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Abstract

The magnitude squared coherence (MSC) spectrum is an often used frequency-dependent

measure for the linear dependency between two stationary processes, and the recent literature

contain several contributions on how to form high-resolution data-dependent and adaptive

MSC estimators, and on the efficient implementation of such estimators. In this work, we

further this development with the presentation of computationally efficient implementations

of the recent iterative adaptive approach (IAA) estimator, present a novel sparse learning via

iterative minimization (SLIM) algorithm, discuss extensions to two-dimensional data sets,

examining both the case of complete data sets and when some of the observations are miss-

ing. The algorithms further the recent development of exploiting the estimators’ inherently

low displacement rank of the necessary products of Toeplitz-like matrices, extending these

formulations to the coherence estimation using IAA and SLIM formulations. The perfor-

mance of the proposed algorithms and implementations are illustrated both with theoretical

complexity measures and with numerical simulations.
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1. Introduction

The problem of estimating the magnitude squared coherence (MSC) between two or more

measured signals is frequently occurring in a wide variety of fields, such as speech processing,

time series analysis, geophysics, biomedical engineering, and synthetic aperture radar imag-

ing, wherein one wishes to determine the linear relationship between signals or to determine

if a common signal is present in several different measurements. Recently, non-parametric

data-adaptive estimation techniques have been exploited to form robust high-resolution MSC

estimates [1–5]. In [1, 2], it was shown that the one- and two-dimensional (2-D) Capon and

APES-based MSC estimators allow for high-resolution MSC estimates, by forming data-

adaptive filter banks, with each filter being constrained to pass its center frequency undis-

torted while suppressing the contribution of all other components. In [3], this work was

extended to allow for non-uniformly sampled data by exploiting a formulation based on the

recent iterative adaptive approach (IAA) [6]. The IAA-based MSC algorithm, as well as

a segmented version termed SIAA-MSC, was there shown to yield reliable estimates even

if a large proportion of the measurements are missing. In this paper, we further extend

these works by a proposing 1-D and 2-D formulations of the IAA-based MSC estimator, as

well as for a novel semi-parametric SLIM-based estimator. The sparse learning via itera-

tive minimization (SLIM) method was introduced in the context of MIMO radar imaging

in [7], and can be viewed as a version of the well-known (regularized) FOCUSS algorithm

[8], although including also the iterative estimation of the noise variance (see also [9]). Both

the IAA and SLIM algorithms have been shown to converge locally [7, 10], as well as to

yield excellent performance for both complete or incomplete data sets. Regrettably, both

algorithms are also computationally cumbersome, and several works have focused on forming

various computationally efficient implementations for uniformly and non-uniformly sampled

data sequences [11–17]. The presented work may be viewed as a continuation of our recently

proposed efficient implementation of the Capon- and APES-based MSC estimators [18],

wherein we combined earlier efforts in forming computationally efficient implementations of

these spectral estimators [19–26] with the inherently low displacement rank of the estima-

tors’ products of Toeplitz-like matrices, thereby allowing for the development of appropriate

Gohberg-Semencul (GS) representations of these matrices. The resulting implementation
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was found to be several orders of magnitude more efficient than the straightforward imple-

mentations. Here, building on this work, we extend the IAA- and proposed SLIM-based

MSC estimators in a similar way. The paper is organized as follows: in the following sec-

tion, we briefly review data-adaptive MSC estimation, comparing the formulations of the

earlier introduced Capon-, APES-, and IAA-based MSC estimators, as well as introduce a

novel SLIM-based MSC estimator. Then, in Section 3, we recall formulations of the MSC

estimators using trigonometric polynomials, and then, in Section 4, introduce the efficient

implementations of the IAA- and SLIM-based estimators using appropriate GS represen-

tations for the necessary products of Toeplitz-like matrices. In Section 5, we proceed to

discuss the case of incomplete data sets, followed by the extensions to 2-D formulations of

the estimators in Section 6. Section 7 contains a study of the performance of the discussed

estimators and implementations. Finally, we conclude on the work in Section 8.

2. Data-Adaptive MSC Estimation

The MSC spectrum, γ2x1x2(ω), of two stationary complex valued signals, x1(n) and x2(n),

for n = 0, 1, . . . , N − 1, is defined as (see, e.g., [27–29])

γ2x1x2(ω) =
|Sx1x2(ω)|2

Sx1(ω)Sx2(ω)
(1)

where Sx1(ω) and Sx2(ω) denote the (auto) spectra of the signals x1(n) and x2(n), respec-

tively, whereas Sx1x2(ω) denotes the cross-spectrum between these two signals. The Capon-,

APES-, and IAA-based MSC estimates are formed using the matched filter bank framework

(see also [29, 30]). Let h
(i)
N ∈ CN×1 denote a narrowband data dependent finite impulse

response (FIR) filter centered at a generic frequency ω ∈ (−π, π], and form the signals of

interest into N × 1 subvectors

x
(i)
N =

[
xi(0) xi(1) . . . xi(N − 1)

]T
(2)

where i = 1 or 2 for the respective signal, and where (·)T denotes the transpose. As the

filters are narrowband, aiming to only pass the generic frequency ω undistorted whereas

the contribution from all other frequencies are minimized, the matched filter bank spectral

estimate at frequency ω is found as the power of the filtered signal, i.e.,

Sxi(ω) ≈ h
(i)H
N RRR(i)

N h
(i)
N (3)
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where RRR(i)
N represents the signal’s covariance matrix, defined as

RRR(i)
N = E

{
x
(i)
N x

(i)H
N

}
(4)

with i = 1 or 2 for the respective signal, where E{·} denote the expectation and (·)H the

conjugate transpose, respectively, and where h
(i)
N is a data dependent narrow band filter

formed such that

h
(i)
N = argmin

h
(i)
N
Sxi(ω) subj. to h

(i)H
N fN(ω) = 1 (5)

where

fN(ω) =
[

1 eω . . . e(N−1)ω
]T

(6)

is the frequency steering vector. Minimization of (5) with respect to the unknown parameters

vector results in a data adaptive and frequency dependent optimal filter of the form

h
(i)
N =

[RRR(i)
N ]−1fN(ω)

fHN (ω)[RRR(i)
N ]−1fN(ω)

(7)

The cross-spectral density needed to form (1) is estimated as

Sx1x2(ω) ≈ h
(1)H
N RRR(12)

N h
(2)
N (8)

with RRR(12)
N denoting the cross-covariance matrix, defined as

RRR(12)
N = E

{
x
(1)
N x

(2)H
N

}
(9)

Combining (1), (3), (7), and (8), one obtains the Capon-based MSC estimator [1, 4]

γ2x1x2(ω) =

∣∣∣fHN (ω)PPP (12)
N fN(ω)

∣∣∣2∏2
i=1 f

H
N (ω)[RRR(i)

