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Abstract

Driven by the increasing demands on data rate from applications, the wireless
communication standard has for decades been evolving approximately at a
pace of one generation per ten years. Following this trend, the ambitious plan
to replace the current cellular mobile network standard (4G) with the next
generation standard (5G) is going through the standardization phase and is
getting close to its actual deployment. Promised benefits associated with 5G
include higher data rates, lower latency, higher reliability, more connected
users, etc. One of the candidate technologies to enable these benefits is based
on massive Multiple-Input and Multiple-Output (MIMO).

Massive MIMO systems have base stations equipped with a large number
of antennas (hundreds or even more) serving multiple users simultaneously
in the same time and frequency resource. It provides higher spectral effi-
ciency and transmitted energy efficiency due to the large spatial multiplex-
ing and antenna array gain. However, massive MIMO requires simultaneous
processing of signals for all the antenna chains and real-time computations
involving large-size matrices. Compared to today’s small-scale MIMO, the
corresponding computational complexity can be orders of magnitude higher,
which inevitability leads to higher area cost and processing energy consump-
tion. Besides the inherently higher computational complexity, massive MIMO
also introduces new design challenges for the data storage system. For ex-
ample, the number of elements in the Channel State Information (CSI) matrix
can increase by hundreds of times. Moreover, to support high-throughput
matrix operations, the gap between computational capacity and the memory
bandwidth must be bridged. Sophisticated baseband processing algorithms
demand complicated data access modes and thus call for smart data storage
solutions.
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This thesis focuses on two important topics in digital baseband process-
ing: energy-efficient computing and organization of large matrices. System-
algorithm-circuit co-optimization is explored to meet the real-time compu-
tational requirements. In the first topic, the concept of adaptive energy-
quality scalable circuit is studied to trade between Quality of Service (QoS)
and energy consumption. At circuit design level, a multiplier supporting
three wordlengths is designed to provide run-time processing precision ad-
justment. At system and algorithm level, the concept of algorithm switching
is investigated. A resource scheduling scheme to switch between accurate and
approximative algorithms is developed to exploit the dynamics in the wireless
channel. As shown in a case study, 58% energy can be saved by applying this
method when implementing on a QR-decomposition processor. In terms of
data organization, the concept of parallel memories is applied to provide low-
latency, high-bandwidth, and highly flexible data access for massive MIMO
baseband processing. On top of this, on-chip channel data compression meth-
ods are proposed, which utilize the inherent sparsity in massive MIMO chan-
nel. As a case study, the presented algorithms are capable of saving about 75%
of storage requirement for a 128-antenna system with less than 0.8 dB loss in
performance. Based on the channel compression concept and various access
patterns supplied by parallel memories, a heterogeneous memory system is
designed and implemented (layout) using ST 28 nm Fully Depleted Silicon
On Insulator (FD-SOI). The area cost is 0.47 mm2, which is 58% smaller than
a memory system with the same capacity and without compression.

The energy-efficient computing and data organization of large matrices pro-
vides a promising methodology for the actual deployment of massive MIMO
baseband processor.
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1
Introduction

This thesis deals with the subject of wireless communication and digital cir-
cuit design. More specifically, this thesis discusses the implementation of dig-
ital baseband processing for the massive Multiple-Input and Multiple-Output
(MIMO) system, a key component in the 5th generation of wireless commu-
nication systems.

Nowadays, most people have witnessed the revolutionary change of wire-
less communication and are enjoying the convenience brought to the human-
ity. With the current wireless standard, it is common for an individual to es-
tablish an Internet connection and hold a data-intensive application like video
chat or online gaming with the help of a single handheld device. Meanwhile,
the data-rate demands in the forthcoming applications, such as self-driving
cars and mobile Virtual Reality (VR), exceeds the capability of the current
standards.

Driven by this ever-increasing data-rate demands from emerging applica-
tions, the upcoming 5G is being studied. Since the frequency spectrum has be-
come overcrowded and is highly priced, advanced transmission technologies
and algorithms with sophisticated computing demands are being included in
the 5G standard in a bid to improve spectrum efficiency.

Eventually, these complex algorithms have to be implemented by hard-
ware, and digital baseband processors are one of the essential components
for most current wireless transmission. It enables the reliable data exchange
between transceivers. The complex algorithms pose a higher requirement
on the performance of digital baseband processors. Luckily, the processing
performance can be satisfied, to some extent, by the development of chip fab-
rication technology. Transistors are the building blocks of digital circuits, and
its highest density is doubling approximately every two years [1]. The in-
crease in the number of integrated transistors makes it possible to design a
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2 Introduction

high-performance baseband processor.
However, hardware designers are encountering a number of challenges

when building a baseband processor, such as low energy consumption and
efficient data organization. Along with increased functionality, optimizing
energy consumption of baseband processors attracts more attention, while
primary concerns include battery-life, energy reservation, etc. Another chal-
lenge to the high-performance processor is the speed of data access rather
than computing itself, which is also known as the long-lasting “Memory Wall
” [2] problem.

The main content of this thesis is hardware implementation in the context
of massive MIMO baseband processing. Massive MIMO is one of the candi-
date techniques used to achieve the aggressive 5G roadmap, which promises
orders of magnitude improvements in both spectrum and transmitted energy
efficiencies by deploying a large number of antennas at the base station side.
This inevitable introduces complex matrix-wise operations and poses serious
challenges to the mentioned energy consumption and data organization.

1.1. SCOPE OF THE THESIS

The goal of this thesis is to tackle the hardware design challenges in design-
ing the massive MIMO baseband processor. The main methodology is cross
system, architecture, and circuits level optimization.

The central part of this thesis mainly addresses the following questions:

• How to lower the energy consumption of baseband processing by ex-
ploring features in the wireless channel?

• How to efficiently organize data to support a high degree of parallelism
in massive MIMO digital baseband processing?

• How to exploit wireless propagation characteristics in order to lower
the hardware requirement, e.g., reduce required memory capacity?

• How to implement an appropriate memory system for massive MIMO
baseband processing?

Digital baseband processing includes many components such as digital front
end, Orthogonal Frequency-Division Multiplexing (OFDM) modulation/de-
modulation, channel estimation, MIMO processing, interleaving/de-interleaving,
error correction coding and decoding, etc. Among them, this thesis mainly fo-
cuses on the MIMO processing, i.e., detection and precoding.
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1.2. CONTRIBUTION AND THESIS OUTLINE

This thesis is not limited to performing optimization in several virtually sep-
arated levels, e.g., circuit level and algorithm level. Cross-level optimization
is carried out to break these boundaries and enables a more optimized design
of an overall system. For example, the wireless channel characteristics are
generally utilized for designing algorithms, which only indirectly affect the
hardware implementation. This thesis directly exploits the wireless channel
characteristics to benefit hardware implementation.

This thesis consists of three parts. The first three chapters give an overview
of the research field. Chapter 2 briefly introduces the area of wireless com-
munication, including channel properties, wireless transmission technologies,
and digital baseband processing algorithms. At the end of Chapter 2, the op-
erations of baseband processing are profiled to make a connection between
baseband processing and digital circuits. Chapter 3 is an overview of digital
circuits design, explaining several hardware optimization schemes for better
performance or energy efficiency.

Part I presents energy-quality scalable circuits and computing for wireless
communication, including a flexible multi-mode multiplier and a resource
scheduling scheme for the energy-quality trade-off.

Part II presents the design of a memory system for massive MIMO. The
three chapters in this part describe techniques to support multi-mode access
and memory compression, which are followed by demonstrating an area-
efficient high-bandwidth on-chip memory system for massive MIMO.

PART I: ENERGY-QUALITY SCALABLE COMPUTING FOR BASEBAND PRO-
CESSING

The concept of Energy-Quality (EQ) scalable computing is broad, which can
be regarded as a new design dimension for energy reduction [3]. In practical
cases, the “quality” of a system refers to the quality of provided service, which
usually means the rate of errors or the speed of data transmission in the
scope of wireless communication. There exists a potential trade-off between
provided quality and energy consumption for a digital baseband processing.
This thesis presents two enabling techniques for EQ scalable computing on
both circuit and algorithm levels.

In digital signal processing, dynamic wordlength arithmetic units provide
an opportunity for exploring the energy reduction with a trade-off between
energy consumption and data accuracy. As the dominant arithmetic com-
puting logic in the digital signal processing, a high-performance multi-mode
multiplier, which supports three types of wordlengths, is presented.

From an algorithm perspective, switching between complex and simple al-
gorithms provides flexible control of “energy-quality” trade-off. An algorithm
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switching strategy is proposed to assign the available computing resource for
the LTE-Advanced (LTE-A) downlink channel processing. In order to achieve
energy optimization while keeping a stable throughput, this strategy is com-
bined with the use of Dynamic Voltage and Frequency Scaling (DVFS). The
proposed solution is evaluated using an in-house reconfigurable baseband
processor [4].

The contents of Part I are based on the following publications:

• Y. Liu, L. Liu, V. Öwall, and S. Chen, “Implementation of a dynamic
wordlength SIMD multiplier,” 2014 NORCHIP, Tampere, 2014, pp. 1-4.

• Y. Liu, H. Prabhu, L. Liu, and V. Öwall, “Adaptive resource scheduling
for energy efficient QRD processor with DVFS,” in 2015 IEEE Workshop
on Signal Processing Systems (SiPS), 2015, no. 2, pp. 1–6.

PART II: MEMORY SYSTEM FOR MASSIVE MIMO BASEBAND PROCESS-
ING

This part presents efficient data organization for massive MIMO baseband
processing. Massive MIMO baseband processing algorithms contain matrix-
wise operations, leading to a variable of memory access modes. Moreover,
large-size channel matrices require large memory capacity and high memory
bandwidth. The contribution of this work includes a parallel memory system
and the corresponding data allocation scheme to handle the large matrices in
massive MIMO. Moreover, channel data compression algorithms are studied
for saving on-chip memory. As a case study, a heterogeneous memory system
enabling both compression and flexible access has been implemented.

The contents of Part II are based on the following publications:

• Y. Liu, O. Edfors, L. Liu, and V. Öwall, “Reducing On-chip Memory for
Massive MIMO Baseband Processing using Channel Compression,” in
2017 IEEE 86th Vehicular Technology Conference: VTC2017-Fall, 2017.

• Y. Liu, L. Liu, and V. Öwall, “Architecture Design of a Memory Sub-
system for Massive MIMO Baseband Processing,” in IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 10, pp.
2976-2980, Oct. 2017.

• Y. Liu, O. Edfors, L. Liu, and V. Öwall, “An Area-efficient On-chip
Memory System for Massive MIMO using Channel Data Compression,”
(submitted to IEEE Transactions on Circuits and Systems I: Regular Pa-
pers)



2
Digital Baseband Processing

In recent decades, wireless transmission technology has released a booming
evolution and is pacing with the “Information Age” which deeply influences
human life. Mobile communication standards are updated from generation
to generation about every ten years. The first generation cellular phone sys-
tem (1G), Nordisk MobilTelefoni (NMT), provided a voice-only transmission in
1981 [5]. Launched in 1991, the second generation (2G) replaced the ana-
log modulation with digital communications, leading a transmission speed
of 10 kbit/s. The third generation (3G) provides data transmission at rates of
144 kbit/s∼ 5 Mbit/s, which is comparable to cable modems [6]. This data-
rate boosting continues, and the current standard (4G) has reached a peak
download speed of 1 Gb/s. The upcoming standard (5G) promises a speed
of more than 10 Gb/s and is planned to be commercially deployed at around
2020.

Though 5G is still under standardization process, theoretical analysis and
field tests have verified the effectiveness of several key enabling technologies.
5G not only promises increases in data rates but also in coverage, spectral ef-
ficiency, number of supported devices, combined with a significant reduction
in latency. These promising benefits are enabling many new applications that
require intensive data exchange, including self-driving cars, mobile VR, real-
time high-definition video, etc., as shown in Figure 2.1. It is hard to imagine
how to approach these applications without 5G.

To be able to deploy, wireless technologies have to be mapped to the pro-
cessors first. Before going into the details of hardware implementation, this
chapter briefly introduces concepts in the field of wireless communication,
including wireless channels, candidate transmission techniques, and digital
baseband processing. In the end, a short operation profile on digital base-
band processing is discussed.

5



6 Digital Baseband Processing

Figure 2.1. Promised applications of 5G for 2020 and beyond (source:
www.itu.int).

2.1. WIRELESS CHANNEL

Figure 2.2 illustrates a model of wireless communication systems. To transmit
information through the atmosphere, the transmitter converts the digital data
into analog waveforms. Those waveforms then propagate in the atmosphere
in the form of electromagnetic waves and are received by antennas at the re-
ceiver side. On their way from transmitters to receivers, signals are reflected
and scattered by objects, such as large buildings and mountains. This results
in multiple transmission paths between transmitting and receiving antennas,
which is referred as multi-path propagation [7]. Based upon the received dis-
torted and noisy signals, the receiver estimates transmitted data with as few
errors as possible. An error occurs when the distortion and noise become so
serious that the detection result at the receiver side is different from trans-
mitted data. Bit-Error-Rate (BER) is an important parameter to quantify the
transmission quality, which is the number of error bits divided by the number
of transmitted bits.

The channel capacity, Cchannel, is an important parameter to describe a trans-
mission system, which represents the highest data-rate at which information
can be reliably transmitted. For example, according to the Shannon–Hartley
theorem [8], the capacity of an Additive White Gaussian Noise (AWGN) Sin-
gle Input Single Output (SISO) non-fading channel is

Cchannel = Blog2 (1 + γ) [bit/s], (2.1)
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Figure 2.2. Illustration of a wireless digital communication system model.

where B is the physical bandwidth in the frequency domain, and γ is the re-
ceived Signal-to-Noise power Ratio (SNR). SNR is usually expressed in deci-
bels (dB),

γdB = 10log10γ, (2.2)

and we use dB to quantify SNR in this thesis.
One important fact which can be observed from (2.1) is that the capacity

Cchannel linearly increases with the bandwidth B. From the 2G standard to the
current 4G standard, it is one of the preferred methods of data-rate speedup.
The bandwidth expands 500× from 20 kHz in the 2G standard to 100 MHz in
the 4G standard.

MULTI-PATH PROPAGATION

Propagation paths can be abundant in real life, and each path has a distinct
attenuation, phase shift, angle of departure at the transmitter, and angle of ar-
rival at receiver. Received signals are the sum of transmitted signals from all
propagation paths. One important classification method for propagation envi-
ronments is whether there is a Line-Of-Sight (LOS) connection between trans-
mitter and receiver. Figure 2.3(a) shows illustrations of LOS and Non-Line-
Of-Sight (NLOS) conditions. In NLOS conditions, the LOS path is blocked by
obstacles, such as buildings, mountains, or trees.

Since the lengths of transmission paths vary in multi-path propagation en-
vironments, a transmitted signal arrives at the receiver as multiple copies at
different times. This results in that signals are super-positioned at the receiver
and may add up both constructively or destructively. The received signal dis-
persion leads to Inter Symbol Interference (ISI). In the early standards (e.g.,
2G), the ISI causes errors and need to be fixed by an equalizer. However, in
recent years, the multi-path propagation has been exploited to increase data
rates by deploying multiple antennas, and this will be described later.
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v
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Figure 2.3. (a) LOS and NLOS conditions. (b) Illustration of Doppler shift.

TIME-VARIANT CHANNELS

In general, signal attenuations and phase shifts of propagation paths change
with time. This may be caused by the movement of transmitter or receiver.
Even if the transmitters and receivers are fixed, scatterers may move. These
conditions bring up time variations in wireless channels.

If we consider the base station as a reference, the relative movement of the
terminal (see Figure 2.3(b)) leads to a change in the frequency of a received sig-
nal, called the Doppler shift. The frequency shift is proportional to the speed
of the terminal in the direction of signal propagation. The maximum Doppler
shift ( fmax) occurs when the direction of terminal movement is aligned with
the direction of signal propagation and can be expressed as

fmax = fc
v
c0

, (2.3)

where fc is the transmitted signal frequency, v the the terminal speed, and c0
the speed of light. The coherence time (Tc) quantifies the time variation of the
channel, i.e., how fast the channel changes. In general, it can be approximated
as

Tc ≈
1

fmax
. (2.4)

2.2. WIRELESS TRANSMISSION TECHNOLOGIES

Due to the frequency-selective nature of multi-path propagation channels [9],
splitting a wide bandwidth channel to several narrower ones, e.g., using
OFDM [10], greatly alleviates the effect of ISI when compared to a single wide-
band carrier channel. Since the available bandwidth resource is limited, the
spatial resource is utilized to boost the data-rate in addition to the frequency
domain. For example, MIMO increases the capacity using multiple transmit
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Figure 2.4. Subcarriers in conventional FDM and OFDM. ∆B is the bandwidth
of subcarriers.

and receive antennas. MIMO and OFDM technologies are jointly deployed in
the current 4G standard and are under consideration for the upcoming 5G.

2.2.1. ORTHOGONAL FREQUENCY-DIVISION MULTIPLEXING

In 1966, Chang [10] proved that Inter-Carrier Interference (ICI) free multiplex-
ing can be performed in the frequency domain with overlapping spectra – a
principle later adopted in OFDM. The OFDM scheme is one of the Frequency-
Division Multiplexing (FDM) schemes which use several parallel subcarriers
to carry data. The key idea of FDM is to divide the occupied bandwidth into
several subcarriers without introducing ICI. Unlike the non-overlapping prop-
erty in FDM, subcarriers in OFDM are closely spaced and overlapping in the
frequency domain but still orthogonal to each other subcarriers, as illustrated
in Figure 2.4. Because of this arrangement, the spectral efficiency of OFDM
schemes is higher than of conventional FDM schemes. Another advantage of
OFDM is that its orthogonality allows the modulator and demodulator to be
efficiently implemented using the Fast Fourier Transform (FFT).
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Figure 2.5. Illustration of small-scale MIMO system: (a) A four-antenna
MIMO router (source http://www.tp-link.se) (b) System model
of a 4×4 MIMO.

2.2.2. SMALL-SCALE MIMO SYSTEMS

By exploiting the characteristic of multi-path propagation in the spatial do-
main, MIMO multiplies the capacity of transmission in the same bandwidth
by using multiple transmitting and receiving antennas [11] [12]. Similar to
OFDM, it is a popular component in current wireless transmission standards,
including IEEE 802.11n and IEEE 802.11ac (Wi-Fi), HSPA+ (3G), LTE (4G),
etc [13] [14]. Since the numbers of antennas at each side are usually less than
ten under current standards, this kind of MIMO systems is referred as small-
scale MIMO systems in this thesis. An important usage of small-scale MIMO
systems is called spatial multiplexing, where each antenna transmits indepen-
dent data signals separately to boost the data rate [12]. It is necessary to note
that simultaneously supporting multiple users with small-scale MIMO, i.e.,
Multi-user MIMO [15], is excluded from this thesis.

Figure 2.5 illustrates a 4× 4 MIMO system. Considering an M × M nar-
rowband MIMO system, the received signals y = [y1, y2, y3, ..., yM]T can be
expressed as

y = Hx + n

=


h11 h12 h13 ... h1M
h21 h22 h23 ... h2M
h31 h32 h33 ... h3M
... ... ... ...

hM1 hM2 hM3 ... hMM




x1
x2
x3
...

xM

+


n1
n2
n3
...

nM

 ,
(2.5)

where H ∈ CM×M is the complex Channel State Information (CSI) matrix rep-
resenting the propagation between each transmitter and receiver antenna, and
hij encapsulates the attenuation and phase shift between the j-th transmitting
antenna and the i-th receiver antenna in a singe complex number. x ∈ CM×1 is
the transmitted signal and n ∈ CM×1 the noise vector. Due to the multi-path
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Figure 2.6. Illustration of massive MIMO system: (a) An assembled mas-
sive MIMO testbed at Lund University (LuMaMi) [16] (b) System
Model of an M× K system.

propagation, the amplitude and phase of each hij can be distinct.
When the transmitter is unaware channel information and all the transmit-

ter antennas are assigned equal power, the capacity of the spatial-multiplexing
MIMO system becomes

C = log2

[
det

(
IM +

γ

M
HHH

)]
[bit/s/Hz], (2.6)

where IM is an M×M identity matrix. Assuming a full rank H and M iden-
tical eigenvalues, the capacity results in

C = Mlog2 (1 + γ) [bit/s/Hz]. (2.7)

The above equation shows that capacity is linearly proportional to the number
of antennas. MIMO is one of the preferred methods to increase data-rate,
and the maximum MIMO configuration is up to 8× 8 in the current LTE-A
standard.

2.2.3. MASSIVE MIMO SYSTEMS

Though more antennas lead to a higher transfer rate, it is infeasible to deploy
many antennas on handheld terminals like cell phones, because of the lim-
ited physical size. In order to further increase the data rate of the entire cell,
massive MIMO (also known as Large-Scale Antenna Systems or Very Large
MIMO) is a promising technology for the next generation mobile network
(5G) [17]. Most massive MIMO systems are assumed to have an antenna ar-
rays containing hundreds of antennas at the base station while serving ten or
even more single-antenna terminals. In 2010, Marzetta [18] first discussed the
possibility of increasing the number of antennas in the base station to further
exploit the spatial domain resource. Results show that the inter-user inter-
ference disappears when the number of base station antennas grow without
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bounds. After that, relevant research has been conducted continuously during
the past few years, and several testbeds have been established as a proof-of-
concept, including Argos [19], LuMaMi [16], etc. These studies have shown
that massive MIMO gives a great improvement over existing 4G system in
terms of spectral efficiency.

An M antenna massive MIMO base station serving K single-antenna termi-
nals is shown in Figure 2.8(b). The user-received downlink signal y ∈ CK×1 is

y = Hx + n, (2.8)

where H ∈ CK×M is the downlink CSI matrix, x ∈ CM×1 the transmitted
signal from the M base station antennas, and n ∈ CK×1 the noise. In most
cases, we assume M >> K to achieve better inter-user inference cancellation
in massive MIMO. In the downlink, precoding is employed to separate data
streams for each user, i.e., to eliminate inter-user interference.

Under above assumptions, linear precoding has a near-optimal performance
and can be expressed as

x = Ws, (2.9)

where W ∈ CM×K is the precoding matrix and s ∈ CK×1 is the K symbols to
the users to be precoded.

For our simplified case, with equal power allocation among users, the
achieved capacity becomes [20]

C =
K

∑
i=1

log2

1+
γ
∣∣∣[HW]i,i

∣∣∣2
γ

K
∑
j=1
j6=i

∣∣∣[HW]i,j

∣∣∣2+M

 . (2.10)

Massive MIMO has great advantages when compared to conventional small-
scale MIMO. In summary, these advantages include but not limited to:

• Large Capacity: The aggressive spatial multiplexing scheme in massive
MIMO can increases the capacity by ten times or more.

• Inter-user Interference Canceling: When M >> K and M → ∞, the
rows of H become asymptotically orthogonal, and thereby we have

HHH ≈ MIK. (2.11)

Assuming a precoding matrix W = HH , the received signals can be
expressed as

y ≈ Ms + n, (2.12)

where the inter-user interference is eliminated.
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Figure 2.7. FDD and TDD system.

