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Abstract

Multi-storey wood buildings have been increasing in popularity since a century-old ban on
the construction of such buildings was lifted in 1994. Compared to conventional concrete
structures, it is more difficult to build lightweight structures in such a way that noise
and disturbing vibrations is avoided. To design buildings of high performance regarding
sound and vibrations, it is desirable to have tools for predicting the effects of structural
modifications prior to construction. The long-term aim of the studies presented in the
dissertation is to develop such tools by means of numerical models.

Accurately assessing the dynamic behaviour of multi-storey wood buildings requires
use of models representing the geometry in considerable detail, resulting in very large
models which easily exceed the limits of computer capacity, at least for computations
to be performed within reasonable time. It is therefore desirable to avoid unnecessarily
detailed models, while at the same time describing the phenomena of interest accurately.
Moreover, the computational efficiency of the models can be improved by employing model
order reduction, reducing the size and computational cost of the models without affecting
the accuracy appreciably. A common way of employing model order reduction is through
substructure modelling, in which full finite element models are divided into smaller parts,
or substructures, that are reduced in size and assembled to form reduced global models.

The dissertation includes an investigation into the effect of modelling acoustic media
inside cavities of multi-storey wood buildings on the transmission of structural vibrations.
Air and insulation inside cavities were modelled as acoustic media in different ways and
the resulting finite element models were compared. It was concluded that the acoustic
media in cavities close to the source of vibration affect the vibration transmission and
that it, therefore, has to be included in the models to some extent.

Furthermore, the efficiency of different methods for reducing substructure models of
multi-storey wood buildings are discussed in the dissertation. Comparisons of different
methods for model order reduction, applied to substructures of buildings, showed that the
frequently employed method of component mode synthesis by Craig & Bampton and the
increasingly popular Krylov subspace methods result in efficient reduced order models.
In order to improve the efficiency of the reduced order models, interface reduction can be
employed. Different methods for interface reduction were found to be the most efficient
ones for the interface surfaces of wood components and elastomer materials. Elastomer
are used at junctions in wooden buildings in order to reduce the vibration transmission.
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Introduction and overview of the
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1 Introduction

In 1994, a century-old ban on the construction of wooden buildings more than two storeys
in height in Sweden was lifted, leading to the reintroduction of such buildings. The use
of wood as a construction material has many advantages, the lightweight properties of
wood, for example, reducing the material transportation costs involved and the size of
the foundations needed [1]. In addition, the energy consumption which occurs during
the construction and the lifecycle of wooden buildings is lower than that of concrete
buildings of comparable size [2]. At the same time, however, it is more difficult to build
lightweight structures in such a way that noise and disturbing vibrations in the different
storeys and rooms are avoided. The vibrations can be caused by, for example, footsteps,
airborne sound, vibrating machines and external sources such as railway and road traffic.
To design buildings of high performance regarding noise and disturbing vibrations, it
is desirable to have tools for predicting the effects of structural modifications prior to
construction. Testing prototypes and performing experiments is both time-consuming
and expensive, a time and cost effective alternative being to employ numerical models as
prediction tools.

Multi-storey wood buildings are often constructed using prefabricated planar or vol-
ume elements, often with use of low-stiffness panels mounted on high-stiffness beams.
Accurately assessing the dynamic behaviour of these elements when rather high vibration
frequencies are involved requires use of models representing the geometry in considerable
detail. Having established the models, approximate solutions can be sought employing
numerical methods such as the finite element (FE) method. Assembling the individual
elements of multi-storey wood buildings within the framework of global models of entire
buildings results in very large numerical models, easily exceeding the limits of computer
capacity, at least for computations to be performed within reasonable time. The com-
putational efficiency of the numerical models can be improved by employing model order
reduction (MOR), reducing the size and the computational cost of the models without
affecting the accuracy appreciably.

1.1 Aim of research

The long-term goal is to improve the comfort for residents of multi-storey wood buildings
regarding noise and disturbing vibrations. To accomplish this, numerical prediction tools
for low-frequency vibrations in such buildings will be developed for use in the design
process of the buildings.
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The research presented in this dissertation aims at providing knowledge in the process
of developing numerical prediction tools. Specifically, the goal is to determine whether or
not air and insulation inside cavities of multi-storey wood buildings have to be considered
in the numerical models. Moreover, it is investigated how the numerical models can be
reduced in size in an efficient manner by comparing different methods for reducing the
models.

1.2 Outline

The dissertation is divided into two parts:

In Part I, an overview of the dissertation is presented, the aim being to provide a back-
ground to the research carried out, present the governing theory and summarise the results
obtained in the appended papers. In Chapter 2, it is motivated how the research pre-
sented in this dissertation contributes to fulfilling the long-term aim of the project. An
overview of the construction of multi-storey buildings in wood is provided and the issues
related to noise and disturbing vibrations in such buildings are discussed. In Chapter 3,
the FE method, employed here to develop numerical models for the analysis of vibrations
in multi-storey wood buildings, is presented. The FE formulation is derived both in the
structural domain and in the acoustic fluid domain and it is described how the domains
can be coupled. In Chapter 4, the governing theory and some basic concepts in struc-
tural dynamics, important for understanding the dynamic behaviour of structures, are
presented. The methodology of substructuring, employed here for reducing the size of the
FE models, is discussed in Chapter 5. In Chapter 6, the investigations presented in the
appended papers are summarised, and in Chapter 7, the conclusions of the research are
discussed and further developments suggested.

Part II compiles the three appended papers. In Paper A, an investigation into the effect
of modelling air and insulation inside cavities of multi-storey wood buildings is presented.
In Paper B, the efficiency of a wide range of MOR methods, applied to substructure FE
models of lightweight building structures, is investigated, and in Paper C, the accuracy
of different methods for reducing the interfaces of the substructure models are compared.
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2 Vibrations in multi-storey wood build-
ings

In this chapter, the aim is to provide a background to the research presented in the
dissertation and to motivate its contributions to the development of prediction tools for
vibrations in multi-storey wood buildings. An overview of the construction of multi-storey
buildings in wood is presented and the issues related to noise and disturbing vibrations
in such buildings are discussed. Moreover, the numerical modelling employed for creating
the prediction tools is discussed.

2.1 Building in wood

In 1874, a ban on the construction of wooden buildings more than two storeys in height was
introduced in Sweden following a number of urban fires. The ban was maintained for over
a century before being lifted in a revision of the building regulations in 1994, leading to the
reintroduction of such buildings. In a publication by the Swedish government in 2004 [3],
the use of wood as a construction material is promoted, presenting a vision of wood being
a natural choice of material for constructions, primarily in Sweden where it is a plentiful
resource, but also in the rest of Europe in a longer perspective. Wood is attractive as
construction material because of a number of economical and environmental reasons, many
related to its lightweight properties. For example, the use of wood as construction material
lowers the costs involved in transportation and assembling, as compared to conventional
concrete buildings, and can reduce the loads on the foundations by up to 50 % [1]. The
environmental advantages of employing wood as construction material were illustrated in
[2], where it was found that the energy consumption occurring during the construction and
the lifecycle of wooden buildings is lower than that of concrete buildings of comparable
size. Moreover, the lightweight properties of wood makes it suitable as construction
material for prefabrication of planar and volume elements. Prefabrication has a number
of advantages, such as, more time- and cost-effective assembling, better conditions for
construction workers, less material waste and lessened sensitivity to weather conditions.

When multi-storey wood buildings re-entered the market in the mid 1990s, research
related to such constructions was inadequate. Standards and technical solutions devel-
oped for heavier buildings were initially employed also for wooden buildings due to a lack
of knowledge and experience [1]. A problematic issue was the one of noise and vibrations,
as the dynamic behaviour of lightweight buildings and heavier constructions is fundamen-
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tally different. Only frequencies above 100 Hz were considered in standards regulating the
noise induced by impact loads, a limitation yielding acceptable sound pressure levels in
heavier construction, which are less sensitive to low frequency vibrations. In lightweight
buildings, however, the sound isolation is generally poor at low frequencies (20-200 Hz) [4],
leading to important information being neglected when designing the buildings according
to the standards. The Swedish standards have been updated since, nowadays involv-
ing frequencies above 50 Hz. Still, no reliable prediction tools for analysing the issue of
low-frequency vibrations in lightweight buildings exist [4], the design of such buildings
relying on experience from previous constructions and empirical studies. Testing proto-
types and performing experiments is time-consuming and expensive, motivating the need
for prediction tools based on numerical calculations.

2.1.1 Wood as construction material

Wood is a natural material, its mechanical properties depending on the way trees grow.
Every season, the stem grows outwards, adding a new layer of fibres directed in the length-
wise direction of the stem. This results in a cylindrical orthotropic material structure,
having different properties in the different directions as the fibres are much stiffer in the
longitudinal direction compared to the radial and tangential directions. In engineering
applications, however, the cylindrical structure is usually neglected, employing a transver-
sally isotropic material description where isotropy is assumed in the plane transverse to
the fibres. The specific strength, defined as strength divided by density, is high in the
fibre direction of wood, as compared to other construction materials such as concrete [5],
explaining why wood is referred to as a lightweight material. Wood is often utilised in
the form of engineered wood products, structural components manufactured by gluing
smaller components. Examples of such products are glue laminated beams, consisting of
a number of glued wood beams, and particle boards, created by pressing wood chips or
saw dust together with glue under high heat and pressure. Compared to raw sawn timber,
engineering wood products have the advantages of creating more homogeneous compo-
nents, making use of more of the raw material and enabling components of arbitrary size
to be produced. They are, however, more expensive to manufacture and have a lower
specific strength compared to raw sawn timber.

2.1.2 Construction of wooden buildings

Three main types of building systems can be identified for multi-storey wood buildings [1]:

Column-beam system
Framework of massive timber components.

Plate system
Plate components made of massive wood laminates.

Wood frame system
Low-stiffness panels mounted on frames of high stiffness beams.
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The assemblage of a building can be performed by different methods, varying in the
degree of prefabrication involved. Three main categories can be identified [1]:

On-site construction
Complete assembling procedure performed at construction site.

Prefabricated planar elements
Industrially produced planar elements assembled at construction site.

Prefabricated volume elements
Industrially produced volume elements assembled at construction site.

Following the update of the Swedish building regulations in 1994, the multi-storey
wood buildings were initially constructed on-site, primarily in the form of traditional
column-beam systems. However, a trend towards a higher degree of prefabrication has
been observed [1], its popularity increasing due to the many advantages compared to
on-site construction. The research presented in this dissertation is therefore focused on
prefabricated wooden buildings, special care being given to so-called timber volume ele-
ment (TVE) buildings.

Timber volume element buildings

The conceptual layout of a TVE building is illustrated in Figure 2.1 and a TVE prior
to transportation to the construction site is shown in Figure 2.2. A TVE is a prefab-
ricated volume module consisting of wood framed floor-, roof- and wall-elements, each
TVE typically constituting a small apartment, one room or part of a larger room. As
much of the construction work as possible is performed indoors at a factory, including
electrical installations, flooring, cabinets, wardrobes etc. The prefabricated modules are
transported to the construction site where they are stacked to form a complete building.
In between the TVEs, several elastomer blocks are introduced to reduce vibrations travel-
ling between different storeys as well as rooms. Each elastomer block has an interface area
of approximately 0.1×0.1 m2 and is placed between the walls of two stacked modules. The
only additional connection between modules is through a number tie plates, ensuring the
global stability of the building. Vibrations transmitted in TVE buildings are, therefore,
mainly passing through the elastomer layers or through the air and insulation in cavities
of the buildings. Consequently, the vibration transmission in TVE buildings is, to a great
extent, controlled by the properties of the elastomer blocks.

2.2 Vibration transmission

Vibrations in buildings can be caused by many different types of sources, such as, foot-
steps, speakers, vibrating machines or external sources like railway and road traffic. Both
the vibrations themselves as well as the sound they induce can cause annoyance for resi-
dents. The transmission of vibrations between different storeys and rooms can be divided
into two types based on the source of vibration, namely, airborne sound transmission and
structure-borne sound transmission [7]. The former involves vibrations caused by sound
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Figure 2.1: Illustration of the TVE
building system and the elastomer
blocks separating the modules [6].

Figure 2.2: A TVE ready for transportation to
the construction site.

sources, the latter describing vibrations generated by direct excitation of the structure.
The two types of sound transmission are illustrated in Figure 2.3, showing also the possi-
ble paths for the transmitted sound and vibrations. The paths can be separated into two
types; direct paths, where the sound passes from one room to another directly through
a panel, and flanking paths, where the structural vibrations propagate through one or
more junctions before reaching the receiver room. The flanking transmission of sound can
cause noise in storeys and rooms far away from the source, this being an issue mainly for
low-frequency sound as high-frequency vibrations dampen faster.

The annoyance for residents in multi-storey buildings, caused by noise and disturbing
vibrations transmitted between different storeys and rooms, can be viewed as a conse-
quence of the following factors:

Load spectrum
Different loads excite a building with varying levels of energy at different frequencies.
Speakers, for example, generate vibrations at a wide range of frequencies while vibrating
machines typically generate vibrations at specific frequencies.

Sensitivity of buildings
The vibration amplitudes in different parts of a building, caused by a given load, depends
on the buildings sensitivity to vibrations at different frequencies. If the load excites the
building with high levels of energy at frequencies for which the building is more sensitive
to vibrations, it will result in vibrations of high amplitude.

Human perception
Sound and vibrations in residential buildings are, naturally, not a problematic issue until
perceived as annoying for residents. The human perception of noise and vibrations in
lightweight buildings is not yet quite understood. It is, however, believed that vibrations
at very low frequencies, below the 50 Hz limit existing in the Swedish building regulations
today, can contribute to annoyance [8].

To design a building perceived as comfortable regarding sound and vibrations, knowl-
edge concerning all of the three aforementioned factors is important. The properties of
the loads and the human perception are inputs to the design process while the sensi-
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Figure 2.3: Illustration of the two different types of sound transmission in buildings and
the possible transmission paths. Direct transmission paths are denoted by ‘D’ and flanking
transmission paths by ‘Fi’.

tivity of a building is a consequence of the design itself. Because of the sensitivity of
lightweight buildings to low-frequencies vibrations, some sort of technical solution is re-
quired to handle the issue, such as, including insulation in panels to reduce the direct
sound transmission or involving elastomer layers in junctions to reduce the flanking trans-
mission. The elastomer layers have proved successful in reducing vibrations, but there
is room for further improvements [8]. Optimising a technical solution requires a way of
predicting its effects, motivating the need for reliable prediction tools.

2.3 Numerical prediction tools

The long-term aim of the research presented in this dissertation is to improve the design
of multi-storey wood buildings so that noise and disturbing vibrations can be reduced. To
achieve this, numerical tools will be developed in order to predict the effect of structural
modifications of the buildings.

The procedure of establishing a numerical model is illustrated in Figure 2.4. The
first step in predicting the behaviour of a structure is to establish a mathematical model
describing the physical phenomena of interest, often by boundary value differential equa-
tions. Having established the mathematical model, an approximate solution can be sought
by employing numerical methods that discretise the mathematical model, resulting in a
numerical model. Depending on the complexity of the mathematical model and the ex-
tent of the discretisations involved, the resulting numerical model can be too large for
computations to be performed within reasonable time. The computational efficiency of
the model can, in such situations, be improved by employing MOR to create a reduced
order model.

A prediction model frequently employed for vibration transmission in buildings is sta-
tistical energy analysis (SEA) [7]. In SEA, the structure is represented by a number
of coupled subsystems and statistical assumptions are made regarding the flow of kine-
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Figure 2.4: The procedure of establishing a numerical model.

matic energy between subsystems. The method is, however, developed for heavy and
homogeneous structures, such as concrete buildings, and can in general not be applied to
lightweight structures [4]. Moreover, SEA does not take detailed information of the sub-
systems into consideration and the method is therefore ill-suited for predicting the effect
of structural modifications. In order to establish reliable prediction tools for vibrations
in lightweight buildings, an alternative methodology has to be adopted. The periodicity
of structures within multi-storey wood buildings requires use of methods allowing the ge-
ometry to be modelled in a detailed manner. A suitable method is by this means the FE
method.

2.3.1 Finite element modelling

The FE method, described in detail in Chapter 3, is a numerical method offering the
possibility of calculating approximate solutions for mathematical models of structures
having arbitrary geometries. Employing FE models as prediction tools for vibrations in
multi-storey wood buildings implies the models to be representing the dynamic charac-
teristics of real buildings accurately, requiring validation of the models by comparisons
to measurements. An example of comparisons between analyses of FE models and mea-
surement data can be found in [9], investigating the low-frequency vibrations in a wooden
floor-wall structure in terms of FE modelling and full-scale measurements; experimental
setup and simulation results being shown in Figure 2.5. Acceptable correlation between
the FE model and measurement data was found for the lowest eigenmodes of the system.

In structural dynamic analysis, the FE method is primarily applicable for low-frequency
vibrations. The size of the models increases when the response of the buildings is requested

(a) Experimental setup. (b) Simulation results.

Figure 2.5: Experimental setup and simulation results of the FE model employed in the
investigations of a wooden floor-wall structure in [9].
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for higher frequencies. Smaller details in the geometry become more important and the
geometric discretisation involved in the FE modelling has to be finer in order to resolve
the shorter wavelengths. It is a challenging task to model the smaller details in an accu-
rate manner, and for frequencies over a certain limit, it becomes practically impossible to
perform the analyses due to the extensive size of the resulting FE models.

The size of the FE models is an issue also for the analyses of vibrations at lower
frequencies as fine geometric discretisations are required compared to static analyses.
Moreover, large geometries have to be involved in case the transmission of vibrations
between distant parts of a building is studied. It is, therefore, important to consider how
unnecessarily large models can be avoided. There are a number of issues to be dealt with
in achieving this, for example deciding:

• whether or not it is valid to assume linear behaviour, i.e. small deformations and
linear material descriptions.

• how many storeys and rooms of the complete building to involve in the model.

• which of the structural components to model in detail and which structures to
replace with simplified models, e.g. replacing a wood-framed wall panel with a
homogeneous plate.

• if the nails and glue joining structural components has to be modelled in detail or
if the interfaces can be regarded as fully connected.

• how fine the discretisation of the geometry has to be.

• if the vibrations transmitted through the air and insulation inside cavities is of
importance.

The last of these issues is discussed in Paper A, investigating the effect of modelling air
and insulation inside cavities of TVE buildings on the vibration transmission. The air and
the insulation are modelled as acoustic media and models including the acoustic media
inside cavities in different ways are compared to a model without acoustic media.

By carefully considering issues such as the ones mentioned above, a FE model de-
scribing the dynamics of a building can be constructed without including unnecessary
information, resulting in the model being as small as possible without a loss of accuracy.
The model can, however, still be too large for computations to be performed within rea-
sonable time. In case a model is too large, its computational efficiency can be improved
by employing MOR, reducing the size and computation time of the model to the greatest
possible extent without affecting the accuracy of the approximate solution appreciably.

2.3.2 Substructure modelling

The MOR is, in this project, performed by employing substructure modelling, described
in detail in Chapter 5. Substructure modelling is based on a division of the full geometry
into a set of substructures, the FE models of these being reduced in size and coupled to
form a reduced global model.
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Substructure modelling provides a flexible and practical framework for structural dy-
namic analysis, enabling a combination of full models and reduced order models of sub-
structures. Furthermore, it is possible to involve experimental substructures in the global
model, these being described by frequency response functions obtained from measure-
ments.

As aforementioned, multi-storey wood buildings usually involve elastomer layers. These
offer a natural selection for making the substructure division. In spite of their relatively
small sizes, the elastomer layers provide the major part of the contact between structural
components in the buildings. In TVE buildings, specifically, the large volume modules are
coupled by a number of small elastomer blocks, making it natural to consider each TVE
as a substructure. Most of the MOR methods available in the literature require the mod-
els to be frequency-independent. The elastomer materials possess frequency-dependent
properties [10] and, for this reason, they are not involved within the substructures, instead
serving as coupling elements.

Many MOR methods are available in the literature and the computational efficiency of
the reduced order models will of course depend on the choice of method. In Paper B, the
computational efficiency of a wide range of MOR methods, when applied to FE models
of lightweight building structures, is compared. Moreover, the efficiency of the reduced
order models depends on the size of the interface surfaces connecting the substructures,
large interfaces resulting in the reduced models being computationally inefficient. For
this reason, it is important to limit the size of the interfaces and in case they are very
large, it can be necessary to employ interface reduction. The accuracy of a number of
methods for interface reduction is compared in Paper C, employing the methods for the
interfaces between elastomer blocks and wooden building structures of the type found in
TVE buildings. Furthermore, the development of efficient coupling elements, replacing
the elastomer blocks, is presented in Paper C.
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3 Finite element method

Various problems encountered in a wide range of engineering fields are described by bound-
ary value differential equations, originating from different types of balance laws. These
are often practically impossible to solve analytically, numerical methods therefore being
employed in order to calculate approximate solutions. The FE method is an example of
such a method, used for problems involving, for example, heat conduction, electromagnet-
ics or solid mechanics. The FE method approximates the sought field variables through a
division of the geometric domain into elements, assuming the variables to vary according
to some shape functions, usually polynomials of various degrees, within each element.
The field variables are discretised into a number of dofs, defined at nodes of the elements,
the shape functions being used for interpolating the variables between the nodes. The
elements and nodes, defined in the domain of interest, form an FE mesh, its size deter-
mining the size of the resulting system of equations. A very fine mesh, i.e. small elements,
results in a good approximation of the field variables at the expense of obtaining a large
discretised system. Employing the FE method involves a consideration for the practising
engineer, weighing the accuracy of the approximations to the computational cost of the
model.

In this chapter, an FE formulation for the dynamics of a three-dimensional linear
elastic solid is derived. Two equivalent formulations of the problem, the strong and
weak formulations, are presented before arriving at the FE formulation. Moreover, an
FE formulation for a coupled structure-acoustic system is derived, involving the coupling
between an elastic solid and an acoustic fluid. For a more detailed derivation of the FE
method, see for example [11, 12]. The derivations in this chapter follow the notation
employed in [12].

3.1 Strong formulation

By considering Newton’s second law of motion for the continuum formulation of a solid,
the differential equation of motion, for a body occupying the domain Ω, can be obtained
as [13]

∇̃T
σ + b = ρ

∂2u

∂t2
, (3.1)
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∇̃T
=

 ∂
∂x

0 0 ∂
∂y

∂
∂z

0

0 ∂
∂y

0 ∂
∂x

0 ∂
∂z

0 0 ∂
∂z

0 ∂
∂x

∂
∂y

 , σ =


σxx
σyy
σzz
σxy
σxz
σyz,

 , b =

bxby
bz

 , u =

uxuy
uz

 , (3.2)

where σ is the vector representation of the stress tensor, b and u are the body force
and displacement vectors, respectively, ρ is the mass density and t is the time. If the
deformations of the body are assumed to be small, the vector representation of the strains
are given by

ε =
[
εxx εyy εzz εxy εxz εyz

]T
= D∇̃u, (3.3)

where D is the constitutive matrix. Moreover, if linear elastic material behaviour is
assumed, the stresses are given by

σ = Dε = D∇̃u. (3.4)

A surface traction t acts on the boundary of Ω, ∂Ω, and is related to the stresses
according to

t =

txty
tz

 =

σxxnx + σxyny + σxznz
σxynx + σyyny + σyznz
σxznx + σyzny + σzznz

 , (3.5)

where nx, ny and nz are the components of the boundary normal vector n, pointing
outwards from ∂Ω. Boundary conditions has to be assigned at ∂Ω, prescribing the dis-
placement and surface traction according to

u = ubc on ∂Ωu,

t = tbc on ∂Ωt,
(3.6)

where ubc and tbc are known quantities on ∂Ωu and ∂Ωt, separated parts of the boundary
adding up to the complete boundary ∂Ω. Eq. (3.1) in combination with Eq. (3.6) con-
stitute the strong formulation, stating a fully defined problem in three-dimensional solid
mechanics.

3.2 Weak formulation

The FE method is a variational method and the weak formulation, based on the use of test
functions, is introduced in order to derive the FE formulation. Starting from Eq. (3.1),
the first step in obtaining the weak formulation is to pre-multiply the equation with the
vector of arbitrary weight functions v and integrate over the region Ω, resulting in
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∫
Ω

vT
(
∇̃T

σ + b−ρ∂
2u

∂t2

)
dV = 0, (3.7)

vT =
[
vx vy vz

]
. (3.8)

Applying Green-Gauss theorem to the first term in the integral results in∫
Ω

vT∇̃T
σdV =

∫
∂Ω

vT tdS −
∫

Ω

(∇̃v)TσdV, (3.9)

and an insertion of this expression into Eq. (3.7) gives∫
Ω

vTρ
∂2u

∂t2
dV +

∫
Ω

(∇̃v)TσdV =

∫
∂Ω

vT tdS +

∫
Ω

vTbdV, (3.10)

which is the weak formulation of the problem subject to the boundary conditions in
Eq. (3.6), the prescribed surface tractions being inserted in the integral equation.

3.3 Finite element formulation

So far, no approximations of Eq. (3.1) have been introduced, the strong and weak formu-
lations being equivalent descriptions of the problem. In the FE formulation, however, the
displacements are approximated by

u = Na, (3.11)

with the matrix N(x, y, z) ∈ R3×n containing the global shape functions, used to obtain
the displacement field by interpolating the nodal displacements a(t) ∈ Rn×1, n being the
number of nodal displacements. Adopting Galerkin’s method, the shape functions N are
employed also for the arbitrary weight functions

v = Nc, (3.12)

c being an arbitrary constant vector. Inserting Eqs. (3.4), (3.11) and (3.12) into Eq. (3.10),
using that ä and a are independent of spatial coordinates and c is arbitrary, results in the
FE formulation for a linear elastic solid∫

Ω

NTρNdV ä +

∫
Ω

(∇̃N)TD∇̃NdV a =

∫
∂Ω

NT tdS +

∫
Ω

NTbdV, (3.13)

which can be rewritten in the more compact form

Mä + Ka = fl + fb, (3.14)

M =

∫
Ω

NTρN dV , K =

∫
Ω

(∇̃N)TD∇̃N dV ,

fl =

∫
Ω

NTb dV , fb =

∫
∂Ω

NT t dS,

(3.15)
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where the mass matrix M, the stiffness matrix K, the body force vector fl and the
boundary force vector fb have been introduced. The boundary conditions in Eq. (3.6)
are imposed in Eq. (3.14) by prescribing an element in either a or fb for the equations
describing the equilibrium for the dofs at the domain boundary. The system obtained in
Eq. (3.14) is a linear equation of motion of the form in Eq. (4.3). A damping matrix can
be added to the system by employing, for example, Rayleigh damping, as described in
Section 4.4.1.

