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Popular Science Summary

We have long passed far beyond Aristotle’s view that the heart is the feeling and think-
ing center of the body, and that the brain is a secondary organ serving as a cooling
agent for the heart. The human brain is undoubtedly the most complex and unique
organ of the human body in terms of both its structure and function. Exquisite tech-
niques have been developed to reveal the topological and microstructural organization
of the human brain. Nevertheless, our knowledge on the functioning of the human
brain is yet so minute compared to its vast mysteries. To better unveil how the human
brain gives rise to cognition and behavior, in both health and disease, advanced data
analysis methods are being constantly developed. Yet, the success of these methods
significantly varies. One natural key to success, typically taken for granted, is to ex-
ploit anatomical knowledge of the brain to enhance the processing of data associated
to brain functional activity. In particular, the cerebral cortex, the 2 to 3 millimeter
thick outer layer of the brain, exhibits a unique topology in each individual; it is much
folded and about two-thirds of it is buried in grooves. The cerebral cortex consists
of neuronal cell bodies and is the brain’s primary region associated with processing
and cognition, basically being the place where ones thoughts, memory, language and
behavior are shaped. Advanced algorithms have been developed to extract the deli-
cate structure of this region from conventional magnetic resonance imaging (MRI)
brain scans, decoupling it from the surrounding brain white matter tissue, consisting
of neuronal axonal connections, and cerebrospinal fluid. The functional activity in
the cerebral cortex varies from that in white matter. The hypothesis that has led to
the research presented in this dissertation is that taking into account the convoluted
structure of the cerebral cortex in relation to its surrounding white matter tissue and
cerebrospinal fluid can help to better process functional brain data and to detect the
underlying hidden brain activity. Functional MRI (fMRI) is one popular imaging
technique used for non-invasive probing of human brain function. Using fMRI, one
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viii Popular Science Summary

seeks to indirectly detect electrical brain activity based on the level of oxygenation
present in the blood stream across the brain. In simple terms, when a region of the
brain is active, more oxygen-rich blood is pumped to that region, leading to a relative
increase in oxygenation. By interpreting the induced activity of the brain captured
with fMRI as a signal, signal processing schemes are commonly used to enhance the
processing of fMRI data.

In this dissertation, we present a set of novel signal processing schemes that aim
to enhance the processing of fMRI data and the detection of brain activity. The fun-
damental theme of the presented schemes is to exploit knowledge of the intricate
anatomy of each individual’s brain to enhance the processing of fMRI data. We de-
fine models to represent the brain structure as the backbone of the acquired fMRI
data. These models are extracted from conventional anatomical MRI scans. In signal
processing terms, the anatomy is equivalent to the domain of the signal, i.e., the base
on which the signal is lying on. We propose four domain-informed signal processing
schemes with application to analysis of fMRI data. The contributions of this disser-
tation go beyond neuroimaging since three of the proposed schemes are developed in
such way to enable processing not only of fMRI data, but of any data that are defined
on an inhomogeneous or irregular domain. Experimental and simulated results on
fMRI data show the potential of the proposed schemes in providing an efficient de-
composition of the data and revealing fine-grained activity patterns consistent to the
anatomy of the brain.



Abstract

Standard signal processing techniques are implicitly based on the assumption that the
signal lies on a regular, homogeneous domain. In practice, however, many signals lie
on an irregular or inhomogeneous domain. An application area where data are natu-
rally defined on an irregular or inhomogeneous domain is human brain neuroimag-
ing. The goal in neuroimaging is to map the structure and function of the brain using
imaging techniques. In particular, functional magnetic resonance imaging (fMRI)
is a technique that is conventionally used in non-invasive probing of human brain
function.

This doctoral dissertation deals with the development of signal processing schemes
that adapt to the domain of the signal. It consists of four papers that in different
ways deal with exploiting knowledge of the signal domain to enhance the processing
of signals. In each paper, special focus is given to the analysis of brain fMRI data,
either as the main theme (Paper I) or as proof of practical significance of the proposed
schemes (Papers II, IIT and IV).

Paper I presents a framework for enhanced fMRI activation mapping through ex-
ploiting filters that adapt to the brain anatomy. A novel procedure for constructing
brain graphs, with subgraphs that separately encode the topology of the cerebral and
cerebellar gray matter, is presented. Graph wavelets tailored to the convoluted bound-
aries of brain gray matter are designed and exploited to implement an anatomically-
informed spatial transformation on fMRI data. Compared to conventional brain acti-
vation mapping schemes, the proposed approach shows superior type-I error control.
Results on real data suggest a higher detection sensitivity as well as capability to cap-
ture subtle, connected patterns of brain activity.

Paper II presents a graph-based signal decomposition scheme that adapts to the
domain of the data as well as to the spectral content of a given signal set. The construc-
tion starts from the design of a prototype Meyer-type system of kernels with uniform
subbands. The adaptivity of the approach is introduced by exploiting the ensemble
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X Abstract

energy spectral density. Using the ensemble energy spectral density, the prototype
design is warped such that the resulting subbands each capture an equal amount of
energy for the given signal class. Results on fMRI data and Monte Carlo simulations
illustrate the superiority of signal-adapted frames over frames blind to signal charac-
teristics in representing data and in denoising.

Paper I1I presents a generic interpolation scheme for reconstructing signal samples
from an inhomogeneous domain. The interpolation adapts to the inhomogeneity of
the domain. The adaptation is incorporated by introducing a domain-similarity met-
ric that characterises the domain in the adjacency of each sample point. The interpo-
lation is shown to satisfy the domain-informed consistency principle, a principle that
we define as an extension of the classical consistency principle. As proof of concept,
domain-informed linear interpolation is presented as an extension of standard linear
interpolation. Results from applying the proposed approach on fMRI data demon-
strated its potential to reveal subtle details.

Paper IV extends the theory in Paper III to enable reconstruction of signals with
varying degrees of spatial smoothness. In particular, conventional shift-invariant B-
spline interpolation is extended to a shift-variant, domain-informed interpolation.
This is done by constructing a domain-informed generating basis that satisfies stabil-
ity properties. The benefit of domain-informed interpolation over standard B-spline
interpolation is demonstrated through Monte Carlo simulations across a range of B-
spline orders. The practical significance of domain-informed spline interpolation is
demonstrated on fMRI data. The results show the benefit of incorporating domain
knowledge so that an interpolant consistent to the anatomy of the brain can be recov-
ered by the proposed interpolation.
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Chapter 1
Motivation

This doctoral dissertation deals with the development of signal processing schemes
that adapt to the domain of the signal — hence the title “domain-informed signal
processing”. In particular, two types of signal domains are considered: (i) irregular
and (ii) inhomogeneous. The distinction between the two domains can be conveyed
with the aid of simple examples. An example of a discrete signal on an irregular do-
main consists of a set samples acquired through non-uniform sampling on a 2-D grid,
see Figure [[.T(a). The association between sample points is specified based on their
Euclidean distance. Samples that fall within a short Euclidean distance to one another
are considered as adjacent and connected. These set of connections define an irregular
domain different from that of a regular grid. An example of a discrete signal on an
inhomogeneous domain consists of a set of samples acquired through uniform sam-
pling on a 1-D grid for which the underlying signal domain is characterized by a set
of three different overlapping subdomains, see Figure [[.1|(b). In this setting, samples
adjacent to each other may be associated to different subdomains. For instance, see
the domain associated to the fourth and fifth samples, counting from left.

(a) (b)

Figure 1.1: (a) A set of signal samples defined on (a) an irregular domain and (b)
an inhomogeneous domain. The values of the samples are distinguished by their
gray scale contrast.
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Figure 1.2: (a) A slice of a structural brain MRI scan. (b)—(d) Gray matter, white
matter and cerebrospinal fluid segmentations of the ROI shown in (a), respectively.

An application area where data are naturally defined on an irregular or inhomoge-
neous domain is human brain neuroimaging. The goal in neuroimaging is to map the
structure and function of the brain using imaging techniques. Functional magnetic
resonance imaging (fMRI) is an imaging technique that has become a convention in
non-invasive probing of human brain function. The essence in fMRI lies in detect-
ing changes in blood oxygen level as an indirect measurement of brain activity. The
majority of available algorithms for processing fMRI data treat data samples from
across brain identically. However, brain activity resides on a topologically convo-
luted domain, consisting of different tissue types with varying topological and func-
tional characteristics, see Figure [.2(a). Functional brain activity captured by fMRI is
mainly associated to brain’s gray matter where nerve cell bodies reside. Gray matter is
a topologically convoluted structure that exhibits properties of an irregular domain,
see Figure [[.2(b). Thus, it is beneficial to confine the processing of the data to the
gray matter and more importantly, to exploit the information on the irregularity of
the domain to enhance processing of functional data associated to this tissue. On the
other hand, in several fMRI processing applications it is necessary to treat the entire
2-D or 3-D representation of acquired functional data rather than merely consider-
ing data associated to gray matter. In this setting, data samples acquired on the 2-D
or 3-D grid lie on an inhomogeneous domain consisting of three subdomains: gray
matter, white matter and cerebrospinal fluid, see Figures [[.2/(b)—(d).

This dissertation consists of four papers that in different ways deal with exploiting
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knowledge of the signal domain to enhance the processing of signals. The first two
papers address processing of signals defined on irregular domains whereas the second
two papers address processing of signals defined on inhomogeneous domains. In each
paper, a particular focus has been given to the analysis of brain fMRI data, either as
the main theme (Paper I) or as proof of practical significance of the proposed generic
schemes (Papers II, III and IV). The central themes of the papers are as follows:

Paper I presents a framework for enhanced fMRI activation mapping through
exploiting filters that adapt to the brain anatomy.

Paper II presents a generic graph-based signal decomposition scheme that adapts
to the domain of the data as well as to the spectral content of a given signal set.

Paper I1I presents a generic interpolation scheme for reconstructing signal sam-
ples from an inhomogeneous domain.

Paper IV extends the theory in Paper III to enable reconstruction of signals
with varying degrees of spatial smoothness.

The remainder of the dissertation introduction is organized as follows. Chapters Jand
serve as background material, whereas Chapter f summarizes the included papers
and ends with an outlook to future work. In particular, Chapter [J presents a brief
introduction to graph signal processing, a subfield of signal processing dealing with
the processing of data on irregular domains. Chapter B reviews the fMRI technique,
the conventional methods used for processing fMRI data, and tries to establish the
importance of accounting for the anatomy of the brain in mapping brain function.






Chapter 2
Graph Signal Processing

Graphs provide a flexible framework for representing and modeling data that are
defined on topologically complicated domains. Examples include data defined on
network-like structures, such as sensor [1] or social and biological networks [2], and
data defined on manifolds or irregularly shaped domains such as the human brain
[3, 4]. The current decade has witnessed a great body of research dedicated to gen-
eralizing classical signal processing operations of the Euclidean setting to the graph
setting. 'This has given rise to the emergence of an exciting subfield within signal
processing: graph signal processing (GSP) [5], which consists of various extensions
of fundamental signal processing concepts, including sampling theory [6, 7], signal
stationarity [8, 9], uncertainty principles [10, 11], graph Fourier transforms [12, 13],
filter design [14], kernel regression [15, 16], multi-resolution transforms [17, 18]
and filter bank designs [19, 20]. To extend these definitions from the classical setting
to the GSP setting, the eigenvalues and eigenvectors of a graph associated matrix,
the Laplacian matrix, play a central role; this matrix is used to define a spectral space
equivalent to that of the Fourier space. The growing interest in developing GSP meth-
ods has been coupled with application wise developments spanning various areas such
as image processing [21, 22], audio processing [23], speech processing [24], bioinfor-
matics [25, 26] and neuroscience [27, 28, 29, 30].

It is worth noting that there exists an alternative framework for signal processing
on graphs: discrete signal processing on graphs (DSPg) [31, 32, 33]. The fundamen-
tal difference between GSP and DSPg is that the spectral operations in the latter are
endowed by the graph adjacency matrix, rather than by graph Laplacian matrix as in
the former. For the sake of conciseness as well as relevance to the contents of this
dissertation, the presentation in this chapter is dedicated only to GSP.

This chapter starts by formulating the description of a graph, its Laplacian spec-
trum, followed by a brief introduction to fundamental GSP operations, in particular,
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graph Fourier transform, spectral filtering and decomposition of graph signals.

2.1 Graphs

An undirected, weighted graph, denoted G = (V, &, A), consists of a set V =
{1,2,..., Ny} of N, vertices and a set £ of edges (i.e., pairs (i, j) where 7,5 € V).
Figure 2.1]illustrates a simple graph. Algebraically, G can be described by an adjacency
matrix A with elements defined as

Aij= {“’"J 098 v e, 2.1)

0 otherwise,

where w; j denotes the weight of the edge between vertices ¢ and j. Another matrix
associated to G is the degree matrix D, which is a diagonal matrix with elements

Di,i = Zai,j, Vi e V. 2.2)
J

In many recent GSP applications, the assumption is that the graph is given or can
be defined in a reasonable way based on the nature of the application. For instance,
in sensor networks, a graph is defined to represents the relative positions of sensors in
the environment. The sensor positions are treated as graph vertices and edge weights
as a decreasing function of distance between sensors [1, 34]. Figure .7 illustrates two
example graphs: the Minnesota road graph [35] and the cerebellum gray matter graph
[36]. The vertices and edges of the Minnesota graph can be thought of as naturally
given by the application; the edges represent major roads in Minnesota state and the

Figure 2.1: A simple undirected graph consisting of 6 vertices and 7 edges. A
different weight w; ; can be associated to each edge.
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0000
[e}{e]

() (b)

Figure 2.2: (a) The Minnesota road graph [35]. (b) The brain cerebellum gray
matter graph [36].

vertices represent their intersection points, which often correspond to towns or cities.
On the contrary, the cerebellum gray matter graph is defined based on the application
to encode its topological structure. The cerebellum structure and its associated graph
are defined in 3-D space, but here only a 2D slice is presented for ease of illustration.
The vertices of this graph represent downsampled voxels whose probability of being
gray matter exceeds 0.5, and its edges represent neighbourhood connections.

2.2 Signals on graphs

Let ¢2(G) denote the Hilbert space of all square-summable real-valued vectors f €
RN9, with the inner product defined as

(f1.f2) = Zf1 [falnl, V1, o € 2(G) (2.3)
and the norm as
1F113=(f. F) = Z\f , Y eb(9) (2.4)

A real signal defined on the vertices of a graph, f : V — R, can be seen as a vector in
l5(G), where the n-th element represents the value of the signal on the n-th vertex.
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2.3 The graph spectral domain

Another key matrix in the study of graphs is the graph Laplacian matrix, defined as
L=D - A, (2.5)

with elements given as

—W; j if (Z,j) €€
Lij = Dy if Q= (2.6)
0

otherwise.

There exists several variants of the graph Laplacian [37]. Of particular interest, is the
normalized Laplacian matrix £ defined as

L=D2LD7'/? 2.7)
=1-D'2AD71/2, (2.8)
with elements given as
—W; 5 . .o
——— if (i,j) €&
o= d VDiDii r 2
W=\ 1 if Q= 2.9)
0 otherwise.

A comparison of (£.G) and (£.9) shows that the normalization leads to factoring out
differences in vertex degrees, and as such, £ only reflects the relative strength of the
weights. L and £ are both symmetric positive semi-definite matrices and can therefore
be diagonalized. The eigenvalue decomposition of L is given as

L£=3XAxT, (2.10)

where X = [x[X2| - - [Xy,] is an orthonormal matrix containing Ny eigenvectors
{x; € €2(9)},%, and A is a diagonal matrix whose entries equal the associated real,
non-negative eigenvalues that define the graph spectrum

J(Q)Z{OZ)\l S)\Q"'S)\Ng:)\max}- (2‘11)

The multiplicity of eigenvalue zero indicates the number of connected components
in the graph [37]. The spectral space of a graph shows similarities to the Fourier space
in the classical domain, where the eigenvectors associated with higher eigenvalues are
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Figure 2.3: Histograms of the eigenvalues of £ for (a) the Minnesota road graph
and (b) the cerebellum gray matter graph.

less smooth than those associated to lower eigenvalues, i.e., similar to that complex
exponentials associated to higher frequencies represent higher, less smooth harmonics.

The eigenvalue decomposition of L can be similarly expressed, leading to a dif-
ferent set of eigenvalues and eigenvectors. The unique property of L relative to L is
that its eigenvalues, for any given graph, are bounded within the range [0, 2] [37], i.e.
Amax <= 2. Figure 2.3 illustrates the distribution of the eigenvalues of L for the two
graphs shown in Figure P.2. The distributions of eigenvalues of the two graphs are
very different; the eigenvalues of the Minnesota graph are rather uniformly spread,
whereas those of the cerebellum graph are mainly concentrated in the upper end of
the spectrum.

2.4 Spectral representation of graph signals

Graph signals, although discrete, cannot be interpreted in the Fourier domain using
the classical discrete Fourier transform (DFT). Yet, it is beneficial to derive an equiva-
lent operator that would allow frequency analysis of graph signals — a graph Fourier
transform (GFT) operator. In the following, we first briefly review the construction
of DFT to establish the required link to subsequently define the GFT.

2.4.1 The discrete Fourier transform (Euclidean domain)
The N-sample DFT of a length-N discrete signal f, denoted }, is given as

N-1
Flk] =Y flne /N p=0,... . N-1
n=>0

=(f.&), k=0,....,N—1, (2.12)
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where Vp € {0,...,N — 1}
&lgl =N g=0,...,N -1 (2.13)

The signal can be recovered from the frequency samples using the inverse DFT oper-
ation as

fln) = 5 3 Tl 219
k=0
1 N—1~
=~ 2 FIk&H, n=0,....N-1. (2.15)
k=0

An important property of all variants of the Fourier transform, including the DFT, is
energy conservation between the original and transformed domain, known as Parse-
val’s relation. This relation is given as

vfl’fZE]RNu <.f1af2>:<1~c1,}2>- (2.16)

In essence, the DFT is a linear operator that transforms a given real-valued discrete
signal f to a spectral space that has the following two properties:

* indexed by a set of regularly spaced frequency indices

fi=0,fo=2n/N,fs =2A,..., fn = (N —1)A, (2.17)
=A

* spanned by a set of orthonormal vectors, one associated to each frequency in-
dex,

607617527"‘76]\/—17 (218)

These two properties show that the Fourier domain has a unique representation within
the Euclidean realm, unlike the representation in the graph setting, cf (B). Another
key observation is to notice that the corresponding equivalent continuous functions

o {€, 1V e,

En(z) =€/ n=0,...,N—1 (2.19)
are the eigenfunctions of the one-dimensional Laplacian operator, i.e.,
d? 9
@fn(%’) = —(An)*¢,(z), n=0,...,N—1. (2.20)

This observation is essential in paving the way to defining the GFT as described in
the following section.
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2.4.2 The graph Fourier transform

The elements of the DFT of a signal are obtained through the inner product of the
signal and complex exponentials, cf. (2.12), which are themselves eigenfunctions of
a Laplacian operator, cf. (2.20). Therefore, in analogy to the classical setting, a nat-
ural definition for the GFT is to take the inner product of a graph signal with the
eigenvectors of the graph’s Laplacian as

~

vfGEQ(g)v f[l] = <.f7Xl>7 lzla"'>Ng- (221)

This spectral representation can be used to express f in terms of the graph Laplacian
eigenvectors using the inverse GFT operation as

Ng
finl=>_ flllxlnl, n=1,...,N, (2.22)
=1
With this definition of the Fourier transform, the Parseval relation holds
Vi, fa €0209), (f1,f2) :<}15?2>' (2.23)
since
~ o (23) Ny ~~ o~
(Fi, fo) = > Fulllfoll]
=1
(021),23) & all
= ZZfl[”]Xz[n] Z Falm]xi[m]
=1 n=1 m=1
Ng N(]
=> 3" filrlf2lnlxalnlx(nl,
=1 n=1

Ny Ny
=" £l faln) > xilnlxiln,
n=1 =1

2
=lxllz=1

F1. fa)- (2.24)

@

2.5 Graph spectral filtering

In the Euclidean domain, a filter is uniquely defined by its impulse response. Filtering
of asignal f € RY with a filter with impulse response g € RM is obtained through
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a convolution product as
N
FOm =) fimlgln—m], n=1,....N, (2.25)

where £\9) denotes the filtered signal. Using tensor products, the convolution prod-
uct can be readily extended to 2-D and 3-D space for filtering of images and volumes,
respectively. The filtering operation can also be expressed as an operation in the spec-
tral domain, i.e.,

+(9)

VFeRY, vgeRM, PR = flk]-glkl, k=1,...,K, = (2.26)

where f, g and j"(g) denote the K sample DFT of f, g and £, respectively.

On the contrary, in the graph setting, the filter impulse response of a given spectral
kernel is shift-variant, rather than being shift-invariant as in the Euclidean setting. For
a given filter with spectral profile g € RN, the graph filter response for an impulse
at vertex i € R™V9, denoted &, is given as

Ny
8:9m =gl [l xauln,
=1
© S 511464, ) Xl .27)
l:]\lfg
= gl xili] xi[n]. (2.28)
=1

This relation shows that the filter impulse response is, in general, shift-variant in the
graph setting; i.c., Yn € {1,..., Ny}, 8:;9[n] # 8,;9[n], unless: 1) i = j, or
2) 1 # j but {x;[i] = xy[jl}i=1,....n,. Due to this shift-variance property, (2.25)
cannot be directly extended to the graph setting, since there exist no unique impulse
response. The filtering operation can instead be implemented within the graph spec-
tral domain by modulating the spectral content of the signal with a given graph filter
spectral profile g as

Vi, GeRY, FON=gF, l=1,....N, (2.29)
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The spectral representation can then be transformed back to the vertex domain as

vE, GeRY, fOn] =71 (7).

gl fllxalnl, n=1,...,N,.  (2.30)

2.6 Graph spectral decomposition

Many signal processing approaches are based on decomposition schemes that split a
signal based on its spectral content. The decomposition transforms the signal into a
new space either for representational purposes only or as a first step for further pro-
cessing. Of particular interest are wavelet transforms [38] that enable decomposition
of asignal on an orthonormal basis that allows simultaneous localization in time/space
and frequency. Wavelet transforms can provide a better representation of the signal
both in the original signal domain as well as in the spectral domain; this is specially
true for signals whose primary information content lies in localized singularities [39],
such as transients in temporal signals or edges in images. For example, the discrete
wavelet transform [40] has found its way in a wide range of applications.

Much attention has been given to generalizing classical spectral decomposition
methods to the graph setting. Examples include extensions of wavelet transforms
[17, 18, 41] and vertex-frequency analysis [42, 43]. Moreover, various filter bank
designs have been proposed which either inherit a graph downsampling [44, 45, 46]
or upsampling [19, 47] procedure or do not include graph sampling [48, 20, 49].
There also exists a different family of extensions that are defined within the vertex
domain, such as [50, 51, 52, 53]. Here, we focus the presentation for the designs that
are defined within the spectral domain, and that do not include a graph sampling
step. In such designs, the eigenvalues and eigenvectors of the Laplacian matrix play a
central role.

A multi-subband graph signal decomposition essentially requires designing a sys-
tem spectral kernels within the graph spectrum. For convenience of design as well
as implementation, spectral kernels are commonly defined as continuous kernels. In
particular, consider a set of J spectral kernels

Ki(A) 1 [0, Amax) = R, 5 =1,2,...,J. (2.31)
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If required, the discrete version of the spectral kernels can be obtained through sam-
pling as
kill] =K;(N), 1=1,...,N,. (2.32)

By constructing the impulse response of each spectral kernel /C;() at each vertex k,
a dictionary of vertex domain atoms, denoted Dg is obtained

J Ny
Dg = {{wj,n = £2(g)} } 5 (2.33)
j=1J n=1

where atom 1) , is given as
7

Y, [0 = 8,9 [n] (2.34)
Ny

2SR 1 xali) xalnl. 2.35)
=1

To decompose a graph signal f € ¢3(G) onto a set of the atoms in Dg, the coeflicients
can be obtained as

ey m = (F> %, m) (2.36)
Ng
® th;cj,m[ﬂf [1], (2.37)
=1
Ng
DSk 1F Uil 2.38)
=1

Typically one seeks the coefhicient vector associated to each k;

T
cie; = ey 1,005,255 €Iy N, s (2.39)

which can be obtained as

(20) 2

cK; = ij[l]?[l]xl- (2.40)

=1

However, such a direct decomposition using the explicit definition of the atoms
thyc; m is rather inefficient. Relation (2.40) shows that this decomposition scheme
requires a full eigendecomposition of L since it is explicitly based on i) the Laplacian
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eigenvectors {Xl};igl and ii) the graph Fourier transform of the signal ¥. For large
graphs, it can be cumbersome to compute the full eigendecomposition of £, and in ex-
tensively large graphs this can in fact be impossible. Moreover, due to the redundancy
of such a transform, it is beneficial to implement the transform using a fast algorithm,
rather than using the explicit computation of the coefficients through (20). One so-
lution to overcome this computational burden is to use a polynomial approximation
scheme. If K;(\) can be approximated as a polynomial, denote P;(\) € L2(G), the
subband decomposition ¢ ; can be approximated as

Ng
e, ST K00 FlxG (2.41)
=1
Ny R
~ > P Fllx (2.42)
=1
Ny R
=P;(L))_ flllx (2.43)
=1
2 Pi(L)f (2.44)

where in (2.43) the property Lx; = A\ixi = Pj(L)x1 = P;(Mi)xu is exploited.

The spectral graph wavelet transform (SGWT) is one of the first proposals of ex-
tending the construction of wavelet transforms to the graph setting [18]. The SGWT
system of graph spectral filters consists of a series of spline-based kernels including
a lowpass kernel and a sequence of dilated bandpass kernels. Figure 2.4(a) and Fig-
ure 2.5/(a) illustrate the SGWT system of spectral kernels defined on the normalized
spectrum of the Minnesota road graph and the cerebellum gray matter graph, respec-
tively. The SGWT frame is very generic, in the sense that the shape of the spectral ker-
nels are fixed and their maximum support is determined by Apax. An extension of the
SGWT to form a tight frame was presented in [48]. In particular, Meyer-type wavelet
and scaling functions were adopted to obtain spectral kernels that closely resemble the
dyadic nature of classical wavelets. Figure £.4(b) and Figure 2.3(b) illustrate the sys-
tem of spectral kernels of Meyer-like tight frames defined on the normalized spectrum
of the Minnesota road graph and the cerebellum gray matter graph, respectively. Sim-
ilar to the defining kernels of the SGWT, the characteristics of the Meyer-like tight
frame spectral kernels are fixed and independent of the graph, and their maximum
support is determined by Apax.

One of the difficulties of the graph spectrum is that its construction depends on
the graph itself. Consequently, the spectral representation of a graph signal is deter-
mined by both the domain and the signal. However, the aforementioned spectral
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Figure 2.4: System of spectral kernels defined on the spectrum of the Minnesota
road graph, with J = 7 spectral bands. (a) Spline based system of spectral kernels
[18]. (b) Meyer-like system of spectral kernels [48]. (c) Spectrum-adapted system
of spectral kernels [49].

Figure 2.5: System of spectral kernels defined on the spectrum of the cerebellum
gray matter graph, with J = 5 spectral bands. (a) Spline based system of spectral
kernels [18]. (b) Meyer-like system of spectral kernels [48]. (c) Spectrum-adapted
system of spectral kernels [49].
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designs typically define spectral windows in a way that is independent of the graph
and graph signal. One example of adaptation to the spectral properties of the graph
domain was recently proposed in [49] for the construction of spectrum-adapted tight
graph wavelet and vertex-frequency frames. The spectrum-adapted spectral kernels are
adapted to the distribution of eigenvalues of the graph Laplacian matrix such that a
similar number of eigenvalues lies in the support of each spectral kernel. Figure 2.4(c)
and Figure 2.5(c) illustrate the system of spectral kernels of spectrum-adapted tight
frames defined on the normalized spectrum of the Minnesota road graph and the cere-
bellum gray matter graph, respectively. The spectrum-adapted kernels are centralized
to regions of the spectrum where more eigenvalues are concentrated.