• Power Efficiency: The transmitted power in a massive MIMO system
can be scaled down proportionally to the number of antennas in the
base station without loss of performance when compared to a SISO
system [21].

• Cheaper Hardware: With massive MIMO, the high-power and expen-
sive amplifiers used in small-scale MIMO system for driving the anten-
nas can be replaced by many low-power and cheap amplifiers. Besides,
the accuracy requirement of each amplifier is relevantly reduced.

• Channel Hardening: With the large number of antennas at the base
station, the spatial diversity leads a fading channel behaves like a non-
fading channel [22], i.e., channel hardening. It improves the reliability
of the transmission in massive MIMO.

FDD AND TDD

Figure 2.7 shows the main methods for duplexing in cellular networks, namely
Frequency Division Duplexing (FDD) and Time-Division Duplex (TDD). In an
FDD system, the uplink and downlink signals are transmitted at different fre-
quencies. TDD systems allocate different time slots for uplink and downlink
on the same frequency. Both TDD and FDD have advantages and disadvan-
tages [23]. For example, FDD provides a higher coverage than TDD, thereby
needs fewer base stations to cover same area [24]. Besides, up and downlink
channels in TDD systems can be considered reciprocal and the need for CSI
feedback can be eliminated. In FDD, receivers have to feed back CSI to trans-
mitters if CSI is needed at the transmitter side, since the uplink and downlink
located on different frequencies and uncorrelated.
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2.3. OVERVIEW OF DIGITAL BASEBAND PROCESSING

Advanced wireless technologies provide the possibility of transmitting a large
amount of data in the atmosphere. In real implementations, all these tech-
nologies build on digital baseband processing to detect “what was sent” and
decide “what should be sent.” In this section, we discuss the digital base-
band system in the context of massive MIMO while taking small-scale MIMO
as a reference. Since the standardization progress of 5G is still on-going, we
make assumptions that except the massive MIMO concept, most features and
data flows are inherited from 4G standard in the baseband processing. Figure
2.8 shows the schematic of a TDD OFDM massive MIMO system, where the
upper half represents the base station and lower part represents the single-
antenna terminal. For simplicity, most non-digital components are omitted
in the figure, including the RF front-end. The A/D and D/A perform the
conversion between analog signals and digital data per antenna.

2.3.1. BASE STATION SIDE

The base station and terminals both play the role of transmitters and receivers.
For small-scale MIMO, channel estimation and detection appear on both sides.
while most digital baseband processing, especially the MIMO processing part



2.3. Overview of Digital Baseband Processing 15

in TDD massive MIMO is centered at the base station.

OFDM MODULATION/DEMODULATION

OFDM demodulation collects the sampled time-domain digital signals from
the uplink and transforms them to frequency-domain (aligned by subcarri-
ers) using an FFT. In contrast, OFDM modulation transforms the frequency-
domain data to the time-domain using an Inverse FFT (IFFT). For small-scale
MIMO or massive MIMO systems, each antenna needs an OFDM modula-
tor/demodulator pair.

CHANNEL ESTIMATION

The base station relies on the knowledge of channel information (often rep-
resented as a CSI matrix) to precode the downlink symbols and detect the
uplink data. The principle of channel estimation is to estimate how the chan-
nel attenuates and rotates known signals, e.g., pilots, during transmission.

DOWNLINK PRECODING

Unlike small-scale MIMO, the downlink symbols require additional precoding
in massive MIMO. There are three commonly-used linear precoding schemes,
Matched-Filtering (MF), Zero-Forcing (ZF) and Minimum Mean Squared Er-
ror (MMSE) [25]. The formula expressions of these schemes can be presented
as

W =


HH MF
H† = HH(HHH)−1 ZF
HH(HHH + αIK)

−1 MMSE.

(2.13)

Among them, the MF scheme maximizes the received SNR at each terminal
while the ZF scheme eliminates the inter-user interference. In between these
two, MMSE is a compromise scheme that makes a trade-off between the SNR
and canceling the inter-user interference, where α is a parameter relevant to
SNR.

Sending pilot symbols from every antenna in a base station consumes more
time than from users. Therefore, channel estimation in downlinks takes more
resource than in uplinks. In (2.13), the precoding matrix W is computed based
upon the downlink CSI matrix H. However, it is a great burden for a massive
MIMO system to obtain channel information through channel estimation in
the downlink. Furthermore, the channel estimation results need to be fed back
from each user through the uplink, occupying precious time and frequency
resources. Therefore, in a TDD massive MIMO system, the downlink CSI
matrix is usually obtained from the uplink CSI matrix with the reciprocity
property of the channel [26].
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UPLINK DETECTION

In a MIMO system, detection is based on the consideration of all received sig-
nals from antennas. It becomes more complicated with the increased number
of antennas. Detection can be categorized as linear and non-linear. Non-linear
detection is more complex than linear detection. For a small-scale MIMO,
non-linear detector, i.e., sphere detectors [27], is used for its near-optimal per-
formance.

In massive MIMO, simple linear detectors also provide good performance.
Similar to downlink precoding, detectors include MF, ZF, or MMSE are usu-
ally used in the uplink detection. Non-linear detections are rarely used since
the complexity has an exponential increase with the number of antennas.

2.3.2. TERMINAL SIDE

In small-scale MIMO systems, the baseband component in the base stations
and terminals are mostly symmetric, i.e., both are equipped with channel
estimation and data detection. However, in massive MIMO systems, most
computation-intensive operations are allocated in the base station side. On
the terminal side, most data detection and channel estimation are trivial in
nature, and no precoding is demanded. Since most power consuming base-
band processing is omitted, one direct benefit is the extension of terminal
battery life.

2.4. OPERATION PROFILING

Table 2.1 lists the most common operations and their computational complex-
ity in baseband processing for massive MIMO. For example, OFDM modu-
lation/demodulation introduces FFT/IFFT, and the downlink precoding in
(2.13) introduces matrix-wise multiplications, additions, and inversions. Most
listed operations are matrix-wise or vector-wise, and most operands are rep-
resented in complex-valued format. In Table 2.1, vector- and matrix-wise op-
erations have operand vectors of length n and operand matrices of n × n,
respectively. O(·) represents computational complexity. For example, matrix
multiplications have a computational complexity of O(n3) which denotes the
number of scalar multiplications in one n× n matrix multiplication is propor-
tional to n3.

The sizes of input data are proportional to or equal to the number of users
or antennas in the base station, which is single-digit in small-scale MIMO and
comes to a magnitude of hundreds in massive MIMO. Since the complexity
order of operations is on O(n2) ∼ O(n3), overall computational complexity
has a significant increase when n grows from four to hundreds. From hard-



2.4. Operation Profiling 17

ware point of view, this sophisticated computing in combination with the hard
timing constraints poses a great challenge to the computational performance
of processors

TIMING CONSTRAINTS

In digital baseband processing, all listed operations are repetitively executed
with respect to a strict computing deadline. The processing requirement is
real-time, and latency constraints are usually very strict. Containing one
or multiple operations, each baseband stage processes results from previous
stages and pass the output to the next stage as input.

The expected latency of 5G system is as low as 1 ms [29]. In this regard,
the time left for digital baseband processing is on the order of hundreds of
microseconds. Within this time constraint, digital baseband processors have to
perform OFDM demodulation, channel estimation, downlink precoding, and
OFDM modulation. Failing to comply with timing constraint in any stage,
e.g., fail to accomplish OFDM modulation before the corresponding symbol
has to be transmitted, the frame structure will become corrupt, and the overall
system will not be able to transmit or receive data.

INTENSIVE DATA FLOW

The sizes of input and output data are proportional to the number of users
or antennas in the base station. For example, CSI matrices H are rapidly
updating and frequently accessed. The CSI matrix size of a 128× 16 massive
MIMO system is about one hundred times larger than a 4 × 4 small-scale

Table 2.1. Operations and their Complexity in the Digital Baseband [28]

Data Type Operation Complexity

Vector-Wise

FFT/IFFT O(nlog2n)

Vector Addition/Subtraction O(n)
Vector Multiplication O(n)

Sorting O(nlog2n)

Selection O(nlog2n)

Matrix-Wise

Matrix Multiplication O(n3)

Matrix Addition/Subtraction O(n2)

Inversion O(n3)

QRD, SVD O(n3)
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MIMO in the 4G standard. In the 4G standard, the refreshing interval of CSI
matrices is about 0.25 ms, which is the same order of magnitude in massive
MIMO since we expect them to operate under the same conditions.

MULTIPLICATION DOMINATED COMPUTING

Multiplications, or more specifically, Multiply-ACcumulate (MAC) are the
most common function in digital baseband algorithms. It not only exists
in vector-wise and matrix-wise multiplications, but also in FFTs, matrix de-
compositions, and even matrix inversions. Besides, it is quite easy to find
data-level parallelism where several multiplications can be executed simulta-
neously.

PREDICTABILITY

With a few exceptions, operations in digital baseband processing are highly
regular and predictable. First of all, the size of input and output data in each
stage as well as desired processing speed are fixed. Secondly, the execution
time of each operation is determined. Programmers and hardware designers
can accurately estimate the execution time of each stage. At last, data access
patterns are predicable and irrelevant with inputs. For example, the (2.9)
explicitly denotes a multiplication between W and s without alternatives.

This chapter reviewed basic concepts of wireless communication and dis-
cussed the digital baseband processing part in massive MIMO. The operations
in the MIMO processing are characterized. Let us now look at the hardware-
level implementation of these algorithms.



3
Digital Integrated Circuit

After its invention in the 1950s, the integrated circuit has been put into the
newly invented computer system. Mainly due to the semiconductor device
fabrication technology, the computational performance of processors has been
improved at an explosive speed. Advances in fabrication technology shrink
the size of transistors, enabling more transistors to be integrated on a chip.
According to Moore’s prediction in 1965, the number of transistors on one
chip is doubling almost every two years1. This is known as “Moore’s Law”
and has been proved to be true during the last decades. For example, the
transistor count of the Intel Broadwell Xeon produced in 2017 exceeds 7.2
billion, approximate 1000 times more than the Intel Pentium II Klamath which
was introduced 20 years ago.

In a modern processor, most components are digital circuits, and all infor-
mation is coded in a binary form2, where high voltage represents “1,” and low
voltage represents “0.” Figure 3.1 abstracts different design level for digital
integrated. Logic gates are generally considered as the basic unit in large scale
integrated digital circuits. Usually, designers use standard cell libraries sup-
plied by fabricators to reduce the design time and improve reliability. With
logic gates, designers can build up a variety of complex functional units, e.g.,
multipliers which product the multiplication of inputs and registers which
store the data temporarily. At a higher level, connected functional units com-
pose processors, which can be classified according to its architectures and
target applications. One example is the well-known General Purpose Pro-
cessor (GPP), which is designed for multiple applications and provides high

1He predicted a doubling every year first and then revised to doubling every two
years.

2There exists ternary systems [30], but they are only for research purpose now.

19



20 Digital Integrated Circuit

Self-driving

Scientific
Computing

Weather
Forecast

Gaming

NOR gate

a
b c

ab c
00
01
10
11

1
1
1
0

PMOS

NMOS

Transistors

Truth Table

x
A

B
C

Multiplier

C=A×B +
A

B
C

Adder

C=A+B
A B

Register
clk

Logic Gates &Memory Cells Function Units

General Purpose 
Processor

CPU

Digital Signal
Processor

DSPApplication 
Specific 

Integrated Circuit

ASIC

Processors

Baseband
Processing

Graphic/
Video

IoT

VR

Applications

wl

BLB BL
6T SRAM 

cell

add rw

in out
Memory

gate/cell

design

circuit

design

architecture

design

algorithm

mapping

NAND gate

a
b

c

ab c
00
01
10
11

1
0
0
0

Truth Table

Figure 3.1. Design levels for digital circuits designers.

programmability. Another example is Application Specific Integrated Circuit
(ASIC), which is customized for a particular application. It is usually not
programmable and has high efficiency.

During the design stage, hardware designers are responsible to jointly con-
sider design specifications and hardware constraints. A suitable Very-Large-
Scale Integration (VLSI) architecture need to be chosen while ensuring the
functionality of applications. The most common design specifications include
latency, throughput, flexibility, accuracy, etc. From hardware aspects, the pro-
cessor is limited by power consumption, chip area, price budget, and available
fabrication technology, etc. Advanced fabrication technology allows designers
to place transistors at a higher density, providing more computational capac-
ity. However, the expense per unit area increases significantly with more
advanced fabrication nodes.

The application specification and hardware constraint mutually influence
each other. For example, high throughput applications generally require high
degree of parallelism in circuit and high working clock frequency, which lead
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to a larger area and higher power consumption. In this chapter, we will survey
popular technologies employed in modern processors, including architecture
level and circuits level, which are relative to baseband processing as a back-
ground introduction. In the discussion of each technology, we will first review
how these technologies are used in other applications and then discuss more
specifically the application of baseband processing.

3.1. ARCHITECTURE LEVEL TECHNOLOGIES

3.1.1. PARALLEL COMPUTING

The concept of parallel computing has been exploited for decades and is one
of the widely used methods to improve the throughput and energy efficiency.
For computing-intensive applications, exploiting the possibility of parallel ex-
ecution is an essential approach to accomplish the latency and throughput
requirement.

For programmable processors, the possible parallelism can be categorized
into Instruction Level Parallelism (ILP), Data Level Parallelism (DLP), and
Task Level Parallelism (TLP). ILP is mainly exploited by executing more than
one instruction simultaneous. Examples are Superscalar [31], where the in-
struction issue is controlled by hardware, and Very Long Instruction Word
(VLIW) [32], where the parallelism among instructions are exploited by the
compiler. TLP is mainly utilized in a multi-core system that runs multiple
tasks across different cores simultaneously.

The main scope of this thesis is focused on DLP, which largely exists in
baseband processing for wireless communication.
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As is listed in Table 2.1, algorithms of MIMO digital baseband processing
are mostly vector-wise operations and matrix-wise operations and full of DLP.
One of the most popular architectures for exploiting DLP is Single Instruction
Multiple Data (SIMD) [33]. Such architectures have been widely used in main-
stream processors, such as GPP, Graphics Processing Unit (GPU), and Digital
Signal Processor (DSP). Illustrated in Figure 3.2, a SIMD architecture executes
the same instruction on multiple functional units simultaneously. The right
side of Figure 3.2 shows a typical instruction of vector addition. Two vectors
of length four are taken as inputs, and the addition is accomplished with only
one single instruction. Before execution, the two operand vectors must be
loaded in the same order which may require additional shuffling.

SIMD harvests a direct speedup without introducing complex control logic.
The theoretical speedup rate equals to the number of functional units. In
terms of energy reduction, the energy consumed by the control logic, e.g., in-
struction fetch and decoding, is apportioned by multiple operations, thereby
the energy consumption per operation is decreased. Although SIMD pro-
vides both performance improvement and energy reduction, its efficiency is
restricted by the following factors in practical applications [34]. First of all,
SIMD only exploits DLP of the algorithms. For an application that is lacking
DLP, the utilization of aligned functional units with the same functionality
will not be used efficiently. Secondly, it is very important for a SIMD pro-
cessor to have all the operands ready for execution simultaneously. This may
lead to unaligned memory access or introduce extra waiting time for data
fetch. Besides, the degree of DLP is not always a multiple of SIMD width,
which means that the utilization of functional units is not always 100% dur-
ing execution.

3.1.2. MEMORY HIERARCHY

In order to hold inputs and intermediate results during computations, digi-
tal integrated circuit constitutes memories and registers to store information.
The data organization method, i.e., memory hierarchy, has a great impact on
the performance of the entire processor. This subsection briefly introduces
common memory hierarchies and its characteristics.

In most modern processors, data is expressed in a binary string, and the
smallest unit is a bit. Bit information is stored in two-state storage devices
composed of several transistors. The capacity of storage devices is defined in
terms of bits, e.g., kilobit(kb), megabit(Mb).

Data storage devices can be classified into registers, Static Random-Access
Memory (SRAM), Dynamic Random-Access Memory (DRAM), Read-Only
Memory (ROM). Two important properties of storage devices are latencies
and throughputs. Latencies are the delay between the read/write request and
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the moment of request accomplishment. Throughputs are defined as the size
of accessed data per unit time. Faster storage devices usually have a higher
hardware cost and thus smaller capacity, and slower storage devices usually
have a smaller hardware cost and higher capacity. For example, registers gen-
erally consist of dozens of transistors and has a latency of nanoseconds. On
the other hand, DRAMs have higher density and lower hardware cost cells
which consist of down to one transistor and one capacitor for storing each bit.
Memory systems consist of one or multiple memory banks, which are pieces
of individual circuits with independent addressing.

As been discussed, parallel computing speeds up the calculation while ex-
pecting that all the operands are available immediately. In practice, the idea of
speedup by unlimitedly expanding the number of parallel functional units is
always limited by the data supply bandwidth. Therefore, a multilevel mem-
ory hierarchy, composed of a variety of memories with different sizes and
speeds, is an economical and practical method to organize data and has been
widely used in modern processors. The main goal is to reduce the hardware
cost per bit to the cheapest memories while providing a speed close to fastest
memories.

Figure 3.3 shows the levels of memory hierarchies as well as the typical
capacity and response time. Memories are mapped in a sequence from faster
and smaller to slower and larger, where registers are directly connected with
calculation units. Typically, most off-chip main memories consist of DRAMs,
and nearly all caches are composed of SRAMs. In order to reduce latency,
preloading before computing is necessary. When desired operands are not in
registers, the computational progress will stall and wait until the operands are
fetched from caches. If the operands are not in caches, then the access request
will be passed to lower memory levels until being found. For most digital
baseband processing, the data accesses are predictable. This property makes
it possible to explicitly pre-fetch data without complex cache replacement
policies used in GPPs.

3.2. CIRCUIT LEVEL TECHNOLOGIES

The power consumption of processors increases significantly with ever more
complicated functionality and higher performance, challenging the package,
cooling system, and power delivery. An extreme example, TianHe-2 [35],
which is one of the most powerful computers in the world, has a power con-
sumption of 24 MW. This magnitude of power consumption equivalents to a
medium-sized city and the cooling system consumes close to one-fourth of the
power. For digital baseband processing, though the magnitude of power con-
sumption is not as high as a supercomputer, lowering the power consumption
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Figure 3.3. Typical memory hierarchy in a modern processor. Note that the
size and speed are current typical numbers (in 2017) and great
differences might exist depending on systems.

benefits in many domains, e.g., lower electricity costs and longer battery life
for a mobile terminal. Power consumption has drawn the attention of hard-
ware designer, and there are many low-power technologies in circuit level.

Most large-scale digital integrated circuits are synchronous. The global
clock signal is generally used to conduct register level transfer. Generated
by an electronic oscillator and Phase-Locked Loop (PLL), the clock signal re-
peatedly flips between “0” and “1” with a certain frequency ( f ). The time
between two adjacent “0” to “1” flip is referred as the clock cycle (T). Il-
lustrated in Figure 3.4, in synchronous circuits every storage units, including
memories and registers, are connected with a broadcasted clock signal. The
combinational logic which allocates between storage units is not connected by
the clock signal. For such circuit, the total power consumption can be express
as

Ptotal = αCtotalV2
DD f︸ ︷︷ ︸

dynamic power

+ IOFFVDD︸ ︷︷ ︸
leakage power

, (3.1)

where α represents the activity factor of switching between 0 and 1, Ctotal
the switching capacity, VDD the supply voltage, and IOFF the average leakage
current [36]. Dynamic power is usually the dominant component of power
consumption in a high-frequency and high switching activity processors.

Ideally, the clock edges arrive at all the storage units simultaneously, and
thereby the calculation results of combinational logic are transferred through
the storage units. To ensure correct functionality, synchronous circuits need
to meet timing constraint that combinational logic latency should be smaller
than the clock period. The propagation delay of combinational logic usually
scales down if the VDD increase, so parameters f and VDD mutually restrict
each other and can not be set arbitrarily.
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Figure 3.4. Simplified illustration of synchronous circuit. Connections be-
tween memory, combinational logic and registers are largely sim-
plified. For example, outputs of combinational logic can be con-
nected to either other registers or other combinational logic in
practice.

At the circuit level, a variety of methods can be deployed to optimize the
power consumption. Here we discussed two commonly-used techniques as
examples.

3.2.1. CLOCK GATING AND POWER GATING

Switching off temporarily unused functional units is an effective method to
reduce power consumption in modern processors, which does not impact the
functionality or the throughput. Depending on whether turning off the power
supply VDD during the idle state, it can be classified as clock gating and power
gating, respectively.

CLOCK GATING

In this content, turning off clock signals (clock gating) of unused blocks is an
effective technique to save dynamic power consumption. It disables part of the
circuit, so the switching activity becomes 0. Besides, since clock signals have
a high fan-out and switch every clock cycle (α = 1), its distribution network
accounts for a great potion of total power consumption, usually more than
40% [37].

POWER GATING

Power gating technique is proposed to further reduce the leakage power con-
sumption, affecting architecture more than clock gating. By turning off the



26 Digital Integrated Circuit

supply voltage VDD or ground of unused modules via control logic, power
gating eliminates both dynamic power and leakage power consumption. How-
ever, when the module is waken-up from idle to active mode, the capacitance
of power network takes a long time to recharge and increases delay.

3.2.2. DYNAMIC VOLTAGE AND FREQUENCY SCALING

Besides clock-gating and power-gating, DVFS is another power saving tech-
nology, introduced in the 1990s [38]. The supply voltage and clock frequency
used in a module are both dynamically adjusted, depending upon instanta-
neous workload. DVFS enables a trade-off between energy consumption and
performance. In general, the energy consumption of a specific task, without
considering of leakage power, can be expressed as

Etask ∝ Texec Ṗdynamic = αCtotalnccV2
DD, (3.2)

where Texec is the total execution time of the task, and ncc is the correspond-
ing number of clock cycles. According to (3.2), reducing supply voltage is a
reasonable approach to reduce the energy consumption of a certain task, in a
premise of being able to meet the timing constraint of the task. On the other
hand, the available maximum clock frequency is proportional to the supply
voltage VDD. Their relationship can be express as

fmax ∝
(VDD −Vth)

2

VDD
, (3.3)

where Vth is the threshold voltage. With DVFS, a processor can either provides
high-performance or energy efficiency computing by switching the voltage
and frequency. How to maintain the throughput when using DVFS is a major
issue for applications like baseband processing that have a strict time con-
straint. The correlation the chosen frequency and instantaneous workloads
need to be carefully considered.

In this chapter, several digital circuit design technologies are reviewed, in-
cluding architecture and circuit levels. These technologies either increase com-
putational speed, reduce power consumption of circuits, or provide a possible
trade-off between computational speed and power consumption.



Part I
Energy-Quality Scalable
Computing for Baseband

Processing

With the slowdown of Moore’s law [39], the energy down-scaling brought
by advanced fabrication technologies is being challenged. Conventional ap-
proaches of energy-saving such as parallelism have become mandatory and
exploited extensively. A new design dimension of trade-off has been recently
proposed to enable further energy reduction, i.e., energy-quality scaling.

