each of the four sub-

groups described above, extract each of the outcomes (primary

and secondary) in the study that could be matched with output

from the IHE Cohort Model of Type 2 Diabetes, and calculate

the weighted averages.

N To examine potential differences related to choice of

macrovascular risk equations, we simulated each of the

validation studies three times using the UKPDS-OM1,

UKPDS-OM2, and Swedish NDR sets of risk equations (but

with everything else the same).

N Concordance between model predictions and the actual

observed cumulative incidence outcomes was evaluated

graphically as a scatterplot and by estimating the best-fitting

linear regression line, both for the full sample and for

important sub-groups of outcomes (see details below).

Validation of the IHE Cohort Model of Type 2 Diabetes
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Validation Studies
In line with previous validation studies [14–18] and the Mt.

Hood Challenges [12,19], 12 studies were selected for the analysis,

including both clinical trials and observational naturalistic studies.

Collectively, the selected studies enrolled nearly 90,000 subjects.

The studies are summarized in Table 1.

Data from two of the studies were used in the construction of

microvascular complications in the IHE Cohort Model of Type 2

Diabetes, the Wisconsin Epidemiologic Study of Diabetic Reti-

nopathy (WESDR) [20] and a population based study in

Rochester, Minnesota (the Rochester Epidemiology Project)

[21], and are thus ‘‘dependent’’ validation studies. Two studies

based on the observational Swedish NDR [8,22] qualify as

‘‘dependent’’ validation studies in simulations using the Swedish

NDR macrovascular risk equations, but qualify as ‘‘independent’’

validation studies in simulations using either of the UKPDS risk

equations. Two studies based on the UK Prospective Diabetes

Study (UKPDS) data [23,24] are clearly ‘‘dependent’’ in

Table 1. Studies included in the validation analyses.

Study name Population
Treatment
groups

Duration
(years) Participants Endpoints

NDR (I) [8] Observational study of residents
in Sweden diagnosed with type
2 diabetes at an age of 30–75,
followed from 2003

Observational 5 29,034 32

NDR (II) [22] Observational study of residents
in Sweden with type 2 diabetes,
ages 30–79, followed from 1997/1998

Observational 5.6 18,334 3

UKPDS 33 [23] Interventional study of newly
diagnosed type 2 diabetes in
UK, ages 25–65, recruited
between 1977 and 1991.

Conventional/Intensive 11 3,867 12

UKPDS 80 [24] Long-term follow up of UKPDS Conventional/Intensive 5–25 3,867 14

WESDR [20] Observational study of residents
in diabetes in Wisconsin, US
diagnosed with diabetes after the
age of 30, recruited between
1979 and 1980

Observational 5–30 1,780 14

Rochester [21] Observational study of residents
in Rochester, US, diagnosed with
diabetes between 1945 and 1969

Observational 1–30 1,470 16

ACCORD [25] Clinical study of patients with type
2 diabetes, ages 40–79 with HbA1c
over 7.5% and CVD or ages 55–79
with atherosclerosis, albuminuria,
left ventricular hypertrophy, or at
least two additional CVD risk factors

Conventional/Intensive 3.5 10,251 8

ADOPT [29] Clinical study of patients with type
2 diabetes from US, Canada or
Europe with no pharmaceutical
treatment, ages 30–75 (Only
patients treated with metformin or
glyburide are included in the validation)

Metformin/Glyburide 4 2,895 10

ADVANCE [26] Clinical study of patients with type 2
diabetes from 20 countries, ages 55
or older with a history of major
microvascular or macrovascular
disease or at least one other risk
factor for vascular disease

Standard/Intensive 5 11,140 10

ASPEN [27] Clinical study of patients with type
2 diabetes, ages 40–75 years (only
primary prevention population is
included in the validation)

Placebo/Atorvastatin 4 1,905 6

CARDS [28] Clinical study of patients with type
2 diabetes from UK or Ireland with
one CVD risk factor but no history
of CVD, ages 40–75

Placebo/Atorvastatin 4 2,838 10

Osaka [30] Observational study of residents
with diabetes in Osaka, Japan,
diagnosed between 1960 and 1979,
ages 35 or older

Observational 5–20 1,939 32

The table contains the name of the study, a brief description of the patient population, the reported mean or median duration of the study, the treatment groups
included in the validation, the number of participants at baseline and the number of endpoints used in the validation.
doi:10.1371/journal.pone.0110235.t001
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simulations using the UKPDS risk equations. They are also

‘‘dependent’’ in simulations using the Swedish NDR macrovas-

cular risk equations, however, as the UKPDS mortality equations

are used (there are currently no complete mortality equations with

Swedish NDR data). The ISPOR/SMDM recommendations do

note that data sources can have different degrees of ‘‘dependence’’

for different outcomes, though, with a greater degree of

dependence for those outcomes actually directly estimated using

the risk equations and a lesser degree when the relationship is

indirect (e.g., UKPDS mortality is clearly inter-related with the

risks of events based on other data sources since one must be alive

to experience them) [5].

