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Abstract

Cell death in neurodegenerative diseases is often thought to be governed by apoptosis; however, an increasing body of
evidence suggests the involvement of alternative cell death mechanisms in neuronal degeneration. We studied retinal
neurodegeneration using 10 different animal models, covering all major groups of hereditary human blindness (rd1, rd2,
rd10, Cngb1 KO, Rho KO, S334ter, P23H, Cnga3 KO, cpfll, Rpe65 KO), by investigating metabolic processes relevant for
different forms of cell death. We show that apoptosis plays only a minor role in the inherited forms of retinal
neurodegeneration studied, where instead, a non-apoptotic degenerative mechanism common to all mutants is of major
importance. Hallmark features of this pathway are activation of histone deacetylase, poly-ADP-ribose-polymerase, and
calpain, as well as accumulation of cyclic guanosine monophosphate and poly-ADP-ribose. Our work thus demonstrates the
prevalence of alternative cell death mechanisms in inherited retinal degeneration and provides a rational basis for the
design of mutation-independent treatments.
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Introduction

Apoptosis is a programmed cell death mechanism that is often
invoked for neurodegenerative diseases. The classical apoptotic
pathway starts with a BAX dependent permeabilisation of
mitochondrial membranes, cytochrome c leakage to the cytoplasm
and subsequent activation of initiator and executioner caspases
[1]. Inherited neurodegenerative diseases of the retina are also
generally thought to be governed by apoptotic cell death [2,3],
which has given rise to numerous attempts to use anti-apoptotic
strategies for therapy development [4-6]. Unfortunately, these
approaches were generally unsuccessful and efficient neuropro-
tective therapies for hereditary retinal degenerations (RD) such as
retinitis pigmentosa (RP), Leber’s congenital amaurosis (LCA), or
Stargardt’s disease are still missing. Recent findings suggest
alternative, non-apoptotic cell death mechanisms for photorecep-
tor degeneration [7,8]. Hence, we decided to systematically re-
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evaluate the situation in the retina using a variety of markers for
both classical apoptosis and non-apoptotic cell death.

The retina harbours two general types of photoreceptors, rods,
responsible for vision under dim-light conditions (i.e. at night), and
cones, responsible for vision during bright daylight. In addition,
the retina hosts a varicty of different 2°¢ and 8™ order neurons,
responsible for relaying photoreceptor output to the brain. For
studies into hereditary degenerative mechanisms in the retina a
large number of human homologous animal models are available
[9], faithfully reproducing the photoreceptor degeneration phe-
notype. Two major categories of mutations and diseases can be
distinguished: primary rod photoreceptor degeneration, which
usually entails secondary cone death and complete blindness, and
is characteristic of human diseases such as RP, LCA, or Usher
syndrome. Primary cone photoreceptor degeneration, which leaves
rods mostly unaffected but nevertheless causes a severe loss of
visual acuity and daylight vision and typifies human diseases, such
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as cone-dystrophy, Stargardt’s disease or age-related macular
degeneration [10,11].

In the present study, we asked the question whether there was a
common mechanism governing photoreceptor cell death inde-
pendent of the initial causative genetic defect, since this could open
up for broadly applicable therapies. To address the heterogeneity
of hereditary photoreceptor degeneration, we employed ten
different animal models RD (Figure 1), eight models for primary
rod degeneration, as seen in autosomal dominant RP (P23H and
S334ter transgenic rats) and autosomal recessive RP (rd1, rd2,
rd10, Cngbl KO, Rho KO mice), as well as in LCA (Rpe65 KO
mice). In addition, we also included two animal models for
primary cone death (¢pfl1, Cnga3 KO mice).

Surprisingly, our single cell resolution analysis of metabolic
changes at the peak of cell death suggested that hereditary
photoreceptor death was predominantly non-apoptotic, with only
a marginal role, if any, for apoptosis. Instead, our study delineated
a non-apoptotic cell death pathway and highlighted the general
importance of this pathway for photoreceptor neurodegeneration.
This finding has major ramifications for future therapy develop-
ments.

Materials and Methods

Animals

Animals were housed under standard white cyclic lighting, had
free access to food and water, and were used irrespective of
gender. Ten different mouse lines (C3H or C57BI6 background)
either wild-type or carrying naturally occurring mutations or
engineered genetic deletions were used together with three
different rat lines (CD background) expressing different rhodopsin
transgenes (see Table 1). Day of birth was considered as postnatal
day (P) 0. All procedures were approved by the respective local
ethics and animal protection authorities and performed in
compliance with the ARVO statement for the use of animals in

RPE cell

11 cis-retinal
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Ophthalmic and Visual Research. Specifically, procedures per-
formed in Tibingen (concerning C3H wt, C57BI6 wt, rdl, rd2,
rd10, cpfll, CD wt, S334ter, and P23H animals) were reviewed
and approved by the Tuebingen University “Einrichtung fiir
Tierschutz, Tierarztlichen Dienst und Labortierkunde”. Proce-
dures performed in Munich (on Cngbl KO and Cnga3 KO
animals) were reviewed and approved by the "Regierung von
Oberbayern". Procedures performed in Oldenburg (on Rho KO
animals) were reviewed and approved by the Oldenburg
University animal welfare committee. Procedures performed in
Sion (on Rpe65 KO animals) were reviewed and approved by the
Veterinary Service of the State of Valais (Switzerland). Procedures
performed in Lund (rdI, rd2 animals) adhered to permit #
M220/09 issued by the local animal ethics committee. All efforts
were made to minimize the number of animals used and their
suffering.