Chapter 3
Mapping Human Brain Function

Understanding the functional organization of the human brain has attracted much
research attention in the past century. In particular, the advent of non-invasive brain
imaging techniques, namely electroencephalography (EEG) [54], positron emission
tomography (PET) [55] and functional magnetic resonance imaging (fMRI) [56],
have paved the way for convenient probing of brain function across the entire brain
in health and disease. Although these three approaches all aim at probing the func-
tion of the brain, the nature of the signal they acquire is fundamentally different. The
EEG records the electrical field that stems from the joint activity of millions of corti-
cal neurons, and has the benefit of providing a sub-second temporal resolution [57].
The main limitation of the EEG lies in its poor spatial specificity in localizing brain
activity since it is measured on the body surface. PET imaging overcomes the lack
of spatial specificity in EEG, but it suffers from the limitation of involving radioac-
tive substances. The PET technique tracks changes in cerebral blood flow or cerebral
metabolism by scanning a radioactive substance that is injected to the blood stream.
The use of PET imaging for studying the brain has significantly declined with the
advent of fMRI, due to its higher cost, lower spatial resolution, and need for isotopes
compared to fMRI. Compared to the EEG, fMRI provides superior spatial resolution
at the cost of a lower temporal accuracy.

This chapter briefly reviews the fMRI technique and the conventional methods
used in processing fMRI data for brain activation mapping. It also establishes the
importance of accounting for the anatomy of the brain in mapping brain function.
The chapter ends by referencing to relevant studies exploiting anatomically-informed
approaches for analysis of fMRI data.

21
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Figure 3.1: Blood vessels in the human brain. Vessels were visualized by filling
them with a plastic emulsion and subsequently dissolving the parenchymal tissue.
Figure reproduced with permission from [58].

3.1 The fMRI technique

Functional MRI is a key bioimaging modality used for non-invasive studies of the
brain. It provides an indirect measurement of brain activity by elucidating changes
in cerebral blood flow and oxygenation level, first introduced by Ogawa in 1990
[56]. This relation between neuronal activity and changes in hemodynamic response
is known as neurovascular coupling, and several models have been proposed for its
origin [59, 60]. As a region of the brain becomes active, the cerebral blood flow
increases locally to meet the increased demand from firing neurons. Oxygen is sup-
plied through an extensive and delicate web of vessels, spaced by as little as 20-40
pm in gray matter [58], see Figure B.I. However, due to a misbalance between the
increase in oxygen consumption and the increase in blood flow, more oxygenated
blood becomes available in the region than needed for consumption. This slight in-
crease and the difference between the magnetic properties of oxygenated and deoxy-
genated blood leads to changes in the magnetic resonance signal which is known as
the blood-oxygen-level-dependent (BOLD) signal. The exact shape of temporal in-
crease in blood volume evoked by a stimulus varies between different subjects as well
as between different brain areas within the same subject [61, 62].

In order to track changes of BOLD signal across time, a series of whole-brain 3-D
MRI scans are acquired over a period of time. These scans, commonly called fMRI
volumes, are acquired using an echo-planar imaging (EPI) MRI sequence [64]. Com-
pared to conventional MRI sequences adopted to image brain structure, EPI trades
spatial resolution for temporal resolution to enable tracking behavior. Figure
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Figure 3.2: (a) A structural MRI scan. (b) An fMRI scan of the same subject in (a).
The scans are 3-D; a 2-D extract of data in each dimension is displayed — axial
plane (yellow), coronal (green) and sagital (red). The structural and functional
scans have been aligned and mapped to a template [63] space.
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shows a structural MRI and an fMRI scan of a subject from [65]. The structural vol-
ume has been acquired at a spatial resolution of 0.7 mm isotropic over approximately
7.5 minutes, whereas the fMRI volume has been acquired at a spatial resolution of 2
mm isotropic over merely 0.75 seconds.

3.2 Task-based fMRI activation mapping

Functional MRI data are generally acquired in two modalities: task-based and resting-
state. The fundamental assumption in task-based fMRI is functional segregation, that
is, to identify regions within the brain that are specialized for different behavioral task,
such as motor, visual, cognitive, language tasks. An illustrative visual paradigm is
shown in Figure B.3. Using such a paradigm, the aim is to detect regions in the brain
that are positively correlated to human face recognition, as that first proposed in the
seminal work by Haxby and colleagues [66]. In contrast to task-based fMRI, resting-
state fMRI entails imaging subjects while they lie in the scanner idle, without being
exposed to any experimental paradigm. By studying spontaneous fluctuations in brain
activity across brain regions, the objective is to detect low frequency (< 0.1 Hz)
spatially-distributed brain networks[67]. In this dissertation, only analysis of task-
based fMRI data is considered.

Different statistical approaches have been proposed for the analysis of task-based
fMRI data, known as fMRI activation mapping, including, principal component
analysis [68], independent component analysis [69, 70, 71], canonical correlation
analysis [72, 73] and sparsity-promoting deconvolution methods [74, 75, 76]. The
most widely used approach is a mass univariate hypothesis-driven scheme based on
the general linear model (GLM). This parametric method is implemented in many
software packages such as statistical parametric mapping (SPM) [77], the FMRIB
Software Library (FSL) [78] and AFNI (Analysis of Functional Neuroimages) [79].
It should also be noted that statistical inferences of fMRI data are conventionally made
at the level of voxels [77] as well as clusters [80]. In the former, the objective is to
determine if a voxel is significantly active, whereas in the latter the aim is to deter-
mine whether a cluster of voxels are significantly active. In the following, we present
an overview of the conventional GLM technique for voxel level statistical inference

of fMRI data.
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Figure 3.3: An illustrative example of an fMRI paradigm. The subject, while lying

in the scanner, is shown a series of images of which some are faces.

3.2.1 GLM fitting of fMRI data

A single subject fMRI dataset consists of a series of N; functional volumes, each with
N, voxels. By representing each volume as an V,, X 1 vector {v(t)}i\]:tl, the temporal
change in intensity at each voxel k can be expressed as

y®) = [wWE] .. oWI[E)T. (3.1)
A GLM is then fitted independently to the time-series of each of the voxels as
y® = x8%) 4+ k) (3.2)

where X is the N; x N, design matrix with columns representing a desired set of
regressors, B(k) is a N, x 1 vector of regression parameters and e isa Ny x 1
vector of residual errors. The regressors in the design matrix consists of the a set of
experimental paradigms, such as the paradigm shown in Figure B.3], each convolved
with an appropriate hemodynamic response function, as well as a set of pre-computed

head movement regressors. The elements of vector 3%) are the effect sizes, i.c., the
effect that each of the N, regressors have had on the the BOLD response of the k-th
voxel.

Assuming that the design matrix is of full rank, i.e., rank(X) = N, and that the
error component is independently and identically Gaussian distributed, i.e., N'(0, 02 1),
the optimal unbiased estimate of ,B(k) is the least squares estimate given by [77]

B = (XTx)~txTy®), (3.3)
The corresponding estimate of the residual errors is obtained as

k) — y(k) _ X,B(k). (3.4)
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3.2.2 Statistical Inference

Typically, not all components of the estimated B are of interest. In particular, to
perform a #-test, an appropriate z-test contrast vector ¢ of size IV, X 1 is applied
to the estimated parameters as ¢ 3(%). The objective is then to decide between the
following two hypothesis

1P Tp®) =0 (3.5)
1P eTa® > 0, (3.6)

Using the estimated ,B(k) and €®) | two scalar values are defined for each voxel k as

,u(k) =gk (3.7)
s = BT W) T (xT x) "1 (3.8)

where 11(¥) is the effect size of the contrast of interest and s its uncertainty [81];
,u(k) is a random variable with Gaussian distribution with mean ¢’ 3, and s follows
a chi-square distributions with J = (N; — rank(X)) degrees of freedom. A t-value
can then be calculated for each voxel & as
(k)
= £ __ (3.9)

The resulting #-values are tested against a threshold determined by a desired signif-
icance level a (e.g. 0.05). The null hypothesis is rejected if the t-value exceeds the
threshold, and the associated voxel is declared as active.

3.2.3 The multiple comparison problem

The significance level o of a statistical test indicates the probability p of false positive
detection, commonly known as Type I error rate. When multiple statistical tests are
implemented on a single data set (IV tests), the probability of false positive detection
becomes pN, rather than p. This problem is known as the multiple comparison prob-
lem. Due to this problem, the significance level needs to be corrected for a correct
statistical interpretation.

The standard measure in controlling false positives in multiple testing problems is
to control the chance of any Type I error, the familywise error (FWE) rate [82]. One
well-known approach to control the FWE rate is to resort to Bonferroni correction, i.e.,
to reduce the significance level by a factor of the number of tests, i.e., from o to at/ N,.
The number of tests in a whole-brain fMRI study typically equals the number of voxels
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within the brain mask that is a number in the order of 10%. This strict correction has
the drawback of drastically reducing the sensitivity for highly noise-convoluted fMRI
datasets, leading to almost no detections.

An aspect that is taken for granted in the Bonferroni correction is the inherent spa-
tial correlation of fMRI data. Gaussian random field theory (GRFT) based methods
use estimates of the smoothness of the data to adapt to the severity of the multiple
testing problem in controlling the FWE rate. GRFT is adopted in wide range of
fMRI statistical analysis packages including SPM [83]. Using GRFT implies adopt-
ing the assumption that the functional data lie in a lattice representation of a Gaussian
random field [84]. However, since fMRI data typically do not exhibit such smooth-
ness characteristics, it is essential to initially smooth the data before statistical testing.
Most conventional analyses schemes use a stationary 3-D spatial lowpass filter, such
as a Gaussian kernel of a desired standard deviation. The use of GRFT comes with
its own limitations. Firstly, there has been a set of recent studies showing that the ap-
proach yields family-wise error rates that are higher than that expected, in particular,
for cluster level inference [85, 86], suggesting the use of non-parametric approaches
for controlling the FWE rate using permutation testing [87, 88].

3.3 Maintaining spatial specificity of activation maps

Smoothing the data is necessary if GRFT is to be used for statistical inference. How-
ever, this is not the only reason to use smoothing. fMRI data have a very low spatial
resolution due to the requirement of fast acquisition. Moreover, the BOLD signal it-
self is a weak signal corrupted by various noise sources of physiological origin, such as
cardiac and respiratory signals [89], as well as non-physiological origin, such as scan-
ner noise [90] and head motion, that tends to be spatially and temporally independent
[91]. Itis therefore necessary to enhance the signal-to-noise ratio to increase the power
of consequent statistical tests. To this aim, a denoising step is generally incorporated
in fMRI analysis pipelines. Smoothing the data is one such scheme. Conventional
schemes rely on isotropic Gaussian smoothing. However, spatially isotropic filters,
such as a Gaussian, are optimal only for detecting activations that conform to the size
and shape of the filter kernel. Such smoothing leads to loss of information on the
spatial extent and shape of activation areas [92, 93], and destroys any non-smooth
singularities in the data. With this approach, increased sensitivity is traded for a loss
in spatial specificity in detections.

As a step towards maintaining spatial details, approaches have been proposed to
replace Gaussian smoothing with more elaborate adaptive spatial filtering schemes, see
for example [94, 95, 96]. In such schemes, the adaptation is introduced by exploit-
ing steerable filters [97, 98] constructed using directional derivative operators. The
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steerable filters are used as a spatial basis function that can efficiently encode non-
spherical activation patterns. Spatial wavelet transforms have also been abundantly
exploited as a means to non-linearly denoise functional data within frameworks of
both classical [99, 100, 101, 102] and Bayesian [103, 104] inference. As brain activ-
ity is highly localized in space [105], it can be efficiently represented using wavelets,
which achieve a balance between localization in space and frequency domain. A clus-
ter of active voxels can be encoded with only a few wavelet coefficients [106] whereas
the power of white noise remains uniformly spread across the wavelet coeflicients.
By performing coeflicient-wise statistical testing within the wavelet domain [107, 81]
a higher sensitivity is achieved than that by voxel-wise testing within the spatial do-
main [108]. As an example, the discrete-wavelet transform [109] has been used in the
wavelet-based SPM (WSPM) framework [81, 110]. WSPM has the unique feature
of treating thresholding within the wavelet domain as a denoising step only; statisti-
cal testing is deferred to a second thresholding on the reconstructed map within the
spatial domain. The statistical analysis is performed by a coefficient-wise t-test. To
deal with the multiple comparison problem, WSPM exploits Bonferroni correction
for strong type I error control. Adapting the False discovery rate principle [111] to
the framework has also been proposed [112].

3.4 The link between brain structure and function

A common characteristic between Gaussian filters, anisotropic filters and wavelets is
that they are stationary filters; i.e., the same set of filters are used across the brain.
Given the extent of spatial variability observed in the underlying neuroanatomy;, sta-
tionary filters are not ideal in terms of sensitivity to real activations, by virtue of the
matched filter argument [113]; i.e. the expected spatial shape of activity patterns
varies relative to the variation in the underlying anatomy, and thus, the spatial shape
of a stationary filter does not ideally match all expected activity patterns. To better
understand this structure-function inter-relation, a brief overview of brain’s macro
structure is necessary.

The brain consists of two tissue types: gray matter and white matter. Figure B.4(a)
shows a slice of a T1-weighted brain MRI scan of a subject from an open-access
database [65]. Figure B.4(b)—(c) show the gray and white matter probability maps
of Figure B.4(a), obtained through segmentations [114]. The names stem from the
color of these two tissues, but their division is rather due to the fundamental dif-
ference in their function. Gray matter consists of several billion nerve cell bodies
where brain processing takes place. It consists of various functionally specialized re-
gions, including the cerebral cortex, deep nuclei, brain stem, the cerebellum cortex.
The cerebral cortex exhibits an exquisite convoluted structure. Its convoluted shape
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Figure 3.4: (a) An axial slice of a structural T1w MRI scan. Segmented (b) gray
matter and (c) white mater probability maps of (a).

is thought to have arouse during evolution as a strategy for packing ever-increasing
number of neurons into the limited space of skull [115], since the cortical thickness
does not substantially vary across pieces (approximately 2-4 mm thick), but its surface
area is significantly larger in higher primates such as humans. Nerve cells lying in gray
matter are in contact with each other through their own axons. White matter mostly
consists of myelin sheath-covered nerve cells that are responsible for transmitting in-
formation between distant neuronal regions across the brain. Myelin sheaths insulate
neuronal electrical signals and thus, enable fast transmission of information across the
brain at velocities up to 100 m/s [115]. Gray matter and white matter, together with
cerebrospinal fluid, make up the whole volume of the brain.

Besides variation in their function, gray matter and white matter exhibit different
properties in terms of neurovascular coupling. White matter has a very sparse vascu-
larization compared to gray matter [116], and its energy consumption is one fourth
of that of gray matter [117]. White matter also exhibits a differently shaped hemo-
dynamic response function compared to that of gray matter [118]. These differences
leads to the white matter being a tissue with very low neurovascular coupling com-
pared to gray matter, which in turn implies the absence or presence of only a weak
BOLD signal within white matter [117]. However, it is worth noting that based on
current research, the assumption of absence of BOLD activity in white matter has
been called into question [119, 120, 121, 122, 123], suggesting the necessity of de-
veloping white matter tailored fMRI imaging sequences [124, 125] as well as temporal
[126] and spatial [127] analysis schemes. Moreover, fMRI data within gray matter,
white matter and cerebrospinal fluid have different noise properties [128]; for exam-
ple, white matter exhibits smaller between-voxel variation in space than does the gray
matter. Due to this difference, filtering a volume of data irrespective of the underly-
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ing tissue imposes a nonlinear effect on voxel variances and can lead to a shift of peak
significances in the resulting ¢-maps [129, 130, 131]. This loss in spatial localization
is particularly pronounced when Gaussian kernels of large width are used [132].

In summary, understanding these prior knowledge about tissue-function relation-
ship is essential for developing novel methodologies and interpreting obtained results.

3.5 Inter-subject spatial variability in BOLD response

In single-subject fMRI studies, the parameter of interest is the variance observed
within each subject, and the variance between subjects is assumed to be fixed or of
no interest [133]. On the contrary, in multi-subject fMRI studies, effects observed
in a group of subjects are used to make inferences about population responses. Typi-
cally a large inconsistency is observed in gray matter foldings across individuals even
in standard populations [134, 135]. A fundamental step in group studies is, thus, to
account for the inter-subject variability in brain anatomy.

Figure B.5 illustrates the typical variability observed in the topological structure
of the gray matter across six subjects. The challenge lies in deriving a suitable transfor-
mation that projects subjects’ functional data into a common anatomical space. One
of the most commonly used spaces in the Montreal Neurological Institute (MNI)
space [63]. The transformation is performed by initially mapping, linearly [136, 137]
or nonlinearly [138], the subjects structural scan to a group ensemble anatomical
template [139, 140], and then using the resulting transformation to map the associ-
ated subjects functional data. Non-linear normalization approaches such as DARTEL
[141], which is among the best performing algorithms [142], can be used to further
alleviate this problem by defining a common template space for a group of subjects
at hand rather than using a population-based template. Using the fast diffeomor-
phic image registration scheme implemented in DARTEL, the anatomical structure
of the set of subjects are iteratively warped to obtain an accurate group-level template
gray matter and white matter. Moreover, for sub-regions of the brain such as the
cerebellum, there exist methods that provide a normalization of individual subjects’
cerebellar region to a population-level, template space [143, 144].

Conventional multi-subject fMRI analysis schemes not only rely on the assump-
tion that functional voxels reside in the same anatomical coordinate system, but also
on the assumption that activations are expressed in the same location across subjects.
However, it is unlikely that a large set of common voxels evidence activation in all sub-
jects. A spatial discrepancy in the order of a millimeter or two is typically observed
in activation patterns across subjects. To alleviate this functional mismatch, first level
subject-specific activation patterns are typically smoothed with an isotropic Gaussian
kernel to increase their spatial overlap, and in turn to ensure evidence of a common
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Figure 3.5: The segmented gray matter of six subjects, from the fMRI dataset in
[145], showing the inter-subject cortical folding variability.

activation. The significance of the overlap is then typically determined using a one
sample t-test [133]. With this approach, the spatial resolution of detected activation
patterns is traded for increased statistical power, which in turn leads to an increased
detection sensitivity.

3.6 Anatomically-informed approaches for analysis of
fMRI data

The use of anatomically-informed methods for analysis of fMRI data is relatively
sparse, yet the number of studies is steadily rising. By anatomically-informed methods
we refer to schemes that aim to enhance the processing of fMRI data by exploiting in
one way or another knowledge about the underlying anatomy of the data. In this line,
a rich range of schemes have been proposed for analysis of fMRI data on the cortical
surface. Interpolation schemes that exploit anatomical constraints to map volumetric
fMRI data on to the cortical surface were proposed in [146, 147]. Various smoothing
procedures such as diffusion smoothing [148, 149], heat kernel smoothing [150] and
spline smoothing [151] have been proposed to accurately filter fMRI data by taking
into account the irregularity of the cortical surface. Construction of cortical geometry
encoding spatial basis functions was initially proposed in [152], exploited for multi-
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subject fMRI analysis in [153], and further scrutinized in a recent work [154] for char-
acterizing low frequency oscillating neuronal activity. To better describe the dynamics
of cortical activity [155], elaborate extensions of the cortical basis have been proposed
[156, 157] to encode not only local topology but also distal inter-hemispheric connec-
tions [158], the human connectome [159]. Aside from surface approaches, a number
of volumetric schemes have also been proposed. To minimize blurring of apparent
brain activity across anatomic boundaries and to encode local anatomical singularities,
bilateral spatial filtering schemes were proposed in [160, 161]. The use anatomical
information as spatial priors within a Markov random field regularization framework
was proposed [162]. The design of second-generation wavelets [163] adapted to the
cortical layer using the wavelet lifting scheme [164] was proposed in [165, 166]. A
spatiotemporal fMRI deconvolution method, where the spatial regularization phase
is adapted such that it exploits the topological structure of gray matter, was proposed
in [167]. In [168], it was shown that fMRI functional networks can be approximated
using eigenmodes of brain structural connectome graphs, confirming similar findings
on the cortical surface [156]. In [169], fMRI data were decomposed using a similar
set of human connectome eigenmodes as that in [156, 168], showing that better align-
ment between the functional data and the underlying anatomical backbone supports
faster cognitive switching. The proposed scheme in [169] was further elaborated in
[27] to study the dynamics [170] of cortical activity over time.



Chapter 4
Summary of the Included Papers

This chapter presents summaries of the four included papers on algorithms for domain-
informed signal processing. In Papers I and I, the adaptation to the domain is incor-
porated by representing the signal domain as a graph. Paper I presents an algorithm
developed specifically for the decomposition and denoising of fMRI data. Paper II
presents a generic algorithm for domain-informed decomposition of signals; the al-
gorithm can be adopted for the analysis of any set of signals defined on the nodes of
a given undirected graph. In particular, the applicability of the approach on an fMRI
dataset is presented. In Papers III and IV, the adaptation to the domain is incorpo-
rated directly into the conventional signal processing setting; i.e., without the need to
represent the domain as a graph. Paper III presents a scheme for extending conven-
tional linear interpolation to an interpolation that adapts to the signal domain. Paper
IV further extends the theory in Paper III to obtain higher order domain-informed
spline interpolants. In the following, we briefly review the contributions and main
results of these four papers.

Paper I: Anatomically-adapted graph wavelets for im-
proved group-level fMRI activation mapping

A graph-based framework for fMRI activation mapping at the group-level is pre-
sented. The framework extends WSPM which provides a wavelet-based denoising
procedure as an alternative to pre-smoothing the data by a spatial Gaussian kernel,
and thus, prevents loss in spatial specificity. The extension is mainly twofold:

Firstly, considering the fact that the BOLD response is mainly expected in gray
matter, the convoluted structure of gray matter is considered as the signal domain

33
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rather than the whole brain volume. A novel transformation of fMRI data is then
introduced within this domain, using anatomically-adapted wavelets tailored to the
convoluted boundaries of gray matter (see Figure . 1)(a)) rather than classical discrete
wavelets that have preferential orientations along the Cartesian axes. As part of the
framework, the procedure for constructing local-connectivity encoding brain graphs
(see Figure f.T(c)), with subgraphs that separately encode the structural connectivity
of the cerebral gray matter and cerebellar gray matter, is also presented.

VAP
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Figure 4.1: (a) Realizations of two gray matter adapted wavelets, at a coarse scale
(left) and a fine scale (right), overlaid on the constructed template cerebral gray
matter. (b) Template group-level representation of cerebral gray matter obtained
using DARTEL. (c) Local-connectivity encoding gray matter graph. (d) First level
contrast maps. (e) A graph signals constructed by mapping contrast data on to the
designed gray matter graph.

Secondly, the framework is developed in particular for group studies; versions of
the scheme for single-subject analysis have been proposed separately [36, 171]. The
inter-subject gray matter variability is addressed by the use of template gray matter
representations. For the cerebellar region, the SUIT template [143] is used to derive
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a population-level, study-independent template gray matter representation. For the
cerebral region, DARTEL is used to derive group-level gray matter representation
based on the anatomical scans of the set of subjects (see Figure f.1(b)). The desired
graph is then constructed using the derived gray matter representations. First-level
contrast maps (see Figure f.1(d)), derived from GLM fitting of the non-smoothed
functional data, are then mapped on the graph (see Figure f.I|(e)), and transformed
to the spectral graph domain using the anatomically-adapted wavelets.

In the spectral graph domain, the contrast maps are non-linearly denoised. The
processed maps are then reconstructed back to the spatial domain, and statistical in-
ference is performed. The proposed approach is evaluated using semi-synthetic as
well as real [145] multi-subject data. Table f.T shows the obtained sensitivity and
specificity rates obtained on the synthetic data where ground truth is known. Com-
pared to SPM, the proposed approach shows superior type-I error control, which can
be observed by comparing the number of false positives. Compared to the use of
classical wavelet as exploited in WSPM, the sensitivity of the proposed approach is
significantly greater (75% vs. 28%).

Figure .2 shows activation maps obtained using SPM and the proposed approach
on the real data. Visual comparison of the maps suggests higher detection sensitivity
as well as the capability to capture subtle, connected patterns of brain activity using

the proposed graph-based approach.

Table 4.1: Detection performance using SPM (with Gaussian filters of 4 mm and
6 mm FWHM), WSPM using classical wavelets and the proposed graph-based
framework — TP: true positives, FP: false positive.

Method SPM*mm  SPM®™™  WSPM  proposed approach
No. of detections 1882 3375 633 1581
No. of TPs 1389 1785 538 1398
Sensitivity 73% 94% 28% 75%
No. of FPs 493 1590 95 183

Specificity 99.2% 97.4%  99.9 % 99.4 %
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Figure 4.2: Activation maps detected by (a) SPM (Gaussian smoothing, 6 mm
FWHM) and (b) the proposed approach, overlaid on group-level gray matter tem-
plate. (c) Same as in (a) but with activations outside gray matter excluded.

Paper II: Signal-adapted tight frames on graphs

This paper presents an approach to the construction of signal-adapted tight graph
frames. Previous graph frame design approaches have been either generic or adapted
only to the spectral properties of the graph domain. However, the spectral properties
of the signals that lie on the graph can provide insightful information on how to
partition and allocate the spectral support of the spectral kernels.

Given a graph, see Figure f.3(a), the spectrum of the graph can be obtained
through eigen-decompostion of its Laplacian matrix, leading to a set of eigenval-
ues, see Figure B.3(b), and a set of eigenvectors. For a given set of signals defined
on the graph, an ensemble energy spectral density can then be obtained using the
graph eigenvectors, see Figure f.3(c). The essence of designing the proposed frame
lies in considering the distribution of the ensemble energy content as a novel means to
adaptation. First, a prototype tight, Meyer-type system of kernels with uniform scal-
ing is designed for the given graph, see Figure B.3(d). Second, an ensemble energy
spectral density is defined for a given set of signals defined on the graph. Third, an
energy-equalizing transformation function is obtained using the estimated ensemble
energy spectral density of the given signal set. Finally, by incorporating this transfor-
mation in the prototype design, the desired tight, signal-adapted frame is obtained,

see Figure .3(e).
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Figure 4.3: (a) A realization of a signal overlaid on the Minnesota road graph.
(b) Histogram of the distribution of the eigenvalues of L. (c) Distribution of the
ensemble energy spectral density of a set of 20 signals realized on the graph. (d)
Uniform Meyer-type system of spectral kernels forming a tight frame. (e) Signal-
adapted system of spectral kernel forming a tight frame constructed by warping
the uniform Meyer-type system of spectral kernels.

The novelty of the adaptivity lies in considering the energy-wise significance of the
graph Laplacian eigenvalues are considered, rather than merely their distribution as
previously proposed. The proposed frames are constructed for three different graph
signal sets: synthetic signals realized on the Minnesota road graph, real traffic data
from Alameda county and brain data from an fMRI study, and compared to non
signal-adapted frames. The three graphs and the associated signal sets are chosen such
that the independence of the distribution of the graph’s eigenvalues and the ensemble
energy spectral density is highlighted.

Figure .4 shows the mean distribution of the decomposition coefficients of an
fMRI signal set consisting of 292 signals using signal-adapted, spectrum-adapted and
Meyer-like wavelet frames. The distributions of the coefficients of subband five of
all three frames closely resembles a Gaussian, similar to the distributions obtained
on a noise dataset, suggesting that the corresponding atoms of this subband have
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Figure 4.4: The mean distribution of coefficients resulting from decomposing an
fMRI signal set using (a) signal-adapted, (b) spectrum-adapted and (c) Meyer-like
wavelet system of spectral kernels with five subbands.

captured noise. A similar observation is made for the distributions associated with
the third and fourth subbands of the spectrum-adapted [49] and Meyer-like wavelet
[48] frame (Figures f.4(b)-(c)). On the other hand, the coefficients of the first four
subbands of the signal-adapted frame significantly deviate from zero and exhibit a
broader spread, cf. first four plots in Figure f.4(a), and have distributions unlike that
expected to result from decomposing noise. This suggests the efficiency of using the
signal-adapted frame to construct atoms that capture signal components.