3.4 Structure-acoustic analysis

Vibrating structures can interact with surrounding fluids, inducing acoustic pressure
waves, and vice versa. For heavier structures, the influence of the acoustic pressure
waves on the structural vibrations is usually negligible. It is, therefore, possible to anal-
yse the acoustic pressure field by applying the structural displacements, obtained from
a precedent analysis of the structural domain, as boundary conditions. For lightweight
structures, however, it is more likely to have a two-way interaction between the domains,
demanding simultaneous analyses of the domains to yield correct results.

The FE method can be employed also for analysing the acoustic pressure field in a
fluid. By imposing conditions of continuity for the displacements and the pressures at
boundaries separating the two domains, they can be coupled to form an interacting FE
system of equations. In the derivations below, a subscript F is adopted for quantities
in the acoustic fluid domain ΩF , whereas the subscript S is used for quantities in the
structural domain ΩS, so that Eq. (3.14) is rewritten as

MSäS + KSaS = fl,S + fb,S = f, (3.16)

3.4.1 Acoustic fluid domain

In addition to the assumption of small displacements, the equations governing the acoustic
fluid domain are derived assuming the fluid to be inviscid and irrotational. The motion
of an acoustic fluid can be described using different primary variables, such as, the fluid
displacement or a fluid displacement potential. In the FE formulation presented here, the
acoustic pressure is used as primary variable. A detailed description of the FE formulation
for an acoustic fluid and the structure-acoustic coupling can be found in for example [14].
The pressure field in an acoustic fluid is governed by the equation of motion

ρ0,F
∂2uF
∂t2

+ ∇pF = 0, (3.17)

and the continuity equation

∂pF
∂t

+ ρ0,F c
2
0,F∇ ·

∂uF
∂t

= 0, (3.18)

where ρ0,F is the static density, c0,F is the speed of sound, pF is the acoustic pressure
and ∇ is the gradient operator. By differentiating Eq. (3.18) with respect to time and
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inserting it in Eq. (3.17), the wave equation in the acoustic fluid domain is obtained as

1

c2
0,F

∂2pF
∂t2

−∇2pF = 0. (3.19)

Derivations corresponding to those for a linear elastic solid results in the FE formula-
tion for an acoustic fluid

MF p̈F + KFpF = fb,F , (3.20)

MF =
1

c2
0,F

∫
ΩF

NT
FNF dV , KF =

∫
ΩF

(∇NF )T∇NF dV ,

fb,F =

∫
∂ΩF

NT
FnTF∇pF dS,

(3.21)

where nTF is the boundary normal vector, pointing outwards from the acoustic fluid do-
main.

3.4.2 Coupling of domains

At interfaces connecting an acoustic fluid domain and a structural domain, denoted ∂ΩSF ,
there will naturally be a continuity in displacement and pressure

uSnF = uFnF , (3.22)

σS|nF
= −pF , (3.23)

where σS|nF
is the stress normal to ∂ΩSF . By introducing the spatial coupling matrix

HSF =

∫
∂ΩSF

NT
SnFNF dS, (3.24)

and using Eq. (3.17), the boundary force vectors, at ∂ΩSF , may be rewritten as

fb,S = HSFpF , (3.25)

fb,F = −ρ0,FHT
SF äS, (3.26)

Introducing the coupling terms, Eq. (3.25) and Eq. (3.26), in the FE equation systems,
Eq. (3.16) and Eq. (3.20), results in the coupled structure-acoustic system of equations

[
MS 0

ρ0,FHT
SF MF

] [
äS
p̈F

]
+

[
KS −HSF

0 KF

] [
aS
pF

]
=

[
fl,S
0

]
+

[
fb,S
fb,F

]
, (3.27)

where fb,S and fb,F contain contributions from the parts of the domain boundaries ∂ΩS

and ∂ΩF , respectively, that are separated from the interface boundary ∂ΩSF .
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4 Structural dynamics

In this chapter, the aim is to provide a theoretical background to structural dynamics and
introduces the concept of eigenfrequencies and eigenmodes of a system and the closely
related phenomena of resonance for harmonic vibrations. Moreover, it is discussed how
the dynamic behaviour of structures is affected by the introduction of damping. Only free
vibration and the response to harmonic excitation are considered here as it is sufficient
for providing a basic understanding. A dynamic load described by its time history can
be Fourier transformed to obtain its frequency content and knowledge about the systems
response to harmonic excitations can thereby be used to predict the response. The theory
presented in this chapter is based on assumptions of linearity, neglecting any non-linear
behaviour of the structures. Such assumptions are valid for loads having magnitudes that
are sufficiently low for the system in question. This is normally the case for structural
vibrations in buildings, caused by common load-cases.

Further reading about structural dynamics can be found in, for example, [15, 16].

4.1 Equation of motion

Employing a single degree of freedom (sdof) system is the simplest way of modelling the
dynamics of a structure. In Figure 4.1 an example of such a system is shown. It consists
of a mass m connected to a wall by a spring with stiffness k and a viscous damper with
damping coefficient c. The mass moves frictionless along the horizontal axis and the sdof
is, in this example, the displacement u(t) from the static equilibrium position, caused by a
time-dependent load f(t). Applying Newton’s second law of motion for the system results
in

u(t)

c

k

f(t)m

Figure 4.1: Example of an sdof system.
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f(t)− cu̇(t)− ku(t) = mü(t). (4.1)

Rearranging the terms gives the linear equation of motion for an sdof system

mü(t) + cu̇(t) + ku(t) = f(t). (4.2)

More complex structures require multiple degrees of freedom (dofs) to describe the
dynamic behaviour accurately, resulting in multi degree of freedom (mdof) systems. The
equation of motion for an mdof system is given by

Mü(t) + Cu̇(t) + Ku(t) = f(t), (4.3)

where M, C, K ∈ Rn×n are the mass, damping and stiffness matrices, respectively, f (t) ∈
Rn×1 is the load vector and u (t) ∈ Rn×1 is the displacement vector. The equation of
motion for an mdof system can be derived by, for example, employing the FE method,
described in Chapter 3.

4.2 Free vibration

The free vibration of a structure are studied by assuming that no external loads are
present, resulting in the motion being determined by the initial conditions, i.e. the pre-
scribed displacements and velocities at t = 0. In the following derivations, the undamped
case is considered, damping being introduced in Section 4.4. Eq. (4.3) is, for free un-
damped vibrations, reduced to a homogeneous differential equation

Mü(t) + Ku(t) = 0, (4.4)

which can be solved by assuming the harmonic solution

u(t) = ĈeiwtΦ, (4.5)

where Ĉ is the complex amplitude, i is the complex number, ω is the angular frequency
and Φ ∈ Rn×1 is a constant vector. Differentiation of Eq. (4.5) and insertion into Eq. (4.4)
results in the eigenvalue problem

(K− ω2M)Φ = 0, (4.6)

with non-trivial solutions given by

det(K− ω2M) = 0. (4.7)

For a system containing n dofs, there will be n solutions ωj = ω1, ..., ωn, referred
to as the eigenfrequencies of the system, each eigenfrequency having a corresponding
eigenvector, or eigenmode, Φj given by Eq. (4.6). The set of n eigenmodes form an
orthogonal basis, meaning that the solution to Eq. (4.4) can be expressed as a sum of the
eigenmodes as
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u(t) =
n∑
j=1

qj(t)Φj, (4.8)

qj(t) = q̂je
iwt, (4.9)

where qj(t) describes the amplitude of the jth eigenmode and q̂j is the complex ampli-
tude, determined by use of the initial conditions. Eq. (4.8) is referred to as the modal
decomposition of u(t).

4.3 Harmonic excitation

A system exposed to harmonic excitation will, after an initial transient phase, respond
by oscillating with the frequency of the load. Assuming harmonic load and harmonic
displacements

f(t) = f̂eiwt, u(t) = ûeiwt, (4.10)

where f̂ and û are the complex load and complex displacement amplitudes, respectively,
results in the equation of motion for an undamped mdof system

D(ω)û = f̂, (4.11)

D(ω) = −ω2M + K. (4.12)

Employing the modal decomposition of u(t) and pre-multiplying the system of equations
in Eq. (4.11) with ΦT

k results in

−ω2

n∑
j=1

ΦT
kMΦj

¨̂qj +
n∑
j=1

ΦT
kKΦj q̂j(t) = ΦT

k f̂, (4.13)

for k = 1, ..., n. The eigenmodes are orthogonal in the scalar products ΦT
kMΦj and

ΦT
kKΦj, resulting in the term with j = k being the only non-zero term in the summations.

This results in n uncoupled sdof systems given by

−ω2M̄j q̂j(t) + K̄j q̂j(t) = f̄j, (4.14)

M̄j = ΦT
j MΦj, K̄j = ΦT

j KΦj, f̄j = ΦT
j f̂, j = 1, ..., n, (4.15)

where each sdof system describes the amplitude of an eigenmode. The sdof systems have
the solutions

q̂j =
f̄j
K̄j

1

1− (ω/ωj)
2 , (4.16)
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ωj =

√
K̄j

M̄j

. (4.17)

The ratio between the response q̂j to a harmonic load and a static load of the same
magnitude becomes

Rd =
1

1− (ω/ωj)
2 , (4.18)

and is referred to as the deformation response factor. It can be observed in Eq. (4.18)
that a harmonic excitation will, in case the excitation frequency is equal to an eigenfre-
quency (ω = ωj), result in an infinite response amplitude, a phenomenon referred to as
resonance. This can of course not occur in a real structure since any damping present
in the structure will prevent such behaviour. If the level of damping is relatively low,
however, the deformation response factor will be large for excitation frequencies close to
an eigenfrequency.

4.4 Damped systems

Damping is included in numerical models to represent the energy dissipation occurring
during dynamical processes and is always present to some extent because of, for example,
friction in joints or internal losses in materials. Identifying the damping properties of
a structure is a challenging task and damping is often included in models as a rough
approximation by smearing global damping properties of the structure based on its mass
and stiffness distributions. By assuming free vibration for the sdof system in Eq. 4.2, it
can be rewritten as

ü(t) + 2ζωnu̇(t) + ω2
nu(t) = 0, (4.19)

ωn =

√
k

m
, ζ =

c

2mωn
, (4.20)

where ωn is the eigenfrequency for the undamped case and the damping ratio ζ is intro-
duced. The resulting free vibrations of a damped sdof system are given by

u(t) = e−ζωnt[u(0)cos(ωDt) +
u̇(0) + ζωnu(0)

ωD
sin(ωDt)], (4.21)

ωD = ωn
√

1− ζ2, (4.22)

where ωD is the eigenfrequency for the damped system and the initial conditions u(0) and
u̇(0) are used. For relatively small damping ratios, ζ < 0.2 (common in many engineering
structures), ωD ≈ ωn.

The deformation response factor for harmonic vibrations of a damped sdof system is
given by
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Figure 4.2: The deformation response factor Rd as a function of excitation frequency
divided by eigenfrequency (ω/ωn) for different damping ratios.

Rd =
1√(

1− (ω/ωn)2)2
+ (2ζ (ω/ωn))2

. (4.23)

In Figure 4.2, the deformation response factor for different values of the damping ratio
is shown. It can be observed how a lower value of the damping ratio results in a more
distinct resonance peak in the frequency spectra, while a very high value eliminates the
resonant behaviour.

In a damped mdof system, a damping matrix needs to be constructed. It is not
as straightforward as constructing the stiffness matrix, built by considering the stiffness
properties of individual structural components. The damping properties of materials are
not as well established and the energy dissipation in connections is difficult to measure
and, consequently, difficult to model. As an alternative, the damping matrix can be con-
structed using modal damping ratios of the structure, obtained by, for example, measuring
the free vibration of the structure at certain eigenmodes and fitting the measured data
to Eq. (4.21). In case measurement data is unavailable, damping properties of similar
structures may be used. Damping matrices can be divided into two types, classical and
non-classical. Classical damping matrices are, in contrast to non-classical matrices, diag-
onalised in case of a modal decomposition of the system, enabling the system of equations
in Eq. (4.3) to be separated into n uncoupled equations as was done in Eq. (4.14) for the
undamped case.

4.4.1 Rayleigh damping

A method frequently employed for constructing damping matrices is Rayleigh damping,
producing classical damping matrices. Rayleigh damping uses a linear combination of the
mass and stiffness matrices to construct the damping matrix
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C = a0M + a1K, (4.24)

where a0 and a1 are the weighting coefficients. With use of Eq. 4.20, it can be shown that
the damping ratio of the nth mode is given by

ζn =
a0

2ωn
+
a1ωn

2
. (4.25)

The coefficients a0 an a1 can be obtained if the damping ratios ζi and ζj for the eigenmodes
i and j are known. Assume ζi = ζj = ζ, then a0 and a1 are given by

a0 = ζ
2ωiωj
ωi + ωj

, (4.26)

a1 = ζ
2

ωi + ωj
. (4.27)

In Figure 4.3, the damping ratio ζn as a function of angular frequency ωn, assuming
ζi = ζj = ζ, is shown. The two dashed curves illustrate the contributions from the mass
and stiffness matrices, the mass matrix dominating at lower frequencies and the stiffness
matrix providing the major contribution at higher frequencies.
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Figure 4.3: The damping ratio ζ as a function of angular frequency ω when employing
Rayleigh damping.
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5 Substructure modelling

The concept of substructure modelling is discussed in this chapter. The theory behind a
wide range of MOR and interface reduction is taken up and some basic features of the
methods are demonstrated in a numerical example consisting of an FE model of a wooden
beam. For a review of the historic development of substructuring and a classification of
substructuring technique, see [17].

Substructure modelling is a methodology frequently adopted for the reduction of large
numerical models. Even though the computational resources available for engineers and
researchers are continuously increasing, MOR is still a topic attracting a lot of interest as
larger and more complex problems are dealt with. Moreover, it is in many cases important
to solve a certain problem in a time efficient manner, real time applications being a typical
example. The substructuring procedure is illustrated in Figure 5.1. It is based on a
division of the structure into components, or substructures, which are reduced in size and
assembled to form reduced global models. Substructuring is suitable for structures which
in a natural way are divided into components, such as engines or wind turbines, when the
flexibility of each component has to be accounted for.

In structural dynamic analysis, substructure modelling provides a flexible and practical
framework, enabling a combination of full numerical models and reduced order models of
the substructures. Using a floating frame of reference for each substructure, the method-
ology of substructuring can be employed for systems with large rigid body translations
and rotations, while assuming small strains within each substructure. Moreover, problem-
specific substructures, developed by considering for example a certain load-case, can easily
be integrated within a reduced global model of a building. Assume, for example, that a
substructure model of a building exists and that a load is applied on one of its floor struc-
tures, requiring the floor in question to be modelled in great detail. The substructure
containing the floor can then be replaced with a refined model without having to modify
the reduced order models of the remaining parts of the building. Furthermore, it is pos-
sible to involve experimental substructures in the global model, these being described by
frequency response functions obtained from measurements.

After a substructure division of a FE model has been performed, each substructure is
described by an equation of motion of the form in Eq. (3.14). In order to reduce the size
of a certain substructure, the transformation u = TaR is introduced, uR ∈ Rm×1 being
the reduced state vector, T ∈ Rn×m the transformation matrix and m << n. This results
in a reduced system given by

MRüR + KRuR = fR, (5.1)
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Figure 5.1: Illustration of substructure modelling.

MR = TTMT, KR = TTKT, fR = TT f, (5.2)

where MR,KR ∈ Rm×m are the reduced mass and stiffness matrices, respectively, and
fR ∈ Rm×1 is the reduced load vector. In recent decades, many MOR methods, involving
procedures of varying types for establishing the transformation matrix and the reduced
state vector involved, have been proposed in the literature. All of the methods can
be understood as Rayleigh-Ritz procedures [11], differing in the selection of Ritz basis
vectors constituting the columns of the transformation matrix. Each dof in the reduced
state vector represents the amplitude of a Ritz basis vector and the dofs can be divided
into two categories: physical dofs, being dofs of the full system that are retained in the
reduction process, and generalised coordinates. The reduction methods can be categorised
according to the type of dofs generated in the reduction process, where condensation
methods involve only physical dofs, generalised coordinate methods are based solely on
generalised coordinates, and hybrid reduction methods employ a combination of dofs of
both types.

In commercial FE software, generalised coordinates are often treated as internal dofs
in the substructures and, usually, the coupling of substructures is realised by use of La-
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grange multipliers [11], tying the nodes of two interface surfaces to each other by imposing
constraints on the displacement dofs. Consequently, if a global substructure model is to
be analysed and post-processed in commercial FE software, any reduction methods based
solely on generalised coordinates are excluded as physical dofs are required for coupling.

A set of interface nodes, used for the coupling of substructures, is identified for the
FE model of each substructure. The dofs of the interface nodes are retained in the re-
duction process whilst the remaining dofs of the full model are eliminated. The reduced
system matrices are in general fully populated, making reduced order models containing
more than a few thousand dofs infeasible to analyse. It is therefore important to restrict
the number of interface dofs of each substructure, which can be rather large in case the
substructure is in contact with the surroundings at surfaces having dense node distribu-
tion. For substructures having a large number of interface dofs, interface reduction can be
applied to improve the efficiency of the reduced order model. In this dissertation, a fre-
quently employed methodology for interface reduction, based on the use of condensation
nodes [18], is employed.

5.1 Methods for model order reduction

In this section, a number of condensation methods and hybrid methods are presented. The
hybrid methods presented here are referred to as component mode synthesis methods. The
name originates from the 1960s when a number of methods for the reduction of dynamic
systems, involving component modes of different kinds, were developed [17]. Generalised
coordinate methods are excluded here as the substructures produced by such methods are
incompatible with commercial FE software. The generalised coordinate methods are not
to be confused with the generalised methods presented below, based on reformulations of
the condensation processes employed in the different methods.

5.1.1 Condensation methods

In the condensation methods, the dofs are separated into masters (m) and slaves (s), the
slave dofs being condensed in the reduction process, resulting in a reduced state vector
containing only the master dofs. Partitioning the state vector in terms of masters and
slaves enables the system matrices in Eq. (3.14) to be partitioned into sub-blocks as follows[

Mmm Mms

Msm Mss

] [
üm
üs

]
+

[
Kmm Kms

Ksm Kss

] [
um
us

]
=

[
fm
fs

]
. (5.3)

It is assumed in the following derivations that no loads are acting on the slave dofs,
i.e. fs = 0.

Guyan reduction [19]

Solving the equation in the second row in Eq. (5.3) for us results in

us = −K−1
ss (Msmüm + Mssüs + Ksmum) , (5.4)
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which, if the inertia terms are neglected, results in the transformation of the state vector
for Guyan reduction [

um
us

]
=

[
I

−K−1
ss Ksm

]
um = TGuyanum, (5.5)

where the transformation matrix TGuyan can be used in Eq. (5.2) to obtain the reduced
system matrices and the reduced load vector. Guyan reduction is often referred to as static
condensation since models reduced with Guyan reduction do not result in any errors in
static analysis. Due to its static nature, Guyan reduction can be expected to only produce
acceptable results for frequencies close to the lowest eigenfrequencies of the system. At
higher frequencies, the neglected inertia terms have a stronger influence, resulting in errors
of larger size. The performance of this method is highly dependent upon the approach for
selecting master dofs. In the numerical examples studied here, only the dofs needed to
connect the substructures to the surroundings serve as masters, although additional dofs
can be employed as master dofs as well, various methods for selecting such dofs having
been proposed [20, 21].

Dynamic reduction [22]

A harmonic time-dependent load, f = f̂eiωt, and response, u = ûeiωt, is assumed, i =
√
−1

being the imaginary unit, ω the angular frequency and f̂ and û the complex load and
displacement amplitudes, respectively. Introducing this assumption into Eq. (5.3) results
in the equation of motion applying to the frequency domain[

Dmm (ω) Dms (ω)
Dsm (ω) Dss (ω)

] [
ûm
ûs

]
=

[
f̂m
0

]
, (5.6)

D (ω) = −ω2M + K. (5.7)

Solving the equation in the lower row in Eq. (5.6) for ûs results in

ûs = −D−1
ss (ω) Dsm (ω) ûm, (5.8)

and, consequently, the transformation of the state vector for dynamic reduction is given
by [

ûm
ûs

]
=

[
I

−D−1
ss (ω) Dsm (ω)

]
ûm = Tdynamicûm, (5.9)

where the transformation matrix Tdynamic requires a selection of ω in order to be estab-
lished. The special case of dynamic reduction in which ω = 0 results in the transforma-
tion of Guyan reduction shown in Eq (5.5). For harmonic load cases with the excitation
frequency having the same value as ω, dynamic reduction provides exact results. This
suggests dynamic reduction to be an effective scheme for analysing a structure subjected
to load cases having narrow frequency content. For steady-state analyses, fully accu-
rate reduced models can be obtained by reducing the system matrices at each discrete
frequency. This is, however, a costly procedure that requires the availability of large
memory resources for storing the resulting matrices.
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Improved reduction system (IRS) [23, 24]

The term improved in the name improved reduction system (IRS) refers to a pertur-
bation of the transformation taking place in Guyan reduction, Eq. (5.5). The previously
neglected inertia terms are then included as pseudo-static forces. Assuming free undamped
vibrations of a system reduced by means of a Guyan reduction results in the following
expression for the acceleration of the master dofs

üm = −M−1
GuyanKGuyanum, (5.10)

where MGuyan and KGuyan are the reduced stiffness- and mass matrices obtained by em-
ploying Guyan reduction. Differentiating Eq. (5.5) and making use of the relationship
expressed in Eq. (5.10) results in the acceleration of the slave dofs being given by

üs = −K−1
ss Ksmäm = K−1

ss KsmM−1
GuyanKGuyanum. (5.11)

Inserting Eq. (5.10) and Eq. (5.11) into Eq. (5.4) results in the following approximation
of the slave dofs

us = K−1
ss

(
MsmM−1

GuyanKGuyan −MssK
−1
ss KsmM−1

GuyanKGuyan −Ksm

)
um. (5.12)

This rather complicated expression can be written in more compact form, resulting in the
transformation matrix for IRS being given by

TIRS = TGuyan + SMTGuyanM
−1
GuyanKGuyan, (5.13)

S =

[
0 0
0 K−1

ss

]
. (5.14)

In the IRS transformation, the reduced system matrices that Guyan reduction provides
are utilised so as to produce updated reduced matrices. As a further extension of this, the
updated matrices can be used to create an iterative scheme, the transformation matrix
for the ith iteration being given by

TIRS,i+1 = TGuyan + SMTIRS,iM
−1
IRS,iKIRS,i, (5.15)

and the iterations being started by calculating TIRS,1 according to Eq. (5.13). The iterative
scheme converges to form the transformation matrix of SEREP [25], creating a reduced
system that reproduces exactly the lowest eigenfrequencies and eigenmodes of the full
system, the rate of convergence depending upon the selection of master dofs. In contrast
to Guyan reduction, however, IRS does not reproduce the static behaviour of the full
system exactly.

5.1.2 Component mode synthesis methods

Component mode synthesis methods are developed for use in substructure modelling, its
name referring to the creation of a global system by using different kinds of structural
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modes for components of the full model. In general, a component mode synthesis method
is a hybrid method which is obtained by combining a condensation method with a gener-
alised coordinate method.

Craig–Bampton (CMS) [26, 15]

Use of component mode synthesis by Craig–Bampton, here denoted CMS, compensates
for the neglected inertia terms in Guyan reduction through its including a set of gener-
alised coordinates ξ. These generalised coordinates represent the amplitudes of a set of
eigenmodes for the slave structure, calculated with the master dofs being fixed. Setting
um = 0 and fs = 0 in Eq. (5.3) and assuming a harmonic solution with angular frequency
ω results in the following eigenvalue problem

KssΦ = λMssΦ, (5.16)

which can be solved for the eigenvalues λ = ω2 and the eigenmodes Φ. A number of the
eigenmodes, referred to as retained eigenmodes, are selected as additional basis vectors
to the approximation of the slave dofs in Eq. (5.5), resulting in

us = −K−1
ss Ksmum +

∑
Φiξi = Ψum + Φξ. (5.17)

This results in the transformation of the state vector for CMS[
um
us

]
=

[
I 0
Ψ Φ

] [
um
ξ

]
= TCMS

[
um
ξ

]
, (5.18)

defining the transformation matrix TCMS. As for Guyan reduction, the accuracy of CMS
depends upon the selection of master dofs, affecting the static modes as well as the eigen-
modes of the slave structure. Moreover, the accuracy depends upon the selection of
retained eigenmodes, certain eigenmodes having a larger influence than others on the so-
lution of a specific problem. To obtain a reduced model with as great accuracy for general
load distributions as possible, however, all the eigenmodes up to some given limit that is
chosen should be included.