Histology, immunohistochemistry, and
immunofluorescence

Animals were sacrificed in the morning (10-11 am), their eyes
enucleated and fixed in 4% paraformaldehyde (PFA) in 0.1 M
phosphate buffer (pH 7.4) for 45 min at 4°C. PFA fixation was
followed by cryoprotection in graded sucrose solutions (10, 20,
30%). Unfixed eyecups were directly embedded in cryomatrix
(Tissue-Tek, Leica, Bensheim, Germany). Sagittal 12 um sections
were obtained and stored at —20°C.

Sections were incubated overnight at 4°C with primary
antibodies (Table 2). Immunostaining was performed employing
the avidin-biotin-peroxidase technique (Vectastain ABC system,
Vector laboratories, Burlingame, CA). Immunofluorescence was
performed using Alexa Fluor 488-conjugated secondary antibodies
(Molecular Probes, Inc. Eugene, USA). Negative controls were
carried out by omitting the primary antibody. Sections were
mounted with Vectashield (Vectorlabs, Burlingame, CA, USA) for

imaging.

Photoreceptor .|
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Rpe65 KO
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Figure 1. RD animal models used and their genetic defects. The cartoon illustrates the anatomical localization and metabolic consequences of
the causative genetic mutations in the ten different RD animal models used in this study. RD causing mutations in these animal models interfere with
the various stages of the phototransduction cascade, from the 11-cis-retinal recycling enzyme RPE65 (Rpe65 KO), via the light-sensitive Rhodopsin
(Rho KO, P23H, S334ter), cGMP-hydrolyzing phosphodiesterase-6 (PDE6; rd1, rd10, cpfl1), the structural protein Peripherin (Prph2; rd2), to the cyclic-
nucleotide-gated (CNG; Cngb1 KO, Cnga3 KO) channel that allows for Ca®™-influx.

doi:10.1371/journal.pone.0112142.g001
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TUNEL Assay

Terminal deoxynucleotidyl transferase dUTP nick end labelling
(TUNEL) assay was performed using an in situ cell death detection
kit (Fluorescein or TMR; Roche Diagnostics GmbH, Mannheim,
Germany). For controls terminal deoxynucleotidyl transferase
enzyme was either omitted from the labelling solution (negative
control), or sections were pre-treated for 30 min with DNAse I
(Roche, 3 U/ml) in 50 mM Tris-HCI, pH 7.5, 1 mg/ml BSA to
induce DNA strand breaks (positive control). While negative
control gave no staining, positive control stained all nuclei in all
layers of the retina [12].

Calpain in situ activity assay

Calpain activity was investigated with an enzymatic in situ assay
[13]. Briefly, unfixed cryosections were incubated for 15 min in
calpain reaction buffer (CRB; 25 mM HEPES, 65 mM KCI,
2 mM NIgClQ, 1,5 mM CaCl% 2 mM DTT) and then incubated
at 35°C for 1 hin the dark in CRB with 2 mM fluorescent calpain
substrate 7-amino-4-chloromethylcoumarin, t-BOC-Leucyl-L-me-
thionine amide (CMAC, t-BOC-Leu-Met; Molecular Probes, Inc.
Eugene, USA). Fluorescence was uncaged by calpain-dependent
cleavage of t-Boc-Leu-Met-CMAC.

Poly-ADP-ribose polymerase (PARP) in situ activity assay

Unfixed cryosections were incubated in an avidin/biotin
blocking kit (Vector Laboratories, Burlingame, USA), followed
by incubation at 37°C for 2h in PARP reaction mixture

Table 2. List of antibodies used in this study.

Table 1. List of animals used, genes affected, and original references (where applicable).
Background/Line Mutant Gene Reference
C3H wild-type [51]
C3H rd1 Pde6b [52]
C3H rd2 Prph2 [53]
C57BI/6) wild-type -
C57Bl/6 Rho KO Rho [54]
C57BI/6N Cngb1 KO Cngb1 [55]
C57BI/6N Cnga3 KO Cnga3 [56]
C57Bl/6) cpfll Pde6¢ [57]
C57BI/6 Rpe65 KO Rpe65 [49]
C57BI/6J rd10 Pde6b [58]
Crl: CD(SD) wild-type - -
Crl: CD(SD) P23H tg Rho [59]
Crl: CD(SD) S334ter tg Rho [59]
Italic fonts indicate mutant name or affected gene.

doi:10.1371/journal.pone.0112142.t001

containing 10 mM MgCl,, 1 mM DTT, 5uM biotinylated
NAD" (Trevigen, Gaithersburg, USA) in 100 mM Tris buffer
with 0.2% Triton X-100 (pH 8.0). Biotin incorporation was
detected by avidin - Alexa Fluor 488 conjugate (1:800, 1 h at room
temperature). For controls biotinylated NAD+ was omitted from
the reaction mixture [14].