Traditionally, circuit and algorithms within a wireless system are designed
under the guidance of meeting the worst-case demand. Due to the vari-
able system requirement (e.g., BER) and external environment (e.g., SNR or
Doppler shift), the trade-off between Quality of Service (QoS) and energy al-
lows energy reduction by eliminating the excessive provided QoS.

From the system designers viewpoint, various design-levels can be ex-
ploited for the concept of energy-quality scaling. For example, in the func-
tional unit level, precision adjustments and pruning the unused transistors
is a direct method of saving energy. Another algorithm level example is to
switch between accurate and approximate algorithms. In this chapter, we will
discuss the energy-quality trade-off in the scope of the functional unit level
and algorithm level. Results and discussion in this part are from the following
papers:

• Y. Liu, L. Liu, V. Öwall, and S. Chen, “Implementation of a dynamic
wordlength SIMD multiplier,” 2014 NORCHIP, Tampere, 2014, pp. 1-4.

• Y. Liu, H. Prabhu, L. Liu, and V. Öwall, “Adaptive resource scheduling
for energy efficient QRD processor with DVFS,” in 2015 IEEE Workshop
on Signal Processing Systems (SiPS), 2015, no. 2, pp. 1–6.





4
Sub-word SIMD Multiplier

Wordlength refers to the number of bits for representing each operand. The
accuracy of operands increases as the wordlength extends. Wordlength ad-
justment is a method to enable the trade-off between energy efficiency and
processing accuracy. Longer wordlength brings a higher precision at a price
of larger memories for storage, more complex computing logic, and larger
bandwidth for data traffic. All of these hardware expanding demand a higher
power consumption.

Sub-word parallelism is a method of packing multiple sub-word data as
one full-length data. It enables run-time wordlength adjustment without sig-
nificant overhead in hardware. In this way, the calculation blocks will work in
in sub-word mode, but the other parts such as memories and data paths, will
not change [40]. For the calculation, sub-word parallelism can be regarded as
a dynamic length SIMD, which demands dedicated arithmetic units to sup-
port run-time switching between multiple sub-word calculations and one full-
length calculation.

Sub-word parallelism allows a processor to boost calculation throughputs
or reduce energy consumption when high precision is unnecessary. For base-
band processing, adaptive controlling the precision of data according to cur-
rent signal quality is an option to save energy [41]. Among kernel operations
listed in Table 2.1, multiplications are the most indispensable operation where
full of DLP that can be easily exploited. Dynamic wordlength multipliers pro-
vide an opportunity to explore energy reduction with minor accuracy loss.
This chapter presents a dynamic wordlength multiplier with three or even
more work modes.

29
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4.1. PRIOR WORK AND STATE-OF-ART

Typically, modern long wordlength and high-performance multipliers consist
of Booth encoders [42], Wallace tree [43], and a final adder. Booth encoders
generate partial products which can be regarded as several vectors of different
lengths. Figure 4.1 illustrates the partial products of a 16×16 signed/unsigned
multiplier [44]. Several signed extension bits (marked as 1, E, and S) are in-
troduced to present negative participial products among Booth encoding in
signed multiplications. An original Wallace tree compresses all partial prod-
uct vectors until two vectors as the two operands of the final adder. Building
blocks of Wallace tree are usually 3 → 2, 4 → 2, and 5 → 2 compressors,
which compress multiple input bits and carry bits from the lower-weight com-
pressor to two bits and carry bits for higher-weight compressor [45]. Wallace
tree is formed up by these compressors to compress multiple partial product
vectors into two vectors.

One general method of designing a dynamic wordlength multiplier is sup-
porting short wordlength multiplication based on a long wordlength multi-
plier, masking unused partial product for shorter multiplication [46] [47]. In
this top-down way, one w-bit multiplier can be split to support two w

2 -bit mul-
tiplications, further be split to four w

4 -bit multiplications, and so on. However,
this method only exploits part of the available partial product and bears few
number of multiplications in short wordlength mode. On the other hand,
results of longer multiplications can be generated with four half-length mul-
tiplications in a bottom-up way. Assuming two 2w-bit operands, a and b,
they can be split into two w-bit parts, Most Significant Bits (MSBs) and Least
Significant Bits (LSBs), which can be expressed as

a = a12w + a2 (4.1)

b = b12w + b2, (4.2)

where a1 and b1 are MSBs, a2 and b2 are LSBs. Therefore, four w-bit multi-
plications can compose one 2w-bit multiplication. The 4w-bit result of 2w-bit
multiplications can be presented as,

ab = a1b122w + a1b22w + a2b12w + a2b2, (4.3)

where a1b1, a1b2, a2b1, and a2b2 have a length of 2w bits. However, this method
is tortured by the extra latency introduced when the number of work modes
is larger than two. Each additional work mode requires an extra summing
process shown in (4.3), which sums up at most three values in one binary
digit. 6 → 2 compressors can be used to achieve this summing up process in
Wallace tree, however, the delay is relevantly large and laying on the critical
path of the multiplier.
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Figure 4.1. The Booth encoding results of a 16-bit multiplier.

4.2. STICKY BOOTH ENCODING

In this chapter, a sticky Booth encoding is used to generate the partial prod-
ucts of a dynamic wordlength multiplier directly. Instead of using the bottom-
up or top-down methods, sticky Booth encoding allows the use of shorter
wordlength Booth encoder to generate partial products for a long wordlength
multiplication. In this way, a multiplier equipped with the sticky Booth en-
coding can supply the partial products of multiple multiplications in short
wordlength mode while maintaining low latency for long wordlength multi-
plications.

Traditional partial products are generated according to Booth encoding and
can be divided into two parts: Core Partial Products (CPP) and Sign Extension
Bit (SE). Shown in Figure 4.1, SE are 1, E, and S and the last line of partial
products (line 8 for 16-bit multiplications). CPP are the rests marked as crosses
in Figure 4.1. In sticky Booth encoding, CPP and SE are generated separately
to hide the delay.

CORE PARTIAL PRODUCT CODING

The smallest unit of CPP coding is defined as a cell which is basically the CPP
of the shortest wordlength. Cells work independently in short wordlength
mode and work jointly in long wordlength mode. Figure 4.2 illustrates combi-
nation patterns of a three modes multiplier. The combinations can be further
categorized into vertical and horizontal combinations, where vertical combi-
nation merges two w × w cells into CPP for a w × 2w multiplication. It is
necessary to note that directly combining CPP will lead to errors in signed
multiplication.

Directly combining vertically neighboring cells does not impact the func-
tionality. The number of CPP vectors for w× 2w and w× w multiplications
are w and w

2 , respectively. Shown in the upper half of Figure 4.3, vertically
neighboring cells can be directly combined. On the other hand, two horizon-
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Figure 4.2. An illustration of cell combinations in three modes.

tally neighboring cells cannot be directly combined. This is because the length
of each CPP vector is w + 1 for w× w multiplication and 2w + 1 for 2w× w.
Therefore, an overlap occurs between the LSB of the left cell and the MSB of
the right cell in a long wordlength multiplication, shown in the lower half of
Figure 4.3. This overlap leads to an error for the difference between combined
CPP and original Booth encoding.

To tackle this, the sticky Booth encoding is presented for dynamic wordlength
multiplier. The detailed encoding method is shown in Table 4.1, which is simi-
lar to the original Booth encoding that takes three bits of the multiplicand and
outputs w+1 bits for each CPP vector. In Table 4.1, the left operands and right
operands of multiplications are denoted as “src1” and “src2”. All operators
are bitwise operations, where “&”, “|”, “!”, and “,” denotes AND, OR, NOT,
and concatenation. Sticky Booth encoding takes current work mode as one of
the inputs, which is expressed by signals “le” and “ri.” “le” will be set as one
when current cell located on the left most side of the combination, and “ri” is
set when located on the right most side. Taking the three-mode multiplier in
Figure 4.2 as an example, at longest mode, the CPP generator marks “le” and
“ri” of the 3_3 cell as 1 and 0, respectively; at shortest mode, “le” and “ri”
of the 3_3 cell will both be marked as 1. Sticky Booth encoding ensures that
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whenever each cell works separately or together, the coding result will always
be identical to conventional Booth encoding.

SIGN EXTENSION CODING

SE coding generates two vectors for each cell based on conventional signed/un-
signed Booth encoding. It includes the 1, E, S, and last line of CPP in Fig-
ure 4.1. The number of bits in each digit is maintained as no larger than
two. When there is an additional bit, i.e., three bits in one digit (circled in

Table 4.1. Sticky Booth encoding

Multiplicand CPP
000 0
001 le&sign&src1[w],src1
010 le&sign&src1[w],src1
011 src1,0
100 !src1,ri
101 le&(!src1[w] | !sign),!src1
110 le&(!src1[w] | !sign),!src1
111 le,1111....1︸ ︷︷ ︸

w bit
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Figure 4.4. The Multi-mode Multiplier with Power Gating.

Figure 4.1), the extra bit can be split to same two bits in the lower digit.

4.3. HARDWARE IMPLEMENTATION

Based on the proposed sticky Booth encoding, a multiplier that supports three
types of work modes is implemented in TSMC 40nm technology as a case
study. Three modes are one 64-bit, four 32-bit, and sixteen 16-bit multiplica-
tions, respectively. The multiplier consists of 16 CPP generation cells, Wallace
tree, and adders, as shown in left part of Figure 4.4. With sticky Booth encod-
ing, cells can work jointly for long wordlength operation or independently for
short wordlength. Each cell consists of CPP coding and compressors, which
is capable of supporting a 16× 16 multiplication. Two 64-bit operands are the
inputs of the multiplier.

As a reference, a cluster form multiplier [48] using bottom-up methodology
with the same function is also implemented. The scope of comparison is lim-
ited to the hardware cost of Booth encoding and Wallace tree, since the rest
parts, e.g., final adder, are the same. The latency, area cost, energy consump-
tion of the two implementation schemes are listed in Table 4.2. Latencies of
different work modes are given separately. In our design, latencies are more
balance, and the latency of the longest work mode is lower than the cluster
form multiplier. This is expected and can be explained as follows. In this
design, the latency of the longest wordlength mode is shortened in the price
of a longer latency in the short wordlength mode. Since the critical path of a
system is only relevant to longest latency, this trade-off is worthwhile with a
minor performance loss. In our design, eight CPP vectors are first compressed
to two vectors in each cell, and then a 16→ 2 compression directly generates
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the result of a 64-bit multiplication. The critical path of 16→ 2 compressions
in Wallace tree is marked in Figure 4.2, where the outputs of seven cells and
SE are compressed to two vectors. In the cluster form multiplier, nine vectors
including CPP and SE are first compressed to two vectors (9 → 2) for each
16-bit multiplication; then a 6 → 2 compression generates 32-bit multiplica-
tion; in the end, a 6→ 2 compression generates 64-bit multiplication. Without
considering fanout, the critical path of Wallace tree in our design is equiva-
lent to compressing 64 = 8× 16

2 vectors into two while in the cluster form
multiplication, it is equivalent to compressing 81 = 9× 6

2 ×
6
2 vectors.

The proposed multiplier has 7.1% reduction in the area when compared to
the cluster form multiplier. The energy consumption of a 16-bit multiplication
is one-fourth of a 32-bit multiplication and one-sixteen of a 64-bit multiplica-
tion, enabling a dramatic energy reduction. However, the energy consumption
is raised about 3.3% when both designs are running at the same frequency
(1.25 GHz). This is because of the increased fan-out caused by sticky Booth
encoding and re-organized Wallace tree.

For a dynamic workload or variable accuracy scenario, this multi-mode
multiplier can be deployed to enable a runtime trade-off between accuracy
and throughput/energy. Due to the cell-based architecture, each cell can be
assigned an individual power domain that can be shut down when no mul-
tiplication is assigned. If we deploy the proposed multiplier with proper
resource management, the energy consumption of a system can be reduced
when high accuracy is not needed.

Table 4.2. Latency, area, and energy consumption per multiplication
This work Cluster form

Latency(ns) 16-/32-/64-bit 0.47/0.57/0.79 0.44/0.60/0.82
Area(um2) 52800 56837

Energy (pJ) 16-/32-/64-bit 1.94/7.75/31.0 1.88/7.50/30.0
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This chapter presents an energy-efficient algorithm-switching strategy, in par-
ticular, QR decomposition for MIMO processing. Due to the increasing num-
ber of serving users and data traffic, the constantly growing of power con-
sumption of baseband processing has drawn attention during the design stage.
At the user side, cell phone users are tortured by the limited capacity of bat-
teries. Therefore, we have to find the sweet spot between the power efficiency
and the quality of wireless transmission.

For digital baseband processing, there are several selectable algorithms for
MIMO processing, e.g., options to choose linear detectors or non-linear de-
tectors during detection stage. In general, a more complex algorithm has
better performance and vice versa. However, from the hardware perspec-
tive, choosing a low-complexity algorithm lowers the power consumption
due to the reduced number of operations. More specifically, some algorithms
are designed to leverage a specific characteristic of propagation environment
to reduce complexity. The performance difference between algorithms may
vary depending on scenarios. Therefore, it is a wise choice to switch to
low-complexity algorithms for energy saving when the selected algorithms
lead to a minor performance loss and meet the expected transmission quality.
Moreover, the potential of energy saving can be further exploited by lowering
the clock frequency while maintaining a constant throughput. It is a well-
known low power technique, namely DVFS, where both supply voltage and
frequency can be decreased when the workload is low.

In this chapter, a low-power technique is exploited on channel preprocess-
ing for LTE-A downlink system as a case study. An adaptive strategy is pro-
posed for adjusting algorithms to adapt channel conditions environment and
minimize the performance loss with a given clock frequency.

37
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5.1. CHANNEL PRE-PROCESSING IN MIMO

In MIMO systems, pre-processing of the channel data, e.g., QR Decomposi-
tion (QRD), is an important operation before some detection algorithms, e.g.,
sphere detection. Considering a MIMO system mentioned in (2.5), the QRD
is performing on H as

QR = H, (5.1)

where Q ∈ CM×M is an unitary matrix that

QHQ = I, (5.2)

and R ∈ CM×M is an upper triangle matrix. Therefore, (2.5) can be written as

QHy = Rx + QHn. (5.3)

The maximum likelihood criterion of detection algorithms is

min||QHy−Rx||2. (5.4)

There are several well-known methods for computing QRD, e.g., Gram-
Schmidt [49], Given rotation [50], and Householder [51]. Beside these accurate
QRD, several approximations have lower complexity by exploiting wireless
channel characteristic, e.g., the correlation in the time domain and frequency
domain [52–54]. In this chapter, we consider a QR update method proposed
by Chenxin and et al. [52] as a case study which utilizes the time correla-
tion between two CSI matrices on the same frequency. This method reduces
the complexity of QRD. However, its performance largely depends on the
time correlation which can be quantified as Euclidean Distance (ED) between
channel data. The ED is a metric to measure the “distance” between two CSI
matrices, which can be presented as

d(H1, H2) =

√
∑

i
∑

j

(
(H1)ij − (H2)ij

)2. (5.5)

The QR update proposed in [52] consists of two steps for an M×M MIMO
system. In the first step, an accurate QR decomposition is performed on the
first CSI matrix Hold ∈ CM×M and results in Qold and Rold.

In the second step, a QR update process hold the old result Qold, and the
new R can be expressed as

R̃new = QH
oldHnew. (5.6)

The R̃new satisfied

Hnew = Qold(Q
H
oldHnew) = QoldR̃new. (5.7)
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Figure 5.1. Illustration of two QRD (one QRD pair) under three cases.

This tracking strategy introduces errors since it no longer guarantees that
Rnew will maintain an upper triangle matrix, and those non-zero values in the
lower triangle will be discarded [52]. The performance of the update method
is largely dependent on the correlation between Hnew and Hold which is posi-
tive correlative with the relative moving speed of the terminal. To control the
error rate within an acceptable range, ED between these two matrices can be
used as an indicator to arbitrate which algorithm will be used in the follow-
ing QRD. Therefore, we have three candidate algorithms, pure accurate QRD
(case-I), pure QR update (case-II), and hybrid QRD (case-III), as illustrated in
Figure 5.1. Two QRDs are referred as a QRD pair.

Before going to detail resource scheduling, we first summarize the com-
plexity of those QR decomposition in Table 5.1 according to Figure 5.1. The
Gram-Schmidt algorithm acts as the accurate QRD, the number of complex
multiplications is quantified for analysis. The accurate QRD, QR update, and
ED measuring are marked as S1, S2, and S3, respectively. Need to note that
in all case, the accurate QRD is a compulsory step to initial Qold. It is also
important that in the frame structure of LTE-A, not all columns in CSI matrix
is renewed in every update. Assuming that Mupdate elements are updated, the
QR update of the rest elements can be omitted. For example, assuming only
the left half of Hnew is renewed, the right half of R̃new will be the same with
Rold.

For each QRD pair, pure accurate QRD and pure QR update require com-
putational stages 2S1 and S1 + S2, respectively. For hybrid QRD, the compu-
tation resource consumption depends on the chosen algorithm at the second
QRD, which is S1 + S2 + S3 when choosing QR update or 2S1 + S3 when
choosing accurate QRD.
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5.2. SCHEDULING ALGORITHMS

An important prerequisite for channel preprocessing is that the QRD through-
put of the overall system needs to meet the throughput requirement. This con-
straint avoids conflicts between the upcoming QRD frames. Meanwhile, the
available computing resource for QRD in a certain period is proportional to
the available clock cycle, which is also proportional current clock frequency f .
Apparently, the ED measuring and algorithm choosing strategy will influence
the proportion of accurate QRD and QR update, which leads to a variation on
the average computing resource consumption of each QRD. In order to solve
the fixed throughput problem, an appropriate resource scheduling is required
to tackle the computing resource scheduling.

5.2.1. COMPUTING RESOURCE MODEL

To quantify the resource scheduling problem, we first introduce a comput-
ing resource model. During a period of Ttotal, processing nQRD QRD is the
requirement, and the number of QRD pairs np = nQRD/2. The amount of
available computing resource Ocom of the targeted hardware platform is de-
fined by multiplying the number of clock cycle nclk and the average number
of processing operation per clock cycle Cop. Cop is a parameter describing the
computational capability of hardware and is defined as the maximum number
of multiplications per clock cycle in this chapter. Therefore, we have

Ocom = Copnclk = Cop ×
Ttotal
Tclk

= CopTtotal f

≥


2npS1 case-I
np(S1 + S2) case-II
(1 + p)npS1 + (1− p)npS2 + npS3 case-III

(5.8)

Table 5.1. Complexity of candidate QR algorithms

Accurate QRD QR update ED Measuring

S1 S2 S3

Multiplication M3 + M2 MMupdate Mupdate

pure accurate QRD (case-I) 2 0 0

pure QR update (case-II) 1 1 0

hybrid QRD (case-III) 2 or 1 0 or 1 1
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Figure 5.2. Relationship between percentage of accurate QRD (p) in the sec-
ond QRD of each QRD pairs and current frequency (M = 4 and
Mupdate=8).

where p is the percentage of using accurate QRD at the second QRD of a
QRD pair in case-III. As shown in (5.8), the required computing resource is
determined by which “case” is chosen, and is relevant to p specifically in
case-III. Conversely, the upper bound of p is determined by the given clock
frequency in advance, as shown in Figure 5.2.

5.2.2. ADAPTIVE RESOURCE SCHEDULING

The number of QRD pairs np within Ttotal is determined by the frame struc-
ture and the number of subcarriers in assigned bandwidth. With the resource
model above, we can simplify the resource scheduling problem to allocate
limited resource to a certain number of QRD. The remaining resource after
the j-th QRD pair is formulated as Oj = Oj−1− Pj, where Pj is the computing
resource consumption at the j-th QRD pair. The expected detection perfor-
mance in the j-th QRD pair is determined by the chosen algorithms and the
external environment quantified by a parameter ej. Defined as Q(Pj, ej), the
expected performance can be quantified by BERs, Frame Error Rates (FERs),
etc. Therefore, the scheduling problem can be formulated as maximizing the
overall performance,

Ψopt = max
∑ Pj=Ocom

np

∑
j=1

Q(Pj, ej), (5.9)

where Ψopt is the overall performance. This scheduling problem is also known
as the 0-1 Knapsack Problem [55].

In each QRD pair, we have to decide which algorithms will be used in the
2nd QRD. Figure 5.3 shows the relationship between remaining resource and



42 Processing Resource Scheduling

Time

U
se

d
 R

es
ou

rc
e

O
O

co
m

p
.

Figure 5.3. Resource allocation of nQRD QRD with an initial computing re-
source of Ocom.

number of finished QRDs. QRDs are executed one by one in order, consum-
ing the computing resource. For np QRD pairs, the initial remaining resource
O0 = Ocom, and the state is marked as normal. normal states mean that it is
possible to choose either an accurate QRD or a QR update in the 2nd QRD
without the risk of ruining the deadline . Along with the execution of QRDs,
there is a certain time after that only executing accurate QRD (case-I) will not
risk in timeout, regarded as resource overflow. In contrast, the state of resource
exhaustion denotes that the following QRD must be solved with QR update
(case-II) otherwise the deadline will be missed. As shown in Figure 5.3, the
state transform occurs when the remaining computing resource approaches
guard lines. After reaching guard lines, the QR processing will switch from
normal state to overflow or exhaustion state. Both overflow and exhaustion states
will cause a loss in system performance due to the unbalanced resource allo-
cation. This is due to those need an accurate QRD are assigned a QR update.
A proper resource allocation strategy will shrink the proportion of overflow
and exhaustion states during execution as well as reduce the performance loss.
Here we provide two ideas to solve the resource allocation problem.
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FIXED THRESHOLD (GREEDY ALGORITHM)

Since the exact external environment is very difficult to predict, it is impos-
sible to obtain a perfect resource allocation strategy in real life systems. A
straightforward method of resource allocation is to set a fixed threshold at the
decision point. In the normal state, if the ED between Hold and Hnew exceeds
the predetermined threshold, an accurate QRD will be deployed in the fol-
lowing and vice versa. When considering the proposed computing resource
model, a fixed threshold scheme can be regarded as a greedy algorithm, and
its pseudo-code is presented in Table 5.2.

The fixed threshold scheme is low-complexity for it only requires addition
and subtraction during execution. However, due to various external environ-
ments, it is difficult to settle a fixed threshold that fit for all scenarios. More

Table 5.2. Pseudo-Code of the Fixed Threshold strategy.

O0 = Oini; state = normal; % initial statement
for j = 1 : np do % index of unfinished QRD pairs

case state
exhaustion : % no resource scheduling

QRupdate % keep QR update from now on
over f low : % no resource scheduling

accurateQR % keep accurate QR from now on
normal :

EDtest
Oj = Oj−1 − S1 − S3 % 1st accurate QRD and ED measurement
if EUtestresult > θ % decision point

accurateQR
Oj = Oj − S1 % reduce remaining resource

else
QRupdate
Oj = Oj − S2 % reduce remaining resource

endif
if Oj ≥ 2(np − j)S1 % guard line

state = over f low
if Oj ≤ (np − j)(S1 + S2) % guard line

state = exhaustion
endcase

endfor
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importantly, a fixed threshold makes it impossible to control the percentage
of overflow and exhaustion states, which will inevitably degrade the overall
performance from optimal.

