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Abstract - Electricity prices are known to spike during peak 

hours, only to revert to normal levels during off-peak hours. We 

introduce a generalization of the time varying independent spike 

model commonly used to model the electricity spot price from 

daily data to hourly data to cope with this feature.  

We let the probability of extreme prices depend on several 

variables, such as consumption, reserve margin or wind power. 

The model can then be used to forecast the risk of extreme prices. 

More factors become relevant for predicting extreme events 

when moving to hourly data, but consumption is still the most 

important factor. The methodology is showcased by illustrating 

how extreme prices can be forecasted by predicting the 

consumption. 

Keywords - Electricity Market, HMM, Forward contract, 

EM-algorithm, Stability analysis. 

I. INTRODUCTION 

Power generation has historically been operated according to 

some centralized designing.   A vertical market structure was 

common, as that ensured that production plans would cover 

expected consumption and some extra margin, see [1]. Deregulation 

of the electricity market began in Chile in the early 1980s, 

whereupon many countries followed. A reasonably fair market 

means that prices will contain information about the current state of 

the market, cf. [2], and also information about the underlying power 

system, see [3]. One example of the quality of the information 

carried in markets is presented in [4] where they show that 

predictions markets generally outperformed election polls in nearly 

every U.S. Presidential elections between 1988 and 2004. 

The electricity spot price is characterized by several features that 

are not common in other commodity prices. These include yearly, 

weekly and intra-day seasonality as well as extreme (very high and 

very low) prices. The latter are referred to as spikes and drops, see 

[5], and carry important information about the state of the physical 

power system, cf. [3, 6]. The price information was used to assess the 

stability in the Nord Pool power system using daily data under four 

different scenarios in [7]. They found that the consumption 

influenced both the probability of having spikes and drops, as well as 

the probability of reverting back to the normal conditions. It was 

expected that other variables, such as the reserve margin or wind 

power, also would influence those probabilities, cf.  [8], but they 

found no statistical support for that hypothesis. 

It can be speculated that variations in the wind power or reserve 

margin is operating on a shorter time scale than days, and that wind 

power therefore was deemed unnecessary in [7]. The purpose of this 

paper is to study the stability of the Nord Pool power system by using 

market data as proxy.  It extends currently used models to cope with 

hourly data, in order to better understand the within day stability, and 

to explore if factors like wind power production and the reserve 

margin are relevant on a shorter time interval. 

The remained of the paper is organized as follows. Section II 

discusses the electricity market and introduces a suitable statistical 

model. Estimation of the parameters is discussed in Section III while 

Section IV demonstrates how the methodology can forecast spikes. 

Section V concludes the paper. 

II. A MODEL OF THE ELECTRICITY SPOT 

The integration of renewable energy into the power system has 

made production planning much more complex, as we cannot know 

for sure what the production will be, cf. [9]. This complexity has 

resulted in volatility clustering and extreme prices in the electricity 

spot price, see [10] for an overview of stylized facts in the electricity 

spot price. 
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It is well known that the demand for electricity is inelastic, 

meaning that customers are rarely adopting their consumption 

according to the price, even though [11] and [12] presents strategies 

for changing this. The demand is varying on a yearly, weekly and 

daily scale, introducing seasonality in the price. 

The yearly seasonality can be difficult to model, as it is due to 

physical processes that follow a cyclical pattern, but where the 

timing varies between years. That makes models that uses sums of 

trigonometric functions or wavelets, see [13], prone to overfitting the 

data. However, these techniques are still useful for modeling the 

weekly and daily seasonal patterns, as those patterns are constant over 

time and trigonometric methods do also work well when removing 

the seasonal component for a fixed set of data. It was noted in [14] 

that the spot and future prices are cointegrated, as their price implicitly 

depends on the same factors, a feature that we will use in this paper. 

The extreme prices often cluster, as there could be several 

consecutive days with extreme prices before reverting to normal 

conditions. It was argued in [15] that this is best described by a 

Markov Regime Switching (MRS) model. 

The electricity price is also known to be mean reverting, see [10], 

meaning that the price fluctuates around some equilibrium price, and 

will return to it even if some external disturbance caused causes a 

temporary deviation. 

Our model belongs to the class of second generation Independent 

Spike Models, which is a special case of the Markov Regime 

Switching model, see [5, 16]. Early models used two regimes, but it is 

nowadays common to have three regimes, see [17]. These are the 

regime for high prices called spikes (S), the regime for low prices 

called drops (D) and a base regime (B) for normal prices. The 

transition between these is often assumed to be governed by a time 

invariant transition probability matrix, but recent studies indicate that 

this may be suboptimal, cf. [8, 7]. 

