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Detection and Control of Contact Force Transients
in Robotic Manipulation without a Force Sensor

Martin Karlsson* Anders Robertsson Rolf Johansson

Abstract— In this research, it is shown that robot joint
torques can be used to recognize contact force transients
induced during robotic manipulation, thus detecting when a
task is completed. The approach does not assume any external
sensor, which is a benefit compared to the state of the art.
The joint torque data are used as input to a recurrent
neural network (RNN), and the output of the RNN indicates
whether the task is completed. A real-time application for force
transient detection is developed, and verified experimentally on
an industrial robot.

I. INTRODUCTION

In autonomous robotic assembly, mating of components
in a sequence of assembly operations requires in each step
a validation procedure. Without such validation, successful
mating may not be verified, thus jeopardizing successive
assembly steps and, eventually, the successful completion
of the entire assembly. Moreover, the time required for
validation will limit the speed of the assembly operation. To
the purpose of such minimum-time validation, we propose a
method based on analysis of force transients in controlled
contact operations during robotic assembly. A method to
detect force transients during robotic manipulation tasks,
such as assembly tasks, is presented and evaluated. In
[1], this was achieved by detecting contact force transients
induced during the assembly, using a force/torque sensor.
This detection reduced the assembly time, compared to
using a force threshold. It also removed the necessity to
determine any level of the force threshold, which would have
required considerable engineering work and explicit robot
programming. As compared to using position criteria, the
approach in [1] allowed robots to switch between movements
at the right moment, despite any position uncertainties, thus
avoiding to push unnecessarily hard on work objects or to
leave a task unfinished.

Here, we continue the work presented in [1], with the
following extensions. In [1], a force/torque sensor was used
to measure the contact force/torque. Such sensors and sys-
tems are usually expensive, with costs comparable to the
robot itself. If attached to the wrist of the robot, it would
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introduce extra weight that the robot would have to lift
and move. Further, some robot models do not support any
seamless attachment of such sensors. If the force sensor
would be attached to an object in the work space, e.g., a
table, this would imply restrictions on where the assembly
could take place. In this work, we therefore propose a method
based on robot joint torque measurements for the detection,
thus avoiding the requirement of a force/torque sensor. This
introduces a new difficulty; due to friction in the robot
joints, some information is lost when using joint torques as
compared to a force/torque sensor. The research presented in
this paper also extends [1] by investigating whether a given
detection model could generalize to tasks that involve new
objects, from which no data have been used to determine the
model. In order to investigate whether robot joint torques
contain enough information to distinguish transients, we
follow a machine learning approach; First, we gather data
to determine a recurrent neural network (RNN), which is an
artificial neural network specialized in processing sequential
data [2], [3], and subsequently we evaluate the performance
of the RNN on new data.

The procedure proposed does not rely on any assumption
of what tasks or work objects are considered, as long
as distinguishable joint torque transients are generated. In
this paper, we evaluate the procedure on the manipulation
scenarios shown in Figs. 1 and 2. These scenarios also serve
as examples of how the procedure could be used in practice.

Machine learning for analyzing contact forces in robotic
assembly was also applied in [4], where force measurements
were used as input to an SVM, to distinguish between
successful and failed assemblies. A verification system, spe-
cialized in snap-fit assembly, was developed in [5]. Similar to
[1] and [4], a force/torque sensor was assumed in [5]. Such a
requirement has been avoided in some previous research, by
using internal robot sensors instead. For instance, a method
to estimate contact forces from joint torques was presented
in [6]. Further, force controlled assembly without a force
sensor was achieved in [7], by estimating contact forces from
position errors in the internal controller of the robot.