The proposed frames have also been tested for signal denoising. Figure .5 presents
a comparison of performances obtained in denoising the signals using the SGWT
frame, the spectrum-adapted frame and the proposed signal-adapted frames, illus-
trates the superiority of latter frames over frames blind to signal characteristics.
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Figure 4.5: Comparison of denoising performance using different frames on a sig-

nal set consisting of 20 signals realized on the Minnesota road graph, corrupted

with noise. (a) Minimum mean square error reduction AMSE ™) 35 2 function

of SNR = 02 /02, where 02 and 02 denote the signal and noise variances, respec-
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tively. (b) AMSE ™) 35 2 function of the number of scales J, where 02 =02in

signal realization for all cases.

Paper lll: Interpolation in the presence of domain inho-
mogeneity

Standard interpolation techniques are implicitly based on the assumption that the sig-
nal lies on a homogeneous domain. In this paper, we propose an interpolation scheme
which exploits prior information about domain inhomogeneity, characterized by dif-
ferent, potentially overlapping, subdomains. In particular, the interpolation exploits
anovel set of modulated generating kernels that adapt to the inhomogeneous domain.
The adaptation is incorporated by introducing a domain-similarity metric that charac-
terises the domain in the adjacency of each sample point. The proposed interpolation
is shown to satisfy the domain-informed consistency principle — a principle that we
define as an extension of the classical consistency principle [172]. This means that the
interpolated signal is consistent not only at sample points, with respect to the given
samples, but also at intermediate points between samples, with respect to the given
domain knowledge. As proof of concept, domain-informed linear interpolation has
been presented as an extension of standard linear interpolation.

In the 2-D setting, we denote this interpolation as domain-informed bilinear in-
terpolation (DIBLI). Results from applying DIBLI on fMRI data demonstrated its
potential to reveal subtle details. Figures f.q and (.7 illustrates the setting for apply-
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Figure 4.6: The inhomogeneous domain of fMRI data. (a) A slice of a structural
brain MRI scan. (b) Close-up of the ROI shown in (a). (c)-(e) GM, WM and
CSF of the ROI, respectively. (f)—(g) Domain data associated to the vertical and
horizontal marked position in (c), respectively.

ing DIBLI on a 2-D slice of an fMRI volume. We use MRI data of a single subject
from the Human Connectome Project [65]. The subject’s high resolution structural
MRI scan is used as the base for defining a description of the domain of the sub-
jetc’s IMRI data. Figure E.G(b) shows a 2-D slice of the anatomical structure of an
individual’s brain. A close-up of an ROI marked in Figure f.G(a) is shown in Fig-
ure f.G(b). Segmenting the structural scan, one obtains gray matter, white matter,
and cerebrospinal probability maps, see Figures f.G(c)—(e); these maps are used to de-
fine 1D subdomain functions that fully describe the domain of the fMRI samples. A
sample of column and row domain data for the marked position in Figure §.G(b), is
illustrated in Figures f.G(f) and (g), respectively.

A 2-D slice of an fMRI acquisition of the same subject, registered at the same



Summary of the Included Papers 41

() (C)) (e)

Figure 4.7: Domain-informed bilinear interpolation. (a) A 2-D slice of an fMRI
volume. (b) Close-up of the ROI shown in (a). (c) SBLI. (d) DIBLI with maximal
domain adaptation. (¢) DIBLI with minimal domain adaptation.

anatomical position as the structural image is shown in Figure f.7(a); the close-up
of the marked ROI is shown in Figure .7(b). Figure B.7(c) shows standard bilinear
interpolation (SBLI) of the functional pixels shown in Figure f.7)(a). Two versions of
DIBLI are shown in Figures f.7(d) and (e), the former with maximal and the later with
minimal adaptation to domain knowledge. SBLI and both version of DIBLI versions
are identical at homogeneous parts of the domain (see black arrows), whereas at the
inhomogeneous parts (see white arrows), both DIBLI versions present finer details.
Sharp signal boundaries at the intersection of subdomains can be recovered by DIBLI;
the accuracy is limited by the level of discrepancy observed in the convoluted domain
description, see circled regions. DIBLI with maximal adaptation provides further
details over the minimal adapted version at some parts (see red arrows). On the other
hand, DIBLI with minimal adaptation, cf. Figure f.7(e), may seem more visually
appealing than Figure f.7(d), and yet, it presents significant subtle details that are
missing in SBLIL.
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Paper IV: Domain-informed spline interpolation

This paper extends the theory and results of Paper III in several respects. Firstly, the
theory is extended to enable interpolations using higher order B-spline generating
functions [173]. This required modifying the design scheme such that it becomes
more robust relative to the extended support of higher order B-splines. In particular,
rather than using the domain similarity metric as the basis for defining the domain-
informed basis, a construction scheme that directly incorporates the given definition
of the subdomains is developed. This is done by constructing a domain-informed
generating basis that satisfies stability properties as in the classical, shift-invariant in-
terpolation setting [174] (i) to satisfy the requirements of having a Riesz basis to en-
sure a stable unambiguous representation model, and (ii) to form a partition of unity
across the domain to control the approximation error.

Figure .8 (a) shows an inhomogeneous domain. Figures E.8(b) and (c) illustrate
domain-informed generating basis constructed for the domain shown in Figure f.§(a),
using B-spline kernels of order one and three, respectively. The constructed kernels
respect the inhomogeneity of the domain, and present greater as well as smoother
adaptation to the domain when using higher order B-splines.

By advantageously exploiting available domain knowledge, we demonstrate the
benefit of domain-informed B-spline interpolation (DIBSI) over B-spline interpola-
tion (BSI) through Monte Carlo simulations across a range of B-spline orders. In
particular, we show that the interpolation error of DIBSI is lower than BSI across a
range of spline orders (n = 1 to 6) and sampling steps, T', see Figure f.9.

We also demonstrate the feasibility of DIBSI in an fMRI setting where the domain
information is available by a complementary anatomical image, see Figure f.10. In
particular, the signal domain is given as a convoluted mixture of three subdomains,
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Figure 4.8: (a) A realization of an inhomogeneous domain. (b) Domain-informed
B-splines of order 1. (c) Domain-informed B-splines of order 3.
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Figure 4.9: (a)-(f) Interpolation errors of DIBSI vs BSI using B-spline basis of
orders 1 to 6, respectively.

Figure 4.10: (a) A slice of fMRI data of a subject, including a close-up of an ROI.
(b) The subject’s brain anatomy at the same neurological coordinate as in (a). (c)

Gray matter, (d) white matter and (e) cerebrospinal fluid segmented probability
maps of the ROI shown in (b).
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Figure 4.11: (a) Description of the inhomogeneous domain along the marked
vertical line within the ROI in Figure B.10(b). (b) DIBSI basis, of order three,
associated to the domain shown in (a). (c) B-spline interpolation and domain-
informed B-spline interpolation of the functional samples along the marked line

within the ROI in Figure E-10(a).

namely, gray matter, white matter and cerebrospinal fluid, see Figures f.10(c)—(e).
The description of the domain along one column of the 2-D image is shown in Fig-
ure f.1T(a). The constructed domain-informed third order B-splines are shown in
Figure . 11(b). The kernels are adapted to the convoluted description of the domain,
and are robust to complex delineation patterns between subdomains, for example see
interval 14 to 17. Figure B.T1(c) shows the fMRI samples along the marked line
shown in Figure f.10(a), as well as the resulting BSI and DIBSI interpolants. At any
homogeneous parts of the domain DIBSI results in an interpolant that is identical to
BSI; for instance see the DIBSI and BSI interpolants within interval 24 to 27 in Fig-
ure E.11(b). At the inhomogeneous parts of the domain, DIBSI presents finer details
than the SBLI image. For instance, see the domain description within the interval
7 to 15, cf. Figure f.1T(a). Within this interval samples from gray matter (samples
8 and 10), white matter (samples 7 and 11) and cerebrospinal fluid (sample 9) are
given, cf. Figure .TT(c). On the one hand, both BSI and DIBSI satisfy the con-
sistency principle at the sample points. On the other hand, in between the samples,
BSI maintains the smoothness characteristic enforced by using third-order B-splines,
whereas DIBSI leads to a signal that is consistent with the anatomy of the brain.



Summary of the Included Papers 45

Future work

The methods presented in this thesis can be extended in few respects and be exploited
in other application settings. The proposed graph-based activation mapping scheme
in Paper I exhibits enhanced sensitivity in detecting subtle weak activations within
gray matter. This suggests the potential of exploiting a similar anatomically-adapted
scheme for detecting activations within brain white matter; this requires extending
the graph definition to encode not only local topology, but also white matter mi-
crostructure provided by diffusion MRI data, similar to the design proposed in [175].
Preliminary results based on this idea [127], suggest an enhanced capability to detect
functional activity within white matter, which in turn can open up new perspectives
on the functional dynamics of the human brain.

As another research avenue, the proposed gray matter encoding graph in Paper
I can be adopted in structural studies of the brain, in particular, for characterizing
the progression of brain atrophy observed in neurodegenerative disorders such as
Alzheimer’s disease and its prodromal stage, mild cognitive impairment. Regional
morphological alterations in cortical and subcortical structures can be characterized
based on variations in the Laplacian spectrum using spectral matching [176] or learn-
ing schemes [177, 178]. The characterization can also be done within a multi-scale
setting as that implemented using Euclidean wavelets [179, 180]. From a design per-
spective, the gray matter graph in Paper I can be extended in two respects. Firstly,
cortical surface reconstructions [181, 182] can be exploited to prune spurious graph
edges across touching banks of sulci. Secondly, the design of graphs associated to
localized gray matter regions across the brain can be considered. The latter extension
enables obtaining local topology encoding graph eigenmodes [183] or graph Slepian
functions [184], which can prove beneficial in providing more efficient representation
of functional data as well as cortical athrophy.

The proposed scheme in Paper II can be exploited to design frames that account
for dynamics of cortical activity [185, 186]. By constructing the ensemble energy
spectral density based on the moment-to-moment functional data defined on a struc-
tural back-bone [27, 187], the resulting signal-adapted frame can be used to manifest
long-range interactions and fine-scale local organization in the functional data [188].
From a computational perspective, the design in Paper II can be improved to prevent
the need for a full eigendecomposition of the graph Laplacian matrix, which can be
cumbersome for large and impractical for extensively large graphs. A remedy would be
to approximate the ensemble spectral content by either using recently proposed graph
spectral estimation techniques [8] or using a polynomial decomposition scheme, cf.
Section [.G, to obtain estimates at the resolution of subbands.

Results from applying the interpolation scheme presented in Paper IV on fMRI
data demonstrated the potential of this scheme in obtaining functional patterns con-
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sistent to brain anatomy. To account for the 3-D structure of the brain, the inter-
polation needs to be extended. One approach is to use tensor products to obtain a
separable extension to higher order Euclidean spaces, similar to that used in Paper
III. A tensor product extension can only incorporate domain knowledge along the
Euclidean axis, which may lead to inconsistent interpolation patterns if the domain
description is convoluted. Designing a non-separable higher dimensional extension
can prove to be more efficient. Moreover, from a design perspective, the definition of
the domain can be extended to incorporate cortical surface reconstructions that define
white/gray matter boundary and CSF/gray matter boundaries [181, 182]. Such in-
formation is necessary to prevent the mixing of samples from (i) touching gray matter
on the two banks of a sulci or (ii) opposite sides of gyri that are separated by a nar-
row band of white matter. This requires extending the problem formulation to allow
sharp transients being introduced in the domain definition, and in turn, to account
for such singularities when designing the domain-informed B-splines.
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Anatomically-adapted Graph Wavelets for
Improved Group-level fMRI Activation Mapping

Abstract

A graph based framework for fMRI brain activation mapping is presented. The approach ex-
ploits the spectral graph wavelet transform (SGWT) for the purpose of defining an advanced
multi-resolutional spatial transformation for fMRI data. The framework extends wavelet
based SPM (WSPM), which is an alternative to the conventional approach of statistical para-
metric mapping (SPM), and is developed specifically for group-level analysis. We present
a novel procedure for constructing brain graphs, with subgraphs that separately encode the
structural connectivity of the cerebral and cerebellar gray matter (GM), and address the inter-
subject GM variability by the use of template GM representations. Graph wavelets tailored to
the convoluted boundaries of GM are then constructed as a means to implement a GM-based
spatial transformation on fMRI data. The proposed approach is evaluated using real as well
as semi-synthetic multi-subject data. Compared to SPM and WSPM using classical wavelets,
the proposed approach shows superior type-I error control. The results on real data suggest a
higher detection sensitivity as well as the capability to capture subtle, connected patterns of
brain activity.
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Graph Wavelets for Improved Group-level fMRI Activation Mapping,”

in Neurolmage, vol. 123, pp. 185-199, Dec. 2015.






69

1 Introduction

Functional magnetic resonance imaging (fMRI) is a key modality to localize brain
activity based on the blood-oxygen-level-dependent (BOLD) signal [1]. The most
widely used approach in fMRI activation mapping is a mass univariate hypothesis-
driven method that is implemented in many software packages such as statistical para-
metric mapping (SPM) [2, 3]. Using regressors defined by the experimental paradigm,
a general linear model (GLM) is fitted to the time course of every voxel of the brain,
followed by a statistical test of a linear combination of the fitted parameters, leading
to a statistical map indicating evidence for stimulus-related brain activity. Since using
a Bonferroni correction is too conservative, SPM deals with the multiple comparison
problem based on Gaussian random field theory (GRFT) [4]. A key characteristic of
GREFT is that it requires initial smoothing of the functional data by a fixed Gaussian
filter. This pre-filtering not only is required to control the spatial smoothness of the
data to comply with GRFT, but it also serves as a means to improve the signal-to-noise
ratio (SNR) by virtue of the matched filter argument. However, such linear isotropic
filtering comes at the expense of a loss in fine spatial details of the underlying activity.

As an alternative to GRFT, spatial wavelet transforms have been proposed as a
means to non-linearly denoise functional data within frameworks of both classical in-
ference [5, 6,7, 8,9, 10] and Bayesian inference [11, 12]. Since brain activity is highly
localized in space [13], the property of sparse signal representation in the wavelet do-
main makes it possible to encode a cluster of active voxels with only a few coeflicients.
Such representation enhances the SNR as the background noise remains equally dis-
tributed among the wavelet coefficients, and thus, coefficient-wise statistical testing
provides a higher sensitivity than voxel-wise testing. Wavelet-based SPM (WSPM)
[9] has the unique feature of treating thresholding within the wavelet domain as a
denoising step only, and the statistical testing is deferred to a second thresholding on
the reconstructed map within the spatial domain.

1.1 Accounting for intra-subject gray matter structure

Gaussian filters as well as standard wavelets such as those deployed by WSPM share
several basic properties: they are (i) isotropic in structure, (ii) defined within regular
Euclidean spaces (either a square in 2-D space or a cube in 3-D space) and (iii) sta-
tionary and quasi shift-invariant, meaning that their structure does not vary as applied
to different regions within a volume. To various extents, these properties are opposed
to the expected geometrical properties of the activation pattern. Since the gray mat-
ter (GM), within which the BOLD response is expected, has a convoluted structure,
isotropically shaped activation patterns that cross boundaries of GM are unlikely.
Moreover, due to the differences in the structure of the sulci and gyri across the brain,
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intra-subject variability of GM geometry is widely observed [14, 15]. Thus, it is es-
sential to construct filters that adapt to the intricately convoluted GM domain rather
than assuming the spatial characteristics of the underlying signal independent of its
location. Asastep in this direction, surface-based approaches have been proposed that
restrict the analysis to the cortex by using reconstructions of the cortical surface. One
such approach is the anatomically-informed basis function (AIBF) method proposed
in [16, 17], where a forward model is determined for solving the inverse problem of
explaining the distribution of the functional data using circular Gaussian basis func-
tions defined on the cortical surface. In other approaches, here collectively referred
to as cortical surface mapping (CSM), an interpolation scheme is used to map the
functional data to the extracted cortical surface, followed by iteratively smoothing the
data on the surface using different procedures such as diffusion smoothing [18], heat
kernel smoothing [19, 20] and spline smoothing [21]. Nevertheless, the problem of
loss in spatial accuracy remains in CSM due to the irreversible smoothing. Aside from
that, the mapping of volumetric data to a surface is challenging due to the variability
in cortical thickness.

In the present paper, we introduce an alternative approach where we define a
volumetric GM domain with the help of graph theory, where the graph vertices cor-
respond to irregularly sampled points of the 3-D Euclidean space. Numerous neu-
roimaging applications have benefited from brain data being modeled as graphs and
graph signals [22, 23]. Here, we propose constructing brain graphs that encode lo-
cal structural connectivity of GM geometry (irregular domain in 3-D), as opposed to
the surface-based approaches which mainly incorporate cortical ropology (2-D surface
that is folded). Functional data can then be modelled as a scalar function (signal)
defined on the vertices, and graph filters that diffuse only within the GM volume
can be constructed. As such, the performance in fMRI brain activation mapping can
be improved by attenuating the effect of non-signal components that originate from
outside the GM.

With the increased interest in graph approaches to data analysis, a great amount of
research has been devoted to generalizing signal processing operations to the graph set-
ting [24]. This includes wavelet transforms, with the spectral graph wavelet transform
(SGWT) proposed in [25] being an example. To prevent linear irreversible smoothing
and to perform analysis at multiple scales, we propose the tight-frame SGWT [20]
to construct GM-adapted wavelets that are utilized to implement an advanced spatial
transformation on fMRI data, integrated within the statistical analysis of the WSPM
framework.
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1.2 Accounting for inter-subject GM variability

Group-level fMRI activation mapping is further complicated by the inter-subject GM
variability that is important to address. This variability renders the need for normal-
ization of functional data to a template space, which, in turn, leads to better domain
matching across subjects and improved statistical power as activations better overlap.
Due to the observed difference in the extent of geometrical GM variety in the cere-
brum and the cerebellum across subjects, it is advantageous to define cerebral and
cerebellar template spaces separately.

The geometry of the cerebral cortex is not consistent across subjects. Although
there are similarities in terms of the main fissures, the GM foldings are very inconsis-
tent across individuals even in standard populations [27, 15], see Figure [[. The most
commonly used cortical templates are based on either the anatomy of a single subject
[28] or the ensemble average over many subjects, such as the ICBM-152 [29] that de-
fines the Montreal Neurological Institute (MNI) space. Such templates can be viewed
as two extremes in GM representation: single subject templates take no account for
inter-subject variability, and the group averaged templates, such as the ICBM-152,
lack fine anatomical detail of the cerebral GM, which makes both categories unsuit-
able for our purpose. To address this problem, study specific template construction
methods such as DARTEL [30] are of great benefit. The fast diffeomorphic image reg-
istration scheme proposed by Ashburner is among the best performing [31] and can
produce a detailed group-averaged template GM through iterative, nonlinear warping
of the segmented GM of a set of subjects.

The structural variability within the cerebellum is lower than in the cerebral cor-
tex, since the cerebellar structure is relatively consistent across individuals in terms of
the number and shape of its fissures (see Figure [[)). This observation has made it pos-
sible to create atlas templates of the cerebellum that prevent a loss in spatial accuracy
of the anatomical detail. The spatially unbiased infra-tentorial (SUIT) cerebellum
template [32] is the most accurate cerebellar template available to date. Compared
to the ICBM 152 template [29] that is designed through averaging of T1 scans from
152 different subjects, SUIT is constructed from scans of 20 subjects, and at the same
time, has the unique feature of being spatially unbiased; that is, the location of each of
the structures is equal to its expected location in the MNI space across subjects [32].

Therefore, we propose the use of the SUIT atlas as the basis for defining a canoni-
cal cerebellar subgraph and the DARTEL for constructing study-dependent template
cerebral subgraphs. A full GM-adapted brain graph is then defined by merging the
two subgraphs.
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Figure 1: Segmented gray matter of four individuals from an experimental dataset
(see Section B.])) illustrating the inter-subject variability. The variability is less
significant in the cerebellum, as opposed to the cerebrum where the pattern of
folding varies greatly from one individual to the other.

1.3 Overview

The paper is organised as follows. In Section 2.1, WSPM is reviewed by generalising
the framework such that it 1) incorporates any linear spatial transform and 2) is set out
for group-level analysis. In Section 2.2, we review the necessary concepts from graph
theory and wavelet design. In Section [.3, we introduce the construction of GM-
adapted graphs and wavelets, the required preprocessing steps and contrast mappings.
In Section B, we introduce a real dataset as well as the design of a semi-synthetic multi-
subject dataset. In Section P, we demonstrate the utility of our approach by applying it
to the semi-synthetic and experimental datasets, followed by a discussion in Section fj.

2 Methods

For the data structure we assume J subjects, where each subject has a structural scan
{S; }3-]:1 and a set of Ny functional volumes (across time), each containing N, voxels.
N;1 and N, regressors are assumed for the first level (subject-level) and second level
(group-level) analysis, respectively. { X1 ;} 3-]:1 and X3 denote the corresponding first
level and second level design matrices which are of size V; x N1 and J X Npo,
respectively.

2.1 Transform-Based SPM (tSPM)

We present the WSPM in a more general way as transform-based SPM (tSPM) such
that it: 1) incorporates any invertible linear spatial transform, and 2) addresses fMRI
activation mapping at the group-level.

The invertible linear spatial transform is a mapping from the voxel space R
to RVT | where N,,, < N, and Ny denotes the dimension of the transform do-
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main. T = [¢1]Cs] .. [y, )7 denotes the corresponding orthogonal transformation

matrix, with {¢ k}fcvil being the basis vectors spanning the transform domain. For
the classical wavelets such as the discrete wavelet transform (DWT) used in [8, 9],
Ny, = N, = Nr, where the second equality follows from the DWT being non-
redundant. For the graph setting proposed in this paper, Ny, is the number of graph
vertices, and Np = (S + 1) X Ny, where S denotes the number of wavelet scales of
the spectral graph wavelet transform (SGWT) that is a redundant graph transform.

Temporal Modelling at the First Level

Temporal modelling of the data is implemented in the native spatial domain, leading
to a parameter map (effect size) for each subject. The approach is mass univariate

where a general linear model (GLM) is fitted to the time course of each voxel i €
{1,..., Ny, } for all subjects j € {1,...,J} as

vij = X1,i8;; + €, (1)

where v; ; is an IV X 1 vector representing the time course of the i voxel of the j™
subject, 3, ; is an N1 X 1 vector of regression parameters and €; ; is the vector of
residual errors. Using the estimated (3; ;, the effect sizes are constructed as

Dij = C1T,3¢,j 2)

where ¢ isan Nyq X 1 first level contrast vector that defines how the estimated regres-
sion parameters should be combined based on the hypothesis at test. By vectorizing
i j» the fist level parameter maps (contrast maps) of the subjects are obtained as

Pj = [PLj p2js PNl - (3)

Transform-Domain Spatial Modelling
The first level parameter maps are then taken into the spatial transform domain by
applying the transform matrix 7" as

P' =T p|p,| - Ip], (4)

where P’ is an Nt x J matrix, each column representing the transform domain
coeflicients of one subject.

In order to implement a standard group-level random-effects inference across sub-
jects, a second-level GLM is fitted to the change in value of each coefficient across
subjects, i.e., the rows of matrix P’ denoted with P,;: , as

Py, =Xy + €, 5)
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where 3, is an N9 X 1 vector of regression parameters and €y, is the vector of residual
errors. The effect size g and its uncertainty sy for each coefficient k can then be
obtained as

jk = €3 By ©6)
S = EkTEk Cg(XQTXg)ilcQ, (7)

respectively, where ¢z is an Nyo X 1 second-level contrast vector. In particular, for
the one sample ¢-test that is used for analyzing the datasets in this study, Xo =
[1,--+,1]T, eg = 1. Assuch, B}, will be a scalar value, and y, and sy, will correspond
to unbiased estimates of the coefficients’ sample mean and variance, respectively.

Transform-Domain Denoising
At this stage, the main idea is to threshold the estimated effect sizes 1 as a means to
denoise the parameter maps. This is done by constructing transform-domain ¢-values
corresponding to the coefficients as

k
t = ”7%’ 8)
J—rank(X2)

where {tk}]kV:Tl follow a Student’s t-distribution with J degrees of freedom under the
null hypothesis that stimulus-related activity is driven by noise only.

By subjecting ¢, to a transform domain threshold 7., the reconstructed, denoised
second level parameter map after bias correction is obtained as

Nt
{i; = min ZH(\tk’ Rt Z kGl | ©)
k=1

wherei = 1,..., Ny, H(-) is the Heaviside step function and Z]kvgl 1k € [7] denote
the elements of the unprocessed map (i.e., the linear estimate). The optimal value of
T, is obtained in combination with a spatial domain threshold 7 (see below Eq.([L0))
such that the null hypothesis rejection probability in the spatial domain is properly
controlled; see [8] for further details and derivations.

Spatial-Domain Statistical Inference

The final detected parameter map is created by constructing spatial domain ¢-values
and performing statistical significance testing by subjecting them to a spatial domain
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threshold 7 as [8]

,&.
w=H| ———— — 74 | U (10)
(zﬁwmmn )

To address the multiple comparison problem, the desired significance level is adjusted
using Bonferroni correction when computing the optimal combination of 74 and 7,,,.

2.2 Spectral Graph Wavelet Transform (SGWT)

We now give a brief review of the SGWT on which our framework is based, and refer
to [25] for further details.

Classical Wavelets

Classical wavelets defined in the Euclidean domain are constructed by shifting and
scaling a mother wavelet 1, as 9, ;(7) = 1y (:”T_l), where 1 ;(z) denotes the
wavelet at scale s and location [. To generalize wavelets to graphs, the analogue of the
Fourier domain is required for graphs. In the Fourier domain, the classical continuous

wavelet is given by

¢m@=1/wwwwwwww an

2 J_ o

where 1) denotes the Fourier transform of . From Eq. ([I), it is clear that the
scaling parameter s solely affects the argument of 1, and the shifting is represented
by multiplication with the complex exponential e=/*!, These two observations are
essential when generalizing the wavelet transform to graphs.

Graphs and their Spectra

Turning to spectral graph wavelets, a brief description of some basic notions of graphs
and their spectra is in place. An undirected binary graph is described by its set of ver-
tices V and edges € as G = (V, &), where each edge is defined by a pair of unordered
indices (m, n). For a graph with |V| = N, vertices and no self-loops, the symmetric
adjacency matrix A is given by the off-diagonal elements

- {1 if (m,n) € &, (12)

0 otherwise.
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The degree matrix D is diagonal with elements dy, = ), @m . The normalized
graph Laplacian matrix L is given by

L=I-D'24D7 12 (13)

where I denotes the identity matrix. Assuming a single connected graph, and noting
that L is symmetric and positive semi-definite, the eigendecomposition of L leads to a
set of N, real, non-negative eigenvalues, i.e., 0 = A1 < A2 -+ < Ay, = Az The
multiplicity of eigenvalues equal to zero reflects the number of connected components
in the graph. The corresponding set of eigenvectors {Xn}f:]i 1 form a complete set of
orthonormal vectors, which define the graph spectral domain [33].

Spectral Graph Wavelets

The wavelet shifting and scaling operations are not straightforward to generalize for
signals lying on a non-Euclidean domain such as graph signals. Hammond et al.
[25] have tackled this issue by taking the design to the graph spectral domain and
deriving the equivalence with the Fourier domain of conventional wavelets. Since the
complex exponentials {€/“%} are both the basis functions of the Fourier transform, cf.
Eq. (TI)), and the eigenfunctions of the 1-D Laplacian operator, an analogue spectral

design for graphs can be defined based on the graph eigenvectors {Xn}gi 1- Thus,

the spectral graph wavelet functions {1 371};9:_11 and scaling function ¢; localized at
each graph vertex [ can be defined as

Ng

Poa(x) =D glprn) 2 (DX (), (14)
n]\zl

Bi(x) = h(An) X (D) (2), (15)
n=1

where {ps}5~! denote the scaling parameters, and g(-) and h(-) are wavelet and
scaling generating kernels defined as weighted windows on the graph spectrum, re-
spectively. An example of such a frame can be constructed by defining Meyer-like
wavelet/scaling generating kernels in the spectral graph domain as shown in 5.