N ]−1fN(ω)
(10)

where

PPPN , [RRR(1)
N ]−1RRR(12)

N [RRR(2)
N ]−1 (11)

2.1. IAA-based MSC estimation

As shown in [1, 2], the Capon- and APES-based MSC estimates result from two different

design choices for the narrowband filters and use the standard time based averages approx-

imation in place of estimates of the auto and cross correlation matrices. The IAA-based
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algorithm instead forms the covariance matrices as the sum of the spectral contribution

from all possible frequency grid points, essentially viewing that data as a sum of sinusoids,

with the number of sinusoids being equal to the size of the frequency grid. Clearly, this

is not possible without knowing the amplitudes of all the sinusoids, and, as a result, the

estimates are formed using an iterative scheme. Following [3], the data covariance matrices

are estimated by iteratively estimating the complex amplitudes, αi(ωk), of these sinusoidals,

as well as the resulting covariance matrices, R
(i)
N , for i = 1 or 2, for the respective signals,

using (see also [6, 31])

αi(ωk) =
fHN (ωk)[R

(i)
N ]−1x

(i)
N

fHN (ωk)[R
(i)
N ]−1fN(ωk)

(12)

R
(i)
N =

K−1∑
k=0

|α(i)(ωk)|2fN(ωk)f
H
N (ωk) (13)

until practical convergence, for k = 0, 1, . . . , K−1, where the number of grid points K > N ,

with R
(i)
N initialized to the identity matrix IN . Upon convergence, an estimate of the cross-

covariance matrix is then formed as

R
(12)
N =

K−1∑
k=0

α∗1(ωk)α2(ωk)fN(ωk)f
H
N (ωk) (14)

The IAA-based MSC estimator γ2,IAAx1x2
is subsequently estimated as [3]

γ2,IAAx1x2
(ω) =

∣∣∣fHN (ω)P
(12)
N fN(ω)

∣∣∣2∏2
i=1 f

H
N (ω)[R

(i)
N ]−1fN(ω)

(15)

where

PN , [R
(1)
N ]−1R

(12)
N [R

(2)
N ]−1 (16)

Direct, brute force, computation of the resulting IAA-based MSC estimates requires a sig-

nificant amount of computations. Assuming a uniformly spaced frequency grid with K grid

points, the cost of forming γ2,IAAx1x2
(ω) is approximately

CIAA = O
(
mIAA

(
2N3 + 4N2K

))
+O

(
2N2K

)
(17)

operations, where the parameter mIAA that appears in (17) denotes the number of the IAA

iterations.
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2.2. A novel SLIM-based MSC estimator

We now proceed to introduce a novel SLIM-based MSC estimator. Similar to the IAA-

based approach, the SLIM formulation may be used to form the estimates of the complex

amplitudes, αi(ωk), for i = 1, 2, of these spectral lines, adopting an lq-norm based regularized

minimization method for sparse signal recovery and noise power estimation, with 0 ≤ q ≤ 1,

and where a cyclic approach is applied iteratively for the estimation of the data covariance

matrices and the complex amplitudes as [7]

αi(ωk) =
1

|αi(ωk)|(2−q)
fHN (ωk)[R

(i)
N ]−1x

(i)
N (18)

R
(i)
N =

K−1∑
k=0

|αi(ωk)|2fN(ωk)f
H
N (ωk) + ηiI (19)

ηi =
1

N

∣∣∣∣∣x(i)
N −

K−1∑
k=0

αi(ωk)fN(ωk)

∣∣∣∣∣
2

(20)

until practical convergence, for k = 0, 1, . . . , K − 1, with αi(ωk) initialized to the (zero-

padded) Discrete Fourier Transform (DFT) transform of xN and ηi initialized to a positive

value, usually given values proportional to the signal variances, σ2
x(i)

. Upon convergence, an

estimate of the cross-covariance matrix is then formed as in (14), and, finally, the SLIM-based

MSC estimate, γ2,SLIMx1x2
(ω), is computed reminiscent to (15). Assuming a uniformly spaced

frequency grid with K grid points, the direct brute force complexity of the SLIM-based MSC

estimator requires approximately

CSLIM = O
(
mSLIM

(
2N3 + 2N2K

))
+O

(
4N2K

)
(21)

operations, with mSLIM denoting the number of the SLIM iterations.

3. MSC estimation using trigonometric polynomials

To reduce the computational complexity of forming the discussed IAA- and SLIM-based

MSC estimators, one may exploit the matrix structure to reduce the amount of necessary

computations significantly. To do so, note that (10) may be reformulated as

γ2y1y2(ω) =
|ϕ12(ω)|2

ϕ1(ω)ϕ2(ω)
(22)
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where the trigonometric polynomials ϕi(ω) and ϕ12(ω) are

ϕi(ω) , fHN (ω)[R
(i)
N ]−1fN(ω) (23)

ϕ12(ω) , fHN (ω)PN fN(ω) (24)

for i = 1 or 2. As shown in [12, 14, 25], the trigonometric polynomials involved in forming

(23) can be efficiently computed by taking into account the displacement representation of

the pertinent matrices R
(1)
N and R

(2)
N , both of which enjoy a Toeplitz structure. To obtain (22)

given these results, it thus only remains to find a computationally efficient way of forming

(24), which is directly associated with the structure of the matrix PN involved, formed by

(16) as the product of Toeplitz like matrices, since [R
(1)
N ]−1 and [R

(2)
N ]−1 are Toepliz-like

matrices and R
(12)
N is a non-symmetric Toeplitz matrix. For the readers benefit and for

further use, we briefly present the basics from the displacement representation theory of

matrices (see also [32–34]). Consider a matrix QN ∈ CN×N , and define the lower shifting

matrix

ZN =

 0T 0

IN−1 0

 (25)

Clearly, (ZN)N = 0. Then, the displacement of QN with respect to ZN and ZTN is defined as

∇ZN ,Z
T
N
QN , QN − ZNQNZ

T
N (26)

Suppose that there exist integers ρ and σi ∈ {−1, 1}, i = 1, 2 . . . ρ, such that (see also

[32–34])

∇ZN ,Z
T
N
QN =

ρ∑
i=1

σit
i
Ns

iH
N = Xt

N,ρΣΣΣρX
sH
N,ρ (27)

where

Xt
N,ρ =

[
t1N . . . tρN

]
(28)

Xs
N,ρ =

[
s1N . . . sρN

]
(29)

ΣΣΣρ = diag (σ1 . . . σρ) (30)

where diag(a) denotes the diagonal matrix formed with the vector a along its diagonal, and

with tiN and siN being the so-called generator vectors. Then, the GS factorization of QN

may be expressed as

QN =

ρ∑
i=1

σiL(tiN)LH(siN) (31)
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where L(A) denotes a Krylov matrix of the form