Krylov subspace method (KCMS) [27, 28]

In recent years, methods originating from control theory have become increasingly pop-
ular among researchers in computational mechanics. Such methods can be divided into
two main categories, Krylov subspace methods and balanced truncation [29], both being
generalised coordinate methods. Here, the eigenmodes employed in CMS are exchanged
for Ritz basis vectors obtained from Krylov subspace projections. The Krylov subspace
is defined as

Kq (A,b) = span
{
b,Ab, ...,Aq−1b

}
, (5.19)

where A ∈ Rn×n is a constant matrix, b ∈ Rn×1 a constant vector and q a positive integer.
b can also be a block of vectors, in which case each Krylov projection generates a new
block of vectors. Since methods originating from control theory are ones developed for
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systems of an input-output form, the equation of motion is rewritten here as such a system
in the following form

Mü + Ku = Bx, (5.20)

y = CTu, (5.21)

where x = x (t) ∈ Rx×1 is the input vector, y = y (t) ∈ Ry×1 the output vector, B ∈ Rn×x

a matrix describing the spatial load distributions and C ∈ Rn×y a matrix relating the
state vector to the output vector. Laplace transformation of the input-output system
yields the transfer function G(s)

G (s) = CT
(
s2M + K

)−1
B. (5.22)

where s is a complex variable. Krylov subspace methods are based on so-called mo-
ment matching. The moments involved are defined as the coefficients of a Taylor series
expansion of G(s) around s = 0. It can be shown that the first q moments of the full sys-
tem and of a reduced system match if the reduced basis is selected as the Krylov subspace
generated by A = K−1M and b = K−1B [28]. In the present study it is required that the
reduction methods employed are structure-preserving, i.e. retains the physical dofs at the
interfaces. Accordingly, the approach of using Krylov subspace vectors in a component
mode synthesis manner, as described in [30, 31], here denoted KCMS, is adopted. Insert-
ing um = 0 and fs = Bsxs (6= 0) into Eq. (5.3) results in the following equation of motion
for the slave structure

Mssüs + Kssus = Bsxs. (5.23)

A Krylov subspace is generated for the slave structure by selecting A = K−1
ss Mss and

b = K−1
ss Bs:

Kq

(
K−1
ss Mss,K

−1
ss Bs

)
= span

K−1
ss Bs︸ ︷︷ ︸
V 1
k

,
(
K−1
ss Mss

)
K−1
ss Bs︸ ︷︷ ︸

V 2
k

, ...,
(
K−1
ss Mss

)q−1
K−1
ss Bs︸ ︷︷ ︸

V q
k

 ,

(5.24)
and the approximation of the slave dofs is given by

us = −K−1
ss Ksmum +

∑
V i

kξi = Ψum + Vkξ, (5.25)

one which is similar to that of CMS, shown in Eq. (5.17), but with the eigenmodes of the
slave structure exchanged for the Krylov subspace vectors as defined in Eq. (5.24). This
results in the transformation of the state vector[

um
us

]
=

[
I 0
Ψ Vk

] [
um
ξ

]
= TKCMS

[
um
ξ

]
, (5.26)
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defining the transformation matrix TKCMS. In order to avoid numerical issues, the Krylov
subspace is generated by using the Arnoldi algorithm with modified Gram-Schmidt orthog-
onalization [27], creating a set of linearly independent vectors. Calculating the starting
vector b of the Krylov subspace projections requires that Bs, describing the load distri-
bution on the slave structure, be selected. In the studies presented in this dissertation,
where a substructuring approach is adopted for the modelling of multi-storey buildings,
smaller parts of the buildings are considered as substructures. In most cases, these have
no loads that act upon the slave structure (fs = 0). Accordingly, a fictitious load needs
to be selected, a random distribution being used here.

Improved component mode synthesis [30]

The two component mode synthesis methods described above, CMS and KCMS, are ob-
tained by complementing Guyan reduction by a set of Ritz basis vectors for the slave
structure, these being either eigenmodes or Krylov subspace vectors. IRS can be seen as
representing an improvement as compared to Guyan reduction, an improvement that can
also be applied to the component mode synthesis methods employed here. The trans-
formation matrices of the improved component mode synthesis methods, improved CMS
(ICMS) and improved KCMS (IKCMS), can be obtained by simply replacing the basis
vectors of Guyan reduction by the basis vectors of IRS:

TICMS =
[
TIRS Φ̂

]
; Φ̂ =

[
0
Φ

]
, (5.27)

TIKCMS =
[
TIRS V̂k

]
; V̂k =

[
0

Vk

]
, (5.28)

where TIRS can be either the original form of IRS, Eq. (5.13), or its iterated version,
Eq. (5.15). The use of IRS instead of Guyan reduction can be expected to improve the
dynamic behaviour of the reduced models, at the expense of introducing errors in static
analyses.

5.1.3 Generalised methods

The generalised versions of the reduction methods (denoted here by a “g-” in the method
names) are obtained by re-formulating the equation of motion [32]. Instead of using
the block-partitioning of the system matrices in Eq. (5.3), the following partitioning is
employed

[
Mm Ms

] [üm
üs

]
+
[
Km Ks

] [um
us

]
=

[
fm
fs

]
, (5.29)

with the non-square submatrices Km,Mm ∈ Rn×m and Ks,Ms ∈ Rn×s. The generalised
methods incorporate more of the information in the stiffness matrix as compared to the
condensation methods presented in Section 5.1.1, which were derived from the partitioning
of the system matrices employed in Eq. (5.3). The efficiency of the methods is therefore
expected to improve by employing their generalised versions.
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Generalised Guyan reduction

In the same manner as in Eq. (5.4) and Eq. (5.5), the inertia terms in Eq. (5.29) are
neglected when solving for the slave dofs, resulting in the following transformation of the
state vector for generalised Guyan (g-Guyan) reduction[

um
us

]
=

[
I

−K+
s Km

]
um = Tg-Guyanum, (5.30)

where K+
s =

(
KT
s Ks

)−1
KT
s is the generalised left-inverse of Ks and Tg-Guyan is the trans-

formation matrix. Note that in the approximation of the slave dofs, it is assumed that
there are no loads that act on either the master dofs or the slave dofs (fm = 0 and fs = 0,
respectively, in contrast to the original Guyan reduction, in which only fs = 0 needs to
be assumed.

Generalised dynamic reduction

Through use of an approach corresponding to the derivation of g-Guyan reduction, the
transformation matrix of generalised dynamic (g-dynamic) reduction, Tg-Dynamic, can be
defined according to [

ûm
ûs

]
=

[
I

−D+
s Dm

]
ûm = Tg-Dynamicûm. (5.31)

Generalised IRS

The transformation matrix of generalised IRS (g-IRS) is obtained by including the inertia
terms found in Eq. (5.29) as pseudo-static forces, using approximations corresponding to
those employed in Eq. (5.10) and Eq. (5.11), resulting in

Tg-IRS = Tg-Guyan + ŜMTg-GuyanM
−1
g-GuyanKg-Guyan, (5.32)

Ŝ =

[
0

K+
s

]
, (5.33)

where MGuyan and KGuyan are the reduced stiffness- and mass matrices obtained by em-
ploying g-Guyan reduction. g-IRS can also be extended to produce an iterative scheme
in the same manner as in the original IRS, where the transformation matrix for the ith
iteration is given by

Tg-IRS,i+1 = Tg-Guyan + ŜMTg-IRS,iM
−1
g-IRS,iKg-IRS,i. (5.34)

and the iterations are started by calculating Tg-IRS,1 according to Eq. (5.32).

Generalised component mode synthesis

The generalised versions of Guyan reduction and IRS can be used to obtain the transfor-
mation matrices for the generalised versions of CMS, KCMS, ICMS and IKCMS (g-CMS,
g-KCMS, g-ICMS and g-IKCMS, respectively)
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Condensation methods
Method name Abbrevation
Guyan reduction –
Dynamic reduction –
Improved reduction system IRS
Generalised Guyan reduction g-Guyan reduction
Generalised dynamic reduction g-dynamic reduction
Generalised IRS g-IRS

Component mode synthesis methods
Method name Abbrevation
Component mode synthesis by Craig–Bampton CMS
Improved CMS ICMS
Krylov subspace component mode synthesis KCMS
Improved KCMS IKCMS
Generalised CMS g-CMS
Generalised ICMS g-ICMS
Generalised KCMS g-KCMS
Generalised IKCMS g-IKCMS

Table 5.1: The MOR methods presented and investigated in this chapter.

Tg-CMS =
[
Tg-Guyan Φ̂

]
, (5.35)

Tg-KCMS =
[
Tg-Guyan V̂k

]
, (5.36)

Tg-ICMS =
[
Tg-IRS Φ̂

]
, (5.37)

Tg-IKCMS =
[
Tg-IRS V̂k

]
, (5.38)

where Φ̂ and V̂k are defined in Eq. (5.27) and Eq. (5.28), respectively.

5.1.4 Summary of methods

In Table 5.1, the MOR methods that are presented above and investigated in the numerical
example are summarised.

5.2 Interface reduction

The reduced order models of substructures can be inefficient in case the number of interface
dofs is large. To improve the efficiency, interface reduction can be employed, resulting in
the coupling of substructures being realised at a reduced number of dofs. A frequently
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employed methodology for interface reduction involves the introduction of a condensation
node for each interface surface [18]. A condensation node has six dofs, three translational
and three rotational, and represents the motion of the complete interface surface it is
connected to. The coupling between two substructures is then realised by connecting
their condensation nodes.

There are two main types of coupling employed for the connection between a conden-
sation node and an interface surface: rigid coupling and distributed coupling. The former
is obtained by assuming a rigid body motion of the interface surface, the condensation
node following its motion. The latter distributes the forces and moments acting on the
condensation node to the nodes of the interface surface by certain weight factors, resulting
in the motion of the condensation node being a weighted average of the motion of the
interface dofs. The introduction of rigid body constraints results in an overestimation of
the stiffness whilst a distributed coupling can result in an underestimation.

5.2.1 Rigid coupling

By assuming rigid coupling between the interface surface and the condensation node,
the displacements of node i at the interface surface is, considering small displacements,
described by [33]:

ui = uc + Θc × rci, (5.39)

where uc and Θc are the displacements and rotations of the condensation node, respec-
tively, and rci is the vector from the condensation node to node i at the interface surface.

5.2.2 Distributed coupling

Distributed coupling is obtained by distributing the forces and moments acting on the
condensation node to the nodes of the interface surface according to [33]:

fi = ω̂i
(
fc +

(
T−1 (mc + rc × fc)

)
× ri

)
, (5.40)

T =
∑
i

ω̂i ((ri · ri) I− (riri)) , (5.41)

ri = xi − x̄, rc = xc − x̄, (5.42)

x̄ =
∑
i

ω̂ixi, ω̂i =
ωi∑
i ωi

, (5.43)

where fi is the force acting on node i of the interface surface, fc and mc are the force and
moment acting on the condensation node, xi and xc are the coordinates of node i and
the condensation node respectively and ωi is the weight factor assigned to node i. The
method of distributing the forces and moments results in the motion of the condensation
node being a weighted average of the displacements at the interface surface, given by
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uc =
∑
i

ω̂iui, (5.44)

Θc =
∑
i

ω̂i
rci

|rci|2
× ui. (5.45)

Since the weight factors can be selected arbitrarily, distributed coupling can be defined
in an infinite number of ways. Four methods for determining the weight factors are
presented below. The most straightforward method is uniform weighting, distributing
equal load to all nodes at the interface surface. The remaining three methods employ
decreasing weight at farther distance from the condensation node, using polynomials of
different degrees.

Uniform weighting

ωi = 1. (5.46)

Linearly decreasing weighting

ωi = 1−
∣∣∣∣ rcirc0

∣∣∣∣ , (5.47)

where rc0 is the vector from the condensation node to the most distant node of the interface
surface.

Quadratically decreasing weighting

ωi = 1−
∣∣∣∣ rcirc0

∣∣∣∣2 . (5.48)

Cubically decreasing weighting

ωi = 1− 3

∣∣∣∣ rcirc0

∣∣∣∣2 + 2

∣∣∣∣ rcirc0

∣∣∣∣3 . (5.49)

5.3 Numerical example

A numerical example is presented here to demonstrate some characteristics of the differ-
ent MOR methods and interface reduction methods. An FE model of a wooden beam,
modelled with three-dimensional solid elements, employing quadratic interpolation, was
studied. The mesh, shown in Figure 5.2, consisted of 2,476 nodes, resulting in 8,238 dofs.
An orthotropic material model was used for the wood, having the properties shown in
Table 5.2. The 4 m long beam had a cross-section of 45 × 220 mm2 and was divided
into two equally large substructures. The substructures division is shown in Figure 5.2,
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Figure 5.2: The model of the wooden beam studied in the numerical example; the mesh
employed (above) and the division into substructures (below).

E1 E2 E3 G12 G13 G23 ν12 ν13 ν23 ρ

8500 350 350 700 700 50 0.2 0.2 0.3 432

Table 5.2: The material parameters used for the wooden beam [9], the stiffness parameters
(E,G) being given in terms of MPa and the density (ρ) in kg/m3.

illustrating the 93 interface nodes of each interface surface with black crosses. Cantilever
boundary conditions were applied, the one end of the beam being fixed, the other end
being free.

First, the MOR methods and interface reduction methods were investigated separately,
employing one type of reduction at a time. Subsequently, the most efficient methods for
both types of reduction were employed simultaneously, as it will be for the substructure
models of multi-storey wood buildings.

The accuracy of the reduced models was compared by studying the eigenfrequencies
of the beam as well as the steady-state response to harmonic loading. The load in the
steady-state analyses was distributed equally over all nodes at the free end of the beam,
a vertical unit load being applied in each node.

The eigenfrequencies were compared using the normalised relative frequency difference
(NRFD), defined, for the ith eigenfrequency, as

37



NRFD =

∣∣∣f redi − f fulli

∣∣∣
f fulli

· 100, (5.50)

where f fulli and f redi are the eigenfrequencies of the full model and a reduced model, re-
spectively. The quotient is multiplied by 100 to obtain the NRFD value as a percentage.
The analyses were restricted to frequencies below 200 Hz, resulting in the 12 eigenfre-
quencies of the full model below 200 Hz being included in the results and compared to
the 12 first eigenfrequencies of the reduced models (possibly at frequencies over 200 Hz).

The steady-state analyses were evaluated by studying the magnitude of the complex
vertical displacements in the node at the middle of the free end of the beam. A normalised
error was, for each reduced model, calculated according to

uerror(ω) =
|ured(ω)− ufull(ω)|

ufull(ω)
· 100, (5.51)

where ufull and ured are the magnitude of the complex displacement amplitudes for the
full model and the reduced model, respectively. Calculating the error for a number of
harmonic excitation frequencies enables an error spectrum to be obtained. Since the error
spectra typically fluctuate to a marked degree, the result plots used for comparing the
different reduced models make use of averaged error spectra. The errors were averaged by
sweeping a 10 Hz wide window over the frequency range and calculating the mean value
of the spectrum inside the window for each point in the frequency range. Frequencies up
to 200 Hz were analysed in steps of 2 Hz.

The green, yellow and red dashed lines in the result plots (cf. Figure 5.3–5.15) represent
the levels of error 0.1 %, 1 % and 10 %, respectively.

5.3.1 Model order reduction

In the MOR carried out, all dofs at the interface surfaces connecting the two substruc-
tures were retained as physical dofs in the reduced models, no interface reduction being
employed. In addition, the dofs of the 93 nodes at the free end of the beam were retained
in the reduced models, resulting in a total of 93 × 3 × 3 = 837 retained physical dofs.
The reduced models created by employing the eight different component mode synthesis
methods included 10 generalised coordinates per substructure, resulting in the models
having a total of 847 dofs.

In the comparisons of the different methods, it is not only the accuracy of the reduced
models which is of interest, but also the extent to which the computation time is reduced.
The computation times for the models obtained by employing the different MOR methods
were, however, very similar. This is a consequence of the reduced models having similar
sizes and the band width of the system matrices being very large for all reduced mod-
els. The computation times for the reduced models were approximately 2 % of the time
required for the analyses of the full model.
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Condensation methods

The three condensation methods, namely Guyan reduction, dynamic reduction and IRS,
were investigated first, employing them in their oridinal versions as described in Sec-
tion 5.1.1. The dynamic reduction involved a frequency shift of 90.173 Hz, this being the
eigenfrequency of the full model closest to 100 Hz, the centre of the frequency range. IRS
was employed in its iterated version, using three iterations.

The eigenfrequencies obtained when employing the condensation methods are shown
in Table 5.3 and the NRFD values are shown in Figure 5.3. For the Guyan reduction, only
the lowest eigenfrequencies of the full model were approximated with an acceptable level
of accuracy. The NRFD values obtained for dynamic reduction indicate poor accuracy for
all eigenfrequencies, a result which is misguiding as a change in order of the eigenmodes
has occurred. The third eigenmode obtained with dynamic reduction approximates the
sixth eigenmode of the full model with very good precision, a consequence of the fre-
quency shift being 90.173 Hz. The accuracy of dynamic reduction was, however, poor
for the remaining eigenfrequencies. Iterated IRS proved to be a more reliable method,
yielding errors between 1-10 % for most eigenfrequencies, an illustration of the previously
mentioned fact that iterated IRS converges to reproduce the eigenfrequencies of the full
model exactly.

In Figure 5.4, the errors obtained in the steady-state analysis are shown. In agree-
ment with the results of the eigenvalue analysis, Guyan reduction was found to produce
acceptable levels of error only at frequencies close to the lowest eigenfrequencies, the levels
of error converging to zero as the frequency goes to zero. The frequency shift employed
in the dynamic reduction is manifested in the results, a distinct minimum in the level of
error being observed at 90 Hz, while large errors were obtained in the rest of the frequency
range. High levels of error were obtained for IRS as well, in particular at the middle of the
frequency range. IRS was, however, the condensation method yielding the most accurate
results at higher frequencies.

Component mode synthesis methods

The four variants of component mode synthesis presented in Section 5.1.2, namely CMS,
KCMS, ICMS and IKCMS, were investigated next. The eigenfrequencies obtained when
employing the methods are shown in Table 5.4 and the NRFD values are shown in Fig-
ure 5.5. In general, the accuracy in eigenfrequencies was significantly improved when em-
ploying the component mode synthesis methods as compared to the condensation methods,
although they add only 10 generalised coordinates to each of the substructures, taking
the total number of dofs in the reduced systems from 837 to 857. The accuracy of CMS
and KCMS was high at the lower eigenfrequencies, as compared to ICMS and IKCMS.
This can be explained by the two former methods having Guyan reduction as conden-
sation method and the two latter having IRS, similar observations being made for those
methods. At higher eigenfrequencies, the accuracy of the four component mode synthesis
methods was similar with CMS producing the lowest levels of error.
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Full model
Guyan- Dynamic-

IRS
reduction reduction

2.0148 2.0674 60.987 2.6060
9.9828 10.261 68.099 10.216
12.598 16.900 90.173 13.991
29.918 32.716 118.43 30.225
35.150 78.906 169.10 35.217
59.363 261.57 214.08 65.849
68.531 305.70 300.56 76.774
90.173 862.95 901.63 91.542
112.57 1710.7 1684.3 126.54
151.67 2482.9 2556.6 154.99
154.52 2574.1 2573.0 155.85
166.90 2711.8 2915.7 227.73

Table 5.3: Eigenfrequencies (Hz) obtained for the condensation methods applied to the
numerical example.
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Figure 5.3: NRFD values for the condensation methods applied to the numerical example.
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Figure 5.4: Errors in the steady-state analysis of the numerical example when employing
the condensation methods.
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Full model CMS KCMS ICMS IKCMS

2.0148 2.0148 2.0148 2.4382 2.4382
9.9828 9.9829 9.9829 9.9948 9.9936
12.598 12.598 12.598 12.948 12.948
29.918 29.920 29.934 30.100 30.125
35.150 35.150 35.150 35.152 35.152
59.363 59.411 59.442 59.533 59.501
68.531 68.552 68.577 68.606 68.610
90.173 90.211 90.663 90.520 90.748
112.57 112.58 112.60 112.58 112.58
151.67 151.86 154.63 152.40 153.48
154.52 154.61 164.10 154.63 154.62
166.90 167.22 167.67 167.07 167.17

Table 5.4: Eigenfrequencies (Hz) obtained for the component mode synthesis methods
applied to the numerical example.
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Figure 5.5: NRFD values for the component mode synthesis methods applied to the
numerical example.

0 20 40 60 80 100 120 140 160 180 200

10
−2

10
0

10
2

Frequency [Hz]

u er
ro

r [%
]

 

 

CMS
ICMS
KCMS
IKCMS

Figure 5.6: Errors in the steady-state analysis of the numerical example when employing
the component mode synthesis methods.
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In Figure 5.6, the errors obtained in the steady-state analyses are shown. It can
be observed, by comparing the errors to those of the condensation methods, shown in
Figure 5.4, that the results of ICMS and IKCMS are strongly correlated to those of IRS,
all three methods resulting in large errors at lower frequencies and more accurate results
at higher frequencies. It was only for the highest frequencies that the improved variants
of the component mode synthesis methods offered an actual improvement. Among the
different methods, CMS provided the most accurate results.

It should be noted that the results obtained by employing KCMS and IKCMS varies
for different reduced systems constructed with the same method as the additional Ritz
basis vectors are calculated for a random load distribution at the slave dofs. The variance
in results due to the random distribution is, however, expected to be low in the numerical
example since the number of slave dofs is relatively large.

Generalised methods

Next, all of the condensation methods and component mode synthesis methods were inves-
tigated in their generalised versions. The eigenfrequencies obtained are shown in Table 5.5
and Table 5.6, respectively, and the NRFD values in Figure 5.7 and Figure 5.9, respec-
tively. For Guyan reduction and dynamic reduction, there was an overall improvement
in accuracy when employed in their generalised versions, the exception being the low-
est eigenfrequencies for Guyan reduction. g-IRS, however, did not offer an improvement
compared to IRS, the two methods producing very similar results. Due to the decreased
accuracy for the lowest eigenfrequencies when employing Guyan reduction in its gener-
alised version, the same applies for CMS and KCMS, while the accuracy was similar
between the original and generalised versions for the higher eigenfrequencies. Moreover,
it can be observed that the errors obtained for ICMS and IKCMS were nearly unaffected
by employing the methods in their generalised versions, an observation to be expected as
the same was observed for IRS, utilised as condensation method in KCMS and IKCMS.

In Figure 5.8 and Figure 5.10, the levels of error obtained in the steady-state analyses
are shown. It can be observed that the levels of error obtained for the generalised version
of Guyan reduction do not converge to zero as the frequency goes to zero. Similarly, the
levels of error obtained for the generalised version of dynamic reduction do not display a
local minimum around the frequency shift of 90.173 Hz. For most frequencies, however,
g-Guyan reduction and g-dynamic reduction improved the levels of error compared to
their original versions. IRS and g-IRS, however, provided very similar levels of error.
The errors obtained when employing g-CMS and g-KCMS were increased, as compared
to CMS and KCMS, for lower frequencies.

Although the difference in accuracy between the condensation methods and the com-
ponent mode synthesis methods was reduced when employing the methods in their gen-
eralised versions, the component mode synthesis methods were, in general, still more
accurate.
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Full model
g-Guyan- g-Dynamic-

g-IRS
reduction reduction

2.0148 2.0310 12.767 2.0412
9.9828 10.133 25.086 10.072
12.598 13.118 36.387 13.664
29.918 29.979 50.536 30.214
35.150 35.176 63.363 35.174
59.363 63.420 71.296 61.644
68.531 72.476 90.383 74.815
90.173 90.949 112.89 91.246
112.57 134.19 138.73 128.05
151.67 155.52 154.03 155.12
154.52 165.81 155.11 160.76
166.90 263.69 217.22 224.17

Table 5.5: Eigenfrequencies (Hz) obtained for the generalised condensation methods ap-
plied to the numerical example.
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Figure 5.7: NRFD values for the generalised condensation methods applied to the numer-
ical example.
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Figure 5.8: Errors in the steady-state analysis of the numerical example when employing
the generalised condensation methods.
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Full model g-CMS g-KCMS g-ICMS g-IKCMS

2.0148 2.0149 2.0149 2.0151 2.0175
9.9828 9.9891 9.9887 9.9941 9.9921
12.598 12.602 12.602 12.600 12.603
29.918 29.964 29.965 30.126 30.268
35.150 35.154 35.154 35.152 35.154
59.363 59.466 59.455 59.482 59.474
68.531 68.548 68.554 68.545 68.553
90.173 90.313 90.634 90.670 91.133
112.57 112.58 112.58 112.57 112.58
151.67 151.98 154.60 152.88 153.99
154.52 154.62 158.02 154.74 154.72
166.90 167.10 167.21 167.03 167.15

Table 5.6: Eigenfrequencies (Hz) obtained for the generalised component mode synthesis
methods applied to the numerical example.
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Figure 5.9: NRFD values for the generalised component mode synthesis methods applied
to the numerical example.
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Figure 5.10: Errors in the steady-state analysis of the numerical example when employing
the generalised component mode synthesis methods.
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Figure 5.11: Coupling between a condensation node and the nodes located at an interface
surface in the numerical example.

5.3.2 Interface reduction

The coupling between a condensation node and nodes of an interface surface is shown in
Figure 5.11. All three interface surfaces, illustrated with the black crosses in Figure 5.2,
were coupled to condensation nodes. At the free end of the beam, uniform weighting was
employed since the load applied in the steady-state analyses was distributed equally over
the nodes of the surface. Hence, the interface reduction at the free end does not introduce
any errors for this load distribution. At the surfaces coupling the two substructures, rigid
coupling and distributed coupling in its four versions were employed and compared. In
each analysis, the same type of coupling was used for the two interface surfaces.

The eigenfrequencies obtained when employing the different methods for interface
reduction are shown in Table 5.4 and the NRFD values are shown in Figure 5.5. Rigid
coupling was the method resulting in the most accurate eigenfrequencies. At certain eigen-
frequencies, however, the NRFD value is high also when employing rigid coupling, these
being the eigenfrequencies having torsional eigenmodes. Compared to bending modes, the
torsional eigenmodes involve larger deformations of the cross-section, these deformations
being constrained at the interface surfaces when employing rigid coupling. As expected,
the additional stiffness introduced in the system by a rigid coupling resulted in an overesti-
mation of the eigenfrequencies. The opposite applied for the different types of distributed
coupling, which resulted in an underestimation of the eigenfrequencies that in general
increased when rising the degree of the weighting polynomial, cubic weighting providing
in the least accurate results.

In Figure 5.13, the errors obtained in the steady-state analyses are shown. It is evident
that rigid coupling provided the most accurate results, the levels of error being below 1.5 %
for all frequencies. The different types of distributed coupling resulted in high levels of
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Full Rigid Uniform Linear Quadratic Cubic
model coupling weighting weighting weighting weighting

2.0148 2.0149 2.0109 2.0048 2.0073 2.0007
9.9828 9.9835 9.9444 9.8768 9.9005 9.7912
12.598 12.600 12.492 12.333 12.399 12.230
29.918 30.714 29.424 29.100 29.138 28.953
35.150 35.151 35.146 35.118 35.128 35.105
59.363 59.366 58.503 56.902 57.418 55.159
68.531 68.538 67.984 67.178 67.508 66.674
90.173 92.192 88.892 88.091 88.187 87.722
112.57 112.58 112.53 112.26 112.36 112.13
151.67 154.65 148.91 147.25 147.45 146.48
154.52 156.35 154.08 154.34 154.38 154.21
166.90 166.91 165.62 163.78 164.52 162.66

Table 5.7: Eigenfrequencies (Hz) obtained for the different interface reduction methods
applied to the numerical example.
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Figure 5.12: NRFD values obtained for the different interface reduction methods applied
to the numerical example.
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Figure 5.13: Errors in the steady-state analysis of the numerical example when employing
the different interface reduction methods.
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error with cubic weighting being the least accurate method. The accuracy of rigid coupling
would be likely to decrease when applying a load causing torsional deformations of the
beam.

In the numerical example, the two connecting interfaces are equally stiff. In case an
interface surface, however, is much stiffer than the surface it is connected to, a distributed
coupling is likely provide more accurate results for the stiffer surface than a rigid coupling
would do. A rigid coupling is fully accurate in case the other surface is infinitely stiff, but
can lead to large errors in case the other surface has a much lower stiffness.

