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Background: In experimentally induced myocardial ischemia, mild hypothermia (33–35°C) 
has a robust cardioprotective effect. Tissue plasminogen activator (t-PA) is a profibrinolytic 
enzyme that is released from the vascular endothelial cells in response to ischemia and other 
injurious stimuli. t-PA has also been found to have proinflammatory properties that could 
contribute to reperfusion injury. We postulated that hypothermia could attenuate t-PA release 
in the setting of myocardial ischemia. 
 
Methods: Sixteen 25–30 kg pigs were anesthetized and a temperature of 37°C was 
established using an intravascular cooling/warming catheter. The pigs were then randomized 
to hypothermia (34°C) or control (37°C). A doppler flow wire was placed distal to a 
percutaneous coronary intervention balloon positioned immediately distal to the first diagonal 
branch of the left anterior descending artery (LAD). The LAD was then occluded for ten 
minutes in all pigs. Coronary blood flow and t-PA was measured before, during and after 
ischemia/reperfusion. t-PA was measured in peripheral arterial blood and locally in the 
venous blood from the coronary sinus. Net t-PA release over the coronary bed was calculated 
by subtraction of arterial values from coronary sinus values. An estimate of differences in 
total t-PA release was calculated by multiplying net t-PA release with the relative increase in 
flow compared to baseline, measured in relative units consisting of ((ng/ml – ng/ml) x (cm/s / 
cm/s)).  
 
Results: There was no observed difference in t-PA levels in peripheral arterial samples. As 
shown previously, net t-PA release increased during reperfusion. Hypothermia significantly 
inhibited the increase in t-PA release during reperfusion (peak value 9.44±4.34 ng/ml vs 
0.79±0.45 ng/ml, p=0.02). The effect was even more prominent when an estimation of total t-
PA release was performed with mean peak value in the control group 26 fold higher than in 
the hypothermia group (69.74±33.86 units vs 2.62±1.10 units, p=0.01).  
 
Conclusion: Mild hypothermia markedly reduces ischemia related coronary tissue 
plasminogen activator release. The reduction of t-PA release may contribute to the 
cardioprotective effect of hypothermia.  
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Introduction 

In experimentally induced myocardial ischemia, mild hypothermia (33–35°C) has a robust 

cardioprotective effect [1-4]. The clinical applicability of therapeutic hypothermia in the 

setting of ischemic heart disease is currently being investigated (RAPID MI-ICE pilot and 

CHIPAHA) [5, 6]. Moreover, the neurologic outcome and survival in cardiac arrest victims 

can be improved with mild resuscitative hypothermia [7]. This has led to a revision of 

guidelines to incorporate cooling of cardiac arrest victims at a class IIb level [8]. 

 

Tissue plasminogen activator (t-PA) is a protease that initiates endogenous fibrinolysis in the 

vascular compartment via conversion of plasminogen to plasmin, and is important in 

controlling the coagulation process due to its thrombolytic properties. It is synthesized and 

stored in endothelial cells and vascular neurons [9, 10], and is released in response to 

ischemia and other injurious stimuli [11-18]. Recombinant t-PA is the active substance in 

several thrombolytic drugs that are used to treat thromboembolic disease states such as 

myocardial infarction, stroke and pulmonary embolization. 

 

Even though reperfusion of ischemic tissue is a prerequisite for salvage, reperfusion in itself 

may lead to accelerated and additional tissue injury beyond that generated by ischemia alone, 

a phenomenon referred to as “reperfusion injury” [19, 20]. The molecular basis for 

reperfusion damage has not been fully elucidated, but there is evidence for several possible 

mechanisms of damage including oxidative stress, calcium overload, mitochondrial damage, 

complement activation and an inflammatory reaction [21-26]. Interestingly, t-PA has been 

found to have proinflammatory properties that could contribute to reperfusion injury [27, 28]. 

The cardioprotective mechanisms of hypothermia are not fully understood and it is possible 

that a part of the protective effect could be mediated by attenuation of t-PA release. Our aim 
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was to evaluate if hypothermia could attenuate t-PA release in the setting of myocardial 

ischemia. 