L(A) =
[
A ZNA Z2

NA . . . ZN−1
N A

]
(32)

The displacement rank of the representation equals the rank of the associated displacement

matrix, ∇ZN ,Z
T
N
QN , whereas the integer ρ may be larger than or equal to the corresponding

displacement rank. In summary, the triplet

(
Xt
N,ρ,X

s
N,ρ,ΣΣΣρ

)
(33)

is called the displacement representation of QN with respect to ZN and ZTN . Given the

displacement representation (33), the coefficients of the trigonometric polynomial associated

to QN

ϕ(ω) , fHN (ω)QN fN(ω) =
N−1∑

κ=−N+1

cκe
κω (34)

can efficiently be computed as it is detailed in [25] without the need of forming the matrix

QN explicitly, using triangular Toeplitz matrix products of the form
cN−1

...

c0

 =

ρ∑
i=1

σiLLL(tiN)DDDN
(
siN
)∗

(35)


c−N+1

...

c0

 =

ρ∑
i=1

σiLLL
((
siN
)∗)DDDNtiN (36)

and where DDDN is a N ×N anti-diagonal matrix of the form

DDDN =


0 . . . 0 1

0 . . . 2 0
...

...
. . .

...

N 0 . . . 0

 . (37)

It is worth noting that (34) can be subsequently evaluated on the unit circle using the Fast

Fourier Transform (FFT) [35].
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4. Implementation of the IAA- and SLIM-based MSC estimator

As shown in [12–14], R
(i)
N may be extracted from a circulant matrix of higher dimensions,

such that

C
(i)
K ,WH

Kdiag
{
|αi(ω0)|2, . . . , |αi(ωK−1)|2

}
WK =

R(i)
N ×

× ×


where WK is the DFT matrix of size K ×K, and the symbol × denotes unspecified terms

of no relevance. Thus, the first column of R
(i)
N , denoted by r

(i)
N , is obtained by the partition

c
(i)
K = [r

(i)T
N ×]T , where c

(i)
K is the first column of C

(i)
K , and can be computed using the Inverse

DFT (IDFT) as c
(i)
K = WH

Kαααi, where

αi ,
[
|αi(ω0)|2 . . . |αi(ωK−1)|2

]T
(38)

The cross-covariance matrix R
(12)
N can be treated similarly, and its first column and row are

extracted from a circulant matrix whose first column is computed as c
(12)
K = WH

Kααα12, where

α12 ,
[
α∗1(ω0)α2(ω0) . . . α∗1(ωK−1)α2(ωK−1)

]T
(39)

Introduce the partitioning

R
(i)
N =

 r
(i)
0 r

f(i)H
N−1

r
f(i)
N−1 R

(i)
N−1

 =

 R
(i)
N−1 JN−1r

f(i)∗
N−1

r
f(i)T
N−1 JN−1 r

(i)
0

 (40)

where JN−1 is the exchange matrix and define

â
(i)
N =

 1

−[R
(i)
N−1]

−1r
f(i)
N−1

 /√α
f(i)
N (41)

α
f(i)
N = r

(i)
0 − r

f(i)H
N−1 [R

(i)
N−1]

−1r
(i)
N−1 (42)

Then, a displacement representation of [R
(1)
N ]−1 and [R

(2)
N ]−1 with respect to ZN and ZTN may

be formed as
(
T

(i)
N,2,T

(i)
N,2,ΣΣΣ

R
2

)
, where

T
(i)
N,2 =

[
t
(i),1
N t

(i),2
N

]
(43)

ΣΣΣR
2 = diag(σR1 , σ

R
2 ) (44)

t
(i),1
N = â

(i)
N , σR1 = 1 (45)

t
(i),2
N = ZNJN

(
t
(i),2
N

)∗
, σR2 = −1 (46)
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yielding a displacement rank of ρR = 2 (see also [29, 32]). The resulting fast implementation

for the computation of (12) and (13) may then be computed using the methods presented

in [12, 14, 25], at a cost of mIAA [N2 + 12φ(2N) + 3φ(K)] operations, where φ(N) denotes

the complexity of forming the FFT of length N . To complete the derivation of the proposed

MSC algorithm, it remains to show how the trigonometric polynomial ϕ12(ωk), defined in

(24), can be computed efficiently. Since [R
(i)
N ]−1 and R

(12)
N have displacement ranks of two

with respect to ZN and ZTN , the displacement rank of their product PN , given in (16), has

an upper bound of eight [34], although, as is proved in Appendix A, it is actually allowing

a lower rank representation, as:

Lemma 1. A displacement representation of PN with respect to ZN and ZTN may be formed

as
(
ΥΥΥN,4,ΨΨΨN,4,ΣΣΣ

P
4

)
, where

ΥΥΥN,4 =
[
υυυ1N . . . υυυ4N

]
(47)

ΨΨΨN,4 =
[
ψψψ1
N . . . ψψψ4

N

]
(48)

ΣΣΣP
4 = diag(σP1 , . . . σ

P
4 ) (49)

with the auxiliary variables formed in Table 1, and

υυυ1N = â
(1)
N , ψψψ1

N = d
(12)
N , σP1 = 1

υυυ2N = d
(2)
N , ψψψ2

N = â
(2)
N , σP2 = 1

υυυ3N = ZNJN â
(1)∗
N , ψψψ3

N = ZNc
(12)
N , σp3 = −1

υυυ4N = ZNc
(2)
N , ψψψ4

N = ZNJN â
(2)∗
N , σP4 = −1

The displacement rank of the representation is thus ρP = 4. �

The proof can be found in the appendix. Moreover, given the displacement representation

of [R
(i)
N ]−1, a displacement representation of [R

(i)
N−1]

−1 0

0T 0

 (50)

for i = 1, 2, with respect to ZN and ZTN , may be formed as
(
T̃

(i)
N,2, T̃

(i)
N,2,ΣΣΣ

R
2

)
, where

T̃
(i)
N,2 =

[
t
(i),1
N JN

(
t
(i),1
N

)∗ ]
(51)
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Given this GS factorization, the coefficients of the associated polynomial in (24) may be

efficiently computed using the FFT as detailed in [25], at a complexity of no more than

40φ(2N) operations. The computational cost for computing the variables that appear in

Table 1 using these techniques is no more than 56φ(2N) operations, implying that the total

computational cost for the fast implementation of the IAA-based MSC algorithm, hereafter

termed FIAA-MSC, is no more than

CFIAA = 2mIAA

[
N2 + 12φ(2N) + 3φ(K)

]
+ 64φ(2N) + 2φ(K) (52)

where the first term corresponds to the complexity of the two IAA algorithms required for the

computation of the autocorrelation sequences as well as the associated trigonometric poly-

nomials, whereas the last term corresponds to the additional computations required for the

computation of the cross correlation between the two signals and the associated trigonomet-

ric polynomial. The fast IAA-based MSC estimation is tabulated in Table 3. The structure

of the SLIM-based MSC estimator is very similar to that of the IAA-based estimator. The

(auto) covariances of the signals involved are then estimated using the SLIM iterations in

(18)-(20), while the cross-covariance, and the MSC estimate are computed using (14) and

(15), which are common to both approaches. The SLIM iterations in (18)-(20) can be effi-

ciently implemented using a similar approach as described above for the implementation of

the IAA iterations since these share a similar structure, noting that the resulting scheme is

somewhat simpler than that of the IAA-based estimate, yielding a computational complexity

of

CFSLIM = 2mSLIM

[
N2 + 2φ(K)

]
+ 74φ(2N) + 4φ(K)

operations. As shown in Figure 1, the proposed fast IAA- and SLIM-based MSC implemen-

tations are about three orders of magnitude faster than their brute force counterparts.