Allowing the transition probabilities to be time varying makes it 

possible to model the increasing probability for spikes when there is a 

shortage of electricity, and correspondingly to model the increasing 

probability for drops (and decreasing probability for spikes) when 

there is excess supply. The excess supply has even resulted in 

negative prices in both the German and Danish markets. Instead we 

parametrize the transition matrix according to  

 

𝑃(𝑥𝑡) = [

𝑝𝐵𝐵(𝑥𝑡) 𝑝𝐵𝑆(𝑥𝑡) 𝑝𝐵𝐷(𝑥𝑡)
𝑝𝑆𝐵(𝑥𝑡) 𝑝𝑆𝑆(𝑥𝑡) 0

𝑝𝐷𝐵(𝑥𝑡) 0 𝑝𝐷𝐷(𝑥𝑡)
] 

 

(1) 

where the models has been restricted so that transitions 

directly from spikes (S) to drops (B) or vice versa are 

prohibited and 𝑝𝐵𝐵(𝑥𝑡) = 1 − 𝑝𝐵𝑆(𝑥𝑡) − 𝑝𝐵𝐷(𝑥𝑡) . Each 

probability (here we take 𝑝𝐵𝑆(𝑥𝑡)  as an example) is a function 

of an explanatory variable, given by  

 

𝑝𝐵𝑆(𝑥𝑡) =
exp(𝛽𝐵𝑆,0 + 𝛽𝐵𝑆,1𝑥𝑡)

1 + exp(𝛽𝐵𝑆,0 + 𝛽𝐵𝑆,1𝑥𝑡) + exp(𝛽𝐵𝐷,0 + 𝛽𝐵𝐷,1𝑥𝑡)
 

This multinomial logistic mapping is common in regression 

problems, see [18] for details. The denominator ensures that 

all probabilities will be between zero and one while the 

numerator is made up of a base level 𝛽𝐵𝑆,0 and a term that 

captures the influence of the explanatory variable𝛽𝐵𝑆,1. The 

change in probability when changing 𝑥𝑡  is closely related 

to𝛽𝐵𝑆,1. We also tried quadratic forms and/or combinations of 

factors but found no convincing statistical support for any of 

these, see [19]. All explanatory variables was normalized 

according to  

 𝑥𝑡 =
𝑥𝑡

max
𝑢∈1:𝑇

𝑥𝑢
 

(2) 

This does not change the model but it makes it easier to 

interpret and compare the estimates between different 

explanatory variables. Not scaling the variables would result 

in different estimates if the consumption was measured in 

MWh or GWh. The influence after scaling the variables varies 

between 𝛽𝐵𝑆,0  when 𝑥𝑡  is close to the smallest value and 

𝛽𝐵𝑆,0 + 𝛽𝐵𝑆,1 when 𝑥𝑡 is at the largest value. 

What remains is to specify the models for each regime. Most 

second generation Independent Spike Models use some forward 

contract as the yearly seasonal adjustment. It was noted in [14] that 

the spot price and forward price is cointegrated, meaning that the 

difference between them is a stationary process. It can be shown that 

the forward price 𝐹𝑛  at time 𝑡𝑛  is given by the discounted, 

risk-neutral conditional expectation of the average spot price  

 

𝐹𝑛 = 𝑝(𝑡𝑛, 𝑡𝑛 + 𝑇)𝐸𝑄 [
1

𝑇
∫ 𝑠(𝑢)𝑑𝑢] 

 

 

(3) 

where s(⋅) is the electricity spot price and 𝑝(𝑡𝑛, 𝑡𝑛 + 𝑇) is a 

zero coupon bond with maturity T discounting the value back 

to time 𝑡𝑛 . The spot price and the difference between the 

logarithm of the spot price 𝑦𝑛 = log(𝑠𝑛) and the logarithm of 

the one month ahead forward price 𝑓𝑛 = log(𝐹𝑛) are presented 

in Fig. 1, confirming the strong relation between the spot and 

forward. Daily and hourly effects were coped with by using 

dummy variables, cf. [20]. 

 

 

Fig 1. The spot price (left) and spread between the logarithm of the 

spot price and the logarithm of the one-month ahead forward price on 

Nord Pool (right) between 2006 and 2014. 

 

 

 

 

2006 2008 2010 2012
0

20

40

60

80

100

120

140

P
ri

c
e

 (
E

U
R

/M
W

h
)

2006 2008 2010 2012
•2

•1.5

•1

•0.5

0

0.5

1

L
o

g
 s

p
re

a
d

 (
E

U
R

/M
W

h
)

YearYear



 

Lindström and Noren (2015) A stability analysis of the Nord Pool system using hourly spot price data 

87 Journal of Energy Challenges and Mechanics ©2015  

The dynamics for the regimes are given by 

 

 

