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Convergence of Dynamical Movement Primitives
with Temporal Coupling

Martin Karlsson* Anders Robertsson Rolf Johansson

Abstract— In this paper, it is shown that temporally coupled
dynamical movement primitives (DMPs), used to model and
execute robot movements, are globally exponentially stable.
It follows that DMPs converge to their goal configurations,
which is necessary to accomplish most tasks. The convergence
is proven mathematically, and then verified in simulations as
well as experimentally on an industrial robot.

I. INTRODUCTION

Industrial robots commonly operate by executing se-
quences of predefined motion trajectories, with high position
accuracy, but with little or no ability to adjust for unforeseen
changes in the surroundings. Therefore, very carefully pre-
pared work-spaces and robot programs are required, which
implies high costs for engineering work, and prohibits the
automatization of a wide range of tasks, such as assembly
tasks and short-series production.

To enhance replanning capabilities of robots, the frame-
work of dynamical movement primitives (DMPs) for motion
modeling has been developed. Early versions were intro-
duced in [1], [2], [3], and a review can be found in [4].
Online motion modulation using DMPs has been widely
considered in the literature. For instance, adaptation based
on force/torque measurements was developed in [5], obstacle
avoidance was explored in [4], [6], and DMPs with compliant
behavior were developed in [7], [8]. Functionality for mod-
ification of DMPs by means of lead-through programming
was presented in [9], [10].

It was demonstrated in, e.g., [4], that robot movements
generated by original DMPs do not perform satisfactorily
after the robot has been subject to perturbations. One reason
for this is that in the original DMP formulation the evolution
of the phase variable is unaffected by any perturbation, which
commonly results in significant deviation from the intended
trajectory even after the cause of the perturbation has van-
ished. In [4], it was also suggested to solve this problem
by augmenting the DMP framework to include temporal
coupling. Though promising, the suggested augmentation
was not practically realizable until it was modified in [11].

* The authors work at the Department of Automatic Control, Lund
University, PO Box 118, SE-221 00 Lund, Sweden.
Martin.Karlsson@control.lth.se
The authors would like to thank Jacek Malec, Mathias Haage and Elin
Anna Topp at Computer Science, Lund University, as well as Fredrik Bagge
Carlson and Björn Olofsson at Dept. Automatic Control, Lund University,
for valuable discussions throughout this work. The authors are members
of the LCCC Linnaeus Center and the ELLIIT Excellence Center at Lund
University. The research leading to these results has received funding from
the Vinnova project Kirurgens Perspektiv and the European Commission’s
Framework Programme Horizon 2020 – under grant agreement No 644938
– SARAFun.

Fig. 1: The ABB YuMi [14] prototype robot used in the
experiments.

More details on why temporal coupling is necessary in the
presence of possible perturbations can be found in [4], [11].

Stability for the original DMP framework, i.e., not includ-
ing temporal coupling, was concluded in [12], [13]. The aim
of this paper is to provide a stability analysis for temporally
coupled DMPs, as formulated in [11]. This is addressed in
three ways; first by a mathematical analysis, thereafter by
simulations, and finally experimentally using an industrial
robot, shown in Fig. 1.

To facilitate the understanding of the research presented, a
video is available in [15]. In Part I of the video, the experi-
mental setups are shown, except that the temporally coupled
DMPs were executed without any perturbations present. This
is to visualize what should be achieved by the robot, in each
setup. In Part II, DMPs without temporal coupling were used,
and the robot was subject to perturbations. The purpose of
this part is to demonstrate that the robot risks to fail in such
a scenario, and hence motivate why temporal coupling is
necessary. This risk of failure was also indicated in [4], using
one-dimensional simulation examples. Part III of the video
shows the experiments presented in Secs. V and VI, where
temporally coupled DMPs were executed in the presence of
perturbations.

A. Problem formulation

DMPs with temporal coupling have shown promising
properties in practice [11], but to the best of our knowledge,
it has hitherto not been shown whether these are stable,
and whether convergence to the goal configuration could be
guaranteed. Unstable robot motion control could damage the



TABLE I: Notation used in this paper.