5.3.3 Combining model order reduction and interface re-
duction

Finally, MOR was employed for a model with reduced interfaces. The MOR method and
interface reduction method found to be most accurate in Sections 5.3.1 and 5.3.2, CMS
and rigid coupling, respectively, were used. The number of eigenmodes retained in the
CMS reduction was varied, the smallest system retaining 10 eigenmodes in each of the two
substructures, the same number of eigenmodes as the model reduced by employing CMS
without interface reduction, investigated in Section 5.3.1. Moreover, a model retaining 100
eigenmodes in each of the two substructures was investigated, as well as a model retaining
273 eigenmodes in the substructure containing the fixed end and 546 eigenmodes in the
other, resulting in a total of 837 dofs, the same number of dofs as in the model reduced
by employing the condensation methods without interface reduction. The computation
time of the model retaining 10 eigenmodes in each substructure was approximately 0.2 %
of the time required for the analysis of the full model.

The eigenfrequencies obtained when employing MOR in combination with interface
reduction are shown in Table 5.8 and the NRFD values are shown in Figure 5.14. The
model with 10 eigenmodes retained in each substructure, containing as few as 38 dofs
in total, resulted in the levels of error being relatively low as compared with, for exam-
ple, the model created by employing Guyan reduction without interface reduction, see
Figure 5.3. The model retaining 100 eigenmodes in each substructure resulted in eigen-
frequencies similar to those obtained when employing rigid coupling without MOR, see
Figure 5.12, indicating that it is sufficient to retain 100 eigenmodes in each substructure.
This observation is enhanced by the fact that the retaining of 273 and 546 eigenmodes in
the two substructures, respectively, resulted in very similar eigenfrequencies as well. The
additional retained eigenmodes did, therefore, not affect the dynamic characteristics of
the reduced model.

In Figure 5.15, the levels of error obtained in the steady-state analyses are shown. The
model retaining 10 eigenmodes provided relatively accurate results also in this analysis
as compared to many of the models investigated in Section 5.3.1, which contained far
more dofs. The two remaining models provided very similar levels of error, confirming the
conclusion that the retaining of more than 100 eigenmodes in each substructure does not
improve the accuracy.
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Full CMS: 2×10 CMS: 2×100 CMS: 273+546
model retain. eig. retain. eig. retain. eig.

2.0148 2.0149 2.0149 2.0149
9.9828 9.9836 9.9835 9.9835
12.598 12.600 12.600 12.600
29.918 30.719 30.717 30.717
35.150 35.152 35.151 35.151
59.363 59.389 59.366 59.366
68.531 68.580 68.538 68.538
90.173 92.315 92.289 92.289
112.57 112.65 112.58 112.58
151.67 154.82 154.65 154.65
154.52 156.78 156.69 156.69
166.90 167.26 166.92 166.91

Table 5.8: Eigenfrequencies (Hz) obtained when employing both interface reduction and
MOR in the numerical example.
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Figure 5.14: NRFD values obtained when employing both interface reduction and MOR
in the numerical example.
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Figure 5.15: Errors in the steady-state analysis of the numerical example when employing
both interface reduction and MOR in the numerical example.
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5.3.4 Conclusions

The numerical example illustrated the limitations of Guyan reduction and dynamic re-
duction, the methods being reliable only close to their frequency shifts, namely 0 Hz in
the Guyan reduction and 90.173 Hz in the dynamic reduction. In situations where an FE
model is exposed to loads with narrow frequency content, dynamic reduction can, how-
ever, be a suitable alternative as it provides fully accurate results for steady-state analyses
at its frequency shift. IRS provided relatively accurate results in terms of eigenfrequen-
cies, but resulted in higher levels of error in the steady-state analysis. This illustrates the
importance of exposing the reduced models to realistic loads and boundary conditions,
and not only performing free-free eigenvalue analyses, when comparing different MOR
methods.

To obtain an, in general, more accurate reduced order model, one of the component
mode synthesis methods can be employed. CMS proved to be the method most accurate
method in the numerical example, providing a significantly increased precision compared
to Guyan reduction while increasing the size of the reduced system by no more than a few
percent through the inclusion of a set of 10 additional Ritz basis vectors in each of the
two substructures. This demonstrates the efficiency of CMS, the method most frequently
employed among structural and mechanical engineers.

The use of KCMS resulted in acceptable levels of error for most frequencies, but was
less accurate compared to CMS. KCMS can, however, be the most suitable method in
situations where it is important to construct the reduced model in an efficient manner,
avoiding the eigenvalue extraction carried out when employing CMS. The possible loss in
accuracy of the reduced model can in such cases be compensated for by increasing the
number of Krylov basis vectors included in the reduced model. Model order reduction
always involves a consideration regarding the number of Ritz basis vectors to include,
weighing the accuracy of the reduced model to its computational cost. Moreover, the
Krylov subspace methods cannot be used to their full potential in the substructure mod-
elling employed here as the aim is to establish models valid for general load-cases. The
basis vectors in Krylov subspace methods are constructed by considering the load distri-
bution on the structure, an advantage compared to other methods. The KCMS method
presented in this chapter, however, uses a random load distribution for this, aiming at
constructing reduced order models that perform well for varying load cases.

In the case of the numerical example, the name improved component mode synthe-
sis methods proved to be misleading, these methods being less accurate compared to
conventional CMS and KCMS.

Employing the generalised versions of Guyan reduction and dynamic reduction im-
proved their accuracy significantly. The generalised formulation of the component mode
synthesis methods did, however, not offer any considerable improvements and led to in-
creased levels of error in the case of CMS. Overall, the results were more homogeneous
among the condensation methods and component mode synthesis methods, respectively,
when employed in their generalised versions.

Rigid coupling was the most accurate method for interface reduction, resulting in the
lowest levels of error considering both eigenfrequencies and steady-state response. The
distributed coupling methods displayed increasing levels of error for an increasing degree of

49



the weighting polynomial. The accuracy of the different methods are, however, dependent
on the type of deformation the interface surface is exposed to, rigid coupling resulting in
larger errors for the eigenmodes with torsional deformations in the numerical example.

The efficiency of models created by combining MOR and interface reduction (employ-
ing CMS and rigid coupling, respectively) was demonstrated, the resulting errors being
kept at relatively low levels as compared to models created by employing either of the
reductions. The size of the reduced systems was decreased substantially, the smallest
model containing only 38 dofs, reducing the computation time to approximately 0.2 %
of the time required for analysis of the full model, while resulting in low errors. The
combination of MOR and interface reduction will be of great importance in the modelling
of multi-storey wood buildings, resulting in reduced models of small size that are able to
preserve the dynamic characteristics of the full model.
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6 Summary of appended papers

6.1 Paper A

The effect of modelling acoustic media in cavities of lightweight building structures on
the transmission of structural vibrations

O. Flodén, J. Negreira, K. Persson, G. Sandberg.

Submitted for publication.

Summary

It was investigated here if modelling air and insulation inside cavities of multi-storey
wood buildings affects the transmission of low-frequency structural vibrations and, hence,
has to be considered when performing numerical analyses. Two numerical examples,
both being FE models of TVEs, were employed. The vibration transmission from loads
acting on floor structures to surrounding panels was investigated for different models of
air and insulation inside the cavities. Models including both air and insulation as acoustic
media were compared to models including air alone and models including neither air nor
insulation.

It was concluded that air and insulation inside cavities affect the vibration transmission
and, to some extent, has to be considered in numerical models for vibration analyses of
multi-storey wood buildings.

Contributions by O. Flodén

O. Flodén contributed to the work by being the main author of the paper and planning
research tasks. He created FE models, performed calculations and drew conclusions that
were presented.

6.2 Paper B

Reduction methods for the dynamic analysis of substructure models of lightweight building
structures

O. Flodén, K. Persson, G. Sandberg.

Submitted for publication.
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Summary

Different MOR methods were compared here in terms of their effects on the dynamic char-
acteristics of FE models of wooden building structures in order to analyse their efficiency
when employed in substructure modelling of multi-storey wood buildings. A wide variety
of reduction methods were employed and compared in two numerical examples, both be-
ing models of wooden floor structures. The reduced models were compared in terms of
eigenfrequencies and eigenmodes as well as the vibrations transmitted in the floors when
exposing them to realistic boundary conditions, achieved by coupling the reduced models
of the floor structures to models of wood-framed wall panels.

Conclusions were drawn regarding the relative efficiency of the reduction methods, the
frequently employed method of CMS by Craig–Bampton providing good results. More-
over, the need for realistic boundary conditions and load cases when comparing the re-
duced order models was pointed out, concluding that free-free eigenvalue analyses of the
models is insufficient.

Contributions by O. Flodén

O. Flodén contributed to the work by being the main author of the paper and writing it,
as well planning the research tasks. He developed the FE models, implemented the MOR
methods employed, performed the calculations and drew conclusions that were presented.

6.3 Paper C

Coupling elements for substructure modelling of lightweight multi-storey buildings

O. Flodén, K. Persson, G. Sandberg.

Accepted for the proceedings of IMAC XXXII, Orlando, USA, February 2014.

Summary

Different methods for reducing the interfaces between elastomer layers and wooden build-
ing structures were investigated here in order to analyse their efficiency when employed in
substructure modelling of multi-storey wood buildings. The methodology of introducing
condensation nodes was employed, involving different methods for coupling the conden-
sation nodes to the interface surfaces of elastomer layers and wooden building structures.
The methods were compared for a test model consisting of a floor-ceiling structure in
wood, having the floor and the ceiling separated by elastomer blocks.

It was concluded that a rigid coupling is the most accurate method for the interface
surfaces of elastomer blocks, while a distributed coupling is the most accurate method for
the interfaces of wooden building structures.

Contributions by O. Flodén

O. Flodén contributed to the work by being the main author of the paper and writing it, as
well planning the research tasks. He developed the FE models, performed the calculations
and drew conclusions that were presented.
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7 Concluding remarks

Numerical modelling of vibrations in multi-storey wood buildings requires the use of mod-
els representing the geometry involved in great detail, resulting in large models and, con-
sequently, long computation times. It is, therefore, important to include only the relevant
information and no more than a sufficient level of details in the models by considering,
for example, to which extent the air and insulation inside cavities has to be included.
Moreover, it is necessary to reduce the size of the resulting models to improve their com-
putational efficiency, the methodology of substructuring being introduced for this purpose.
Different MOR methods and interface reduction can be employed in substructure mod-
elling, resulting in reduced models representing the dynamic characteristics of the full
model with varying accuracy.

7.1 Conclusions

The acoustic media, air and insulation, in cavities of multi-storey wood buildings was
found to affect the vibration transmission. It was observed that the vibrations in the
ceiling and walls of a TVE, originating from a load acting on the floor structure of the
TVE above, were affected by modelling the acoustic media inside the cavity between
the floor and the ceiling and in the cavities in the surrounding walls. Including only
air as acoustic media resulted in a more resonant system while the inclusion of both air
and insulation introduced a dampening effect, particularly at higher frequencies. It was
observed, for frequencies above 100 Hz, that modelling both air and insulation inside the
wall cavities had no effect on the vibration transmission from the floor to the wall panels
of the storey below. It is, therefore, sufficient to include acoustic media only in the cavity
between the floor and the ceiling for higher frequencies. In such situations, it can be
preferable to use different models for different frequency ranges. At higher frequencies,
less acoustic media has to be included in the model while a finer mesh is required for
resolving the wavelengths. At lower frequencies, more acoustic media have to be included
whilst a coarser mesh can be adopted.

In the comparison of the different MOR methods, employed for substructures of multi-
storey wood buildings, the condensation methods Guyan reduction and dynamic reduction
proved to be insufficient. More accurate reduced models can be obtained by employing one
of the component mode synthesis methods investigated, the frequently employed method
by Craig–Bampton as well as the Krylov subspace based KCMS providing good results.
Moreover, the need for realistic boundary conditions and load cases when comparing
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the reduced models was pointed out, concluding that free-free eigenvalue analyses of the
models is insufficient.

In the reduction of interfaces between wooden building structures and elastomer blocks,
different methods for coupling the interfaces to condensation nodes was found to be most
accurate for the wooden structures and the elastomer blocks. The interior of an elastomer
block undergoes large deformations compared to its interface surfaces as the interfaces are
coupled to the stiffer wooden structures, resulting in a rigid coupling providing the most
accurate results for the elastomer blocks. For the wooden structures, however, uniformly
distributed coupling provided the most accurate results. This can be explained by the
fact that no considerable constraints are imposed on the deformation of their interface
surfaces by the softer elastomer blocks they are coupled to.

7.2 Proposals for future work

In the modelling of insulation inside cavities, different porous material models were inves-
tigated. These are, however, only a few of many methods available in the literature. As
it was concluded that acoustic media has to be considered inside cavities of lightweight
buildings, it should be validated that the insulation is modelled in an accurate manner.

It was observed that the effect of including acoustic media inside cavities of wooden
buildings was decreasing at further distances from the load. A future development is to
investigate how far from the load the acoustic media has to be considered in order to
avoid models including an excessive amount of acoustic media.

The comparisons of the different methods for MOR and interface reduction have pro-
vided knowledge concerning their relative efficiency when employed for models of wooden
building structures. The aim is to utilise this knowledge in establishing a framework for
constructing computationally efficient models of multi-storey wood buildings. Initially,
substructure models reduced by employing both MOR and interface reduction can be
investigated. Subsequently, the assembling of the substructures to form reduced models
of entire buildings can be studied.

Once a framework for establishing the models is created, the models have to be vali-
dated to measurements on real buildings. This is the most challenging task in the process
of obtaining reliable prediction tools. Ideally, the models of entire buildings will represent
the dynamic characteristics of real buildings, a first step in achieving this being to validate
the model of each substructure, such as, floors, walls and TVEs.

As air and insulation inside cavities of wooden buildings has to be considered in the
models, it has to be involved in the substructure framework as well. The global FE model
should, however, not be divided into substructures so that they have acoustic media at
the interface surfaces as this results in very large interfaces, destroying the efficiency of
the model order reduction. Consequently, the acoustic media has to be included inside
the substructures, requiring an alternative division of TVE buildings into substructures,
no longer considering each TVE as a substructure. Depending on the extent to which the
acoustic media has to be considered, the substructures including acoustic media can be
included locally in a model of an entire building in the parts of the building where it is
required.
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– Underlag för en nationell strategi att främja användning av trä i byggande, Ds
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[8] Ågren A. Acoustic highlights in Nordic light weight building tradition – Focus on
ongoing development in Swedish. Proc of BNAM, Bergen, Norway, 2010.

[9] Flodén O., Ejenstam J., Vibration analyses of a wooden floor-wall structure – Ex-
perimental and finite element studies. Masters dissertation, Division of Structural
Mechanics, Lund University, Sweden, 2011.

[10] Negreira J. Vibrations in lightweight buildings – Perception and prediction. Licentiate
dissertation, Division of Engineering Acoustics, Lund University, Sweden, 2013.

[11] Bathe K.J. Finite element procedures. Prentice Hall, New York, 1996.

55



[12] Ottosen N., Petersson H. Introduction to the finite element method. Pearson Educa-
tion Ltd., Harlow, United Kingdom, 1992.

[13] Holzapfel G.A. Nonlinear solid mechanics: a continuum approach for engineering.
John Wiley & Sons Ltd., Chichester, United Kingdom, 2000.

[14] Sandberg G. Finite element modelling of fluid-structure interaction. PhD thesis, Di-
vision of Structural Mechanics, Lund University, Sweden, 1986.

[15] Craig R.R. Structural dynamics – An introduction to computer methods. John Wiley
& sons Inc., New York, 1981.

[16] Chopra A.K. Dynamics of structures: theory and application to earthquake engineer-
ing 3d ed. Prentice Hall, New Jersey, 2007.

[17] de Klerk D., Rixen D.J., Voormeeren S.N. General framework for dynamic substruc-
turing: history, review and classification of techniques. AIAA J, 2008;46(5):1169–
1181.

[18] Heirman G.H.K., Desmet W. Interface reduction of flexible bodies for efficient model-
ing of body flexibility in multibody dynamics. Multibody Syst Dyn, 2010;24(2):219–
234.

[19] Guyan R.J. Reduction of stiffness and mass matrices. AIAA J 1965;3:380.

[20] Bouhaddi N., Fillod R. A method for selecting master dof in dynamic substructuring
using the Guyan condensation method. Comput Struct, 1992;45(5):941–946.

[21] Shah V., Raymund M. Analytical selection of masters for the reduced eigenvalue
problem. Int J Numer Methods Eng, 1982;18(1):89–98.

[22] Leung A.Y.T. An accurate method of dynamic condensation in structural analysis,
Int J Numer Methods Eng, 1978;12:1705–1715.

[23] O’Callahan J. A procedure for an improved reduced system (IRS) model. Proc 7th
Int Modal Anal Conf, 1989;17–21.

[24] Friswell M.I., Garvey S.D., Penny J.E.T. Model reduction using dynamic and iterated
IRS techniques. J Sound Vib, 1995;186:311–323.

[25] O’Callahan J., Avitabile P., Riemer R. System equivalent reduction expansion process
(SEREP). Proc 7th Int Modal Anal Conf, 1989;29–37.

[26] Craig R.R., Bampton M. Coupling of substructures in dynamic analysis. AIAA J,
1968;6:1313–1319.

[27] Lohmann B., Salimbahrami B. Introduction to Krylov subspace methods in model
order reduction. Methods Appl Autom, 2003;1–13.

[28] Salimbahrami B., Lohmann B. Order reduction of large scale second-order systems
using Krylov subspace methods. Linear Algebra Appl, 2006;415(2):385–405.

56



[29] Reis T., Stykel T. Balanced truncation model reduction of second-order systems.
Math Comput Model Dyn Syst, 2008;14(5):391–406.

[30] Koutsovasilis P., Beitelschmidt M. Model order reduction of finite element models:
improved component mode synthesis. Math Comput Model Dyn Syst, 2010;16(1):57–
73.

[31] Häggblad B., Eriksson L. Model reduction methods for dynamic analyses of large
structures. Comput Struct, 1993;47(4):735–749.

[32] Koutsovasilis P. Improved component mode synthesis and variants. Multibody Syst
Dyn, 2013;29(4):343–359.
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Abstract
Determining the dynamic behaviour of lightweight buildings by means of finite element analy-
ses requires models representing the geometry involved in great detail, this resulting in systems
having many millions of degrees of freedom. It is, therefore, important to avoid unnecessarily
detailed models by carefully considering what is necessary to include in the models, and the
level of details required for describing the phenomena of interest accurately. In the study pre-
sented here, it was investigated whether or not air and insulation inside cavities of multi-storey
wood buildings affect the transmission of low-frequency structural vibrations. It was concluded
from the numerical studies carried out that including air and insulation inside cavities, modelled
as acoustic media, affects the transmission from a floor to the underlying ceiling and surround-
ing walls.

Keywords: Air inclusion; Porous materials; Vibration transmission; Lightweight buildings;
Finite element method

1 Introduction
In 1994, a century-old ban on the construction of wooden buildings more than two storeys in
height in Sweden was lifted, leading to the reintroduction of such structures. It is difficult to
construct multi-storey wood buildings in such a way that noise and disturbing vibrations in
the different storeys and rooms are avoided, this being one of the major drawbacks of such
buildings. The vibrations can be caused by, for example, footsteps, airborne sound, vibrating
machines and external sources such as railway and road traffic. To design buildings of high
performance regarding vibrations and structure-borne sound, it is desirable to have tools for
predicting the effects of structural modifications prior to construction. Testing prototypes and
performing experiments is both time-consuming and expensive, the long-term aim therefore
being to develop prediction tools making use of finite element (FE) models that are valid for
general load-cases.
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Accurately assessing the dynamic behaviour of multi-storey lightweight buildings, even at
lower frequencies, requires FE models representing the geometry in considerable detail, result-
ing in the models being very large. The number of degrees of freedom of such models easily
exceeds the limits of computer capacity, at least for computations to be performed within rea-
sonable lengths of time. It is, therefore, important to avoid unnecessarily detailed models by
carefully considering what is necessary to include in the models, and the level of details required
for describing the phenomena of interest accurately. The issue considered here is whether or
not air and insulation inside cavities of multi-storey wood buildings affect the transmission of
low-frequency structural vibrations.

The acoustic pressure field in a room can interact with the vibrations in the floor, ceiling
and walls. For heavier structures, the influence of the acoustic pressure waves on the structural
vibrations is usually negligible. It is, therefore, possible to analyse the acoustic pressure field
by applying the structural displacements, obtained from a precedent analysis of the structural
domain, as boundary conditions. It was concluded in [1] that this procedure is valid also for
lightweight buildings; studies on a 2D FE model of a two-storey wood building showing that
the inclusion of air in the rooms has a negligible effect on the displacements of the building
for frequencies below 250 Hz, the air being modelled to have a realistic acoustic damping
(present in buildings due to objects and porous materials such as curtains and carpets). In
multi-storey wood buildings, there are acoustic media not only in the rooms, but also inside the
many cavities containing both air and insulation. The effect of modelling air inside cavities of
lightweight double-plate wall panels was investigated in [2, 3]. In [2], the vibration transmission
was investigated for a model including two double-plate wall panels connected in an L-shape,
with and without air inside the cavities. Both eigenvalue and steady-state analyses showed
that the inclusion of air in the cavities of the structure has a large influence on its dynamic
characteristics at high frequencies and a noticeable effect already at the first eigenfrequency. In
[3], the response of a double-plate wall panel, with and without air inside the cavities, to diffuse
field excitation was investigated. Simulations in terms of eigenvalue and steady-state analyses
showed that the air has a negligible effect on the dynamic characteristics of the structure.

1.1 Objective
The studies presented here aim at determining whether or not air and insulation inside cavities
have to be considered when performing numerical vibration analyses of multi-storey lightweight
buildings. The studies are limited to the low-frequency range, defined here as frequencies below
200 Hz. As a first step, different porous material models for modelling of the insulation were
compared, a frame of a double-plate wall panel being employed as a test model. Subsequently,
numerical studies were carried out for a section of a multi-storey wood building constructed
with so-called timber volume elements (TVEs), such buildings being described in section 1.2.
The response of a floor exposed to a harmonic point load and the vibration transmission to
the underlying ceiling and the surrounding walls were investigated by comparing FE models
including the acoustic media in terms of air and insulation inside cavities to models without
acoustic media. An additional objective with the numerical studies is to provide knowledge
regarding the effect of modelling the insulation, and how this changes the response of the models
compared to considering the air alone.
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1.2 Timber volume element buildings
The conceptual layout of a TVE building is illustrated in Figure 1. A TVE is a prefabricated
volume module consisting of wood framed floor-, roof- and wall-elements, each TVE typically
constituting a small apartment, one room or part of a larger room. As much of the construction
work as possible is performed indoors at a factory, including electrical installations, flooring,
cabinets, wardrobes etc. The prefabricated modules are transported to the construction site
where they are stacked to form a complete building. In between the TVEs, several elastomer
blocks are introduced to reduce flanking transmission of vibrations. Each elastomer block has
an interface area of approximately 0.1× 0.1 m2 and is placed between the walls of two stacked
modules. The only additional connection between modules is through a number tie plates,
ensuring the global stability of the building. Vibrations transmitted in TVE buildings are, there-
fore, mainly passing through the elastomer layers or through the air and insulation in cavities
of the buildings. The FE models employed in the numerical studies presented here were con-
structed according to the drawings shown in Figure 2.

2 Governing theory

2.1 Structure-acoustic analysis
Vibrating structures can interact with surrounding fluids, inducing acoustic pressure waves, and
vice versa. This phenomenon can be analysed by deriving FE formulations both for the struc-
tural domain and the acoustic fluid domain. By imposing continuity conditions for displace-
ments and pressures at domain-separating boundaries, the domains form a coupled FE equation
system. Vibrations in lightweight buildings are usually of such amplitudes that any non-linear
behaviour can be neglected and, therefore, linear behaviour is assumed here for both domains.
In the following derivations, a subscript S denotes a quantity in the structural domain, whereas
a subscript F indicates a quantity in the acoustic fluid domain.

2.1.1 Structural domain

The equations describing the structural domain follow the notation in [5]. For a detailed deriva-
tion of the FE formulation of a solid, see e.g. [5, 6]. The differential equation of motion for the
continuum formulation of a three-dimensional solid, occupying the domain ΩS , is given as [7]

∇̃T
σS + bS = ρS

∂2uS

∂t2
, (1)

where σS is the matrix representation of the stress tensor, bS is the body force vector, ρS is the
mass density, uS is the displacement vector, ∇̃ is a differential operator matrix and t is the time.
A FE discretisation and use of Galerkin’s method results in a FE formulation in the structural
domain, given by

3



Figure 1: Sketch of a TVE building [4]. The path of structural vibrations between storeys is
illustrated in the figure to the left and an elastomer block is illustrated in the figure to the right.

Figure 2: Drawings of the TVE building system, showing sections of the floor and ceiling
structures and the junctions with apartment separating wall (left) and façade wall (right).

MS äS + KSaS = fl,S + fb,S, (2)

MS =

∫
ΩS

NT
SρSNS dV , KS =

∫
ΩS

(∇̃NS)TDS∇̃NS dV ,

fl,S =

∫
ΩS

NT
SbS dV , fb,S =

∫
∂ΩS

NT
S tS dS.

(3)

where MS is the mass matrix, KS is the stiffness matrix, aS is the nodal displacement vector,
fl,S is the body load vector, fb,S is the boundary load vector, NS contains the FE shape functions,
DS is the constitutive stress-strain matrix and tS is the surface traction vector. Normally, a term
CS ȧs, where CS is the damping matrix, is added to the left-hand side of Eq. (2) to account for
viscous forces present in the structure.