𝑦𝑛+1 = {

𝑦𝑛 + 𝑎(𝜇𝑛 − 𝑦𝑛) + 𝜎𝑦𝑛
𝛾
𝑧𝑛 𝑖𝑓𝑅𝑛+1 = 𝐵

𝑓𝑛 + 𝜉𝑆 𝑖𝑓𝑅𝑛+1 = 𝑆

𝑓𝑛 − 𝜉𝐷 𝑖𝑓𝑅𝑛+1 = 𝐷

 

 

 

(4) 

where 𝑅𝑛 is a hidden Markov chain governing the state of the 

market. Similar models are used to describe the economy with 

booms and recessions. The mean reversion level 𝜇𝑛 = 𝜂𝑓𝑛 in 

the base regime is a factor compensating for the risk premium 

𝜂 times the logarithm of the month ahead forward, 𝑎and 𝜎 are 

positive constants while 𝜉𝑆  and 𝜉𝐷  are independent and 

identically distributed (iid) random variables having some 

known distribution (typically log-normal or Gamma), see [17] 

for various European markets. We take the risk premium as 

constant, even though [21] indicates that it may be related to 

the levels in the water reservoirs (a substantial part of the 

power traded at Nord Pool is generated in hydro power plants). 

However, we believe that this approximation is justified as the 

effect from misspecifying the mean is small compared to 

misspecifying the variance when it comes to the regime 

classification which is the primary purpose of the model. 

III. EMPIRICAL STUDY 

We have fitted several models to daily and hourly data, see [19] for 

details. The EM algorithm was used to optimize the log-likelihood 

function, cf. [17, 22]. The EM algorithm is often more robust than 

direct maximization of the likelihood function, see [18]. 

A general result that is valid across several markets and spike 

distributions was that there was no need for the CEV dynamics when 

introducing the time varying transition probabilities, γ=0. This is in 

line with the findings in [5]. 

The parameter estimates when using daily observations from Nord 

Pool between 2006 Q1 (or 2009 Q1) and the end of 2013 are 

presented in Table 1. The consumption and production are highly 

relevant variables, as noted in [7]. The reserve margin does on the 

other hand not significantly influence the probability of going from 

any state to any other state (the 𝛽0 parameter provides an intercept, 

while the 𝛽1  parameter gives the actual influence of the external 

variable), while wind power production helps a little, as more wind 

power increases the likelihood for reverting to the base regime when 

in the spike regime (𝛽𝑆𝐵,1 > 0). 

 

 

 

 

 

 

 

TABLE 1, ESTIMATED PARAMETERS FOR THE THREE STATE MRS 

MODEL USING VASICEK DYNAMICS TOGETHER WITH GAMMA SPIKES FOR 

DAILY PRICE IN THE NORD POOL SYSTEM. SIGNIFICANT PARAMETERS 

ARE EMPHASIZED IN BOLD. ALL TIME SERIES ARE EVALUATED FROM 

2006 Q1 UNTIL JUNE 30TH IN 2013, EXCEPT FOR THE WIND POWER THAT 

IS ESTIMATED FROM 2009 Q1 TO 2013.  

Variable 𝛽𝐵𝑆,1 𝛽𝐵𝐷,1 𝛽𝑆𝐵,1 𝛽𝐷𝐵,1 

Consumption 28.14 -17.54 -16.34 7.71 

Production 31.23 -16.75 -33.61 4.42 

Reserve 

Margin 

1.11 0.08 0.45 -1.48 

Wind power 1.66 1.20 5.37 -4.43 

Variable 𝛽𝐵𝑆,0 𝛽𝐵𝐷,0 𝛽𝑆𝐵,0 𝛽𝐷𝐵,0 

Consumption -27.84 6.53 13.27 -6.02 

Production -30.96 -5.87 29.80 -4.31 

Reserve 

Margin 
-4.45 -4.30 -1.79 -1.63 

Wind power -4.58 -4.52 -3.96 -0.48 

 

   Moving on to hourly data presents a slightly different story, 

see Table 2, where we see all parameters that were significant 

when using daily observations still are significant using hourly 

observations. However, we also see that the reserve margin is 

an important variable, with all parameters being significant. 

Wind power is also important, with all relevant variables being 

significant, but we also note that the 𝛽𝐵𝑆,1 parameter changed 

sign. Please note that the parameters are slightly different as 

the normalization of the external variable changed slightly, cf. 

Eq. (2).  
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TABLE 2, ESTIMATED PARAMETERS IN THE TRANSITION MATRIX FOR 

THE THREE-STATE MRS MODELS USING VASICEK DYNAMICS AND 

GAMMA SPIKES FOR HOURLY OBSERVED PRICES IN THE NORD POOL 

SYSTEM. SIGNIFICANT COEFFICIENTS ARE EMPHASIZED IN BOLD. ALL 

TIME SERIES ARE EVALUATED FROM 2006 Q1 UNTIL JUNE 30TH IN 2013, 

EXCEPT FOR THE WIND POWER THAT IS ESTIMATED FROM 2009 Q1 TO 

2013. 