Notation Space Description
n ∈ Z+ Dimension of robot position
ya ∈ Rn Actual robot position
g ∈ Rn Goal position
yc ∈ Rn Coupled robot position
αz , βz , kv , kp ∈ R+ Constant control coefficients
τ ∈ R+ DMP time constant
τa ∈ R+ Adaptive time parameter
x ∈ R+ Phase variable
αx, αe, kc ∈ R+ Positive constants
y0 ∈ Rn Initial robot position
f(x) ∈ Rn Learnable virtual forcing term
Nb ∈ Z+ Number of basis functions
Ψj(x) ∈ Rn The j:th basis function vector
wj ∈ Rn The j:th weight vector
e ∈ Rn Low-pass filtered ya − yc
ÿr ∈ Rn Reference robot acceleration
ξ ∈ R5n+1 State vector

robot and its surroundings, such as tooling and workpieces.
Further, in robotic manipulation, it is crucial that the robot
reaches its goal configuration in each of its movements.
If this would not be achieved, sub-tasks would likely be
left incomplete, yielding unforeseen hardware configurations,
which in turn could result in collision and broken hardware.
For temporally coupled DMPs to be used in a larger scale in
the future, it is therefore necessary to prove that these result
in stable behavior.

In this paper, we therefore address the question of whether
temporally coupled DMPs, presented in [11], are stable, and
whether they converge to their respective goal configuration.
More specifically, we investigate whether the closed-loop
control system in (11) is globally exponentially stable. A
mathematical definition of exponential stability can be found
in, e.g., [16]. In words, a system is globally exponentially
stable if the state vector converges to the origin faster than
an exponentially decaying function.

II. CONTROL ALGORITHM

The control algorithm for temporally coupled DMPs is
detailed in [11], and for convenience it is briefly described
in this section. Table I lists some of the notation used in
this paper. A coupled DMP trajectory, yc, is modeled by the
dynamical system

τaż = αz(βz(g − yc)− z) + f(x) (1)
τaẏc = z (2)

Here, x is a phase variable that evolves as

τaẋ =− αxx (3)

Further, f(x) is a virtual forcing term, of which the param-
eters can be learned from a desired movement such as a
demonstrated trajectory, and each element i of f(x) is given
by

fi(x) =

∑Nb

j=1 Ψi,j(x)wi,j∑Nb

j=1 Ψi,j(x)
x · (gi − y0,i), (4)

Robot
∑

kp + kv
d
dt
(·)∑

DMP
yc ÿr ya

-1

ÿc

Fig. 2: The control structure for temporally coupled DMPs.
The block denoted ’Robot’ includes the internal controller
of the robot. The ’DMP’ block corresponds to the compu-
tations in (1) – (7), and the PD controller together with the
feedforward term ÿc is specified in (8).

where each basis function, Ψi,j(x), is determined as

Ψi,j(x) = exp

(
− 1

2σ2
i,j

(x− ci,j)2
)

(5)

Here, σ and c denote the width and center of each basis
function, respectively. Denote by ya the actual configuration
of the robot. The adaptive time parameter τa is determined
based on the low-pass filtered difference between yc and ya
as follows.

ė = αe(ya − yc − e) (6)

τa = τ(1 + kce
T e) (7)

Moreover, the controller below is used to drive ya to yc.

ÿr = kp(yc − ya) + kv(ẏc − ẏa) + ÿc (8)

This is a PD controller, together with the feedforward of ÿc.
Here, ÿr denotes reference acceleration sent to the internal
controller of the robot. We let kp = k2v/4, so that (8)
represents a critically damped control loop. The control
system is schematically visualized in Fig. 2. We model the
’Robot’ block as a double integrator, so that ÿa = ÿr, which
is reasonable for accelerations of moderate magnitudes and
changing rates. These properties were indicated in [11].