HDAC in situ activity assay

HDAC activity assays were performed on retinal cryosections
obtained from 4% PFA fixed eyes. Retinal sections were exposed
to 200 uM Fluor de Lys-SIRT2 deacetylase substrate (Biomol,
Hamburg, Germany) and 500 uM NAD+ (Biomol) in assay buffer
(50 mM Tris/HCI, pH 8.0; 137 mM NaCl; 2.7 mM KCI; 1 mM
MgCl2) and incubated for 2 h at 37°C. The tissue sections were
then washed three times for 5 min in PBS and subsequently fixed
in Methanol at —20°C, for 20 min. After refixation, the sections
were washed once again for 5 min in PBS, then incubated in 1x
Developer II (Biomol) in assay buffer and immediately coversliped
and viewed under the microscope. The inclusion of either 100 uM
TSA (Sigma, Steinheim, Germany) or 2 mM NAM (Sigma) in the
assay allows to distinguish between HDAC activities coming from
class I, IT or IV (inhibited by TSA) or from class III (sirtuin-type
HDAC:, inhibited by NAM) [15].

Microscopy, cell counting, and statistical analysis
Light and fluorescence microscopy were usually performed at
room temperature on an Axio Imager Z.1 ApoTome Microscope,

Antigen Source/Cat. Number Dilution IF/IHC Reference
BAX (clone 6A7) Sigma/B8429 1:20 [60]
Cleaved Caspase-3 (Asp175) (clone 5A1E) Cell Signalling/9664 1:300 [61]
Cleaved Caspase-9 (Asp353) (rabbit, polyclonal) Abcam/ab52298 1:100 [16]
Cytochrome C (clone 7H8.2C12) Abcam/mab13575 1:2000 [62]
cGMP (sheep, polyclonal) Prof. Harry Steinbusch, Maastricht University, The Netherlands 1:500 [63]
PAR (clone 10H) Enzo/ALX-804-220 1:200 [12]

doi:10.1371/journal.pone.0112142.t002
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equipped with a Zeiss Axiocam MRm digital camera. Images were
captured using Zeiss Axiovision 4.7 software; representative
pictures were taken from central areas of the retina using a 20x/
0,8 Zeiss Plan-APOCHROMAT objective. Adobe Photoshop
CS3 (Adobe Systems Incorporated, San Jose, CA) was used for
primary image processing.

For quantifications, pictures were captured on three entire
sagittal sections for at least three different animals for each
genotype and age using Mosaic mode of Axiovision 4.7 at 20x
magnification. The average area occupied by a photoreceptor cell
(1.e. cell size) for each genotype and age was determined by
counting DAPI-stained nuclei in 9 different areas (50 x50 um) of
the retina. The total number of photoreceptor cells was estimated
by dividing the outer nuclear layer (ONL) area by this average cell
size. The number of positively labelled cells in the ONL was
counted manually. To be able to compare the various markers in
the different genotypes, we considered cells as positively labelled
only if they showed a strong staining of either the photoreceptor
nuclei or perinuclear areas. Since some markers actually stained
predominantly the photoreceptor inner and/or outer segments
(i.e. BAX, cGMP in Cngbl KO retina) these may thus in the
present study have been systematically underestimated. Values
obtained are given as fraction of total cell number in ONL (i.e. as
percentage) and expressed as mean * standard error of the mean
(SEM). Tor statistical comparisons the unpaired Student t-test as
implemented in Prism 5 for Windows (GraphPad Software, La
Jolla, CA) was employed.

Results

In RD models the peak of cell death varied depending on
severity of genetic insult

To study the cell death mechanisms governing RD, we first
performed a detailed analysis of the temporal progression of the
degeneration for each of the 10 animal models used (Figure 1). We
used the TUNEL assay to label dying cells at different postnatal
ages and quantified the percentages of TUNEL-positive cells in the
outer nuclear layer (ONL), i.e. the photoreceptor layer (Figure 2).

In all RD models, once the degeneration sets in, the TUNEL
assay detected a moderate to strong elevation of dying cells when
compared to the respective wild-type, depending on degeneration
speed and whether rods or cones were affected. In each RD
animal model the peak of cell death was identified (Figure 2) and
all following experiments were performed at this time-point to
increase the chances of detecting characteristic cell death
processes. From previous experiments [12,15-17], we know that
the peak of TUNEL also corresponds to a strong activation of
critical cell death processes; both for apoptotic and non-apoptotic
cell death (¢f. Figure S1). For the different animal models these
time-points were: rd! = Postnatal day 13 (P13),7d10 = P18, rd2
= P18, Cngbl KO = P24, Rho KO = P42, Rpe65 KO = P16,
cpfll = P24, Cnga3 KO = P35, S334ter = P12, P23H = P15
(Data for rd1, cpfll, S334ter, and P23H adapted from [16-18],
respectively).