DYNAMIC THRESHOLD

Real-time adapting threshold to the environment and remaining computing
resource is an efficient way to avoid overflow and exhaustion states and fur-
ther avoid unnecessary performance loss. With a properly designed threshold
adjusting strategy, the system can reach sub-optimal performance. For a dy-
namic threshold strategy, most processes are maintained from Table 5.2 except
the threshold θ is adjustable.

In order to obtain ideal threshold θ, one straightforward method is to list
all ED of the np pairs and set the threshold to the pnp-th largest ED. However,
the complexity of sorting operation is of O(nplognp) which is unacceptable
for resource scheduling. Moreover, it requires holding all H of an entire frame
during θ generation, resulting in extra memories and high latency.

By observing the distribution of ED and calculating the proportion of avail-
able accurate QR among remaining QRD pairs, it is available to update thresh-
old in a sub-optimal way. We first look at the distribution of ED. According to
the ED distribution shown in Figure 5.4, ED mostly concentrates in a narrow
range and is irregular within one sub-frame. However, though bears fitting
error, the distribution of ED still can be estimated as a Gaussian Distribution
to simplify the problem.

On the other hand, the proportion of available accurate QR among remain-
ing QRD pairs after j QRD pairs has been execution, pj, can be easily calcu-
lated as

pj =
Ok − (np − j)(S1 + S2 + S3)

(np − j)(S1 − S2)
. (5.10)

Based on the observed ED distribution and pk, a near-ideal threshold θ
can be obtained by with inverse Cumulative Distribution Function (CDF), as
shown in (5.11). The estimated threshold θ̂ can be expressed as

θ̂ = F−1(pj; µ, σ)

= σΦ−1(pj) + µ

=
√

2σ erf−1(2pj − 1) + µ

≈ σ

√
2π

2
((2pj − 1) +

π

12
(2pj − 1)3) + µ.

(5.11)

(5.11) is a quantile function for threshold estimation [56], where µ and σ de-
note the mean value and variance of ED during previous observation. erf−1

is the inverse Gauss error function. In actual implementation, erf−1 can be
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Figure 5.4. Distribution of squared ED between full-H pilot and half-H pilot
in one frame and one thousand frames in plural under a model of
3GPP with a maximum Doppler shift of 70 Hz (EVA-70).

expanded in terms of Maclaurin series and approximate with multiplications
and additions. µ can be calculated by accumulating all the ED, and σ follows

σ2 = E(ED2)− µ2, (5.12)

where σ can also be calculated accompanying with the measuring of EDs
without caching previous EDs.

To avoid unnecessary variation, e.g., an accidental disturbance, introducing
a forgetting factor β to ED distribution observation will lead to a more stable
θ, which can be expressed as

µ̂j = βµj + (1− β)µ̂j−1

σ̂j = βσj + (1− β)σ̂j−1,
(5.13)

µ̂j and σ̂j are the inputs for (5.11). They are the sums of the current raw
characteristics and previously treated characteristics under ratio adjustment
of β. When β = 1, µ̂j and σ̂j are equivalent the current raw characteristics
while they will become a constant when β = 0. The forgetting factor β is a
potentially favorable consideration for the entire system.
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Figure 5.5. Time-frequency resource structure of a 4× 4 MIMO system in the
downlink of LTE-A standard.

5.3. PERFORMANCE EVALUATION

In this section, the performance of three proposed cases is evaluated under
the framework of a 4× 4 MIMO downlink system in LTE-A standard. The
performance evaluation includes both the wireless transmission quality as
well as the energy consumption during digital base processing. Driven by
DVFS technique, the provided computing resource within a large time scale
is adjustable according to available frequency.

5.3.1. WIRELESS PERFORMANCE EVALUATION

To evaluate the wireless transmission performance in downlink, we first look
at the system setup. The bandwidth of wireless systems is chosen to be 5 MHz,
where the number of available subcarriers is 300. The resource block arrange-
ment on the frequency and time domain is shown in Figure 5.5. With a du-
ration of 1 ms, one subframe consists of 14 symbols in the same subcarrier,
and OFDM symbols can be divided as data tones and pilot tones, where only
one antenna can send pilot tones at the time. In total, channel information of
downlink is fully updated twice and half updated twice within one subframe.
We organize the QRD pairs as fully renewal H for the 1st QRD and half re-
newal H for the 2nd QRD. Therefore, the parameters M = 4 and Mupdate=8.



5.3. Performance Evaluation 47

(a) (b)

Figure 5.6. Proportion of (a) exhaustion state and (b) overflow state with fixed
and dynamic threshold adjustment strategies in EVA-70.

The indicators that assist decision in the proposed scheduling method is de-
termined as the Euclidean distance between fully renewal H and half renewal
H. The speed of channel changes over time relates to the movement of termi-
nals and scatters, e.g., cars. Slow moving terminals experience a slower rate
of channel changing and therefore leads to a smaller ED between neighboring
channels. The channel models in LTE-A system are classified into three cate-
gories based on the time selectivity, including Doppler shifts of 5 Hz, 70 Hz,
and 300 Hz, which corresponding to a terminal speed of 2.5 km/h, 36 km/h,
and 150 km/h. Besides, in this section, only Extended Vehicular A (EVA)
channel models are discussed as a typical scenario.

The symbols are transformed in a constellation of 64-QAM and pre-coded
with a rate 1/2 parallel concatenated turbo code. At the receiver side, a K-
Best MIMO detector is employed with a parameter of Kdec = 10, and perfect
channel estimation is assumed. The digital baseband platform is chosen to
be the same as used in [57] and detailed specifications will be introduced in
Section 5.3.2. Available supply voltages of utilized baseband platform 0.9 V,
1.0 V, and 1.1 V, which is respectively assigned to three cases above listed in
Figure 5.1. Setting throughput of executing the pure accurate QRD (case-I)
with supply voltage 1.1 V as a reference, the post-layout simulation result
shows that the achievable p is of 60% when the supply voltage is 1.0 V.

Figure 5.6 compares the proportion of overflow and exhaustion state when
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using fixed and dynamic threshold with an initial p = 60%. For a fair compar-
ison, the θ in the fixed threshold strategy is chosen to be the pnp-th largest ED
among all observation, which is a near-optimal value. For dynamic threshold,
there is no initial input, and all parameters are collected on-the-fly. Compared
with the fixed threshold, the proportion of the abnormal state using dynamic
threshold is much less, especially the exhaustion state. In addition, the forget-
ting factor β has a certain impact on proportion of abnormal state. There is
a slight increase in the exhaustion state when β approaches 1. On the other
hand, the influence of β on overflow state shows a trend of the curve, where
the proportion reaches a lowest level of about 3.5% when β ∈ [0.4, 0.6].

To evaluate the effectiveness of the proposed strategy, the FERs during
transmission are simulated as an indicator under several scenarios. FERs indi-
cate the ratio between frame received with errors and the total frame received.
The performance simulation includes the pure accurate QRD (case-I), pure QR
update (case-II), and a hybrid strategy with p = 60% (case-III). Moreover, in
hybrid strategy, both fixed threshold and dynamic threshold are tested. In
terms of external scenarios, two channel models are chosen, where one is
for the low-speed terminal (EVA-5) and the other is for high-speed terminal
(EVA-70). Figure 5.7 and Figure 5.8 show FERs on contrast to SNR in the two
channel models. For low-speed terminals, since the changing rate of channels
is relevantly low, the overall performance between three cases approximately
identical, and FER curves are overlapping. For high-speed terminals, fast-
changing channels enlarge the ED between neighboring Hs in the same sub-
carrier, therefore, the performance gap between adopting different computing
resources has been widened, and there is a clear trend that the FERs become
better as available computing resource increase. With same computing re-
source, dynamic threshold adjustment achieves an about 1.5 dB performance
gain at FER=10−2 when compared to a fixed threshold in the EVA-70 scenario.
Moreover, the influence of forgetting factor β towards performance is also in-
vestigated. Figure 5.9 shows the FER curve in dynamic threshold under four
typical βs, i.e., 0%, 25%, 50%, and 75%. There is no big difference in FERs, and
the variation range of SNR is about 0.2 dB when an FER of 10−2 is provided.

5.3.2. HARDWARE EVALUATION WITH DVFS

To further exploit the relationship between transmission performance and the
energy consumption of digital baseband processing, resource allocation strate-
gies are mapped on an in-house vector-oriented reconfigurable platform [57]
that designed for digital baseband processing. The platform has sixteen com-
plex MAC units designed in a SIMD-like style and is built in a methodology
that has high utilization of computing units when executing baseband pro-
cessing. Owing to the high reconfigurability of the platform, the utilization
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Figure 5.7. FER performance of using different strategies for transmitting in
4× 4 downlink (EVA-5).

of MAC units approaches 100% with proper mapping. For example, multiple
QRD on different subcarriers can be parallel mapped onto the target platform
to against data dependency during each QR and fully leverage computing
resource. Table 5.3 lists the amount of complex-value multiplications in one
QRD pair under different cases according to Table 5.1. Both case-I and II have
a fixed number of multiplications while the number of multiplications is posi-
tively correlated with p in case-III. It is necessary to note that the measurement
of ED distribution, i.e., observing σ and µ, only demands one multiplication
and the calculation of updating θ (5.11) only constitutes of several multiplica-
tions and can be shared by hundreds of QRD.

The design is specified in a Common Power Format (CPF) flow proposed

Table 5.3. Amount of Complex-Value Multiplication in one QRD pairs

1st 2nd Average per
QRD QRD QRD

case-I 96 96 96
case-II 96 32 64
case-III 96 40+64p 68+32p

µ measurement 0 0 0
σ measurement 0 1 0.5
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Figure 5.8. FER performance of using different strategies for transmitting in
4× 4 downlink (EVA-70).

by Cadence for energy reduction. During implementation, the standard cell
is chosen to a 65 nm CMOS library set supplied by STmicroelectronics. Ta-
ble 5.4 lists the manually mapping results and post-layout energy simulation
results in different supply voltages. With a supply voltage of 1.1 V, the plat-
form is capable of running in a 500 Hz frequency, and the QRD throughput
for execution pure accurate QRD (case-I) at this setup is guiding the rest sup-
ply voltages. Based on that, lower supply voltages are tested for case-II and
case-III. With a precondition of a fixed QRD throughput, the achievable clock
frequency at lower supply voltages, which is proportional to the available
computing resources, determines the percentage of accurate QRD p. For ex-
ample, the achievable frequency is 500 Hz in 1.1 V voltage mode and degraded
to 454 MHz in 1.0 V voltage mode. This leads to a 9.2% computing resource
downgrade. Therefore, we can conclude that 60% is approximate the maxi-
mum acceptable p to maintain QR throughput a constant. By strictly control-
ling p, QR throughputs are fixed to 83.3 MQR/s, and the maximum energy
reduction is up to 57.8%. This energy reduction is a joint effort of lower work-
loads and DVFS technology. Lower workloads allow baseband processor to
further shrink supply voltage and working frequency to reduce the energy
consumption.

As a summary, Figure 5.10 shows the relationship between energy con-
sumption and the system performance of the wireless transmission. The
algorithm-level alternative acts as an option for EQ trade-off in a dynamic
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Variance

Figure 5.9. FER performance of using different β under p = 60% in 4 × 4
downlink (EVA-70).

and explicit way. In general, the wireless transmission achieves higher “qual-
ity” at the cost of higher energy per QRD. Practically, the impact of energy
consumption on “quality” is related to scenarios and alternatives algorithms
choosing. For example, when choosing QR update that takes advantage of
time-correlations among channels, the system harvest energy reduction of
57.8% with a neglectable performance loss in the low-speed scenario. While
in high-speed mode, the price for energy saving utilizing time-correlation is
increased.

Except for simple algorithm replacement, an additional dimension of EQ

Table 5.4. Manually Mapped and Implementation Result of Cases

pure accurate hybrid pure QR
QRD QRD update

Throughput 83.3 MQRD/s
p 100% 60% 0%

Execution clock per QRD 6 5.45 4
Frequency requirement 500 MHz 454 MHz 333 MHz

Supply voltage 1.1 V 1.0 V 0.9 V
Average power 190.5 mW 142.1 mW 80.4 mW

Average energy/QRD 2.29 nJ 1.71 nJ 0.97 nJ
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Figure 5.10. Summary of relationship between energy consumption and sys-
tem performance.

trade-off is introduced which not only allows switching algorithms in large
scale but also hybrid algorithms switching on the fly. In addition, the scheme
in this chapter enables delicacy fine-grained voltage scaling. The performance
of hybrid algorithms is variance and largely relevant to the resource allocation
strategy, i.e., how algorithms are switched. The resource allocation strategy in
this section is a run-time threshold adjustment method, where the threshold
determines the following algorithms. Furthermore, this strategy adapts to ar-
bitrary initial proportion p of hybrid algorithms without any pre-determined
value by on-line observation and training.



Part II
Memory System for Massive
MIMO Baseband Processing

Memory system and data organization issues are the most critical
problem for a data-intensive application. For small-scale MIMO, the on-chip
SRAM-based memory has already become one of the most dominant com-
ponent to the overall baseband processor [4]. Driven by the large number
of antennas, the magnitude of data in massive MIMO is higher than con-
ventional small-scale MIMO, introducing challenges of capacity, throughput,
and flexibility. The ever-increasing amount of data in massive MIMO poses
a critical challenge in storage. In this chapter, we mainly discuss two prob-
lems in memory organization: reducing the memory capacity requirement of
data allocation and supplying specifically data in a desired way. Results and
discussion in this part are from the following papers:

• Y. Liu, L. Liu, and V. Öwall, “Architecture Design of a Memory Sub-
system for Massive MIMO Baseband Processing,” in IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 10, pp.
2976-2980, Oct. 2017.

• Y. Liu, O. Edfors, L. Liu, and V. Öwall, “Reducing On-chip Memory for
Massive MIMO Baseband Processing using Channel Compression,” in
2017 IEEE 86th Vehicular Technology Conference: VTC2017-Fall, 2017.

• Y. Liu, O. Edfors, L. Liu, and V. Öwall, “An Area-efficient On-chip
Memory System for Massive MIMO using Channel Data Compression,”
(submitted to IEEE Transactions on Circuits and Systems I: Regular Pa-
pers)





6
Parallel Memory System

Applications related to matrix-wise or large-scale data often lead to intensive
computing workloads. As mentioned in Section 3.1.1, one solution of dealing
with intensive computing workloads is exploiting DLP within applications
by parallelizations. The level of parallelisms chosen for the applications de-
termines the subset of matrices that is requested in each clock cycle. These
subsets can be regarded as access modes, e.g., column, row, diagonal, and
rectangular block.

Supporting various access modes on large-scale matrices becomes a critical
concern for designing a massive MIMO baseband processor. In wireless com-
munication systems, the scale of operand data increases continuously with
the evolution of standards. Especially in the MIMO processing, the scale of
operand data is usually proportional to the number of antennas. For example,
the number of elements in a CSI matrix is 2048 for a 128-antenna and 16-user
massive MIMO, while the number of elements is 16 for a 4× 4 small-scale
MIMO. With the huge number of operands, supporting various access modes
becomes difficult. Although a dedicated Register File (RGF) [58] can support
various access modes and has a short latency, the hardware cost of providing
enough capacity to cache a 128× 16 matrix is very high.

There are several alternative methods to deal with the various access modes
on large-scale matrices. Figure 6.1 shows four methods, namely shuffling in-
struction, matrix transposition accelerators, multi-port memories, and parallel
memories.

Shuffling instructions, e.g., in [59] [60], sustain access patterns by data re-
arrangement with shuffling instructions before execution. Data in registers is
shuffled to desired order conducted by instructions and Processing Elements
(PEs). This method is usually used in baseband processors for small-scale
MIMO, where the size of operand matrix is relevantly small, e.g., the range or

55
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Figure 6.1. Illustrations of methods to support access modes (a) shuffling in-
struction, (b) matrix transposition accelerator, (c) multi-port mem-
ory, (d) parallel memories.

data shuffling is within 16 or 32 elements. As shown in Figure 6.1(a), a shuffle
instruction gathers four operands and places them into one register. When the
scale of operands is larger than 100, the time overhead of collecting data from
100 registers will linearly increase. In this case, using shuffling instructions is
inefficient.

Matrix transposition accelerators, e.g., in [61] [62], transpose the matrix be-
fore execution. As shown in Figure 6.1(b), an individual hardware accelerator
loads data from memories and performs a matrix transposition to reconstruct
the data organization. Most accelerators provide transposition from row-wise
to column-wise, which only results in supporting accesses from two direc-
tions. After transpose, row-wise accesses are no longer supported unless the
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original data is kept, which will double the memory requirement.
Multi-port memories allow read and write at different addresses of a mem-

ory bank in one clock cycle. Theoretically, if the number of memory ports is
large enough, e.g., identical to the SIMD width, the corresponding memory
will be able to support any access mode. Figure 6.1(c) shows a four-port mem-
ory providing data streams for four-way SIMD, where each port provides an
operand in different addresses. However, the area cost for additional ports
prevents it from practical deployment. The area cost of a dual-port mem-
ory is about 50%∼100% more than a single-port memory with same capac-
ity [63] [64]. To the best of our knowledge, most DSPs use single- or dual-port
SRAMs, while memories with more ports are rarely used due to the high area
cost.

Parallel memories, employing multiple independent memory banks and
simultaneously storing and fetching, is another candidate technology of data
organization. Mapping an entire matrix onto memory banks with a pre-
defined pattern provides flexibility for supporting distinct access modes. Each
memory bank is addressed separately. During data storage or fetching, data
are reordered by a permutation network according to its desired assignment
pattern. By doing so, the parallel memories make it feasible to meet high-
throughput data demands from SIMD processing core while enabling multi-
ple access modes.

Unlike the first three methods, the method of parallel memories is a pre-
ferred method due to its efficient support of multiple access modes when
dealing with large-scale data. Parallel memories have been widely used in an
integrated circuit designed for applications with complex data organization.
It especially fits well with the SIMD-style implementations. For image and
video processing, parallel memories bridge the gap between the high com-
putation speed and memory bandwidth. It is widely used in state-of-the-art
platforms such as GPUs, FPGAs, and ASICs [65]. Besides that, memory-based
fast Fourier transform (FFT) [66] [67] has shown high flexibility and low area
cost by employing several PEs and memory banks, especially for long-length
FFTs. This chapter introduces application examples of using parallel memo-
ries to tackle the data organization challenges in massive MIMO and its im-
plementation strategy.

6.1. PRIOR WORK AND STATE-OF-ART

Parallel memories have been a topic in research for over 40 years In the early
1970s, Paul and David [68] firstly tackled access conflicts that occur in the
storage of two-dimensional arrays with multiple memory banks. Access con-
flicts denote the access of multiple addresses within one memory bank in one
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Figure 6.2. Examples of mapping an 8×8 matrix onto 8 memory banks with
three schemes, including (a) linear skew, (b) multi-skew, and (c)
XOR-based. The number within boxes denotes which memory
bank the corresponding data is allocated to. Data mapped to
bank0 are shaded for illustrating the shuffling distance.

clock cycle when attempting to access a vector. In 2004, Jon [69] presented
the summary of distinct data organization of parallel memories, including ac-
cess modes, number of memory banks, and data organization patterns. Most
data organization patterns can be categorized into several groups as shown
in Figure 6.2. One direct data organization pattern is only shifting between
two consecutive rows in memory banks instead of breaking the original se-
quence within rows [68–70]. This organization pattern can be further cate-
gorized into linear skew [68] [69] in Figure 6.2(a) and multi-skew [70] in Figure
6.2(b). In linear skew, the shifting distance between rows is a constant, whereas
in multi-skew it varies. In the linear skew scheme, the data organization has an
important property, i.e., isotropic, [71] which means that for any two elements
within the same memory bank, the neighboring elements are also stored in
the same memory bank. For example, elements allocated in bank0 are al-
ways neighboring elements allocated in bank1. This property can be utilized
to largely simplify the permutation circuit for reordering data during fetch
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and write. The multi-skew scheme enables varieties of access modes, includ-
ing row-, column-, and diagonal-wise accesses by allowing several shifting
distances between consecutive rows. Though the isotropic property does not
apply to all elements, the original sequence within rows is maintained, which
also allows simplification of permutation circuit.

Another data pattern is non-linear schemes, shown in Figure 6.2(c). Most
non-linear schemes are based on Exclusive-OR (XOR) functions, where the in-
dex of memory banks a certain element is allocated to is calculated with a
bitwise XOR operation. The index assignment in Figure 6.2(c) can be formu-
lated as

I(x, y) =

1 1 1
1 1 0
0 1 1

x2
x1
x0

⊕
1 0 0

0 1 0
0 0 1

y2
y1
y0

 , (6.1)

where x and y are the row- and column-wise coordinates, x2x1x0 and y2y1y0
are the binary form of x and y, and ⊕ is the bitwise XOR operation. The XOR-
based scheme has been proposed by Kenneth [72] and is well known for its
simple index calculation. However, since non-linear schemes are non-isotropic,
breaking the original sequence of rows, it is complicated to permute data back
into its original order. Furthermore, the number of enabled access modes.

In this chapter, we will discuss the usage of parallel memories for exploit-
ing parallelism and speedup in two important applications of massive MIMO
baseband processing. The first is the MIMO part of digital baseband process-
ing, including detection and precoding. The operation profile is performed,
and a memory system is implemented as a case study. The second one is the
memory-based sorting which maps sorting operation onto parallel memories
during execution. Sorting arranges a sequence of number into a certain order,
mostly according to the numerical order. In some baseband processing algo-
rithms, sorting operations have specific requirements, e.g., K-best algorithms
only select the first K largest or smallest inputs. The flexibility of parallel
memories not only allows the parallelization of sorting operations but also
provides a possibility to support specific requirements in MIMO baseband
processing without changing hardware.

6.2. DATA ORGANIZATION FOR MIMO PROCESSING

In order to facilitate the design of memory system, we first list and profile
the operations in massive MIMO processing. Since MIMO processing in mas-
sive MIMO is a new application, its access modes and the properties will be
analyzed to assist the data organization design.
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Figure 6.3. Referenced TDD frame structure.

6.2.1. MIMO PROCESSING IN MASSIVE MIMO

We consider a massive MIMO-OFDM system serving K single-antenna users
with M antennas, using Nsub of OFDM subcarriers. To assist analysis, we
assume that the system transmits symbols in a TDD frame structure illustrated
in Figure 6.3. The frame structure is the same as in Lund University Massive
MIMO testbed (LuMaMi) [73]. Transmissions are organized into subframe
of length 1 ms, each of which consists of two time slots. Each time slot is
divided into seven symbols of length Tsymbol ≈ 71 us, including one uplink
pilot symbol, two uplink symbols, two downlink symbols, and two guard
periods. Guard periods are reserved time for uplink/downlink switching.