5. The case of missing samples

The MSC estimators presented so far have been designed for evenly sampled data. How-

ever, in a wide range of applications the measured data could be unevenly sampled, or might

suffer from lost samples. We refer to this as the missing samples MSC estimation case.

Several algorithms for spectral estimation in the arbitrarily missing data case have been re-

ported, such as the missing data APES (MAPES) algorithm [36] and the missing data IAA

11



(MIAA) algorithm [31], with the former suffering from high computational complexity and

from performance degradation when the percentage of missing samples increases, whereas

the latter has been found to provide accurate estimates even when only a few data snapshots

are available, allowing furthermore for fast implementations as has been recently shown in

[14] and [15] for the 1-D and 2-D cases, respectively. In [15], in addition to the 2-D MIAA,

the missing data SLIM (MSLIM) algorithm is presented and its fast implementation is de-

rived. The performance of MAPES, MIAA, and MSLIM for spectral estimation of 1-D and

2-D data sets in the case of arbitrarily missing data has been investigated in [15, 31] by ex-

tensive simulations, illustrating that (i) MIAA and MSLIM both perform much better than

MAPES, and (ii) the computational complexity of MIAA and MSLIM are several orders of

magnitude lower than that of the MAPES algorithm. For this reason, we will here focus

on the IAA- and SLIM-based MSC estimators and their efficient implementation, extending

these algorithms to data sets that contain missing samples, where the locations of the miss-

ing samples are arbitrarily selected, but known. Consider the vectors of available (or given)

data, defined as

x
(i)

N i
g

= SN i
g ,N

x
(i)
N , i = 1, 2 (53)

where SN i
gN

is a N i
g × N selection matrix, with zeros and ones indicating the presence or

absence of a sample, respectively, and SN i
g ,N

STN i
g ,N

= IN i
g
, where IN i

g
is the N i

g ×N i
g identity

matrix, and where, in general, N1
g 6= N2

g , allowing thus for a different missing data pattern

for each signal x1(n) and x2(n) (see also, e.g., [14, 15, 31, 36]). Here, N i
g ≤ N denotes the

number of available data samples for each signal. The corresponding frequency vector can

be expressed as

f
(i)

N i
g
(ω) = SN i

g ,N
fN(ω) (54)

The MIAA-MSC algorithm is then formed by iterating [3]

αi(ωk) =
f
(i)H

N i
g

(ωk)[R
(i)

N i
g
]−1x

(i)

N i
g

f
(i)H

N i
g

(ωk)[R
(i)

N i
g
]−1f

(i)

N i
g
(ωk)

,
ψi(ω)

φi(ω)
(55)

R
(i)

N i
g

=
K−1∑
k=0

|αi(ωk)|2f (i)N i
g
(ωk)f

(i)H

N i
g

(ωk) (56)

12



until convergence, followed by the MSC estimator as

γ2,MIAA
x1x2

(ω) =

∣∣∣G̃(1)Hω R12
N1

gN
2
g
G̃(2)ω

∣∣∣2∏2
i=1 f

(i)H

N i
g

(ω)[R
(i)

N i
g
]−1f

(i)

N i
g
(ω)

(57)

where G̃(i)ω = [R
(i)

N i
g
]−1fN i

g
(ω), with

R
(12)

N1
gN

2
g

=
K−1∑
k=0

α∗1(ωk)α2(ωk)f
(1)

N1
g
(ωk)f

(2)H

N2
g

(ωk) (58)

being a N1
g × N2

g Toeplitz matrix. The complexity of a brute-force implementation of the

MIAA-based MSC estimator is

CMIAA = O

(
mMIAA

2∑
i=1

(
(N i

g)
3 + 2(N i

g)
2K
))

+O(N1
gN

2
gK) (59)

operations, with mMIAA denoting the required number of MIAA iterations. Computational

reduction of the MIAA-based MSC estimator can be achieved by first applying a fast scheme

for the computation of the auto- and cross-correlation sequences related to the signals x1(n)

and x2(n) from the missing data and by subsequently bypassing (57) and using (15) directly

for the estimation of the relevant MSC. Using the fact that

R
(i)

N i
g

= SN i
g ,N

R
(i)
N STN i

g ,N
(60)

and noting that the factors of (55) can be expressed as

ψi(ωk) = fHN (ωk)
(
STN i

g ,N
[R

(i)

N i
g
]−1xN i

g

)
φi(ωk) = fHN (ωk)

(
STN i

g ,N
[R

(i)

N i
g
]−1SN i

g ,N

)
fN(ωk)

an algorithm for the fast estimation of αi(ω) in (55), as well as the auto-correlation sequences

of the signals x1(n) and x2(n), has been recently presented in [14], and combined with a

fast implementation of (58) using the Toeplitz into circulant matrix embedding technique

discussed in the previous section, results in a fast scheme of the MIAA-based MSC estimation,

whose complexity is given by

CFMIAA = O
(
mMIAA

(
(N1

g )3 + (N2
g )3 + 6Kφ(K)

))
+

O
(
2N2 + 20φ(2N) + 4φ(K)

)
(61)
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The missing data SLIM-based MSC estimator is formed along the lines of the MIAA-based

MSC, using (18)-(20) reformulated to the missing data formulation, for the estimation of the

auto-correlation sequence of x1(n) and x2(n), requiring

CMSLIM = O

(
mMSLIM

2∑
i=1

(
(N i

g)
3 + (N i

g)
2K
))

+O(N1
gN

2
gK) (62)

and

CFMSLIM = O
(
mMSLIM

(
(N1

g )3 + (N2
g )3 + 4Kφ(K)

))
+

O
(
2N2 + 20φ(2N) + 4φ(K)

)
(63)

operations, for the direct and for the fast implementation, respectively, with mMSLIM de-

noting the required number of MSLIM iterations.