4



2.1.2 Acoustic fluid domain

In addition to the assumption of small displacements, the governing equations of the acoustic
fluid are derived supposing the fluid to be irrotational. The motion of an acoustic fluid can be
described using different primary variables, such as the fluid displacement or a fluid displace-
ment potential. In the FE formulation presented here, the acoustic pressure is used as primary
variable. A detailed description of the FE formulation of an acoustic fluid, and the structure-
acoustic coupling, can be found in [8], for example. The motion of the fluid in the acoustic fluid
domain ΩF is governed by the equation of motion and the continuity equation

ρ0
∂2uF

∂t2
+R

∂uF

∂t
+ ∇pF = 0, (4)

∂pF
∂t

+ ρ0c
2
0∇ ·

∂uF

∂t
= 0, (5)

where pF is the acoustic pressure, ρ0 is the static density, R is the flow resistivity, c0 is the speed
of sound and ∇ is the gradient operator. By differentiating Eq. (5) with respect to time and
inserting it in Eq. (4), the wave equation in the acoustic fluid domain is obtained as

1

c2
0

∂2pF
∂t2

+
R

ρ0c2
0

∂pF
∂t
−∇2pF = 0. (6)

An FE discretisation and use of Galerkin’s method results in an FE formulation in the acoustic
fluid domain, given as

MF p̈F + CF ṗF + KFpF = fb,F , (7)

MF =
1

c2
0

∫
ΩF

NT
FNF dV , CF =

R

ρ0c2
0

∫
ΩF

NT
FNF dV ,

KF =

∫
ΩF

(∇NF )T∇NF dV , fb,F =

∫
∂ΩF

NT
FnT

F∇pF dS,

(8)

where pF is the nodal pressure vector, fb,F is the boundary load vector and nT
F is the boundary

normal vector, pointing outwards from the acoustic fluid domain.

2.1.3 Coupling of domains

At interfaces connecting a structural domain to an acoustic fluid domain, denoted ∂ΩSF , there
will naturally be a continuity both in terms of displacements and pressures. By imposing con-
ditions of continuity as boundary conditions at the interface, the two systems of equations de-
scribing the separate domains are coupled into a single system, including the interaction of the
domains. The continuity in displacements and pressures at ∂ΩSF can be expressed as

uSnF = uFnF , (9)

σS|nF
= −pF , (10)
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where σS|nF
is the stress normal to ∂ΩSF . By introducing the spatial coupling matrix

HSF =

∫
∂ΩSF

NT
SnFNF dS, (11)

the boundary load vectors at ∂ΩSF can be rewritten as

fb,S = HSFpF , (12)

fb,F = −ρ0HT
SF äS −RHT

SF ȧS. (13)

Using Eq. (12) and Eq. (13) in combination with Eq. (2) and Eq. (7), results in the structure-
acoustic system of equations[

MS 0
ρ0HT

SF MF

] [
äS

p̈F

]
+

[
CS 0
RHT

SF CF

] [
ȧS

ṗF

]
+

[
KS −HSF

0 KF

] [
aS

pF

]
=

[
fl,S
0

]
+

[
fb,S
fb,F

]
,

(14)

where fb,S and fb,F contain contributions from the parts of the domain boundaries ∂ΩS and ∂ΩF ,
respectively, separated from the interface boundary ∂ΩSF .

2.2 Porous material models
The use of different types of mineral wool in façades and interior walls of lightweight buildings
is common in order to improve both thermal and acoustic insulation. The interaction between
air and fibres of the wool affects the propagation of pressure waves in the air, the porous struc-
ture forcing the waves to travel a longer distance and a dampening effect occurring due to
friction at the surface of the fibres. Moreover, the pressure waves in the air interact with any
potential motion of the fibres. Different approaches for modelling porous materials have been
proposed in the literature, some being based on empirical studies, suggesting prediction formu-
lae of acoustic properties based on parameter fitting to experimental data. Others are analytical
and based on certain assumptions regarding the geometry and behaviour of the structural frame
and the interaction with the air. This section presents three porous material models, two of them
empirical and one analytical, as well as brief literature reviews concerning other models within
the two categories. The three models presented here consider the porous materials as equiva-
lent acoustic fluids. They can, therefore, be analysed with the numerical methods employed for
acoustic fluids and are integrated in a structure-acoustic model in a straightforward manner.

In Eq. (4) and (5), two material parameters describing an acoustic fluid were introduced,
namely the speed of sound c0 and the static density ρ0. A common, alternative, way of describ-
ing an acoustic fluid is by its static density together with the bulk modulus K, related to the
speed of sound according to

K = ρ0c
2
0. (15)
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Another pair of material parameters that are frequently employed to describe an acoustic
fluid are the characteristic impedance Z together with the propagation constant k. The two
latter alternatives of material parameters are related according to

Z =
√
ρ0K, (16)

k = ω

√
ρ0

K
, (17)

where ω is the angular frequency.

2.2.1 Empirical models

Delany-Bazley

Empirical relationships relating the real and imaginary parts of the characteristic impedance and
the propagation constant to the quotient (f/R), where f is frequency, were developed in [9].
Measurements of the characteristic impedance, propagation constant and flow resistivity were
carried out for a range of mineral wools, the following power law relations being obtained by
fitting the coefficients to experimental data:

Z = ρ0c0

(
1 + 9.08

(
f

R

)−0.75

− i 11.9

(
f

R

)−0.73
)
, (18)

k =
ω

c0

(
10.3

(
f

R

)−0.59

+ i

[
1 + 10.8

(
f

R

)−0.70
])

, (19)

where data in the range 0.01 ≤ f/R ≤ 1.0 (Nm−4) were used. It is advised not to extrapolate
the power law relations outside this range.

Miki

The real part of the characteristic impedance calculated according to Eq. (18) becomes negative
at low frequencies. To avoid this unphysical phenomena, new power law relations were devel-
oped in [10], making use of the experimental data utilised in [9] and imposing constraints for
the real part of the characteristic impedance to be positive, resulting in

Z = ρ0c0

(
1 + 5.50

(
f

R

)−0.632

− i 8.43

(
f

R

)−0.632
)
, (20)

k =
ω

c0

(
7.81

(
f

R

)−0.618

+ i

[
1 + 11.41

(
f

R

)−0.618
])

. (21)

The developed empirical formulae are physically realisable at lower frequencies compared
to the formulae by Delany & Bazley. Unphysical properties will, however, occur also in this
case, the real part of the density becoming negative at low frequencies. As the power law
relations were fitted to the experimental data in [9], no conclusions can be made regarding the
validity of the model outside the range 0.01 ≤ f/R ≤ 1.0 (Nm−4).
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Other empirical models

In addition to the formulae by Delany & Bazley and Miki, a number of empirical relations
for Z and k have been suggested in the literature. The same procedure as in [9] was applied
to measurement data for foam materials in [11]. In [12], measurements were performed for
a wide range of glass and rock wools, concluding that prediction formulae involving logarith-
mic terms resulted in better correlation to the measurement data in comparison to power law
relations developed in the same manner as in [9]. In [13] and [14], porous material models
combining the empirical formulae by Delany & Bazley with analytical microstructure models,
assuming parallel fibres, were presented, resulting in physically meaningful predictions at low
frequencies.

2.2.2 Analytical models

Already in 1868, a theory for sound propagation in cylindrical tubes, including both viscous and
thermal effects, was presented in [15], a simplified model later being presented in [16]. Porous
materials generally have complex geometries, making it practically impossible to analyse the
exact microstructure. This is why most porous material models are phenomenological, an ap-
proach being valid in case the wave lengths are much larger than the characteristic dimensions of
the microstructure. Several analytical models for porous materials, involving different assump-
tions regarding the geometry and behaviour of the structural frame as well as the interaction
between the frame and the acoustic fluid, have been proposed.

Equivalent acoustic fluid model – rigid structural frame

Phenomenological equivalent acoustic fluid models assuming the structural frame to be rigid
have been presented in [16, 17]. These models involve two properties of the structural frame,
namely the porosity φ and the structure factor KS , also known as the tortuosity. φ is the ratio
of fluid volume to total volume while KS is defined as ρe = KSρ0, relating the density of the
acoustic fluid in the pores to an effective density ρe of the equivalent acoustic fluid. With a rigid
structural frame, the equation of motion and the continuity equation, given in Eq. (4-5), become

KSρ0
∂2uF
∂t2

+R
∂uF
∂t

+ ∇pF = 0, (22)

φ
∂pF
∂t

+ ρ0c
2
0∇ ·

∂uF
∂t

= 0. (23)

By differentiating Eq. (23) with respect to time and inserting Eq. (22), the wave equation
for the equivalent acoustic fluid is obtained as

KSφ

c2
0

∂2pF
∂t2

+
Rφ

ρ0c2
0

∂pF
∂t
−∇2pF = 0, (24)

which is the wave equation for an acoustic fluid as given in Eq. (6) with coefficients modified
by the properties of the structural frame. In Eq. (6), R accounts for the dissipation of energy in
an acoustic fluid domain in a smeared approach while it is a property of the structural frame in
Eq. (24).
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Other analytical models

Most of the porous material models available in the literature assume the structural frame to
be rigid, a thorough review of such models developed before and after 1980 being found in [18]
and [19], respectively. A model assuming the structural frame to be limp is presented in [20].
In [21], two models with rigid and limp frame, respectively, were compared to measurements,
studying the high and low frequency limits of the resulting effective densities. Biot’s theory [22]
includes the flexibility of the structural frame at the cost of introducing displacement degrees
of freedom, the porous material no longer being modelled as an equivalent acoustic fluid. The
theory combines an elastic continuum formulation for the structural frame and sound propaga-
tion in a rigid structural frame by considering a coupling of the stress-strain relationships and
the inertial and viscous forces.

3 Numerical studies
In the numerical studies presented here, the effect of modelling the air and insulation inside
cavities of TVE buildings on the vibration transmission was investigated. First, a comparative
study was carried out for the three porous material models introduced in Section 2.2, a section
of a wooden double-plate wall panel being employed as test model. Furthermore, a section of a
TVE-based building was analysed, comparing the vibrations induced in the structure by a load
acting on a floor structure for models including acoustic media in different ways.

3.1 Comparative study – porous material models
The empirical porous material models by Delany & Bazley and Miki as well as the equivalent
acoustic fluid model with rigid structural frame were compared for a FE model of a section in
a wooden double-plate wall panel, shown in Figure 3. The wall panel consisted of a 2500 ×
645× 116 mm3 wood frame covered with gypsum plates on both sides, creating a low-stiffness
model with a cavity between the plates. The cavity was modelled in five different ways: (1)
with no acoustic media, (2) filled with air and (3-5) filled with insulation, employing the three
different porous material models. The properties used for the porous material are presented in
Table 1, their values falling within realistic ranges for mineral wool materials. Measured values
of the material parameters can be found in, for example, [12, 23–26]. A relatively low value
for the flow resistivity is selected in order for the empirical models to be physically valid in a
major part of the frequency range of interest. For the selected flow resistivity, the models by
Delany & Bazley and Miki are feasible for analysis above 70 Hz and 40 Hz respectively. Below
those frequencies, unphysical values of the bulk modulus and density are obtained. Steady-
state analyses were performed up to 200 Hz, locking the displacements at the four corners of
the panel. The wall panel was excited by a harmonic unit point load in the middle of one of the
gypsum plates, the source plate, and the accelerations were evaluated at the opposite side of the
other plate, the receiver plate. The acceleration amplitudes were evaluated in terms of an RMS
value of the magnitude in all nodes of the receiver plate’s outer surface, given by
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Figure 3: FE model of a section in a wood-framed wall panel, employed for comparing different
porous material models. The yellow arrow shows the applied load.

σ φ α

6000 0.96 1.1

Table 1: The porous material properties employed in the comparative study. Flow resistivity in
N/m−4s.

aRMS(f) =

√√√√ 1

n

n∑
i=1

a2
i (f), (25)

where ai is the magnitude of the complex acceleration in node i and n is the number of nodes
in the outer surface of the receiver plate. An RMS value was calculated for each excitation
frequency in the steady-state analysis.

In Figure 4, the acceleration amplitudes for the different models of the wall cavity, in the
frequency range 20-200 Hz, are shown. For frequencies below the first resonance frequency,
located at 30 Hz, the acoustic media have a negligible influence on the acceleration amplitudes,
whereas for frequencies in the range 30-90 Hz, the effect of including air in the cavity is small.
Including a porous material, however, lowers the acceleration amplitudes due to its viscous
effects. Above 90 Hz, it is evident that a large part of the energy is transmitted through the
acoustic medium, since its inclusion increases the acceleration amplitudes significantly. Gen-
erally, using the porous material models results in lower acceleration amplitudes compared to
the model with only air in the cavity. In their valid frequency ranges, the different methods for
modelling the porous material yield very similar results. Hence, it is sufficient to include one
of the three models in the subsequent analyses and the model with rigid structural frame was
selected due to the unphysical behaviour of the empirical models at lower frequencies.
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Figure 4: RMS values of the acceleration amplitudes evaluated at the receiver plate of the wall
panel model, employed for comparing different porous material models.

3.2 Acoustic media in cavities of TVE buildings
A section of a TVE-based building was analysed in order to investigate the effect of modelling
air and insulation, as acoustic media, inside cavities on the vibrations caused by a harmonic
point load acting on a floor structure. Specifically, the response of the floor and the transmission
to the underlying ceiling and surrounding walls were investigated for a model containing two
stacked TVEs, Figure 5 showing a quarter of these. Each TVE was 8961 × 3894 × 3418 mm3

large (the long side walls being apartment separating and the short side walls being façades)
and modelled according to the drawings in Figure 2. Moreover, the walls of the neighbouring
TVEs were included at the apartment separating walls, meaning that the cavities in those walls
were included in the model. No structural connection to the walls of the neighbouring TVEs
was, however, included.

The materials of the structure are listed in Figure 2; the particle board, plaster board and
plywood being modelled as isotropic materials with properties according to Table 2, whereas
the wood beams were modelled as orthotropic materials with properties according to Table 3. A
type of elastomer often used in TVE buildings is Sylodyn, a mixed cellular polyurethane damp-
ening material developed by Getzner Werkstoffe GmbH. The blocks modelled in this study were
100×95×25 mm3 large, of type Sylodyn NE, and placed between the two stacked TVEs with
a centre-to-centre distance from one another of 600 mm along the walls. Frequency-dependent
viscoelastic material properties for the elastomers were determined in [27] by performing lab-
oratory testing and FE simulations to match experimental data. The porous material properties
used for modelling the insulation were selected according to Table 4. The analytical porous
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Figure 5: A quarter of the model of two TVEs, the acoustic media being shown in blue. The
junction between floor, ceiling and apartment separating walls is shown to the right, with and
without acoustic media inside the cavities.

material model assuming a rigid structural frame was employed to model the insulation in the
analyses. In contrast to the comparative study in Section 3.1, a higher flow resistivity was used
here, the selected value falling within the mid-range of values for mineral wools found in the
literature.

The model was created in the commercial FE software Abaqus [28]. The structural parts
were meshed with 20-node solid hexahedral elements, employing quadratic interpolation and
reduced integration. For the elastomer blocks, elements with a hybrid formulation were used in
order to avoid locking. The air and the insulation, in turn, were meshed with 20-node acoustic
hexahedral elements, employing quadratic interpolation. The mesh sizes for both the structural
and acoustic parts were decided based on the wavelengths expected to occur at the highest
frequency of interest, namely 200 Hz.

Due to the complexity when assessing damping, a global damping ratio of 5.77 %, calcu-
lated using the measurement data in [29], was assigned to all materials as opposed to consid-
ering individual damping for each material. The damping matrix was constructed by means of
the Rayleigh method, see e.g. [30], selecting the constants for the mass- and stiffness propor-
tionality to be 17.37 and 9.77 · 10−5, respectively.

In the analyses, the surfaces of the two TVEs, where elastomer blocks would be placed if
further storeys were included, were modelled as clamped. Moreover, the walls of the neighbour-
ing modules were clamped at the vertical edges. A vertical unit point load, acting on the middle
of the floor in the upper TVE, was applied and steady-state analyses performed for frequencies
up to 200 Hz.
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Material E ν ρ

Particle board 3000 0.3 767

Plaster board 2000 0.2 692.3

Plywood 12400 0.3 710

Table 2: Material parameters used for the isotropic materials. Modulus of elasticity in MPa and
density in kg/m3.

E1 E2 E3 G12 G13 G23 ν12 ν13 ν23 ρ

8500 350 350 700 700 50 0.2 0.2 0.3 432

Table 3: Material parameters used for the wood beams. Stiffness parameters in MPa and density
in kg/m3.

σ φ α

40000 0.96 1.1

Table 4: Porous material properties used in the numerical studies. Flow resistivity in N/m−4s.

3.2.1 Vibrations in the floor and underlying ceiling

First, the vibrations in the floor of the upper TVE and the underlying ceiling were investigated
for different ways of modelling air and insulation inside the cavity between the floor and the
ceiling. A model without acoustic media was compared to models with air alone and air to-
gether with insulation in the cavity, the insulation being placed according to the drawings in
Figure 2. All analyses were performed applying two different boundary conditions, p = 0 and
∇p = 0, at the interfaces of the acoustic media bordering to surrounding cavities in order to
investigate their effect on the vibrations transmitted over the cavity. These interfaces are illus-
trated in Figure 6, showing the full TVEs. At all boundaries of the acoustic media in contact
with structural components, structure-acoustic coupling was considered.

The acceleration amplitudes obtained in the analyses of the different models were extracted
from half of the nodes (due to the symmetry) at the floor surface and the ceiling surface, respec-
tively, and RMS values of the complex acceleration magnitudes were calculated according to
Eq. (25).

In Figure 7, the RMS values of the acceleration amplitudes at the floor are shown. Including
air alone in the cavity had a small effect on the levels of vibration in the floor, the RMS values
being changed by just over 1 % in average. An exception is found at 30 Hz, where the inclusion
of air lowers the vibration amplitudes. Considering both air and insulation in the cavity led to a
dampening effect, lowering the levels of vibration by approximately 15 % while the frequency
response function is similar in shape to that obtained when including no acoustic media in the
cavity. Moreover, it can be observed that the choice of boundary conditions for the acoustic
media has a negligible influence.
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Figure 6: The model of the two TVEs; the acoustic media in contact with the surrounding cav-
ities, where different boundary conditions were applied, being shown to the left. The acoustic
media is shown in blue.

In Figure 8, the RMS values of the acceleration amplitudes at the ceiling are shown. It can
be observed that including air alone resulted in higher acceleration amplitudes, especially at
lower frequencies. For low frequencies, the modelling of both air and insulation resulted in ac-
celeration amplitudes in-between the case with air alone and the case with no acoustic media in
the floor-ceiling cavity. At higher frequencies, the acceleration amplitudes obtained for the case
with air and insulation are similar to those obtained for the case with no acoustic media, devi-
ating with less than a factor of 2. At some frequencies, the dampening effect of the insulation
resulted in reduced vibration amplitudes when including both air and insulation, as compared
to having no acoustic media. When air alone was considered, the levels of vibration were influ-
enced by the choice of boundary conditions for the acoustic media, the effect, however, being
relatively small when both air and insulation were included in the model.

3.2.2 Vibrations in the surrounding walls

Next, the vibrations in the walls of the lower TVE were investigated for different ways of
modelling the air and insulation in the cavity between the floor and the ceiling as well as the
cavities in the apartment separating walls. Models including acoustic media either in the floor-
ceiling cavity alone or in both the floor-ceiling cavity and the wall cavities were compared to
a model with no acoustic media. In the models including acoustic media, it was included as
air alone or air together with insulation. The insulation in the walls was placed according to
the drawings in Figure 2, i.e. between the beams of each wall, having a small air gap between
the walls of two neighbouring TVEs. Moreover, models having the floor-ceiling cavity and the
wall cavities separated were created by introducing a separating wall in the junction between
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Figure 7: RMS values of the acceleration amplitudes evaluated at the floor for the different
models of the acoustic media inside the floor-ceiling cavity.
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Figure 8: RMS values of the acceleration amplitudes evaluated at the ceiling for the different
models of the acoustic media inside the floor-ceiling cavity.

the cavities, the junction being shown in Figure 5. These models were compared to the models
with connected cavities in order to investigate if the acoustic pressure waves travelling between
the cavities affect the vibration amplitudes in the walls.

At the boundaries to the acoustic media in surrounding cavities, only ∇p = 0 was applied
as it was observed in the evaluation of the ceiling vibrations that the boundary conditions have
a negligible effect on the vibration transmission. The acceleration amplitudes obtained in the
analyses of the different models were extracted in all nodes at the surface of an apartment
separating wall of the lower TVE. RMS values of the complex acceleration magnitudes were
calculated according to Eq. (25).

In Figure 9, the RMS values of the acceleration amplitudes at the wall of the lower TVE
are shown, including results for the models where air alone is used as acoustic media in the
cavities. In Figure 10, the RMS values are shown for the models where the acoustic media is
comprised both of air and insulation. The frequency range is divided into two parts, including
frequencies in the ranges 0-100 Hz and 100-200 Hz, respectively. Observe that different scales
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Figure 9: RMS values of the acceleration amplitudes, evaluated at the apartment separating wall
of the lower TVE, for the different models including air alone as acoustic media. Note that the
two plots employ different scales at the y-axis.

are employed for the y-axes in the two frequency ranges.
It can be observed in Figure 9 that including acoustic media in terms of air alone in the

cavities has a large effect on the vibration transmission from the floor to the walls of the TVE
below. The system becomes more resonant when air is included and the acceleration amplitudes
at the wall panel are generally higher, except at some frequencies between resonance peaks,
where the amplitudes are reduced compared to the model with no acoustic media. At most
frequencies, the acceleration amplitudes are higher when the floor-ceiling cavity is connected to
the wall cavities compared to having the cavities being separated. At low and high frequencies
(below 15 Hz and above 155 Hz), the model with air in all cavities, having the cavities separated,
results in acceleration amplitudes very similar to the model with air only in the floor-ceiling
cavity. Hence, if the cavities are separated, the air in the wall panels has a negligible effect at
those frequencies.

In Figure 10, it can be observed that considering both air and insulation as acoustic media
in the cavities results in smoother spectrums compared to including air alone. For most fre-
quencies, with the exception being frequencies below 40 Hz, the acceleration amplitudes are
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Figure 10: RMS values of the acceleration amplitudes, evaluated at the apartment separating
wall of the lower TVE, for the different models including both air and insulation as acoustic
media. Note that the two plots employ different scales at the y-axis.

decreased when including air and insulation in the cavities compared to having no acoustic me-
dia. A resonance frequency is observed at 20 Hz for the model with acoustic media only in the
floor-ceiling cavity, which is not present for any of the other models. Hence, a resonance occurs
due to the inclusion of air and insulation in the floor-ceiling cavity which is cancelled when
considering the acoustic media also in the wall cavities. In general, the acceleration amplitudes
when considering both air and insulation, as compared to including air alone in the cavities, are
closer to the case with no acoustic media. Above 60 Hz, the inclusion of air and insulation as
acoustic media results in acceleration amplitudes deviating with a factor of less than 2 compared
to having no acoustic media. Above 100 Hz, all three models with air and insulation in the cav-
ities result in very similar acceleration amplitudes. This shows that at higher frequencies, the
effect of including acoustic media in the wall cavities, on the vibration transmission to the wall
panels, is small in case both air and insulation are considered.
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4 Conclusions
The main conclusion from the numerical studies is that acoustic media in the cavities of wooden
lightweight buildings affect the vibration transmission. It was observed that the vibrations trans-
mitted from a load acting on a floor structure affected the acceleration amplitudes in both the
underlying ceiling, structurally separated from the floor, and the walls of the storey below. The
effect is especially distinct when air alone is considered as acoustic media. Generally, including
air alone results in a more resonant system with higher acceleration amplitudes while including
both air and insulation introduces a dampening effect, especially at higher frequencies. The
dampening effect of the insulation results in decreased acceleration amplitudes at higher fre-
quencies as compared to having no acoustic media included. In reality, the cavities normally
contain insulation, the modelling of air alone, thus, leading to an overestimation of the vibra-
tions transmitted by the acoustic media.

The levels of vibration in the floor were only marginally affected by the inclusion of air
alone as acoustic media in the floor-ceiling cavity. When considering both air and insulation as
acoustic media, the shape of the frequency response function did not change to any appreciable
extent but a dampening effect was observed. This could be accounted for by increasing the
damping of the structure, thereby avoiding the inclusion of acoustic media in the model.

In the analyses of the vibrations in the floor and in the ceiling, it was concluded that the
choice of boundary conditions for the acoustic media bordering to surrounding cavities had a
small effect in terms of vibration transmission from the floor to the ceiling below. This im-
plies that the acoustic media in surrounding cavities has a weak influence on the vibrations
transmitted locally over the floor-ceiling cavity.

In the analyses of the vibrations in the walls of the lower TVE, it was observed that includ-
ing air and insulation in the wall cavities had no effect on the transmission to the wall panels
above 100 Hz. If the vibrations transmitted from the floor to surrounding walls is studied for
frequencies over 100 Hz, it is, hence, sufficient to include the air and insulation only in the
floor-ceiling cavity. This result indicates that the effect of including acoustic media in cavities
is decreasing with the distance from the load. It should be investigated further how far from the
load the acoustic media has to be considered.

It can be preferable to use different models for different frequency ranges. At higher fre-
quencies, less acoustic media has to be included in the model while a finer mesh is required
for resolving the shorter wavelengths. At lower frequencies, more acoustic media have to be
included whilst a coarser mesh can be adopted.

The porous material models investigated in this paper are only a few of many available in the
literature. Especially, no models assuming limp or elastic structural frame have been evaluated
here. As it was concluded that acoustic media inside cavities of multi-storey wood buildings
have to be considered when performing vibration analyses, the material model for the insulation
should be validated.
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Abstract
In the present study, different model order reduction methods were compared in terms of their
effects on the dynamic characteristics of individual building components. A wide variety of
methods were employed in two numerical examples, both being models of wooden floor struc-
tures, in order to draw conclusions regarding their relative efficiency when applied to models of
such structures. It was observed that a comparison of the methods requires the reduced models
to be exposed to realistic boundary conditions, free-free eigenvalue analyses being insufficient
for evaluating the accuracy of the reduced models when employed in an assembly of substruc-
tures.

Keywords: Model order reduction; Finite element modeling; Substructure modeling; Vibra-
tion analysis; Lightweight building structures

1 Introduction
Lightweight buildings are often constructed using prefabricated planar or volume elements, of-
ten with use of low-stiffness panels mounted on high-stiffness beams. Accurately assessing
the dynamic behaviour of these elements when rather high vibration frequencies are involved
requires use of finite element (FE) models representing the geometry in considerable detail.
Assembling the individual elements of multi-storey lightweight buildings within the framework
of global FE models of entire buildings results in very large models, the number of degrees of
freedom (dofs) of which easily exceeds the limits of computer capacity, at least for computa-
tions to be performed within reasonable lengths of time. The question arises then of how such
FE models can be reduced in size while at the same time being able to represent the dynamic
characteristics of the building or buildings in question with sufficient accuracy. The method
of dividing a large model into components and creating a global model through coupling mod-
els of reduced size of each component is referred to as substructuring. In the present study,
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low-frequency vibrations in multi-storey lightweight buildings are modelled by adopting a sub-
structuring approach.