The downlink transmission model and linear-precoding scheme have been
briefly reviewed in (2.8) and (2.9) in Section 2.1. Let us now jointly discuss the
uplink and downlink processing at the base station in detail. To distinguish
uplink and downlink channel, we first mark uplink and downlink CSI matrix
at the `-th subcarrier as H`

U ∈ CM×K and H`
D ∈ CK×M, respectively. Although

the uplink and downlink propagation channel can be assumed reciprocal, i.e.,

H`
D = (H`

U)
T , (6.2)

the Radio Frequency (RF) chains are not. Therefore, reciprocity calibration is
required to compensate the response difference in transceivers.

At the base station side, the received signal from uplink at the `-th subcar-
rier as yU

` ∈ CM×1 can be expressed as

y`
U = H`

Us` + n`
U, (6.3)

where s` ∈ CK×1 is the transmitted signals from K users, and n`
U ∈ CM×1 is

the noise.
Now, we can express the downlink signals received by terminals discussed

in (2.8) as
y`

D = H`
Dx` + n`

D. (6.4)
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As discussed in Section 2.2.3, linear precoding can be adopted in downlink
transmission and provides a near-optimal performance [74]. Similarly, linear
detection is close to optimal and is widely accepted for massive MIMO system
for its relatively low complexity. The estimation of uplink symbol s ∈ CK×1

can be expressed as
ŝ` = G`y`

U, (6.5)

where G` ∈ CK×M is the linear detection matrix. For the downlink, we rewrite
the precoding procedure in (2.9) as

x` = W`x̃`, (6.6)

where W` ∈ CM×K is the linear precoding matrix, x̃` is the original informa-
tion vector.

A MMSE algorithm is considered for operation profiling. Its operations are
the superset of most other linear algorithms like ZF and MF. Therefore, G`

and W` can be conducted as

G` = (H`
U

H
H`

U + αI)−1H`
U

H
, (6.7)

and
W` = H`

D
H
(H`

DH`
D

H
+ αI)−1, (6.8)

where α is a coefficient which is relative to SNR.
With a combined consideration of (6.3)-(6.8) and denoting H`

U as H, we can
summarize the operation within baseband detection and precoding of one
subcarrier as

ŝ` = (HHH + αI)−1HHy`
U, (6.9)

and
x` = C∗H(HHH + αI)−1x̃`, (6.10)

where C∗ is a diagonal matrix for calibration between uplink and downlink
[26].

OPERATION PROFILE

In order to profile the operation in the MIMO processing in massive MIMO
system, we split the operation in (6.9) and (6.10) step by step from the right to
left. The operations involved in uplink detection and downlink precoding are
listed in Table 6.1.

In Table 6.1, MIMO processing in massive MIMO baseband can be divided
into three main stages. These include preprocessing where a pseudo-inverse
of the CSI matrix is performed, detection where uplink data is estimated, and
precoding where downlink data is precoded. Most operations are vector-level
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processing, including matrix-matrix, matrix-vector, and vector-vector wise
multiplication and addition. It is worthwhile to emphasize the matrix inverse
in No. III of the preprocessing stage. In small-scale MIMO systems, exact
matrix inversion is demanded to achieve good system performance. How-
ever, matrix inversion is a complex operation and with a complexity of O(n3),
where n is the dimension of the input matrix. Luckily, in massive MIMO sys-
tems, HHH and HHH + αI are both diagonal dominant matrix. This property
can be utilized to largely reduce the computational complexity by approx-
imate inversion while maintaining good performance. For example, using
Neumann series approximation [75], we can express the inversion of matrix X
as

X−1 =
∞

∏
n=0

(I + (I− Z−1X)2n
)Z−1, (6.11)

where Z is a diagonal matrix that only contains the diagonal elements of X. In
this way, the matrix inversion is simplified to several matrix multiplications
and lower the complexity.

Based on the access profile, the memory requirements for MIMO processing
in massive MIMO baseband can be abstracted to the following:

Access Modes: To support the listed operation in Table 6.1, column, row,
and diagonal data access modes are needed. The CSI matrix H provides
operands in No.I, IV, and VII and its access modes are illustrated in the left
side of Figure 6.4. In No. I and IV, H appears on the right side of matrix mul-
tiplication or HH appears on the left side, which leads to column-wise access
to H. While in No. VII, H stands at the left side of matrix multiplication and
leads to a row-wise access mode.

Similarly, there are multiple access modes to the Gramian matrix HHH and
its corresponding inversion, as shown in the right side of Figure 6.4. Diagonal

Table 6.1. BaseBand Processing Profile

Stages No. Operation Result Kernel Operations

Preproc.
I HH ·H Matrix Mul
II HHH+αI Vector Add
III (HHH + αI)-1 Matrix Inv

Detection
IV HH · y Matrix-Vector Mul
V (HHH + αI)−1 ·HHy` Matrix-Vector Mul

Precoding
VI (HHH + αI)−1 · x̃` Matrix-Vector Mul
VII H · (HHH + αI)−1x̃` Matrix-Vector Mul
VIII C∗ ·H(HHH + αI)−1x̃` Vector-Vector Mul
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Figure 6.4. Examples of memory access patterns towards H and HHH.

access is necessary for No. II and III. For the matrix inversion in No. III, the
intermediate result (I−Z−1X) is repeatedly multiplied by itself requiring both
row-wise and column-wise accesses. In summary, access modes of H as well
as HHH and its inversion are presented in Table 6.2.

Throughput: High memory bandwidth to store, update, and fetch data is
required compared to small-scale MIMO baseband processing. Although RGF
between memories and calculation units can relax the throughput require-
ment by caching the intermediate result, the area cost of a large-size RGF is

Table 6.2. Summary of Access modes and Configurations

Access Modes
Size

column row diagonal

H I, IV VII - M× K
HHH and

its inversion
III III, V, VI II, III K× K
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significant, especially for matrix and vector storage. A reasonable assumption
to estimate is that all scalar intermediate results are cached in a RGF while all
the vector counterparts are stored back to memory. Under this assumption, a
rough memory throughput requirement can be estimated by

bandwidth =
input/output volume in one time slot

time slot length

=
(input/output of No.I ∼ III + input/output of No.IV ∼ VII× 2)Nsubw

0.5 ms
,

(6.12)

where input and output volume is the sum of the sizes of inputs and out-
puts in Table 6.1. The intermediate results within stages are regarded as
both inputs and outputs. According to this assumption, the needed mem-
ory throughput is at least 2.2 Tb/s for 20 MHz bandwidth 128×16 massive
MIMO system.

Scalability: Matrix sizes may vary during run-time which requires scala-
bility. For H, the dimension is M× K, while for HHH and its inversion it is
a K × K square. In addition, the number of served users and used antennas
can be different since massive MIMO provides much more selectivity in the
spatial domain. Antenna selection techniques [76] can be applied to provide
a trade-off between performance and hardware costs depending on scenarios.
The difference in scenarios depends on the number of served users or variable
geographical distributions of the users. All of these aspects lead to a run-time
variable matrix size.

6.2.2. DATA ALLOCATION SCHEME

The concept of parallel memories is applied to support variable matrix sizes
and multiple access modes. The current operand matrix is defined as a size
L×W rectangle, and L×W elements are allocated onto N memory banks. For
low control overhead, N is chosen to be a power-of-two. We use (x, y) as the
row-column coordinate indicating position within a matrix, where the coor-
dinates start from (0, 0). The (x, y)-th element is mapped to the bank(x, y)-th
memory bank, which can be expressed as

bank(x, y) =

{
(x− 2y)%N y%N < N/2
(2y− x− N/2 + 1)%N y%N ≥ N/2.

(6.13)

The address that the (x, y)-th element is allocated to is the sum of the offset
address and the base address, and can be expressed as

add(x, y) = x + by/NcW︸ ︷︷ ︸
offset address

+Abase, (6.14)
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Figure 6.5. Examples of data allocation of an L ×W (W = 9) matrix onto
16-bank parallel memories (a) memory bank index assignment (b)
offset address assignment. The (8, 4)-th element is circled.

where Abase is the base address, presenting the start address of the current
matrix, i.e., the address of the (0, 0)-th element.

By substituting (x, y) into (6.14) and (6.13), memory bank indexes and cor-
responding addresses can be generated. The index assignment is relevant to
the number of memory banks N and data coordinate (x, y) and irrelevant to
the matrix size. The address assignment takes the width of current matrix as
one of the inputs. An illustration of this data allocation scheme with 16 mem-
ory banks is shown in Figure 6.5. The numbers in each square of Figure 6.5(a)
denote the memory bank index for the corresponding matrix element, while
the numbers in Figure 6.5(b) denote address assignment. Colored squares in-
dicate examples of the three access modes. Specifically, as an example, the
(8, 4)-th element is allocated at the address 4+Abase of the 5th bank. The pro-
posed scheme is conflict-free for all listed 16-length vector column-, row-, and
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diagonal-wise accesses.
The data allocation scheme organizes the data within memory banks in

a compact way and utilizes the memory space efficiently. Shown in Fig-
ure 6.5(a), the data allocation schemes occupy the addresses of N memory
banks in an ascending order that starts from lower addresses and gradually
upward. The Abase addresses in all memory banks are first filled and then
1 + Abase addresses are assigned. Specifically, the first N elements of the first
column are addressed as Abase. The first N elements of the second column are
addressed as 1 + Abase, and this ascending order continues until the left edge
of the matrix. After that, the ascending order continues from the N + 1 ∼ 2N-
th elements of the first column. For massive MIMO CSI matrix that L >> N,
this results in compact addressing and less empty words. More importantly,
this addressing scheme is of low-complexity in hardware implementation and
the compact property holds for flexible matrix sizes.

To summarize, Figure 6.6 illustrates the actual deployment of a 128× 9 ma-
trix onto 16 memories using the bank index in (6.14) and address in (6.13).
The numbers within boxes denote coordinates of the element within the ma-
trix. The 128× 9 matrix can be divided into eight 16× 9 smaller matrices.
Limited by the page size, only the first 16× 9 part of the matrix allocation
is illustrated. The rest of the matrix follows the same allocation pattern ex-
cept addresses within memories are shifted upwards. For example, the (0, 0)-
th element is allocated at the Abase-th address of the memory bank 0. The
(16, 0)-th and (32, 0)-th elements are also allocated in memory bank 0, but at
the 9 + Abase-th and the 18 + Abase-th addresses, respectively.

6.2.3. HARDWARE ARCHITECTURE

As a case study, we implement a parallel memory system that is designed for
a 128× 16 massive MIMO system. The parallel memory system is capable
of supporting the MIMO processing of Nsub=1200 subcarriers based on the
discussed scheme. The number of memory banks N is chosen to 16, which is
the smallest power-of-two number that ≥ K. Thanks to the channel hardening
effect, massive MIMO systems tend to have a large coherence bandwidth.
This enables a CSI matrix to be shared over several subcarriers. Therefore, we
assume that 16 subcarriers are using the same CSI matrix, and Nsys=8 memory
systems are parallel deployed.

HIGH-LEVEL ARCHITECTURE

The block diagram of the parallel memory system is shown in Figure 6.7.
The proposed memory system consists of 16 independent memory banks,
permutation network for write-in, inverse permutation network for fetch, and
control logic. The total memory capacity is larger than the size of H and
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first 16×9 part

actual deployment of the 16×9 matrix on 16 SRAMs

address
SRAM 0~15

0
1

2
3
4
5
6

7
8
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Figure 6.6. Detailed illustration of data allocation of the first part of a 128× 9
matrix onto a 16-bank parallel memories.

(HHH+ αI)-1. In detail, the number of words in each memory bank is chosen
to be 2048, which is the smallest power-of-two number satisfy

2048 ≥ Nsub(MK + K2)

16NNsys
= 1350 (6.15)

where MK and K2 are the size of H and (HHH + αI)-1, respectively. The
memory banks are single-port for area saving and have a wordlength of 32-
bit.

The control logic, including Permutation Pattern Generation Unit (PPGU)
and Address Generation Unit (AGU), generates the memory bank indexes
and addresses according to the matrix size and access requirement. The access
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Figure 6.7. Block diagram of 16 banks parallel memory. Each bank has 2048
words and the wordlength is 32 bits.

requirement consists of access modes, base address Abase, and starting point
coordinate (x, y). In case the starting point is not aligned, the control logic
automatically omits the unaligned part. For example, for a row-wise access
request with a starting point of (8, 4), it is treated as row access started from
(8, 0). Moreover, since there is only one possible diagonal line within a matrix,
all diagonal-wise accesses start from (0, 0) and ignore the input starting point.

During data write, the vector is permuted by the permutation network ac-
cording to (6.13) and send to the address according to (6.14). For data fetch,
the address generation unit allocates the desired word according to (6.14), and
the inverse permutation network permutes the data back to its original order.

PERMUTATION NETWORKS

Permutation network and inverse permutation network are the dominant
components in the area domain except for memory banks. For those parallel
memory system employing linear skew data allocation scheme, the isotropic
property makes it possible to accomplish permutation networks with barrel
shifters. With a barrel shifter, a vector can be shifted by a specific number of
bits without discarding any bit or affecting its original order. Barrel shifters
constitute of Nlog2N 2-input Multiplexer (MUX) for N inputs [77]. However,
barrel shifters are only suitable for building permutation network of linear
skew data allocation scheme. Another example is crossbars, which support
arbitrary data permutation patterns. Crossbars have a high hardware cost and
require N(N − 1) 2-input MUX. In order to lower the area cost of permuta-
tion networks, we can exploit that data organization is isotropic in the range
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Figure 6.8. Permutation network.

of the upper N/2 rows and lower N/2 rows separately. Figure 6.8 shows a
hybrid permutation network that harvests the partial isotropic property. The
key idea is to connect several barrel shifters with dedicated MUX. The permu-
tation network shown in Figure 6.8 has two 8 inputs barrel shifters for shifting
inputs in column access and one 16 inputs barrel shifter for row access. Since
there is only one diagonal access pattern, its data path reuses the row-access
barrel shifter without shifting. In summary, the write-side hybrid permuta-
tion network contains 4608 2-1 MUXs with 16 inputs and a wordlength of 32
bit. The number of MUXs is reduced by 40% when compared with crossbar
architecture. As for latency, its critical path consists of 5 2-1 MUXs which is
equivalent to that of a crossbar architecture.

ADDRESS GENERATION UNITS

AGUs generate the address for each memory bank in different access modes.
A fast and area-saving AGU is another important component for parallel
memories and has been discussed independently [78]. One method is a cen-
tralized address generation that calculates addresses of all accessing elements.
Addresses are distributed to the corresponding memory banks using shuffling
circuit in the same way as the permutation networks according to indexes. An-
other method is a distributed address generation that calculates addresses for
memory banks separately, where AGUs are hardwired with memory banks.
As shown in Figure 6.9, a distributed address generation method is deployed
in this design for it substantially simplifies the address routing.

Using a starting point (x, y) and the access mode, coordinates of 16 access-
ing elements can be represented as (xj, yj), where 0≤j≤15. The relationship
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between x, y and xj, yj can be expressed as

xj =


x (column)
x + j (row)

j (diagonal)

yj =


y + j (column)
y (row)

j (diagonal)

, (6.16)

where x and y are fixed to 0 for diagonal access modes. Benefited from
the aligned property of accessing that byj/16c=by/16c, add(xj, yj) equals to
add(xj, y) according to (6.14). Therefore, the assigned address of i-th memory
bank can be formulated as

addi(x, y)=


ai (diagonal)
x (column)
bi + 2y (row, y% ≥ 8)
ci + 2y (row, y% < 8)

+ by/16cW + Abase, (6.17)

where (x, y) is the starting point. (6.17) is derived by substituting xj into
(6.14), where xj is obtained by solving bank(xj, yj) = i. The parameters, ai, bi,
and ci, in (6.17) are fixed integers and their values are tabulated in the right
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side of Figure 6.9. ai is the solution of bank(xj, yj)=bank(ai, ai)=i. bi and ci are
utilized to present xj in row access which is the solution of bank(xj, y) = i.

Since the by/16cW + Abase part in (6.17) is identical for all memory banks,
it is generated separately and broadcasted to all AGUs. This distributed AGU
has two clear advantages. First, distributed AGU reduces the area cost; and
second, the hard-wired AGU shorten latencies because no shuffling network
for AGU is needed.

6.2.4. IMPLEMENTATION RESULTS

The design is realized using hardware description language and implemented
in ST 28 nm Fully Depleted Silicon On Insulator (FD-SOI) technology. The
simulation results include hardware cost, data throughput, and power con-
sumption. The overall area of the design is 0.30 mm2 which equivalent to
932 K two-input NAND gates. The 16 2048×32 high-performance high-density
single-port FD-SOI memory banks occupy 0.25 mm2 which is 83.3% of overall
area. Table 6.3 summarizes the area distribution per module compared to a
crossbar style implementation with equivalent functionality. Among external
logic, permutation networks are the area dominant component, taking more
than 90% of the area in both implementations. Using dedicated permutation
networks leads to a 23% area reduction compared to a crossbar style.

The post-layout simulation results show that the maximum clock frequency
is 1 GHz with a 1.0 V power supply and typical libraries at 25 °C temperature.
For each access, the volume of input/output data is 16×32=512 bits, provid-
ing a throughput of 512 Gb/s. The proposed memory system using dedicated
permutation networks consumes 160 mW in the write mode and 183 mW in
the fetch mode, while the memory system using crossbar style permutation
networks consumes 163 mW and 188 mW in write and fetch modes, respec-
tively.

Table 6.3. The equivalent gate count and Area Hierarchy of Proposed Archi-
tecture

Module
Gate count Proportion Gate count Proportion
(crossbar) (crossbar) (proposed) (proposed)

PN 10.8 k 45.5% 7.2 k 40.3%
IPN 10.8 k 45.6% 9.4 k 52.7%

AGU 1.4 k 6.0% 1.1 k 6.3%
PPGU 0.7 k 2.9% 0.1 k 0.6%

Total 23.7 k 100% 17.9 k 100%
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In Table 6.4, the proposed memory system is compared to several paral-
lel memory systems. To the best of our knowledge, there is no memory
system designed specifically for massive MIMO application yet. Therefore,
the chosen memory systems are designed for other application such as video
processing and FFT and their functionality is not the same. The proposed
memory system is run-time reconfigurable on the fly by changing L and W.
Since dedicated permutation networks and AGUs are used, this memory has
a significant external logic overhead reduction compared to the crossbar par-
alleled memory in [79]. While compared to memory system designed for
video processing [80] [65], this system accomplishes the supports of flexible
sizes of matrices as well as diagonal accesses which is essential for massive
MIMO baseband processing. The parallel memory designed for FFT [81] only
supports limited access modes for FFT and is not suitable for massive MIMO
baseband processing.

6.3. DATA ORGANIZATION FOR SORTING

Until now, the design for sorting operations continuously emerge to efficiently
meet specific requirements. In baseband processing algorithms, a fully-sorted
ascending sequence is not always necessary. For example, in successive-

Table 6.4. Properties of Several Parallel Memory Systems

Proposed [79] [65] [80] [81]

Mem bank 16 16 8 16 16
wordlength 32 bit 32 bit 32 bit 8 bit 12 bit

PN type hybrid crossbar linear linear crossbar
Gate count∗∗ 17.9 k 58.5 k 13.8 k 5.7 k N/A

Design
stage

Post
layout

synth. synth. synth. fabricated

Normalized
throughput† 512 Gb/s 478 Gb/s 358 Gb/s 131 Gb/s 200 Gb/s

Application
massive
MIMO

N/A video video FFT

Access modes c,r,d c,r,b,s c,r,b r,b FFT
Matrix size arbitrary arbitrary fixed fixed N/A

† Normalized throughput - Throughput×(Technology/28)
* c:columns, r:rows, b:blocks, d:diagonals, s:strides
** Only consider external logic.
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cancellation-list decoding of polar codes [82], the inputs of sorting operations
are two sorted shorter vectors from the previous step. The sorting operation
picks the smallest half among the two input vectors without requiring in as-
cending order. Another example is the sorting operation in K-best sphere de-
coding algorithms [83] [84]. Sorting operations in this algorithm only chooses
the smallest K inputs to the next level and has no need for the ascending
order. These researches aim to reduce the complexity of sorting operations
by excluding redundant steps in a specific sorting scenario. Another prop-
erty of these sorting algorithms in baseband processing is the length of them
maintains in the tens and rarely comes to the hundreds or more.

Since parallel memories have proven their effectiveness in baseband pro-
cessing in massive MIMO, we will introduce the mapping of sorting operation
for memory-based sorting. The concept of memory-based sorting has been
proposed in [85], which is very similar to memory-based FFT [64]. The main
idea is to leverage the conflict-free property of parallel memories to handle
the sophisticated data organization in sorting operations.

6.3.1. BITONIC MERGE SORTING

Popular sorting algorithms include bubble sorting [86], merge sorting [87],
odd-even sorting [88], etc. Figure 6.10(a) illustrates a 16-input (L = 16) bitonic
merge sorting network with outputs in ascending order. Basic building blocks,
Compare And Swap (CAS) units, are marked as two hollow dots connecting
with one line in Figure 6.10(b). CAS units have two inputs and two outputs
where the larger input goes to the upper output and the smaller to the lower
output.

The bitonic merge sorting can be divided into successive stages (k), and
the stages can be categorized into phases (i). The numbers at the top of Fig-
ure 6.10(a) indicate sorting stages starting from the left, while the numbers at
the bottom indicate the sorting phases. Each stage takes L elements as the
inputs of L

2 CAS operations and outputs L elements passed to the next stage.
In total, a L = 2l-length Bitonic merge sorting has (1 + 2 + . . . + l) stages.
Thereby, the number of total CAS operations is L

2 (1 + 2 + . . . + l). At the i-th
phase, two 2i−1 length ascending vectors are merged into a ascending vector
of length 2i. The relationship between phases and stages is shown in Fig-
ure 6.10(c). For example, a 16-length bitonic merge sorting has four phases
and the number of stages in each phase is 1, 2, 3, and 4, respectively. We
consider the intermediate result of the k-th stage as xk

0, xk
1, . . . , xk

L−1.
Unlike other sorting algorithms, bitonic merge sorting has superior data

structures for hardware parallelism, i.e., locality. As is shown in Figure 6.10(a),
operands in adjacent stages tend to compose operand pairs within a small
group. For example, in the 6th stage, x6

0, x6
1, x6

14, and x6
15 compose two operand



74 Parallel Memory System

1 2 3 4 5 6 7 8 9 10

1 2 3 4

(a)

o1

o2

o0

o4

o5

o3

o7

o8

o6

o10

o11

o9

o12

o14

o15

o13

r1

r2

r0

r4

r5

r3

r7

r8

r6

r10

r11

r9

r12

r14

r15

r13

(b)

in1

in2

MAX

MIN

stage

phase

comparator

(c)

phase  i stage  k

1 1

2 2,3

3 4,5,6

4 7,8,9,10

5 11,12,13,14,15

Figure 6.10. (a) Illustrations of a bitonic merge sorting of length L. Dashed
box represents different sub-sorting phases. (b) A schematics of
a CAS unit. (c) Relationship between stages and phases.

pairs, {x6
0, x6

1} and {x6
14, x6

15}. In the 7th stage, the same four operands com-
pose another two operand pairs, {x7

0, x7
15} and {x7

1, x7
14}. This locality prevents

enlarge the range of operands during parallel execution. With properly cho-
sen elements, several stages of CAS operations can be performed on a vector
fetched in one clock cycle without extra fetching or write-back. This is the
main reason that bitonic merge sorting is chosen to be mapped on parallel
memories.

