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Smooth muscle cells surrounding hollow organs such as the 
blood vessels, the urinary bladder or the gastrointestinal tract 
are continuously subjected to mechanical forces. It is known 
that mechanical stretch can regulate smooth muscle function by 
stimulating intracellular signaling events, which control smooth 
muscle cell differentiation and growth.1,2 However, studies of 
this phenomenon in cultured cells must be interpreted with 
caution since cellular mechanosensing is highly dependent on 
the surrounding environment including cell-cell and cell-matrix 
interactions. In vivo, on the other hand, the effects of mechani-
cal stretch in the vasculature can be difficult to separate from 
compensatory mechanisms regulating blood pressure and blood 
flow in the body. We have in several studies used the murine 
portal vein in organ culture as a model for examining stretch 
dependent effects in vascular smooth muscle.3-7 Similar to 
certain small arteries, the portal vein smooth muscle exhibits 
myogenic tone and phasic activity, which may be important fac-
tors for stretch-induced effects. Since the portal vein consists of 
mostly longitudinal smooth muscle, stretch is applied by attach-
ing a weight, which corresponds to the optimal load for force 
development at one end of the vessel (Fig. 1). The vessels are 
then incubated in an organ culture environment for up to 5 
days. Mechanical stretch of the portal vein results in an early 
activation of the MAPK/ERK pathway and smooth muscle 
growth.4,6,7 This is followed by a delayed activation of the Rho/
Rho-kinase/cofilin pathway, which promotes actin polymer-
ization.5 When actin is polymerized, it releases the transcrip-
tion factor myocardin related transcription factor (MRTF) for 

The phenotype of smooth muscle cells is regulated by multiple environmental factors including mechanical forces. 
Mechanical stretch of mouse portal veins ex vivo has been shown to promote contractile differentiation by activation 
of the Rho-pathway, an effect that is dependent on the influx of calcium via L-type calcium channels. MicroRNAs have 
recently been demonstrated to play a significant role in the control of smooth muscle phenotype and in a recent report we 
investigated their role in vascular mechanosensing. By smooth muscle specific deletion of Dicer, we found that microRNAs 
are essential for smooth muscle differentiation in response to stretch by regulating CamKIIδ and L-type calcium channel 
expression. Furthermore, we suggest that loss of L-type calcium channels in Dicer KO is due to reduced expression of the 
smooth muscle-enriched microRNA, miR-145, which targets CamKIIδ. These results unveil a novel mechanism for miR-145 
dependent regulation of smooth muscle phenotype.
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nuclear translocation.8 Like myocardin, MRTF is a co-factor 
for the transcription factor serum response factor (SRF), which 
promotes the transcription of smooth muscle specific genes. The 
concerted action of MRTF and SRF thereby increases contrac-
tile differentiation of smooth muscle cells. The identity of the 
sensor that activates signaling pathways in response to stretch 
is still unclear but it is likely that stretch sensitive components 
in the plasma membrane such as stretch-sensitive ion channels, 
G-protein coupled receptors or integrins coupled to focal adhe-
sion kinase play an important role.9-11 Interestingly, activation 
of focal adhesion kinase is biphasic in response to stretch in the 
portal vein with an early peak that correlates with MAPK activa-
tion and a delayed peak, which correlates with Rho activation.4 
It is thus possible that integrins and focal adhesions are involved 
in stretch-induced activation of both pathways. Earlier studies 
have shown that L-type calcium channel influx is an important 
mediator for activation of the Rho pathway.12,13 Using phar-
macological calcium channel inhibitors we found that stretch-
induced MAPK pathway activation in the portal vein depends 
on store-operated calcium influx while Rho pathway activation 
requires L-type calcium channel activation.14 This suggests that 
these signaling pathways may be selectively activated depending 
on the mode of influx and/or intracellular release of calcium.

A novel mechanism involved in the regulation of protein 
expression and cell function was revealed by the discovery 
of microRNAs (miRNAs).15 These small noncoding RNAs 
bind the 3'UTR of their target mRNA, which in most cases 
results in inhibition of protein translation or degradation of 
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contractile differentiation is downstream of activation of integ-
rins and focal adhesions. The Dicer KO portal veins exhibited a 
reduced expression of the pore forming α1C subunit of voltage 
dependent L-type calcium channels at both mRNA (Cacna1c) 
and protein (Cav1.2) levels. As mentioned earlier, inhibition of 
L-type calcium channels using verapamil or nifedipine is suffi-
cient to prevent stretch-induced contractile differentiation.14 A 
key finding of our recent study was a close correlation between 
effects on force of Ca2+-channel inhibition and Dicer deletion, 
respectively. This suggests that Dicer deletion impairs force in 
smooth muscle in part via effects on L-type Ca2+ channels. The 
observed correlation is illustrated in Figure 2, where the effects 
of Dicer KO on responses to contractile agonists are seen to 
correlate with the effects of nifedipine in wild type vessels. The 
reduced Cacna1c expression in Dicer KO portal veins suggests a 
transcriptional effect on the L-type calcium channels medicated 
by miRNAs. Since miRNAs generally repress protein transla-
tion of their target we hypothesized that L-type calcium chan-
nels could be indirectly regulated in Dicer KO portal veins by a 
transcription factor or signaling molecule that inhibits L-type 
calcium channel expression and is upregulated in the absence 
of miRNAs. In a recent study by Ronkainen et al. CamKIIδ 
was shown to inhibit L-type calcium channel expression via 
the transcriptional inhibitor calsenilin/DREAM/KChIP3.26 
Furthermore, CamKII KO mice display an increased expres-
sion of L-type calcium channels in cardiomyocytes.27 In addi-
tion to DREAM translocation, the effect of CamKII KO may 
depend on decreased nuclear translocation of the NFκB com-
ponent p65, which suppresses transcription of Cacna1c.27 Since 
CamKIIδ is a confirmed target of miR-145 in vascular smooth 
muscle cells17 and is upregulated in Dicer KO portal veins,25 
we hypothesized that miR-145 could regulate L-type calcium 
channels via CamKII. To test this hypothesis, we used isolated 
smooth muscle cells in culture transfected with miR-145 inhib-
itor. Interestingly, inhibition of miR-145 resulted in a reduction 
of L-type calcium channel mRNA expression, which closely 
correlated with the effect observed in Dicer KO portal vein. 
This indicates that the reduced expression of L-type calcium 
channel in Dicer KO smooth muscle is primarily caused by loss 
of miR-145. Furthermore, the effect of miR-145 on L-type cal-
cium channel expression could be prevented by the CamKII 
inhibitor, KN93.