 

Methods 

 
Experimental preparation 

16 healthy domestic male and female 25-30 kg pigs were fasted overnight with free access to 

water. Premedication was administered with azaperone (Stresnil Vet., Leo; Helsingborg, 

Sweden), 2 mg/kg intramuscularly, 30 minutes prior to the procedure. After induction of 

anesthesia with thiopental (Pentothal, Abbott, Stockholm, Sweden) 5-25 mg/kg, the animals 

were orally intubated with cuffed endotracheal tubes. Thereafter, a slow infusion of 

1.25l/ml fentanyl (Fentanyl, Pharmalink AB, Stockholm, Sweden) in buffered glucose (25 

mg/ml) was started at a rate of 1.5 ml/min and adjusted as needed. During balanced anesthesia 

meprobamat (Mebumal, DAK, Copenhagen, Denmark) and thiopental (Pentothal, Abbott, 

Stockholm, Sweden), were titrated against animal requirements with small bolus doses. 

Mechanical ventilation was established with a Siemens-Elema 900B ventilator in the volume-

controlled mode, adjusted in order to obtain normocapnia. Initial settings were: respiratory 

rate of 15/min, tidal volume of 10 ml/kg and positive end-expiratory pressure of 5 cm H2O.  

The animals were ventilated with a mixture of dinitrous oxide (70%) and oxygen (30%).  

 

Heparin (200 IU/kg) was given intravenously at the start of the catheterization. A 12 F 

introducer sheath (Boston Scientific SciMed, Maple Grove, MN, USA) was inserted into the 

surgically exposed left femoral vein. A 10.7 F Celsius Control™ cooling catheter (Innercool 

Therapies Inc, San Diego, CA, USA) was inserted through the sheath and positioned in the 

inferior vena cava with the tip of the catheter at the level of the diaphragm. Body temperature 
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was measured with a temperature probe (TYCO Healthcare Norden AB, Solna, Sweden) 

placed in the distal part of the esophagus. The catheter and the temperature probe were 

connected to the Celsius Control unit.  

 

A 12 F introducer sheath (Boston Scientific Scimed, Maple Grove, MN, USA) was inserted 

into the surgically exposed left External Jugular Vein. A short 10 F special catheter of our 

own design was used to catheterize the Azygos Vein. (In pigs the coronary sinus ends in the 

Azygos vein.) Then a 6 F MPA coronary catheter (Boston Scientific Scimed, Maple Grove, 

MN, USA) was passed through the catheter with the tip in the Azygos Vein, into the Coronary 

Sinus, often with the help of a PT choice guide wire, (Boston Scientific Scimed, Maple 

Grove, MN, USA).  

 

A 6 F introducer sheath (Boston Scientific Scimed, Maple Grove, MN, USA) was inserted 

into the surgically exposed left carotid artery upon which a 6F JL 3.5 Wiseguide™ (Boston 

Scientific Scimed, Maple Grove, MN, USA) was inserted into the left main coronary artery. 

An angiogram was obtained using 8–10 ml of the contrast medium Omnipaque™ 300 mg I-

/ml (Nycomed, Oslo, Norway) to ensure correct positioning of the catheter. The catheter was 

used to place a 0.014-inch, 12 MHz pulsed Doppler flow velocity transducer (Jometrics 

Flowire, Jomed NV) into the mid-portion of the left anterior descending artery (LAD) and a 

0.014-inch PT choice™ guidewire (Boston Scientific Scimed, Maple Grove, MN, USA) into 

the distal portion of the LAD. A 3.0 × 20 mm over the wire Maverick™ angioplasty balloon 

(Boston Scientific Scimed, Maple Grove, MN, USA) was then positioned in the mid portion 

of the LAD, proximal to the flow velocity transducer but distal to the first diagonal branch, 

followed by the withdrawal of the PT choice guidewire. Continuous coronary velocity flow 
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profiles were displayed and recorded using the Doppler flow wire connected to a FloMap 

monitor (Cardiometrics, Mountain View, CA). All radiological procedures were performed in 

an experimental catheterization laboratory, (Shimadzu Corp., Kyoto, Japan).  