6.3.2. DATA ALLOCATION SCHEME

We assume that each CAS operation takes one clock cycle. For a fully se-
rial system, a bitonic merge sorting of length L takes L

2 (1 + 2 + . . . + l) clock
cycles, which is prohibitive for a large L in a timing constraint application.
Therefore, the parallelization of sorting operation is necessary. One fully par-
allelized method is to execute one entire stage in multiple clock cycles, which
means that L

2 CAS operations are performed in each clock cycle. One draw-
back of this method is that it requires caching the L-length intermediate vector
in every clock cycle. A costly memory with a bandwidth of L elements is re-
quired, especially for a large L. A compromised solution is to partially execute
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of a stage in each clock cycle. In this way, fewer operands are required in each
clock cycle, and the bandwidth requirement of the memory which stores the
intermediate results is lowered. However, since the operands are organized
by CAS pairs in different patterns, the risk that required intermediate results
are allocated in different addresses of a memory is emerged, i.e., data con-
flict. In the following, we will discuss a conflict-free data mapping scheme for
variable-length sorting operations. By mapping operands on multiple mem-
ory banks, this scheme avoids data conflict by dedicated data organization
and provides customized access patterns for different sorting lengths.

ACCESS PATTERN ANALYSIS

There are two kinds of operand pairing patterns in Figure 6.10(a), namely
symmetric pairs and hopping pairs. In the 1st, 2nd, 4th, and 7th stages,
operands are paired as symmetric patterns, while in the 3rd, 5th, 6th, 8th,
9th, and 10th stages, operands are paired as hopping patterns. For symmetric
patterns in the i-th phase, operand pairs are symmetric within 2i elements
(symmetric 2i) and can be expressed as

{xk
0, xk

2i−1}, {x
k
1, xk

2i−2}, {x
k
2, xk

2i−3}, . . . {xk
2i−1 , xk

2i−1+1}. (6.18)

For hopping patterns with an interval of h (hop h), operands are paired as

{xk
0, xk

h}, {x
k
1, xk

h+1}, {x
k
2, xk

h+2}, . . . {xk
h−1, xk

2h−1}. (6.19)

During the entire sorting procedure, the i-th phase consists of a symmetric
pairing stage and i− 1 hopping stages. The first h among hopping stages is
2i−2 in the i-th phase, and the next one is half of the last until one is reached.
For example, the first stage among the 4th phase (7th stage) has symmetric
pattern, and the rest (8th, 9th, and 10th stage) are hopping patterns with
interval h=4, 2, and 1. According to (6.18) and (6.19), the operands pairing in
each stage can be listed as

{x7
0, x7

15}, {x7
1, x7

14}, {x7
2, x7

13}, ...{x7
7, x7

8} symmetric 16 in stage 7

{x8
0, x8

4}, {x8
1, x8

5}, {x8
2, x8

6}, ...{x8
11, x8

15} hop 4 in stage 8

{x9
0, x9

2}, {x9
1, x9

3}, {x9
4, x9

6}, ...{x9
13, x9

15} hop 2 in stage 9

{x10
0 , x10

1 }, {x10
2 , x10

3 }, {x10
4 , x10

5 }, ...{x10
14, x10

15} hop 1 in stage 10.

(6.20)

This pairing list is in line with the pairing pattern in Figure 6.10(a).

CONFLICT-FREE DATA ORGANIZATION

To avoid data conflict during sorting, we adopt the concept of parallel mem-
ory that accommodates L operands on N memory banks. A dedicated data



76 Parallel Memory System

allocation scheme is applied to enable the support of above access patterns
without conflict. This scheme is flexible to support arbitrary length (L) and
different number of memory banks (N). A long sorting operation can be sup-
ported only with larger memory banks. For simplicity, we assume that both
N and L are power-of-two and only single-port memory is employed.

bank(xk
b) indicates the memory bank index that xk

b is mapped to during k-
th stage. Let b = (bn−1bn−2...b1b0)2, where bj = {0, 1}, be the binary form of
b and m = log2N. The operator (·)2 implies the number within brackets is
represented in binary form. The memory assignment of xk

b is the same within
one phase, thereby bank(xk

b) can be formulated as

bank(xk
b) = [(bi−2...bαm)2 +

α−1

∑
j=0

(b(j+1)m−1...bjm+1bjm)2 + bi−1(α− 2β)]mod N.

(6.21)
where

α =

⌊
i− 1

m

⌋
, (6.22)

and
β = (i− 1)mod m. (6.23)

Note that i is determined by k, as shown in Figure 6.10(c). The data allocation
scheme (6.21) for N memory banks is conflict-free for all access patterns in the
i-th phase.

In order to prove the conflict-free property, we will prove that data alloca-
tion scheme (6.21) is conflict-free in both symmetric patterns and hop patterns.
For an operand pair {xk

b1, xk
b2}, the indexes of each operand can be represented

in a binary form, b1 = (b1
n−1b1

n−2...b1
1b1

0)2 and b2 = (b2
n−1b2

n−2...b2
1b2

0)2. If
bank(xk

b1) 6= bank(xk
b2), then (6.21) is conflict-free.

(i) For symmetric pattern, the indexes of the operand pairs satisfy

(b1 + b2)mod 2i = 2i − 1 = (11...1)2︸ ︷︷ ︸
i

, (6.24)

which means that for an arbitrary j < i, b1
j + b2

j = 1. Therefore, according to
(6.21), we have

bank(xk
b1) + bank(xk

b2) =[(1...1)2︸ ︷︷ ︸
β

+
α−1

∑
j=0

(1...1)2︸ ︷︷ ︸
m

+α− 2β]mod N

=[2β − 1 + α(2m − 1) + α− 2β]mod N

=[α2m − 1]mod N. (6.25)
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Figure 6.11. Data mapping scheme for N=2 bank sorting. Numbers within
boxes denote indexes. Bi-direction arrows denote data re-
allocation at the end of each phase.

Since both α2m and N are even, the sum of bank(xk
b1) and bank(xk

b2) indexes
is an odd number, implying that bank(xk

b1) and bank(xk
b2) are different.

(ii) For hopping patterns with interval h, the indexes of operand pairs {xk
b1,

xk
b2} satisfy {

b1
j = b2

j , j 6= log2h

b1
j 6= b2

j , j = log2h
(6.26)

This implies the distance between bank(xk
b1) and bank(xk

b2) can be represented
as

|bank(xk
b1)− bank(xk

b2)| = (0...001000....0)2︸ ︷︷ ︸
m

6= 0, (6.27)

which indicates that bank(xk
b1) 6= bank(xk

b2).
Now we have proved that (6.21) is conflict-free for all access patterns in the

i-th phase. A key issue in this data allocation scheme is that bank indexes
are related to phases, which means that before entering the next phase, data
needs re-allocation. This is necessary since there is no fixed data organization
pattern that fits all phases. The necessity can be proved with an example using
a setup up of N = 2 and L ≥ 32. At the i = 4th phase, operand pairs exist as
{x0, x4} (hop 4), {x4, x6} (hop 2), {x6, x7} (symmetric 16), and {x7, x8} (hop 1).
Since there are only two memory banks, operands within one pairs need to
be separately allocated. Thereby x0 and x8 are allocated in the same memory
bank. If there is no data re-allocation before entering the 5th phase, x0 and x8
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Figure 6.12. Data mapping scheme for 8 bank sorting. Numbers within boxes
denote indexes. Gray boxes denote the element with smallest
index in each address.

constitute an operand pair (hop 8) and mapping them in one memory bank
will cause a conflict. Data re-allocation is always possible during write-back
at the end of each phase, and this will be shown in the following.

The address of xk
b within a specific bank can be expressed as

add(xk
b) = (bn−1bn−2...bm)2, (6.28)

which is irrelevant to phases for a simple address generation.
As an example, the data arrangement using (6.21) and (6.28) with N = 2

memory banks are shown in Figure 6.11, which determines how the data is
stored in every phases. Without considering write-back, the memories pro-
vide two operands per read cycle and support one CAS operation. Each row
of boxes denotes a memory bank, and columns denote memory address. At
the i-th phase, data are stored in original order. After each phase, data are re-
allocated according to (6.21) and bi-direction arrows indicate the correspond-
ing data re-allocation. As discussed in the previous example, xk

0 and xk
8 are
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allocated in the same memory bank at the 4-rd phase. A switch happens at
the end of the 4th phase to separate them in different banks. In this way, the
memory bank conflict between xk

0 and xk
8 is resolved.

The data arrangement for an N = 8 bank parallel memory is shown in Fig-
ure 6.12. The read/write throughput is eight elements per clock cycle, which
means that one memory access can support at least four CAS operations. The
gray boxes denote the first operand allocated in an address. All data are re-
shuffled to the allocation pattern of the next phase in the end of their current
phase. For example, at the end of the 4th phase, xk

8 is moved to bank1 from
bank0 and xk

9 is moved to bank2 from bank1. The addresses of operands are
irrelevant to phases and will not change during sorting. This re-arrangement
is limited to operands of same address.

6.3.3. EXECUTION ARRANGEMENT

The proposed conflict-free data organization ensures that there is no conflict
between operands within one pair. If there are only two memory banks, one
memory access will provide one CAS operand pair. In this case, only the
conflict within operand pairs needs to be considered. If N ≥ 4, more than
one CAS operations will be executed in parallel with one memory access.
The conflict between CAS pairs also needs to be avoided. As mentioned in
Section 6.3.1, the bitonic merge sorting has a property of locality, making it
possible to support multiple stages of CAS operation with one memory access.

For clarity, Figure 6.13 shows an execution example at the 5th phase when
N = 8. The 5th phase consists of 5 stages, k=11...15, where operands patterns
are symmetric 32, hop 8, hop 4, hop 2, and hop 1, respectively. The execu-
tion is organized in a radix-22 way to harvest locality, which means that one
memory access supports two stages before write-back. Before the first stage,
operands are fetched from memory banks and shuffled according to current
operand pairs. After the first operation, results are re-organized according
to the second CAS pair. The results of the second stage are shuffled back to
its original order before write back (except the last stage of a phase, where a
re-allocation is required.) The gray boxes denote the operand group for k=11
and 12, and the red box for k=13...15. For example, {x11

0 , x11
31} and {x11

8 , x11
23}

form two operand pairs in a symmetric 32 pattern in the 11-th stage. The
outputs of CAS are then re-organized to {x12

0 , x12
8 } and {x12

23, x12
31} for hop 8

patterns in the 12-th stage. After that, they are re-shuffled and written back
in the same order as being fetched. The rest of four operands are x11

4 , x11
27, x11

12,
and x11

19. For hop 4, hop 2, and hop 1 patterns in k = 13...15 stages, data at the
same memory address are chosen to form an operand group, and the corre-
sponding operand pairs are formed. In this way, it is feasible to shuffle data
to different memory banks without conflict at the write back stage. In this
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Figure 6.13. Execution arrangement at the 5-th phase when M = 8 and L =
32. Numbers within boxes denote indexes.

case, the operands in the 15th stage come from the same address and they are
possible to be shuffled to the data mapping pattern for the 6th phase. As an
overall illustration, Figure 6.14 shows the execution arrangement of a L = 32
sorting mapped on eight memory banks and four CAS units, where the phase
i ∈ [1, 2, 3, 4, 5]. In this figure, the execution follows an order from left to right
and top to bottom. The gray entries show operand pairs. As discussed above,
the execution is organized in a radix-22 way that each operand experience two
CAS operations before write back. Since there are 15 stages in total, in the 15-
th phase, the fetched data from memory are subjected to only one Clock Cycle
(CC) of CAS operations while the rests (1 ∼ 14 stages) are subjected to two
CCs. The boundary between phases in execution arrangement may not be
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clear, because one memory fetch may be subjected to two phase. For example,
in first two stages, the fetched data from memory are first subjected to stage 1
in phase 1 and then to stage 2 in phase 2 without write-back. The required
computational clock cycle for sorting of length L can be expressed as

L
2M

⌈
1 + ... + l

2

⌉
=

L
2M

⌈
l(1 + l)

4

⌉
(6.29)

FLEXIBILITY

With folded execution, the flexibility of this memory-based sorting scheme
is very high. Unnecessary CAS operations can be skipped for speedup in
specific applications where a full sorting is not required. As an example, 8-
best sorting with eight memory banks based on this memory-based sorting
scheme is illustrated in Figure 6.15. Shown in Figure 6.15(a), the overall block
diagram of 8-best sorting consists of 8-input sorters and 16→ 8 sorters. The
8-input sorter sorts 8 elements into descending order, while 16→ 8 sorter
combines two sorted vectors of length eight and outputs the eight largest
elements in descending order. The 8-best sorting is arranged recursively. For
example, two 8-best sorting of length 64 can be combined with a 16→ 8 sorter
and forms a 8-best sorting of length 128. Figure 6.15(b) shows that the 8-input
sorter and the 16→ 8 sorter are both a subset of 16-input sorter. Figure 6.15(c)
shows the execution arrangement of the 8-input sorter and the 16→ 8 sorter.
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Figure 6.15. Hardware arrangement of a recursive 8-best sorter mapped on
8 memories. (a) Block diagram of the 8-best sorter. (b) Illustra-
tion of the 8-input sorter and 16→ 8 half sorter. (c) Execution
arrangement.





7
Channel Data Compression

In the previous chapter, various data access modes for the MIMO processing
in massive MIMO are discussed. Apart from access modes, the data-intensive
digital baseband processing creates significant challenges in terms of data
storage requirements. In particular, allocating data on a suitable memory of
enough capacity is a challenging task.

Among all operands in digital baseband processing, CSI matrices play a key
role for they are required by both uplink detection and downlink precoding.
Therefore, CSI matrices need to be held in memory and repeatedly fetched
once obtained after the channel estimation. Shown in Figure 7.1, CSI matrices
in massive MIMO have a much larger dimension than small-scale MIMO due
to the large number of antennas and serving users. For example, the number
of complex elements in a 128×16 massive MIMO CSI matrix is over 100 times
larger than a 4×4 small-scale MIMO, thus requiring 100 times larger memory
space.

As discussed in Section 3.1.2, off-chip memories like DRAMs have much
lower throughput and longer response time than on-chip memories like SRAMs.
However, on-chip memories are generally more expensive and have limited
storage capacity. Since large-size CSI matrices are fetched at least four times
(two for uplink and two for downlink) in one time slot according to the
frame structure in Figure 6.3, it is appropriate to store CSI matrices on-chip
for fast access. On-chip memory in baseband processor designed for small-
scale MIMO wireless transmission already constitutes more than 50% of the
die area [4]. The concept of on-chip CSI matrix compression and decompres-
sion is an obvious approach to accommodate operands in on-chip memories,
where compression refers to represent data with fewer bits. Depending on
whether the original data can be recovered when uncompressed, compression
algorithms can be categorized into lossless and lossy.

85
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Figure 7.1. An illustration of CSI in small-scale MIMO and massive MIMO.
Each black dot denotes a complex value. Limited by page size,
the figure of massive MIMO shrinks at the base station antenna
dimension.

In this chapter, we discuss the channel data compression to relive the on-
chip memory capacity and bandwidth challenges in massive MIMO with lossy
compression. In order to maintain the effectiveness of compression in prac-
tical implementation, it is necessary for compression algorithms to efficiently
reduce the data size with a minor hardware cost and low distortion compared
to original data. An ideal compression algorithm has advantages of fast, low
complexity, low distortion, and high compression ratio. Of course, the goal
is to achieve a high compression ratio which leads to large area reduction.
Besides, the latency of data decompression may sit on the critical path of a
memory fetch, which can impact overall system performance. In contrast to
small-scale MIMO, the dramatically increased antennas in base stations intro-
duce a new dimension to compress channel and this chapter mainly focus on
this dimension.

The MIMO processing flow after employing CSI matrix compression is
shown in Figure 7.2. The estimated channel, H`, is first compressed to H`

c
and stored in on-chip memory. As an alternative of H`, H`

c is decompressed
and reconstructed to Ĥ` for precoding and detections. To quantify the effi-
ciency of compression algorithms, we define the memory saving ratio, γ, as
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Figure 7.2. Illustration of channel data compression in MIMO processing of
digital baseband processing.

γ=

(
1− size(H`

c)

size(H`)

)
× 100%, (7.1)

where size(·) denotes the length of string when the matrix within brackets is
represented in flattened binary forms. For example, the size(H`) for an M×K
MIMO system with w-bit worth length is wMK.

7.1. RELATED WORK

Several prior works about data compression have been proposed for different
purposes. In this section, we summarize those works which related to on-chip
massive MIMO CSI matrix compression.

CACHE COMPRESSION

Cache compression [89–91] is a popular technology to increase the available
data volume of on-chip memories and to reduce the data exchanging rate be-
tween on-chip and off-chip memories. It is used in a multi-level cache hierar-
chy, and the compression occurs between higher-level and lower-level caches
without intervention from programmers. Higher-level caches store uncom-
pressed data, and lower-level caches store compressed data. Compression
algorithms for caches are always lossless that decompression exactly recov-
ers the original data to avoid affecting the functionality. These algorithms
mainly exploit the repeated bit patterns within source data such as successive
appeared zeros.
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Unlike typical cache compression, CSI matrix compression is only special-
ized for CSI matrices, and it is available to tolerate a certain degree of distor-
tion between original data.

GRAPHICS COMPRESSION

Graphic compression [92] is widely used in modern GPUs. Similar to channel
data compression, the algorithms for graphic compression are specialized for
image/video data. Graphic compression exploits the semantical characteristic
of graphic data and is able to tolerate some distortions. This is because the
ability of human eyes to distinguish subtle difference is limited. Therefore,
with proper error controls, lossy compressions can be adopted to achieve a
higher compression ratio.

CHANNEL DATA COMPRESSION

As shown in Figure 7.1, CSI can be regarded as a 3-D cubic, where three
dimensions are subcarriers, base station antennas, and user-side antennas.
Channel data compression has been widely discussed, however, not in the
context of minimizing the baseband chip area but shortening the training time
of channel estimation as well as reduce the data volume of feedback [93–96].

In small-scale MIMO, though there is no CSI matrix compression, only part
of CSI is estimated and stored for the limited pilot symbol allocation, shown
in Figure 6.3. Relying on the correlation in the frequency domain, those sub-
carriers without pilot symbols generate CSI from neighboring subcarriers by
duplication or interleaving. This can be regarded as a kind of “decompres-
sion” in the frequency domain.

In massive MIMO, TDD and FDD systems are two options for the stan-
dard. Since the downlink CSI in a TDD system can be obtained by channel
reciprocity without channel feedback through uplinks, most researchers have
considered TDD as a system assumption. However, there are some unique
advantages in FDD system discussed in Section 2.2.3. To obtain CSI at the
base station in a FDD system, the estimated CSI at user side need to be fed
back via uplink, where the amount of feedback data is linearly scaling with
the number of antennas. Therefore, the overhead of CSI feedback becomes a
crucial concern in the FDD massive MIMO.

It is a natural idea to reduce the overhead of feedback by compressing the
CSI without introducing excessive system performance degradation. [93–95]
compress CSI by leveraging the spatial correlation between antennas. CSI ma-
trices are first transformed into a sparse matrix form and further compressed
by dimensional reduction or compressive sensing. In [96], multiple correlated
antenna elements are mapped to a single average value using pre-defined pat-
terns. The general principle of channel compression for FDD massive MIMO
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can also be used for reducing on-chip memory requirements in baseband pro-
cessing. In the following, two CSI matrix compression methods are discussed.

7.2. DOMAIN TRANSFORM COMPRESSION

One way of CSI compression is to exploit the sparsity within the massive
MIMO channel. We look at the i-th user CSI data on the `-th subcarrier, h`

i ∈
CM×1. Figure 7.3 illustrates the process of domain-transform compression.
One linear transformation on channel vector can be express as

h`
i,s = Ψ`h`

i , (7.2)

where Ψ` ∈ CM×M is the chosen orthogonal basis for sparsity exploration,
h`

i,s ∈ CM×1 is the transform result. The sparsity of h`
i,s is largely affected

by the choice of basis and the property of channel data. The compression
is accomplished by picking r transferred elements among M. The picking
reduces the dimension of h`

i,s ∈ CM×1 by discarding the unchosen elements,
where the result h`

i,c ∈Cr×1 can be express as

h`
i,c = Φ`

i h`
i,s. (7.3)

Φ`
i ∈Cr×M is an one-hot index matrix. One-hot matrix has exactly one 1-value

element in each row and no more than one 1-value element in each column.
In the decompression, the reconstruct process starts from zero padding and

then transform back to its original domain. The decompressed CSI data, ĥ`
i ,

can be express as

ĥ`
i = Ψ`H

ĥ`
i,s = Ψ`H

Φ`
i

T
h`

i,c. (7.4)

In addition, for a changeable basis, the basis also need to be recorded. For a
fixed basis, the position of picked elements is not fixed, and an index matrix
to record positions needs to be recorded. In the following, we introduce two
methods of the linear transformation to explore sparsity: one is optimal in
terms of NMSE but difficult to implement and used as a reference, while the
other is exploiting the property in the physical layer and easy to implement.

7.2.1. KARHUNEN-LOEVE TRANSFORM

Karhunen-Loeve transform (KLT) [97] is a powerful transformation tool that
is widely used for sparsification and optimal in terms of NMSE. The basis of
KLT is generated by the covariance matrix of the original data, Ri ∈ CM×M,
which can be calculated as

Ri =
1

Nsub

Nsub

∑
`=1

(h`
i h`

i
H
). (7.5)
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Transform picking
compressed 

(position info)
L

r

Figure 7.3. Illustration of domain-transform compression process of a L=16
and r=8 length vector. Gray levels within boxes represent power
of complex values.

The basis is obtained by performing eigen-decomposition on the covariance
matrix,

ΨKLT
i ΛiΨKLTT

i = Ri, (7.6)

where ΨKLT
i ∈ CM×M is the orthogonal basis and Λi ∈ CM×M is a diagonal

matrix whose diagonal elements are sequenced in descending order. After
applying the linear transformation in (7.2) with Ψ` = ΨKLT

i , the transform
result h`

i,s is expected to be roughly assigned in descending order. Therefore,
a fixed position information matrix is employed, expressed as

Φ`
i =


1 0 0 ... 0 ... 0
0 1 0 ... 0 ... 0
0 0 1 ... 0 ... 0
.. ... ... ... ... ... ...
0 0 0 ... 1 ... 0

 , (7.7)

which means that the first r elements of the transform result are picked as
dimension reduction.