The spectral graph wavelet and scaling coefficients of a graph signal f € R¥s at
scale s and location [ are computed as
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Ng

wy(s,0) = (£ 9.0 B3 o) Fm)xa (1), (16)
n=1
Ng
wol) = (£, 2 S h) F ()X (1), (17)
n=1

respectively, where (-, -) denotes the inner product, and f is the spectral representation
of the graph signal f given by

fn)=(f,xn), n=1,...,N,.

2.3 Spectral Graph Wavelet based SPM (tSPM*9""")

In what follows, the SGWT is adapted to a GM brain graph and integrated in the
tSPM framework for group-level activation mapping, leading to a new graph based
fMRI activation mapping referred to as tSPM*™. First, the construction of GM-
adapted graphs is introduced, followed by the design of the corresponding graph

wavelets and a description of the required preprocessing steps and contrast mappings.

GM-adapted Graphs

Defining a graph based on the GM geometry of the brain G, is an essential step in
our approach. Gy, is constructed as a graph with two subgraph components: a cere-
bral subgraph G, constructed using the GM information acquired from structural
scans of multiple subjects, and a cerebellar subgraph G, constructed based on the

SUIT template atlas.

Cerebellar Graph Construction (G.;;)

The cerebellar graph is designed as follows. First, the SUIT cerebellum template Sgyi¢
[32], defined in MNI coordinates at 1 mm resolution, is segmented using the unified
segmentation algorithm [34] to extract its GM probability map, denoted M g1, with
voxel probability values p; € [0, 1]. Next, a cerebellar GM mask is defined by inter-
secting the thresholded M ,;; (threshold value 0.5) with the SUIT probabilistic atlas
of cerebellar lobules Ayt [35]. Intersection of the mask with Ay ensures that only
those voxels which define the cerebellar structure are kept, and that the brainstem is
excluded. The resulting map is then morphologically filtered to remove isolated vox-
els; i.e., a voxel is defined as isolated if it is not adjacent to any other voxel within
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its 6-connected neighbourhood in 3-D (see Figure ). We denote the resulting mask
with M p; and the binary values of this mask with v; € {0, 1}.

The resolution of M4 is 1 mm isotropic and needs to be downsampled to the
functional resolution. Therefore, we propose to first filter the mask weighted with
the probability map, using a moving average 3-D box filter with window sizes ap-
proximating the functional voxel size in each dimension, followed by thresholding
(threshold value 0.5). In particular, the downsampled voxels are obtained as

1 M
v,=H (M > Vi P —0.5> , (18)

where H(-) is the Heaviside step function and M denotes the number of nearest
neighbour voxels in the 1 mm mask required to interpolate the downsampled voxel.
The resulting mask is denoted with /\/l‘clbl. A binary cerebellar graph, denoted G, is
then constructed by considering the non-zero voxels in M, as vertices and assigning
edges by computing connections between adjacent voxels assuming 26-connectivity
in 3-D, see Figure [2.

Figure 2: Definition of neighbourhood connectivities. The red dashed lines indi-
cate the directions defining the 6-connectivity neighbourhood with respect to the
central green point, whereas the red dashed lines together with the red solid lines
define the 26-connectivity neighbourhood.

Cerebral Graph Design (G.;)

The structural scans {S; }3-]:1 are segmented, resulting in a set of GM probability
maps, denoted with { M 3]:1. The DARTEL iterative scheme of averaging and dif-
feomorphic registration of the probability maps is incorporated to construct a GM
template for the group of subjects within the dataset. The algorithm converges after
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several iterations, resulting in a detailed GM tissue probability template at 1 mm res-
olution My, and a set of flow fields {7}}3]:1 describing the deformation required
for mapping { M }3]:1 to this template.

Mmp is not necessarily aligned to the MNI coordinates, and, therefore, a sec-
ond level of transformation to the MNI space is required. Thus, My, is updated
by subjecting it to an affine transformation 7y, that registers it to SPM’s GM tis-
sue probability map. For reference, we denote the thresholded (threshold value 0.5)
and binarized version of M, with M ,.. After downsampling My, to the func-
tional resolution, a binary cerebral GM mask is created by first thresholding the mask
(threshold value 0.5), followed by excluding those voxels that lie within its intersec-
tion with M. The mask is then morphologically filtered to remove isolated voxels
(6-connectivity in 3-D). The nonzero voxels in the resulting mask are treated as graph
vertices, and the edges are defined with the same approach as described for the cere-
bellar case, leading to a binary cerebral graph that we denote with G,
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Figure 3: GM-adapted graph and wavelet design. (a) Structural scans of the sub-
jects (top) and the SUIT template atlas (bottom) are used to construct (b) the
cerebral (top) and cerebellar (bottom) template GM masks, which are the basis in
designing local structural connectivity subgraphs Gy and Gep, respectively. (c)
Block diagonal Laplacian matrix defining the spectrum of Gyp,. (d) Meyer-like
windowing functions h(psA) and {g(psA)}s=1,2 at the lower end of the spectra
of Gepr and Gpr. A comparison of the two frames reveals the difference in the sup-
port of the corresponding scaling (blue) and wavelet (green and red) kernels of the
two subgraphs (indicated by the arrows and dashed lines). The gray coloured ver-
tical parallel bars along the horizontal axis indicate the position of the eigenvalues
within the spectral range.
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Gray Matter Adapted Wavelet Design
The constructed subgraphs Gy, and G are disconnected within Gg,,. Thus, the cor-
responding full brain Laplacian matrix L, is block diagonal (Figure B(c)). Let N,

and Np; denote the number of vertices in each subgraph. As such, the eigenvectors of

Lgim comprise two sets of distinct basis {x" },.% and {x %'}, ¥, each separately

spanning the cerebral and cerebellar GM domains, respectively. A tight frame design
is then used to partition the spectral range of each subgraph and to allocate the sup-
port of each wavelet scale. We choose g(-) and h(:) (cf. Section 2.2) such that the
set of functions {1 ;, P, } se5,1e1 forms a tight frame in £2()) [26]. The tight frame
construction is of importance as it leads to energy conservation between the original
and transformed domain and enables an efficient inverse transform using the adjoint
operator [36]. Also, we prefer the wavelet kernels at different scales to function as
scaled bandpass filters and the scaling function as a lowpass filter. Thus, we use the
Meyer-like spectral wavelet frame as proposed in [26] ().

The construction of Gy is study-independent, and the resulting Gy has 4465
vertices. The size of G, depends on the dataset used. Using the dataset used in this
study (see Section B.1)) leads to a G with 29439 vertices, and thus, a Gy, with
33904 vertices. Due to the large size of Gy, diagonalising Ly, is computationally
cumbersome. Therefore, we find it advantageous to use a polynomial approximation
scheme for estimating the scaled generating kernels ¢(-) (see Eq. (I4)) by low-order
polynomials as proposed in [25]. In doing so, the wavelet coeflicients at each scale
are obtained by applying a polynomial of Ly, to the data, and only an estimate of
the range of the eigenvalues for each block of Ly, is required. Ly, has two zero
eigenvalues as both Gy, and G are constructed such that their single connectivity
is ensured and are, at the same time, mutually disconnected. Thus, the lower spectral
bound for both G4 and Gy, ie., A1, is 0. However, their upper spectral bounds
depend on the complexity present in the GM structure of the respective region, with
a higher value expected for G, due to its more intricate geometrical detail. For G
that is constructed to form a template that is canonical in nature, the upper bound is
fixed, i.e., Ajaz = 1.4, whereas it varies for G, as it is constructed for each dataset
separately. For the dataset tested in this study (cf. Section B.2), Apaz = 1.6. This
difference in upper bound, in turn, affects the support of the cerebellar and cerebral
frames in terms of the range and width of the kernels, see Figure B(d).
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Figure 4: Realizations of the GM-adapted wavelets localized at several different
regions of the cerebrum (top row) and the cerebellum (bottom row) overlaid on
GM. The figures are color coded (blue and green) corresponding to the spectral
designs shown in Figure B(d); i.e. blue: ¢; and green: 1y j, for six different j
denoting the indices of the graph vertices where the wavelets are localized. Note
that although the wavelets diffuse within 3-D space, only images of a coronal slice
are illustrated.
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Functional Data Pre-processing & Contrast Mapping

The functional volumes are corrected for slice-timing and realigned with the first ac-
quired image. The head movement parameters are then estimated and used as co-
variates in the design matrices { X j}. For each subject, the structural volumes are
co-registered with the mean functional volume.

In order to reduce interpolation effects, all computations of the first level analysis
are done in the native subject space, thus, no normalization is done on the func-
tional data. Instead, the resulting first level parameter maps {P; }3-]:1 are normal-
ized, which leads to normalized cerebral and cerebellar contrast maps denoted with
{Peor }3-]:1 and {Pey }3]:1, respectively. The required transformations for this nor-

malization, denoted {7¢p, }3-]:1 and {7ep1,; }3]:1 , respectively, are estimated based on
transforming the subjects’ structural data to the respective template domains.

Having designed Gp,, the GM of each subject can be constructed through warp-
ing My, using the inverse of the estimated flow fields {7;}3]:1 Therefore, as the
functional and structural volumes are co-registered, applying the same transforma-
tion to the corresponding contrast maps results in their within-subject registration.
As such, a better overlap of effects can be gained for second level analysis, which can
consequently lead to increased statistical power. The same reasoning holds for the
cerebellum. {7cpy }3-]:1 are constructed by combining {7}}37:1 with Tymyp (cf. Sec-
tion £.3). The cerebellar structure of each subject is first annotated using a semi-
automatic procedure, and the transformation is determined by mapping it to the
SUIT template [32]. The SUIT template is already defined in MNI space and thus
no extra transformations are required. Figure B illustrates examples of the resulting
normalized structural data after applying the normalization transformations, both on
the cerebrum and the cerebellum.

The co-registration and normalization procedures are crucial steps in the proposed
framework due to the requirement of a one-to-one correspondence between the voxels
of the functional and structural data as the constructed graphs are based on anatomical
data. Figure [j illustrates the mapping of an fMRI contrast map to a graph signal.
Note that only those voxels of the contrast volumes with a graph vertex counterpart
are extracted, and their values are considered as elements of a signal lying on the
graph. The extracted contrast voxels from both the cerebrum and cerebellum are
vectorized, their SGWT is computed and the resulting set of wavelet coefficients are
fed to transform-domain modelling. Figure [] illustrates an overview of tSPM*8™",

P} denotes the same first level parameter maps as p; given in Eq.(B) but in non-vectorized format.
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Figure 5: Addressing inter-subject GM variability. The required transformations
for normalizing the first level contrasts to the spaces of Gy and Gy, denoted
{Tevrj}]=1 and {Tepi,j}—, respectively, are estimated based on transforming
(a) the GM segmentations to M, and (b) the cerebellum structural scans to
Ssuit respectively. Note that the normalized structural data (bottom row) are not
directly used by tSPM*$™, but rather the estimated transformations.
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Figure 6: Illustration of mapping an fMRI contrast map to a graph signal. Note
that the graph design and mapping procedure is implemented in 3-D space, but
for ease of illustration a 2-D example is presented.
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Figure 7: Transform-based SPM using GM-adapted spectral graph wavelets
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3 Datasets

3.1 Experimental Dataset

Data from 26 healthy adults performing a slow event-related Eriksen flanker task were
studied [37]. In each trial, the subjects used one of two buttons to distinguish between
congruent and incongruent trials (inter-trial interval varied between 8 s and 14 s with
amean of 12 s). In congruent trials, the flanking arrows pointed in the same direction
as the central arrow (e.g., <<<<<), whereas in more demanding incongruent trials
the flanking arrows pointed in opposite direction (e.g., <<><<).

Functional data were acquired using a 3T scanner, where contiguous whole-brain
functional volumes were obtained using echo planar imaging during each of the two
flanker task blocks (TE = 30 ms, TR = 2000 ms, flip angle = 8°, matrix = 64 x 64,
40 slices, FOV = 192 mm, voxel size = 3 x 3 x 4 mm?3, 146 volumes). T1-weighted
anatomical scans were collected using an MPRAGE sequence (TE = 3.93 ms, TR =
2500 ms, flip angle = 8°, 176 slices, FOV = 256 mm, voxel size = 30 x 20 x 10 mm?).
Using this dataset, a cerebrum graph G, with 29439 vertices was created.

3.2 Semi-Synthetic Dataset

To evaluate the proposed algorithm, a semi-synthetic group fMRI dataset with known
ground truth underlying simulated brain activity was created, using the anatomical
scans of the 26 subjects of the flanker task dataset. The dataset was created to account
for inter-subject variability in strength and location of the activity as well as to simulate
a realistic activity pattern. Functional contrasts with known subject-specific ground
truth activation patterns that diffuse according to the GM of each subject were created
as follows.

First, for each subject j, the estimated flow field 7¢p, j (cf. Section P.3) was ap-
plied to its GM probability map, M, resulting in a deformed-warped GM in MNI
space. The resulting probability maps were then smoothed (FWHM 2 mm), binarized
by thresholding at 50%, leading to a set of masks used to construct an unweighted
graph for each subject with adjacency matrices {4; }311 Three 5 X 5 X 5 mm cu-
bic regions (125 voxels), two in the cerebrum and one in the cerebellum, were then
chosen as candidates for three activation centres. The centres were spatially jittered
by randomly picking three voxels (one from each region), creating a set of indica-
tor vectors {; }?il defining the voxel location of the three centers for each subject.
An activation pattern y; that diffuses from the three center points along the individ-
ual’s GM domain was constructed by consecutive application of the corresponding
adjacency matrix A; to «; and confining the elements of y; to the range [0, 1] as
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Figure 8: Realizations of synthetic activity patterns y ;
on each subject’s GM.

for several subjects, overlaid
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Figure 9: Semi-synthetic Data. Defined ground truth activation map.

(19)

1 ifx’(i) > 1,
y;(i) = { 0>

r :c; (1) otherwise,

where w; = A;-l x; and n defines the extent of the diffusion (Figure §). With this
construction, not only do the patterns vary between subjects, but also the distribution
of their values. The resulting patterns were downsampled to 3-mm resolution.

We treat these patterns as the ground truth first level contrasts for the individual
subjects (i.e., one pattern per subject). Using the average of all 26 patterns, those vox-
els whose activity exceeded 0.5 and whose location corresponded to a voxel in My,
with at least 50% probability were defined as ground truth (Figure f)). The individual
activity patterns were then corrupted with additive white Gaussian noise with vari-
ance 02 = 1.
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4 Results

4.1 Setup and Performance Measures

For comparative purposes, we implemented SPM (isotropic Gaussian smoothing with
FWHM of 4 and 6 mm, denoted SPM*™™ and SPM®™™, respectively), and transform-
based SPM using standard orthogonal wavelets (2-D+Z, redundant), denoted tSPMawt,
and GM-adapted wavelets, denoted tSPM*"t, SPM*™™ was performed to illustrate
the effect of smoothing on spatial accuracy and detail of detections.

For both datasets, we present the results in terms of the number of detections. For
the semi-synthetic data, we also present the number of true positives (TP) and false
positives (FP), and the receiver operating characteristic (ROC) curve by varying p-
values. Moreover, to indicate the detections that lie outside the expected GM region
where a BOLD signal is expected, the detections are also categorised based on their
affinity to the underlying tissue; GM50 denotes a mask covering the regions with a
GM probability of at least 50%, i.e., greater than that of the probability of being white
matter (WM) or cerebrospinal fluid (CSF). This metric provides an intuitive quality
measure of activation mapping, especially for real data where the ground truth is not
known. As an initial but reasonable approximation, detections that do not intersect
with GM50 can be assumed to be FPs.

4.2 Semi-Synthetic Data

Table [I] presents the results in applying the different methods on the semi-synthetic
data, when testing at a significance level of p < 0.05 familywise error (FWE) cor-
rected. Both wavelet approaches have a significantly better control over FPs (type-I
error control) compared to SPM®™™ (95 and 183 vs. 1590 FPs). tSPM*" shows a
significantly higher sensitivity compared to tSPM® (1398 vs. 538 TPs). Although
SPM®™™ also exhibits a higher sensitivity than tSPM*®"* (1785 vs. 1398 TDs), it lacks
spatial accuracy (1590 vs. 183 FPs). For example, the lack of spatial accuracy can be
observed when comparing SPM®™™ and tSPM*" detections at coronal slices —34 to
—25 in Figures [[((a)—(b), respectively, to the ground truth in Figure P.

Many SPM®™™ detections are outside GM50 (approximately 30%). The classifi-
cation of FPs with respect to GM50 shows that the specificity of tSPM*™ is higher
than SPM®™™ not only in total, but also when only taking detections within GM50
into account (183 vs. 644 FPs). In other words, the fine details detected by tSPM*"*
cannot be obtained by intersecting SPM®™™ detections with the GM50 mask. Note
that SPM®™™ has 387 extra TPs than tSPM*™ (i.e., 1785 — 1398), as compared to
461 extra FPs within GM50 (i.e., 644 — 183), which indicates less than random TP
detection. This lack of detail in SPM®™™ detections is mainly due to the smoothing
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Figure 10: Semi-synthetic Data. Activation maps detected by (a) SPM®™™ and
(b) tSPM*8™, all overlaid on M.
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Table 1: Detection performance on the semi-synthetic dataset.

Method SpM A SPMC™™ tSPM ™ tSPM*®™
detections - total 1882 3375 633 1581
detections - in GM50 1587 2429 566 1581
TPs / (sensitivity) 1389 / (73%) 1785 / (94%) 538/ (28 %) 1398 / (75 %)
EPs - total / (specificity)  493/99.2% 1590/ (97.4%) 95/(99.9 %) 183 /(99.4 %)
FPs - in GM50 198 644 28 183

phase, though leading to higher sensitivity. By reducing the amount of smoothing,
we observe that the sensitivities of SPM*™™ and tSPM®"" are similar (1389 vs. 1398
TPs) while tSPM®*™ preservs its better specificity (493 vs. 183 FDs).

Figure [[1] shows ROC curves illustrating the specificity—sensitivity trade-off of
the approaches as a function of the significance level. At the same level of specificity,
tSPM*8"" consistently shows superior sensitivity when compared to the other three
approaches. Note that specificity of both tSPM® and tSPM*"* is confined to high
values due to the inverse inter-relation of the spatial and transform domain thresholds
(i.e., T4 and 7,,) that are inversely proportional [8]; as the significance level input to
the algorithm drops below @ = 0.01, a reasonable low enough limit, 7, significantly
decreases, leading to an excess increase in T, which in turn restricts detections and
the sensitivity.

0.8
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spm*m™™

—— spPMC™
—— tsPMPWT

0.4
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——  tSPMSEWT
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Figure 11: Performance ROC curves for the four approaches. The circled points
display the results achieved when testing at a significance level of p < 0.05 FWE
corrected (i.e., corresponding to Table [[]).
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4.3 Experimental Data

Table [ presents the results for the flanker task dataset, where the incongruent active
contrast was studied; i.e., detecting activations during incongruent trials. For each
subject 7,

X1, = [@14]22,5r1,5lr2,] - |76 5, 1],

where @1 ; and @3 ; are binary vectors indicating the onset of congruent and incon-
gruent trials, respectively, {1 j} k—1,... ¢ are the estimated head movement param-
eters used as additional regressors, and the last column 1 is a constant vector which
models the average activity. ¢; is set to [0,1,0,--- ,0]T for detecting voxels whose
activation increase in response to incongruent trials. All tests were performed at a sig-
nificance level of p < 0.05 FWE corrected. A first observation is that both SPM®™™
and eSPM* result in more detections than tSPM*8™ (9678 and 7707 vs. 7274 de-
tections, respectively). However, restricting the detections to GM50 within which
tSPM®*"* functions, we see that SSPM*8" outperforms both SPM®™™ and tSPM**
by 20% and 50% more detections, respectively (7274 vs. 6165 and 4973 detections,
respectively).

Figures [[2(a)—(b) show the detection maps using SPM®™™ and tSPM*8™, respec-
tively. tSPM*®"" detections exhibit more spatial details, as evidenced for instance by
the subtle patterns observed in the left and right upper cerebrocortical regions in slices
—49 to —31. Moreover, tSPM*#"" has better ability to detect connected patterns — a
result which is elucidated by re-plotting SPM®™™ detections while keeping only those
detections that fall within GM50, see Figure [[2|(c). Examples of this phenomenon can
be observed by comparing the detections in the cerebral cortex in slices —61 to —31
in Figures [[2(b)—(c). With respect to detection sensitivity within GM50, tSPM*™" in
general performs better with additional activations compared to SPM®™™ in several
regions, see cerebellar region in slices —55 to —34. It should also be noted that the
detections of SPM®™™ include deep nuclei regions such as basal ganglia and thalamus,
see medial detections in slices —19 to —10 in Figure [[2(a), which are not part of the
graph definition of tSPM®*™ and thus, remain undetected by tSPM*&"".

Table 2: Detection performance on the experimental dataset.

Method SPM*™  SPM™™  (SPM®™  (SPM?E™
No. of detections - total 5963 9678 7707 7274
No. of detections - in GM50 4182 6165 4973 7274
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Figure 12: Experimental Data. Activation maps detected by (a) SPM®™™ | (b)
tSPM*"* and (c) SPM®™™ (within GM50) — all maps overlaid on M.
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5 Discussion

5.1 Improved Spatial Localization and Empirical Sensitivity
The enhanced spatial localization for tSPM*" compared to that of tSPM* and SPM

is due to several reasons. First and foremost, prior knowledge about how and where
the BOLD signal emerges is taken into account advantageously. WM is an example
of a tissue with very low neuro-vascular coupling due to its sparse vascularization,
which implies a weak or absent BOLD signal within WM [38]. As such, exploiting
this prior knowledge about tissue—function relationship is essential. The prevention
of detections in WM or CSE, which would be mainly driven by noise, also prevents
these contributions from penetrating and getting mixed with the functional signal in
GM. Although even within SPM, statistical analysis can be restricted to a subset of the
voxels corresponding to GM, data still needs to be smoothed in order to be sufficiently
in line with the Gaussian random field theory [4]. Secondly, compared to SPM, there
is no irreversible spatial smoothing of the functional data in wavelet approaches, which
in turn results in enhanced spatial accuracy in detecting subtle activity patterns. The
conventional approach of spatial smoothing with a non-adaptive Gaussian filter trades
increased sensitivity for loss of information on the spatial extent and shape of the
activation areas [39, 40]. It has also been shown that isotropic Gaussian smoothing
across GM and WM (i.e., without any GM constraint) can lead to displacement of
activation peaks in ¢-value maps towards WM due to the difference in noise variance of
the two tissue types [41]. Thirdly, the strong control of FPs using tSPM is linked to the
underlying theory in selecting the threshold values through the bound over the null
hypothesis rejection probability [8]. On the other hand, SPM yields FWE rates that
are higher than the expected one, as recently reported in [42]. This effect is decreased
by reducing the amount of smoothing, as was observed when using SpMAmm,
Fixing the desired significance, we observe that tSPM*"* outperforms SPM and
tSPM in terms of sensitivity, see Figure [[1. Although the use of classical wavelets
has shown good sensitivity in single-subject studies [8, 9], it performs worse in group
studies due to inter-subject variability that is not countered by smoothing as in SPM,
in particular, when there is only partial overlap between activations. Moreover, al-
though the approach is multi-resolution, the wavelets dilate along the axes of the carte-
sian coordinate system at a scale progression that is too fast. Instead, GM-adapted
wavelets lead to much higher sensitivity compared to classical wavelets (i.e., 1398 vs.
483 detections, respectively) thanks to the adaptive scaling of wavelets that respect the
GM domain. Moreover, empirical assessment of sensitivity on real data, by consider-
ing detections within GM50, reflects the higher sensitivity of tSPM®*"* compared to
both tSPM®* and SPM (see Table P and Figure [[2). Designing basis functions that
dilate only within GM, not only prevents high noise data from WM or CSF to be
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“mixed” with GM data, but also leads to a more significant overlap of pure activations
that follow GM foldings, which in turn, results in higher sensitivity.

5.2 Graph Design for the Brain

A binary graph design is adopted in the proposed framework. Our preliminary tests
showed that weighting the edges based on the Euclidean distance does not improve
the results, as the Euclidean distances between connected vertices in an isotropic 3-D
grid are in the same range (1, V2 or /3 voxels, see Figure ). Also, defining weights
based on GM probabilities did not improve the results [43]. Thus, the binary design
was favoured over an edge weighting scheme due to its simplicity. This construction
resembles an £-neighbourhood graph commonly used in spectral clustering [44], with
€ equal to a distance of V'3 voxels.

There are two main reasons why the design of a graph with region-specific sub-
graphs was preferred over the design of a single connected brain graph. First, the
importance of separating the cerebrum from the cerebellum is to prevent activations
from the ventral occipital lobe “bleeding” into the cerebellum, and vice versa. Exam-
ples of this phenomenon can be observed in SPM detections, see slices —70 : —49
in Figure [[4(a). Second, the geometrical properties of the GM are different for the
cerebrum and the cerebellum. At the resolution of currently available structural MRI
scans and segmentation algorithms, there are more fine details observed within the
whole range of the cerebral structure than within the more coarse geometry of the
cerebellum. As such, constructing subgraphs specific to the cerebrum and cerebellum
leads to wavelets specifically designed for each region, as the wavelet frame is based
on their corresponding spectra.

By comparing the cerebellar mask M1 to the cerebellar region of the average
GM map Ty, it can be observed that more spatial detail is preserved within the
former, see Figure [3. Moreover, the use of such a template mask leads to a study-
independent canonical GM graph, with advantages similar to those of the SUIT atlas
itself. The GM template constructed from SUIT was therefore preferred over the
cerebellar region of M.
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Figure 13: Template cerebellar GM. Three sagital slices of (a) M4+ constructed
using SUIT template and (b) the cerebellar region of My, constructed using
DARTEL. Finer spatial detail is observed in M gy than in M.

5.3 Comparison with other Anatomically Constrained
Methods

Previous studies following CSM approaches [18, 19, 20, 21], which anatomically
constrain the activation mapping, suffer from a few shortcomings. First, the inter-
polation effects related to the projection of 3-D volumes onto the cortical surface is
a major challenge [45, 46]. Second, smoothing leads to spatial inaccuracy and ar-
tificial shift of activations, be it using conventional volume-based approaches (e.g.,
SPM) or CSM [47, 39, 40]. Although the cortical 2-D diffusion smoothing of CSM
approaches, rather than 3-D isotropic Gaussian smoothing of conventional volume-
based approaches, prevents overlap of activation centres that are geodesically distant
but close in a Euclidean sense (e.g., two points, at the opposite sides of a sulcus) [18],
the resulting smoothed signal can still be influenced by sources that are geodesically
adjacent. tSPM*8"" overcomes these two limitations by not smoothing the data in the
first place and keeping the analysis within the native voxel-space. By modelling the
GM as a graph based on the local neighborhood structure, we implicitly define a man-
ifold (with non-zero thickness) on which wavelets dilate with respect to geodesic dis-
tances on this structure. In this sense, the design allows upscaling of local properties to
a global scale. At the coarse scale, although tSPM®*"" also implicitly inherits smooth-
ing in applying the lowpass scaling function h(-) that can be interpreted as equivalent
to Gaussian pre-filtering [48], this is fundamentally different from pre-smoothing the
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data. First, the scaling coefficients are thresholded leading to non-linear denoising as
opposed to the /inear filtering done in pre-smoothing where all fine details of the data,
be it noise or signal, are removed®, which in turn, leads to a loss in spatial detail of the
underlying activity patterns. Second, the wavelet coefficients that survive threshold-
ing are then used, together with the scaling coefficients, to reconstruct the de-noised
signal, unlike the rreversible pre-smoothing as in CSM or SPM.