Six of the validation studies are unambiguously ‘‘independent’’.

Four of them are randomized controlled trials that were featured

in the 4th and 5th Mt. Hood Challenges [12,19]: the Action to

Control Cardiovascular Risk in Diabetes (ACCORD) [25], the

Action in Diabetes and Vascular Disease: Preterax and Diamicron

Modified Release Controlled Evaluation (ADVANCE) [26], the

Atorvastatin Study for Prevention of Coronary Heart Disease

Endpoints in non-insulin-dependent diabetes mellitus (ASPEN)

[27], the Collaborative Atorvastatin Diabetes Study (CARDS)

[28]. We also selected the A Diabetes Outcome Progression Trial

(ADOPT) [29], which is frequently sourced in health economic

evaluation for long-term glycemic durability and it was included in

the validation of the CDC-RTI model [16]. To expand

geographically and to include more long-term mortality data, we

included an observational mortality study from Japan [30], which

has been included in the validation of the CDM [15], the CDC-

RTI-model [16] and the ECHO-T2DM model [18].

For two of the studies, outcomes were reported separately for

patient sub-groups. Specifically, one study based on the Swedish

NDR [8] and the study from Japan [30] included four age groups

for women and four for men respectively We treated each of the

sub-groups as a separate unit of analysis, thus increasing the

Figure 1. All Endpoints: Predicted Vs. Observed Cumulative Incidence. The results are shown separately for (A) NDR equations, (B) UKPDS-1
equations and (C) UKPDS-2 equations.
doi:10.1371/journal.pone.0110235.g001

Validation of the IHE Cohort Model of Type 2 Diabetes
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number of outcomes per study. In addition, one study from

UKPDS and the Japanese study included survival at different

points in time, each of which was included as a separate unit of

analysis as well.

Endpoints
All endpoints in each study for which a corresponding outcome

exists in the model were included in the validation. Composite

endpoints, such as ‘‘major microvascular events’’ in ADVANCE

[26] were excluded since no match existed in the model. Further,

only endpoints reported as a cumulative incidence were included.

For example, macroalbuminuria in the UKPDS study was

excluded since it was reported as prevalence among non-censored

patients [23]. In total, we simulated the cumulative incidence for

167 microvascular, macrovascular, and mortality endpoints). The

number of endpoints contributed by each of the studies is included

in Table 1. The full list of endpoints included in this analysis is

included in the Supporting Information: Table S2.

Statistical Analysis
We followed established validation methods (for example, see

CDM [15], CDC-RTI model [16] and ECHO-T2DM [18]). First,

the predicted cumulative incidences were plotted against the

observed cumulative incidences for visual inspection. When the

predictions match the observed values exactly (i.e., perfect

concordance), the validation points will fall along the identity

(45u) line. General overprediction is reflected in a preponderance

of points above the identity line and underprediction in points

below the identity line. Secondly, to quantify the results, we used

linear regression analysis (with heteroskedasticity-consistent stan-

dard errors based on the Huber-White estimator to account for

possible serial dependence when multiple outcomes were taken

from the same data source) to estimate the intercept and slope

Figure 2. Dependent Endpoints: Predicted Vs. Observed Cumulative Incidence. The results are shown separately for (A) NDR equations, (B)
UKPDS-1 equations and (C) UKPDS-2 equations.
doi:10.1371/journal.pone.0110235.g002
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coefficients of the best-fitting line as well as the coefficient of

determination (R2). Specifically, we fit the following equation:

Yi~b0zb1 � Xizei

where Yi is the predicted cumulative incidence for endpoint i, Xi

the observed cumulative incidence for endpoint i, b0 the intercept,
b1 the slope and ei the disturbance term. A perfect match is

characterized by an intercept of 0, a slope coefficient of 1, and a

perfect R2 (i.e., 1.00). Note, as the estimated regression coefficients

reflect the best-fitting line through the scatterplot but not the

points specifically, it is possible that none of the actual points falls

close to the identity line (some too high, others too low) but that

the regression line coincides with the identity line anyway,

dictating that the R2 (i.e., how close the sample points are to the

regression line) must be considered as well.