6. Extensions to 2-D data sets

We proceed to examine 2-D extensions of the IAA- and the SLIM-based MSC estimator,

γ2x1x2(ωk1 , ωk2), of two stationary complex valued 2-D signals, x1(n1, n2) and x2(n1, n2), for

n1 = 0, 1, . . . , N1 − 1 and n2 = 0, 1, . . . , N2 − 1. Let the 2-D data matrices

X
(i)
N1,N2

=
[
x
(i)
N1

(0) . . . x
(i)
N1

(N2 − 1)
]

x
(i)
N1

(n2) =
[
xi(0, n2) . . . xi(N1 − 1, n2)

]T
where i = 1, 2 and n2 = 0, 1, . . . , N2 − 1, be organized in a column-wise form as x

(i)
N1N2

=

vec(X
(i)
N1,N2

), where vec(·) denotes column-wise vectorization. Furthermore, define the 2-D

frequency vector fN1N2(ω1, ω2) , fN2(ω2)⊗ fN1(ω1), where ⊗ denotes the Kronecker product.

The 2-D IAA-based MSC estimator is then given by

γ2,IAAx1x2
(ω1, ω2) =

∣∣fHN1N2
(ω1, ω2)PN1N2fN1N2(ω1, ω2)

∣∣2∏2
i=1 f

H
N1N2

(ω1, ω2)[R
(i)
N1N2

]−1fN1N2(ω1, ω2)
(64)

with

PN1N2 , [R
(1)
N1N2

]−1R
(12)
N1N2

[R
(2)
N1N2

]−1 (65)
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where the 2-D auto- and cross-covariance matrices are estimated using the 2-D IAA algo-

rithm, iterating

αi,k1,k2 =
f
(k1,k2)H
N1N2

[R
(i)
N1N2

]−1x
(i)
N1N2

f
(k1,k2)H
N1N2

[R
(i)
N1N2

]−1f
(k1,k2)
N1N2

(66)

R
(i)
N1N2

=

K1−1∑
k1=0

K2−1∑
k2=0

|αi,k1,k2|2f
(k1,k2)
N1N2

f
(k1,k2)H
N1N2

(67)

until practical convergence, where fk1,k2N1N2
, fN1N2(ωk1 , ωk2) and αi,k1,k2 , αi(ωk1 , ωk2), whereas

upon convergence, an estimate of the cross-covariance matrix is formed as

R
(12)
N1N2 =

K1−1∑
k1=0

K2−1∑
k2=0

α∗1,k1,k2α2,k1,k2f
(k1,k2)
N1N2

f
(k1,k2)H
N1N2

. (68)

The 2-D SLIM-based MSC estimator is formed by, instead of (66) and (67), the estimation

of the amplitude spectra and the auto-correlation matrices of the 2-D signals is performed

by the 2-D-SLIM algorithm, by iteratively estimating

αi,k1,k2 =
1

|αi,k1,k2 |
(2−q) f

(k1,k2)H
N1N2

[R
(i)
N1N2

]−1x
(i)
N1N2

(69)

R
(i)
N1N2

=
K−1∑
k1=0

K2−1∑
k2=0

|αi,k1,k2|2f
(k1,k2)
N1N2

f
(k1,k2)H
N1N2

+ ηiI (70)

ηi =
1

N1N2

∣∣∣∣∣x(i)
N1N2

−
K−1∑
k1=0

K2−1∑
k2=0

αi,k1,k2f
(k1,k2)
N1N2

∣∣∣∣∣
2

(71)

until convergence. Fast implementations of both the 2-D IAA and the 2-D SLIM algorithms

have been recently proposed in [12, 14, 15] where, thanks to the Toeplitz-block-Toeplitz

(TBT) structure of the auto-correlation matrices (67) and (70), the 2-D auto-correlation

sequences are estimating using TBT to 2-D circulant matrix embedding, their inverses are

expressed using a suitable 2-D GS representation whose generators are computed using the

Levinson-Whittle-Wiggins-Robinson (LWWR) algorithm [28, 37, 38], which are subsequently

used for the computation of the coefficients of the pertinent trigonometric polynomials using

[25], resulting in a very efficient implementation with significantly reduced computational

complexity as compared to the brute force approach. Furthermore, (68) is a TBT ma-

trix whose block cross-correlation sequence may be computed efficiently using TBT to 2-D

circular matrix embedding and the 2-D FFT. Thus, it remains to show how (64) may be
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implemented efficiently. Reminiscent to the 1-D case, one may express (64) in terms of the

2-D trigonometric polynomials as

γ2,IAAx1x2
(ω1, ω2) =

|ϕ12(ω1, ω2)|2

ϕ1(ω1, ω2)ϕ2(ω1, ω2)
(72)

where

ϕi(ω1, ω2) , fHN1N2
(ω1, ω2)[R

(i)
N1N2

]−1fN1N2(ω1, ω2) (73)

ϕ12(ω1, ω2) , fHN1N2
(ω1, ω2)PN1N2fN1N2(ω1, ω2) (74)

for i = 1, 2. The polynomials ϕ1(ω1, ω2) and ϕ2(ω1, ω2) are already available as these are

inherently involved in the iterative scheme of the 2-D IAA algorithm in (66) and (67),

whereas for the 2-D SLIM-based MSC estimator, they are efficiently estimated from the

2-D GS representation of [R
(i)
N1N2

]−1. Thus, it remains to show how ϕ12(ω1, ω2) may be

efficiently computed, which, similarly to the 1-D case presented above, reduces to the efficient

estimation of the 2-D GS representation of the matrix PN1N2 as defined by (65). Consider

the partitions of the (N1N2)× (N1N2) TBT matrix in (67) as

R
(i)
N1N2

=

R(i)
N1(N2−1) RRR

b(i)

RRRb(i)H R0(i)

 =

R0(i) RRRf(i)H

RRRf(i) RN1(N2−1)

 (75)

where R
(i)
N1(N2−1) is a TBT matrix of dimensions (N1(N2 − 1))× (N1(N2 − 1)), which, using

the matrix inversion lemma for partitioned matrices, may be expressed as

[R
(i)
N1N2

]−1 =

[R
(i)
N1(N2−1)]

−1 0

0T 0

+ B̄BB(i)
N1N2
B̄BBHN1N2

=

 0 0

0T [R
(i)
N1N2

]−1

+ ĀAAN1N2ĀAA
H
N1N2

where B̄BB(i)
N1N2

and ĀAA(i)
N1N2

are block matrices of dimensions N1N2 ×N1 defined by

B̄BB(i)
N1N2

=

 IN1

−[R
(i)
N1(N2−1)]

−1RRRb(i)

 [A
b(i)
N1

]−1/2, (76)

ĀAAN1N2 =

−[R
(i)
N1(N2−1)]

−1RRRf(i)

IN1

 [A
(i)
N1

]−1/2 (77)

A
b(i)
N1

= R0(i) −RRRb(i)H [R
(i)
N1(N2−1)]