II. METHOD

In this section, the proposed machine learning procedure
to determine a force/torque transient detection model from
training and test data is detailed. The assembly scenario used
to acquire the data consisted of attaching a switch to a box,
see Fig. 1. The objective for the robot was to move toward
the box while holding the switch, thus pushing the switch
against the box, until it snapped into place. The robot should
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Fig. 1: The ABB YuMi robot [8] was used in the experiments
(a). The experimental setup for the switch assembly task is
shown in (b) to (d). The robot gripper, box and switch are
shown in (b). The robot grasped the switch, and attached it
to the box by pushing downwards. The downward motion
began in (c), where the switch was not yet snapped into
place. It ended when the assembly was completed, in (d).
These photos were taken during the experimental evaluation
(see Sec. III), and the same setup was used for gathering
training and test data (see Sec. II-B).

(a) (b) (c)

Fig. 2: Experimental setups for evaluation of the RNN model
on objects that had not been used for acquiring test or
training data. The pocket calculator and its battery cover
are shown in (a), the spectacle case is shown in (b), and
the power switch on the extension cord is shown in (c). For
each setup, the robot was programmed to move the gripper
downwards until a transient was detected, and subsequently
move the gripper upwards.

detect the completion of the task automatically, stop moving
toward the box, and possibly start a new movement.

A. Sequence model

An RNN [2], [3] was used as a sequence classifier. This
choice is discussed in Sec. V. It had a sequence of joint
torques as input, one single output indicating whether the
sequence contained a given transient or not, one hidden layer,
and recurrent connections between its hidden neurons. Each
input torque sequence consisted of T = npre + 1 +npost time
samples, where npre and npost were determined as explained
in Sec. II-C. In turn, each time sample consisted of nch = 7
channels; one per robot joint. The dimension of the hidden
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Fig. 3: The RNN visualized as an unfolded computational
graph, where each node is associated with a certain time step.
The biases b and c, as well as the activation function tanh(·),
are omitted for a clearer view, but the computations are
detailed in (1) to (4). The input torque was used to determine
the hidden state, which was updated each time step. The
last hidden state was used to determine the normalized
probability ŷ of whether a transient was present in the time
sequence or not.

layer was chosen to be the same as the number of input
channels, nch.

Denote by h(t) the activation of the hidden units at time
step t. The activation was defined recursively as

h(1) = tanh(b + Ux(1)) (1)

h(t) = tanh(b + Wh(t−1) + Ux(t)) t ∈ [2;T ] (2)

where U and W are weight matrices, both of size nch×nch,
b is a bias vector with dimension nch, and x(t) is the input
at time t. Further, tanh(·) represents the hyperbolic tangent
function. After reading an entire input sequence, the RNN
produced one output o(T ) given by

o(T ) = c + V h(T ) (3)

where V is a weight matrix of size 2 × nch, and c is a
bias vector with dimension 2. Finally, the softmax operation
was applied to generate ŷ, a vector that represented the
normalized probabilities of the output elements.

ŷ =

[
eo
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1
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2
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2
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(4)

Here, o(T )
i represents the i:th element of the output vector.

If the first element of ŷ was larger than the second, or
equivalently, larger than 0.5, the data point was classified
as positive, i.e., it was indicated that the task was completed
within the sequence. Vice versa, if the first element was less
than than 0.5, the data point was classified as negative. The
RNN architecture is visualized in Fig. 3.



B. Gathering of training data and test data

Training data and test data were obtained as follows. The
right arm of the robot was used to grasp the switch, just
above the box, as shown in Fig. 1. Thereafter, a reference
velocity was sent to the internal controller of the robot, caus-
ing the robot gripper to move toward the box at 1.5 mm/s,
thus pushing the switch against the box. Once the switch
was snapped into place, the robot was stopped manually by
the robot operator. The robot joint torques were recorded in
250 Hz. The torque transient, induced by the snap-fit, was
labeled manually, and used to form a positive data point.
This procedure was repeated N = 50 times, which yielded
50 positive data points. Data prior to each transient were
used to form negative data points.