It is interesting to compare tSPM*™ with the AIBF approach [16, 17]. First, both
approaches keep modelling in the spatial and temporal domain separated. However,
temporal modelling precedes spatial modelling in tSPM*", i.e., spatial modelling is
deferred to the second level analysis (cf. Section P.1]), whereas the opposite is per-
formed in AIBE If single subject analysis similar to the current graph-based proposal
is desired; i.e., only first level analysis, the original joint spatio-temporal model of
WSPM as proposed in [8] can be used [49]. Second, tSPM*™ shares similarities
with AIBF in the sense that smoothing of the data is prevented. They both project the
data into a transform domain: AIBF to the space spanned by circular, user-specified
wide Gaussian basis functions with local support defined on the flattened cortical sur-
face, and ¢SPM*®" to a multi-scale GM domain spanned by GM-adapted wavelets
defined within the voxel-space. The basis set are then used to represent, by a linear
combination, the functional observations (BOLD volumes in AIBF and first level
contrast maps in tSPM*$""). In tSPM*™, the modelling is done within the wavelet
domain, whereas in AIBF it is done in the voxel-space by back-projecting the con-
structed basis to the voxel-space. As such, AIBF is also prone to interpolation effects
in back-projecting the basis from the cortical surface to the voxel-space, similar to
that explained earlier with respect to mapping functional data from the voxel-space
to the surface. Third, in tSPM*"" denoising is performed by subjecting the wavelet
coefhicients to a threshold (cf. Section P.1I)) and applying the inverse transform to
project the data back to the native space, whereas in AIBF noise reduction is inherent
in the anatomically constraint least-squares modelling. Fourth, in multi-subject AIBF
[17], a single subject’s cortical surface is used as a canonical surface to construct the
basis set and to normalize functional data from all subjects. Here, we made use of re-
cent population-level template atlas constructions as well as deformation algorithms
to construct a group-level template of GM, in an attempt to address the observed
inter-subject variability of GM structure more elegantly (See Figure ).

Another limitation of surface-based approaches is their inability to analyse non-
cortical regions, such as the cerebellum and the deep nuclei (e.g., thalamus and basal
ganglia), as they require a surface reconstruction, which would necessitate additional
and tailored representation steps. As such, volumetric techniques, such as the present

2Note that the Fourier transform of a Gaussian is also a Gaussian, and thus, applying such a Gaussian
filter to the data corresponds to multiplying the spectrum of the data with a Gaussian.
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proposal, allow more easily to include non-cortical structures.

We also mention an alternative design of anatomically adaptive wavelets proposed
in [50, 51]. The design is based on the lifting scheme [52] where an irregular domain
can be iteratively sectioned into a nested family of partitions at different spatial scales.
As such, the basis construction in [51] becomes shift variant (due to subsampling),
while the wavelet basis in SGWT spans the space of eigenfunctions of L that are
defined on the GM domain. Moreover, our approach has been directly devised for
multi-subject analysis and as such addresses inter-subject GM variability. As both
proposals use the segmented GM as the starting point for their construction, the
lifting-based anatomically adapted wavelets can also benefit from the GM template
as proposed in the present study.

5.4 Limitations

Although we have shown the applicability of €SPM*®"" in enhancing fMRI activation
mapping, there are still aspects that can be improved. The present framework lacks a
systematic approach in determining the spectral coverage for each wavelet scale; this
is a limitations for the SGWT design in general, as also reported in other applications
than fMRI [53, 54]. The adopted spectral partitioning in the design has been found
empirically by visual assessment of the wavelets and their characteristic scale. The
current setting should nevertheless reasonably generalize to other datasets due to the
general similarity in the extent and nature of the resulting group-level template GM
domains.

Another limitation is that sub-cortical regions, such as the basal ganglia and tha-
lamus, are currently not part of the graph. As such, several detections by SPM in
the sub-cortical area were missed by tSPM*"* (cf. Section E.3). Although there is
a precise atlas of deep cerebellar nuclei available [55], there does not seem to exist
a detailed population-level atlas (mask) for the sub-cortical nuclei such as the thala-
mus and palidum. Available atlases such as the AAL atlas [28] are based on a single
subject anatomy, and, when incorporated within our GM template, regions for the
sub-cortical nuclei were too coarse and collapsed with the nearby delicate GM struc-
ture as defined by G . Therefore, these regions were decided not to be included in
the current graph design. Provided a suitable atlas becomes available, it should be
possible to include these regions as extra subgraphs to Gp. Another option is to in-
corporate tractography information provided by diffusion tensor imaging data [56].
A similar idea in constructing such hybrid connectivity graphs has been recently pro-
posed to improve electroencephalography-based source estimation [57].

The computational burden of the proposed approach is another potentially lim-
iting factor. The most costly part of the implementation is the absolute-value wavelet
reconstruction needed for the spatial thresholding (cf. denominator of Eq. [[0). Since
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the graph wavelets are unique, they need to be computed explicitly at each and ev-
ery vertex and scale. Although this computational burden can be reduced by pre-
computing and storing the absolute-value-wavelets {{[1, |, |¢l|}§:1}f\i¢i’l for Gepr,
this should still be done for each study-dependent G.,-. Another possibility would
be to perform the reconstructions in parallel on the computer’s graphic card, as such
applicability has been shown for other fMRI analysis procedures [58].

5.5 Extension to Structural Studies

Another research avenue that can directly benefit from the proposed GM-adapted
wavelet construction are structural studies. Euclidean wavelet approaches have been
used to classify structural brain data [59, 60] as a means to assess structural mor-
phometric differences between different population of subjects. They have also been
used to discriminate between healthy and pathological tissue by characterising subtle
changes in brain structure in a variety of diseases such as Alzheimer’s disease, mild cog-
nitive impairment and multiple sclerosis [61, 62]. Interestingly, the recent proposal
in [53], also uses the SGWT to derive multi-scale shape descriptors that can be used
to detect group-level effects. However, the approach uses cortical surface reconstruc-
tions, and as such, it comes with benefits and limitations of interpolation between the
surface and volume as we discussed earlier. Nevertheless, the approach can be easily
extended using the proposed volumetric GM graph and wavelet design.

6 Conclusion

We have extended fMRI activation mapping based on spatial multi-scale transforms to
exploit the geometrical structure of the GM. We leveraged recent advances in graph-
based wavelet design to incorporate this prior knowledge in the transformation. The
procedure included the construction of a GM-adapted graph, including different sub-
graphs for cerebral and cerebellar regions. The wavelet-based SPM framework was
presented to incorporate any linear spatial transform, including the spectral graph
wavelet transform. Experimental and simulated results showed the potential of the
proposed approach in terms of improved specificity and sensitivity for multi-subject
studies, and to reveal fine-grained activity patterns.

Software

The source code of the proposed method is made available to the community at
bme.lth.se/staff/behjat-hamid/software/ and miplab.epfl.ch/software/.
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Appendix A. Tight Spectral Graph Meyer-Like Wavelet
Frame

An example of tight graph wavelet frame can be constructed by defining Meyer-like
wavelet and scaling kernels in the spectral graph domain as [26]

sin(3v(q(2 —1))) VA €la, Md]

g(\) = cos(%l/(q(M— —1))) VA €|Ma, M?a] (20)
0 elsewhere
1 VA €10,qa]

h(A) = < cos(Fv(q(2 — 1)) VA €la, Ma (21)
0 elsewhere

respectively, where M denotes the dilation factor and is set by ¢ € Z as M = ﬂql,

= (¢ — )b, € €]0,(1 + M)~ '] and a,b € R*. The classical dyadic dilation
corresponds to M = 2. The J wavelet scales are defined as

ti=—" M, j=1,...,J

>\max

The resulting construction leads to a set of kernels where the support of each kernels
is a strict subset of the eigenvectors of L (i.e., bandpass filters), and the union of the
functions [g(t;A)|? and |k (t))|? forms a partition of unity, i.e.,

GEN2+ Bt = 1.
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Signal-Adapted Tight Frames on Graphs

Abstract

The analysis of signals on complex topologies modeled by graphs is a topic of increasing
importance. Decompositions play a crucial role in representation and processing of such
information. Here we propose a new tight frame design that is adapted to a class of signals
on a graph. The construction starts from a prototype Meyer-type system of kernels with
uniform subbands. The ensemble energy spectral density is then defined for a given set of
signals defined on the graph. The prototype design is then warped such that the resulting
subbands capture the same amount of energy for the signal class. This approach accounts at
the same time for graph topology and signal features. The proposed frames are constructed
for three different graph signal sets and are compared to non signal-adapted frames. Vertex
localization of a set of resulting atoms is studied. The frames are then used to decompose a set
of real graph signals, and are also used in a setting of signal denoising. The results illustrate the
superiority of the designed signal-adapted frames, over frames blind to signal characteristics,
in representing data and in denoising.
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1 Introduction

Graphs provide a flexible framework for representing data that lie on topologically
complex domains. Thus, much attention has been given to generalizing fundamental
signal processing operations to the graph setting [1, 2, 3]. In particular, many propos-
als relate to extending multi-resolution transforms, filter bank designs and dictionary
constructions for signals on graphs [4, 5, 6,7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27]. These studies fall essentially within two regimes:
spatial (vertex) and spectral (frequency) designs. Constructions that fall within the
former regime include methods based on lifting schemes [4, 5, 6] and methods in
designing wavelets for hierarchical trees [7, 8, 9]. The latter regime can be viewed as
defining dictionaries comprised of atoms that are constructed by translating smooth
graph spectral filters to different vertices of the graph. The graph spectrum is defined
as the eigenspace of a graph Laplacian matrix. One of the first proposals of such a dic-
tionary is the spectral graph wavelet transform (SGWT) frame [10] that is constructed
based on a system of spline-based spectral kernels, including a lowpass kernel and a se-
quence of dilated bandpass kernels. Constructions of systems of spectral graph kernels
leading to tight frames were proposed in [11, 12, 13]. Tight frames are particularly
interesting because of their property of energy conservation between the original and
transformed domain [28]. Other approaches to spectral domain design include diffu-
sion wavelets [14], vertex-frequency frames [23] and approaches to graph filter-bank
design using bipartite graph decompositions [15, 16, 17, 18, 19, 20], graph coloring
[25] and connected sub-graph decomposition [21].

The aforementioned spectral designs are blind to the fact that the eigenvalues of
the Laplacian matrix that define the graph spectrum are typically irregularly spaced,
unlike the definition of discrete frequencies for regular signals. As a step towards adap-
tation to the spectral properties of the graph domain, the construction of spectrum-
adapted tight graph wavelet and vertex-frequency frames was recently proposed in
[24]. The spectrum-adapted spectral kernels are adapted to the distribution of eigen-
values of the graph Laplacian matrix such that a similar number of eigenvalues lies in
the support of each spectral kernel.

Besides considering the structural characteristics of the graph, a major improve-
ment to the frame design would be to also consider the properties of the signals realized
on the graph. To this aim, Thanou et al. [26, 27] have pursued a structured, numeri-
cal dictionary learning approach in which wavelet dictionaries are learnt based on a set
of training signals. Since the graph structure is incorporated into the learning process,
the learned kernels are indirectly adapted to the graph Laplacian spectrum as well as
to the training data. This approach is effective in providing a sparse representation of
graph signals that can be described as combinations of overlapping local patterns. In
a more empirical approach [29, 30, 31], the Meyer-like frame design [11] has been
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tailored to fMRI signals by defining a spectral partitioning such that a small number
of narrow-support filters, covering the lower end of the spectrum, are constructed.

In this paper, we propose an approach for constructing tight graph frames that
account not only for the intrinsic topological structure of the underlying graph as
proposed in [24], but also for the characteristics of a given set of signals. This is ac-
complished by considering a graph-based energy spectral density notion that includes
signal and topology properties and encodes the energy-wise significance of the graph
eigenvalues. A system of spectral kernels tailored to the energy spectral density is
constructed by starting from the design of a prototype Meyer-type tight frame with
uniform spectral coverage, followed by a warping step which incorporates the energy
spectral density information to the prototype design, resulting in a tight frame with
equi-energy subbands.

The paper is organized as follows. In Section [J, definitions related to spectral
graph theory, tight frames and graph signal decomposition are briefly reviewed. In
Section B}, the procedure for constructing signal-adapted tight frames is introduced.
In Section @, insight on vertex localization of the resulting atoms is provided. In
Section 5, constructions of the proposed frame for three different graph signal sets are
presented, vertex localization of a set of resulting atoms is quantified, the coefficients
resulting from decomposing a real graph dataset are studied, and finally, the proposed
frames are used in the setting of signal denoising.

2 Preliminaries

2.1 Graphs and Spectral Graph Theory

An undirected, weighted graph G = (V, &, A) consists of a set V of N vertices,
a set £ of edges (i.e., pairs (i, j) where 7,7 € V) and a weighted adjacency matrix
A = [a; j], where a; ; denotes the weight of the edge between vertices ¢ and j. The
degree matrix D is diagonal with elements d; ; = > ;@i The Laplacian matrices of
G in combinatorial form L and normalized form £ are defined as

L=D-A, (1)
L=DY2LD71/2 )

respectively. Since both L and £ are symmetric and positive semi-definite, their eigen-
decompositions lead to a set of Ny real, non-negative eigenvalues that define the graph
spectrum

AG)={0=XA < Ao+ < AN, = Amax}- 3)
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The corresponding set of eigenvectors {Xl};\fl forms a complete set of orthonormal
vectors that span the graph spectral domain [32]. When necessary, we use the no-
tations A7 (G) and Az (G) to distinguish between the two definitions of the graph
Laplacian. As the eigenvalues may be repetitive, for each \;, we denote its algebraic
multiplicity by my, and the index of its first occurrence by 7y,. That is, if A; is singu-
lar, i.e. my, = 1, theniy, = [, and if \; is repetitive, then i, < [. The multiplicity of
eigenvalues equal to zero reflects the number of connected components in the graph.
In this paper, only connected graphs are considered, and thus, my, = 1.

2.2 Graph Signals

Let R(V) denote a Hilbert space of real-valued signals defined on the vertices of the
graph, with the inner productdefinedasVf, fo € R(V), (f1, f2) = Zgil filnlfalnl,
and the norm as Vf € R(V), HfH% =(f,f)= Zgil | fn]|?.

Graph Fourier Transform

Forany f € R(V), its spectral representation fe R(V), known as the graph Fourier
transform of f, can be used to express f in terms of the graph Laplacian eigenvectors

Ng
n| = n|. 4
Fn] lz;(fa;;z)Xl[] (4)

Parseval Relation

With this definition of the Fourier transform, it can be shown that the Parseval relation

holds [23]
Vi, f2 €R(V), (f1, fa2) = (f1, fa)- 5)

Generalized Convolution Product

For any two graph signals f, fo € R()V), the generalized convolution product is
defined as

(i £l = S FullFalilaln]. ©
=1
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Graph Signal Filtering

In analogy with conventional signal processing, filtering of graph signals can be viewed
as an operation in the spectral domain. For a given graph signal f € R(V) and graph
filter g € R(V), defined through its Fourier transform g, the filtered signal, denoted
by (Fgf), can be obtained as

(Fgf)n] = (g * f)ln] 7)
Ng

= gl xln)- ®)

—~
=

—~
Il

The filter response of an impulse at vertex m

f=0,« Sm[l] = <6m7Xl> = Xl[m]7 )

can then be obtained as

Ng
(Fgbm)[n] =Y gllxi[mlx[n], (10)
=1

which, in general, is shift-variant; i.e, in the vertex domain, it is not a shifted version
of the same graph signal. Therefore, for convenience, a graph filter can be defined by
its spectral kernel g.

To design spectral kernels, it is often more elegant to define an underlying smooth
continuous kernel. For instance, we consider C(A) : [0, Apay] — R, from which
we derive a discrete version through sampling as

k[l =K(\), [=1,...,N,. (11)

Note that although spectral kernels (i.e., XC(\) and k) are defined in the spectral
domain, they are not linked to any explicit vertex representation, and thus, the Fourier
symbol ~ is not used for their denotation. This notation convention will be used
throughout the paper.

2.3 Dictionary of Graph Atoms

As noted before, for a given kernel k associated with KC, the vertex-domain impulse
responses are obtained as

Yiem = (Fredm) < 1AP/c,m[l] = k[l]x;[m]. (12)
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The collection of impulse responses {1 ,,, },,,2; are considered graph atoms associ-

ated with the spectral kernel (). Givenasetof J spectral kernels { k; }3-7:1 e R(V),

a dictionary Dg containing J N, atoms is obtained as

Ng

Dg = {{w;cj,m}le} : (13)

m=1

The atoms of Dg form a frame in ¢2(V) if there exist bounds By > B; > 0 such
that [28]

VEERW), BillflE <D, m)* < Ballfl5, (14)

jm
where the frame bounds are given by
By = min G(\), By= max G()), (15)
AE[0, A max) AE[0,Amax]
and G(\) is defined as
J
a) = S IG P (16
j=1
In particular, Dg forms a tight frame if
VA€ [0, Amax)y, G(N) =C, (17)

and a Parseval frame if C = 1.

2.4 Decomposition of Graph Signals

Direct Decomposition
To decompose a graph signal f onto a set of the atoms in Dg, the coeflicients can be
obtained as

CKjm = (f, ¢Kj,m> (18)
Ng

S G, mlIF 10, (19)
=1

© Sk F i m). (20)
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If Dg forms a Parseval frame, the original signal can be recovered as
fln] = Z Z K m¥Kc;m
T
= Z Z Z k1) Flx[m] Z kU ]xy [m]xy 7]
= Z Z Z ke i)k 1 F 1) xy [ Z xi[m

="K Fli)x ). 1)
2

=1
Decomposition Through Polynomial Approximation
The decomposition of f on Dg leads to the coefficients

T .
C/Cj = [CICj,lvc]Cj,27"'7c’Cj,Ng] J = ]-7"'7<]7

that can be interpreted as filtered versions of f with different spectral kernels {k; }‘]1:1

Due to the redundancy of such a transform, it is beneficial to implement the transform
using a fast algorithm, rather than using the explicit compution of the coefficients
through (20). This becomes even more crucial when large graphs are considered.
One such algorithm is the Chebyshev polynomial approximation method [10], which
is based on considering the expansion of the continuous spectral window functions

{K;(A ) _, with the Chebyshev polynomials C,(z) = cos(p arccos(z)) as

1 _
Kj(x) = Sdic, 0+ Z dic; » Cp (), (22)
p=1

where C,(z) = Cp(‘rT*b), b = Amax/2 and d; , denote the Chebyshev coefficients

obtained as 5 7
dic; p = 7T/ cos(pf) K (b(cos(8) + 1)). (23)
0
By truncating (22) to M terms, cx; can then be approximated as

M

. 1 Z 5

C]C7 = §d]C].70f + dK.77pCp(L)‘f' (24)
p=1

We refer to [10] for further details.
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3 Signal-Adapted Frame Construction

The objective is to construct a signal-adapted tight frame where the adaptivity is in-
troduced by exploiting the spectral energy content of a given graph signal set. This
approach is motivated by two observations: (i) the eigenvalues of the graph Laplacian
that define the graph’s spectrum are irregularly spaced, and depend in a complex way
on the graph topology; (ii) the distribution of graph signals’ energy is generally non-
uniform across the spectrum. Based on these observations, the idea is to construct
an ‘adapted’ frame, such that the energy-wise significance of the eigenvalues is taken
into account, rather than only adapting based on the distribution of the eigenvalues
as proposed in [24]. In this way, also the topological information of the graph is
implicitly incorporated in the design, since the energy content is given in the graph
spectral domain that is in turn defined by the eigenvalues. To formulate the problem,
we first introduce a notion of energy for a given graph and a given signal set.

Definition (ensemble energy spectral density)
For a given graph G, with spectrum A(G), and graph signal set F = {f,}2*,, the
ensemble energy spectral density of F can be obtained as

N,

1
L

where the normalization term ensures that each signal contributes equally to the en-
semble energy and ), er[l] = 1.

Using € 7, the desired system of spectral kernels {kj} _ needs to be constructed
such that each kernel captures an equal amount of ensemble energy, i.e.,

2
;o l=1,...,N,, (25)

S

z _ 1—erl ,
subject to the Parseval frame constraint, i.e.,
J
S lkilP =1, 1=1,---,N,. (27)
j=1

The energy contribution from A; is excluded from the design as it merely reflects the
ensemble mean of the signal set.
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We propose a two-step procedure to obtain such a design. First, a prototype

J

system of continuous spectral kernels, {IC; (A)}7=1, is obtained such that they satisfy

the following uniformity constraint

Amax ’
3C e R, K,Nd =C, j=1,...,/J, (28)
0

subject to the tight Parseval frame constraint,
J
DIGAE =1, YA€ [0, Amal. (29)
=1

Second, an energy—equalizing transformation 7'7(\) is constructed and incorporated
in {/C; (M)} -1, leading to a warped version of the prototype design

Ki(\) =Kj(Tr(\), j=1,...,J. (30)

Provided that T'7(\) is designed such that it is monotonically increasing and satisfies

1-— 1
Zef ef”, G=1,...,J, 31)
l=a;
where
. J—1
a; = argmin {‘T]:()\l) — — Amax } (32)
le{1,...,Ng} J
bj = argmin {‘T}'()\l) - l)\max }, (33)
le{1,...,Ng} J

the resulting {C; ()\)}3]:1 corresponds to the desired signal-adapted system of spectral
kernels in the continuous domain. If a discrete representation is needed for direct de-
composition as in (20), {k; }3]:1 can be obtained through sampling. In the following,
these two steps are explained in detail.

3.1 Step 1: Prototype System of Spectral Kernels Construction

While there is no unique solution that satisfies (£§), prototype systems of spectral
kernels satisfying this constraint subject to (29) can be designed. In this paper, we
aim at designing spectral kernels similar to those of the Meyer-like graph wavelet
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Figure 1: Construction of UMT system of spectral kernels.

frame [11] since they have (i) a finite support of the bandpass type, and (ii) smooth
transition bands that have an advantageous effect on localization in the vertex domain
[23, 10]. The following proposition introduces the design of a uniform Meyer-type
system of spectral kernels.

Proposition 1. (uniform Meyer-type (UMT) system of spectral kernels) Using the auxil-
iary function of the Meyer wavelet, given by [33]

v(z) = 2*(35 — 84z + 70z* — 202%), (34)

a set of J > 2 spectral kernels defined as

1 VA € 0,d]
Ki(\) = { cos(r(z25(2 — 1)) Y\ €la,va] (35a)
0 elsewhere
, sin(r(zE (AL22 1)) VA €]A A
K5 () = { cos(Fr(-1L (A-DR —1))) WA €]d A+ A (35b)
0 elsewhere
/ sin(Fr(zL (222 — 1)) YA €, A
KyA) =41 YA €A, A+ al (350)
LO elsewhere
can be constructed, where
A =~a — a, (36a)
A= a+(j—2)A, (36b)
Aip= ya + (] - Q)A, (36C)

)\ max

T Iy —J—y+3 (6

a
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Figure 2: UMT system of spectral kernels as given in Proposition [[] displayed for
(@) J = 5 and (b) J = 7 spectral scales. The HCUT system of spectral kernels
[24] displayed for (c) J = 5 and (d) J = 7 spectral scales.

Fig. [ illustrates the notations used. By settingy = 2.73, the set of kernels defined in (48)
satisfies the uniformity constraint given in (28). The atoms of a dictionary constructed
using this set of spectral kernels form a Parseval frame on R(V).

Proof- see Appendix A. O

Figs. P(a) and (b) show realizations of the resulting UMT system of spectral ker-
nels for a fixed A\yax and two different J. For comparison, the half-cosine uniform
translate (HCUT) system of spectral kernels [24] are shown in Fig. P(c) and (d). There
are three main differences when comparing these two designs. First, the atoms of a
dictionary constructed using the UMT system of spectral kernels not only form a
tight frame but also a Parseval frame. Second, the UMT system of spectral kernels
has better passband characteristics compared to HCUT system of spectral kernels as
the support of each kernel is a more strict subset of the spectrum, with less overlap of
adjacent kernels. Third, the UMT system of spectral kernels satisfies (28). The latter
two differences are in favour of the proposed UMT design for our purpose.
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3.2 Step 2: Energy-Equalizing Spectral Warping

Although the UMT system of filters satisfy the uniformity constraint (2§), they satisfy
the equi-energy constraint (2@) only if 1) the graph’s eigenvalues are uniformly dis-
tributed across the spectrum and 2) the ensemble energy contribution at each eigen-
value is equal. In fact, for a given graph and signal set, these two conditions do not
hold in general. Using e, the desired continuous energy-equalizing transformation
function T'7(A) : [0, Amax] = [0, Amax)> can then be obtained through monotonic
cubic interpolation [34] of the pair of points

A\ ixtma g Ng
e e , 7)
{ el 2 Zf }

r=iy, k= =2
together with (A1,0). The resulting T'7(\) satisfies (BI)). Thus, the set of spectral
kernels obtained by warping the UMT system of kernels using T'7(), cf. (B0), cor-
respond to the desired signal-adapted system of spectral kernels.

3.3 Generalization

The proposed procedure for the design of signal-adapted frames can be generalised in
two aspects. First, prototype designs other than the UMT can be designed and used as
the base for the proposed frames, with a general case formulation given in Appendix
B. Second, rather than the proposed ensemble energy spectral density measure given
in (29)), other forms of stationary signal information can be exploited to construct a
suitable signal-adapted spectral transformation, with example measures recently ex-
tended to the graph setting given in [35, 36, 37]. Finally, we also note that, depending
on the dataset, it can be beneficial to slightly smooth 77 (\), in particular important
at spectral regions where adjacent eigenvalues are minutely different in value and the
ensemble energy significantly changes across them. A smooth T'7 (), in turn, comes
in favour of obtaining smoother spectral kernels.

4 Vertex Localization of Spectral Kernels

As in classical signal processing where the uncertainty principle determines the trade-
off between fine localization in time (spatial) and frequency domain, a similar notion
naturally extends to the graph setting, with example proposals given in [38, 23, 39, 40,
41]. As the present proposal of constructing frames is defined in the spectral domain,
it is interesting to consider the theoretical constraints in the vertex localization of the
resulting atoms. In particular, we first consider the bound on the vertex localization of
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atoms provided through polynomial approximation [23]. For a polynomial spectral
kernel of degree D, defined as

D
) =) (38)
k=0

for some coeficients {cv }£_, it can be shown that its associated atoms satisfy the
localization constraint [23]

VnevV, p,,ml=0 if dg(n,m)> D, (39)

where dg (-, ) is a distance metric. As suggested in [38], the geodesic distance is one
metric that can be used, in which case, dg (i, j) is the length of the shortest path
connecting vertices 7 and j. For a generic spectral kernel /IC(\), the localization of its
associated atoms can be quantified as [23]

[Yrealmll < VNy nf{{IK = Ppylloc}, (40)

where the infimum is taken over all polynomial kernels of degree D', as defined in
B8), with D" = dg(n, m) — 1. An upper bound can be determined for the minimax
polynomial approximation error of the infimum term. We refer to [23] for further
details and a proof of (B9) and (E0).

Based on (B9) and (§0), if a given spectral kernel can be perfectly represented as
a polynomial of degree M, its realization at a given vertex n will be localized in a
sphere of radius M edges around vertex n; i.e., the lower the degree, the finer the
localization in the vertex domain. If the approximation is not perfect, the vertices
that fall outside the sphere will not necessarily be zero, but constrained by the bound
in (B0). This can be seen as the trade-off of vertex-spectral localization: the smoother
the given spectral kernel () and the wider its transitions bands, the lower is its
approximation error to a polynomial, and thus, the finer is the localization of its
associated atoms in the vertex domain. Compared to the HCUT spectral kernels,
the proposed UMT spectral kernels provide narrower transition bands (cf. Fig. P),
and therefore, the resulting atoms are expected to be less localized. As signal-adapted
kernels result from incorporating the energy-equalizing transformation into the UMT
design, cf. (B0), the specific bound depends on the signal set used.