III. MATHEMATICAL STABILITY ANALYSIS

In this section, we analyze the stability properties of
temporally coupled DMPs. See also the Appendix, where
passivity is shown. The entire control system described in
Sec. II is given by

ÿa = kp(yc − ya) + kv(ẏc − ẏa) + ÿc

ė = αe(ya − yc − e)
τa = τ(1 + kce

T e)

τaẋ = −αxx
τaẏc = z

τaż = αz(βz(g − yc)− z) + f(x)

(9)



We introduce the state vector ξ as

ξ =


ya − yc
ẏa − ẏc

e
x

yc − g
z

 (10)

assuming a contractible state space as discussed in Sec. VII,
and write the system on state-space form,

d

dt


ya − yc
ẏa − ẏc

e
x

yc − g
z

 =



ẏa − ẏc
−kp(ya − yc)− kv(ẏa − ẏc)

αe(ya − yc − e)
−αx

τa
x

1
τa
z

αz

τa
(βz(g − yc)− z) + 1

τa
f(x)

 (11)

The states ya−yc, ẏa−ẏc, and e have the same dimension,
which we denote by n. Let In be the identity matrix, and
0n the zero matrix, each of size n. The upper part of (11) is
linear and can be written as

d

dt

ya − ycẏa − ẏc
e

 =

 0n In 0n
−kpIn −kvIn 0n
αeIn 0n −αeIn

ya − ycẏa − ẏc
e


(12)

Denote by ξ1 and A1 the state vector and the system matrix
in (12), respectively.

Theorem 1: The dynamical system defined by (12) for
DMP operation has ξ1 = 0 as a globally exponentially stable
equilibrium.

Proof: For ξ1 = 0 we have dξ1/dt = 0 in (12), so ξ1 =
0 is an equilibrium. The system is globally asymptotically
stable if the real part of each eigenvalue of A1 is strictly
negative [17]. With kp = k2v/4 (see Sec. II) the eigenvalues
are given by {

λ1,...,2n = −kv2
λ2n+1,...,3n = −αe

(13)

These are strictly negative, since kv, αe > 0. The linear
system is hence globally asymptotically stable. For linear
systems, asymptotic stability is equivalent with exponential
stability [18], [16]. The system is therefore globally expo-
nentially stable.

Next, we will show that the system given by

d

dt


ya − yc
ẏa − ẏc

e
x

 =


ẏa − ẏc

−kp(ya − yc)− kv(ẏa − ẏc)
αe(ya − yc − e)

−αx

τa
x

 (14)

is contracting, of which a defition can be found in [19]. We
note that this is a hierarchical system, consisting of (12),
which does not depend on x, and of ẋ = −αxx/τa. To
show contraction, we will use the following proposition.

Proposition 1: If ẋ1 = g1(x1) is contracting, and ẋ2 =
g2(x1, x2) is contracting for each fixed x1, then the hierarchy

d

dt

(
x1
x2

)
=

(
g1(x1)

g2(x1, x2)

)
(15)

is contracting. �
This follows directly from Proposition 2 in [13], by

applying it to autonomous systems.
Proposition 2: The system given by (14) is contracting.

Proof: We know from Theorem 1 that (12) is globally
exponentially stable. It is therefore contracting [19]. For the
fixed point ξ1 = 0, we have ẋ = −αxx/τ , which is con-
tracting since −αx/τ < 0. It now follows from Proposition 1
that the hierarchical combination (14) is contracting.

We now address the stability of the entire control system
in (11) as follows.

Theorem 2: The system given by (11) for DMP operation
has ξ = 0 as a globally exponentially stable equilibrium
point.

Proof: Since x is a factor of f(x) and the remaining
part of f(x) is bounded, f(0) = 0, see Sec. II and [4]. It
can therefore be seen that ξ = 0 yields dξ/dt = 0, so ξ = 0
is an equilibrium point. It remains to show the stability. We
know from Proposition 2 that (14) is contracting, and it can
be seen that it has the origin as a fixed point. Consider now
the remaining part of (11), i.e,

d

dt

(
yc − g
z

)
=

( 1
τa
z

αz

τa
(βz(g − yc)− z) + 1

τa
f(x)

)
(16)