Variable 𝛽𝐵𝑆,1 𝛽𝐵𝐷,1 𝛽𝑆𝐵,1 𝛽𝐷𝐵,1 

Consumption 34.12 -10.81 -3.64 2.87 

Production 31.72 -12.14 -6.35 3.86 

Reserve 

Margin 
-4.17 0.81 0.81 -2.40 

Wind power -0.95 3.83 -9.78 -0.68 

Variable 𝛽𝐵𝑆,0 𝛽𝐵𝐷,0 𝛽𝑆𝐵,0 𝛽𝐷𝐵,0 

Consumption -32.22 2.07 2.00 -3.62 

Production -30.99 2.64 4.30 -3.62 

Reserve 

Margin 
-12.93 -9.42 -0.19 -1.53 

Wind power -11.27 -10.40 -0.86 -2.10 

Models are often compared in terms of AIC or BIC, see [23]. This 

is equivalent to comparing the log-likelihood of the models in this 

paper (as all models have the same number of parameters), 

𝑙𝑜𝑔(𝐿) = ∑𝑙𝑜𝑔𝑝(𝑥𝑛|𝑥{1:𝑛−1})  where the transition probability 

𝑝(𝑥𝑛|𝑥{1:𝑛−1})  is derived from the model. We find that the 

consumption still is the best explanatory variable by quite a margin, 

see Table 3. The estimated parameters also have the current signs, in 

the sense that their effects are what we expected them to be.  

The reason why the consumption outperforms the reserve margin 

is not clear to us, but it could be that the reserve margin can be 

computed in several ways, as for example transmission capacity may 

be included in the definition. The numbers we used may therefore not 

represent the actual, controllable reserve margin well enough, cf. [8].  

 

 
TABLE 3, LOG-LIKELIHOOD WHEN USING THE CONSUMPTION, 

PRODUCTION, RESERVE MARGIN AND WIND POWER AS EXPLANATORY 

VARIABLES, EVALUATED ON DATA FROM 2009-10-01 TO 2013. 

Explanatory variable log(𝐿) 
Consumption 52 225 

Production 51 381 

Reserve margin 49 100 

Wind power 49 087 

 

IV. SIMULATION STUDY 

We consider two winter weeks during the winter of 2015 that 

are not part of the data in Section III. First, we study the 

electricity spot price and consumption for the Nord Pool 

system between January 10th (which is a Saturday) until 

January 18th (which is the following Sunday). These data are 

presented in Fig. 2 (data can be downloaded from Nord Pool, 

http://www.nordpoolspot.com/historical-market-data/). It can 

be seen that the price increases somewhat during the working 

days (12/1-17/1) and peak hours, but also reverts to the normal 

price levels during off peak hours. The price peaks coincide 

fairly well with the consumption peaks. 

 

Fig 2. Electricity spot price (top) and consumption (bottom) for the 

Nord Pool system between January 10th (Saturday) and January 18th 

(Sunday) 2015. 

It is well known that consumption is comparably easy to predict, 

see e.g. [24, 20] for an overview of methods. We can therefore 

forecast the consumption in order to assess the risks for spikes in the 

upcoming week. We have approximated the forecast by the actual 

consumption in the top panel in Fig. 3. The consumption is then used 

to forecast the probability for spikes by iterating the latent Markov 

chain governing the regime from 16/1 and onwards (middle panel).  

The increase in consumption from Monday to Friday translates into 

large spike probabilities. We also note that the persistence of the 

spike regime largely is determined by the consumption. These 

probabilities can be compared to the actual electricity spot prices 

during the same period (lower panel).  We find that the model is able 

to predict the spikes, using only the consumption. 

http://www.nordpoolspot.com/historical-market-data/
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Fig. 3 Known data up until Sunday 18th January (solid line) and 

”Predicted” (dashed line) consumption for the upcoming week (top 

panel), the resulting spike probabilities (middle panel) computed 

from the consumption and actual electricity spot price (bottom 

panel) for the second week in January, 2015. 

V. CONCLUSION 

This paper presents an extension of the time invariant Independent 

Spike Model introduced in [7] by considering hourly observations 

rather than daily observations. 

We found that the model can swiftly move from the base regime 

to the spike regime during peak hours only to revert later during the 

evening. It is now the external variable (typically consumption) that 

determines the persistence of the extreme prices. This is in stark 

contrast to the standard time homogeneous model where the 

persistent is constant (with exponentially distributed durations). 

We also found support for the hypothesis that wind power and the 

reserve margin influences the probability for spikes and drops, but 

the likelihood based information criteria clearly ranked the 

consumption as the most important variable. 

The model was used to demonstrate how consumption forecasts 

can be used to forecast spikes (including reversion to the base regime 

during off-peak hours). This could a very useful proxy for the 

stability in the physical power system! 
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