For an alternative description, the localization of realizations of graph atoms can
be quantified using the graph spread measure [38]; the graph spread of a signal f €
R(V) around vertex k € V is defined as

AGp(f) = 3 > dg(k,v) £2[0] (41)

Hfl\zvev
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where dg (-, -) is the same distance metric as that used in (B9) and (@0). The smaller
is Aé i.(f), the more localized is f around vertex &, and vice versa. A global spread
measure can also be obtained as

AG(f) = min {AZ 1 (f)}- (42)
eV
By substituting an atom ) ,, for f in (1) and (E2), its vertex localization can be
quantified. In Section .2, these two measures are used to quantify vertex localization
of the different frames.

5 Results

5.1 Signal-Adapted Tight Frame Constructions

We present constructions of the proposed frames for signal sets realized on the Min-
nesota road graph [42] and the Alameda graph [26]. The Minnesota road graph is
chosen as it is considered as a benchmark in many recent studies, e.g., [17, 18, 23,
25, 24, 15, 16, 21, 19, 20, 22]. The choice of the Alameda graph is to highlight
the fact that, although the proposed method is developed based on spectral energy

characteristics of a signal set, it is also implicitly adapted to the graph’s spectrum.

Data Realized on the Minnesota Road Graph

The Minnesota road graph is considered as a benchmark in many recent studies, e.g.,
(17, 18, 23, 25, 24, 15, 16, 21, 19, 20, 22]. The edges represent major roads and
the vertices their intersection points, which often correspond to towns or cities. We
consider a general model for realizing signals on this graph as

Ynn = Tnn + e, (43)

where @, ,, € R(V) denotes the graph signal of interest with density  €]0, 1] and
smoothness n € Z™, and e € R(V) denotes additive white Gaussian noise of vari-
ance 2. In particular, @, ,, is constructed as

Lyn = Anpm (44)

where p, € R(V) denotes a random realization of a spike signal as p, [i] € {0,1},
i=1,..., Ngsuch that ) }; p,[i] = nNy, A" incorporates the intrinsic structure of
the graph into the signal, and the power n controls the extent of signal smoothness.
Fig. B shows two signals realized on the Minnesota road graph using this scheme.
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(a) (b)

Figure 3: Sample signal realizations on the Minnesota road graph, (a) .22 and
(b) 0.5,4. The plots are normalized as @y 1, /||y, n || c-

By setting 02 = 0, two sets of clean graph signals with different smoothness were
constructed as

A= (s

and
_ /1,0
Fa = {yn’4}n:0.2,0.57
where i denotes random realizations of p,), leading to 20 signals in each set.

While the distribution of the eigenvalues of this graph is rather uniform, see
Fig. fi(a), the ensemble energy is concentrated towards the two ends of the spectrum
for both 7 and F, see Fig. fi(b). Fig. f(c) shows the resulting energy-equalizing
transformation functions. By incorporating 7', (\) and Tz, () into the UMT sys-
tem of spectral kernels, the desired signal-adapted systems of spectral kernels are ob-
tained, see Fig. fi(d). A comparison of Figs. fi(d) and (b) highlights the energy-wise
optimality of the proposed signal-adapted frame construction; i.e., more filters are al-
located to spectral ranges that have higher ensemble energy. The support of the filters
in the two sets vary relative to the difference in the distribution of the ensemble energy
of the two signal sets, with more filters allocated to the lower end of the spectrum for
the F3 frame than for the F; frame, and vice versa at the upper end of the spectrum.

For comparison, Fig. fi(e) shows the corresponding spectrum-adapted system of
spectral kernels for the Minnesota road graph, where the HCUT system of spectral
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Figure 4: (a) Histograms of the eigenvalues A~ (G) of the Minnesota road graph.
Each bar indicates the number of eigenvalues that lie in the corresponding spectral
range. (b) Distribution of the ensemble energy spectral density €z, (top) and €,
(bottom). Each bar indicates the sum of ensemble energies of the eigenvalues ly-
ing in the corresponding spectral range. (c) Constructed energy-equalizing trans-
formation functions, T, (A\) and T, (), and the spectrum-adapting warping
function wg () [24]. (d) Signal-adapted system of spectral kernels constructed
by warping the UMT system of spectral kernels (J = 7) using Tz, (A) (top)
and T'z, () (bottom). (e) Spectrum-adapted system of spectral kernels [24] con-
structed by warping the HCUT system of spectral kernels (J = 7) using wz (A).
(f) Meyer-like wavelet frame system of spectral kernels [11]. The dashed line in
(d)—(f) corresponds to the function G(\) in ([3).
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Figure 5: Illustration of the Alameda graph.

kernels [24], shown in Fig. P(d), are warped using a spectrum-adapting warping func-
tion wz (A), shown in Fig. fl(c). we () is constructed such that the distribution of
eigenvalues is equalized [24]. As the distribution of the eigenvalues of this graph is al-
most uniform, the spectrum-adapted filters almost resemble the non-warped HCUT
filters. Comparing Figs. fi(d) and (e), it can be observed that the proposed method
optimizes the construction of the filters such that the energy-wise significance of the
eigenvalues is taken into account, rather than only considering the distribution of the
eigenvalues as in the spectrum-adapted frame.

Fig. fl(f) shows the Meyer-like wavelet frame system of spectral kernels [11], in
which the kernels have the classical dyadic dilation of the wavelet scheme. The frame
is neither adapted to the distribution of the eigenvalues nor to the distribution of the
ensemble energy. By comparing Figs. fi(d) and (f), it is observed that the partitioning
of the kernels at the lower end of the spectrum are similar, whereas a major difference
is seen at the remainder of the spectrum. The similarity is more pronounced for
kernels of the signal-adapted frame associated with Fi, due to the particular initial
decay pattern observed in the ensemble energy of F7, see Fig. f(b), top. The benefit of
the signal-adapted frame is observed when comparing the spread of the kernels in the
spectral interval [0.2, 2]: the signal-adapted design approach allocates more subbands
to the spectral interval where signal energy is expected, whereas the wavelet frame
design approach, cannot allocate more subbands to spectral intervals other than the
lower end.
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Figure 6: (a) Histogram of the eigenvalues A7 (G) of the Alameda graph. (b)
Distribution of the ensemble energy spectral density er of the traffic dataset. (c)
Constructed energy-equalizingtransformation functions 77 () and the spectrum-
adapting warping function wr, () [24]. (d) Signal-adapted system of spectral ker-
nels. (e) Spectrum-adapted system of spectral kernels [24]. (f) Meyer-like wavelet
frame system of spectral kernels [11].

Traffic Data on the Alameda Graph

The data are part of the Caltrans Performance Measurement System datasetd. The
monthly bottlenecks occurring across 17 freeways in Alameda county between Jan-
uary 2010 and December 2015 are considered. A bottleneck could be any location
where there is a persistent drop in speed, such as merges, large on-ramps and inci-
dents. The vertices of the graph represent detector stations where bottlenecks were
identified over the mentioned period, see Fig. fl. Two stations ¢ and j are considered
as connected through an edge if either 1) they are adjacent across a freeway, or 2) there
is a connection at a crossing between freeways near the two stations. The latter type

3The data are publicly available at htep://pems.dot.ca.gov.
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of edges were defined based on satellite maps of the county available on Google Maps
[43]. The signal on the graph is the average duration of bottlenecks for each specific
month during three shifts (AM shift: 5am-10am, noon shift: 10am-3pm, and PM
shift: 3pm-8pm), resulting in 180 signals in total.

The spectral characteristics of this signal set deviate considerably from that of the
Minnesota graph. The total ensemble energy is almost uniformly spread across the
eigenvalues, as observed by comparing the histogram of the eigenvalues Az (G) in
Fig. §(a) and the distribution of the ensemble energy spectral density in Fig. B(b).
As a result, the warping function defined for equalizing the distribution of energy
across the spectrum, i.e., Tr(A), closely resembles that defined for equalizing the
distribution of eigenvalues; i.e., w, (), see Fig. B(c). Consequently, almost an equal
number of kernels span each part of the spectrum, with more kernels allocated to the
lower half of the spectrum and vice versa, see Figs. §(d) and (e). On the other hand,
the non-adapted, Meyer-like wavelet frame has a kernel at the far end of the spectrum
where there is very few eigenvalues and almost no energy, see Fig. G(f).

Although the kernels of the proposed frame have narrower passband character-
istics compared to those of the spectrum-adapted frame due to the different base
set of kernels used (compare Figs. §(d) and (e)), this example demonstrates where
the proposed frame design approach and the spectrum-adapted approach coincide
in terms of their respective approach to adaptivity: if the spectral energy is equally
spread across the eigenvalues, the energy-equalizing transformation function T'7(\)
and the spectrum-adapting warping function wr,(\) become almost identical. Thus,
although the proposed method is developed based on spectral energy characteristics of
a signal set, it is optimal in the sense that it will indirectly adapt based on the graph’s
spectrum in the event of uniformly spread energy across the eigenvalues.

5.2 Vertex Localization

Vertex localization of atoms realized using the frames constructed on the Minnesota
road graph are quantified by computing the graph spread around all graph vertices,
cf. (&I), for {{wzcj,l}jzl,.--7J}l:17m,Ng. The atoms were then sorted based on their

global graph spread measure, cf. (B7), leading to a set of sorted indices {Zk}kNi 1> such
that

A%("Plcj,il) < Aé(%cj,zg) <-.- < Aé("#lc-,mg)‘

J

Figs. [](a) and (b) show the global graph spread of the atoms associated to 1 and K4,
respectively, for both the signal-adapted and spectrum-adapted frames of the Min-
nesota road graph. For Ky, the global graph spread is greater for the atoms of the
signal-adapted frame. This can be associated with the narrower spectral spread of Ky
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Figure 7: Global graph spread of the atoms associated with (a) 1()) and (b)
K4(A) of the signal-adapted frame (black curves) and spectrum-adapted frame
(gray curves). (c) Ensemble graph spread measure for the seven subbands of the
signal-adapted and spectrum-adapted frames.

of the signal adapted frame compared to that of the spectrum-adapted frame, see blue
kernel in Fig. fi(d), top, and that in Fig. fi(e). On the other hand, for K4, the global
graph spread of the atoms of the two frames become almost identical, which can be
linked to the fact that K4 is approximately equally spread for both the signal-adapted
and the spectrum-adapted frames, see purple kernel in Fig. f(d), top, and that in
Fig. fi(e).

To express the behaviour of the atoms in the vicinity of their central vertex, an
ensemble measure of the change in graph spread as a function of geodesic distance
from their central vertex can be obtained as

N,
_ 1 <
Aw,cj[klzM;A;v?(%,l), k=1,...,N,. (45)

where v,(cl) € {1,..., Ny} denotes the index of the kth closest vertex to the vertex



132 Paper II

where atom ¢, , is centered at, based on the the geodesic distance measure; i.c.,
dg(l,vl) =1) =0 < dg(1,0") < -+ < dg(l,v%)g)-

Fig. [/(c) shows {A¢j };-:1 associated with the spectral kernels of the signal-adapted
and spectrum-adapted frames of the Minnesota road graph, for geodesic distances
of up to 100 vertices. For all subbands, and for both frames, the ensemble graph
spread monotonically increases as the geodesic distance increases. As expected, for
subbands j = {1,2,3,6, 7}, where the kernels of the spectrum-adapted frame are
more spectrally spread compared to that of the signal-adapted frame (see Fig. @(d),
top, and Fig. f(e)), ij [k] is lower, whereas for subbands j = {4,5} the values
are almost identical since the corresponding kernels of both frames are widely spread
across the spectrum. These results are in line with the theoretical insight provided by

(B9 and (#0).

5.3 Efficient Decomposition of Brain fMRI Data

Functional magnetic resonance imaging (fMRI) is a key bioimaging modality used for
performing non-invasive studies of the brain. The principle behind fMRI is the detec-
tion of a signal known as the blood-oxygen-level-dependent (BOLD) signal, which
arises as a result of increased blood flow to activated regions of the brain. As high
temporal resolution data is required to correlate brain activity with the experimental
paradigm, the resulting fMRI data are generally corrupted with an extensive amount
of noise, requiring denoising.

Filters and wavelets in the most classical form used in image processing share sev-
eral basic properties: they are (i) defined within Euclidean spaces (a square in 2-D or
a cube in 3-D), (ii) isotropic in structure and (iii) stationary and quasi shift-invariant,
meaning that their structure does not vary when applied to different regions within
a volume. However, the BOLD signal is expected only within the thin convoluted
layer of gray matter of the brain, but not within the white matter or cerebrospinal
fluid [44]. At the spatial resolution of fMRI, isotropically shaped basis functions will
cross boundaries of gray matter, even at the finest scale. Thus, it is advantageous to
construct filters that adapt to this intricately convoluted domain rather than to assume
that the spatial characteristics of the underlying signal is independent of its location.
To this aim, many approaches have been proposed (see for example, [45, 46, 47, 48]),
in particular, the construction of anatomically-adapted graph wavelets [31]. The de-
ficiency of a fixed graph frame design and the lack of a systematic approach in de-
termining the spectral coverage of spectral bands for analyzing fMRI data have been
pointed out in [31, 30, 29]. In fact, these findings motivated us to pursue the idea of
designing the proposed signal-adapted frames.
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Figure 8: Illustration of the cerebellum graph.

Here, we consider the cerebellum region of the brain. The graph, as designed in
[31], encodes the 3-D geometry of the cerebellar gray matter, and its construction is
based on an atlas template of the cerebellum [49]. The vertices of the graph represent
voxels within the cerebellar structure that correspond to gray matter, and the edges are
assigned by computing connections between adjacent voxels in 3-D neighbourhood,
see Fig. B. The fMRI data were acquired from 26 healthy subjects while performing a
slow event-related Eriksen flanker task [50].8 Whole-brain functional volumes were
acquired throughout the task, one every two seconds, with a total of 292 volumes per
subject. An anatomical scan of each subject’s brain was also collected. By registering
each subject’s anatomical scan to the template cerebellum, and accordingly mapping
the functional volumes, cerebellar graph signals were constructed by extracting func-
tional voxels matching the defined graph vertices. This resulted in one signal set for
each subject, {F;}29 |, each including 292 signals. A set including the signals from
all subjects was also constructed as

F=FUFU---UFs.

The histogram of the eigenvalues Az (G) of the cerebellum gray matter graph and
the distribution of the ensemble energy spectral density of F are shown in Figs. Pi(a)
and (b), respectively. Unlike the Alameda traffic graph and data, a major difference is
observed between the two distributions: most eigenvalues are located at the upper end
of the spectrum, whereas the ensemble energy is significantly concentrated at the lower
end of the spectrum. This leads to a major discrepancy between T'’7() and wg(A),
see Fig. Pl(c), and consequently, the resulting spectral kernels, see Figs. P(d)-(g): the
kernels of the signal-adapted frames are localized at the lower end of the spectrum,
whereas those of the spectrum-adapted frame are localized at the higher end of the
spectrum. As a result, the signal-adapting scheme leads to an optimal configuration
of filters in the sense that more filters are allocated to spectral regions where higher
ensemble signal energy is present rather than being allocated to part of the spectrum
where more eigenvalues are located.

“The data are publicly available at https://openfmri.org/dataset/ds000102.



134 Paper II

(d)

Figure 9: (a) Histogram of the eigenvalues Az(G) of the cerebellum graph.
(b) Distribution of the ensemble energy spectral density ex of F. (c) Con-
structed energy-equalizing transformation functions {T'x, (A)}7%,, T(\) and
the spectrum-adapting warping function w, () [24]. Note that the black curves
correspond to the transformation for each subjects signal set, with the transforma-
tion at the two extremes presented as dashed curves. (d)-(f) Signal-adapted system
of spectral kernels based on Fi, F2 and F, respectively. (g) Spectrum-adapted
system of spectral kernels [24]. (h) Meyer-like wavelet frame system of spectral
kernels [11].
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Figure 10: (a)-(d) The mean distribution of coeflicients resulting from decom-
posing the set of signal in Fse using the system of spectral kernels shown in
Figs. f(e)-(h), respectively. Each plot shows the mean distribution of coeflicients
in one subband, with the order from left to right corresponding to the blue, red,
yellow, purple and green spectral kernels, respectively. Note that the distributions
are shown for the same range of coeflicient values for each subband across the
frames, whereas the counts (y axis) are adjusted for each distribution.
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Figure 11: (a)-(e) The same as in Fig. [[J but for F,. For clarity, the lower end of

the distributions in the second subbands are vertically magnified.



136 Paper 11

The concentration of the ensemble energy at the lower end of the spectrum makes
the non-adapted tight Meyer-like wavelet design a relatively suitable design, see Fig. P(h).
However, comparing Figs. P(f) and (h) demonstrates the efficiency of the proposed
construction: the spectral range lying in the support of the first kernel of the Meyer-
like wavelet frame (blue kernel) is spanned by approximately three kernels in the
signal-adapted frame (blue, red and orange kernels). This suggests the superiority
of the signal-adapted frame in providing a more efficient multi-scale representation
of the data compared to the dyadically scaled wavelet design. Interestingly, the nar-
rowband configuration of the proposed signal-adapted frame closely resembles that
found to be optimal for analyzing cerebellar data by tunning the Meyer-like wavelet
frame in [31, 30].B

To provide further insight than that provided by visual comparison of the frames,
the set of cerebellar signals in F5 as well as a set of 292 white Gaussian noise signals
(02 = 1), denoted Fpice, Were decomposed using the frames shown in Figs. P(e)-(h).
The resulting coefficients cxc; m (cf. ([§)) were normalized as cc; m/ H'(,b,cj mll , 0
account for the difference in the norm of their associated atoms. Figs. [0 and [T show
the mean distribution of the normalized decomposition coefficients of Fpoise and F,
respectively. For Fise, the distributions of the coeflicients in all five subbands of all
four frames are Gaussian-like as expected, see Fig. [[0. For F3, the distributions of the
coefhicients of the last subband of all four frames closely resembles a Gaussian (see the
4 plots at the right end of Figs. [[1|(a)-(d)), similar to the distributions obtained on
Froise> cf. Figs. [T. This suggests that the corresponding atoms of this subband have
captured noise. A similar observation is made for the distributions associated with
the third and fourth subbands of the spectrum-adapted and Meyer-like wavelet frame
(Figs. [T(c)-(d)) as well as the fourth subband of the signal-adapted frame constructed
based on F (Fig. [T(b)). On the other hand, the coeflicients of the first four subbands
of the signal-adapted frame constructed based on F3 significantly deviate from zero,
cf. first four plots in Fig. [[1|(a), and have distributions unlike that expected to result
from decomposing noise (cf. Fig. [[(). This suggests the efficiency of the signal-
adapted frame in resulting in atoms that capture signal components.

Although the coefficients of the first three subbands of the signal-adapted frame
constructed based on F (Fig. [1/(b)) also provide more information than those of the
spectrum-adapted and Meyer-like wavelet frame (Figs. [T(c)-(d)), the coefficients of
the signal-adapted frame constructed based on F3 (Fig. [[1|(a)) show yet greater signif-
icance. This suggestes the superiority of the subject-based frame, shown in Fig. P(e),
over the frame constructed based on the energy content of the signals from the group
of subjects, shown in Fig. P(f), for decomposing F». Despite this fact, if a compar-

5The similarity can be observed by comparing the spectral coverage of the first two kernels in Fig. Bi(f)
with that in figure 3(d) in [31] and figure 1(b) in [30].
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ison between decomposition of the signals from different subjects is required, as for
instance performed in [31], the group-based frame constructed based on F is the
suitable choice.

5.4 Signal Denoising

To illustrate one application of the proposed frames, we denoise a set of signals real-

ized on the Minnesota road graph. For different 02, noise corrupted signal sets were
created using (B3) as

[1] _

7, —{ym i=1,....10,

where i denotes different random realizations of p, and e. Denoising was performed

through soft thresholding of the decomposition coeflicients. In particular, the de-

}n:0.2,0.5’

noised signal :iw), where 9 denotes the global threshold, were obtained from the
coefficients cic p, (cf. (L)) as

ZH G ml = T )l mWic; (46)

(9)

where H (-) denotes the Heaviside step function and ;- ’ . denote element-adapted

thresholds. In order to account for that the frame elements generally have different
norms, element-adapted thresholds of the form [12]

[
7 = ol mll, 0. (47)

were used that are also adjusted with respect to the noise level.
To evaluate performance, the average mean square error reduction (AMSE) was
computed for each ¥ as

! e - 2|13
AMSE 101 - = 48
,;\Z ST “8

where k runs over the signals in the signal set, and | F| denotes the cardinality of the
set. To compare the denoising performance across different 02 and J, the minimum
MSE reduction is considered

AMSE(min) — min AMSE®), (49)

where ¥ is varied within the interval [1, 5] with a step size of 0.25.
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Figure 12: Systems of spectral kernels of the (a) SGWT frame [10], (b) spectrum-
adapted frame and (c) the signal-adapted frame, used for denoising.

The signals in the sets F,;, were denoised using: 1) the SGWT frame [10], neither
adapted to the spectrum nor to the graph signals, 2) the spectrum-adapted frame [24]
and 3) the proposed frame, using up to 10 spectral scales. Fig. [ illustrates an example
of the used frames for .J = 7 scales and 02 = o2. By comparing the signal-adapted
frame constructed based on the noisy signals, shown in Fig. [2(c), with its respective
counterpart constructed based on the clean signals, shown in the top of Fig. fl(d), it is
observed that although the addition of noise has affected the support of the filters, the
overall distribution of the support of the kernels across the spectrum is still consistent
between the two cases. As white Gaussian noise exhibits a uniform energy spectral
density, its influence on the overall distribution of ensemble energy is negligable.

Fig. [3 presents a comparison of denoising performances of the different types of
frames. Fig. [[3(a) presents AMSE measures when using J = 7 scales. Compared to
the spectrum-adapted frame, the proposed frames show better performance across 9.
Compared to the SGWT frame, the difference in performance is generally better for
¥ values close to the minimum AMSE. Fig. [3(b) presents the AMSE(™) measures
as a function of the SNR = 02 /02, when using J = 7. The relative performance
of the signal-adapted frame and SGWT frame is consistent across different SNRs,
with the proposed frame offering, in general, better noise reduction. However, the
spectrum-adapted frame shows better noise reduction at higher SNRs.

It is advantageous to also compare the denoising performance for frames with dif-
ferent number of subbands. Fig. [[3(c) shows plots of the AMSE (™) jn denoising the
signals using the different frames as a function of J. Using the signal-adapted frames
leads to a lower AMSE(™™) than for the SGWT and spectrum-adapted frames. It is
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also observed that the difference in performance between the proposed frame and the
spectrum-adapted frame is more pronounced when using up to eight scales. In recent
studies that use the SGWT [51, 31, 52, 53, 54, 55], typically, up to six scales are used,
which can be explained by observing that the performance for this frame saturates at
J = 5. In contrast, the proposed frames show a monotonic increase in performance
also for larger number of scales. This suggests that the proposed signal-adapted frames
have the potential to provide a more meaningful multi-scale representation of graph
signals.

-A- SGWT frame -8~ spectrum-adapted -©- proposed frame
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Figure 13: Comparison of denoising performance using different frames on signal

set Fir,. (@) AMSE as a function of threshold level ¥ using J = 7 spectral scales,

2 2

where 07 = o in signal realization for all cases. (b) AMSE™™ a5 a function

of noise level, SNR = 02 /02, using frames with (b) J = 7 spectral scales. (c)

2 2

AMSE™™ a5 a function of the number of scales .J, where 02 = 02 in signal

realization for all cases. Note that in (c) some sample points are not displayed for
the spectrum-adated and the SGWT frame; this is due to that the former is only
defined for J > 3, and that the latter is not optimally designed for small J and

leads to AMSE(™® > 0.

6 Conclusion

We have presented a construction of signal-adapted tight frames for graph signals.
The adaptivity of the approach is introduced by exploiting the ensemble energy spec-
tral density, which describes the second-order statistics of the signal class at hand.
It should be noted that wavelet-type decompositions are optimal for non-stationary
signals, such as the ones considered in our experimental results. From this point-of-
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view, the design only uses the stationary information, and its flexibility to represent
non-stationary features comes with the width and smoothness of the bandpass char-
acteristics. Conceptually, this approach is similar to optimal pyramid designs that
were proposed for image processing in the 90’s [56]. A MATLAB implementation
of the proposed approach and the datasets used in this paper are available online at
miplab.epfl.ch/software/.

Appendix A. Proof of Proposition f|

In order to ensure that the spectral kernels cover the full spectrum, @ must be chosen

such that ‘
Amax () A+ a U= va+ (J —2)A + a,

which using ([3) leads to a = ﬁ

To prove that the UMT system of spectral kernels form a tlght frame, (I7) needs
to be fulfilled. Since, for all j, the supports of IC;»_I()\) and ICJ_H(/\) are disjoint,
G(A) can be determined as

J
=D IKGMP
j=1

K o VA € [0, q]
KCL N2+ [KCo(N)?> - VA €la, va]
@ L2+ N2 YA €lya,va + A

El.T' )

K2 S YA €] Amax — @ Ama]

1 VA € [0,d]
cos?(xy) +sin®(z1) VA €a, va]

5 ) cos 2(zy) +sin®(zy) VA €]ya,ya + A]
1 V)\ E] Amax —a, Amax]
=1 VAE0, A\na (50)

where 1 = %1/(7—11(7 —1))and zyy = gy(ﬁ(A;A —1)).

For any given 7, the constructed set of spectral kernels form a tight frame. How-
ever, in order for the frame to satisfy the uniformity constraint given in (2§), the
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appropriate v needs to be determined. From (B5B), we have Vj € {2,...,J — 2}

K5(A) = Ki1(A+A) YA€), An + Al (51)
By considering an inverse linear mapping of the spectral support where K (\) #
0, i.e. [0,va], to the spectral support where lCi]()\) # 0, ie. [Amax — Y@, Amax)> We

have

KN = Kj(=A+2a+ JA) VYA €[0,~al. (52)
Thus, from (§1) and (52)) we have

A max

Ki(NdA=Ca, j=2,...,0-1 (53a)
0

Amax , >\max f
Ky(\)dA = K\ dA = O, (53b)
0 0

respectively, where C1, Co € R™. Thus, in order to satisfy (2§), 7 should be chosen
such that

C1 =0
Al"nax / Al"ﬂa)( ’
X Ki(A)dx = Ko(N) dA
0 0
e, RE 1 A
a+ ’ Ki(\) d/\—/a sm(§y(ry_ 1(5 —1)))dA
ya+A ,
+/ Ko (A) dA
Ya
& (7. T I
a = /a sm(2u(7_ 1(@ 1)))dA. (54)

The optimal +y that satisfies (54) was obtained numerically by defining

A

Q) = [anGrl G~ d-a 55

and discretizing Q(7) within the range (a, ya], with a sampling factor of 1 x 1074,
Testing for v > 1, with a step size of 1 x 1072, the optimal value, which is indepen-
dent of A\ and J, was found to be v = 2.73.
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Figure 14: Design of a uniform system of spectral kernels satisfying (£§) and (£9).
The displayed function h(\) and g(A) correspond to the ones used in the UMT
design. However, any two functions passing through (o + A1 /2, C5) and satis-
fying (@) and (F7) can be used to design a desired prototype system of uniform

spectral kernels.