In recent decades, a number of methods for model order reduction of dynamic problems
have been developed within the area of structural mechanics, mode-based methods being the
methods most frequently used. Fairly recently, methods originating from control theory, des-
ignated here as modern reduction methods, have been employed within structural mechanics.
In contrast to mode-based methods which have an explicit physical interpretation, the modern
reduction methods are developed from a purely mathematical point of view. Some mode-based
methods are implemented in commercial FE software which enables them to be applied to large-
scale problems directly. In order to apply other methods to models created in commercial FE
software, the system matrices involved need to be exported from the software and be reduced
in another environment.

A number of comparative studies have been published in which the performance of different
reduction methods has been evaluated, in connection with mechanical engineering problems. In
[1] and [2], modern reduction methods were compared with mode-based methods. In [1], a rack
consisting of steel beams was used as a numerical example, the reduction methods involved be-
ing compared by studying the structural response within the time domain and the Frobenius
norm of the transfer function matrix for different load cases. It was concluded that the modern
reduction methods produce excellent reduction results and are more effective than mode-based
methods are. In [2], a crankshaft of a piston served as a numerical example, the Frobenius norm
of the transfer function matrix being used to compare the reduction methods in question. It was
concluded that substantial benefits can be achieved by use of the modern reduction methods. In
[3], a wide range of methods was compared by studying the eigenfrequencies and eigenmodes
of an elastic rod. The modern reduction methods were found to perform better for mechani-
cal problems than several of the classic methods. In [4], however, in which a clamped beam
structure served as a numerical example, it was concluded that mode-based methods are better
suited for the analysis of multibody systems than modern reduction methods are. The eigen-
frequencies and eigenmodes were analysed with different boundary conditions applied at the
interface of the reduced models. It was concluded that mode-based methods are less dependent
than the modern reduction methods are on variations in the boundary conditions, something
which would clearly be an important advantage in multibody dynamics.

In the comparative studies just referred to, conclusions were drawn on the basis of numerical
examples involving relatively simple structures. Lightweight floor and wall structures, however,
generally have a much more complex geometry, making it difficult to extrapolate the conclu-
sions in question. Also, in the comparative studies referred to, different types of analyses were
used for evaluating the performance of the reduction methods employed, this providing diverse
information that can be evaluated in a variety of ways. By applying analyses of multiple types
to a given numerical example it should be possible to obtain a broader understanding of the be-
haviour of different reduction methods than a single type of analysis would provide. Moreover,
analysing the reduced models with realistic boundary conditions is necessary since the bound-
ary conditions employed can have a strong influence on the performance of different reduction
methods, as demonstrated in [4].

The objective of the analyses carried out in the present investigation was to evaluate the
performance of a rather wide range of model order reduction methods by comparing their ac-
curacy and computational cost when applied to detailed FE models of floor and wall structures.
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The conclusions will be of value in the process of constructing efficient substructure models for
vibration analysis of multi-storey lightweight buildings. The reduced models employed are in
this paper evaluated in terms of eigenfrequencies and eigenmodes in a free-free state, as well
as in terms of vibration transmission behaviour when the structures in question are exposed to
realistic boundary conditions, obtained by connecting them with other building components.
New insight is offered regarding both the efficiency of the reduction methods when employed
in the analysis of complex structures and the effect of applying realistic boundary conditions to
the reduced models.

Commercial FE software of different kinds represent convenient tools for both pre- and
post-processing, such as in the coupling of substructures and in the visualisation of results.
Since some reduction methods reported on in the literature are incompatible with such soft-
ware, methods of this sort are either excluded from the analyses here or are used in a modified
fashion. A broad range of model order reduction methods presented in the literature will be
discussed and the theories behind them taken up. The performance of the reduction methods,
applied to lightweight building structures, was evaluated for frequencies of less than 100 Hz by
studying two numerical examples. The first example is a model of moderate size of a wooden
floor structure, a model created in the commercial FE software Abaqus, from which the system
matrices were exported to Matlab, in which various of the reduction methods described in Sec-
tion 2 were employed. The second example is a large and detailed model of an experimental
wooden floor structure, analysed with use of model order reduction methods implemented in
Abaqus as well as by use of an alternative approach employing structural elements. Although
the conclusions presented in this paper are based in principle on the results of the two numeri-
cal examples, many wooden floor and wall structures have geometries and materials similar to
those of the structures studied in the two examples. Accordingly, the main conclusions arrived
at would appear to be applicable to a wide variety of wooden floor and wall structures similar
in topology to these two floors.

2 Model order reduction
An FE formulation of a structural dynamics problem results in a linear equation of motion of
the following form [5]:

Mü + Cu̇ + Ku = f, (1)

where M, C, K ∈ Rn×n are the mass, damping and stiffness matrices respectively, f = f (t) ∈
Rn×1 is the load vector and u = u (t) ∈ Rn×1 is the state vector which is sought. A dot denotes
differentiation with respect to time, t. The objective of model reduction here is to find a system
ofm dofs in whichm << n, one which preserves the dynamic characteristics of the full model.
The general approach is to approximate the state vector by use of the transformation u = TuR,
where T ∈ Rn×m is a transformation matrix and uR ∈ Rm×1 is a reduced state vector. Applying
the transformation in question to Eq. (1) results in

MRüR + CRu̇R + KRuR = fR, (2)

MR = TTMT, CR = TTCT, KR = TTKT, fR = TT f, (3)
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where MR,KR,CR ∈ Rm×m are the reduced mass, damping and stiffness matrices, respec-
tively, and fR ∈ Rm×1 is the reduced load vector. In recent decades, many different methods for
model order reduction, involving procedures of varying types for establishing the transforma-
tion matrix and the reduced state vector involved, have been proposed in the literature. The dofs
in the reduced state vector can be divided into two categories: physical dofs and generalised
coordinates. Physical dofs are the dofs of the full system that are retained in the reduction pro-
cess, whereas the generalised coordinates represent the amplitudes of various Ritz basis vectors
[6] that describe the deflection shapes that are allowed in the reduced system. The reduction
methods can be categorised according to the type of dofs generated in the reduction process,
where condensation methods involve only physical dofs, generalised coordinate methods are
based solely on generalised coordinates, and hybrid reduction methods employ a combination
of dofs of both types. A number of important methods within each category are listed below.

• Condensation methods

– Guyan reduction [7]
– Dynamic reduction [8]
– Improved reduction system (IRS) [9, 10]
– System equivalent expansion reduction process (SEREP) [11]

• Generalised coordinate methods

– Modal truncation [5, 12]
– Component mode synthesis by Craig–Chang [12, 13]
– Krylov subspace methods [14, 15]
– Balanced truncation [16, 17]

• Hybrid methods

– Component mode synthesis by Craig–Bampton [12, 18]
– Component mode synthesis by MacNeal [19]
– Component mode synthesis by Rubin [20]

The methods just referred to, except for the Krylov subspace methods and balanced trunca-
tion, which have their origin in control theory and are considered to be modern reduction meth-
ods, were developed specifically for structural mechanics. Modal truncation and component
mode synthesis by Craig–Chang, Craig–Bampton, Rubin or MacNeal are all mode-based meth-
ods, which means that structural eigenmodes of some sort are employed as Ritz basis vectors.
In commercial FE software, generalised coordinates are treated as internal dofs and the cou-
pling of substructures is usually realised at the physical dofs by use of Lagrange multipliers [5].
Consequently, if the global model involved is to be analysed and post-processed in commercial
FE software, any methods for model order reduction based solely on generalised coordinates
are excluded. However, such methods can be combined with condensation methods to obtain
hybrid versions of the methods. Component mode synthesis by Craig-Bampton, for example,
is modal truncation combined with Guyan reduction. Moreover, variants of component mode
synthesis in which Krylov subspace methods instead of modal truncation are combined with
Guyan reduction have been described in [21, 22]. Model order reduction methods that result in
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reduced models in which the physical dofs at the interfaces are preserved are often referred to
as structure-preserving methods.

In the present study, five of the above-listed reduction methods are investigated: Guyan
reduction, dynamic reduction, IRS and component mode synthesis, the latter both in the mode-
based Craig–Bampton form and in the Krylov subspace version. Out of the mode-based com-
ponent mode synthesis methods, the Craig–Bampton version, the most commonly employed
method among structural engineers, is selected. The Krylov subspace version is included in the
studies to investigate the potential improvement in efficiency offered by the increasingly popular
methods from control theory when employed for the type of problems studied here. Moreover,
modified versions of the component mode synthesis methods are investigated using IRS instead
of Guyan reduction as the condensation method, these being referred to as improved compo-
nent mode synthesis methods [21]. In addition, a set of alternative methods termed generalised
methods [23], obtained by deriving the above mentioned methods in a slightly different manner,
are investigated.

In the derivations of the reduction methods presented below, the case considered is an un-
damped one. Since the damping ratio of the structures analysed in the study is relatively low, it
has a negligible effect on the eigenfrequencies and the eigenmodes. Also, the damping matrix
employed provides only a rough approximation of all the damping phenomena occurring in the
structures as a whole. Accordingly, as an alternative to its being reduced in the same way as
the mass and stiffness matrices, the damping matrix can be constructed in the reduced system
directly.

2.1 Original methods
As mentioned above, the model order reduction methods can be derived in a slightly different
manner than in their original versions, this resulting in methods referred to as generalised meth-
ods, as presented in Section 2.2. Below, the original versions of the methods investigated here
are presented.

Guyan reduction
In the condensation methods, the dofs are separated into masters (m) and slaves (s), the slave
dofs being condensed in the reduction process, resulting in a reduced state vector containing
only the master dofs. Partitioning the state vector in terms of the master and slave categories
enables the system matrices in Eq. (1) to be partitioned into sub-blocks as follows:[

Mmm Mms

Msm Mss

] [
üm

üs

]
+

[
Kmm Kms

Ksm Kss

] [
um

us

]
=

[
fm
fs

]
. (4)

Solving the equation in the second row in Eq. (4) for us results in

us = −K−1
ss (Msmüm + Mssüs + Ksmum) , (5)

where it has been assumed that there are no loads acting on the slave dofs, so that fs = 0.
Neglecting the inertia terms in Eq. (5) results in the transformation of the state vector for Guyan
reduction [

um

us

]
=

[
I

−K−1
ss Ksm

]
um = TGuyanum, (6)
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where the transformation matrix TGuyan can be used in Eq. (3) to obtain the reduced system
matrices and the reduced load vector. Guyan reduction is often referred to as static condensa-
tion, since models reduced with Guyan reduction do not result in any errors in static analysis.
Due to its static nature, Guyan reduction can be expected to only produce acceptable results
for frequencies close to the lowest eigenfrequencies of the system. At higher frequencies, the
neglected inertia terms have a stronger influence, resulting in errors of larger size. The perfor-
mance of this method is highly dependent upon the approach for selecting master dofs. In the
numerical examples studied here, only the dofs needed to connect the substructures to the sur-
roundings serve as masters, although additional dofs can be employed as master dofs as well,
various methods for selecting such dofs having been proposed [24, 25].

Dynamic reduction
If a harmonic time-dependent load, f = f̂exp(iωt), is assumed, this results in a harmonic re-
sponse, u = ûexp(iωt), where i =

√
−1 is the imaginary unit, ω is the angular frequency

and f̂ and û are the complex load and displacement amplitudes, respectively. Introducing this
assumption into Eq. (4) results in the equation of motion applying to the frequency domain[

Dmm (ω) Dms (ω)
Dsm (ω) Dss (ω)

] [
ûm

ûs

]
=

[
f̂m
f̂s

]
, (7)

D (ω) = −ω2M + K. (8)

Solving the equation in the lower row in Eq. (7) for ûs, assuming f̂s = 0, results in

ûs = −D−1
ss (ω) Dsm (ω) ûm, (9)

and, consequently, the transformation of the state vector for dynamic reduction is given by[
ûm

ûs

]
=

[
I

−D−1
ss (ω) Dsm (ω)

]
ûm = TDynamicûm, (10)

where the transformation matrix TDynamic requires a selection of ω in order to be established.
The special case of dynamic reduction in which ω = 0 results in the transformation of Guyan
reduction shown in Eq (6). For harmonic load cases in which the excitation frequency has the
same value as ω, dynamic reduction provides exact results. This suggests dynamic reduction to
be an effective scheme for analysing a structure subjected to load cases having narrow frequency
content. For steady-state analyses, fully accurate reduced models can be obtained by reducing
the system matrices at each discrete frequency, yet this is a costly procedure that requires the
availability of large memory resources for storing the resulting matrices.

Improved reduction system (IRS)
The term improved in the name improved reduction system refers to a perturbation of the trans-
formation taking place in Guyan reduction, Eq. (6). The previously neglected inertia terms are
then included as pseudo-static forces. The occurrence of free undamped vibrations of a system
reduced by means of a Guyan reduction results in the following expression for the acceleration
of the master dofs:

üm = −M−1
GuyanKGuyanum, (11)
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where MGuyan and KGuyan are the reduced stiffness- and mass matrices obtained by employ-
ing Guyan reduction. Differentiating Eq. (6) and making use of the relationship expressed in
Eq. (11) results in the following expression for acceleration of the slave dofs:

üs = −K−1
ss Ksmüm = K−1

ss KsmM−1
GuyanKGuyanum. (12)

Inserting Eq. (11) and Eq. (12) into Eq. (5) results in the approximation of the slave dofs

us = K−1
ss

(
MsmM−1

GuyanKGuyan −MssK−1
ss KsmM−1

GuyanKGuyan −Ksm

)
um. (13)

This rather complicated expression can be written in more compact form so as to obtain the
transformation matrix for IRS

TIRS = TGuyan + SMTGuyanM−1
GuyanKGuyan, (14)

S =

[
0 0
0 K−1

ss

]
. (15)

In the IRS transformation, the reduced system matrices that Guyan reduction provides are
utilised so as to produce updated reduced matrices. As a further extension of this, the updated
matrices can be used to create an iterative scheme where the transformation for the ith iteration
is given by

TIRS,i = TGuyan + SMTIRS,i−1M−1
IRS,i−1KIRS,i−1, (16)

and the iterations are started by calculating TIRS,1 according to Eq. (14). KIRS,i−1 and MIRS,i−1

are the reduced stiffness- and mass matrices of iteration i − 1, obtained by using TIRS,i−1 in
Eq. (3). The iterative scheme converges to form the transformation matrix of SEREP [11],
creating a reduced system that reproduces exactly the lowest eigenfrequencies and eigenmodes
of the full system. The rate of convergence depends upon the selection of master dofs. In
contrast to Guyan reduction, however, IRS does not reproduce the static behaviour of the full
system exactly.
Component mode synthesis by Craig–Bampton (CMS)
Use of component mode synthesis by Craig–Bampton, here denoted CMS, compensates for the
neglected inertia terms in Guyan reduction through its including a set of generalised coordinates
ξ. These generalised coordinates represent the amplitudes of a set of eigenmodes for the slave
structure, calculated with the master dofs being fixed. Setting um = 0 and fs = 0 in Eq. (4) and
assuming a harmonic solution results in the following eigenvalue problem:

KssΦ = λMssΦ, (17)

which can be solved for the eigenvalues λ = ω2 and the eigenmodes Φ. A number of eigen-
modes obtained from Eq. (17), referred to as retained eigenmodes, are selected as additional
basis vectors to the approximation of the slave dofs in Eq. (6), resulting in

us = −K−1
ss Ksmum +

∑
Φiξi = Ψum + Φξ. (18)

This gives the following transformation of the state vector for CMS:
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[
um

us

]
=

[
I 0
Ψ Φ

] [
um

ξ

]
= TCMS

[
um

ξ

]
, (19)

which defines the transformation matrix TCMS. As for Guyan reduction, the accuracy of CMS
depends upon the selection of master dofs, this affecting both the static modes and the eigen-
modes of the slave structure. Also, the accuracy depends upon the selection of retained eigen-
modes, certain eigenmodes having a larger influence than others on the solution of a specific
problem. To obtain a reduced model with as great an accuracy for general load distributions as
possible, however, all the eigenmodes up to some given limit that is chosen should be included.

Krylov subspace component mode synthesis (KCMS)
The Krylov subspace is defined as

Kq (A,b) = span
{

b,Ab, ...,Aq−1b
}
, (20)

where A ∈ Rn×n, b ∈ Rn×1 is called the starting vector and q is a positive integer. b can also
be a block of vectors, in which case each Krylov projection generates a new block of vectors.
Since methods originating from control theory are ones developed for systems of an input-
output form, the equation of motion is rewritten here as a system of this sort of the following
form:

Mü + Ku = Bx, (21)

y = NTu, (22)

where x = x (t) ∈ Rx×1 is the input vector, y = y (t) ∈ Ry×1 the output vector, B ∈ Rn×x a
matrix describing the spatial load distributions and N ∈ Rn×y a matrix relating the state vector
to the output vector. A Laplace transformation of the input-output system yields the transfer
function G(s):

G (s) = NT
(
s2M + K

)−1 B. (23)

Krylov subspace methods, which have their origin in the area of control theory, are based
on so-called moment matching. The moments involved are defined as the coefficients of a
Taylor series expansion of G(s) around s = 0. It can be shown that the first q moments of
the full system and of a reduced system match if the reduced basis is selected as the Krylov
subspace generated by A = K−1M and b = K−1B [15]. In the present study it is required that
the reduction methods employed are structure-preserving, i.e. retains the physical dofs at the
interfaces. Accordingly, the approach of using Krylov subspace vectors in a component mode
synthesis manner, as described in [21, 22], here denoted KCMS, is adopted. Inserting um = 0
and fs = Bsxs into Eq. (4) results in the following equation of motion for the slave structure:

Mssüs + Kssus = Bsxs. (24)

A Krylov subspace is generated for the slave structure by selecting A = K−1
ss Mss and b =

K−1
ss Bs:
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Kq

(
K−1

ss Mss,K−1
ss Bs

)
= span

K−1
ss Bs︸ ︷︷ ︸
V 1

k

,
(
K−1

ss Mss

)
K−1

ss Bs︸ ︷︷ ︸
V 2

k

, ...,
(
K−1

ss Mss

)q−1 K−1
ss Bs︸ ︷︷ ︸

V q
k

 , (25)

and the approximation of the slave dofs in KCMS is given by

us = −K−1
ss Ksmum +

∑
V i

k ξi = Ψum + Vkξ, (26)

one which is similar to that of component mode synthesis by Craig–Bampton shown in Eq. (18),
but with the eigenmodes of the slave structure exchanged for the Krylov subspace vectors as
defined in Eq. (25). This results in the transformation of the state vector for KCMS[

um

us

]
=

[
I 0
Ψ Vk

] [
um

ξ

]
= TKCMS

[
um

ξ

]
, (27)

defining the transformation matrix TKCMS. In order to avoid numerical issues, the Krylov sub-
space is generated by using the Arnoldi algorithm with modified Gram-Schmidt orthogonaliza-
tion [14], which creates a set of linearly independent vectors. Calculating the starting vector b
requires that Bs, which describes the spatial load distribution on the slave structure, be selected.
In the present study, a substructuring approach for the modelling of multi-storey buildings is
adopted. Smaller parts of such buildings are considered as being substructures of these, most of
these substructures having no loads that act upon the slave structure. Accordingly, a fictitious
load needs to be selected, in the present study a random distribution being used for this.

In contrast to CMS, which includes eigenmodes of the full model as Ritz basis vectors, no
eigenvalue extraction is required for creating reduced models by means of the KCMS method.
Consequently, it is less costly to create the reduced models employing KCMS and in application
where the computation time of this process is of importance, this gives KCMS an advantage over
CMS.

Improved component mode synthesis
The two component mode synthesis methods described above are obtained by complement-
ing Guyan reduction by a set of Ritz basis vectors for the slave structure, these being either
eigenmodes or Krylov subspace vectors. IRS can be seen as representing an improvement as
compared to Guyan reduction, an improvement that can also be applied to the component mode
synthesis methods employed here. The transformation matrices of the improved component
mode synthesis methods, improved CMS and improved KCMS (ICMS and IKCMS, respec-
tively), can be obtained by simply replacing the basis vectors of Guyan reduction by the basis
vectors of IRS:

TICMS =
[
TIRS Φ̂

]
; Φ̂ =

[
0
Φ

]
, (28)

TIKCMS =
[
TIRS V̂k

]
; V̂k =

[
0

Vk

]
, (29)
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where TIRS can be given either by the original form of IRS, Eq. (14), or its iterated version,
Eq. (16). The use of IRS instead of Guyan reduction can be expected to improve the dynamic
behaviour of the reduced models, at the expense of introducing errors in static analyses.

2.2 Generalised methods
The generalised versions of the reduction methods (denoted here by a “g-” in the method names)
are obtained by re-formulating the equation of motion. Instead of using the block-partitioning
of the system matrices in Eq. (4), the following partitioning is employed:

[
Mm Ms

] [üm

üs

]
+
[
Km Ks

] [um

us

]
=

[
fm
fs

]
, (30)

with the non-square submatrices Km,Mm ∈ Rn×m and Ks,Ms ∈ Rn×s. A drawback of the
generalised versions of the methods, in comparison to the original versions, is the increased
computational resources needed to construct the reduced models, since this requires the gener-
alised inverses of matrices that are very large.

Generalised Guyan reduction
In the same manner as in Eq. (5) and Eq. (6), the inertia terms in Eq. (30) are neglected when
solving for the slave dofs, resulting in the following transformation of the state vector for gen-
eralised Guyan (g-Guyan) reduction:[

um

us

]
=

[
I

−K+
s Km

]
um = Tg-Guyanum, (31)

where K+
s =

(
KT

s Ks

)−1 KT
s is the generalised left-inverse of Ks and Tg-Guyan is the transfor-

mation matrix. Note that in the approximation of the slave dofs it is assumed that there are no
loads that act on either the master dofs or the slave dofs, fm = 0 and fs = 0, respectively, in
contrast to the original Guyan reduction, in which only fs = 0 needs to be assumed.

Generalised dynamic reduction
Through use of an approach corresponding to the derivation of g-Guyan reduction, the transfor-
mation matrix of generalised dynamic (g-dynamic) reduction, Tg-Dynamic, can be defined as[

ûm

ûs

]
=

[
I

−D+
s (ω) Dm (ω)

]
ûm = Tg-Dynamicûm, (32)

where Ds (ω) = −ω2Ms + Ks and Dm (ω) = −ω2Mm + Km.

Generalised improved reduction system (g-IRS)
The transformation matrix of generalised IRS is obtained by including the inertia terms found
in Eq. (30) as pseudo-static forces, using approximations corresponding to those employed in
Eq. (11) and Eq. (12), resulting in

Tg-IRS = Tg-Guyan + ŜMTg-GuyanM−1
g-GuyanKg-Guyan, (33)

Ŝ =

[
0

K+
s

]
, (34)

10



where MGuyan and KGuyan are the reduced stiffness- and mass matrices obtained by employing
g-Guyan reduction. g-IRS can also be extended to produce an iterative scheme in the same
manner as in the original IRS, where the transformation matrix for the ith iteration is given by

Tg-IRS,i+1 = Tg-Guyan + ŜMTg-IRS,iM−1
g-IRS,iKg-IRS,i, (35)

and the iterations are started by calculating Tg-IRS,1 according to Eq. (33).

Generalised component mode synthesis
The generalised versions of Guyan reduction and IRS can be used to obtain the transformation
matrices for the generalised versions of CMS, KCMS, ICMS and IKCMS (g-CMS, g-KCMS,
g-ICMS and g-IKCMS, respectively)

Tg-CMS =
[
Tg-Guyan Φ̂

]
, (36)

Tg-KCMS =
[
Tg-Guyan V̂k

]
, (37)

Tg-ICMS =
[
Tg-IRS Φ̂

]
, (38)

Tg-IKCMS =
[
Tg-IRS V̂k

]
, (39)

where Φ̂ and V̂k are defined in Eq. (28) and Eq. (29), respectively.

2.3 Summary of methods
Table 1 summarises the methods for model order reduction which are presented above and
investigated in the numerical examples.

3 Numerical examples
This section considers two numerical examples in which different model order reduction meth-
ods are applied to FE models of wooden floor structures. In the first example, a model of
moderate size created in Abaqus is studied. The system matrices were exported to Matlab,
where the reduction methods described in Section 2 were employed, the reduced models that
resulted being analysed. The second example concerns a large and detailed model that was both
created and analysed in Abaqus, using reduction methods implemented in the software together
with an alternative approach involving use of structural elements. In both examples, two types
of analyses were performed: eigenvalue analysis and steady-state analysis. The eigenvalue
analysis was performed in a free-free state, i.e. without any displacements of the physical dofs
being prescribed. The rigid body eigenmodes that occur in a free-free state are disregarded in
the results that are presented. A steady-state analysis was performed to investigate the vibra-
tion transmission found in the reduced floor models when realistic boundary conditions were
involved, these being accomplished by connecting the reduced models to the top of a pair of
wall panel models. The displacement spectrum for one of the wall panels was analysed when a
unit load was applied to the other panel.
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Condensation methods
Method name Abbrevation
Guyan reduction –

Dynamic reduction –

Improved reduction system IRS

Generalised Guyan reduction g-Guyan reduction

Generalised dynamic reduction g-dynamic reduction

Generalised IRS g-IRS

Hybrid methods
Method name Abbrevation
Component mode synthesis by Craig–Bampton CMS

Improved CMS ICMS

Krylov subspace component mode synthesis KCMS

Improved KCMS IKCMS

Generalised CMS g-CMS

Generalised ICMS g-ICMS

Generalised KCMS g-KCMS

Generalised IKCMS g-IKCMS

Table 1: The model order reduction methods presented in Section 2 and investigated in Sec-
tion 3.

3.1 Error quantities
Both the eigenfrequencies and the eigenmodes of the reduced models were studied in the eigen-
value analysis carried out. The eigenfrequencies were compared with those of the full (non-
reduced) model in terms of the normalised relative frequency difference (NRFD) and the eigen-
modes with those of the full model in terms of the modal assurance criterion (MAC). To obtain
a measure for the displacement spectrum of the whole receiver wall panel in the steady-state
analysis, a root mean square (RMS) value for the displacement magnitudes in all the nodes of
the panel was calculated for each of the frequency steps.