Our main analysis includes the full set of 167 validation

endpoints. We also assessed concordance separately for the

‘‘dependent’’ and ‘‘independent’’, where ‘‘independent’’ endpoints

are naturally more challenging. The validation methodology is a

natural way to assess the performance of individual parts of the

model, so we have also assessed concordance separately by type of

outcome (mortality, microvascular endpoints, and macrovascular

endpoints).

Results

Results for the main analysis including all 167 outcomes are

summarized in scatterplots in Figures 1(A) to 1(C) for simulations

using macrovascular risk equations using the Swedish NDR,

UKPDS-OM1, and UKPDS-OM2, respectively. Numerical

results can be found in Supporting Information: Table S2.

Predicted cumulative incidences are plotted on the vertical axis

and the values actually observed in the trial are plotted on the

horizontal axis. The data points for each trial are depicted with

different symbol and color combinations. For each of the three sets

of simulation results, the points visually follow the identity (solid
black) line, with some points above (overestimates) and some points

below (underestimates) but most quite close. There is a prepon-

Figure 3. Independent Endpoints: Predicted Vs. Observed Cumulative Incidence. The results are shown separately for (A) NDR equations,
(B) UKPDS-1 equations and (C) UKPDS-2 equations.
doi:10.1371/journal.pone.0110235.g003
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derance of data points located at relatively small cumulative

incidences (for example, 20% or below), reflecting the relatively

short time horizon in some of the trials and the rarity of some of

the outcomes, though there are also data points throughout the

distribution including large values from the UKPDS, WESDR,

Rochester, and Osaka studies.

The best-fitting regression lines through the scatterplots each

have high R2 values (between 0.964 and 0.969), reflecting the

linearity of the sample points (i.e., the points lie generally close to

the regression line). Though all are reasonably near the values of 0

for the intercept and 1 for the slope, the estimated regression

coefficients do vary between the three sets of simulations. The

analysis using the UKPDS-OM1 risk equations follows the identity

line almost coincidentally, with a slope of 0.996. Using the

UKPDS-OM2 risk equations, however, produced a general

tendency to underestimate the outcomes (slope of 0.899),

interestingly including most of the endpoints from the UKPDS

study itself (the red circles). The analysis using the Swedish NDR

risk equations had a slight tendency to underestimate outcomes

(slope of 0.952), but the best-fitting regression line closely mirrored

the identity line and no clear pattern is noticeable.

‘Dependent’ vs. ‘Independent’ Outcomes
Dividing the outcomes into dependent and independent with

respect to model construction can shed light both on whether the

model is correctly implemented (a model should naturally be able

to predict accurately outcomes from studies on which much of the

model is based) and on whether the model can predict outcomes

accurately across a variety of settings that can be considered ‘‘out

of sample’’ (usually a more difficult challenge).

The results of the subset of dependent outcomes and

independent outcomes are presented in Figures 2(A) to 2(C) and

Figures 3(A) to 3(C), respectively. Given smaller samples sizes,

there is naturally more uncertainty, but the R2 values are all at

least 0.96 indicating a high degree of linearity.

Figure 4. Mortality Endpoints: Predicted Vs. Observed Cumulative Incidence. The results are shown separately for (A) NDR equations, (B)
UKPDS-1 equations and (C) UKPDS-2 equations.
doi:10.1371/journal.pone.0110235.g004
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PLOS ONE | www.plosone.org 7 October 2014 | Volume 9 | Issue 10 | e110235



There are some interesting differences between the dependent

and independent analyses for the simulations based on the

Swedish NDR and the UKPDS-OM1 macrovascular risk

equations. There is a tendency to underpredict the dependent

outcomes in the Swedish NDR analyses (slope of 0.918), largely

attributable to two WESDR microvascular events and a slight

tendency to underpredict outcomes from the UKPDS (included

because UKPDS mortality equations were used). The NDR

outcomes were all close to the identity line. The subset of

independent outcomes were generally closer to the identity line

(with a slope of 0.985) for the Swedish NDR simulations,

somewhat better than the fit for the dependent outcomes (likely

attributable to the classification of the UKPDS outcomes as

‘‘dependent’’).

The same tendency to underpredict dependent outcomes was

observed for the analysis using the UKPDS-OM1 macrovascular

risk equations (with a slope of 0.944), driven primarily by the

microvascular outcomes from WESDR. There was a slight

tendency to overpredict the independent outcomes (with a slope

of 1.049), driven largely by the mortality events in the Osaka

study. The fit for the Swedish NDR outcomes was spotty, though

there was both overprediction and underprediction and no clear

pattern.