7 Uniform System of Kernels -- General Case

The UMT system of spectral kernels (cf. Proposition [[)) is one prototype design that
can be used as the basis for the proposed frame design approach. For the general
case, other prototype system of kernels can be designed, with their design essentially
breaking down to (see Fig. [[4 for notations):

(i) the proper design of the pair of functions h(A) and g(A) such that they lead to

smooth quadrature mirror style filters that satisfy
Ih(V]? + lgA)P = Cr e RY, VA€ [a,a+ A, (56)
where o, Aq E]O, )\max[, Cy =+/Cq,C5 = \/01/2,

(ii) determination of v, A1 and Ay such that

a+A1
aCy = Ny(Cy +/ h()\) dA. (57)

[0}

Observe that o, Ay, Ag, h(A) and g()) all depend on J and Ay Fig.
shows an illustration of the non-zero segments of the resulting K} (\) and K5()).
{IC;- (N 3];31 can be obtained by translating the non-zero segments of Ky, (\) by (5 —

2)As3, and ICi]()\) by mirroring the non-zero segment of /Cll (A) and translating it
such that it spans the upper end of the spectrum.
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Interpolation in the Presence of Domain
Inhomogeneity

Abstract

Standard interpolation techniques are implicitly based on the assumption that the signal lies
on a homogeneous domain. In this article, the proposed interpolation method instead ex-
ploits prior information about domain inhomogeneity, characterized by different, potentially
overlapping, subdomains. By introducing a domain-similarity metric for each sample, the in-
terpolation process is then based on a domain-informed consistency principle. We illustrate
and demonstrate the feasibility of domain-informed linear interpolation in 1D, and also, on
a real fIMRI image in 2-D. The results show the benefit of incorporating domain knowledge
so that, for example, sharp domain boundaries can be recovered by the interpolation, if such
information is available.

Based on:

Hamid Behjat, Zafer Dogan, Dimitri Van De Ville, Leif Sérnmo,
“Interpolation in the Presence of Domain Inhomogeneity,”
manuscript.
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1 Introduction

Interpolation has been studied extensively in various settings. The main frameworks
are based on concepts such as smoothness for spline-generating spaces [1], underlying
Gaussian distributions for “kriging” [2], and spatial relationship for inverse-distance-
weighted interpolation [3]. Yet, while advanced concepts have been developed for
describing these signal spaces, the underlying domain is always assumed to be homo-
geneous. In a sub-category of super-resolution image processing techniques [4], such
asin[5,6,7,8,9, 10, 11, 12], the interpolation phase is adapted based on the context
of the signal; such adaptation schemes are based on the characteristics of either the
image itself [5, 6, 7] or another high resolution image that is of the same nature as
that of the low resolution image to be interpolated [9, 8, 10, 11, 12]. Here, we con-
sider a different scenario in which signals are sampled over a known inhomogeneous
domain; i.e., a domain characterized by a set of subdomains, that can be overlapping,
available as supplementary data. This supplementary information is of a completely
different nature than that of the samples to be interpolated; it describes the signal
domain, rather than the signal itself.

1.1 Problem Formulation
Assume that the following set of information is given:
1. A sequence of samples s[k| obtained as
slk] = (s(x),0(x — k)), forallk € Z, (1)
where s(-) € L2 (denoting the Hilbert space of all continuous, real-valued
functions that are square integrable in Lebesgue sense) and s[-] € ¢5 (denoting

the Hilbert space of all discrete signals that are square summable).

2. Domain knowledgef described by J different subdomain indicator functions

Jj (x),7=1,...,J, presented in normalized form as
dj(x) .
dj(x) = =7, suchthat Y dj(x) =1. )
=1 di(z) i—1
]_

*We assume that every point belongs to at least one subdomain, and that the domain information
can be specified by a continuous function.
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Using d;(x), j = 1,..., J, space-dependent index sets of maximal and mini-
mal association to the underlying subdomains can be derived as

Ha, = {i|d;(z) = maxd;(x)}, forallz e R, (3)
J

L, = {ild;(x) = mind;(x)}, forallz €R. (4)
J

Given prior knowledge on domain inhomogeneity under the form (2)-(#), the
objective is to adapt conventional interpolation methods such that they accommodate
this information. To reach this objective, we start from shift-invariant generating
kernels such as splines [13, 1, 14], and then transform them into shift-variant kernels
based on the domain knowledge.

The remainder of this letter is organized as follows. In Section II, the basis for
obtaining a domain-informed interpolated signal is formulated. In Section III, as a
proof-of-concept, standard linear interpolation is extended to the proposed domain-
informed setting, and an illustrative example is presented. In Section IV, the proposed
interpolation scheme is applied to a real fMRI image.

2 Theory for Domain-Informed Interpolation

The proposed domain-informed interpolation scheme is based on two fundamental
concepts: (i) deriving a domain-informed shift-variant basis, based on a shift-invariant
basis of the integer shifts of a generating function ¢; (ii) fulfilling the “domain-
informed consistency principle’—a principle that we define as an extension of the
consistency principle [15].

2.1 Domain-Informed Shift-Variant Basis

Consider a compactly-supported generator ¢(z) (i.e., o(x) = 0, V]z| > A ¢
R™T) of a shift-invariant space

V(p) = {é(m) = Zc[k] oz —k):c[] € 52}, (5)

keZ

where c[-] are the weights of the integer-shifted basis functions. The generating func-
tion ¢(x) can be any of compact-support kernels used in standard interpolation.
In the presence of domain inhomogeneity, the idea is to transform (- — k) into
@¢, (- — k): a modulated version of (- — k) that is defined based on a domain
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similarity metric &, that describes the domain in the adjacency of k. With this con-
struction, a shift-variant space

Ve(g) = {é(z) = el e (2~ K) s el € ez}, ©

kEZ

is obtained. We propose the following definition of &, which will subsequently guide
the design of ¢, .

Definition (Domain Similarity Metric)
Given a description of an inhomogeneous domain under the form (2)—#), a domain
similarity metric £, (x) € [0, 1] can be defined in the A neighbourhood of each k € Z

as
Wk,xS(dhk(k+x)_05)7 |I” <A7 |,Hk‘ :17
Eu(@) = { Wi S (g, (k+2) —05), |o| <A Hp>1, @)
0, z| > A,

where |1 | denotes the cardinality of set H , S(-) denotes the logistic function, S(n) =
(1+ 677”)71 € [0,1]) withy > 0, h. € H., . € L., and W}, ;, denotes a weight
factor

J
1
Wk,lejjzlldj(km)dj(kﬂ, )

which increases the adaptation to domain knowledge. For minimal adaptation, W}, ;.
can be set to 1.

In ), if £k € Z and (k + x) € R are (i) maximally associated to the same
subdomain, and (ii) the maximal association of (k4 z) € R has a probability greater
than 0.5, £, (x) — 1, otherwise, & () — 0. The parameter y of S(-) tunes both the
smoothness and strength of this adaptation; a greater 7, up to a suitable degree, leads
to a stronger as well as smoother adaption to changes in domain inhomogeneity.

The metrics {£x(x) }rez are defined as local functions in the neighbourhood of
each k£ € Z. On the global domain support, a domain similarity function, denoted

p(z,k):x eR\Z, ke K& : {keZ| |z -kl < A} = [0,1],

can be defined as
§r(z — k)
D erc@ Se(x— k)

which satisfies the following three properties:

p(z, k) =

9)
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1. p(z,i) = p(x,j) implies perfect similarity of the domains at x, i and j.

2. p(z,i) > p(x,7) implies greater similarity of the domains at z and ¢ than the
similarity of the domains at « and j, and vice versa.

3. forx € R\ Z, we have ), ., p(x, k) = 1, since

D@ iz — 1)
Zp(m,k)@-"+0+ ks ;
= D erc@ &w(x — k')

+04---=1. (10)

2.2 DICP: Domain-Informed Consistency Principle

There are different ways to define @¢, . In this letter, we consider the construction of
a particular class of domain-informed, shift-variant basis that leads to interpolation

satisfying the following principle.

Definition (Domain-Informed Consistency Principle)

Given a sequence of samples, as in (), and a properly defined domain similarity
function, as in (f), the interpolated signal §(-) must satisfy the following conditions:

(i) perfect fit at integers; i.e.

(k) = s[k], forallk € Z. (11)

(ii) forany z € {R\ Z} and the set K = {k € Z | [z — k| < A}, if for all
i,j € K& we have p(x, 1) # p(x, j),

argmax § p(z, k) ¢ = argmin { [§(z) — s[k]| ;- (12)
ket { } ket { }

Criterion (i) is the consistency principle [15]. Criterion (ii) is based on the as-
sumption that the underlying signal s(z), at any position z € R\ Z, is more likely
to be similar to those sample in its A neighbourhood that have a “similar domain”
as 2. As such, the DICP ensures that the interpolated signal is consistent not only at
the given sample points, but also at intermediate points between samples.
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3 DILI: Domain-Informed Linear Interpolation

We propose a specific scheme to adapt standard linear interpolation (SLI) to incorpo-
rate domain knowledge. A definition of a shift-variant basis for this particular setting
is presented, such that the interpolated signal is ensured to satisfy the DICP. In partic-
ular, the basis is a domain-informed version of the linear B-spline basis function [1],

the “hat” function with support 2 (A = 1) defined as

1—lz|, |z|<1
Alz) = 13

Proposition 2. (Domain-Informed Linear Interpolation) For a given set of samples (4)
and constraints (), the domain-informed linear interpolated signal satisfying the DICP
is given by

Vo R, §(x) = sklpg, (z— k), (14)
kEZ
where
0 lz] > 1
pe () = ¢ A(z) |z <1, D(z) =0, , ¢ D (15)

Eu(x)  otherwise,
where vy, = (k+ ) € R, and
F oy §k()

D(z) = €4)(z — [z]) = & (2 — [2]), forz €R,
x+£D($)d$ = O},

 for|z| < 1, (16)

D = {z e R| D) =0, lim
e—0

Proof. See Appendix II. O]

DILI has the property that in any domain interval o, 5], o, 8 € R, that is either
homogeneous, i.c.,

Vo e o, 8] 1 di(z) =1, dj(z) =0, je {{1,...,J} =1},
or uniformly inhomogeneous, i.e.,

Vo € o, ] : di(z) = do(z) = -+ = dj(z),
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Figure 1: DILIL. (a) Signal domain. (b) Signal samples. (c) {&x(x)}x=1,...14, for

|| <= 1. (d) {p(z, k) }hef|z),[21}> for A = 1. (&) {@e, (%) }i=1,...,14. In (a),
(d)-(e), the black dotted lines show partition of unity constraints. (f) DILI vs.
SLI.

it exploits basis functions that are identical to those used in SLI, i.e., Vz € [a, 5], k €
Z : pr(x) = A(z—k); thus, the DILI and SLI signals are identical within the interval
[, B].

An example setting for constructing DILI is presented in Fig. [[. The signal do-
main consists of two subdomains, see Fig. [[[(a), that satisfy (). The domain has
several homogeneous intervals, such as [0, 2.5] or [8, 11], as well as inhomogeneous
intervals. In particular, three types of inhomogeneous domain intervals are observed
at the transition between the two subdomains: a fast transition that falls between two
samples, i.e., interval [2, 3], a slow transition, i.e. interval [5, 8], and a transition that
occurs symmetrically around a sample point, & = 12. The signal samples and the
underlying continuous signal are displayed in Fig. [[[(b).

Fig. [[(c) illustrates the set of domain similarity metrics {£(x)}xez, in A = 1
neighbourhood of each k£ € Z. Fig. [[(d) illustrates the corresponding domain simi-
larity function {p(x, k)} kil defined over the global support; the function is dis-
played in two parts, defining the left-hand and right-hand local neighbourhood of
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0.5

25 3 6 6.5 7 11 115 12 125 [——10

Figure 2: DILI using a range of different y. The dashed line corresponds to SLI
as shown in Figure [I|(f).

each k € Z. Fig. [[[(e) illustrates the resulting set of domain-informed splines, cf.
(T3); only those that reside in the adjacency of the domain transition boundaries,
marked with asterisks, deviate from A(z). A greater number deviate from their stan-
dard counterpart at the slower subdomain transition interval. As sample s[12] lies at
the exact intersection of the two subdomains, &12(x) as well as g (x) are strongly
suppressed; i.e., s[12] will have minimal effect in the interpolated values in its neigh-
bourhood.

The resulting SLI and DILI are shown in Fig. [[(f). SLI and DILI are identical
in regions associated to only a single subdomain. However, DILI better matches the
underlying signal in the subdomain transition bands, satisfying the DICP. In Fig. [[[(c)-
(), the logistic function S(+) in (f) was used with parameter v = 20. Fig. [ illustrates
the effect of varying ; the DILI signals are illustrated only in the adjacency of the
three subdomain transition regions, since they are, elsewhere, identical to SLI. In
essence, 7y determines the strength of associating the point to be interpolated, to the
similarity of its domain and that of nearby samples; a greater 7y results in a greater
strength of this relationship.

4 Experimental Results

Using tensor products, a direct, separable extension of DILI to Euclidean m-D space
can be formulated. In particular, the 2-D extension, denoted domain-informed bi-
linear interpolation (DIBLI), is obtained as

I J
Vr,y R, Swy) =y > sfidlel (v —i)el (v — j),

i=1 j=1

where s[i, j] denotes the sample at position (7, j) in the I X J 2-D space and cpg:)J ()
denotes the domain-informed kernel at (i, j) along the k-th dimension. The pro’per—
ties of DILI directly extend to the 2-D setting.

To show the practicality of the proposed approach in an application, we present
interpolation results using the proposed scheme on an fMRI dataset. In brain studies
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using fMRI, a sequence of whole-brain functional data is acquired. To track brain
activity at high temporal resolution, fMRI data are recorded at a relatively low spatial
resolution. The fMRI data is commonly accompanied with a three to four fold higher
resolution anatomical MRI scan, which provides information about the convoluted
brain tissue delineating gray matter (GM) and white matter (WM), each of which
have different functional properties [16], and cerebrospinal fluid (CSF); the topol-
ogy also varies across subjects [17, 18]. Hence, the goal is to exploit the richness of
anatomical data to improve the quality of interpolation and resampling of fMRI data,
in the same spirit as approaches that aim to enhance denoising of such data [19].
Fig. B illustrates the setting for applying DIBLI on a 2-D slice of an fMRI vol-
ume, see Fig. Bl(a), that accompanies a 3-fold higher resolution structural MRI scan,
see Fig. B(b). Segmenting the structural scan, one obtains GM, WM, and CSF proba-
bility maps, see Figs. B(d)-(f). These maps are treated as normalized subdomain func-
tions that satisfy () across any column/row in the plane, see Figs. B(h)-(i). Figs. Bl(j)
and (k) show standard bilinear interpolation (SBLI) and DIBLI of the functional pix-
els shown in Fig. B(g), respectively. The SBLI and DIBLI images are identical at
homogeneous parts of the domain (see black arrows), whereas at the inhomogeneous
parts (see white arrows), DIBLI presents finer details. Sharp signal boundaries at the
intersection of subdomains can be recovered by DIBLI. The accuracy of this represen-
tation is limited by the level of discrepancy observed in the domain description. For
example, see the circled region in Fig. B(k) and the corresponding domain description
in Figs. B(d)-(f). In the red circled region, the underlying domain is very convoluted,
whereas in the green circled region, a large amount of uncertainty is observed in the
description of the subdomains. It should also be noted that the brain domain is in-
trinsically a 3-D representation, and that the functional data are recorded in 3-D.
Therefore, extending the interpolation to 3-D and incorporating the association of
the samples to the 3-D subdomain description can further enhance the results. As
an alternative, the level of adaptation to domain knowledge can be reduced by set-
ting the weight factor of the domain similarity metric to 1; ¢f. Wy, in (§). The
resulting DIBLI interpolation is shown in Fig. B(1), which may seem more visually
appealing than Fig. B(k), and yet, it presents significant subtle details that are missing
in Fig. Bl(j). This suggests the benefit of tuning the adaptation extent of the domain
similarity metric relative to the quality and smoothness of available domain data.
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(@) (b) ©

Figure 3: DIBLI. (a) A 2-D slice of an fMRI volume, (b) The structural scan. (c)
Close-up of an ROL. (d) GM, (e) WM, and (f) CSF of the ROL. (g) fMRI data in
the ROL. (h)-(i) Column and row domain data for the marked position in (c). (j)
SBLL (k) DIBLI with Wj, , as in (§). (1) DIBLI with Wj, , = 1.
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5 Conclusion and Outlook

We have proposed an interpolation scheme that incorporates a-priori knowledge of
the signal domain, such that the interpolated signal is consistent not only at sam-
ple points, with respect to the given samples, but also at intermediate points between
samples, with respect to the given domain knowledge. As a proof-of-concept, domain-
informed linear interpolation has been presented as an extension of standard linear
interpolation. Interpolation approaches that use higher order B-splines may also be
extended based on the proposed domain-informed consistency principle, by defin-
ing suitable domain similarity metrics matching the support of the generating kernel.
Results from applying the proposed approach on fMRI data demonstrated its poten-
tial to reveal subtle details. Our future research will focus on further evaluating the
properties of domain-informed interpolation and its extension to incorporate higher
order B-spline generating functions.

Appendix

Proof- (Proposition 1) We prove that the proposed interpolation satisfies both condi-
tions of the DICP, cf. Definition 1.

Condition (i)
Perfect fit at integers is satisfied since

Vk ez, 8(k) = (3(x),d(z — k)

E ST slk] (pen(e —n), 6@ — k)
neZ oen(k—n)
= s[k] ¢¢1(0)
——
(@=),@),
= s[k]. (17)

Condition (ii)

Define Vi € {R\ Z}, fi.)(2) = [8(z) — s{lz]]| and froy(&) = [3(2) — s[[]]]

The second condition of the principle, cf. ([2), is satisfied if it can be shown that:
p(z,[z]) > p(z, [2]) = fla)(z) < fro)(@), (18)



163

Define Vz € Rzt = 2 — |z] and 2~ = = — [z]. Integer-shifted A(z) form a
partition of unity, Vz € R, as

D Aa—k) =A@ +AET) =1, (20)

keZ

and so do integer-shifted {ék (@) }rez, cf. (1), as
> Gz —k) = fm( P+ @) =1 (21)
k€EZ

Thus, integer-shifted, domain-informed first degree spline basis form a partition of
unity, since Vo € R

> @erlz—k) = Pe 2] (€T + e [ (@7) (B0 (22)
keZ
The function f|, () in (T8) can be expanded as
() ]
@) =" | D slklper(z —k) — s[z]]
k=|z|
= [sll2]] (e 12y (@) = 1) +sl[2]] g 121 (2 7))
D g1 )
= | (s[[21] = s[l2]]) @e (@) |
—_———
@@,
= |sll=1] = sll=]]| - ve a1 (7). (23)
Similarly, f7,1(z) in ([§) can be written as
fra (@) = sllz]] = sl[2]]] - pg ) (7). (24)

From the left hand relation in ([[§) we have

o, [2)) > p@, [o1) 5 e 1 @) > e (@) 28 (@) > fla) (@)

(T9) can be proved in the same way as done for ([8). O
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Domain-Informed Spline Interpolation

Abstract

Standard interpolation techniques are implicitly based on the assumption that the signal lies
on a single homogeneous domain. In contrast, many naturally occurring signals lie on a
mixed (inhomogeneous) domain, such as brain activity associated to different brain tissue.
We propose an interpolation method that instead exploits prior information about domain
inhomogeneity, characterized by different, potentially overlapping, subdomains. As proof of
concept, the focus is put on extending conventional shift-invariant B-spline interpolation.
Given a known inhomogeneous domain, B-spline interpolation of a given order is extended
to a domain-informed, shift-variant interpolation. This is done by constructing a domain-
informed generating basis that satisfies stability properties. We illustrate example construc-
tions of domain-informed generating basis, and show their property in increasing the coher-
ence between the generating basis and the given inhomogeneous domain. By advantageously
exploiting domain knowledge, we demonstrate the benefit of domain-informed interpola-
tion over standard B-spline interpolation through Monte Carlo simulations across a range
of B-spline orders. We also demonstrate the feasibility of domain-informed interpolation in
a neuroimaging application where the domain information is available by a complementary
image contrast. The results demonstrate the benefit of incorporating domain knowledge so
that an interpolant consistent to the anatomy of the brain can be recovered by the proposed

interpolation.

Based on:

Hamid Behjat, Zafer Dogan, Dimitri Van De Ville, Leif Sérnmo,
“Domain-Informed Spline Interpolation,”

Submitted for publication.
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Interpolation has been extensively studied in various settings. The main frame-
works are based on concepts such as smoothness for spline-generating spaces [1], un-
derlying Gaussian distributions for “kriging” [2], and spatial relationship for inverse-
distance-weighted interpolation [3]. Yet, while advanced concepts have been devel-
oped for describing these signal spaces, the underlying domain is always assumed to
be homogeneous. Here, we consider a different scenario in which signals are sam-
pled over a known “inhomogeneous” domain; i.e., a domain characterized by a set of
subdomains with their description available as supplementary data. In a sub-catagory
of super-resolution image processing techniques, the interpolation phase is adapted
such that the scheme becomes close, in spirit, to the interpolation scenario that we
consider here. In particular, they adapt the interpolation such that information from
a high resolution signal is exploited to enhance interpolation on a set of samples ac-
quired at low resolution. For example, an iterative, patch-based non-local reconstruc-
tion scheme was introduced in [4]; the use of inter-modality priors to regularize the
similarity between the up-sampled image and a secondary high resolution image was
proposed in [5]; a non-local means feature-based technique that uses structural in-
formation of a high resolution image with a different contrast was presented in [6];
sparsity promoting priors using overcomplete dictionaries learned from the data were
exploited in [7]. Yet, such schemes do not fall within the problem that we formulate
in this paper. The low resolution data samples and the supplementary high resolution
information considered in these proposals are both of the same nature and, in essence,
both describe the signal. In the scheme proposed in this article, the supplementary
high resolution information instead describes the domain of the signal, which has a
completely different temporal/spatial characteristic than that of the signal (samples)
defined on the domain. Moreover, rather than being a learning scheme, our proposal
is formulated as a shift-variant extension of conventional shift-invariant interpolation
schemes [8, 9], such as linear, cubic or higher order B-spline interpolations.

Problem Formulation
Assume that the following set of information is given:

1. Domain knowledge described by a set of non-negative subdomain functions

D:{djELg,jGJ:{l,...,J}}, (1)
which form a partition of unity as
J
D dj(x)=1, VzeR, )



172 Paper IV

Remark: We denote a segment [a,b],a,b € R, of the domain as homogeneous
if there exists an [ € J such that

di(x) =1, Vz € la,b, (3)
and inhomogeneous if (B) does not hold for any [ € J.

2. A uniform sequence of samples s[k] taken from a continuous function s(x) as
where T' € R™ denotes the sampling step.

The objective is to recover s(x) using the given set of samples s[k]. The approach is
to extend any conventional interpolation method that employs a shift-invariant basis
to an interpolation that employs a shift-variant basis, such that prior information on
the domain inhomogenuity is accommodated. In particular, consider a compactly-
supported generator () (i.e., p(x) = 0, V|z| > A € RT) of a shift-invariant

space
V :{é’ﬂx):Zc[k]wp(i;—k) :CEEQ}. 5)

kEZ

The generating function () can be any of compact-support kernels used in standard
interpolation. In the presence of domain inhomogeneity, the idea is to transform
(- — k) into @i (- — k): a tailored version of ¢(- — k) whose definition is based on
the domain structure in the adjacency of k. With this construction, a shift-variant,
domain-informed space

VéD) = {ET(aﬁ) = Zc[k] Ok (% — k) ic¢E 62}, (6)

kEZ

is obtained.

In this article, we focus on formulating the domain-informed interpolation theory for
B-spline generating functions [1].

Different application areas can be envisioned for domain-informed interpola-
tion. Earth sciences is one application area, where a spatially continuous represen-
tation of earth surface parameters, such as precipitation, land vegetation and atmo-
spheric methane is desired to be computed from a discrete set of rain gauge measure-
ments [10, 3], fossil pollen measurements [11, 12] and satellite estimates of methane
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[13, 14], respectively. In these scenarios, the well-defined geographical structure of
the earth, anthropogenic land-cover models [15] and geophysical models of the earth’s
surrounding atmosphere may be exploited as descriptors of the inhomogeneous do-
main to improve the standard approach to interpolation.

Neuroimaging is another area where domain-informed interpolation can be ben-
eficial. In brain studies using functional magnetic resonance imaging (fMRI), a se-
quence of whole-brain brain functional data is acquired at relatively low spatial reso-
lution to enable tracking brain function at high temporal resolution. An anatomical
MRI scan is also commonly acquired, providing information about the convoluted
brain tissue delineating gray and white matter, each of which have different func-
tional properties [16]. Unlike functional data, anatomical data can be recorded at
high spatial resolution, with resolutions three- to fourfold higher than the functional
data. Hence, the goal would be to exploit the richness of anatomical data to define
the domain of the acquired functional data and, in turn, to improve the quality of
interpolation/resampling of the data[17, 18, 19]. In this article, we will demonstrate
the feasibility of domain-informed interpolation in providing a high resolution repre-
sentation of brain functional data such that the representation is consistent with the
underlying brain anatomy.

The article is organized as follows. Section II, defines the properties of domain-
informed generating basis. Section III, introduces the scheme for designing a domain-
informed B-spline generating basis, and presents an illustrative example construction
of such a basis. Section IV, presents domain-informed B-spline interpolation. In Sec-
tion V, we show the benefit of domain-informed interpolation over standard B-spline
interpolation through Monte Carlo simulations across a range of B-spline orders. In
Section VI, we conclude by demonstrating the feasibility of domain-informed inter-
polation in a neuroimaging application.

1 Domain-Informed Generating Basis

Let Ly denote the Hilbert space of all continuous, real-valued functions that are square
integrable in Lebesgue’s sense, with the Ly inner-product defined as

“+00

Vigels, (fig), = / f(2)g(x) dz < oo, %

—0o0

and Ly-norm is defined forall f € Ly as || f||Z, = (f, f )L, Let £2 denote the Hilbert
space of all discrete signals that are square summable, with the ¢ inner product de-
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fined as

Vp,q € la, (p,q)y, = Y plklalk] < oo, (8)
keZ

and the £2-norm is defined for all p € £5 as |[p||7, = (p, p)y,- In the following, we
use the convention (-, -) = (-, )¢, and || - || = || - ||¢, to simplify the notation.

For a given compactly-supported generator (z), let ®* = {¢o(x/T — k) }rez
denote the standard shift-invariant basis of () and ® = { (/T —k) }kez denote
a shift-variant basis of ¢(z); i.e., for all k € Z, o (- — k) denotes a tailored version
of ¢(- — k), which may potentially be identical to ¢(- — k) for a subset of k € Z.

Definition (Domain-Informed Generating Basis)
For a given domain definition as in ([[)), a basis ® forms a domain-informed generating
basis if and only if the following three conditions are met:

1. @ forms a Riesz basis, which is ensured if there exists constants 0 < A < B <
oo such that [20]

2
xr
Ve e by, 0<Allc|f < Zc[km(f — k) )
keZ 2
< Ble|lz, < oo. )

This condition in necessary in order for (§) to be a stable, unambiguous repre-
sentation model.

2. ® forms a partition of unity, i.e.,

Vz € R, Zcpk(%—k): 1. (10)
k€EZ

This condition is necessary in order to have the approximation error vanish, see

[9, Appendix B] for proof.

3. Any element of ® whose compact support lies entirely within a homogeneous
segment of the domain becomes identical to its corresponding element in ®*;
ie, pr(x/T — k) = o(x/T — k) if the domain is homogeneous at interval
[(k — AYHT, (k + AT,

We denote a basis satisfying only the first two conditions as a generating basis.
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2 Domain-Informed B-spline Generating Basis

This section presents the scheme to construct domain-informed generating basis based
on a B-spline generator function 5" () of a desired order 7. Domain-informed
generating basis using generating functions other than B-splines may also be designed
based on the same scheme.

2.1 B-spline Generating Basis

The central B-spline 3(™)(z) is obtained recursively as

B (z) = (B9« g0 (@), (11)
where (- * +)(x) denotes continuous-domain convolution and
1, —3<z<3
BO@ =13 lal=3 (12)
0, otherwise.