 

Experimental protocol 

Regardless of initial temperature, all pigs were cooled or warmed (as needed) to a baseline 

temperature of 37°C, which was maintained for 30 minutes. The pigs were then randomized 

to the hypothermia group or to the control group. The pigs randomized to hypothermia were 

cooled with the cooling/warming catheter to a temperature of 34.0°C, prior to balloon 

inflation, which was then maintained until sacrifice. The pigs randomized to the control group 

were actively maintained at 37°C using the endovascular cooling/warming catheter until 

sacrifice. In all pigs, the LAD was occluded distal to the first diagonal branch by inflation of 

the angioplasty balloon for a period of 10 min. 

 

t-PA was measured at baseline, one minute before reperfusion (=9 min ischemia) and one,  

five and 10 minutes after reperfusion. Samples were collected from a peripheral artery and in 

the venous blood from the coronary sinus. Blood pressure, heart rate and coronary artery flow 

in the LAD was measured continuously. Flow was measured in average peak velocity (APV) 

in cm/sec. In a closed chest pig model it is not possible to measure vessel diameter and 

doppler flow at the same time. However, the diameter of the LAD was measured in separate 

pigs from both the hypothermic- and control group during baseline and during reperfusion at 

the same angle, and was found not to increase or decrease more than 10% even during 

maximum reactive hyperemia. Compensation for this only resulted in very minor changes of 

the results and was therefore not performed. A blood gas analysis was performed at baseline 

and at 1 and 10 min post-reperfusion. 
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t-PA measurements 

Plasma concentrations of t-PA was determined by commercial ELISA kits (TintElize t-PA, 

Biopool AB, Umeå , Sweden and COALIZA PAI, Chromogenix, Haemochrom Diagnostica 

AB, Mölndal, Sweden). All samples from one experiment were assayed in duplicate on the 

same microtest plate. Intra-assay variation coefficients were 2.7% and 3.1% for respective 

assay. Net t-PA release over the coronary bed was calculated by subtraction of arterial values 

from coronary sinus values. An estimate of differences in total t-PA release was calculated by 

multiplying net t-PA release with the relative increase in flow compared to baseline, measured 

in relative units consisting of ((ng/ml – ng/ml) x (cm/s / cm/s)).  

 

Calculation and statistics 

Calculations and statistics were performed using the GraphPad Prism 4.0 software. Values are 

presented as mean ± SEM. Statistical significance was accepted when P < 0.05 (Mann-Whitney 

test).   

 

Ethics 

The study conforms to the Guide for the Care and Use of Laboratory Animals, US National   

Institute of Health (NIH Publication No. 85-23, revised 1996) and was approved by the Ethics 

Committee of Lund University, Sweden.  

 

Results 

There were no observed differences in basal t-PA levels in peripheral arterial or coronary 

sinus samples, figure 1. As shown previously, net t-PA release increased during reperfusion 

[29]. Hypothermia significantly inhibited the increase in net t-PA release during reperfusion 

(peak value 9.437±4.34 ng/ml vs 0.79±0.45 ng/ml, p=0.02), figure 2. The effect was even 
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more prominent when an estimation of total t-PA release was performed (factorial correction 

for blood flow, see above) with mean peak value in the control group 26 fold higher than in 

the hypothermia group (69.74±33.86 units vs 2.62±1.10 units, p=0.01), figure 3. Arterial 

blood-gas data were similar between the groups, table 1. As shown in a previous publication, 

coronary blood flow in the LAD increased dramatically during the early reperfusion phase 

[30]. The peak flow observed during post ischemic reactive hyperemia was significantly 

reduced by 43% in the hypothermia group compared to the control group (p<0.01). Peak flow 

occurred 2.5 min after reperfusion and was 83,6±7.8 cm/s in the normothermic group and 

50,6±7.2 cm/s in the hypothermic group.  There was no observed difference in coronary flow 

between the groups during baseline or 7 minutes after reperfusion [30]. There was a reduction 

in heart rate observed among the pigs randomized to the hypothermia group during the entire 

period of hypothermia, figure 4. The difference in heart rate was maintained at the same level 

during baseline, ischemia and reperfusion, and unaffected by the increased coronary flow 

measured during reactive hyperemia. The mean arterial blood pressure (MAP) was similar or 

even slightly increased in the reperfusion phase compared to the control group, figure 4 [30].  