Since the transform matrix among Nsub subcarriers is needed and index
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Figure 7.4. An illustration of the transmission path between the base station
and user, where the base station is equipped with M uniform-
space antenna. Two transmission paths are shown as an example,
and the vector below is the channel vector represented in the an-
gular domain.

matrices are fixed, the memory saving ratio can be represented as

γ =

(
1−

size(h`
i,c) + size(ΨKLT

i )/Nsub

size(h`
i )

)
× 100%

=

(
1− r + M2/Nsub

M

)
× 100%.

(7.8)

Main drawbacks of KLT are hardware cost. On the one hand, both the
covariance matrix generation and eigen-decomposition are computational in-
tensive operations, which have a complexity magnitude of O(M2Nsub) and
O(M3), respectively. The order of magnitude is at the same level with the
transformation itself, which is O(M2Nsub) as Nsub matrix multiplications.

On the other hand, during the generation of the covariance matrix, the CSI
across all L subcarriers need to be cached in the memory, which goes against
with the concept of memory compression. Therefore, KLT is considered as an
upper bound of CSI matrix compression.

7.2.2. FAST FOURIER TRANSFORM

Another method of channel sparsity exploitation is DFT, often implemented
as FFT in the hardware. The FFT can be represented as a matrix multiplication
with an orthogonal basis, ΨFFT. For a base station equipped with a uniform
linear array (ULA), the FFT across base station antennas transform the spatial
domain to the angular domain [98]. There will be a strong element on FFT
results for those angles that exist transmission paths. This means that we
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(a) LOS (b) NLOS

Figure 7.5. The FFT spectrum of a measured channel data over all subcarriers.

can concentrate the channel energy into several FFT results other than the flat
spatial representation, where each antenna is expected to receive signals of
a roughly same power. Thanks to the large number of antennas in the base
station, it is possible to identify the multiple transmission paths in a high
resolution. Based on that, we can exploit the sparsity of channel data in the
angular domain and further compress the data by discarding “weak” values.
By eliminating “weak” values, we can reduce the dimension of channel data
without introducing too much performance loss. Figure 7.4 illustrates the
transmission path and channel data represents in angular domain.

Apparently, for minimizing the distortion of CSI matrix compression, re-
serving the largest FFT results is the best way. The power of each FFT results
must be calculated and sorted in ascending order to identify the largest-power
elements among them.

INDEX SHARING BETWEEN SUBCARRIERS

In addition, the FFT spectrum distribution on neighboring subcarriers exhibits
similarity, which is shown in Figure 7.5. This correlation on the frequency
domain can be further exploited to reduce the size of index matrices. In detail,
the index matrix of the i-th user on the `-th subcarrier, Φ`

i , can be deployed
on the decompression of current subcarrier and its neighboring subcarriers,
from `− η

2 + 1 to `+ η
2 , where η is a factor indicating the number of sharing

subcarriers. Thereby, we can only store one set of index matrix, Φ`
i instead

of Φ`− η
2 +1

i ...Φ`+
η
2

i . The overall storage size for index matrices is reduced to 1
η

Moreover, index matrix generation is compute-consuming, including power
calculation, sorting, and index generation. Omitting these operations will
boost the throughput of compression with a minor performance loss.
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Φ`
i can be represented as an echelon matrix, where each leading 1-element

is in a column to the right of the leading 1-element in the previous row.

Φ`
i =


1 ... 0 0 0 ... 0 ... 0
0 ... 1 0 0 ... 0 ... 0
0 ... 0 0 1 ... 0 ... 0
.. ... ... .. ... ... ... ... ...
0 ... 0 0 0 ... 1 ... 0

 , (7.9)

These rows have a 1-element to indicate that the corresponding element in
FFT result is reserved, e.g., if there is a 1-element in the 3-rd row, it means
that the 3rd element are reserved and vise versa. For reconstruction, an M-
length binary string can represent the entire Φ`

i matrix. In conclusion, the
memory saving ratio of FFT-based compression with η index sharing is

γ =

(
1−

size(h`
i,c) + size(Φ`

i )/η

size(h`
i )

)
× 100%

=

(
1− 2wr + M/η

2wM

)
× 100%.

(7.10)

ANTENNA SPLITTING

It is not always necessary to execute a full length FFT for sparsity exploitation.
Since the complexity of FFT is higher thanO(n), splitting the M-length h`

i into
several L-length short vectors reduces the complexity of computing.

Deploying FFT on each short vector independently can also exhibit the
sparsity. Figure 7.6 illustrates two examples of splitting patterns, including
the directly split and interleaving.

7.3. GROUP-BASED COMPRESSION

Instead of linear transformation, group-based compression linearly scales down
the size of channel data by using the average value of multiple elements to rep-
resent them. Therefore, the distortion between original data and compressed
data largely rely on the chosen elements for grouping. For example, if ele-
ments within one group are similar, the distortion introduced by replacing
group elements with their average value will be negligible.

In group-based compression, we employ a strategy that first aligns the orig-
inal data into an ascending order and then the grouping pattern is chosen as
several successive segments of aligned vectors. Figure 7.7 illustrates this com-
pression method. In order to accomplish trade-off between searching com-
plexity and compression performance, we allow applying the compression
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(a) Direct split

(b) Interleaving pattern

compression compression compression compression

1 2 3
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Figure 7.6. Illustration of two splitting patterns where M=16 and L=4.

onto shorter vectors instead of M-length vectors, similar to antenna splitting
in FFT-based compression. Considering a compression length of L and a L× 1
complex CSI vector h`

i as inputs, we first divide the input into real and imag-

inary parts, h`,real
i and h`,imag

i . We first focus on real part since the imaginary
part follows an identical flow. h`,real

i is then sorted and each separated to
L
g g-length short vectors for averaging, where g is the grouping length. The
averaging result can be presented as,

h`,real
i,s =

1
g

S`,real
i h`,real

i

=
1
g


0 ... 0 ... 1 0 ... 0
1 ... ... 0 ... 0 1 ... 0
... ... ... ... ... ... ... ... ...
0 ... 1 0 ... 0 0 ... 1

h`,real
i ,

(7.11)

where S`,real
i is a L

g × L one-hot index matrix which can be regarded as a code-
book when reconstructing the vector to its original order. This decompression
result can be represented as

ĥ`,real
i = S`,realT

i h`,real
i,s (7.12)

Overall, the structure of compressed data is the two groups of averaged
values and two codebooks for real and imaginary part. Represented in a
binary form, codebooks S`,real

i and S`,imag
i have a size of Llog2

L
g separately.
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Figure 7.7. Illustration of the group-based algorithm for L=16 and g=4. Gray
levels within boxes represent size of real values or power of com-
plex values.

Therefore, the memory saving ratio is

γ =

(
1−

w
g + log2

L
g

w

)
× 100%. (7.13)

This compression method is inspired by [96]. However, instead of seeking
among limited pre-defined patterns in [96], the method in this section tends
to seek among all possible patterns.

7.4. PERFORMANCE EVALUATION

In this section, we evaluate the CSI compression using the proposed algo-
rithms. The evaluation is based on measured CSI matrices which are the
same as used in [99], which includes two scenarios, LOS and NLOS. The mea-
surement system operates at a carrier frequency of 2.6 GHz and has an overall
bandwidth of 50 MHz, consisting of Nsub=1601 subcarriers. A M=128 half-
wavelength linear spaced antenna array acts as the base station and serves
K=5 users.

Two indicators are used in the evaluation. The first one is Peak Signal-
to-Distortion Ratio (PSDR), which is similar to Peak Signal-to-Noise Ratio
(PSNR) used in graphics compression, indicating the quality of compressions.
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gap1

gap2

Figure 7.8. PSDRs versus the memory-saving ratio with L = 128, using
KLT-based, FFT-based, and group-based compression algorithms.
Gap 1 and gap 2 denote the difference of PSDRs between LOS and
NLOS using FFT-based compression and group-based compres-
sion.

The second one is BER, which is a typical indicator of transmission quality in
wireless communications.

PEAK SIGNAL-TO-DISTORTION RATIOS

In the beginning, Figure 7.8 shows PSDRs with respect to γ when using KLT-
based, FFT-based, and group-based compression algorithms. Here, we only
consider different scenarios, and no splitting is employed. As expected, KLT-
based compression achieves much better performance when compared to the
rest of the algorithms. This is because the KLT-based method employs a “per-
fect” basis, while the rests rely on the channel sparsity and similarity. Besides,
led by the higher inner correlation, the same algorithm performs better per-
formance under LOS scenarios than NLOS. For FFT-based compression, this
trend is particularly evident. At γ = 50%, gaps between LOS and NLOS sce-
narios when using FFT-based compression (gap 1) is around 10 dB which is
much larger than the 3 dB gap when using group-based compression (gap 2).
This indicates that the group-based algorithm is less sensitive to propagation
environments when compared to FFT-based compression.

Figure 7.9 shows PSDRs with respect to γ with different compression length
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group-based FFT-based 

Figure 7.9. PSDRs versus the memory-saving ratio with different compression
length L = 32/64/128, using FFT-based and group-based com-
pression methods. Line dash types denote compression lengths.

using FFT-based and group-based compression algorithms. The operation
length L has a greater influence in group-based than FFT-based. The PSDR
degradation from L = 128 to 32 in group-based algorithm exceeds 10 dB at
50% memory-saving ratio, while the corresponding degradation in FFT-based
is less than 3 dB. This can be explained as group-based algorithm relies on the
similarity between samples instead of scenarios. A larger number of samples
enlarges the range of seeking and facilitates finding similar elements.

Figure 7.9 shows PSDRs with respect to γ with different splitting patterns
using FFT-based compression algorithm. Direct splitting has slightly better
PSDRs than interleaving patterns. This can be explained as the “locality” of
the angle of transmission paths. For a large linear antenna array, the angle
of transmission paths is not exactly identical for each antenna. The LOS path
has different angles for the left most antenna and the right most antenna when
the terminal is not in line with the antenna array or extremely far away from
the antenna array. Direct split will expose this “locality,” while interleaving
is unable to expose it. In the following, direct splitting is considered as the
default option.
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Figure 7.10. PSDRs versus the memory-saving ratio with different splitting
patterns in FFT-based compression, where L = 32.

BIT-ERROR-RATES

We further evaluate the performance when using compressed CSI matrices
in uplink detection. The performance indicator is BER, and we use ZF as
detection scheme. As explained in Chapter 2, a ZF detection provides a near
optimal-performance. If we replace the perfect channel H` with compressed
form Ĥ`, (6.5) can be represented as

ŝ` = Ĥ`†y` =
(

Ĥ`HĤ`
)−1

Ĥ`Hy`. (7.14)

The linear detection matrix G` is generated based on the pseudo-inverse of
Ĥ` instead of H`.

The simulated transmission is uncoded, and two kinds of modulation sym-
bols: QPSK symbols and 16-QAM symbols are detected. BERs of uplink are
plotted in Figure 7.11. Within Figure 7.11, two typical memory-saving ratios
γ = 50% and 75% is tested, which are equivalent to g = 4 and 16 in group-
based compression and r = 64 and 32 in FFT-based compression. Based on
the analysis results in PSDRs, the L = 32 mode in group-based compression
is excluded from the setup list of BER evaluation for its bad PSDR s in all
scenarios. A reference evaluation is set as using uncompressed/perfect CSI in
uplink detection, i.e., Ĥ` = H`.

The increase of operation length L leads to a lower BERs. This phenomenon
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(a) QPSK, LOS scenario

(b) 16-QAM, LOS scenario

(c) QPSK, NLOS scenario

(d) 16-QAM, NLOS scenario

loss

loss

loss

loss

Figure 7.11. Simulated BERs in a 128×5 massive MIMO TDD uplink us-
ing LOS and NLOS scenarios channel measurement results with
QPSK and 16-QAM modulation. Red and green curves denote a
memory-saving ratio of 75%; dark and light blue curves denote
a memory-saving ratio of 50%. Line dash types denote compres-
sion lengths.
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is similar to in PSDRs. In LOS scenario, the group-based compression achieves
better BERs than using FFT-based compression especially in a larger memory-
saving ratio γ, shown in Figure 7.11(a) and Figure 7.11(b). This trend is more
obvious under 16-QAM modulation than for QPSK. If comparing the per-
formance loss at 10−2 BER with no compression is performed, the loss of
FFT-based compression is around 0.2-0.7 dB for QPSK modulation when γ=
50% and 75%, respectively. While in 16-QAM modulation, the corresponding
performance loss is in the range of 0.4-0.8 dB.

In NLOS scenario, the sparsity in the angular domain is decreased. Group-
Based compression shows its effectiveness and out-performances FFT-based
compression in all listed L and γ, shown in Figure 7.11(c) and Figure 7.11(d).
If the target memory saving ratio is high, e.g., γ = 75%, the performance loss
is within 0.3 dB and 0.7 dB in QPSK and 16-QAM modulation, respectively.
It is necessary to note that the performance loss when using group-based
compression in NLOS scenarios is smaller than in LOS scenario. This can be
explained as follows: the overall system performance in LOS scenario mainly
affected by the accuracy of the CSI on the LOS path. Group-Based compres-
sion evenly spreads the distortion over all the angular domain including the
LOS path, while the FFT-based compression maintains accurate information
of the LOS path.

In conclusion, both group-based and FFT-based compressions act a low
performance-loss in LOS scenarios under nearly all setups, except simultane-
ously using group-based compression and a large γ. FFT-based is particularly
suitable for LOS scenarios. In NLOS scenarios, the performance loss of FFT-
based compression is higher when compared to in LOS scenarios. In the
same time, group-based compression appears an opposite trend. All of above
results clearly indicate the necessity of switching compression methods in ac-
cordance with the propagation environment and target memory-saving ratio
γ.

7.5. OPERATIONS IN COMPRESSION ALGORITHMS

Table 7.1 summarizes the operations of the two compression/decompression
methods (marked as S). The operations include S1−8 which are expressed in
the number of multiplications, additions, and whether it requires data shuf-
fling. Among those operations, S1−4 are the most compute-intensive, espe-
cially S1−2 which demand multiplications. In addition, though data reorgani-
zation and shuffling are not usually considered in complexity analysis, the re-
quired shuffling in the compression algorithms need to be seriously concerned
for the long vector length. Those operations require shuffling is marked with
a
√

in the “Shuffle” column. Specifically, we consider that FFT/IFFT (S1) is
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implemented in a radix-2 way and sorting operation (S3) is implemented by
bitonic merger sorting.

In detail, the group-based method contains operations 2S3+2S4+2S7 for
compression and 2S6 +2S8 for decompression. The FFT-based compression
contains operations S1+ (S2+S3+S7) +S5, where (S2+S3+S7) can be shared
among 16 subcarriers with index sharing. FFT-based decompression contains
S6+S8 +S1.

Table 7.1. Computational complexity of stages and modes

Computation Mul. Add Shuffle
S1 FFT/IFFT 2Llog2L 2Llog2L

√

S2 Powering 2L L
S3 Sorting 0 L

2

(
∑L

i=1 log2i
) √

S4 Averaging 0 L
S5 Packing 0 0

√

S6 Unpacking 0 0
√

S7 Idx. Gen. 0 L
S8 Idx. Unp. 0 L

group-
based

Compression 2S3+2S4+2S7
Decompression 2S6 +2S8

FFT-
based

Compression S1+ (S2+S3+S7) +S5
Decompression S6+S8 +S1





8
Multi-level Memory System

In this chapter, we present an area-efficient memory system for massive MIMO
baseband processing with a jointly considering of the CSI compression men-
tioned in Chapter 7 and flexible access modes mentioned in Chapter 6. In
addition, large-size CSI matrices need to be frequently updated and accessed
for detection and precoding. This poses the second design challenge for the
memory system, i.e., high-speed compression and decompression.

8.1. MEMORY SYSTEM DESIGN SPECIFICATIONS

To quantify the design specification of the memory system, a system setup
similar in Section 6.2.3 is considered again. In the following, we abstract de-
sign specifications of the memory system for one core in addition to the ana-
lyzed specifications in three directions:

CAPACITY

When employing compression, the memory capacity requirements are re-
laxed. The minimum memory utilization for storing CSI matrices after em-
ploying compression can be expressed as

Ccomp. = (1− γ)C, (8.1)

where γ is the achieved memory-saving ratio. For example, assuming the
memory requirement without compression is C=600 kb, the expected memory
utilization of CSI matrices with compression (Ccomp.) will be 150 kb and 300 kb,
when the setting γ = 75% or 50%, respectively.

103
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COMPRESSION/DECOMPRESSION THROUGHPUT

As mentioned in Section 6.2.3, the required memory throughput in massive
MIMO is on a scale of Tb/s. Among all the data accesses, CSI matrix accesses
are one of the dominant components. If the memory system is equipped with
the CSI compression, and the compression speed is lower than the speed of
CSI input, addtional latency will be introduced into the overall system. There-
fore, one of the minimal requirement of compression speed can be expressed
as

Rmin > RCE =
NsubM

NcoreTsymbol
= 0.27 G/s, (8.2)

where RCE is the speed of channel estimation. For decompression, all the de-
tection and precoding have to wait until the CSI is decompressed, as shown in
Figure 7.2. Decompression prolongs the access time of CSI matrices. Thereby,
the decompression speed must be as high as possible. Similar to compres-
sion, the minimal decompression throughput is considered to be the same as
in compression (RCE).

ACCESS MODE

Besides the column-, row-, and diagonal-wise access modes in MIMO pro-
cessing, additional memory access modes are needed for CSI compression
algorithms. The two compression algorithms include FFT and sorting opera-
tions and correspondingly introduce new access modes.

8.2. VLSI ARCHITECTURE

In this section, an area-efficient memory system is presented. Based on the CSI
compression method in the previous chapter, the system is not only able to
provide the flexibility for MIMO processing but also can switch compression
algorithms on the fly for adapting to various external propagation environ-
ments. To do so, this section starts with analyzing and comparing on-chip
memory compression methodologies.

8.2.1. HIGH-LEVEL HIERARCHY

The implementation methodologies of on-chip compression are various. Most
of them can be categorized into three groups according to the hierarchy struc-
ture between compressors, memories, and sometimes the processing core of
the system. Figure 8.1 illustrates the three implementation methodologies.

Shown in Figure 8.1(a), the first methodology is called accelerator style, where
the compressors and memories are integrated tightly [100]. The compression
and decompression procedure are isolated with the processing core. The com-
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Figure 8.1. On-chip compression methodologies: (a) accelerator, (b) software-
level compression, and (c) cache compression.

pressor places the compressed data back to the memory to decrease memory
capacity requirement. However, this method reduces the memory capacity
requirement while increasing the memory bandwidth consumption.

The second methodology is shown in Figure 8.1(b). It is known as software-
level compression [101]. The compression algorithms are chosen by program-
mers and executed on the processing cores. Since the compression and de-
compression occupy the processing core, the latency of the overall system will
be extended, and the processing throughput will be decreased. Besides, the
processing efficiency of compression algorithms is lower than the accelerate
style for the processing core is not dedicated to compression algorithms.

The third methodology is known as cache compression, which is a well-
studied technology and widely used in multi-layer cache hierarchies [102] [103].
Shown in Figure 8.1(c), the compressor is allocated between higher-level and
lower-level memories, where the higher-level memories store uncompressed
data and lower-level memories store compressed. The compressor compresses
the data from higher-level memories before the data is dispatched to lower-
level memories. By doing so, the capacity and bandwidth requirement for
lower-level memories are both reduced.

This memory system adopts a design style of cache compression, where the
memory system has multiple levels to balance the area-efficiency and flexibil-
ity of access modes. Figure 8.2 shows the hierarchy of the memory system.
The memory system consists of one large Vector Memory (VM) acting as
lower-level memories and several small parallel memories acting as higher-
level memories. The parallel memory is chosen for its effectiveness in sup-
porting distinct access modes. On the other hand, a large volume memory
has a higher area-efficiency than several smaller memories with the same to-
tal capacity. Therefore, VM is composed of large volume memory banks and
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Figure 8.2. High-level hierarchy of the memory system. Data paths and con-
trol logic between parallel memory and compressor are omitted in
this figure for simplicity.

mainly used for storing data which does not require flexibility during access,
e.g., MIMO processing. The parallel memory structure has sixteen 32-bit sin-
gle port SRAMs, and two crossbars connected at both read and write side
to support the flexible access. When the CSI matrices are coming from the
outside of the memory system, they are firstly compressed with the help of
the flexibility offered by parallel memories and then delivered to VM. When
needed, CSI matrices in compressed form are pre-fetched from VM and tem-
porally stored in parallel memory during decompression and further process-
ing.

8.2.2. RECONFIGURABLE COMPRESSOR

Allocated between VM and parallel memories, the compressor is reconfig-
urable and fully exploits the high access bandwidth and flexibility supplied
by parallel memories. All intermediate results during compression/decom-
pression are temporarily cached in parallel memories to avoid extra memory
or register. Figure 8.3(a) illustrates the micro-architecture between parallel
memories and the compressor. During compression/decompression, parallel
memories continuously supply vector operands towards the reconfigurable
compressor. The compressor consists of eight PEs, a twiddle factor genera-
tor, a pattern generator, a pattern unpacker, an address generator, pipeline
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Figure 8.3. (a) Micro-architecture of the sixteen-bank parallel memories
(PLM) and the reconfigurable compressor. (b) Illustration of the
pipeline sequence in the reconfigurable compressor.

registers, and control logic. The inputs of each PE is two complex operands.
Eight PEs are deployed in parallel to exploit the DLP within compression/de-
compression algorithms. In addition, PEs are highly reconfigurable that cover
all needed operations. The twiddle factor generator can provide eight FFT
twiddle factors for radix-2 butterfly FFT in each clock cycle. Since the length
of FFT is within M = 128, the generator uses a table-lookup implementation
scheme. The pattern generator packs the index information generated during
compression processing into a codebook forms for storage. During decom-
pression processing, the pattern unpacker unpacks the codebooks and decode
them for the address generator and crossbars. Crossbars, parallel memories,
and the address generator cooperate and support various access modes for
MIMO processing and compression/decompression.
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PROCESSING ELEMENTS

The PEs in this compressor provide appropriate flexibility for supporting S1−4
to balance the flexibility requirement and hardware efficiency. Figure 8.4 illus-
trates the micro-architecture of PEs, where each PE has four real multipliers.
Although three real multiplications can carry out one complex multiplica-
tion [104], the number of multiplications is chosen to be four for fulfilling
power calculation (S2) for two complex inputs. PEs can be configured to CAS
units for sorting operation (S3). Besides, PEs can work jointly by the con-
necting wire between PEs. The output of average value calculation (S4) can
carry out by a variable-length adder tree composed of PEs. In summary, all
computing operations in computational intensive operations (S1−4) has been
covered.
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Figure 8.5. Illustration of a sorting of length eight with index generation.

INDEX GENERATION

The sorting in our compression algorithms not only requires the data outputs
in an ascending sequence, but also the original index for recover sorted data
back to original order. Figure 8.5 illustrates the codebook generation during
sorting in the compressor. The original indexes of data are inserted at the LSBs
of the original data, which have a minor influence towards sorting. During
sorting procedure, the indexes and corresponding operands swap together,
and the outcome at LSBs can be used to generate codebooks for recover data.