MiR-145 has previously been demonstrated to promote 
smooth muscle differentiation by targeting multiple factors 
involved in the regulation of smooth muscle phenotype including 
Krüppel-like factors,17,19 myocardin17 and angiotensin converting 
enzyme.16 Regulation of the L-type calcium channel by miR-145 
therefore represents an additional mechanism by which miR-
NAs can control smooth muscle differentiation and contractile 
function (Fig. 3). We and others have shown that miR-145 is 
involved in smooth muscle actin polymerization but the role of 
L-type calcium influx in this process is not fully understood.18,22 
Although miR-145 has been shown to directly target several fac-
tors involved in actin dynamics it is tempting to speculate that 
miR-145 promotes actin polymerization via increased expression 
of L-type calcium channels.

the mRNA. MicroRNAs are known to play an important role 
in smooth muscle development and contractile differentiation 
and a number of specific miRNAs have been identified to be 
of particular importance.16-24 In a recent study, we examined 
the role of miRNAs in smooth muscle mechanosensing in 
portal vein by using tamoxifen-inducible and smooth muscle 
specific Dicer KO mice (Dicer KO).25 Dicer is an essential 
enzyme for the biosynthesis of most miRNAs and deletion of 
Dicer therefore results in a general loss of miRNA expression. 
Similar to other vascular beds, Dicer KO portal veins exhib-
ited a reduced basal expression of smooth muscle contractile 
markers, confirming the important role of miRNAs in smooth 
muscle differentiation. Interestingly, we found that stretch-
induced expression of smooth muscle markers was reduced 
or ablated in Dicer KO portal veins suggesting that miRNA 
expression is essential for stretch-induced contractile differen-
tiation. However, it is important to note that mechanosensing 
per se was not affected by loss of miRNAs since acute stretch-
induced MAPK activation was maintained in Dicer KO vessels. 
It is thus likely that the effect of Dicer KO on stretch-induced 

Figure 1. Mouse portal veins are stretched by attaching a gold weight 
at one end of the vessel. The portal veins are then placed in a cell cul-
ture incubator for up to 5 days.

Figure 2. The level of inhibition of various contractile responses in 
portal vein by Dicer KO correlates with force inhibition by the L-type 
calcium channel blocker Nifedipine. 5-HT: serotonin, KCl: potassium 
chloride, S.A.: Spontaneous activity. n = 3–4.
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Although we find the portal vein to be a robust 
model to investigate stretch-induced effects in vas-
cular smooth muscle, the effects of Dicer KO may 
differ between veins and arteries and even between 
different arterial beds. It is therefore important 
to investigate the role of miRNAs in pressure-
induced effects in small resistance arteries as well. 
Regulation of L-type calcium channel expression 
by miRNAs, may play a role in other cell types 
including cardiomyocytes and skeletal muscle. 
Indeed, we recently reported that smooth muscle specific dele-
tion of Dicer also results in reduced expression of L-type calcium 
channels in smooth muscle of the urinary bladder, indicating 
that miRNAs regulate these channels in multiple tissues.28
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Figure 3. Contractile differentiation of vascular smooth 
muscle cells is promoted by mechanical stretch and 
miR-145. Regulation of L-type calcium expression 
(LTCCexp) via miR-145 and possibly other miRNAs plays 
an important role for stretch-induced differentiation. 
Stretch activates the Rho/Rho-kinase (ROCK), which 
promotes actin polymerization partly via inhibition of 
cofilin. Myocardin related transcription factor (MRTF) 
is then released from monomeric actin (G-actin) and 
translocates to the nucleus where it, as a co-factor to 
serum response factor (SRF), promotes smooth muscle 
differentiation. MicroRNA-145 also regulates contractile 
differentiation via additional targets such as angioten-
sin converting enzyme (ACE), Kruppel-like transcription 
factors (KLF) 4 and 5 and a direct positive regulation of 
myocardin (Myocd). Furthermore, it is likely that several 
so far unknown miRNAs are involved in smooth muscle 
cell (SMC) contractile differentiation. FAK, focal adhe-
sion kinase; MEF2, myocyte enhancer factor-2.
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