−1RRRb(i) (78)

A
f(i)
N1

= R0(i) −RRRf(i)H [R
(i)
N1(N2−1)]

−1RRRf(i) (79)
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with A−1/2 denoting the Cholesky factor of A−1. Using (76) and (77), and working along the

lines of Lemma 1, a displacement representation of (65) with respect to the block shifting op-

erators ZN1N2 and ZTN1N2
, where ZN1N2 = ZN2⊗IN1 , takes the form

(
UUUN1N2,4N2 ,VVVN1N2,4N2 ,ΣΣΣ

P
4N2

)
,

where

UUUN1N2,4N2 =
[
UUU1
N1N2

. . . UUU4
N1N2

]
(80)

VVVN1N2,4 =
[
VVV1
N1N2

. . . VVV4
N1N2

]
(81)

ΣΣΣP
4N2

= diag(σP1 IN2 , . . . σ
P
4 IN2) (82)

with σP1 = σP2 = 1, σP3 = σP4 = −1, and

UUU1
N1N2

= ĀAA1
N1N2

, VVV1
N1N2

= TTT N1N2

UUU2
N1N2

= DDD2
N1N2

, VVV2
N1N2

= ĀAA2
N1N2

UUU3
N1N2

= ZN1N2B̄BB
1
N1N2

, VVV3
N1N2,N2

= ZN1N2SSSN1N2

UUU4
N1N2

= ZN1N2CCC2N1N2
, VVV4

N1N2
= ZN1N2B̄BB

2
N1N2

where the required auxiliary variables are tabulated in Table 2. The displacement rank of

the representation is ρP = 4N2, and the computational cost of the resulting 2-D IAA- and

SLIM-based MSC algorithms reduces to

CFIAA2 = O
(
mFIAA2

(
3N2

2N
3
1 + 10N1φ(2N1, 2N2) + 6φ(K1, K2)

))
+

19N3
1N2 + 18N1φ(2N1, 2N2) + φ(K1, K2)

CFSLIM2 = O
(
mFSLIM2

(
3N2

2N
3
1 + 4φ(K1, K2)

))
+

19N3
1N2 + 28N1φ(2N1, 2N2) + 3φ(K1, K2)

where mFIAA2 and mFSLIM2 denote the number of required iterations. As it is illustrated in

Fig. 2, this is a substantial improvement as compared to the brute force approach, which

requires

CIAA2 = O
(
mIAA2

(
2N3

1N
3
2 + 6N2

1N
2
2K1K2

))
+ 2N2

1N
2
2K1K2

CSLIM2 = O
(
mSLIM2

(
2N3

1N
3
2 + 4N2

1N
2
2K1K2

))
+ 4N2

1N
2
2K1K2

where mIAA2 and mSLIM2 denote the corresponding number of required iterations.

17



7. Numerical examples

The performance of the proposed MSC estimation algorithms are illustrated by means

of computer simulations. Initially, we examine the 1-D complete data case, and consider

N = 200 samples of two signals, x1(n) and x2(n), which are both a mixture of sinusoidal

signals corrupted by additive noise

xi(n) =
7∑
`=1

ri`e
2πf i`n + wi(n), i = 1, 2 (83)

where ri` are complex amplitudes of unit magnitude and uniformly distributed phases, and

with wi(n), for i = 1, 2, denoting two independent circularly symmetric zero-mean Gaus-

sian random processes with unit variance. Here, the signals’ frequencies are selected as

f 1 =
[
0.1 0.2 0.3 0.31 0.6 0.61 0.8

]
and f 2 =

[
0.1 0.2 0.3 0 0.6 0.61 0

]
. The

MSC is evaluated over K = 1000 uniformly distributed frequency grid points. The Capon-

and APES- based MSC estimates are illustrated in Fig. 3(a) and (b) with filter lengths of

M = 40, where the MSC is successfully resolved by either method, noting that the high

noise floor (erroneous peaks) can be reduced by decreasing the value of M at the expense

of lower spectral resolution. The IAA-based MSC with mIAA = 10 IAA iterations is shown

in Fig. 3(c), where the MSC produced by the IAA-MSC method can be seen to be charac-

terized by an extremely high noise floor, which can be somewhat reduced by applying data

segmentation and averaging as proposed in [3]. Fig. 3(d) illustrates this for data segments

of size Ns = 120, although, as is clear from the figure, without significant reducing the noise

floor. In an attempt to reduce the variance of the IAA-based MSC estimates, a reduced size

MSC estimator may be formed by using a smaller fraction NR < N of the full sized cross-

correlation sequence computed by the IAA algorithm [39], which is subsequently utilized for

the computation of the MSC. Thus, instead of using the full sized approach in (16) and (24),

a lower order estimator is adopted using

ϕ̂12(ω) , fHNR
(ω)PNR

fNR
(ω) (84)

PNR
, [R

(1)
NR

]−1R
(12)
NR

[R
(2)
NR

]−1 (85)

with NR ≤ N , while keeping ϕ1(ω) and ϕ2(ω) as originally defined in (23), resulting in

γ2,IAA−Ix1x2
(ω) =

|ϕ̂12(ω)|2

ϕ1(ω)ϕ2(ω)
(86)
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which is hereafter termed the IAA-I-based MSC algorithm. Due to the order recursive

structure of the Levinson-Durbin algorithm, lower order GS factorizations are produced at

no extra cost. Moreover, the computation of the displacement of PNR
required for the

efficient computation of (84) is in this case lower than that of original full order approach.

It is worth noticing that the auto- and cross-correlation sequences of the input signals are

still estimated using the full order IAA algorithms. Using the proposed order reduction

technique, the variance of the MSC is drastically reduced as it is shown in Fig. 3(e), where

Ns = 50 is used. Finally, the performance of the proposed SLIM-based MSC algorithm is

shown in Fig. 3(f), noting that in this approach the noise floor using the full sized cross-

correlation sequence is insignificant and that there is thus no need to consider a similar

order reduction modification as just proposed for the IAA-based MSC case. Figures 4 and

5 further illustrates this for varying SNR levels. We proceed to examine the performance of

the proposed IAA- and SLIM-based MSC algorithms in the missing data case, by randomly