There was almost no difference between the results for the

subsets of dependent and independent outcomes for simulations

based on the UKPDS-OM2 macrovascular risk equations, with

the same tendency to underprediction in both (slopes of 0.896 and

0.899, respectively). The underprediction in the dependent

analyses was largely driven by the UKPDS outcomes, which

may be natural as half of the outcomes were drawn from the

original UKPDS study (with which the UKPDS-OM1 was

estimated). The UKPDS-OM2 was estimated with both the

original study data and the more recent UKPDS follow-on study

Figure 5. Microvascular Endpoints: Predicted Vs. Observed Cumulative Incidence. The results are shown separately for (A) NDR equations,
(B) UKPDS-1 equations and (C) UKPDS-2 equations.
doi:10.1371/journal.pone.0110235.g005
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data (and is generally thought to capture recent advances in the

treatment of macrovascular disease better).

Types of Outcomes
Separate analysis of different parts of the model can provide

useful insight into the functioning of the model.

Mortality. The results for the 55 mortality outcomes are

summarized as scatterplots in Figures 4(A) to 4(C). The data points

are drawn heavily the Osaka study (32) and the UKPDS (10) with

relatively long follow-up periods (20 and 25 years, respectively).

While there was a tendency for the simulations using the UKPDS-

OM2 macrovascular risk equations to underpredict the actual

outcomes (slope of 0.886), driven largely by the UKPDS outcomes,

the fit was good for analysis with the NDR macrovascular risk

equations (slope of 0.995) and for analysis with the UKPDS-OM1

risk equations (slope of 1.053). The R2 values were each at least

0.956.

Microvascular. The results for the 34 microvascular out-

comes are summarized as scatterplots in Figures 5(A) to 5(C) and

are drawn almost entirely from the Rochester and WESDR

studies. The differences across analyses using the three sets of

macrovascular risk equations are naturally small given that the

macrovascular outcomes are excluded. There was a tendency to

underpredict the WESDR outcomes and overpredict the Roche-

ster outcomes. The R2 values were each about 0.98.

Macrovascular. The results for the 78 macrovascular

outcomes are summarized as scatterplots in Figures 6(A) to 6(C).

The data points are drawn heavily from the Swedish NDR (32)

and the UKPDS (12). The analysis using the Swedish NDR

macrovascular risk equations provided the best fit (slope of 0.878),

perhaps not surprising given the preponderance of Swedish NDR

outcomes, though each of the sets of analyses tended to

underpredict actual outcomes. The predictions based on

UKPDS-OM1 underestimated most NDR and some of the

Figure 6. Macrovascular Endpoints: Predicted Vs. Observed Cumulative Incidence. The results are shown separately for (A) NDR equations,
(B) UKPDS-1 equations and (C) UKPDS-2 equations.
doi:10.1371/journal.pone.0110235.g006
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UKPDS outcomes rendering a slope coefficient of 0.822. The

predictions based on the UKPDS-OM2 demonstrated the greatest

degree of underestimation, affecting both the NDR and UKPDS

outcomes, rendering a slope coefficient of 0.634. The R2 values

ranged between 0.724 and 0.795, indicating the presence of more

outliers than the other outcome sub-groups.

To identify the drivers of this underestimation, we further

examined the macrovascular validation points in three categories:

Swedish NDR outcomes, UKPDS outcomes, and those from the

sub-set of other RCT’s. The results are not reported here but are

available on request. Briefly, the simulations using the Swedish

NDR risk equations fit the Swedish NDR outcomes (as expected)

well, with a slope of 1.015. They also fit the RCT (excluding

UKPDS) sub-sample quite well, with a slope of 1.15. There was a

considerable degree of underprediction of the UKPDS outcomes,

however, which may be natural given the prevalence of better

preventive cardiovascular care in the more recent Swedish NDR

data. Interestingly, though, both sets of UKPDS risk equations

seriously underpredicted the Swedish NDR outcomes (slopes of

0.585 and 0.333, respectively) as well, especially for women and

especially for CHF and with a clear relationship to age (fitting

better at younger ages). The UKPDS risk engines also underes-

timated outcomes in the RCT’s, though by less (slopes of 0.852

and 0.769), respectively. The UKPDS-OM1 risk equations fit the

UKPDS outcomes best, with a slope of 0.954, while the UKPDS-

OM2 risk equations underpredicted with a slope of 0.666.