8.2.3. ALGORITHM MAPPING AND SCHEDULING

The sixteen parallel single-port memories provide a data throughput of 16
element/CC, and eight two-input PEs provide a data processing speed of
16 element/CC. A pipeline sequence of read-execution-execution-finish is em-
ployed to balance the throughput of parallel memories and PEs. Figure 8.3(b)
shows the timing illustration of this pipeline sequence. In the first CC and
fourth CC, the operand vector is fetched and written back from the parallel
memories, where PEs execution occurs in the middle. In the first CC (cc 1),
the operand vector is fetched from parallel memories and temporarily stored
in pipeline registers after shuffled to the desired order. The operand vector is
then delivered to PEs for the first round execution, and results are stored back
to the pipeline registers. In the second execution stage, the results from first
execution stage are sent to PEs again, and results are stored back to parallel
memories in the end (CC 4). In this way, the access throughput of memories
and processing speed is fully utilized.

All computational stages (S1−8) are mapped onto the reconfigurable com-
pressor to support compression algorithms. Figure 8.6 and Figure 8.7 illustrate
the timing sequence of algorithm mapping. S1−6 are mapped in a sequence
of read-execution-execution-finish. As discussed in the previous subsection, the
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Figure 8.6. Timing diagrams of the group-based, including compression and
decompression.

computation in S1−4 are performed and covered by the highly reconfigurable
PEs. While for those stages without computation, i.e., S5−6, the operand
vector bypasses PEs in the execution stage, and the shuffling occurs in the
crossbar-2. Besides S1−6, S7−8 is not operated in a sequence of read-execution-
execution-finish but is assigned to dedicated pattern generator and unpacker.
S7−8 only need one or two CCs (depends on the size of codebooks) to fetch
or store the codebooks.

8.3. HARDWARE IMPLEMENTATION

The proposed memory system is implemented using STMicroelectronics 28 nm
FD-SOI technology to evaluate the performance and system cost. All afore-
mentioned parameters are applied as a case study. The memory capacity of
the VM is chosen to be the smallest power-of-two value which larger than
(1− γ)RTsymbol. As shown in Chapter 7, γ can be set to 75% which has a
less than 1 dB performance loss in all scenario. The VLSI architecture of the
memory system is described using hardware description language. In this
section, the performance and power consumption during compression and
decompression is presented. Besides, the hardware effectiveness of using CSI
compression during massive MIMO baseband processing is discussed.
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The capacity of VM and parallel memories are chosen to be 64 kb and
1 Mb, respectively, supplying an overall capacity of 1.06 Mb. The memory
banks within VM and parallel memories are both single-port high-density
high-speed SRAMs since they have much smaller area compared to multi-
port memories. For a 128×10 massive MIMO TDD system, this capacity is
enough for storing 100 compressed CSI matrices with a wordlength of w = 32,
while only store 25 uncompressed CSI matrices. With a 74% cell density, the
memory system has a layout area of 0.47 mm2, which is equivalent to 1.44 M
2-input NAND gates. Among layout area, memory banks occupy 61%, while
the rest consists of crossbars, the compressor, and wrapping registers. Ta-
ble 8.1 summaries the area break down of the modules when excluding mem-
ory banks according to pre-layout results. Most area is occupied by PEs. As
a reference, a similar two-level memory system that consists of pure mem-
ory banks is considered. The capacity of VM in the corresponding memory
system is chosen to be 4 Mb ( 1 Mb

1−γ ). The floor plan result shows that this refer-
ence system has a layout area of 1.11 mm2 with a 100% cell density. With the
proposed CSI compression method, at least 58% area overhead is saved when
compared to the memory system without compression.

The post-layout static timing analysis shows that the maximum execution
clock frequency of the memory system is 833 MHz with a 1 V core voltage
supply. VM and parallel memories provide 1024 bit in each fetch and write-
back. For MIMO processing like detection and precoding, the memory system
provides data access throughput of 833 Gb/s. For compression and decom-
pression, Figure 8.8 summaries the achievable throughput and corresponding
energy consumption under different algorithms and setups. Throughputs un-
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(a) (b)
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Figure 8.8. Performance summary of compression methods using different se-
tups, including (a) compression throughput, (b) decompression
throughput, (c) compression energy per sample, and (d) decom-
pression energy per sample.
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der all listed setups exceed the analyzed minimal requirement in (8.2), and
speed of both compression and decompression decrease with the increase of
the compression length L. Sorting operation has the largest number of com-
putation. Since the group-based compression has two sorting operation and
FFT-based compression only has one, the corresponding throughput of FFT-
based is higher compared to using group-based under same operation length
L. Moreover, the compression speed of FFT-based can be further boosted, and
the energy consumption for compressing each sample is reduced by more
than half by employing position information sharing. Index sharing method
omits the generation of codebooks. In Figure 8.8(a) and Figure 8.8(c), FFT-
based compression without index sharing is marked as “full”, while 16 sub-
carriers sharing one position information is marked as “share by 16.” The
decompression speed of group-based method is higher when compared to
theFFT-based method. This is because group-based method reorganizes the
data without any computing. In particular, the speed of compression and de-
compression are as high as 1.6 Gsamples/s and 6.6 Gsamples/s, respectively.
The lowest energy consumption of compressing and decompressing one ele-
ment are 0.23 nJ and 0.08 nJ.

As a summary, this memory system provides a high area-efficiency in stor-
ing CSI and supplies sufficient access flexibility and throughputs for massive
MIMO baseband processing. The CSI compression is low-loss, low-cost, and
adaptive to propagation environments.

Table 8.1. Gate count and percentage of each module

Module Gate Count Percentage
Vector Mem. 734 k 63.8%

Parallel Mem. 161 k 14.1%
Shuffler 33 k 2.9%

C
om

pr
es

so
r PEs 100 k 8.7%

Pattern Gen. 21 k 1.8%
Pattern Dis. 15 k 1.3%
TWD Mem. 3 k 0.2%

Control Logic 8 k 0.7%
Other‡ 75 k 6.5%

‡pipeline register, multiplexers, and other additional logic.





Conclusion and Outlook

Massive MIMO is a promising technology for the 5G standard. Equipped
with hundreds or even more antennas at the base station, the aggressive
spatial multiplexing scheme in massive MIMO increases the system capac-
ity by ten times or more. However, the baseband processing in the mas-
sive MIMO system involves large-size matrix operation, which inevitability
leads to higher area cost and processing energy consumption in hardware im-
plementation. In this thesis, two important topics in implementing massive
MIMO baseband have been discussed.

The first topic is energy-efficient computing by exploiting the energy-quality
scalable computing for baseband processing. In the functional unit level, a
multiple wordlength multiplier is proposed to enable the trade-off between
data accuracy and energy consumption. It has a speedup of 3.6% compared
to a multiplier with the same function. In the system-algorithm level, an
energy-efficient algorithm-switching strategy is presented. By adapting to
the instantaneous channel condition, the strategy enhances the performance
of an in-house QRD processor by 1.5 dB for a FER of 10−2. Combining the
algorithm-switching strategy with DVFS technology on the QRD processor, a
stable throughput of 83.3 MQRD/s is maintained and the power reduction is
up to 57.8%.

The second topic is the data organization of large matrices. Due to the large
number of antennas, the matrix size in massive MIMO baseband processing
is larger than conventional small-scale MIMO. A parallel memory system that
supports various access modes in MIMO processing is proposed. Channel
matrix compression methods are proposed, reaching a memory saving ratio
up to 75% with less than 0.8 dB loss. In the end, an area-efficient memory
system with above channel data compression and various access modes is
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implemented as a proof of concept. It has an area cost of 0.47 mm2, which
is 58% smaller than a memory system with the same capacity and without
compression.

This thesis covers various design aspects of massive MIMO baseband pro-
cessing, including computing and data organization. Looking forward, a pro-
grammable platform that allows algorithm or software designers to directly
mapping massive MIMO baseband algorithms is very attractive in both aca-
demic and commercial concerns.
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AAppendix
Popular Science Summary

During the past decades, most people have witnessed the revolutionary change
in wireless communication and are enjoying the convenience brought to hu-
manity. Less than thirty years ago, cell phones were quite expensive, which
were affordable by only a few people; moreover, only voice messages could
be exchanged. The world has definitely changed, and it is common nowadays
for an individual to establish an Internet connection and hold a face-to-face
video conversation using cell phones. These technical advances have greatly
narrowed the distance between people. Today it is possible to talk like being
in one room, despite being at either sides of the earth. Meanwhile, forthcom-
ing applications based on wireless communication is currently developed and
under constant development, promising a more convenient future as well as
enhancing human productivity. The application list includes but is not limited
to, virtual reality (VR), self-driving car, smart homes & cities, e-health, gaming
in the cloud, etc. In comparison to current applications, these require an even
higher data exchange rate, lower delays and more robust communication.
Driven by these nearly insatiable demands, the ambitious plan of replacing
the current cellular mobile network standard (4G) with the next generation
standard (5G) is under development and close to actual deployment. One
of the candidate technologies is massive Multiple-Input and Multiple-Output
(MIMO) system, in contrast to small-scale MIMO used in 4G. Massive MIMO
system denotes a base station equipped with a large number of antennas (cur-
rently in the hundreds) serving multiple users simultaneously.

Verified by theoretical analysis and testbed experiments, massive MIMO
promises a higher data rate as well as increased energy and spectral effi-
ciency. However, in massive MIMO, complex calculations are necessary at
the base station to identify what is sent from terminals and what should be
sent back to have a reliable communication link. Thanks to advances in semi-
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conductor technology during last decades, executing the sophisticated cal-
culations of massive MIMO baseband processing on a single chip is possible
today. However, there are numerous practical concerns when it comes to hard-
ware implementation which circuit designers have to deal with. For example,
the hardware cost, including power consumption, circuit size and execution
speed, etc., may vary significantly depending on the design methodology. It
is the designer’s responsibility to choose the right methodology to minimize
hardware cost while reaching the design target.

This thesis is separated into two parts. The first part discusses the devel-
opment of hardware architectures which are able to complete calculation in a
low-power way by enabling trade-offs between provided service quality and
energy consumption. The second part talks about how to organize and sup-
ply the huge amount of data to the processing hardware efficiently. Various
compression methods are proposed to lower the storage requirement and thus
lowering area consumption of the memory. Providing desired data from the
memories to the processing elements is also a demanding task. Dedicated
hardware structures are presented to supply the desired data at the correct
time and the required speed. In both parts, the hardware cost has been re-
duced significantly, and practical concerns during the realization of massive
MIMO has been tackled.



Bibliography

[1] G. E. Moore, “Cramming more components onto integrated circuits,”
Electronics, vol. 38, pp. 114–117, April 1965.

[2] M. V. Wilkes, “The memory wall and the CMOS end-point,” ACM
SIGARCH Computer Architecture News, vol. 23, pp. 4–6, sep 1995.

[3] M. Alioto, “Energy-quality scalable adaptive VLSI circuits and systems
beyond approximate computing,” in Design, Automation Test in Europe
Conference Exhibition (DATE), 2017, pp. 127–132, March 2017.

[4] C. Zhang, L. Liu, D. Markovic, and V. Öwall, “A heterogeneous recon-
figurable cell array for MIMO signal processing,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 62, pp. 733–742, Mar. 2015.

[5] J. Meurling and R. Jeans, The mobile phone book: the invention of the mobile
phone industry. CommunicationsWeek International on behalf of Erics-
son Radio Systems, 1994.

[6] Q. Bi, G. Zysman, and H. Menkes, “Wireless mobile communications
at the start of the 21st century,” IEEE Communications Magazine, vol. 39,
no. 1, pp. 110–116, 2001.

[7] S. H. Nelson Costa, Multiple-Input Multiple-Output Channel Models: The-
ory and Practice. JOHN WILEY & SONS INC, 2010.

[8] C. E. Shannon, “A mathematical theory of communication,” Bell System
Technical Journal, vol. 27, pp. 623–656, oct 1948.

[9] A. F. Molisch, A. Mammela, and D. P. Taylor, eds., Wideband Wireless
Digital Communication. Upper Saddle River, NJ, USA: Prentice Hall PTR,
2000.

121



122 Bibliography

[10] R. W. Chang, “Synthesis of band-limited orthogonal signals for mul-
tichannel data transmission,” Bell System Technical Journal, vol. 45,
pp. 1775–1796, dec 1966.

[11] J. Winters, “On the capacity of radio communication systems with di-
versity in a Rayleigh fading environment,” IEEE Journal on Selected Areas
in Communications, vol. 5, pp. 871–878, jun 1987.

[12] G. Foschini and M. Gans, “On limits of wireless communications in a
fading environment when using multiple antennas,” Wireless Personal
Communications, vol. 6, no. 3, pp. 311–335, 1998.

[13] E. Dahlman, S. Parkvall, and J. Sköld, “Background of LTE,” in 4G:
LTE/LTE-Advanced for Mobile Broadband, pp. 1–15, Elsevier, 2014.

[14] IEEE Standard, IEEE Standard for Local and Metropolitan Area Networks:
Overview and Architecture, 2014. Revision of Std. 802-2001.

[15] G. Bauch and G. Dietl, “Multi-user MIMO for achieving IMT-advanced
requirements,” in 2008 International Conference on Telecommunications,
IEEE, jun 2008.

[16] S. Malkowsky, et al., “The world’s first real-time testbed for massive
MIMO: Design, implementation, and validation,” IEEE Access, vol. 5,
pp. 9073–9088, 2017.

[17] F. Rusek, et al., “Scaling up MIMO: Opportunities and challenges with
very large arrays,” IEEE Signal Processing Magazine, vol. 30, pp. 40–60,
Jan. 2013.

[18] T. L. Marzetta, “Noncooperative cellular wireless with unlimited num-
bers of base station antennas,” IEEE Transactions on Wireless Communica-
tions, vol. 9, pp. 3590–3600, nov 2010.

[19] C. Shepard, et al., “Argos: practical many-antenna base stations,” in
Proceedings of the 18th annual international conference on Mobile computing
and networking - Mobicom 12, ACM Press, 2012.

[20] T. L. Marzetta, “Massive MIMO: An introduction,” Bell Labs Technical
Journal, vol. 20, pp. 11–22, 2015.

[21] H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Energy and spectral
efficiency of very large multiuser mimo systems,” IEEE Transactions on
Communications, vol. 61, pp. 1436–1449, April 2013.



123

[22] B. Hochwald, T. Marzetta, and V. Tarokh, “Multiple-antenna channel
hardening and its implications for rate feedback and scheduling,” IEEE
Transactions on Information Theory, vol. 50, pp. 1893–1909, sep 2004.

[23] P. C. Chan, et al., “The evolution path of 4G networks: FDD or TDD?,”
IEEE Communications Magazine, vol. 44, pp. 42–50, dec 2006.

[24] H. Haas, S. McLaughlin, and G. Povey, “Capacity–coverage analysis of
TDD and FDD mode in UMTS at 1920 MHz,” IEE Proceedings - Commu-
nications, vol. 149, no. 1, p. 51, 2002.

[25] H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Energy and spectral
efficiency of very large multiuser MIMO systems,” IEEE Transactions on
Communications, vol. 61, pp. 1436–1449, apr 2013.

[26] J. Vieira, F. Rusek, and F. Tufvesson, “Reciprocity calibration methods
for massive MIMO based on antenna coupling,” in 2014 IEEE Global
Communications Conference, pp. 3708–3712, Dec. 2014.

[27] E. Viterbo and J. Bouros, “A universal lattice code decoder for fading
channels,” IEEE Transactions on Information Theory, vol. 45, pp. 1639–
1642, jul 1999.

[28] S. S. Skiena, The Algorithm Design Manual. Springer London, 2008.

[29] R. D. Taranto, et al., “Location-aware communications for 5G networks:
How location information can improve scalability, latency, and robust-
ness of 5G,” IEEE Signal Processing Magazine, vol. 31, pp. 102–112, nov
2014.

[30] W. Alexander, “The ternary computer,” Electronics and Power, vol. 10,
no. 2, p. 36, 1964.

[31] W. M. Johnson, “Super-scalar processor design,” tech. rep., Stanford,
CA, USA, 1989.

[32] J. A. Fisher, “Very long instruction word architectures and the ELI-512,”
in Proceedings of the 10th annual international symposium on Computer ar-
chitecture - ISCA83, ACM Press, 1983.

[33] K. Diefendorff, P. Dubey, R. Hochsprung, and H. Scale, “AltiVec ex-
tension to PowerPC accelerates media processing,” IEEE Micro, vol. 20,
no. 2, pp. 85–95, 2000.

[34] D. Talla, L. John, and D. Burger, “Bottlenecks in multimedia process-
ing with SIMD style extensions and architectural enhancements,” IEEE
Transactions on Computers, vol. 52, pp. 1015–1031, aug 2003.



124 Bibliography

[35] X. Liao, L. Xiao, C. Yang, and Y. Lu, “MilkyWay-2 supercomputer: sys-
tem and application,” Frontiers of Computer Science, vol. 8, pp. 345–356,
may 2014.

[36] J. Rabaey, Low Power Design Essentials. Springer US, 2009.

[37] M. Donno, A. Ivaldi, L. Benini, and E. Macii, “Clock-tree power opti-
mization based on RTL clock-gating,” in Proceedings of the 40th conference
on Design automation - DAC03, ACM Press, 2003.

[38] C. Isci, A. Buyuktosunoglu, C. yong Cher, P. Bose, and M. Martonosi,
“An analysis of efficient multi-core global power management poli-
cies: Maximizing performance for a given power budget,” in 2006
39th Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO'06), IEEE, dec 2006.

[39] N. S. Kim, et al., “Leakage current: Moore's law meets static power,”
Computer, vol. 36, pp. 68–75, dec 2003.

[40] R. Lee, “Subword parallelism with MAX-2,” IEEE Micro, vol. 16, no. 4,
pp. 51–59, 1996.

[41] S. Lee and A. Gerstlauer, “Fine grain word length optimization for dy-
namic precision scaling in DSP systems,” in 2013 IFIP/IEEE 21st Inter-
national Conference on Very Large Scale Integration (VLSI-SoC), IEEE, oct
2013.

[42] P. Madrid, B. Millar, and E. Swartzlander, “Modified booth algorithm
for high radix multiplication,” in Proceedings 1992 IEEE International
Conference on Computer Design: VLSI in Computers & Processors, IEEE
Comput. Soc. Press.

[43] C. S. Wallace, “A suggestion for a fast multiplier,” IEEE Transactions on
Electronic Computers, vol. EC-13, pp. 14–17, feb 1964.

[44] W.-C. Yeh and C.-W. Jen, “High-speed booth encoded parallel multiplier
design,” IEEE Transactions on Computers, vol. 49, pp. 692–701, jul 2000.

[45] W. Ma and S. Li, “A new high compression compressor for large mul-
tiplier,” in 2008 9th International Conference on Solid-State and Integrated-
Circuit Technology, IEEE, oct 2008.

[46] A. Danysh and D. Tan, “Architecture and implementation of a vec-
tor/SIMD multiply-accumulate unit,” IEEE Transactions on Computers,
vol. 54, pp. 284–293, mar 2005.



125

[47] S. Perri, M. Lanuzza, P. Corsonello, and G. Cocorullo, “A high-
performance fully reconfigurable FPGA-based 2D convolution proces-
sor,” Microprocessors and Microsystems, vol. 29, pp. 381–391, nov 2005.

[48] T. Anderson, et al., “A 1.5 ghz VLIW DSP CPU with integrated floating
point and fixed point instructions in 40 nm CMOS,” in 2011 IEEE 20th
Symposium on Computer Arithmetic, IEEE, jul 2011.

[49] H. Sakai, “Recursive least-squares algorithms of modified Gram-
Schmidt type for parallel weight extraction,” IEEE Transactions on Signal
Processing, vol. 42, no. 2, pp. 429–433, 1994.

[50] S. Wang and E. Swartzlander, “The critically damped CORDIC algo-
rithm for QR decomposition,” in Conference Record of The Thirtieth Asilo-
mar Conference on Signals, Systems and Computers, IEEE Comput. Soc.
Press.

[51] S.-F. Hsiao and J.-M. Delosme, “Householder CORDIC algorithms,”
IEEE Transactions on Computers, vol. 44, no. 8, pp. 990–1001, 1995.

[52] C. Zhang, H. Prabhu, L. Liu, O. Edfors, and V. Owall, “Energy efficient
MIMO channel pre-processor using a low complexity on-line update
scheme,” in NORCHIP 2012, IEEE, nov 2012.

[53] D. Patel, M. Shabany, and P. G. Gulak, “A low-complexity high-speed
QR decomposition implementation for MIMO receivers,” in 2009 IEEE
International Symposium on Circuits and Systems, IEEE, may 2009.

[54] P.-L. Chiu, L.-Z. Huang, L.-W. Chai, C.-F. Liao, and Y.-H. Huang, “A
684mbps 57mw joint QR decomposition and MIMO processor for 4x4
MIMO-OFDM systems,” in IEEE Asian Solid-State Circuits Conference
2011, IEEE, nov 2011.

[55] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide to
the Theory of NP-Completeness. New York, NY, USA: W. H. Freeman &
Co., 1990.

[56] L. Carlitz, “The inverse of the error function,” Pacific Journal of Mathe-
matics, vol. 13, no. 2, pp. 459–470, 1963.

[57] C. Zhang, et al., “Energy efficient group-sort QRD processor with on-
line update for MIMO channel pre-processing,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 62, pp. 1220–1229, may 2015.

[58] A. Shahbahrami, B. Juurlink, and S. Vassiliadis, “Versatility of extended
subwords and the matrix register file,” ACM Transactions on Architecture
and Code Optimization, vol. 5, pp. 1–30, may 2008.



126 Bibliography

[59] Y. Lin, et al., “SODA: A high-performance DSP architecture for software-
defined radio,” IEEE Micro, vol. 27, pp. 114–123, Jan. 2007.

[60] M. Woh, et al., “From SODA to scotch: The evolution of a wireless
baseband processor,” in 2008 41st IEEE/ACM International Symposium on
Microarchitecture, pp. 152–163, Nov. 2008.

[61] T. Lenart, M. Gustafsson, and V. Öwall, “A Hardware Acceleration Plat-
form for Digital Holographic Imaging,” Journal of Signal Processing Sys-
tems, vol. 52, pp. 297–311, Sep. 2008.

[62] Q. Shang, Y. Fan, W. Shen, S. Shen, and X. Zeng, “Single-port SRAM-
based transpose memory with diagonal data mapping for large Size
2-D DCT/IDCT,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 22, pp. 2422–2426, Nov. 2014.

[63] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti 6.0: A
tool to model large caches,” HP Laboratories, pp. 22–31, 2009.

[64] H.-F. Luo, Y.-J. Liu, and M.-D. Shieh, “Efficient memory-addressing al-
gorithms for FFT processor design,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 23, pp. 2162–2172, Oct. 2015.
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