Given npre and npost, a positive data point was formed
by extracting a torque sequence, from npre samples previous
to the peak value of the transient (inclusive), to npost sam-
ples after (inclusive). Negative data points, with the same
sequence length T as the positive ones, were extracted from
torque measurements that ranged from a couple of seconds
before the transient, until the positive data point (exclusive).
The negative data points were chosen so that overlap was
avoided. For each data point, the target was labeled as a two-
dimensional one-hot vector y, where y = [1 0]T represented
a positive data point, and y = [0 1]T represented a negative
one.

Note that with the approach above, it was possible to
extract several negative data points, but only one positive
data point, for every assembly trial experienced by the robot.

Half of the positive and negative data points were used in
the training set, and the other half was used in the test set.

C. Model training

Given the training set, the model parameters U, V,W, b,
and c were determined by minimizing a loss function L.
The training set contained much more negative data points
than positive ones. If not taken into account, this type of
class imbalance has been reported to obstruct the training
procedure of several different classifiers. The phenomenon
has been described in more detail in [9], [10], and should
be taken into account when designing the loss function.
Consider first the following loss function L̄, which is the
ordinary cross-entropy between training data and model
predictions, averaged over the training examples.

L̄ = − 1

D

D∑
d=1

A∑
a=1

yda log ŷda (5)

Here, a and d are indices for summing over the vector
elements and training data points, respectively. This cross-
entropy is commonly used as a loss function in machine
learning [2], [11]. Due to the class imbalance in the present
training set, it would be possible to yield a relatively low
loss L̄ by simply classifying all or most of the data points as
negative, regardless of the input, even though that strategy
would not be desirable.

In order to take the class imbalance into account, weighted
cross-entropy was used as loss function. Denote by r the
ratio between negative and positive data points in the training
set, and introduce the weight vector wr = [r 1]T . The loss
function was defined as

L = − 1

D

D∑
d=1

A∑
a=1

yda log ŷda · wT
r y

d (6)

The RNN in Sec. II-A was implemented as a computa-
tional graph in the Julia programming language [12], using
TensorFlow [13], [14] and the wrapper TensorFlow.jl [15].

The values of npre and npost were determined using both
the training set and the test set as follows. All positive data
points available were used, and r = 20 times as many
negative data points. Starting with npre = npost = 1, the
model was trained using the training set, and its performance
was measured using the test set. Subsequently, both npre and
npost were increased by 1, and the training and evaluation
procedure was repeated. This continued until perfect classi-
fication was achieved, or until the values of npre and npost
were large; (30 was chosen as an upper limit, though it was
never reached in the experiments presented here). Thereafter,
npre was kept constant, and it was investigated how much
npost could be lowered with retained performance. This was
done by decreasing npost one step at a time, while repeating
the training and evaluation procedure for each value. Once
the performance was decreased, the value just above that was
chosen for npost. This way, the lowest possible value of npost
was found, that resulted in retained performance.

Once npre and npost were determined, new model param-
eters were obtained by training on a larger data set, with
r = 100. The reason for using a lower value for the other
iterations, was that it took significantly longer computation
time to use such a large data set.

Due to the class imbalance in the test set, ordinary
classification accuracy, as defined by the number of correctly
classified test data points divided by the total number of
test data points, would not be a good model performance
measurement. Instead, the F-measurement [16] was used,
defined as

F1 = 2
PR

P + R
(7)

where P is the precision, i.e., the number of correctly
classified positive data points divided by the number of all
data points classified as positive by the model, and R is the
recall, i.e., the number of correctly classified positive data
points divided by the number of all data points that were
truly positive. The value of F1 ranges from 0 to 1, where 1
indicates perfect classification.