Since photoreceptor cell death is often seen as an apoptotic
process [2,3], we initially focused our analysis on detecting
characteristic markers for apoptosis, and then extended our
investigation to also include metabolic processes involved in
alternative cell death mechanisms. To assess the extent to which
apoptotic or non-apoptotic cell death mechanisms were active in
the different animal models, we compared the number of cells
displaying a specific metabolic activity with the number of
TUNEL-positive cells in both mutant and wild-type retina (Table
S1 and S2).

PLOS ONE | www.plosone.org
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Apoptosis was restricted to degenerating S334ter retina

We looked for increased expression, localization, or activation of
Bel-2-associated X protein  (BAX), cytochrome ¢, cleaved,
activated caspase-9 and -3 (Figure 3, quantification in Table S1
and S2). Increases in these apoptotic markers were found only in
the S334ter model when compared to the corresponding wild-
type.

Classical apoptosis starts with an activation of BAX [1].
Although early studies have already ruled out an involvement of
BAX in RD [19], a recent study reported on the apparent
activation of BAX in rd1, P23H, and Rho KO mice [20].
Nevertheless, in our hands a significant BAX activation (using the
same antibody as in [20], Table 2) was observed only in S334ter
retina. Here, prominent BAX staining was observed near
mitochondria, in particular in individual photoreceptor inner
segments, synaptic terminals, and occasionally around nuclei
(Figure 3, Figure S2). This staining pattern in S334ter ONL is
consistent with the reported role of BAX in the formation of the
mitochondrial permeability transition pore [1].

Consequently, cytochrome c release from mitochondria was
observed as an increased staining of individual photoreceptor cells
in the S334ter ONL (Figure 3). A relative increase of cytochrome c
leakage was found in ¢pfll retina, however, this was not
statistically significant (Table SI). Increased caspase-9 staining
was present in S334ter retina only, with a peri-nuclear staining
predominantly in the lower part of the ONL. A very similar
staining pattern was found using an antibody specific for activated,
cleaved caspase-3, again exclusively in S334ter retinal sections.
These data are in line with previous studies [16,21].

Thus, whereas large numbers of TUNEL-positive cells were
detected in all analysed RD models, clear evidence for apoptosis
was only detected in S334ter rats. This suggested the execution of
alternative, non-apoptotic cell death mechanisms.

Non-apoptotic cell death in photoreceptor degeneration

We have previously shown that rod photoreceptor degeneration
in rdl mice is characterized by accumulation of cyclic guanosine
monophosphate (cGMP), increased activities of histone deacety-
lases (HDAC), poly-ADP-ribose polymerases (PARP), and calpains
[13,15,22].

c¢GMP accumulation in phosphodiesterase-6 mutants (rd?,
rd10, cpfll) is a direct consequence of the lack of phosphodies-
terase activity that normally hydrolyses ¢cGMP. Surprisingly,
significant cGMP accumulation was observed also in all other
analysed mouse and rat models (Figure 4, Table S1) except for
Rpe65 KO retina, where the initial causative defect does not
reside in photoreceptors themselves but in retinal pigment
epithelial cells. However, the patterns of cGMP accumulation
varied between different RD models (Figure 4). In the case of rd 1,
rd10, rd2, Cnga3 and cpfll cGMP was visible in cell bodies as
well as in photoreceptor inner/outer segments, whereas in Cngbl
KO retina the signal was more prominent in inner/outer
segments. For methodological reasons, we only quantified cGMP
positive cell bodies. As a consequence, most likely the true number
of photoreceptors showing elevated cGMP levels is higher in
Cngbl KO retina than assessed here. P23H and S334ter rat
retinas were characterized by diffuse cGMP accumulation in the
ONL, contrary to Rho KO mice in which only very few nuclei
were cGMP-positive.

The HDAC assay revealed significantly increased activity in all
the analysed mutants when compared to corresponding wild-type
(Figure 4). The number of nuclei stained with the HDAC assay
varied between different mutants (Table S1 and S2) with more
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Figure 2. Progression of cell death in inherited RD models. Depending on the causative genetic insult, the temporal development of retinal
degeneration is highly variable in the different animal models. The quantification of dying, TUNEL-positive photoreceptor cells in the outer nuclear
layer (ONL) allowed determination of the evolution and the peak of photoreceptor death for each of these animal models (A). The peak was taken as
reference point for the ensuing analysis of cell death mechanisms. The bar graph (B) shows a comparison of maximum peak heights for all ten RD
models studied. Note the different scales in line graphs. Values are mean *= SEM from at least three different animals. See also Table S1 and S2.

doi:10.1371/journal.pone.0112142.g002

cells showing HDAC activity in the case of 7d1, rd10, and S334ter
and less positive cells in the case of Cngbl KO and Rpe65 KO.