For the fixed point of (14) we have τa = τ and f(x) =
f(0) = 0, and the system (16) then simplifies to

d

dt

(
yc − g
z

)
=

(
0n

1
τ In

−αzβz

τ In −αz

τ In

)(
yc − g
z

)
(17)

This system is linear, and with βz = αz/4 (see [4]) the
eigenvalues of the system matrix are given by

µ1,...,2n = −αz
2τ

(18)

Since the eigenvalues are strictly negative, the system (17)
is contracting. Further, we note that (11) is hierarchical from
(14) to (16). It therefore follows from Proposition 1 that
(11) is contracting. This is true for the whole state space.
Hence, all solutions of (11) converge exponentially to the
same trajectory. Since one solution is given by ξ = 0, they
must all converge exponentially to this equilibrium point.
Thus, (11) is globally exponentially stable.

Since ya = g for ξ = 0, Theorem 2 implies that the
system (11) converges exponentially to a state where the
goal configuration is reached by the actual robot position.

IV. SIMULATIONS

The system in Sec. II was sampled at 250 Hz, and the
simulations were performed in Cartesian space. For visual-
ization purposes, the dimension of the robot position was set
to n = 2.

First, a demonstrated trajectory, ydemo, was simulated by
creating a time series of positions. Thereafter, the corre-
sponding DMP parameters were determined as described in,
e.g., [4]. At the start of each simulation, y0 and yc were set
to the beginning of ydemo, and ya was deliberately initialized
with a randomly chosen error with respect to y0 and yc.
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Fig. 3: Positions of simulated trajectories. The movement
direction is indicated by the arrows. For an uncluttered view,
only 10 of the 100 simulated trajectories are displayed. For
each simulation, ya started to the left in the plot, with some
distance to yc. Then, ya moved toward yc. Subsequently, both
ya and yc converged to the goal position g, which is marked
with a circle at the upper right of the plot. Since yc was
initialized to the same point for each simulation, it always
followed the same path. Further, it followed the demonstrated
path closely, which is expected given a sufficient number of
basis functions (Nb = 50 were used).
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||ẏa − ẏc|| [m/s]
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||yc − g|| [m]
||z|| [m/s]

Fig. 4: The magnitudes of the states in (11) plotted over
time, for one of the simulations displayed in Fig. 3. The
notation || · || represents the 2-norm. It can be seen that ya
converged to yc, and that e converged to 0. This is expected
from Theorem 1. Further, each state converged to 0, which
is consistent with Theorem 2.

(a) (b)

(c) (d)

Fig. 5: Setup 3. The robot task was to pick up the blue
ball using both arms. The movement started in (a), and a
human perturbed the movement in (b). Thereafter, the robot
was released and recovered from the perturbation. The arms
reached the ball simultaneously in (c). The goal state was
then reached in (d).

The purpose of the error was to investigate the convergence
of (12). The system was simulated 100 times.

The simulations gave mutually similar results. The results
from some of the simulations are visualized in Figs. 3 and 4.
For each simulation, the system described by (12) converged
to the origin, as predicted by Theorem 1. Similarly, the entire
control system described by (11) converged to the origin, as
predicted by Theorem 2.

V. EXPERIMENTS

The algorithm in Sec. II was used to control a prototype
of the dual-arm ABB YuMi [14] robot (previously under the
name FRIDA), with 7 joints per arm, see Fig. 1. The DMPs
were defined in joint space, and hence the total dimension
of the configuration space was n = 14. The system had the
same sampling rate as in the simulations, i.e., 250 Hz.

Four different setups were used to evaluate the stability of
the control algorithm. For each setup, 50 trials were made,
yielding a total of 200 trials. Prior to each trial, a temporally
coupled DMP had been determined from demonstration by
means of lead-through programming [20]. In each trial, the
temporally coupled DMP was executed while the magnitudes
of the states in (11) were logged and saved. Perturbations
were introduced by physical contact with a human. The four
setups were as follows.

Setup 1. The robot moved its left arm without ma-
nipulating any objects. The left arm was subject to two
perturbations.