 

Discussion 

The aim of this study was to evaluate the effect of mild hypothermia on ischemia related 

coronary t-PA release. The main finding was that mild hypothermia markedly reduces 

coronary t-PA release during the reperfusion phase, with mean peak value of total t-PA 

release 26 fold higher in the control group than in the hypothermia group. 

 

A percutaneous catheter-based approach was chosen in this study, in order to induce ischemia 

with minimum trauma, operation-induced stress and secondary changes in circulatory 

physiology. Furthermore, it is important to reduce trauma to a minimal extent in order to 
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reduce tissue damage related t-PA release with unnatural influence on background t-PA 

levels. The use of angioplasty balloons allowed for precision in attaining an accurate and 

localized induction of ischemia as well as a reproducible area at risk in the myocardium [4]. 

The ischemic time of 10 minutes is relatively short, but it is an established time period for  

studying ischemia/reperfusion related t-PA release, and was therefore chosen [29]. The 

differences that were noted between the groups concerning heart rate and MAP translate into 

coronary artery flow and are thus taken into account in the analysis.  

 

Ten minutes of ischemia does not cause any major myocardial necrosis, but it causes hypoxia 

and accumulation of acidic metabolites. The most prominent source of t-PA is the endothelial 

cells and the effects of hypothermia are probably mediated either directly on the endothelial 

cells or by attenuating the accumulation of stimulators of the endothelium, such as low pH, 

ATP, ADP, bradykinin etc. We have previously shown that hypothermia reduces reactive 

hyperemia by 43% [30]. Interestingly, hypothermia abolished t-PA release above basal levels 

completely, indicating a more selective effect on the endothelial t-PA release. This 

discrepancy also rules out blood flow mediated shear stress as the only factor for t-PA release. 

It also indicates that other factors besides shear stress that release t-PA during ischemia are 

affected by hypothermia, such ADP, bradykinin or substance P. 

 

A direct effect of hypothermia on the endothelium seems plausible when the well documented 

tissue protective effect of mild hypothermia is taken into account. The exact mechanism 

through which therapeutic hypothermia exerts it’s tissue protective effect is not known, but it 

is thought to reduce the metabolic demand of the cells [31-34]. However, reduced oxygen 

demand does not fully explain the positive effects of hypothermia and several additive effects 

have been suggested [35]. It has been shown that mild hypothermia can prevent ischemic cells 
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from entering apoptosis through prevention of mitochondrial dysfunction and inhibition of 

caspase release [36-38]. Moreover, therapeutic hypothermia has been shown to improve ion 

homeostasis, suppress ischemia induced inflammatory reactions, decrease free radical 

formation, stabilize cellular membranes and prevent intracellular acidosis [39]. The fact that 

the animals were subject to a relatively short period of ischemia and were hypothermic during 

the entire ischemic time supports this conclusion, as hypothermia is known to have an 

especially robust tissue-protective effect under these conditions [40]..  

 

Under physiologic circumstances, t-PA is important in keeping vessel walls free of thrombi 

formation and during pathologic thromboembolic disease states t-PA is a vital component of 

the endogenous thrombolytic system. Thrombolytic treatment also utilize t-PA as the active 

component and such therapy has been shown to increase survival and functional outcome in 

stroke and myocardial infarct patients [41, 42]. However t-PA appear to be a double-edged 

sword in the respect that it also has been found to have proinflammatory properties that could 

contribute to reperfusion injury [28]. t-PA is known to induce matrix degradation via 

activation of matrix metallopeptidase 9, and increase oxidative stress and inflammation via 

upregulation of inducible  nitric oxide synthase [43, 44]. Furthermore, it is associated with 

activation and degranulation of mast cells with subsequent proinflammatory effects [27]. t-PA 