To determine if poly-ADP-ribosylation, as an additional
epigenetic process, was involved in photoreceptor degeneration,
we looked for increased PARP in siu activity as well as for
accumulation of poly-ADP-ribosylated proteins (PAR), i.e. the
products of PARP activity. Nuclear staining of both PARP activity
and PAR followed the patterns observed for HDAG activity.
Mutants characterized by a high number of TUNEL-positive cells
(rd1, rd10, S334ter and Rpe65 KO) also displayed comparatively
higher numbers of both PARP and PAR stained cells compared to
models with low degeneration rates. The in situ staining for
calpain activity was also significantly increased in all analysed RD
models (Figure 4, quantification in Table S1).

rd1-P13 _ rd10-P18

wild-type-P13

rd2-P18

caspase - 3 caspase - 9 cytochrome c BAX

TUNEL

Cngb1KO-P24 RhoKO-P42 S334ter-P12

To compare the different cell death processes, we related the
numbers of positive cells detected by each individual assay to the
numbers of TUNEL positive cells. To match the various RD
models and their very different degeneration kinetics with each
other, all values were expressed as logarithm to base 10. Since the
TUNEL values were defined as 100%, its logarithm was 2. This
comparative analysis highlighted the fact that non-apoptotic
processes were clearly dominant for photoreceptor degeneration
in all RD models (Figure 5). This was also true for the S334ter
model which, interestingly, showed the additional involvement of
apoptotic cell death. We also analysed the relative contribution of
apoptotic and non-apoptotic processes to developmental cell death
in wild-type retina (P13-P42). Here, the relative contributions of

P23H-P15 cpfl1-P24 Cnga3KO-P35 RPE65-P15

Figure 3. Apoptosis in the retina is restricted to the S334ter rat model. The analysis of BAX expression, mitochondrial cytochrome c release,
activation of caspase-9 and -3 shows essentially no positive detection in 9 out of 10 animal models for hereditary retinal degeneration. The notable
exception was the S334ter transgenic rat which harbours a mutation in the rhodopsin gene leading to a truncated protein and in which many
photoreceptors were positive for apoptosis. In all other animal models, while there were cells displaying clear evidence for apoptosis, their numbers
were within the wild-type levels, indicating that this was related to physiological, developmental cell death, which is characteristic for the postnatal
rodent retina. Importantly, the numbers of apoptotic cells did not match the numbers of mutation-induced dying cells as evidenced by the TUNEL
assay. Scale bar 20 um.

doi:10.1371/journal.pone.0112142.g003
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Figure 4. Cell death in hereditary retinal degeneration is predominantly non-apoptotic. In 10 out of 10 animal models for hereditary
retinal degeneration, large numbers of photoreceptors display cGMP accumulation, HDAC and PARP activity, PAR accumulation, and calpain activity,
respectively. Intriguingly, these non-apoptotic markers are prominent even in the S334ter retina, concomitant with this also showing signs of
apoptosis. This suggests that in S334ter retina two different cell death mechanisms may run in parallel while in all other studied RD models the

mutation-induced cell death followed a non-apoptotic mechanism. Scale bar 20 um.

doi:10.1371/journal.pone.0112142.g004

apoptotic and non-apoptotic cell death mechanisms appeared to
be equally important (Figure S3).

Discussion

Our study provides a detailed and comprehensive overview of
the temporal progression and the kinetics of cell death in ten
different, commonly used RD animal models. These RD models
harbour genetic defects mostly affecting the phototransduction
cascade but include also such which are disturbing the visual cycle
(Rpe65 KO) and the structural integrity of the outer segment (rd2).
As a result, the comparative analysis of characteristic cell death
processes for the first time highlights the over-riding importance of
a common, alternative mechanism for photoreceptor degenera-
tion. Contrary to previous studies on retinal degeneration
mechanisms [23,24] our study focused on the elevated activity
and presence of key enzymes and/or metabolites, respectively, and
thus may be seen as a first attempt to assess the so called reactome
or metabolome (www.reactome.org; [23]) of photoreceptor
degeneration at the level of the individual dying cell.

To put our report in a perspective, many studies on cell death in
the retina and other parts of the central nervous system have

PLOS ONE | www.plosone.org

previously resorted to tissue based methods (e.g. micro-array,
western blot) [23,24]. Such methods are particularly useful in
conditions where there is a homogenous cell population and a
highly synchronized onset of cell death and are thus ideal, for
instance, for cell culture. However, in a complex neuronal tissue
such as the retina, with>50 different neuronal cell types among
which only one — the rod photoreceptor — undergoes non-
synchronized primary degeneration, with cell death of individual
photoreceptors spread out over a time of weeks to many years,
tissue based analysis runs the risk of suffering from very low
detection rates and overall poor signal-to-noise ratio. For our
analysis, we thus focussed on methods that afforded cellular
resolution to be able to unequivocally attribute cell death related
processes to primary photoreceptor death and to distinguish these
processes from secondary or tertiary events.