Setup 2. The robot moved both of its arms simultaneously,
again without any manipulation. Two perturbations were
introduced; first one on the left arm, and subsequently one
on the right arm.



(a) (b)

(c) (d)

Fig. 6: Setup 4. The task was to insert the red stop button
into the hole in the corresponding yellow case. The initial
configuration is shown in (a). In (b), a human perturbed
the movement, and in (c) the robot had recovered from the
perturbation. The goal configuration was reached in (d).

Setup 3. This setup is visualized in Fig. 5. The robot used
both arms to pick up a ball. One perturbation was introduced
on the left arm.

Setup 4. This setup is visualized in Fig. 6. The objective
of the robot was to mate a stop button, grasped with the right
arm, with its corresponding case, grasped with the left arm.
The left arm was subject to one perturbation.

A trial of each experimental setup is shown in Part III of
the video in [15].

VI. EXPERIMENTAL RESULTS

In each of the 200 trials, the perturbations were first
recovered from and thereafter the goal state was reached.
Data from one trial of each experimental setup are shown in
Figs. 7–10, and the remaining trials gave qualitatively similar
results. The figures show the magnitudes of the states in (11)
plotted over time. The perturbations are clearly visible in
the data. It can be seen that ya converged to yc, and that e
converged to 0, after each perturbation. This is expected from
Theorem 1. The data also show that each state converged to
0, as predicted by Theorem 2.

VII. DISCUSSION

The effect of temporal coupling can be seen in each of
Figs. 4 and 7–10. Consider for example Fig. 10, where the
robot was grasped by the human at t ≈ 2.5 s. During the
perturbation, the evolution of x, yc and z was slowed down.
Such behavior is desired in general, since it helps to retain
the coordination between the degrees of freedom of the robot.
It resulted from the fact that e had a significant magnitude,
which in turn caused τa to be significantly larger than τ , see
(7). The robot was released at t ≈ 10 s, and the controller
described by (8) started to drive ya to yc, whereby e was
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Fig. 7: Data from a trial of Setup 1, where the left arm was
perturbed twice during its movement.
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Fig. 8: Data from a trial of Setup 2, where both arms moved
simultaneously and were perturbed once each.
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Fig. 9: Data from a trial of Setup 3. The setup is shown in
Fig. 5.
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Fig. 10: Data from a trial of Setup 4. The setup is shown
in Fig. 6. In this particular trial, the robot was grasped by
the human for a significantly longer time than in the trials
shown in Figs. 7–9, though this was not the case for all trials
of Setup 4.

driven to 0. After e had converged to insignificant magnitude,
at approximately 12 s, it can be seen that x, yc and z evolved
considerably faster. The same phenomenon could be seen in
each experiment, as well as in the simulations.

In the experiments, the DMPs were defined in joint space.
Further, the states in the simulations can for instance be
interpreted as joint angles or as positions in Cartesian space.
The implementation in joint space allowed the operator to
specify the entire configuration on each 7 DOF robot arm,
rather than just the tool poses. The DMPs could also have
been defined in Cartesian space, see for instance [4], [21].
However, whereas the assumption of a contractible state
space in Sec. III is true for the robot joint space and
the position in Cartesian space, some care must be taken
regarding the orientation in Cartesian space, as discussed in,
e.g., [22]. Restrictions on the orientation must be invoked
to guarantee that the Cartesian orientation is contained in
a contractible space. Finding such restrictions, that are not
unnecessarily conservative, remains as future work.

This paper focused on the convergence of temporally
coupled DMPs, possibly after perturbations, and not on
the perturbations themselves. Even though the perturbations
were introduced by physical contact with a human in the
experiments presented here, any deviation from the coupled
trajectory yc could be recovered from. For example, the robot
could be allowed to take an unforeseen detour to avoid an
obstacle. In the experiments, a force sensor was mounted on
each wrist of the robot, and the measured forces were scaled
and added to the reference accelerations as disturbances,
which allowed the human to introduce perturbations in an
intuitive way. This arrangement worked well for the sake
of evaluating the stability properties of temporally coupled
DMPs, and it was straightforward to implement. However,

for the purpose of interacting physically with the robot, it
would be better to apply passive force control. Such an
approach was presented in [8], though temporal coupling
was not included. As suggested in [8], it would therefore be
interesting to combine temporal coupling with passive force
control in the DMP framework in future research.