has also been shown to increase release of norepinephrine from sympathetic neurons and 

thereby contribute to cardiac arrythmias in ischemia/reperfusion [45]. Norepinephrine also 

shifts the metabolic balance in an unfavourable direction by increasing oxygen demand via 

increased heart rate and inotropy, and decreasing oxygen availability by constriction of 

coronary arteries, and may thus aggravate the primary ischemia [46, 47]. Consequently, 

decreased norepinephrine release per se would also be expected to protect the ischemic 

myocardium. Taken together, it is possible that the hypothermia related reduction in t-PA 
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release during ischemia/reperfusion may contribute to the tissue protective effects of 

hypothermia. It may also be part of the explanation to why hypothermia has been found to 

increase defibrillation success and resuscitation outcome at cardiac arrest in a porcine model 

[48]. 

 

Limitations 

The model that was used in this study is based on experimentation on young, healthy animals 

subject to a short duration of ischemia that does not cause any substantial necrosis of the 

myocardium. Ischemia is brought about by the inflation of a balloon in a vessel that is free 

from atherosclerotic disease. It is possible that these circumstances inadequately mimic the 

pathophysiology of the clinical situation with thrombotic occlusion and development of 

necrosis. It is also possible that a profound reduction of t-PA release in the setting of 

thrombotic occlusion could be detrimental to reperfusion. 

 

Conclusion 

Mild hypothermia markedly reduces ischemia related coronary tissue plasminogen activator 

release. The reduction of t-PA release may contribute to the cardioprotective effect of 

hypothermia.  
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Figure 1 There were no statistically significant differences in basal t-PA levels in peripheral 
arterial or coronary sinus samples. Samples were collected at baseline, one minute before 
reperfusion, one minute after reperfusion, five minutes after reperfusion and 10 minutes after 
reperfusion. 
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Figure 2 Net t-PA release over the coronary bed was inhibited my mild hypothermia during 
reperfusion (peak value 9.437±4.34ng/ml vs 0.79±0.45ng/ml, p=0.02). t-PA was 
simultaneously measured in the coronary sinus and in a peripheral artery at baseline, one 
minute before reperfusion, one minute after reperfusion, five minutes after reperfusion and 10 
minutes after reperfusion. 
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Figure 3 Illustrates an estimate of differences in total t-PA release: Mild hypothermia reduced 
flow in the LAD significantly as measured with the FloMap Doppler wire, as described in 
reference 30. The estimate of differences in total t-PA release was calculated by multiplying 
net t-PA release with the relative increase in flow compare to baseline. Hypothermia 
significantly inhibited the increase in total t-PA release during reperfusion (69.74±33.86 units 
vs 2.62±1.10 units, p=0.01). t-PA was simultaneously measured in the coronary sinus and in a 



peripheral artery at baseline, one minute before reperfusion, one minute after reperfusion, five 
minutes after reperfusion and 10 minutes after reperfusion. 
 
 
 

 

 
Figure 4 Heart rate (HR) was measured during baseline, ischemia, and reperfusion in both the 
normothermic and the hypothermic pigs. During the entire period of hypothermia HR was 
lower in the hypothermic group. Mean arterial pressure was similar, and reduced in both 
groups during ischemia and reperfusion compared to baseline. 
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Table1 Arterial blood-gas analysis                         
  
 Baseline           1 min reperfusion      10 min reperfusion 
 Control Hypo Control Hypo Control Hypo 
 
pH 7.46(±0.03) 7.43(±0.04) 7.47(±0.02) 7.44(±0.02) 7.42(±0.02) 7.43(±0.01)      
PO2 22.2(±1.7) 19.6(±1.5) 21.7(±1.8) 20.9(±2.9) 21.1(±2.1) 19.1(±3.0) 
PCO2 6.5(±0.8) 5.7(±0.5) 6.2(±0.8) 5.6(±0.3) 6.4(±0.8) 5.7(±0.3) 
 
 
Samples were collected at baseline and at 1 and 10 min following reperfusion. No statistically 
significant differences were found between the groups. Data are expressed as mean ± SEM.  
 
 