Apoptosis during retinal degeneration

Previous studies on cell death in hereditary retinal degeneration
have often suggested apoptosis as the main degenerative mecha-
nism [2,3,26]. These earlier studies, however, based their
conclusion on analysis methods now known not to discriminate
between apoptosis and other forms of cell death. For instance, the
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Figure 5. Heat map representing metabolic activities in different RD models. The RD models were grouped according to the peak of
degeneration, the cell type affected by the mutation (rod, cone, RPE), and species (mouse, rat). The number of TUNEL-positive cells in each model was
normalized to 100, expressed as logarithm, and compared with the number of positively labelled cells for each marker. The heat map clearly
illustrates the prevalence of non-apoptotic vs. apoptotic cell death in 9 out of 10 RD models. The S334ter rhodopsin mutant was unique, showing
concurrent activation of both cell death pathways. n.p.: null positive. See also Table S1 and S2.

doi:10.1371/journal.pone.0112142.g005

TUNEL assay, originally thought to be a marker for apoptosis
[27], generally labels all kinds of dying cells, including necrotic
cells [28].

Apoptosis may be defined as an active process resulting in
orderly self-disintegration of a cell. Hallmark features of apoptosis
include an up-regulation of pro-apoptotic genes and proteins, such
as the transcription factor c-fos and in particular Bcl-2 family
proteins such as BAX, which participate in forming the
mitochondrial permeability transition pore (MPTP), allowing
mitochondrial proteins including cytochrome ¢ to enter the
cytoplasm. Cytoplasmic cytochrome ¢ aggregates with apoptotic
protease-activating factor (APAF) and caspase-9 to form a
multimeric protein complex termed the apoptosome [1]. This
complex then cleaves and activates down-stream executioner
caspases such as caspase-3.

Classical apoptosis occurs during retinal development until
about 3—4 weeks post-natal [29]. Indeed, developmental apoptosis
temporally coincides, at least partially, with mutation-induced cell
death [7]. This introduces a confounding factor which may
explain some of the contradictory reports in the literature. Our
study demonstrates that wild-type photoreceptors are capable of
executing apoptosis at least until P42; by contrast, however, we see
that mutant photoreceptors normally take a non-apoptotic route as
a means for orderly self-destruction.

Importantly, therapeutic strategies based on the inhibition of the
apoptotic cascade have had little success or produced conflicting
findings. For instance, neither the pharmacological inhibition of
the caspase cascade [5], nor the genetic manipulation of Bcl-2 and
Bcl-XL [30], c-fos [31], or caspase-3 [6] promoted long-term
photoreceptor survival. On the other hand BAX KO may delay
rod but not cone death in the Rpe65 KO animals [4].

Recently, increased BAX activation was suggested to be
connected to retinal degeneration in rdl, Rho KO, and P23H
mice [20]. At present it is not clear whether these findings relate in
part to developmental cell death (see above) or would have been
interpreted differently if the study [20] had also included
observations of a model with a much stronger BAX response,
such as the S334ter rat investigated by us. At any rate, our results
do not show any evidence for major BAX activation in
degenerating retina, with the notable exception of S334ter
photoreceptors. This model thus constitutes a “positive control”
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for BAX and further apoptotic markers, lending additional credit
to our findings in all other mutants.

Alternative cell death mechanisms

In recent years a growing body of evidence has suggested the
activity of alternative cell death mechanisms in RD [8,32-34]. The
analysis of such mechanisms faces the major obstacle of identifying
alternative and causative metabolic processes. In a number of
previous studies, we showed activation of the ¢cGMP targets
protein kinase G (PKG) and cyclic nucleotide-gated (CNG)
channel [22,35] in degenerating rd! photoreceptors. Excessive
cGMP signalling was associated with a strong increase in
enzymatic activities of calpain-type proteases [13], PARP [12],
and HDAC [15], which we found to be causally involved in
photoreceptor cell death. Calpain activation, which was also seen
by others in different RD models [20], is a well-established
phenomenon in necrosis and alternative cell death mechanisms
[21,36]. While HDAC and PARP enzymes are ubiquitously
expressed and involved in epigenetic gene regulation and DNA
repair [37], respectively, their excessive activation has repeatedly
been connected to alternative mechanisms of neuronal cell death
[38-40].

We found that all these processes were also involved in RD
caused by the different mutations, in various genes and in both
mouse and rat. Importantly, the cellular resolution afforded by the
used assays allowed clear distinction between cells dying an
apoptotic death and cells dying through an alternative pathway. In
this alternative pathway the activities of calpain and PARP activity
co-localize to a large extent with the TUNEL assay [12,17], while
cGMP detection and HDAC activity do not [15,41]. This could
suggest that the latter two relate to early metabolic processes in the
execution of cell death.