(with a uniform distribution) omitting 30% and 70% samples, where, as shown in Fig. 6,

both methods succeed in obtaining MSC estimates similar to those obtained in the full data

case. Finally, the performance of the proposed 2-D MSC estimation methods is illustrated

in Fig. 7, where two 2-D mixtures of sinusoidal signals corrupted by additive noise are

considered, formed as

xi(n1, n2) =
4∑
`=1

ri`e
2π(f i`,1n1+f i`,2n2) + wi(n1, n2), i = 1, 2

where ri` are the complex amplitudes of unit magnitude and uniformly distributed phases,

and the 2-D frequencies of the signals are

f 1 =
{

(0.1, 0.1) (0.2, 0.2) (0.3, 0.3) (0.4, 0.4)
}

f 2 =
{

(0.1, 0.4) (0.2, 0.3) (0.3, 0.3) (0.4, 0.1)
}

respectively, and where wi(n1, n2), for i = 1, 2, are two independent 2-D circularly symmetric

zero-mean Gaussian random processes with unit variance. As for the 1-D case, the 2-D IAA-

based MSC is estimated by using a reduced size cross-correlation estimate in place of the

full size counterpart in (74) as

ϕ̂12(ω1, ω2) , fHNR1
NR2

(ω1, ω2)PNR1
NR2

fNR1
NR2

(ω1, ω2)
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where NR1 ≤ N1, NR2 ≤ N2, and

PNR1
NR2
, [R

(1)
NR1

NR2
]−1R

(12)
NR1

NR2
[R

(2)
NR1

NR2
]−1 (87)

while keeping the full size auto-correlation estimates as originally defined in (73), resulting

in MSC estimates with significantly reduced variance as compared to the original scheme.

Reminiscent to the 1-D case, we term this the 2-D IAA-I based MSC algorithm. The 2-D

MSC estimates obtained by the 2-D Capon, 2-D APES, 2-D IAA-I and the 2-D SLIM based

MSC algorithms are presented in Fig. 7.

8. Conclusions

This works examines the performance of, as well as introduce computationally efficient

implementations for, the IAA-based MSC estimators, as well as for the here introduced

SLIM-based MSC estimator. We furthermore introduce efficient implementations of the

estimators for the case of missing samples as well as for 2-D data sets, in both cases offering

substantial computational savings as compared to a direct evaluation. Reduced form IAA-

based formulation for both 1-D and 2-D data sets are also introduced, offering notably better

estimates as compared to the full sized cross-correlation versions. Numerical simulations

illustrate both the achievable reduction in computational complexity and typical performance

of the estimators for some narrowband data sets.

A. Proof of Lemma 1

Application of the matrix inversion lemma for partitioned matices on (40) yields

[R
(i)
N ]−1 =

[R
(i)
N−1]

−1 0

0T 0

+
JN â

(i)∗
N â

(i)T
N JN

α
f(i)
N

=

0 0T

0 [R
(i)
N−1]

−1

+
â
(i)
N â

(i)H
N

α
f(i)
N

which combined with (16) yields the upper and lower partitions

PN =

 PN−1 0

0T 0

+ JN â
(1)∗
N c

(12)H
N + c

(2)
N â

(2)T
N JN =

 0 0T

0 PN−1

+ â
(1)
N c

(12)H
N + d

(2)
N â

(2)H
N

allowing for the displacement of PN to be formed as

PN − ZNPNZ
T
N = â

(1)
N d

(12)H
N + d

(2)
N â

(2)H
N − ZNJN â

(1)∗
N c

(12)H
N ZTN − ZNc

(2)
N â

(2)T
N JNZ

T
N

20



References

[1] J. Benesty, J. Chen, Y. Huang, A Generalized MVDR Spectrum, IEEE Signal Process-

ing Letters 12 (2005) 827–830.

[2] A. Jakobsson, S. R. Alty, J. Benesty, Estimating and Time-Updating the 2-D Coherence

Spectrum, IEEE Transactions on Signal Processing 55 (2007) 2350–2354.

[3] N. R. Butt, A. Jakobsson, Coherence Spectrum Estimation From Nonuniformly Sam-

pled Sequences, IEEE Signal Processing Letters 17 (2010) 339–342.

[4] M. Zhou, C. Zheng, X. Li, On the relationship of non-parametric methods for coherence

function estimation, Signal Processing 88 (2008) 2863–2867.

[5] C. Zheng, Y. Zhou, X. Li, Generalised framework for nonparametric coherence function

estimation, Electronics Letters 46 (2010) 450–452.

[6] T. Yardibi, J. Li, P. Stoica, M. Xue, A. B. Baggeroer, Source Localization and Sens-

ing: A Nonparametric Iterative Approach Based on Weighted Least Squares, IEEE

Transactions on Aerospace and Electronic Systems 46 (2010) 425–443.

[7] X. Tan, W. Roberts, J. Li, P. Stoica, Sparse Learning via Iterative Minimization With

Application to MIMO Radar Imaging, IEEE Transactions on Signal Processing 59

(2011) 1088–1101.

[8] I. F. Gorodnitsky, B. D. Rao, Sparse Signal Reconstruction from Limited Data Using

FOCUSS: A Re-weighted Minimum Norm Algorithm, IEEE Transactions on Signal

Processing 45 (1997) 600–616.

[9] S. I. Adalbjörnsson, A. Jakobsson, Sparse Estimation of Spectroscopic Signals, in: 19th

European Signal Processing Conference, EUSIPCO 2011, Barcelona, Spain.

[10] W. Roberts, P. Stoica, J. Li, T. Yardibi, F. A. Sadjadi, Iterative Adaptive Approaches

to MIMO Radar Imaging, IEEE Journal of Selected Topics in Signal Processing 4 (2010)

5–20.

21



[11] E. Gudmundson, A. Jakobsson, J. A. Jensen, P. Stoica, Blood Velocity Estimation

Using Ultrasound and Spectral Iterative Adaptive Approaches, Signal Process. 91 (2011)

1275–1283.

[12] M. Xue, L. Xu, J. Li, IAA Spectral Estimation: Fast Implementation using the Gohberg-

Semencul Factorization, IEEE Transactions on Signal Processing 59 (2011) 3251 – 3261.

[13] G.-O. Glentis, A. Jakobsson, Time-Recursive IAA Spectral Estimation, IEEE Signal

Processing Letters 18 (2011) 111–114.

[14] G.-O. Glentis, A. Jakobsson, Efficient Implementation of Iterative Adaptive Approach

Spectral Estimation Techniques, IEEE Transactions on Signal Processing 59 (2011)

4154–4167.

[15] D. Vu, L. Xu, M. Xue, J. Li, Nonparametric Missing Sample Spectral Analysis and Its

Applications to Interrupted SAR, IEEE Journal of Selected Topics in Signal Processing

6 (2012) 1–14.

[16] G.-O. Glentis, A. Jakobsson, Superfast Approximative Implementation of the IAA

Spectral Estimate, IEEE Transactions on Signal Processing 60 (2012) 472–478.

[17] G. O. Glentis, K. Zhao, A. Jakobsson, J. Li, Non-Parametric High-Resolution SAR

Imaging, IEEE Transactions on Signal Processing (????). To appear.

[18] K. Angelopoulos, G. O. Glentis, A. Jakobsson, Computationally Efficient Capon- and

APES-based Coherence Spectrum Estimation, IEEE Transactions on Signal Processing

(????). To appear.