Normalised relative frequency difference (NRFD)
The NRFD of the ith eigenfrequency is defined as

NRFD =

∣∣∣f red
i − f full

i

∣∣∣
f full
i

· 100, (40)

where f full
i is the eigenfrequency of the full model and f red

i is the eigenfrequency of the reduced
model. This quotient is multiplied by 100 to obtain the NRFD value as a percentage.
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Modal assurance criterion (MAC)
The MAC value for the jth eigenmode of the reduced model, Φred

j , as compared with the ith
eigenmode of the full model, Φfull

i , is defined as

MAC =

∣∣∣(Φred
j )T (Φfull

i )
∣∣∣2

(Φred
j )T (Φred

j )(Φfull
i )T (Φfull

i )
. (41)

The eigenmodes of a reduced model often appear in shifted order as compared with the full
model. Accordingly, each of the eigenmodes of a reduced model is compared with each of
eigenmodes of the full model, within the frequency range which is specified.

Root mean square (RMS)
For any given excitation frequency f in the steady-state analysis, the RMS value is defined here
as

URMS(f) =

√√√√ 1

ndof

ndof∑
i=1

Ui(f)2, (42)

where Ui(f) is the magnitude of the complex amplitude for the ith displacement dof and ndof

is the number of displacement dofs of the receiver wall panel. A normalised error of the RMS
value for a reduced model, U red

RMS , as compared with the RMS value for the full model, U full
RMS ,

can be calculated as

U error
RMS(f) =

∣∣∣U red
RMS(f)− U full

RMS(f)
∣∣∣

U full
RMS(f)

· 100. (43)

Calculating the error for each excitation frequency enables an error spectrum to be obtained.
Since the error spectra typically fluctuate to a marked degree, the result plots used for comparing
the different reduction methods make use of averaged error spectra. The errors are averaged by
sweeping a 20 Hz wide window over the frequency range and calculating the mean value of the
spectrum inside the window for each frequency. Accordingly, the frequency range of the plots
is one of 10-90 Hz.

3.2 Numerical example 1: A moderate-sized floor structure

In the first numerical example, a model of a 2445×4090 mm2 large floor structure was studied.
The structure consisted primarily of five load-bearing wooden beams, using a centre-to-centre
distance of the successive beams from one another of 600 mm, supporting a particle board
surface. At the two shorter sides of the floor, wooden beams were placed perpendicular to the
five beams just referred to, creating a box-like structure. Each of these wood beams had a cross-
section of 45×220 mm2 and was modelled using an orthotropic material model possessing the
properties shown in Table 2. The particle board had a thickness of 22 mm and was modelled
using an isotropic material model having the properties shown in Table 3. The structure was
meshed using 20-node brick elements with quadratic interpolation, resulting in 30,807 dofs.
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Figure 1: The mesh of the floor structure in numerical example 1.

E1 E2 E3 G12 G13 G23 ν12 ν13 ν23 ρ

8500 350 350 700 700 50 0.2 0.2 0.3 432

Table 2: The material parameters used for the wooden beams [26], the stiffness parameters
being given in terms of MPa and the density in kg/m3.

E ν ρ

3000 0.3 767

Table 3: The material parameters used for the particle board [26], the modulus of elasticity
being given in terms of MPa and the density in kg/m3.

The mesh, viewed from below, is shown in Figure 1. The structural components shared mesh
nodes at the intersections, the connections thus being modelled as fully interactive.

All the dofs along the centre line on the underside of the outermost beams were selected
as master dofs, resulting in there being 576 master dofs altogether, this representing the mini-
mum number of dofs in the reduced models. Reduced models of the full floor-structure model
were created by employing the 14 methods for model order reduction listed in Table 1. The
dynamic reduction involved a frequency shift of 53.1 Hz, this being the eigenfrequency of the
full model closest to 50 Hz, located at the centre of the frequency range. IRS and the improved
CMS methods were employed in their iterated versions, using three iterations. A total of 50
generalised coordinates were made use of in the hybrid reduction methods employed. Accord-
ingly, 50 eigenmodes were included in the mode-based methods and 50 Krylov vectors in the
Krylov-based methods, resulting in reduced models having 626 dofs.
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The reduced models established by employing all of the reduction methods listed in Table 1
resulted in very similar computation times, the condensation methods resulting in marginally
shorter times compared to the component mode synthesis methods. The similarity can be ex-
plained by the size of the reduced models being similar and the band width of the matrices
being very large for all methods. The computation time for the eigenvalue analysis of each of
the reduced models was approximately 3 % of the computation time for the full model.

3.2.1 Eigenvalue analysis

The NRFD values for the original methods are shown in Figure 2, 19 eigenfrequencies being
included there, this being the number of eigenfrequencies of less than 100 Hz contained in the
full model. The red, yellow and green dashed lines in the figure represent the error levels 10 %,
1 % and 0.1 %, respectively. Guyan reduction provides an acceptable accuracy only for the
first eigenfrequency of the full model, whereas dynamic reduction yields high NRFD values for
each of the eigenfrequencies. CMS and KCMS provide relatively good and very similar results,
the improved variants of both methods increasing the performance appreciably due to the high
degree of accuracy of iterated IRS, quite to be expected since the eigenfrequencies iterated IRS
provides converge in such a way as to reproduce the eigenfrequencies of the full model exactly.

The NRFD values for the generalised methods are shown in Figure 3. As is evident there,
the generalised versions of Guyan reduction and dynamic reduction improve the accuracy as
compared with the original versions. The accuracy of IRS decreases for the lower frequencies
when its generalised version is employed and, consequently, the accuracy of ICMS and IKCMS
decreases as well. The results obtained when employing CMS and KCMS are slightly improved,
however, when use is made of the generalised versions of the two.

In Figure 4, the MAC values for the seven original methods and for the generalised versions
of Guyan reduction, dynamic reduction, CMS and KCMS are shown. A plot comparing the
full model with itself is included in order to demonstrate the orthogonality properties of the
eigenmodes. Since the eigenmodes are non-orthogonal in the dot product, the off-diagonal
terms are not generally zero in value, although this is the case in the example given here (within
the discretization of the MAC plots, the off-diagonal terms being less than 0.1). In agreement
with the NRFD results, the MAC values for the original versions of the Guyan reduction and
the dynamic reduction correlate poorly with the full model, whereas the generalised versions
show a relatively high degree of accuracy. All of the other original reduction methods, except
for CMS, show a high degree of correlation with the full model for each of the eigenmodes.

3.2.2 Steady-state analysis

The setup for the steady-state analysis is shown in Figure 5. The floor models were connected
to the top of two wall panels, the one a source panel and the other a receiver panel, support-
ing each end of the load-bearing beams. The wall panels were modelled as shells provided
with beam stiffeners at successive spacings from one another of 600 mm each, representing a
2500 mm high wood-framed wall having a plaster board surface. The floor models were tied to
the displacement dofs of the wall panels by use of Lagrange multipliers, the bottom edge of the
wall panels being fixed. A unit point load in all three directions, shown by the yellow arrows in
the figure, was applied to the source panel. The displacements of the receiver wall panel were
evaluated in accordance with Eq. (42) for excitation frequencies of up to 100 Hz.
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Figure 2: NRFD values for the original model order reduction methods applied to numerical
example 1.
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Figure 3: NRFD values for the generalised model order reduction methods applied to numerical
example 1.
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Figure 4: MAC values for the different model order reduction methods applied to numerical
example 1.
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Figure 5: The setup for the steady-state analysis in numerical example 1.

The averaged error of the RMS values obtained using the original methods and the gener-
alised methods is shown in Figure 6 and Figure 7, respectively. The dashed black line in both
figures indicates the 10 % error level. In studying Figure 6, one can note that the frequency shift
in dynamic reduction strongly affect the performance. Whereas Guyan reduction (correspond-
ing to a 0 Hz shift) generates lower errors when the frequencies involved are lower, dynamic
reduction results in the degree of errors being lowest at around 50 Hz, close to the frequency
shift selected. CMS and KCMS can be seen to behave very similarly at the higher frequencies,
whereas at the lower frequencies the latter is more accurate. In contrast to the results of the
eigenvalue analysis, ICMS and IKCMS lower the level of performance for most frequencies as
compared with conventional CMS and KCMS. In Figure 7, one can note that the accuracy of
Guyan reduction and of dynamic reduction is appreciably greater with use of the generalised
versions of these. The accuracy of KCMS decreases markedly at lower frequencies and in-
creases at the higher frequencies when the generalised version of it is employed. As can be seen
by comparing the results in Figure 6 and Figure 7, there is, generally speaking, a lesser degree
of spread among the results for the different reduction methods when their generalised versions
are employed.

In Table 4, the maximum and the mean errors for the frequency range as a whole (without
averaging) are shown for both the original and the generalised methods. As is evident, using
the generalised versions only has a strong positive effect in the case of Guyan reduction and of
dynamic reduction. For most of the hybrid methods, use of the generalised versions leads to
a reduction in performance. Of all the reduction methods, it is KCMS that provides the most
accurate results in terms both of average and of maximum error levels.
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Figure 6: Averaged errors of the RMS values for numerical example 1, as determined with use
of the original model order reduction methods.
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Figure 7: Averaged errors of the RMS values for numerical example 1, as determined with use
of the generalised model order reduction methods.
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Model Mean error [%] Maximum error [%]

Guyan reduction 37.7 276
g-Guyan reduction 8.26 35.0
Dynamic reduction 106 1120
g-dynamic reduction 7.49 54.6
IRS 6.52 39.4
g-IRS 5.70 37.5
CMS 3.26 20.9
g-CMS 3.35 27.0
ICMS 4.81 63.4
g-ICMS 4.18 33.9
KCMS 2.92 20.2
g-KCMS 3.21 27.8
IKCMS 4.96 42.6
g-IKCMS 7.67 98.1

Table 4: Average and maximum error levels of the RMS values obtained for the reduction
methods applied to numerical example 1.

3.3 Numerical example 2: A large two-span floor structure
In the second numerical example, a model of an experimental floor structure that was compared
with measurements in [26] was studied. The 3645×9045 mm2 large floor structure consists
of seven load-bearing wooden beams, at a centre-to-centre distance of the successive beams
from one another of 600 mm, supporting a particle board surface, secondary spaced boarding
being attached to the underside of the beams. In the FE model, the wooden beams were placed
perpendicular to the load-bearing beams at the two short sides of the floor, creating a box-
like structure, in contrast to the experimental structure in which the ends of the beams were
free. Each of the wooden beams had a cross-section of 45×220 mm2 and was modelled using
an orthotropic material model having the properties shown in Table 2. The secondary spaced
boarding had a cross-section of 28×70 mm2 and was modelled as having the same material
properties as the wooden beams. The particle board had a thickness of 22 mm and was modelled
using an isotropic material model possessing the properties shown in Table 3. The structure was
meshed using 20-node brick elements with quadratic interpolation, resulting in 632,820 dofs.
The mesh, as viewed from below, is shown in Figure 8. The structural components shared mesh
nodes at the intersections, the connections thus being modelled as fully interactive.

For reasons of efficiency, it is desirable to connect the floor structure to other structures at
discrete points so as to minimise the number of physical dofs retained in the reduced models.
Discrete point connections require that rotational dofs fulfil conditions of compatibility. To
create rotational coupling in the case of the solid elements, 173 additional nodes, indicated by
the yellow crosses in Figure 8, having both displacement dofs and rotational dofs, were created.
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Figure 8: The mesh of the floor structure model in numerical example 2.

These nodes were connected to the neighbouring mesh nodes under conditions of rigid beam
constraints, the rotational dofs thus being connected to the rotations of the structure as a whole.
The experimental structure has both a mid-span support and end supports. To provide for a
modelling of all of the supports, the model has additional nodes possessing rotational dofs both
along the underside of the outermost beams and at the middle of the load-bearing beams. The
dofs at the 173 additional nodes served as master dofs in the model order reduction, resulting
in 1038 master dofs. The model was reduced by use of the two model order reduction methods
implemented in Abaqus: Guyan reduction and CMS. The number of eigenmodes retained in the
CMS reduction was varied so as to study the convergence of errors.

When employing the model order reduction methods, computationally effective models are
obtained by reducing the size of the large system matrices obtained by use of detailed FE mod-
els. As an alternative, smaller systems can be constructed directly by use of structural finite
elements, beam or shell elements, for example, assumptions being made regarding the kine-
matic relations and the equilibrium equations involved. These assumptions can turn out to have
no more than a negligible effect in static analysis if one or two dimensions of the structure are
significantly smaller than the other or others. In dynamic analysis, however, the constraints im-
plied by beam and shell theory can have a strong effect on the structural behaviour in the case
of higher frequencies. A structural FE model of the floor structure was created by modelling the
panels and the wooden beams in terms of Reissner-Mindlin shell elements, and the secondary
spaced boarding in terms of Timoshenko beam elements. The two theories involved allow for
shear deformation of the normal to the shell plane and of the beam axis, respectively. Further
discussion of the beam and the shell theory can be found in e.g. [5, 27]. The structural-element
model was meshed with 720 beam elements and 3,312 shell elements, resulting in 24,762 dofs.

Table 5 shows the size (number of dofs) of the reduced models as well as the computation
times obtained for a Lanczos eigenvalue analysis of the 55 first eigenmodes and a steady-state
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Model Size Time [s] Time [s]
(number of dofs) (eigenvalue anal.) (steady-state anal.)

Full model 632820 590 220000
Structural elements 24762 7.6 1200
Guyan reduction 1038 3.1 410
CMS, 10 re* 1048 3.2 410
CMS, 20 re* 1058 3.2 410
CMS, 50 re* 1088 3.7 420
CMS, 100 re* 1138 5.5 440
CMS, 200 re* 1238 5.7 480
CMS, 500 re* 1538 8.5 620
CMS, 1000 re* 2038 15 970

Table 5: The size and computation times, both for eigenvalue analyses and steady-state anal-
yses, of the reduced models analysed in connection with numerical example 2, the analyses
running on one core of an Intel Xeon W3530 CPU of 2.80 GHz, having 10 GB of RAM mem-
ory available. *retained eigenmodes

analysis involving 200 steps. The analyses were carried out employing Abaqus/Standard. It can
be observed that the computation times are affected by increasing the number of eigenmodes
retained in the CMS reduction, the retaining of 1000 eigenmodes (a duplication of the num-
ber of dofs compared to Guyan reduction) resulting in the computation times being increased
significantly. The number of eigenmodes retained is, of course, a trade-off between accuracy
and computational cost, the gain in accuracy being illustrated in the analysis results presented
below. It is, however, not possible to estimate the number of eigenmodes required for obtain-
ing a certain accuracy without analysing the full model. Moreover, it can be observed that the
computation times for both types of analyses of the structural elements model is similar to those
for a model reduced with CMS where 500-1000 eigenmodes are retained, in spite of the former
model being over 10 times larger. This is a consequence of the transformation of the system
matrices involved in model order reduction, destroying the narrow bandwidth of matrices con-
structed with the FE method.

3.3.1 Eigenvalue analysis

Figure 9 shows the NRFD values for the reduced models, including CMS when 10, 100 and
1000 eigenmodes are retained. The red, yellow and green dashed lines in the figure show the
error levels of 10 %, 1 % and 0.1 %, respectively. The results included 55 eigenfrequencies,
which is the number of eigenfrequencies of the full model up to 100 Hz. Guyan reduction as-
sesses only the lowest eigenfrequencies of the full model with an acceptable level of accuracy.
Use of CMS in which 10 eigenmodes are retained improves the accuracy obtained for the first
20 eigenmodes, but is inaccurate for the remaining eigenmodes. When 100 eigenmodes are re-
tained, relatively accurate results can be obtained for all of the eigenfrequencies, the retaining of
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Figure 9: NRFD values for the different reduction methods applied to numerical example 2.

1000 eigenmodes resulting in very small errors. Use of structural elements results in relatively
large errors, although the errors are less frequency-dependent than when any of the model order
reduction methods are employed.

Figure 4 shows the MAC values obtained with use of the reduced models, including CMS
when 10, 50, 100, 500 and 1000 eigenmodes are retained, as well as the full model being com-
pared with itself. For practical reasons, only the master dofs of the reduced models were used
for evaluating the eigenmodes. In comparing the plots, it could be noted that the MAC values
of the higher eigenmodes were improved with use of CMS when the number of eigenmodes
retained was increasing. Whereas Guyan reduction (no eigenmodes retained) only succeeds in
modelling a few of the eigenmodes in the full model accurately, the MAC plot for CMS when
1000 eigenmodes are retained is identical to the MAC plot for the full model. The structural
element model only models a few of the eigenmodes of the full model with a high degree of
accuracy. The correlation there with results of the full model is better for the higher frequencies,
however, than is the case of Guyan reduction or CMS when only a few eigenmodes are retained.

3.3.2 Steady-state analysis

The transmission of vibrations was studied using the same approach as in the first numerical
example, shown in Figure 5, where the floor models were connected to the top of two wall
panels, the one a source panel and the other a receiver panel, supporting each end of the load-
bearing beams. The floor models were, in the second numerical example, connected to a third
wall panel located at the centre of the floor models through the nodes in the middle of the load-
bearing beams. Both the displacement dofs and rotational dofs of the wall panels were linked to
the floor models by use of Lagrange multipliers, except in the case of the mid-span wall panel,
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Figure 10: MAC values for the reduction methods employed in connection with numerical
example 2.

at which only the displacement dofs were connected. A unit point load in all three directions
was applied to the source panel, the displacements at the receiver panel being evaluated for
excitation frequencies of up to 100 Hz by use of Eq. (42).

The averaged error of the RMS values for the reduced models, including CMS when 10, 100
and 1000 eigenmodes are retained, is shown in Figure 11. The dashed black line indicates the
10 % error level. Guyan reduction was found to produce large errors for most of the frequencies.
Use of CMS in which 10 eigenmodes were retained was found to produce large errors as well,
whereas CMS in which 100 eigenmodes were retained was found to be relatively accurate for
most of the frequencies. A reduced model in which close to 1000 eigenmodes were retained
was needed, however, to obtain satisfactory results for higher frequencies. As in the eigenvalue
analysis, the structural element model was found to produce relatively large errors, but with a
lesser frequency dependence than for the other methods.

The maximum and the mean error values obtained for the frequency range as a whole (with-
out averaging) are shown in Table 6. As can be seen, the levels of error converge when the
number of retained eigenmodes employed in the CMS reduction is increased. When as many
as 50 eigenmodes are included, there is a large reduction in the error as compared with Guyan
reduction, in spite of the CMS model being only 5 % larger. The convergence is slower when
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Figure 11: Averaged errors of RMS values obtained for the model order reduction methods used
in connection with numerical example 2.

a greater number of eigenmodes are retained, but as shown in Figure 11, at higher frequencies
a greater number of eigenmodes are required in order to obtain accurate results. It could also
be observed that including a greater number of retained eigenmodes can result in an increase
in the maximum error. Consequently, for a given frequency, increasing the number of retained
eigenmodes does not necessarily result in a decrease in the level of error involved.

4 Conclusions
The objective of the analyses carried out in the present investigation was to evaluate the perfor-
mance of a wide range of methods for model order reduction by comparing their accuracy and
computational cost when applied to detailed FE models of floor and wall structures. In the first
numerical example, it was evident that an eigenvalue analysis of the structure in a free-free state
is insufficient for analysing the performance of the different reduction methods. A sensitivity
of certain of the reduction methods to boundary conditions was demonstrated, differing obser-
vations being made regarding the accuracy of the methods in question in the two analyses: the
eigenvalue analysis and the steady-state analysis. This shows the need for the reduced models
to be analysed with use of realistic boundary conditions, such as in the case of the steady-state
analyses that were considered here.

As was expected, Guyan reduction delivered acceptable results only at frequencies close to
the lowest eigenfrequencies of the system, due to the method’s static nature. Dynamic reduction
was only found to be accurate close to the frequency shift selected and provided inaccurate
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Model Mean error [%] Maximum error [%]

Structural elements 34.9 61.4

Guyan reduction 113 349

CMS, 10 retained eigenmodes 33.1 114

CMS, 20 retained eigenmodes 11.5 38.4

CMS, 50 retained eigenmodes 7.75 16.3

CMS, 100 retained eigenmodes 6.88 21.4

CMS, 500 retained eigenmodes 3.86 8.92

CMS, 1000 retained eigenmodes 3.38 7.61

Table 6: Average and maximum errors of the RMS values obtained in connection with numeri-
cal example 2.

results at frequencies differing to any appreciable extent from this. Iterated improved reduction
system (IRS) provided considerably better results than the other condensation methods.

In both numerical examples, component mode synthesis by Craig-Bampton (CMS) proved
to be an effective method. The Krylov subspace component mode synthesis (KCMS) method
used in the present study was found to be a good alternative as compared with CMS, the two
methods offering comparable accuracy. Using IRS to create the improved variants of CMS and
KCMS (ICMS and IKCMS, respectively) enabled the accuracy in terms of eigenfrequencies and
eigenmodes to be improved appreciably, although at the same time the errors in the steady-state
analysis were found to increase, indicating the improved variants to possibly be more sensitive
to the boundary conditions introduced in the analysis.

The performance of Guyan reduction and of dynamic reduction was found to clearly be
improved by use of the generalised versions of these methods. For the remaining methods, the
accuracy was only marginally affected by use of the generalised versions and, for most of the
methods, it was decreased at lower frequencies.

The alternative approach of using structural finite elements was found to result in relatively
large errors, the computation time, however, being significantly shorter considering the size of
the model. The structural element model can, however, be optimised further regarding such
matters as the selection of structural element types and the connections involved.
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[2] Nowakowski C., Kürschner P., Eberhard P., Benner P. Model reduction of an elastic
crankshaft for elastic multibody simulations. J Appl Math and Mech, 2013;93(4):198-216.

[3] Koutsovasilis P., Beitelschmidt M. Comparison of model reduction techniques for large
mechanical systems. Multibody Syst Dyn, 2008;20(2):111-128.

[4] Witteveen W. On the modal and non-modal model reduction of metallic structures with
variable boundary conditions. World J Mech, 2012;2(6):311-324.

[5] Bathe K.J. Finite element procedures. Prentice Hall, New York, 1996.

[6] Arnold R.R., Citerley R.L. Application of Ritz vectors for dynamic analysis of large struc-
tures. Comput Struct, 1985;21(5):901-907.

[7] Guyan R.J. Reduction of stiffness and mass matrices. AIAA J, 1965;3:380.

[8] Leung A.Y.T. An accurate method of dynamic condensation in structural analysis, Int J
Numer Methods Eng, 1978;12:1705–1715.

[9] O’Callahan J. A procedure for an improved reduced system (IRS) model. Proc 7th Int
Modal Anal Conf, 1989;17–21.

[10] Friswell M.I., Garvey S.D., Penny J.E.T. Model reduction using dynamic and iterated IRS
techniques. J Sound Vib, 1995;186:311–323.

[11] O’Callahan J., Avitabile P., Riemer R. System equivalent reduction expansion process
(SEREP). Proc 7th Int Modal Anal Conf, 1989;29–37.

[12] Craig R.R. Structural dynamics – An introduction to computer methods. John Wiley &
sons Inc., New York, 1981.

[13] Craig R.R., Chang C.J. A review of substructure coupling methods for dynamic analysis.
Adv Eng Sci, 1976;2:393-408.

[14] Lohmann B., Salimbahrami B. Introduction to Krylov subspace methods in model order
reduction. Methods Appl Autom, 2003;1-13.

[15] Salimbahrami B., Lohmann B. Order reduction of large scale second-order systems using
Krylov subspace methods. Linear Algebra Appl, 2006;415(2):385-405.

[16] Benner P. Numerical linear algebra for model reduction in control and simulation. GAMM
Mitt, 2006;29(2):275-296.

[17] Reis T., Stykel T. Balanced truncation model reduction of second-order systems. Math
Comput Model Dyn Syst, 2008;14(5):391-406.

27



[18] Craig R.R., Bampton M. Coupling of substructures in dynamic analysis. AIAA J,
1968;6:1313–1319.

[19] MacNeal R.H. A hybrid method of component mode synthesis. Comput Struct,
1971;1(4):581-601.

[20] Rubin S. Improved component-mode representation for structural dynamic analysis.
AIAA J, 1975;13:995-1006.

[21] Koutsovasilis P., Beitelschmidt M. Model order reduction of finite element models: im-
proved component mode synthesis. Math Comput Model Dyn Syst, 2010;16(1):57–73.
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Abstract
Accurately modelling the dynamic behaviour of multi-storey buildings in wood requires the ge-
ometry involved to be represented in great detail, resulting in systems having many millions of
degrees of freedom. Consequently, there is a need for model order reduction and the method-
ology of substructure modelling is employed here to create reduced models for analysis of
low-frequency vibrations. The full finite element model of a building is divided into substruc-
tures which are reduced in size before being assembled to form the global model. The efficiency
of the reduced models is strongly dependent on the number of degrees of freedom at the inter-
face surfaces of the substructures, why it may be necessary to perform interface reduction of
some sort. Multi-storey buildings in wood are often constructed with elastomer layers sepa-
rating the structural components, these offering a natural choice of dividing the buildings into
substructures. In this paper, the methodology of introducing a condensation node is adopted for
employing interface reduction at the interfaces between the elastomer layers and the structural
components in wood. Different methods of coupling the condensation node to the interface
surfaces were compared in a test model consisting of a floor-ceiling structure in wood, where
the floor and the ceiling are separated by elastomer blocks. It was concluded that a rigid cou-
pling is the most appropriate choice for the interface surfaces of the elastomer blocks, while a
distributed coupling provides the most accurate results for the interface surfaces of the floor and
the ceiling.

Keywords: Multi-storey buildings; Vibrations; Finite element method; Substructure modelling;
Interface reduction

1 Introduction
In 1994, a century-old ban on the construction of wooden buildings more than two storeys in
height in Sweden was lifted, leading to the reintroduction of such buildings. The use of wood
as a construction material in fact has many advantages. The lightweight properties of wood, for
example, lower the material transportation costs involved and reduce the size of the foundations
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needed [1]. In addition, the energy consumption which occurs during the construction and the
lifecycle of wooden buildings is lower than that of concrete buildings of comparable size [2].
At the same time, however, it is more difficult to build lightweight structures of wood in such a
way that noise and disturbing vibrations in the different storeys and rooms is avoided, especially
at low frequencies. The vibrations can be caused by, for example, footsteps, airborne sound,
vibrating machines and external sources such as railway and road traffic.

To produce buildings of high performance regarding vibrations and structure-borne sound, it
is desirable to have tools for predicting the effects of structural modifications prior to construc-
tion. Testing prototypes and performing experiments is both time-consuming and expensive.
The long-term aim is therefore to develop prediction tools making use of finite element (FE)
models that are valid for general load-cases. Accurately assessing the dynamic behaviour of
lightweight multi-storey buildings requires use of FE models representing the geometry in con-
siderable detail, resulting in very large models, the number of degrees of freedom (dofs) of
which easily exceeds the limits of computer capacity. The question arises then of how such
FE models can be reduced in size while at the same time being able to represent the dynamic
characteristics of the building or buildings in question with sufficient accuracy. In the study,
multi-storey buildings in wood are modelled by adopting a substructuring approach, in which
the FE model of the full geometry is divided into substructures, these being reduced in size by
employing some model order reduction method and coupled to form a reduced global model.