B (z) is supported in the interval [-AM™ | AM)], where AT = (n 4 1)/2. We

define A(”)—neighbourhood sets in the vicinity of each point z, denoted Aén), as

Ag”):{kez‘ ’%—k’<A(”)}; (13)

the set specifies the indices of sample points that fall within the A(™)-neighbourhood
of a given point z. The scaled, integer-shifted set {3("™) (/T — k)}rez forms a B-
spline generating basis spanning the space of piecewise polynomial functions of order
n—1.

2.2 Domain-Informed B-spline Generating Basis

We construct a domain-informed B-spline associated to each sample point as the su-
perposition of two B-spline based kernels as given in the following definition.

Definition (Domain-Informed B-splines)
For a given set of subdomain functions ([I}), a set of samples s[k|, k € Z and a B-spline
generating function (™ (z), a domain-informed B-spline associated to each sample
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point k € Z can be defined as

B (x) = {B,ﬁn)(x) + M @), < AM »

0, otherwise,

where ﬁ,(cn) () denotes a dominant kernel that characterises the overall shape and

3 lin) (x) a residual kernel that tunes the shape to the given domain knowledge in the
adjacency of sample point .

In the following, we formulate the construction of 3 ]gn) () and ]E:n) (x). Firstly, using
the subdomain functions, a set of subdomain-informed B-splines associated to each
k € Z and j € J are obtained as

N , 7)8(n) < A
J 0, otherwise.
It is straight forward to verify that subdomain-informed B-splines satisfy
S BN (E k) =djx), VeeR (16)
k,j T J ’ ’
k€EZ
and
S8 (@) =" (@), ke (17)
JjeT

Let Z, denote the set of indices of the subdomains maximally associated to sample &,
ie.,

I : {iej‘i:argmax{dj(k‘T)}}, (18)
JjeT

and Ry, denote the set of the remaining subdomain indices, i.e.,
R =T\ I, (19)

where \ denotes set difference. |Z;| > 1 infers that more than one subdomain is

maximally associated with sample point k. The dominant kernel ﬁ,gn) (x) is defined
as

5@ =Y B (). (20)

€Ty
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By cumulating the non-dominant subdomain-informed B-splines, a residual function
Q(x) : x € R — [0, 1] can be defined as

=3 ¥ /3,”) =) Q1)

ZGA(n)JERl
—1- Y 4V (22)
1eal”

In particular, 2(x) = 0 at any homogeneous part of the domain. Using Q(x), the
residual kernel 5}(;1) (x) is defined as

) () {Hk(x)‘Q((a:—i-k)T), 2] < AW

: 2
O 0, otherwise, @3)

where 0 (), in its simplest form, equals a weighting function wy, () defined as

5(n)
. -g) » el <A
wi(@) = 4 Lgeatm B (@r = 1) (24)
Tk

0, otherwise

where , =  + k. The values of {d;(z)} jes are incorporated in ﬁ,in) () and thus

implicitly reflected in wy(x). To control changes in /Blgn) (x) relative to changes in
the subdomains, 0 () can be adaptively defined as

© (wi(x))

Or(z) = ZleA;@T & (wi(rr — 1))

e [0,1], (25)

where O(+) : [0,1] — [0, 1] denotes a desired smooth, monotonically increasing
function satisfying ©(x) = z for z € {0,0.5,1}, ©(z) < z for z < 0.5 and
©(z) > x for x > 0.5. Note that by setting ©(x) = z, we have O () = wg(x)
since 3, ) wi(wg — 1) = 1.

eal”y

Proposition 3. (Domain-Informed B-spline Generating Basis) For a given sequence of
samples {s[k|}kez as in @), a given set of subdomain functions as in (1) and a given
B-spline generating function B (x), the set of functions {5](:) (/T — k)}rez form
a domain-informed generating basis, satisfying the three properties of a domain-informed
generating basis.

Proof. See Appendix II. O
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2.3 lllustrative Example Realization of Domain-informed B-spline
Generating Bases

We present two example realizations of domain-informed B-spline generating bases
to illustrate the construction scheme. Before presenting the constructions, we for-
mulate a scheme to randomly realize inhomogeneous domains with a desired number
of subbands, varying patterns of transition between subbands and satistying (). To
enable varying the extent of adaptation of the bases to the domain knowledge, we also

define a tunable O(z), cf. (7).

2.4 Realization of inhomogeneous domains

An inhomogeneous domain consisting of .JJ subdomains can be realized through the
following scheme. Let L € R™ and U € R* denote the domain’s lower and up-
per range, respectively. A system of K € ZT Meyer-type kernels {my(z), Vz €
[L,Ul}k=1,.. K is constructed, see Figure[[(a). The details of the construction is given
in Appendix II. The benefit of using a Meyer-type system of kernels is that they pro-
vide smooth, compactly-supported kernels with minimal overlap only between adja-
cent kernels. A random, monotonically increasing function, w(z) : [L, U] — [L, U]
is then constructed. By incorporating w(x) in {my(2)}r=1,.. K, a warped version
of the Meyer-type system is obtained as: {m;c (x) = mp(w(z)) =1, K, see Fig-
ure [[[(b). The warped kernels exhibit varying patterns of transition between adjacent
kernels, with different orders of smoothness.
A set of J subdomain functions satisfying ([I) are then realized as

Vo€ [LU], di(z)= > mp(z), j=1,...,J,
kGKj

Figure 1: (a) A Meyer-type system of kernels; K = 9, L = 1and U = 30. (b) A

warped version of the system of kernels in (a).
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where IC;j C {1,- -, K'} such that szllcj ={1,---,K} and ﬂjzlle = (). Fig-
ure [J(a) shows an example inhomogeneous domain, consisting of two subdomains,
constructed using this scheme. The domain has several homogeneous intervals, such
as [1, 6] and [19, 21], as well as varying inhomogeneous intervals present at the tran-
sition regions between the two subdomains.

2.5 Defining a tunable O(-) function

By incorporating a suitable ©(-) in (7)), the extent of adaptation to variation in prox-
imity of subdomain transitions can be increased in the design of domain-informed
B-splines. In particular, we exploit the logistic function to define O(-) as

Oz) = (1+e 2 /(1 + e @=1/2)), (26)

where v > 1 is a free parameter.

2.6 Realizations of B-spline Generating Bases

Figures P and B show an example construction of domain-informed B-spline generat-
ing basis using first and third order B-spline kernels, respectively. Domain-informed
B-splines whose support lie at a homogeneous part of the domain are identical to their
standard counterpart; for example, see domain-informed B-splines centered at sample
points 5, 15 and 20 in Figures P(e) and B(e). On the other hand, domain-informed
B-splines that reside in the adjacency of domain transition boundaries deviate from
their standard counterpart. Domain-informed B-splines have their peak amplitude
close to the sample point where they are localized and have declining tails as in stan-
dard B-splines. This property is due to the employed construction scheme that enables
adapting to domain inhomogeneities relative to the amplitude of the generating func-
tion along its support; i.e., the central parts of the kernels are more affected by domain
inhomogeneities than their tails.
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Figure 2: (a) An inhomogeneous domain consisting of two subdomains. (b)-
(c) Subdomain-informed B-splines MW (r — k) and EMM (x — k), respectively.
(d) Dominant kernels E.\MCA& — k). (e) Residual kernels ..\M:A& — k).
Domain-informed B-splines FMCA& — k) (solid lines) overlaid on standard B-
splines 3 (z — k) (dashed lines).
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2.7 Domain-Basis Coherence

It is insightful to quantify the coherence between a given inhomogeneous domain and
a basis defined on the domain. To this aim, we first define a domain similarity metric.

Definition (Domain Similarity Metric)

Given a description of an inhomogeneous domain as in ([[}), a domain similarity metric

can be defined in the A-neighborhood of each k € Z as

27)

1 J
q = | O |17 7 L@ - GGDI | el <4

0, 2| > A,
where z, = x + k, ©(-) is defined as in 23); &k () € [0, 1].

The domain similarity metric can be used to quantify the relative difference in
coherence between a domain and a domain-informed generating basis relative to that
between the domain and the corresponding shift-invariant, generating basis.

Definition (Domain-Basis Coherence Factor)

Given a description of an inhomogeneous domain as in ([I), a domain-basis coherence
factor associated to domain-informed basis ® can be defined as

_ 2 ke €k (%), pr ()1
> ez k() p(2)),

In Figure [, the dashed curves show the change in Rg for the domain shown in
Figure P(a) as a function of the free parameter 7 in constructing domain-informed B-
spline basis; the two marked positions on the dashed curves show R associated to the
domain-informed B-spline basis shown in Figures J(e) and Bl(e). R is greater than
one across 7, ranging from 1 to 50 with steps of 1, reflecting a greater domain-basis
coherence of the domain-informed B-spline basis relative to the standard B-spline
basis. The coherence factor is greater for the third order domain-informed B-spline
basis than that of first order domain-informed B-spline basis. Moreover, R increases
with the increase in 7y, up to a point that it almost saturates. Thus, the parameter y
can be used to tune the level of adaptation of the design to the domain info relative to
the extent of certainty we assume on the domain data. The lower the adopted value
of 7, the lower is the domain adaptation.

Ra (28)
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Figure 4: Domain-basis coherence factor, for domain-informed B-splines of or-
ders 1-7. The solid lines show ensemble values over 1000 inhomogeneous domain
realizations. The dashed lines show the domain-basis coherence factor associated
to the domain shown in Figure [i(a); the two marked points show the domain-basis
coherence factor for the particular DIBSI basis shown in Figures Pl(e) and Bl(e), i.e.,
using v = 10.

To provide a more general picture of the coherence behavior, we generated 1000
realizations of inhomogeneous domains using the same scheme as that used to con-
struct the domain shown in Figure P(a). Domain-informed B-spline basis of orders
from 1 to 7 were constructed for each realization of inhomogeneous domain, over
the range of 7. Figure | shows the resulting ensemble R, i.e., each point being
the average of 1000 R4 values, one associated to each domain realization. For each
domain-informed B-spline basis order n, the ensemble coherence factor increases with
the increase in 7, and gradually saturates. Moreover, for a given 7, the ensemble co-
herence factor associated to a higher order basis is greater than that associated to a
lower order basis.

3 Domain-Informed B-spline Interpolation
We propose domain-informed B-spline interpolation (DIBSI) with the following as-

sumption about the underlying signal: at inhomogeneous intervals of the domain,
the signal is expected to be consistent with the given domain description, whereas
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at homogeneous intervals of the domain, the signal is expected to have smoothness
characteristics provided by the chosen spline order n.

Proposition 4. (Domain-Informed B-spline Interpolation) For a given domain descrip-
tion as in ([[)—(@), a sequence of samples {s[k|}rez as in @) and a B-spline generating
function B (), the n-th order domain-informed B-spline interpolant of the set of sam-
ples is obrained as

Ve R, 5(a) =Y kB (5 — k), 29)
kEZ

where 3 ,(Cn) (+) is given as in ({I4) and the coefficients c|k| are obtained through solving the
set of equations
k+|n/2]
vkez, Y. ip™M(k—1) = s[k]. (30)
I=k—[n/2
The resulting interpolant §(x) has the following properties:

1. 5(x) satisfies the consistency principle [21]
Sp(kT) = slk],Vk € Z. (31)

2. At homogeneous parts of the domain, 5(x) is equal to the n-th order spline inter-
polant obtained using standard spline interpolation, i.e., a piecewise polynomial of
ordern — 1.

Proof. (Property 1) Domain-informed B-spline interpolation leads to perfect fit at
sample points k € Z since

lek
8™ (k=0)
k+|n/2|
= N ™Mk
I=k—|n/2]
(80)

slk]. (32)
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(Property 2) In any homogeneous domain interval [a, b], domain-informed B-
spline basis functions are identical to their standard B-spline basis function (property
3 of domain-informed B-spline generating basis). Therefore, the domain-informed
and standard B-spline interpolants become identical within the interval [a, b].

d

Remark: For domain-informed B-splines of order n = 0 and 1, the coefficients
c[k] are identical to the signal samples, i.e. Vk € K, c[k] = s[k]. For higher
order domain-informed B-splines, using matrix formulation, the solution to (B0) is
obtained by solving a 2| n/2] + 1 band-diagonal matrix of linear equations; for cubic
B-splines, i.e., n = 3, the formulation leads to solving a tridiagonal matrix equation.

4 DIBSI vs BSI on simulated data

To enable validation of the proposed interpolation scheme, a set of synthetic random
signals are required. Due to the assumption of inhomogeneity of the signal domain,
realizing such signals is not straight forward. We present a scheme for realizing ran-
dom signals of a desired piecewise smoothness characteristic on an inhomogeneous
domain, such that the signals respect the inhomogeneity of the domain. Assume given
an inhomogeneous domain as in ([}, consisting of J subdomains. First, a set of J
signals of a desired smoothness characteristic are realized; in particular, each of the
J signals are constructed by realizing (i) a randomly jittered, uniform knot sequence
[k + €] where k € Z, €}, € [—a, @] and a € [0,0.5), and (ii) JJ random sequences
of control values {v;[k] € [0, 1]}3]:1. Using (i) and (ii), J random spline signals of
order n, denoted f; ,; (), are constructed such that [22]

k€T, fua, (k) = vilk], j=1,....7

. J . . .
Signals { ft»; (%) };_; are then transformed to signals associated to each subdomain
as

@) = 1 (40) = 1) fuoy (@), 5= 10000

where H (-) denotes the Heaviside step function. With this model, we make a minimal
assumption on the nature of the signals at the transition between subdomains. By
superimposing the subdomain signals, a signal defined on the given inhomogeneous

domain is obtained as
s(x) =Y si(@). (33)
JET
Using this signal construction scheme and the domain construction scheme pre-
sented in Section .3, a set of D domains, and on each domain a set of .S’ signals were
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randomly realized. B-spline interpolation (BSI) and DIBSI was then implemented
on samples derived from each signal across a range of sampling steps 7' € [0.1, 1]
(step size = 0.1) and B-spline orders n = 1, --- , 6. For §7(x) to be a good approx-
imation of s(x), the quality of interpolation needs to improve proportionally to the
decrease in T'. The interpolation error can be quantified using the distance metric
|57 (z) — s(x)]||r,- The ensemble interpolation error associated with DIBSI can be
quantified as

@A) N o)
ey (T) = LZZ 57" () — s (‘r)HLz’ 34)

1sC9) ()|,

where 5(%7) () denotes the j-th realized signal on the i-th realized domain and ég’j ) ()

€ ng) denotes the domain-informed B-spline interpolant obtained based on sam-

ples extracted from s(%7) () at a sampling step T'. For BSI where §¥’J) (x) € V,, the
ensemble interpolation error, denoted ey, (T), can be quantified in the same way as
in (B4).

Figure f shows ensemble interpolation errors €y, (T") and eyp (T') on a randomly
realized set of 10,000 signals (D = 100 and S = 100) for ¢ = {5(") (@) bn=1,- 6
DIBSI outperforms BSI across the range of B-spline orders. For each B-spline order,
both ey, (T') and Eyp (T") decrease proportional to the decrease in T'. The difference

between ey, (T') and &y, (T') increases with the increase in the order of the B-splines.
©

Aside from the comparisons showing the enhanced performance of DIBSI over
BSI across the range of B-spline orders, it is insightful to compare the performance of
DIBSI itself across different B-spline orders to that of BSI. Figures fl(b) and (c) show
the approximation errors of BSI and DIBSI, respectively; the signal set used is the
same as the one used for Figure B, and thus, the plots are essentially a rearrangement
of those shown in Figure fl. BSI using higher order B-splines does not consistently
lead to greater reduction in the interpolation error, see Figure [(a), whereas DIBSI
shows better consistency, see Figure f(b).
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Figure 5: (a)-(f) Ensemble interpolation errors of BSI and DIBSI, with generating
basis constructed using 3 (z) forn = 1,..., 6, respectively.
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Figure 6: Ensemble interpolation errors over signals realized on inhomogeneous

domains (D = 100, S = 100) using (a) BSI and (b) DIBSL

5 DIBSI vs BSI on neuroimaging data

To show the practicality of the proposed approach, we present interpolation results us-
ing the proposed scheme on an fMRI dataset. In brain studies using fMRI, a sequence
of whole-brain functional data is acquired. To track brain activity at high temporal
resolution, fMRI data are recorded at a relatively low spatial resolution. The data is
commonly accompanied with a three- to fourfold higher resolution anatomical MRI
scan, which provides information about the convoluted brain tissue delineating gray
matter (GM) and white matter (WM), each of which have different functional prop-
erties [16], and cerebrospinal fluid (CSF); the topology also varies across subjects [23].
Hence, the goal is to exploit the richness of subject-specific anatomical data, which
define the domain of the acquired fMRI data, to improve the quality of interpolation
and resampling of fMRI data. Such an interpolation scheme functions in the same
spirit as signal processing techniques that aim to enhance linear [24] and non-linear
[25, 26] denoising, deconvolution [27] and multi-scale decomposition [28] of fMRI
data through exploiting anatomical constraints. Interpolation approaches that aim to
map volumetric fMRI data on to the cortical surface [29, 30] are also related in the
sense that they aim to enhance surface interpolation by accounting for the irregular-
ity of the domain. Yet, such interpolation schemes are different from that we propose
here since they adapt to the irregularity of the domain rather than to its inhomogene-
ity; i.e., they obtain an interpolant on a homogenous, irregular domain rather than
one on an inhomogeneous domain.

Figure [/] illustrates the setting for applying domain-informed B-spline interpola-
tion on an fMRI dataset. We use data of a subject from the Human Connectome
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Project [31]. Figure [/(a) shows a 2-D slice of fMRI data, extracted from a 3-D fMRI
volume of the subject. The resolution of the image is 2 x 2 mm?. Figure [(b) shows
the structural scan of the brain of the same subject, which has an almost 3 fold higher
resolution, 0.7 x 0.7 mm?. Both slices are extracted such that they are aligned to the
same neurological coordinate. By segmenting the anatomical scan, gray matter, white
matter and cerebrospinal fluid probability maps, which determine the probability of
each voxel being of either tissue, are obtained; Figures [/|(b)-(d) show these probability
maps, upsampled to a resolution of 0.2 x 0.2 mm?2. We treat the region outside the
brain mask also as part of the cerebrospinal fluid map. Bilinear interpolation of these
maps are used to define normalized subdomain functions that satisfy () along any
column/row in the plane. Figure [/(f) shows the subdomain function set along the
marked line shown in Figures [](b)-(e). The domain is very inhomogeneous, build of
a convoluted mix of the two tissue types and CSE.

Figure [/(g) shows DIBSI basis of order three constructed for the inhomogeneous
domain given in Figure [/(f). The basis is adapted to the convoluted description of
the domain, and shows to be robust to complex delineation patterns between subdo-
mains, for instance see interval [14,17]. Figure [](h) shows the fMRI samples along
the marked line shown in Figures [/|(a), as well as the resulting BSI and DIBSI inter-
polants. At any homogeneous parts of the domain DIBSI results in an interpolant
that is identical to BSI; for instance see the DIBSI and BSI interpolants within the
interval [24, 27] in Figure [/(g). At the inhomogeneous parts of the domain, DIBSI
presents finer details than the SBLI image. For instance, see the domain description
within the interval [7, 15], cf. Figure [|(f). Within this interval samples from gray
matter (samples 8 and 10), white matter (samples 7 and 11) and cerebrospinal fluid
(sample 9) are given, cf. Figure [(h). On one hand, both BSI and DIBSI satisty
the consistency principle at the sample points. On the other hand, in between the
samples, BSI maintains the smoothness characteristic enforced by using third order
B-splines whereas DIBSI leads to a signal that is consistent with the description of
the domain. For example, consider sample point 3 that is purely associated to CSE
Its adjacent samples, i.e., sample points 2 and 4, are both associated to gray matter.
In such cases, the domain-informed B-splines realized at the sample point extensively
adapt to the associated domain, and as such, minimize the mixing of sample points
associated to different subdomains. In other words, the best sample to use to obtain
the interpolant within the range [2.5,4] is sample point 3, and therefore, the contribu-
tion of ﬁég’) (x—2)and 8 4(13) (x —4) is minimized within this range. Similar scenarios
are observed at sample points 8 and 13. As another example, consider samples 6 and
7 that are both purely associated to white matter. Their adjacent samples, i.e., sam-
ples 5 and 8, lie within gray matter. In such a scenario, domain-informed B-splines

exhibit a ‘crossing’ behavior. Although both 5((53) (x —6) and @gg) (x — 8) have part
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Figure 7: (a) A slice of fMRI data of a subject, including a close-up of an ROL. (b)
'The subject’s brain anatomy at the same neurological coordinate as in (a). (c) Gray
matter, (d) white matter and (e) cerebrospinal fluid segmented probability maps
of the ROI shown in (b). (f) Description of the inhomogeneous domain along
the marked line within the ROI in (b). (g) DIBSI basis, of order three, associated
to the domain shown in (f). (h) B-spline interpolation and domain-informed B-
spline interpolation of the functional samples along the marked line within the

ROI in (a).

fMRI samples

BSI
DIBSI
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of their support within the interval [5.5,7.5], their amplitude within this interval is
significantly suppressed to prevent mixing of gray matter samples with white matter
samples in obtaining an interpolant within white matter. Similar scenarios can be
observed along the domain.

It should be noted that the brain domain is intrinsically a 3-D representation,
and that the functional data are acquired in 3-D. Therefore, extending the interpola-
tion to 3-D and incorporating the association of the samples to the 3-D subdomain
description can further enhance the results. A separable extension of the proposed
approach to 2-D and 3-D using tensor products is straightforward. However, such
an extension can only incorporate domain knowledge along the Euclidean axis. As
such, inconsistent interpolation patterns may be obtained if the domain description
is convoluted. Moreover, the results may vary depending on the axis that is chosen for
initial interpolation. A non-separable higher dimensional extension is likely necessary
to efficiently encode a convoluted domain description such as that presented here for

the fMRI setting.

6 Conclusion

We have proposed an interpolation scheme that incorporates a priori knowledge of
the signal domain, such that the interpolant is consistent not only at sample points,
with respect to the given samples, but also at intermediate points between samples,
with respect to the given domain knowledge. The interpolation was formulated as an
extension of B-spline interpolation. Shift invariant interpolation approaches that use
generating functions other than B-splines may also be extended based on the same
scheme presented here. Validation on simulated data showed reduced interpolation
errors on a range of B-spline orders and sampling steps. Results from applying the
proposed approach on fMRI data demonstrated the potential of domain-informed
interpolation in up-sampling low resolution functional brain data to obtain subtle
activation patterns consistent to the anatomy of the brain.

Appendix |

In the following, we prove that the proposed domain-informed B-spline basis satisfies
the three properties of a domain-informed generating basis.
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Proof of property 1

Let ¢(€7%) denote the discrete-domain Fourier transform of ¢ € fo, i.e., ¢(e/?) =
> ez clk]le ™7 with its inverse given as

1 2m ) )
4@:%A (eI I% 4. 35)

Let pi(z) = B,(C") (), ® = {¢k(z)}rez and s(z) denote the central term in (P),

i.e.,

s(z) = clklor(z — k). (36)

keZ

which can be formulated in the Fourier domain as

@ / klok(x — k)e 7% dx
* kez
2/ e(e’® e]deQ/ ok —k)e 7" dx
k€eZ
2T ) o8] ) ) 40
= / ¢’ Z (/ or(x — k)e_wxd:v> IS o (37)
0 kez T

Incorporating the change of variable | = x — k and dl = dz, (B7)) can be rewritten
as

s = [Taen S ([ it tar) oo

keZ %
ELE N , dQ
=/ AN (w, el V) —, (38)
0 27T

where

=3 Bulw)e ™. 69)
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By invoking the L, space Parseval identity ||s[|f, = 5= [ |$(w)]*dw, we have

1sii2, & (2717)3 /z /027r B, HD)a0)| do
S 3 Z/% /27r (NI (n,w, Q)dO de, (40)
(2m) nez”0 0
where I'(+, -, ) is defined as
T(n,w, Q) = &(w + 2mn, /@2, (41)

Using the mean value theorem, the inner integral in (0) can be bounded as

1 2w

— AHdQ inf T Q
2 Jo &) Qel[g,Qw] (n,w, )

27
< / (N (n,w, Q) dQ
0

1 21 )
< — [ EEHd sup T(n,w,Q). (42)
21 Jo Qef0,2n]

Sequentially extending inequality (B2)) by i) incorporating the second power in (£0),
ii) invoking the ¢ space Parseval identity ||CH?2 = % 027T |e(e760)|2dQ, and iii)
incorporating the outer integration and the outer summation of (§2), lower and upper

bounds on HSH%Q are obtained as

A
@R Z/ Qenan T'(n,w, Q) dw-|[c|3,
< |sll7,
< 1 2/% T, w, Q) dw -2 43)
) sup s Wy ' )
(2m)? nez’0  Q€[0,27] “
B

where A and B denote the required constants for declaring that ® forms a Riesz basis,

f. ©).
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Proof of property 2
We have, for all x € R

S8 (@~ k)

keZ
M 3 23 S
LN 50—k + Y (e — b))
keAl™ keAl™
Al n
=SS e
k’GA(zn) i€Ly
+ 3 ek > S @)
keal™ 1eal™ €Rk
= > YAk
kGA;(cn) ’iEIk
+ 3 N 8@k Y oula—k), (44)
keAl™) 1€Ry keal®
=1
n 18), (17
= 3 S A @—k) LT (45)
kealM €T

where the partition of unity in (f4)) follows from

© (wi(x — k))
ZleAi’fﬁx_k O(w(k+x—k-=1)

> Onlz—k) =

keAl™ keAl™

=1.

Proof of property 3

Forany k € Z, if the domain is homogeneous within the support [k—A ™) k+A™)],
i.c., there exists an [ € 7 such that for all |z — k| < A" we have dj(z) = 1 and



195

—_—~ —
= dy((x + k)T) -8 (2) + 1 (z) - (a + k) T),
D 800 @)+ 0y(a) [ 1= S0 By — i)
ZGAS:Z)T
1
=B (@) + O(x) [1— Y By — 1)
zEA(Tn)T
B (x)

(46)

7 Appendix Il
We define a Meyer-type system of K € ZT kernels
my(z): [L,U] = [0,1], k=1,...,K,

where L,U € R" and L < U/(2K), in a way similar to that given in [28], with the
difference that i) we enforce the kernels to form a partition of unity as

Z\mk ) =1, VzelL U], (47)

as opposed to over their second power as in [28], and ii) we skip enforcing the first
and last kernels having Ly norms equal to that of {m;g () kK:_Ql

Using the auxiliary function of the Meyer wavelet [32]

v(z) = 2*(35 — 84x + 702% — 202°),
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x

Figure 8: Meyer-type system of spectral kernels.

asystem K > 2 kernels {m;, () }}<_, that span the range [0, U] can be defined as

1 Vz e [L,A/2]

my(z) = cos?(Tv(E — 1)) Voe (A/2,3A/2] (482)
0 elsewbhere
sin?(Fv(% —k+3)) Voe(a,a+A]

my(z) = { cos®(Zv(E —k+ 1)) Vre(a+A a+24] (48b)
0 elsewhere
sin?(Zv(% — K+ 3)) Vo€ (kr+4]

my(z) =41 Vi € (k4 A, U] (48¢)
0 elsewhere

where A = U /K (see Figure B for notation), & = (k—3/2)Aand k = (K—3/2)A.
The set of kernels (B8) satisfy (B7)) since

(x) '="1 VxelL,A/2]
K (x) Vze(A/2,3A/2]
Z|m;€()\)| — dmy(x) +my(z) Vo e (3A/2,5A/2]
k=1 : :

(m,(z) =1 Vee(U-A/2U]

1 Vz e [L,A/2]
cos?(zy) +sin®(z1) Vo € (A/2,3A/2]
=" { cos?(zy) + sin®(zy) Vo € (3A/2,5A/2)

! Ve e (U—-A/2,U]
=1 Vzel0,U]



197

™

where x1 = Sv(% — 1/2) and x5 = Fv(X — 3/2); in the first equality we use the

property that forall k € {2, ..., K — 1} the supports of m,_, (z) and m;€+1(1‘) are
disjoint.
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