Some care must be taken when analyzing stability based
on contraction theory, because contraction alone does not im-
ply stability. Nevertheless, for autonomous systems, as those
considered in this paper, global contraction is equivalent with
global exponential stability [19].

Even though Theorem 2 states that the state vector ξ
converges to the origin, in practice noise and model errors
prevent the state vector from staying arbitrarily close to the
origin. In the experiments there was an unmodeled time
delay of 12 ms between the controller in (8) and the internal
robot controller, which is an example of a model error.
In the experiments presented here, the robot end-effectors
reached their targets with an accuracy of ±1 mm. Because
the origin could not be reached by ξ with exactly zero error,
the movement could for instance be considered finalized once
||ξ|| < ρ for some small constant ρ, or upon force-based
detection of task completion as in [23]. A related discussion
about convergence toward single-point goals can be found
in [24]. There, the concept of so-called asymptotic solution
plans is also described. Since exponential stability is a
stronger requirement than asymptotic stability [16], Theo-
rem 2 implies that temporally coupled DMPs are asymptotic
solution plans.

It is important to note that the ’Robot’ block in Fig. 2
includes both the robot itself and the internal robot controller.
It is possible for the internal control loop to achieve a
reference acceleration, ÿr, with small error, as long as ÿr
is reasonably smooth and limited in magnitude. Therefore,
modeling the robot as a double integrator can be justified as a
feedback linearization even though the dynamics of the robot
itself (i.e., excluding internal controller) is more complicated
than a double integrator.

Stability for the original DMP framework was shown in
[12], [13] by utilizing that f(x) converged to 0, which fol-
lowed from the fact that x decayed exponentially, regardless
of any deviation from the intended movement. However, this
is true only if temporal coupling is not used, and the conver-
gence of f(x) is less obvious for the DMP version studied in
this paper. Due to the adaptive time parameter τa in (3), it can
not be assumed that x decays exponentially for temporally
coupled DMPs. Instead, the stability of temporally coupled
DMPs has now been established in the proof of Theorem 2.

The control algorithm in Sec. II includes some parameters
that should be chosen, but these have intuitive meanings.
To avoid overshoot, the control gains in (8) should be be
constrained as described in Sec. II. This yields a negative
real double pole for the system (8), located in −kv/2, and a
larger magnitude of the double pole corresponds to a faster
control system. Similarly, αz and βz should be constrained
as described in Sec. III and [4]. The control system is
intentionally compliant to unforeseen disturbances, such as



contact with a human, and therefore no integral parts are
used in the control loop. Introducing integral parts could
also yield overshoot in the position domain, which in the
context of robotics might result in collision. The constant
αx occurs in previous publications, but it does not affect the
functionality as long as it is strictly positive, since it must be
compensated for when determining DMP parameters based
on desired movements.

Part II of the video in [15] shows the same setups as used
in the experiments described in Sec. V, but the original DMP
formulation, without temporal coupling, was used instead.
Setup 3 and 4 were deliberately designed to require coordi-
nation between both arms, in order to highlight the necessity
of temporal coupling for DMPs. Without temporal coupling,
the coordination was lost in presence of any significant
perturbation, and hence these tasks failed in Part II. In fact,
the coordination between all DOF of the robot, and not
only between the two arms, might be lost. For instance,
only the left arm moved in Setup 1, and yet the behavior
was not satisfactory in Part II of the video. It can also be
noted that the coordination was retained in Part III, despite
perturbations, thanks to the temporal coupling.

VIII. CONCLUSION

In this paper, we addressed the question of whether tempo-
rally coupled DMPs are stable. It was shown mathematically
that they represent a globally exponentially stable control
system, which implies exponential converge to a steady state
in which the goal position is reached by the actual robot
position. This result was verified in simulations, as well as
experimentally on a dual-arm industrial robot.