Discussion

The IHE Cohort Model of Type 2 Diabetes was subjected to

validation testing against 167 endpoints taken from 12 heteroge-

neous clinical studies, including RCT’s and observational regis-

tries; data from the US, Europe, Japan, as well as multi-national

RCT’s; and differing chronologically and with length of follow-up.

Because the IHE Cohort Model of Type 2 Diabetes supports three

different sets of macrovascular risk equations, validity was tested

separately for each. The results were positive, with the Swedish

NDR and the UKPDS-OM1 validation points closely following

the identity line and high R2 values. The UKPDS-OM2 validation

points had a tendency toward underprediction, driven largely by

macrovascular outcomes, but the R2 was also high and the best-

fitting regression line was relatively close to the identity line.

A look at sub-groups of endpoints found no substantive

differences between those that were ‘dependent’ and those that

were ‘independent’. Naturally, one expects better prediction for

the ‘dependent’ outcomes, though this tendency may be damp-

ened in T2DM by the number of interdependent relationships and

use of data from many sources and, for the Swedish NDR risk

equations, the classification of the UKPDS endpoints as ‘depen-

dent’ because of the mortality risk equations.

Though the sample sizes were smaller, the predictions for the

sub-set of mortality outcomes tracked actual outcomes closely as

well, especially the Swedish NDR. The UKPDS-OM2 exhibited a

tendency toward underprediction. There is a tendency to

underestimate the microvascular outcomes, though this is largely

an artifact of two outliers (PDR at 20 and 30 years in WESDR).

The similarity across macrovascular risk equations is explained by

the exclusion of macrovascular and mortality endpoints, for which

choice of equations has a direct effect.

Model predictions performed worse for the sub-set of macro-

vascular outcomes, however, with underprediction especially with

the UKPDS-OM2. There were also important differences across

the different sets of macrovascular risk equations, perhaps

reflecting differences in the data underlying estimation of the risk

equations. The Swedish NDR risk equations, for example, were

estimated with relatively recent (2003–2008) data from a

naturalistic, relatively unselected, prevalence-based sample of

patients with varying disease durations.

In contrast, the UKPDS study was a RCT, subject to strict

intervention protocols and limited to newly-diagnosed patients,

with recruitment between 1977 and 1991 and study follow-up

ending in 1997. The effects of recent treatment patterns (e.g.,

statin therapy) that have improved macrovascular outcomes are,

thus, not captured in the UKPDS-OM1 risk equations, which are

entirely estimated with data from the UKPDS RCT. A 10-year

non-interventional, post-trial monitoring study of UKPDS survi-

vors ending in 2007 did capture these benefits and these new

outcomes were combined with the UKPDS trial data to estimate

the UKPDS-OM2 risk equations. These differences are not just

reflected in the risk coefficients, they are also reflected in many of

the trial outcomes we are trying to match in these exercises.

Indeed, the Swedish NDR risk equations closely matched

outcomes from the sub-sets of Swedish NDR outcomes and of

the RCT outcomes (most of which are relatively recent and more

reflective of recent treatment advances), but they underpredicted

the UKPDS outcomes (approximately half of which were taken

from the trial itself and would not reflect the benefits from these

advances). Surprisingly, the UKPDS-OM1 equations underesti-

mated the Swedish NDR and, to a lesser extent, the RCT

outcomes, as the UKPDS-OM1 equations have been observed to

overpredict macrovascular outcomes in several contemporary

studies [31–35], though the UKPDS-OM1 reliability predicted the

UKPDS Outcomes. The UKPDS-OM2 underestimated each of

the sub-groups of outcomes, though the predictions best matched

for the RCT outcomes.

It should be noted, however, that macrovascular events pose a

greater challenge to match than many of the other types of

outcomes for a cohort model. Indeed, even though we did

accommodate a small degree of patient heterogeneity by

simulating outcomes separately for the four combinations of

gender and smoking status and computing the weighted average,

the use of cohort mean (rather than individual patient) values of

the bio-markers and other risk factors in inherently non-linear risk

equations creates a risk for bias [4]. In this respect, the Swedish

NDR outcomes were sub-divided into gender/age categories

(capturing a greater degree of heterogeneity), which mitigates

some of this bias. Not capturing this heterogeneity is the trade-off

of using a faster cohort approach rather than a slower micro-

simulation approach, but these results illustrate the value of the

‘‘middle road’’, using the cohort approach but simulating a

number of the key sub-groups separately (increasing total run time,

but not to the extent of a full micro-simulation run). In the

simulations here, we simulated separately by gender and smoking

status, though for only one of the validation studies [8] did we have

gender-specific baseline characteristics (and for none of them did

we have smoking-specific baseline characteristics) so the full effect

was not captured. In actual empirical applications, where primary

data are at hand and proper sub-group characteristics can be

generated, we would suggest that even age categories be included

(increasing the number of sub-groups from the current 4 to

perhaps 12) given natural non-linearity in macrovascular and

particularly mortality patterns.