III. EXPERIMENTS

The ABB YuMi robot [8], shown in Fig. 1, was used for
experimental evaluation. To facilitate understanding of the
experimental setup and results, a video is available on [17].
First, the performance of the RNN obtained as described
in Sec. II was evaluated on the switch assembly scenario.
Since the test set was used to determine the hyper parameters
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Fig. 4: Data from one of the experiments. The robot joint
torques (upper plot) were used as input for the RNN. These
are represented by one channel (Ch.) per joint. The first
element of the RNN output (ŷ1 in the lower plot) was close to
0 before the assembly was completed, and increased to close
to 1 once the task was finished. Completion was indicated
when ŷ1 was above the decision boundary (DB, at 0.5) for
the first time. Thus, for detection purposes, the RNN output
generated after this event was not relevant.

of the RNN, i.e., npre and npost, it was necessary to gather
new measurements to evaluate the general performance. The
experimental setup was similar to that in Sec. II-B, except
that the measured torque sequences were saved and classified
by the RNN, instead of just saved to the training and test sets.
The robot was programmed to first move its gripper down,
thus pushing the switch against the box. Once a transient was
recognized, it was programmed to stop its downward motion,
and instead move the box to the side. The assembly was
repeated 50 times, to evaluate the robustness of the proposed
approach. The experimental setup is visualized in Fig. 1.

Thereafter, the same RNN model was tested on manip-
ulation tasks that involved objects not used during model
training, in order to test its generalizability. Again, the
robot was programmed to move its gripper down until a
transient was detected. Once a transient was detected, it was
programmed to move its gripper upwards. Three tasks were
considered: snapping a battery cover into place on a pocket
calculator, closing a spectacle case, and pushing a power
switch on an extension cord. The setup for each task is shown
in Fig. 2. For each of these tasks, 50 attempts were made
for validation.

IV. RESULTS

The performance of the RNN on the test set, for differ-
ent values of the hyper parameters, is shown in Table I.
The abbreviations are as follows: number of true positives
(TP), true negatives (TN), false positives (FP), and false
negatives (FN). The hyper parameters were increased until
npre = npost = 5, for which perfect classification was

TABLE I: RNN performance on the test set, for different
values of the hyper parameters. The row with the lowest
value of npost that yielded perfect classification is marked in
blue. With these values, the model was trained and tested
again, but now with more negative data points (see last row,
marked in red).

npre npost TP TN FP FN P R F1

1 1 20 500 0 5 1 0.80 0.89
2 2 22 500 0 3 1 0.88 0.94
3 3 23 498 2 2 0.92 0.92 0.92
4 4 23 500 0 2 1 0.92 0.96
5 5 25 500 0 0 1 1 1
5 4 25 500 0 0 1 1 1
5 3 25 500 0 0 1 1 1
5 2 22 500 0 3 1 0.88 0.94

[6; 30] 2 - - - - - - < 1
5 3 25 2500 0 0 1 1 1
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Fig. 5: Same data as in Fig. 4, but zoomed in on the time
when the task finished. The legend of the upper plot is
absent for better visualization, but can be found in Fig. 4.
The transient was detected at time t = 6.308 s. The first
torque sequence to be classified as positive was that within
the vertical dashed lines in the upper plot.

obtained. Then, npost was decreased until the performance
decreased at npost = 2. With this value of npost, larger values
of npre were tested (see second last row in Table I), which did
not yield perfect classification for any values, i.e., F1 < 1.
Thus, (npre, npost) = (5, 3) was chosen for the final model.

After training, the RNN detected all 50 snap-fits in the
switch assembly experiments correctly, without any false
positives prior to the snap. The torque data and RNN
output from one of the trials are shown in Figs. 4 and 5.
The other trials gave qualitatively similar results. The RNN
also detected each transient successfully, without any false
positives, for each trial of the tasks that involved objects not
used for model training, shown in Fig. 2. Data from one trial
of each task are shown in Fig. 6, and the other trials gave
qualitatively similar results.
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Fig. 6: Experimental data from the manipulation tasks visu-
alized in Fig. 2: snapping the battery cover into place on the
pocket calculator (upper), closing the spectacle case (lower
left), and pushing the power switch on the extension cord
(lower right). The organization of each plot is the same as
in Figs. 4 and 5.