The methodology of substructuring originates from the component mode synthesis (CMS)
by Craig and Bampton, presented in [3]. It is a suitable methodology for constructing reduced
order models of structures which are divided into components in a natural way, such as engines
and turbines, when the flexibility of each component has to be accounted for. A set of inter-
face nodes, required for coupling of the substructures, are identified for the FE model of each
substructure. The dofs at the interface nodes are retained when employing model order reduc-
tion, the other dofs being eliminated. Model order reduction is a Ritz procedure [4], selecting
a number of basis vectors to approximate the deflection of the full model. Usually, the reduced
models include deflection patterns caused by static loads acting on each interface dof, resulting
in exact responses for static load cases. The dynamics of the eliminated dofs are approximated
by including a set of additional Ritz basis vectors, in CMS by Craig and Bampton selected to
be the eigenmodes of the substructure having the interface dofs constrained. Other model or-
der reduction methods, offering alternative methods for selecting the Ritz basis vectors have
been proposed and the efficiency of different reduction methods has been evaluated for various
types of structures in [5–9]. In general, the reduced system matrices have large bandwidths,
making substructures with more than a few thousand dofs infeasible to analyse. It can therefore
be necessary to restrict the number of interface dofs of each substructure, which can be rather
large in case the substructure is in contact with the surroundings at surfaces with dense node
distribution.

In a methodology commonly adopted for interface reduction, an additional node, referred
to as a condensation node, is introduced to act as the interface to other substructures. The
condensation node has both translational and rotational dofs, resulting in six dofs in a three-
dimensional analysis, and is coupled to the nodes of the interface surface by some constraints.
The coupling between a condensation node and the interface surface can be realised in different
ways, a rigid body constraint for the interface surface being the most common option. Alterna-
tively, the forces and moments acting on the condensation node can be distributed to the nodes
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of the interface surface by certain weight factors, resulting in the motion of the condensation
node being a weighted average of the motion of the interface dofs. The two different types of
coupling will be referred to here as rigid coupling and distributed coupling. These types of cou-
plings are investigated in [10] and their respective advantages and drawbacks discussed. Rigid
coupling will introduce additional stiffness in the model while distributed coupling is likely to
underestimate the stiffness since it allows for sliding and penetration of the contact surfaces.

It should be noted that interface reduction is independent of the model order reduction of a
substructure. The interface reduction will on the other hand affect the efficiency of the model
order reduction since the Ritz basis vectors generated by a certain model order reduction method
will be affected by the constraints imposed in the interface reduction. A number of studies have
been presented in which the methodology of a condensation node is employed, for example,
using rigid coupling in [11–13], distributed coupling in [14–16] and a combination of both
types of couplings in [17]. There is, however, a lack of publications comparing the efficiency
of different types of couplings for interface reduction. Moreover, the efficiency of different
couplings are likely to vary to a great extent for different problems.

1.1 Timber Volume Elements
The lightweight properties of wood simplify the use of prefabrication in the construction process
compared to conventional concrete buildings. A type of prefabricated multi-storey building in
wood, increasing in popularity in Sweden, is timber volume element (TVE) buildings. A TVE
is a prefabricated module consisting of floor-, roof- and wall elements completed with electri-
cal installations, flooring, cabinets, wardrobes, finishing etc. Each TVE typically constitutes a
small apartment, one room or part of a larger room. The TVEs are transported to the construc-
tion site where they are stacked to form a complete building. In Figure 1, the conceptual layout
of a TVE building is illustrated, and in Figure 2, drawings of junctions between a floor-ceiling
structure and an apartment separating wall (to the left) and a façade wall (to the right) are shown.
An advantage regarding vibrations and acoustic performance is that a floor is structurally sep-
arated from the ceiling of the storey below; the upper volume contains the floor whereas the
lower volume comprises the ceiling. In between volumes, elastomer blocks are placed on the
flanks to reduce the vibration transmission through the junctions. The elastomers are frequency
dependent visco-elastic materials, the properties of such a material being determined in [18].
The major structural connection between adjacent volumes is by means of the elastomers, the
only additional connection being through a few tie plates used to fixate the TVEs.

1.2 Objective
The studies presented in the paper provide important input to a project aiming at enabling the
modelling of an assembly of TVEs. A FE model of a single TVE, meshed to behave accurately
up to 200 Hz, contains millions of dofs. Hence, model order reduction is required to analyse
a complete assembly of modules, even when powerful computational resources available. The
TVE buildings, consisting of stacked volume elements coupled by small elastomer blocks, is
suitable for substructure modelling, considering each module as a substructure. Since the ma-
terial properties of the elastomers are frequency-dependent, the blocks cannot be included in
conventional substructures, which are described by constant, frequency-independent, system
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Figure 1: Sketch of a TVE building [19]. The path of structural vibrations between storeys is
illustrated in the figure to the left and an elastomer block is illustrated in the figure to the right.

Figure 2: Drawings of the TVE building system, showing sections of a floor-ceiling structure
and junctions with an apartment separating wall (left) and a façade wall (right).

matrices. Consequently, elastomer blocks will act as coupling elements, connecting the TVEs
in the assembly of substructures.

Although a TVE is in contact with elastomer blocks only at small part of its surface, there
is still a need for interface reduction since the TVEs can be connected to more than a hundred
elastomer blocks, resulting in the total number of interface nodes being large. The methodology
of using a condensation node is therefore employed to obtain efficient coupling of the substruc-
tures. Condensation nodes will be created both for the interface surfaces of the elastomer blocks
and the TVEs. The displacement field of the elastomer blocks is not of interest, why the models
of the elastomers can be modelled as some sort of coupling elements, describing the transfer
function between the condensation nodes on each side of the blocks. Such an approach is de-
scribed in Section 3. Section 4 presents a test model which was used for investigating how
different methods for interface reduction affect the vibrations transmitted from a floor structure
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to the ceiling below, having a geometry of the type found in TVE buildings. The models were
created and analysed in the commercial FE software Abaqus.

2 Governing theory
When a model has been divided into substructures, two main issues have to be considered: se-
lecting a reduced basis for each substructure and defining efficient coupling of the substructures.
This section describes the general theory of model order reduction and, in specific, the method
of CMS by Craig and Bampton, commonly employed in substructure modelling. Moreover,
a mathematical description is presented for the constraints involved in the interface reduction
methods employed in the studies presented in this paper.

2.1 Model order reduction
Assuming linear deformations, the dynamics of each substructure can be described by a FE
system of equations of the following form [20]:

Mü + Cu̇ + Ku = f, (1)

where M, C, K ∈ Rn×n are the mass, damping and stiffness matrices respectively, f = f (t) ∈
Rn×1 is the load vector and u = u (t) ∈ Rn×1 is the state vector. A dot denotes differentiation
with respect to time, t. The objective of model reduction is to find a system of m dofs in
which m << n, one which preserves the dynamic characteristics of the full model. The general
approach is to approximate the state vector by use of the transformation u = TuR, where
T ∈ Rn×m is a transformation matrix and uR ∈ Rm×1 is a reduced state vector. Applying the
transformation in question to Eq. (1) results in

MRüR + CRu̇R + KRuR = fR, (2)

MR = TTMT, KR = TTKT, CR = TTCT, fR = TT f, (3)

where MR,KR,CR ∈ Rm×m are the reduced mass, damping and stiffness matrices respectively
and FR ∈ Rm×1 is the reduced load vector. The dofs in the reduced state vector can be divided
into two categories: physical dofs and generalised coordinates. Physical dofs are the dofs of
the full system that are retained in the reduction process, whereas the generalised coordinates
represent the amplitudes of various Ritz basis vectors that describe deflection shapes of the full
model that are allowed in the reduced model.

In recent decades, many different model order reduction methods, involving procedures of
varying types for establishing the transformation matrix and the reduced state vector involved,
have been proposed in the literature. Guyan (static) reduction [21], Improved reduction system
(IRS) [22] and CMS by Craig and Bampton [3] and by Craig and Chang [23] are examples
of methods with physical interpretation, specifically developed for problems in structural dy-
namics, while methods based on Krylov subspace iterations [24] and balanced truncation [25],
originating from control theory, can be employed for structural dynamics as well.
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2.1.1 Component Mode Synthesis by Craig and Bampton

The first step in obtaining a system reduced according to CMS by Craig and Bampton is to
perform a static reduction, retaining only the interface dofs. In the derivations below, the in-
terface dofs are referred to as master dofs (m) and the remaining dofs referred to as slave dofs
(s). Partitioning the state vector in terms of the master and slave categories enables the system
matrices in Eq. (1) to be partitioned into sub-blocks as follows:[

Mmm Mms

Msm Mss

] [
üm

üs

]
+

[
Kmm Kms

Ksm Kss

] [
um

us

]
=

[
fm
fs

]
. (4)

Solving the equation in the second row in Eq. (4) for us results in

us = −K−1
ss (Msmüm + Mssüs + Ksmum) , (5)

where it has been assumed that there are no loads acting on the slave dofs, so that fs = 0.
The inertia terms in Eq. (5) are neglected, resulting in the following transformation of the state
vector for Guyan reduction:[

um

us

]
=

[
I

−K−1
ss Ksm

]
um = TGuyanum. (6)

The inertia terms neglected in the condensation are compensates for by including a set of gener-
alised coordinates ξ. These generalised coordinates represent the amplitudes of a set of eigen-
modes for the slave structure, calculated with the master dofs being fixed. Setting um = 0 and
fs = 0 in Eq. (4) and assuming a harmonic solution results in the following eigenvalue problem:

KssΦ = λMssΦ, (7)

which can be solved for the eigenmodes Φ and the eigenvalues λ. A number of eigenmodes ob-
tained from Eq. (7), referred to as retained eigenmodes, are selected as additional basis vectors
to the approximation of the slave dofs in Eq. (6), resulting in

us = −K−1
ss Ksmum +

∑
Φiξi = Ψum + Φξ, (8)

which gives the transformation of the state vector for CMS by Craig and Bampton:[
um

us

]
=

[
I 0
Ψ Φ

] [
um

ξ

]
= TCMS

[
um

ξ

]
. (9)

The accuracy of the reduced model depends upon the selection of retained eigenmodes, cer-
tain eigenmodes having a larger influence than others on the solution of a specific problem.
To obtain a reduced model with as great an accuracy for general load distributions as possi-
ble, however, all the eigenmodes up to some chosen limit should be included, all eigenmodes
below twice the highest frequency of interest being a rule of thumb. Substructures described
by systems of the form in Eq. (9) can be coupled at the interface dofs, um, either by a direct
assembling procedure or by use of Lagrange multipliers [20].
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Figure 3: Illustration of a condensation node (black dot) coupled to the nodes of an interface
surface, the constraints being illustrated by the yellow lines.

2.2 Interface reduction
Without the use of interface reduction, the vector um in Eq. (4) will contain all dofs of the
interface surfaces for a certain substructure, making the model order reduction inefficient in
case the number of interface nodes is large. The efficiency can be improved by coupling the
dofs of each interface surface to a condensation node, as illustrated in Figure 3, resulting in um

containing only the dofs of the condensation nodes. In the simplest approach, a rigid coupling
between an interface surface and its condensation node is assumed, such that the displacements
ui in node i of the interface surface is described by

ui = uc + Θc × rci, (10)

assuming small deformations. uc and Θc are the displacements and rotations of the condensa-
tion node respectively and rci is the vector from the condensation node to node i of the interface
surface. In case two connecting substructures have very different stiffness properties, a rigid
coupling is likely to provide acceptable results for the softer surface. If the additional stiffness
introduced by the rigid coupling, however, results in large errors, a distributed coupling can be
a more suitable alternative. In a distributed coupling, the forces and moments acting on the
condensation node are distributed over the nodes of the interface surface according to

fi = ω̂i

(
fc +

(
T−1 (mc + rc × fc)

)
× ri

)
, (11)

T =
∑
i

ω̂i ((ri · ri) I− (riri)) , (12)

ri = xi − x̄, rc = xc − x̄, (13)

x̄ =
∑
i

ω̂ixi, ω̂i =
ωi∑
i ωi

, (14)

where fi is the force acting on node i of the interface surface, fc and mc are the force and moment
acting on the condensation node, xi and xc are the coordinates of node i and the condensation
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node respectively and ωi is the weight factor for node i. The method of distributing the forces
and moments leads to the motion of the condensation node being a weighted average of the
displacements in the interface surface nodes,

uc =
∑
i

ω̂iui, (15)

Θc =
∑
i

ω̂i
rci
|rci|2

× ui. (16)

The weight factors are arbitrary, meaning that an infinite number of distributed coupling
methods can be defined. Four methods for determining the weight factors, all implemented
in Abaqus, are presented below. The most straightforward method is uniform weighting, dis-
tributing equal load to all nodes of the interface surface. The three remaining methods employ
decreasing weight at farther distance from the condensation node, using polynomials of differ-
ent degrees.

Uniform weighting

ωi = 1. (17)

Linearly decreasing weighting

ωi = 1−
∣∣∣∣ rcirc0

∣∣∣∣ , (18)

where rc0 is the vector from the condensation node to the furthest node at the interface surface.

Quadratically decreasing weighting

ωi = 1−
∣∣∣∣ rcirc0

∣∣∣∣2 . (19)

Cubically decreasing weighting

ωi = 1− 3

∣∣∣∣ rcirc0

∣∣∣∣2 + 2

∣∣∣∣ rcirc0

∣∣∣∣3 . (20)

3 Elastomer blocks as coupling elements
The elastomer layers were, in the numerical studies presented here, modelled as blocks of Sy-
lodyn®, a closed-cell polyurethane material manufactured by Getzner Werkstoffe G.m.b.H. A
Sylodyn elastomer block of size 100 × 95 × 25 mm3, used in real TVE buildings, was stud-
ied, the FE mesh being shown in Figure 4. In [18], frequency-dependent viscoelastic material
parameters were evaluated for a type of Sylodyn, these parameters being employed here.

Having frequency-dependent substructures is possible in steady-state analyses but results
in inefficient models since different system matrices are required for each frequency step in
the analyses. It is therefore preferable to exclude the elastomer blocks from the substructures
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Figure 4: The FE mesh for the model of an elastomer block. The black dot illustrates a conden-
sation node and the yellow lines the constraints between the condensation node and the interface
surface.

because of their frequency-dependent material properties. This results in the substructures being
described by constant, frequency-independent, system matrices.

In substructure models of TVE buildings, the elastomer blocks can be regarded as coupling
elements connecting the substructures of TVE modules. The interface surfaces are the top
and bottom surfaces of the elastomer blocks, these being reduced by introducing condensation
nodes as illustrated in Figure 4, resulting in a total of twelve interface dofs per elastomer block.
The elastomers are in general much softer than the wood components they are connected to.
Consequently, the interface surfaces of the elastomer blocks are exposed to relatively small
strains compared to the rest of the blocks, implying rigid coupling to be a good approximation
in the interface reduction.

The displacement field in the elastomer blocks are in general not of interest, why the full
model of a block may be replaced by some sort of simplified coupling element connecting
the condensation nodes on each side. It is assumed here that the elastomer block can be rep-
resented by six frequency-dependent spring-damper systems connecting each of the six dofs,
three translations and three rotations, of the two condensation nodes. The motion of a parallel
spring-damper system connecting two nodes with displacements u1 and u2 is described by

k

[
1 −1
−1 1

] [
u1

u2

]
+ c

[
1 −1
−1 1

] [
u̇1

u̇2

]
=

[
f1

f2

]
, (21)

where k is the stiffness coefficient, c the damping coefficient and f1 and f2 the forces acting on
the two nodes. By assuming u1 = 0 and a harmonic load and response for the system,

f2 = F2exp(iωt), u2 = U2exp(iωt) (22)

where F2 and U2 are the complex force and load amplitudes and ω the angular frequency,
Eq. (21) is reduced to

k(ω)U2 + iωc(ω)U2 = F2, (23)
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where the frequency dependence of k(ω) and c(w) is introduced. Applying a unit load, F2 = 1,
results in

k(ω) + iωc(ω) =
1

U2

, (24)

which is used to identify k(ω) and c(w) as

k(ω) = Re
(

1

U2

)
, c(ω) =

1

ω
Im
(

1

U2

)
. (25)

The two condensation nodes of the elastomer block shown in Figure 4 have the translational
dofs u1

1,2,3 and u2
1,2,3 respectively and the rotational dofs Θ1

1,2,3 and Θ2
1,2,3 respectively, where the

superscripts denote the condensation node and the subscripts denotes the direction of the dof.
The forces acting on the two condensation nodes are denoted f 1

1,2,3 and f 2
1,2,3 and the momen-

tums denoted m1
1,2,3 and m1

1,2,3. Replacing the elastomer block with six frequency-dependent
spring-damper systems of the form in Eq. (21) results in the following equation system describ-
ing the block:

Ku + Cu̇ = f, (26)

K(ω) =



Ku
1(ω) 0 · · · · · · 0
0 Ku

2(ω)
... Ku

3(ω)

KΘ
1 (ω)

...
... KΘ

2 (ω) 0
0 · · · · · · 0 KΘ

3 (ω)


,

C(ω) =



Cu
1(ω) 0 · · · · · · 0
0 Cu

2(ω)
... Cu

3(ω)

CΘ
1 (ω)

...
... CΘ

2 (ω) 0
0 · · · · · · 0 CΘ

3 (ω)


,

uT =
[
u1

1 u2
1 u1

2 u2
2 u1

3 u2
3 Θ1

1 Θ2
1 Θ1

2 Θ2
2 Θ1

3 Θ2
3

]
,

fT =
[
f 1

1 f 2
1 f 1

2 f 2
2 f 1

3 f 2
3 m1

1 m2
1 m1

2 m2
2 m1

3 m2
3

]
,

where Ku,Θ
1,2,3,C

u,Θ
1,2,3 ∈ R2×2 are the stiffness and damping matrices as defined in Eq. (21) for

each of the six spring-damper systems. Eq. (25) can be used to identify all the matrices Ku,Θ
1,2,3

and Cu,Θ
1,2,3 by studying one of the six spring-damper systems at a time, locking eleven of the

twelve interface dofs and applying a unit force/momentum at the free dof. This approach ne-
glects any coupling between the dofs acting in different directions, as seen by the zero terms
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Figure 5: The FE mesh for the model of the floor-ceiling structure. The floor is shown in grey,
the ceiling in red and the elastomer blocks in yellow.

E1 E2 E3 G12 G13 G23 ν12 ν13 ν23 ρ

8500 350 350 700 700 50 0.2 0.2 0.3 432

Table 1: The material parameters used for the wooden beams, the stiffness parameters being
given in terms of MPa and the density in kg/m3.

in the system matrices in Eq. (26). The full matrices can be determined by applying a unit dis-
placement at one dof at a time, where the corresponding column of the stiffness and damping
matrices are determined from the real and imaginary parts of the reaction forces/momentums,
respectively. Involving the full matrices would require user implemented elements to be em-
ployed in commercial FE software. The spring-damper systems can, however, be employed
directly in such software, a practical advantage when dealing with models involving many dif-
ferent coupling elements. The validity of employing the spring-damper approach for modelling
the elastomer blocks was checked in the test model presented in the following section.

4 Test model
A model of a floor-ceiling structure in wood, the FE mesh being shown in Figure 5, was in-
vestigated in order to compare the accuracy of different methods for interface reduction. The
structure is 3690 × 3045 × 510 mm3 large, with the floor and ceiling consisting of five load-
bearing wooden beams each, the floor having a particle board surface and the ceiling having
a plaster board surface. Both the floor and the ceiling have beams placed at the ends of the
load-bearing beams, perpendicular to these, creating box-like structures. The orthotropic ma-
terial properties in Table 1 was employed for the wood beams and the isotropic properties in
Table 2 was employed for the particle board and the plaster board. The floor and ceiling struc-
tures are connected through elastomer blocks with dimensions 95 × 100 × 25 mm3, having
the frequency-dependent viscoelastic material properties determined in [18]. The blocks were
placed at a centre-to-centre distance of 600 mm around the flanks and provide the only connec-
tion between the floor and the ceiling.

11



E ν ρ

Particle board 3000 0.3 767
Plaster board 2000 0.2 692

Table 2: The material parameters used for the particle board and the plaster board, the modulus
of elasticity being given in terms of MPa and the density in kg/m3

The floor-ceiling structure was analysed by steady-state analyses for frequencies up to
200 Hz, applying a vertical unit load at the middle of the floor surface and having the dis-
placements at the four corners of the ceiling surface locked. In order to investigate the vibration
transmission from the floor to the ceiling when employing different methods for reducing the
interface surfaces to the elastomer blocks, the vibration amplitudes in the nodes at the ceiling
surface was evaluated by a root-mean-square (RMS) value of the complex magnitudes of the
displacements. Due to symmetry, the displacements were evaluated in a forth of the ceiling
surface. For each frequency step in the steady-state analyses, the RMS value was calculated as

uRMS(f) =

√√√√ 1

n

n∑
i=1

Ui(f)2, (27)

where Ui is the magnitude of the three complex displacement magnitudes in node i, n is the
number of nodes in a forth of the ceiling surface and f is frequency. The model employing
interface reduction was compared to the full model by calculating a relative error in RMS-
values according to

uerror
RMS(f) =

∣∣∣uredRMS(f)− ufullRMS(f)
∣∣∣

ufullRMS(f)
· 100, (28)

where uredRMS is the RMS value of a model employing interface reduction and ufullRMS is the RMS
value of the full model. The quotient is multiplied by 100 to obtain the relative error in percent.
In the result figures presented here, green, blue and red dashed lines are included to indicate the
0.1 %, 1 % and 10 % error levels.

First, the validity of employing the spring-damper approach for modelling the elastomer
blocks was checked. This was carried out by modelling the interface surfaces between elas-
tomer blocks and wood components as rigid in the full model. A model employing the spring-
damper systems for the elastomer blocks, with the interface surfaces of the wood components
being modelled as rigid, was compared to the full model with rigid interface surfaces. In case
the spring-damper systems would represent the full model of an elastomer block exactly, the
two models would yield precisely the same results since the properties of the spring-damper
systems were evaluated assuming rigid interface surfaces. The relative error of the model em-
ploying the spring-damper systems, compared to the full model with rigid interface surfaces, is
shown in Figure 6. It can be observed that the error is lower than 1 % for most frequencies, the
exception being frequencies between 30-100 Hz where the error reaches a maximum of 4 %.
Consequently, the spring-damper systems offer a fairly good representation of the full model of
an elastomer block. In the results presented below, where different interface reduction meth-
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Figure 6: Relative error in RMS values when employing the spring-damper representation of
an elastomer block, compared to a full model with rigid interface surfaces.

Distributed Distributed Distributed Distributed Rigid
Uniform linear quadratic cubic

Maximum error (%) 4.47 4.51 4.52 4.56 5.86
Average error (%) 1.00 1.06 1.01 1.25 1.66

Table 3: Maximum and average values of the relative errors in RMS values when employing
the five different methods for interface reduction.

ods are compared, the spring-damper systems were employed in the models (the full model of
course involving the full elastomer block models, without assuming rigid interface surfaces).

The five different methods for interface reduction (rigid coupling and four variants of dis-
tributed coupling) were employed at the interface surfaces of the floor and the ceiling. In Fig-
ure 7, the spectra of relative errors obtained when employing the five methods, compared to the
full model, is shown and in Table 3, the maximum and average values of the error spectra are
presented. It can be observed that a rigid coupling for the interface surfaces is the least accurate
method, especially at lower frequencies (< 60 Hz). The different variants of distributed cou-
pling provide similar results, a lower degree of the weighting polynomial in general resulting in
lower errors, with uniform weighting providing the best accuracy regarding both maximum and
average errors. Rigid coupling can, however, be the most suitable method in certain situations,
depending on the frequencies of interest. It can be observed in Figure 7 that the errors obtained
when employing rigid coupling is significantly lower than that of the distributed coupling meth-
ods for frequencies between 130-150 Hz.

Finally, it was investigated how employing distributed coupling for the interface surfaces
of the elastomer blocks affects the accuracy. The properties of the spring-damper systems re-
placing the full models of the elastomer blocks were, consequently, evaluated when employing
distributed coupling. The relative errors obtained when employing distributed coupling with
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uniform weighting for the elastomer blocks are shown in Figure 8, using both rigid coupling
and distributed coupling, also with uniform weighting, for the interface surfaces of the floor
and the ceiling. It can be observed how the errors levels are very high in comparison to the
results shown in Figure 7, where rigid couping was employed for the interface surfaces of the
elastomer blocks. As discussed in Section 3, where rigid coupling was assumed to be suitable
for interface reduction of the elastomer blocks, this can be explained by the large difference in
stiffness between the wood components and the elastomer blocks, resulting in relatively small
strains at the interface surfaces compared to the strains in the rest of the elastomer blocks.
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Figure 7: Relative error in RMS values when employing the five different methods for interface
reduction.
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Figure 8: Relative error in RMS values when employing distributed coupling with uniform
weighting for the interface surfaces of the elastomer blocks. The two plots show the errors when
employing rigid coupling and distributed coupling with uniform weighting for the interface
surfaces of the floor and the ceiling.
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5 Conclusions
The results presented in the paper provide important information in the process of establishing
efficient substructure models of multi-storey buildings in wood. It was investigated, by numer-
ical studies on a test model, how the interface surfaces should be treated when employing the
methodology of condensation nodes for interface reduction.

The frequency-dependent spring-damper systems, employed as simplified coupling ele-
ments representing the elastomer blocks, proved to model the coupling between the two conden-
sation nodes of the elastomer blocks fairly good. Depending on the required level of accuracy,
it may, however, be necessary to include the full matrices coupling all dofs of the two conden-
sation nodes and not only the corresponding dofs of each node, as is the case when employing
the spring-damper systems. The reasons for not including the full coupling matrices are purely
practical, simplifying the modelling process when working with commercial FE software.

For the elastomer blocks, rigid coupling at the interface surfaces was superior to distributed
coupling, the latter resulting in very large errors. For the interface surfaces of the wood com-
ponents (the floor and the ceiling in the test model) distributed couplings was the most accu-
rate method, a lower degree of the weighting polynomial in general resulting in lower errors.
Depending on the frequencies of interest, however, a rigid coupling can be the most suitable
alternative in certain cases.
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