The results indicate that the choice of macrovascular risk

equations can be an important determinant of model results,

especially for macrovascular outcomes. Unfortunately, though, it is

impossible to know which risk will best fit reality for any given

application for which we do not already have results to compare

against (as with model validation) and in which case we would
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presumably have limited use of modeling anyway. This work

provides a few clues, however. The Swedish NDR risk equations

performed quite well in matching Swedish NDR outcomes

(relatively lean Scandinavian patients) and the more recent

RCT’s, both of which are characterized by relatively high use of

modern preventive medicines such as statins. The UKPDS-OM1

matched best the relatively heavier UK T2DM population without

having had the benefit of modern preventive medicine. UKPDS-

OM2 uses the same population as UKPDS-OM1 but longer

follow-up covering years when modern preventive medicines had

become more widely used. Nevertheless, UKPDS-OM2 under-

predicted outcomes in the UKPDS population and even the other

populations, suggesting it may be suitable for a relatively low risk

population. Fortunately, each of the sets of risk equations

performed generally well, and there may be value in having

multiple sets of risk equations to allow flexibility in tailoring health

economic evaluations to setting. More work is needed to explore

this further.

The results presented here are generally in line with validation

results from previous validation studies of T2DM models [14–18].

For example, the R2 values of 0.964–0.969 (depending on choice

of macrovascular risk equations) indicates a similar linearity of

predictions as the Archimedes model (0.99) [14], the CDM (0.89

and 0.90) [15,17], ECHO-T2DM (0.95) [18] and CDC-RTI

(0.99) [16]. The slope coefficient for the analyses using the

UKPDS-OM1 model was almost identical to 1 (0.996), despite an

underprediction of some macrovascular events. There was a

tendency to underprediction with the Swedish NDR macrovas-

cular risk equations (slope of 0.952), but a look at the scatterplot

suggests that it performs satisfactorily; especially for more recent

studies (underestimating UKPDS outcomes may be quite natural).

The slopes are slightly lower than the CDM (1.019), ECHO-

T2DM (1.067) and CDC-RTI (1.001). While some analysts have

chosen to restrict the intercept to its theoretical value of b0 = 0

[14–17], exclusion of the intercept is associated with well-known

statistical problems in linear regression, including an R2 that is not

limited to the [0,1] interval. To ensure that any differences versus

other validation applications are not spurious, we ran the

regressions without the intercept as well. Empirically, the effect

was small and the results are available on request.

A strength of the current analysis is the large number of studies

(12) and outcomes included (167) and the substantial heterogeneity

of the studies, which provides a broad base for assessing the

validity of a model in T2DM. Moreover, inclusion of results for 3

different risk equations provides a degree of confidence that, while

there are some differences, there is support for use of each of the

sets of risk equations.

A weakness of this analysis, as with previous validation studies,

was the lack of published data for some model parameters, which

may have led to differences between the simulated cohort and the

characteristics of the actual patients in the study. This is

particularly difficult for some of the RCTs, for example

ACCORD and ASPEN, which had complicated, multi-part

inclusion and exclusion criteria. As noted, throughout, the cohort

modeling approach imposes further limitations on our ability to

capture patient heterogeneity, though the relatively favorable

results suggests that the trade-off in performance versus a micro-

simulation modeling approach do not appear insurmountable. It

should also be noted that this study, like other validation studies in

T2DM, focused only on the ability of the model to predict

mortality, microvascular and macrovascular complications. Vali-

dation of utility and costs was not considered owing to a lack of

relevant published data to replicate.

Conclusions

The IHE Cohort model of Type 2 Diabetes was subjected to

extensive validation testing and the results were generally in line

with the results of other models of T2DM. As many of these

models are much slower micro-simulation models, we have shown

that the trade-off in accuracy for speed is not necessarily that large.

We also found that there were differences by set of macrovascular

risk equations used, but that all performed reasonably well in

general (though the UKPDS-OM2 substantially underpredicted

the included macrovascular outcomes).
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