APPENDIX

We here consider a passivity property of temporally cou-
pled DMPs. The passivity formalism is described in, e.g.,
[16], [25].

Theorem 3: Consider the system defined by (11) for DMP
operation. The virtual force f(x) can be seen as an external
input to the system. The mapping from f(x) to z/τa is
passive.

Proof: The system is passive if f(0) = 0, ξ̇ =
0 for ξ = f(x) = 0, and there exists a C1 function
V : R5n+1 → R, called a storage function, for which the
following criteria hold [25].

• V (0) = 0
• V (ξ) ≥ 0, ∀ξ 6= 0
• V̇ (ξ) ≤ f(x)T z/τa, ∀ξ, f(x)

Since x is a factor of f(x) and the remaining part of f(x)
is bounded, f(0) = 0, see Sec. II and [4]. It can further be
seen that ξ̇ = 0 for ξ = f(x) = 0.

The states ya−yc, ẏa−ẏc, and e have the same dimension,
which we denote by n. Let In be the identity matrix, and
0n the zero matrix, each of size n. The upper part of (11) is

given by the following linear system.

d

dt

ya − ycẏa − ẏc
e

 =

 0n In 0n
−kpIn −kvIn 0n
αeIn 0n −αeIn

ya − ycẏa − ẏc
e


(19)

Denote by ξ1 and A1 the state vector and the system matrix
in (19), respectively. Because kp = k2v/4 (see Sec. II) the
eigenvalues are given by

{
λ1,...,2n = −kv2
λ2n+1,...,3n = −αe

(20)

Since kv, αe > 0, the eigenvalues are strictly negative. Let Q
be a symmetric, positive definite matrix of size 3n. Since A1

has all eigenvalues strictly in the left half-plane, it follows
[17] that there exists a symmetric, positive definite matrix P
such that

PA1 +AT1 P = −Q (21)

Now, assume the following storage function V .

V (ξ) = ξT1 Pξ1 +
1

2
x2 +

1

2
αzβz(yc − g)T (yc − g) +

1

2
zT z

(22)

It holds that V (0) = 0. Since P is positive definite, any
deviation from ξ1 = 0 will give a positive contribution to
V (ξ). Similarly, the quadratic terms in (22) guarantee that
any deviation from (x, yc − g, z) = (0, 0, 0) gives a positive
contribution to V (ξ). Therefore, V (ξ) > 0,∀ξ 6= 0. Further,

d

dt
V (ξ) = ξT1 P ξ̇1 + ξ̇T1 Pξ1 + xẋ

+ αzβz(yc − g)T
d

dt
(yc − g) + żT z

= ξT1 (PA1 +AT1 P )ξ1 −
αx
τa
x2 + αzβz(yc − g)T

1

τa
z

+

(
αz
τa

(βz(g − yc)− z) +
1

τa
f(x)

)T
z

= −ξT1 Qξ1 −
αx
τa
x2 − αz

τa
zT z

+
1

τa
f(x)T z ≤ 1

τa
f(x)T z, ∀ξ, f(x)

(23)

Hence, a passive mapping from f(x) to z/τa can be con-
cluded.
Since f(x) represents a virtual force and z/τa represents a
velocity, the product of these can be interpreted as supplied
power to the system. Time integration yields the following



mechanical interpretation of (23).

V (ξ(t))︸ ︷︷ ︸
Stored energy

= V (ξ(0))︸ ︷︷ ︸
Energy at start

+

∫ t

0

f(x)T z/τa︸ ︷︷ ︸
Supplied power

dt

−
∫ t

0

ξT1 Qξ1 +
αx
τa
x2 +

αz
τa
zT z︸ ︷︷ ︸

Dissipation power

dt

≤ V (ξ(0))︸ ︷︷ ︸
Energy at start

+

∫ t

0

f(x)T z/τa︸ ︷︷ ︸
Supplied power

dt

(24)

Here, integrating the supplied power with respect to time
yields total work done by f(x). Hence, the increase in stored
energy is not larger than the externally added energy, which
indicates passivity.
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