Together with other earlier data [8,16,42,43] our present
findings prompt us to propose a potential pathway for cGMP-
induced cell death: Elevated levels of ¢cGMP activate CNG
channels and/or PKG to cause excessive Ca**influx and protein
phosphorylation, respectively. As a possible consequence of the
latter, PKG dependent phosphorylation could trigger HDAC
activation [44], down-stream of which PARP can be activated
[15]. Ca®*-influx might on the other hand, and in parallel, cause
calpain activation [13,35]. Both routes (Figure 6) act in unison to
drive a photoreceptor cell to its demise, but, surprisingly, this
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alternative form of cGMP-induced cell death appears to be 4-6
times slower than apoptosis [41]. Importantly, the presence of this
pathway and the connections between the different metabolic
processes were confirmed by interventional experiments in the rd [
mouse demonstrating the neuroprotective effects of inhibition of
PKG [22], calpain [13], PARP [12], and HDAC [15].

The observed PARP activity deserves some additional consid-
erations: In classical apoptosis the PARP enzyme is cleaved and
mactivated by caspases, resulting in a specific 85 kDa PARP
fragment, the presence of which is often used to characterize
apoptosis as such [45]. In our study, we used two independent
methods — immunostaining for the PARP activity product PAR
and direct i situ PARP activity detection based on incorporation
of NAD™ — to demonstrate PARP over-activation. Hence, what we
found in mutant photoreceptors is the exact opposite of what
would happen in apoptosis, which thus provides further evidence
for a non-apoptotic photoreceptor cell death, an alternative cell
death mechanism that could share some features with PARtha-
natos [40].

The fact that photoreceptors use a non-apoptotic mechanism
when in principle they are capable of executing apoptosis raises
the question as to what the physiological and even evolutionary
advantage of this mechanism may be. Apoptosis is a process that
requires energy in the form of ATP [1]. The insult caused by a
genetic mutation may exhaust such energy resources to the point
that apoptosis can no longer be executed. Necrosis on the other
hand would result in inflammation and could cause additional
extensive tissue damage. Hence, it may make sense for a cell to
execute the slow, alternative and probably ATP-independent
pathway laid out here to limit the damage to the surrounding
neuronal tissue.

Perspectives for mutation-independent RD treatment

An important consequence of the high genetic heterogeneity of
retinal degenerations is that for any pathogenic mutation there
may be only a very low number of patients [10,11]. This calls for
the development of mutation-independent treatments that could
address larger groups of RD patients. The finding that the same
non-apoptotic mechanism was the prevalent mode of cell death in
9/10 RD models strongly increases the chances to find neuro-
protective treatments that are independent of the initial causal
mutation. In the context of rare retinal diseases, such treatments
appropriate for a large number of patients may dramatically
improve the perspectives for both a successful clinical translation
and the commercial viability of corresponding drugs.

We found that the alternative cell death mechanism described
above was active in all investigated animal models. Of particular
importance for this mechanism may be the observed accumulation
of cGMP in mutant photoreceptors. While this was already known
for retina suffering from mutations in Pde6b and Pde6c (i.e. rd1,
cpfll; [18,46]), Prph2 (i.enrd2 [22]), Cngbl and Cnga3 [35,42],
our work also showed cGMP accumulation in retina suffering for
three different types of rhodopsin mutations (Rho KO, S334ter,
P23H). A potential explanation for this remarkable phenomenon
in rhodopsin mutants could be either the longer life-times of
activated rhodopsin resulting in a stimulation of cGMP synthesis
and an increase in net cGMP [47] or a failure to activate
downstream PDEG in cases where rhodopsin is absent (i.e. in Rho
KO).

While these findings highlight cGMP-signalling for the devel-
opment of novel neuroprotective treatments, there is one
exception: in Rpe65 KO retina, we did not find elevations of
cGMP. Indeed, here, unliganded opsin was proposed to cause a
constitutive activation of phototransduction and hence low cGMP-
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Figure 6. Two routes to cell death. Classical apoptosis, such as it
occurs in S334ter transgenic photoreceptors, involves a mutation-
induced up-regulation and translocation of BAX protein to form the
mitochondrial permeability transition pore (MPTP). This leads to leakage
of cytochrome ¢ from the mitochondria to the cytoplasm, where it
combines with apoptotic protease activating factor (APAF) and caspase-
9 to form the apoptosome, which in turn activates down-stream
executioner caspases, including caspase-3. In 9/10 RD animal models
investigated here, photoreceptor death followed a different route:
mutation-induced up-regulation of cGMP on the one hand causes
activation of the CNG channel, leading to Ca2+ influx and calpain
activation. On the other hand cGMP-dependent activation of protein
kinase G (PKG) is associated with histone deacetylase (HDAC) and poly-
ADP-ribose-polymerase (PARP) activation. Importantly, this alternative,
non-apoptotic cell death mechanism offers a number of novel targets
for neuroprotection of photoreceptors.

doi:10.1371/journal.pone.0112142.g006

levels [48]. On the other hand, since all further down-stream
processes appear to be the same in all mutants investigated, a
disruption of the visual cycle by Rpe65 KO [49] might cause
minor elevations of cGMP — perhaps below the detection levels of
our immunohistological methods — and still trigger cell death.