V. DISCUSSION

There are several alternatives to RNNs for classification.
Using an RNN is motivated as follows. Two less complicated
models, matched filter and logistic regression, were tried
initially, without achieving satisfactory performance on test
data. RNNs are specialized in processing sequential data, and
the torque measurements used in this work were sequential.
Thanks to the parameter sharing of the RNN, it is possible to
estimate a model with significantly fewer training examples,
than would be needed without parameter sharing. Compared
to models that are not specialized in sequential data, e.g.,
logit models, SVMs, and ordinary neural networks, the RNN
is less sensitive to variations of the exact time step in which
some information in the input sequence appears. An RNN
can also be generalized to classify data points of sequence
lengths not present in the training set, though this was not
used in this present work. General properties of RNNs are
well described in [2].

Compared to [1], the approach proposed here had three
new benefits. A force sensor was no longer required, the
detection delay was reduced, and the computation time for
model training was shortened. In [1], npost > 10 (corre-

sponding to > 40 ms) was required for perfect classification,
whereas our proposed method required npost = 3 (12 ms).
The training time of the RNN was in the order of minutes
on an ordinary PC, which was an improvement compared
to days in [1]. Further, this research extended [1], [18]
by verifying generalization of the classification model to
manipulation of new objects, that had not been used to
generate training and test data. It is expected that this
generalization is limited to similar tasks. Therefore, the idea
is that the training procedure described in Sec. II should be
gone through whenever a detection model for a completely
different task is required.

The concept of weighted loss to compensate for class
imbalance in machine learning has been evaluated in [9],
and successfully applied to a deep neural network in [19].
Equation (6) extends (5) by the factor wT

r y
d, which evaluates

to r for positive data points, and to 1 for negative ones.
In the experiments presented here, the decision boundary

for ŷ1 was set to 0.5, meaning that a task was classified
as completed when the estimated probability of completion
was above 50 %. However, the meaning of ŷ1 is intuitive,
and the decision boundary can be adjusted to a desired level
of confidence.

Given a certain contact force/torque acting on the end-
effector of the robot, the corresponding joint torques depend
on the configuration, as well as gravity and friction. In order
to generalize the detection to other robot states than the one
used in the training, it would be a good idea to estimate
the contact forces/torques, by first modeling the gravity
and friction-induced torques, and subsequently compensating
for these. In a complete setup, the validation procedure
described here could be combined with more sophisticated
motion controllers, such as dynamical movement primitives
[20]–[22]. Whereas the evaluation of the model was done
in real-time in this work, the RNN training was performed
offline. It therefore remains as future work to create a user
interface that allows for an operator to gather training data
and test data, label them, and run the training procedure. It is
also important to shorten the reaction time of the robot, i.e.,
to further reduce the value of npost. This could be done by
including more sensors. For instance, the snap-fit assembly
generates a sound, easily recognized by a human. Adding
a microphone to the current setup, would therefore add
information to the detection approach. In turn, this could
be used to decrease the required amount of training data,
improve robustness of the detection, or detect the transient
earlier.

VI. CONCLUSION

In this work, we have addressed the question of whether
robot joint torque measurements could be used for detection
of force/torque transients in robotic manipulation. We have
shown that such detection is possible, which is the main
contribution of this paper. In contrast, the concept of RNNs
is well known from previous research, and was used in this
paper for the purpose of evaluation, as well as to exemplify
how joint torques could be used for detection in a practical



setup. First, training and test data were gathered and labeled.
Then, these were used to determine the parameters of the
detection model. Finally, a real-time application for transient
detection was implemented and tested, both on the assembly
task used to generate training and test data, and on new tasks,
that had not been used to determine the model parameters.
The method presented seems promising, since the resulting
model had high performance, both on the test data and during
the experiments. A video that shows the functionality is
available on [17].
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