[19] J. Li, P. Stoica, An Adaptive Filtering Approach to Spectral Estimation and SAR

Imaging, IEEE Transactions on Signal Processing 44 (1996) 1469–1484.

[20] Z. S. Liu, H. Li, J. Li, Efficient implementation of Capon and APES for spectral

estimation, IEEE Transactions on Aerospace and Electronic Systems 34 (1998) 1314–

1319.

[21] R. Wu, Z.-S. Liu, J. Li, Time-varying complex spectral analysis via recursive APES,

IEE Proc. Radar, Sonar and Navigation 145 (1998) 354–360.

22



[22] A. Jakobsson, S. L. Marple, Jr., P. Stoica, Two-Dimensional Capon Spectrum Analysis,

IEEE Transactions on Signal Processing 48 (2000) 2651–2661.

[23] E. G. Larsson, P. Stoica, Fast Implementation of Two-Dimensional APES and Capon

Spectral Estimators, Multidimensional Systems and Signal Processing 13 (2002) 35–54.

[24] S. R. Alty, A. Jakobsson, E. G. Larsson, Efficient Time-Recursive Implementation of

Matched Filterbank Spectral Estimators, IEEE Transactions on Circuits and Systems—

Part I: Regular Papers 52 (2005) 516–521.

[25] G.-O. Glentis, A Fast Algorithm for APES and Capon Spectral Estimation, IEEE

Transactions on Signal Processing 56 (2008) 4207–4220.

[26] G. O. Glentis, Efficient Algorithms for Adaptive Capon and APES Spectral Estimation,

IEEE Transactions on Signal Processing 58 (2010) 84–96.

[27] S. M. Kay, Modern Spectral Estimation: Theory and Application, Prentice-Hall, En-

glewood Cliffs, N.J., 1988.

[28] J. S. L. Marple, Digital spectral analysis with applications, Prentice Hall, Englewood

Cliffs, NJ, 1987.

[29] P. Stoica, R. Moses, Spectral Analysis of Signals, Prentice Hall, Upper Saddle River,

N.J., 2005.

[30] P. Stoica, A. Jakobsson, J. Li, Matched-Filterbank Interpretation of Some Spectral

Estimators, Signal Processing 66 (1998) 45–59.

[31] P. Stoica, J. Li, J. Ling, Missing Data Recovery via a Nonparametric Iterative Adaptive

Approach, IEEE Signal Processing Letters 16 (2009) 241–244.

[32] T. Kailath, A. H. Sayed, Displacement Structure: Theory and Applications, SIAM

Review 37 (1995) 297–386.

[33] I. Gohberg, V. Olshevksy, Complexity of multiplication with vectors for structured

matrices, Linear Algebra Appl. 202 (1994) 163–192.

23



[34] D. Wood, Product rules for the displacement of near-Toeplitz matrices, Linear Algebra

Appl. 188/189 (1993) 641–663.

[35] H. Li, P. Stoica, J. Li, Capon Estimation of Covariance Sequences, Circuits, Systems,

and Signal Processing 17 (1998) 29–49.

[36] Y. Wang, J. Li, P. Stoica, Spectral Analysis of Signals - The Missing Data Case, Morgan

& Claypool, 2005.

[37] R. A. Wiggins, E. A. Robinson, Recursive Solution of the Multichannel Filtering Prob-

lem, J. Geophys. Res. 70 (1965) 1885–1891.

[38] N. Kalouptsidis, G. Carayannis, D. Manolakis, Fast Algorithms for Block Toeplitz

Matrices with Toeplitz Entries, Signal Process. 6 (1984) 77–81.

[39] K. Angelopoulos, G. O. Glentis, A. Jakobsson, Efficient Implementation of the IAA-

based Magnitude Squared Coherence Estimator, in: International Conference on Digital

Signal Processing, Corfu.

24



Table 1: Auxiliary variables required for the displacement representation of PN .
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Table 2: Auxiliary variables required for the displacement representation of PN1N2
.
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Table 3: Fast IAA-based MSC estimation. (3.6) and (3.6) are actually implemented using the Levinson-

Durbin algorithm. (3.2),(3.3),(3.5), (3.11) and (3.16) are computed using the FFT. (3.9),(3.10),(3.14) and

(3.15) are computed using fast Toeplitz vector multiplication.
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COMPUTE (3.12) AND (3.13) USING TABLE 1
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Figure 1: Computational complexity of the IAA- and SLIM-based MSC algorithms using the proposed and

the brute force implementations, for different N , where m = 10, and with K = 2048.
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Figure 2: Computational complexity of the IAA- and SLIM-based 2-D MSC algorithms using the proposed

and the brute force implementations, for different image dimensions, with N1 = N2, where m = 10, and with

K1 = K2 = 512.
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(f)

Figure 3: MSC estimation of two cisoidal mixtures using N = 200, at SNR=5dB, with K = 1000 uniformly

spaced frequency points: (a), (b) Capon- and APES-based MSC with filter lengths set equal to M = 40, (c)

IAA-MSC, (d) Segmented IAA-MSC, with segment lengths NS = 120, (e) IAA-I MSC with NR = 50, and

(f) SLIM-MSC.
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(h)

Figure 4: MSC estimation of two cisoidal mixtures using N = 100 with K = 1000 uniformly spaced frequency

points: IAA-I MSC with NR = 25 at SNR varying from 3dB, 10dB, 15dB and 25dB illustrated in figures

(a), (c), (e) and (g) respectively, SLIM-MSC illustrated in figures (b), (d), (f) and (h) for the same SNR.
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(h)

Figure 5: MSC estimation of two cisoidal mixtures using N = 200 with K = 1000 uniformly spaced frequency

points: IAA-I MSC with NR = 50 at SNR varying from 3dB, 10dB, 15dB and 25dB illustrated in figures

(a), (c), (e) and (g) respectively, SLIM-MSC illustrated in figures (b), (d), (f) and (h) for the same SNR.
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(d)

Figure 6: MSC estimation of two cisoidal mixtures using N = 200, at SNR=5dB, with K = 1000 uniformly

spaced frequency points: (a), (b) IAA-I MSC with NR = 50 where 30% and 70% of data are missing, (c),

(d) SLIM MSC with NR = 50 where 30% and 70% of data are missing,
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(a)

(b)

Figure 7: MSC estimation of two 2-D cisoidal mixtures using [N1 × N2] = [32 × 32], at SNR=5dB, with

[K1 ×K2] = [200 × 200] uniformly spaced 2-D frequency points: (a), (b) 2-D Capon and 2-D APES based

MSC with filter lengths set equal to [M1 ×M2] = [8× 8], (c) 2-D IAA-I MSC with [NR1 ×NR2 ] = [16× 16],

and (d) 2-D SLIM-MSC.
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