Mutations in the same gene may potentially trigger distinct
degenerative processes [16]. Our study more extensively shows
how intragenic variability of RD mutations may initiate different
cell death mechanisms: The recessive 7d] and 7d10 mutations in
the Pde6b gene result in activation of the same non-apoptotic
pathways. This is also true for the recessive Rho KO and the
dominant P23H mutation, but not for the dominant S334ter
mutation. While all three mutations reside in the rhodopsin gene,
the concurrent activation of apoptotic and non-apoptotic cell
death observed in the S334ter situation suggests that human
patients with similar mutations may need combination therapy
targeting both degenerative pathways simultaneously. Likewise,
since we found that photoreceptors (wild-type) are in principle able
to execute apoptosis, we cannot exclude the possibility that under
circumstances in which non-apoptotic cell death is blocked, the
cell may switch to apoptosis. This possibility needs further
investigation and might also require the development of combi-
nation therapies.

Another question, that will be important to address in the
future, relates to the fact that all mutant photoreceptors carry a
genetic defect that will eventually destroy them. Yet, the time-
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point at which a mutant photoreceptor dies appears to be entirely
random, and, in the human situation, the time from the first to the
last photoreceptors’ death may cover many decades [10]. The
exact reasons for this phenomenon are unknown but could be
explained by stochastic effects similar to what is seen in the decay
of radioactive elements [50]. This opens the possibility that even a
minor shift in the dynamics of these stochastic processes — such as
interference with processes like those studied here — could improve
photoreceptor survival dramatically.

In conclusion, this work demonstrates the existence of a
common, non-apoptotic cell death mechanism for hereditary
photoreceptor degeneration. The tentative cell death pathway laid
out here (Figure 6) provides a number of novel targets for
neuroprotective treatment approaches [12,13,15,16,22] and,
importantly, a unifying principle for RD caused by a variety of
different mutations in different genes. As such, this common cell
death pathway may be of major importance for future RD therapy
developments and possibly for also other neurodegenerative
diseases.

Supporting Information

Figure S1 Correlation of selected cell death markers to loss of
photoreceptors, related to Figure 1. Percentage of labelled
ONLcells (left y-axis) and number of surviving photoreceptor
rows (right y-axis) for (A) rd1 mice, (B) P23H, and (C) S334ter
transgenic rats. In all three models, calpain activation peaked
together with the TUNEL assay, and correlated with the strongest
loss in the number of photoreceptor rows. The grey area indicates
the loss of photoreceptors. Throughout the retinal degeneration,
activation of caspase-3 was absent in rdl and P23H retina, but
present in S334ter retina. Values are mean from at least three
different animals.

(TIF)

Figure 82 Expression of activated BAX in wild-type, rdl and
S334ter retina. In wild-type mouse retina at P11 (left panel), a
mouse monoclonal antibody directed against activated BAX (clone
6A7) detected positive cells only rarely, but then in all layers of the
retina. The white arrowhead indicates a cell positive for activated
BAX in the ganglion cell layer (GCL). In rd] mouse retina at P11

the onset of RD in this model — activated BAX is detected only
very rarely, with BAX detection levels very similar to age-matched
wild-type (middle panel; cf. Table S2). In contrast to this, in the
outer nuclear layer (ONL) of P12 S334ter rat retina, the BAX
antibody immunodecorates mitochondria, in particular in indi-
vidual photoreceptor inner segments, synaptic terminals, and
perinuclear areas (right panel). This mitochondria specific staining
pattern in S334ter retina is consistent with the reported role of
BAX in the formation of the mitochondrial permeability transition
pore and the initiation of apoptosis. Images are representative for
immunostainings obtained from at least three different animals for
each genotype. Note that use of secondary anti-mouse antibodies
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Table S1 Quantification of cell death processes in 10 different
RD animals related to Figures 1 and 4. Numbers given represent
mean values for the percentages of positive cells for each marker,
followed by standard error of the mean (SEM), and p-values for
comparisons with corresponding, age-matched WT. Green label
indicates statistically significant p-values (p<<0.05); red label
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mutants and WT were found almost only for non-apoptotic
processes, with the notable exception of the S334ter mutant where
also apoptotic processes were significantly activated. Note that in
contrast to Fig. 4, here, values were not normalized to the
numbers of TUNEL positive, dying cells.

(TIF)

Table 82 Quantification of labelled photoreceptors in different
RD models related to Figures 1 and 4. For each genotype, at the
respective peak of degeneration, the percentage of cells positively
labelled for the various cell death processes is given as mean value,
followed by SEM, and number (n) of different specimens analysed.
To assess the relative importance of these processes for retinal
degeneration the percentage of TUNEL positive cells is also given.

(TTEF)
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