
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Mobile Manipulation with a Kinematically Redundant Manipulator for a Pick-and-Place
Scenario

Berntorp, Karl; Årzén, Karl-Erik; Robertsson, Anders

Published in:
[Host publication title missing]

2012

Link to publication

Citation for published version (APA):
Berntorp, K., Årzén, K.-E., & Robertsson, A. (2012). Mobile Manipulation with a Kinematically Redundant
Manipulator for a Pick-and-Place Scenario. In [Host publication title missing] (pp. 1596-1602). IEEE - Institute of
Electrical and Electronics Engineers Inc..

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/91358e1c-a025-4ebd-a3d5-3f7c8fbab682


Mobile Manipulation with a Kinematically Redundant Manipulator for

a Pick-and-Place Scenario

Karl Berntorp, Karl-Erik Årzén, and Anders Robertsson

Abstract— Mobile robots and robotic manipulators have
traditionally been used separately performing different types
of tasks. For example, industrial robots have typically been
programmed to follow trajectories using position sensors. If
combining the two types of robots and adding sensors new
possibilities emerge. This enables new applications, but it also
raises the question of how to combine the sensors and the added
kinematic complexity.

An omni-directional mobile robot together with a new type
of kinematically redundant manipulator for future use as a
service robot for grocery stores is proposed. The scenario is that
of distributing groceries on refilling shelves, and a constraint-
based task specification methodology to incorporate sensors
and geometric uncertainties into the task is employed. Sensor
fusion is used to estimate the pose of the mobile base online.
Force sensors are utilized to resolve remaining uncertainties.
The approach is verified with experiments.

I. INTRODUCTION

Mobile platforms are used in industry for a variety of

applications, one example being transporting goods in ware-

houses. Typically the environment is well defined to make

the robot’s interaction with its surroundings as predictable as

possible.

When it comes to manipulation the robots are usually fixed

to the ground, programmed to follow predefined trajectories

using position control for static environments. This works

well with high accuracy in a structured and predefined

environment, but renders problems as soon as uncertainties

are introduced in the task.

Since a number of years the attention has been drawn to

combine mobile robots with manipulators to open up new

potential applications. For many new applications, such as

in service robotics, there is a need for the robots to work

autonomously in an uncertain environment. There are sev-

eral challenges when it comes to mobile manipulation. For

example, the question of how to coordinate the movements

between the mobile base and the manipulator is a nontrivial

issue. Another issue is how to define and specify the control

task.

The task in this paper is to use a new type of light-weight

two-armed industrial robot combined with a mobile omni-

directional base to coordinate movements, where the coor-

dination involves distributing groceries on the mobile base

while it is moving. The long term objective is a grocery store

robot localizing and picking up items on shelves using vision

for object recognition. Sensor fusion from wheel encoders, a
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camera, and an inertial measurement unit is used to estimate

the pose of the mobile base. Because of different sampling

rates and computational demands some of the measurements

will arrive delayed, often referred to as out-of-sequence mea-

surements (OOSM). The delays will have to be accounted for

if high precision is wanted. An estimation algorithm based on

the OOSMs approach is therefore employed to estimate the

robot’s pose, see [1], [2]. The manipulator uses force sensors

together with impedance control, see [3], which increases

the robustness with respect to unmodeled disturbances. To

incorporate sensors, introducing uncertainties such as the

pose estimates into the control problem, and to construct a

framework for coordinated movements the constraint-based

task specification methodology (iTaSC) in [4] is exploited.

As will be demonstrated in the coming sections it is an ap-

proach well suited for handling robot systems with redundant

degrees of freedom.

The iTaSC methodology has previously mostly been used

for stationary manipulators. Although an example of apply-

ing iTaSC on mobile robots is found in [4] it is a very

simplistic example.

A. Related Work

An example of motion coordination is given in [5], where

the coordination problem is formulated as a nonlinear opti-

mization problem. The result is evaluated on a two degrees-

of-freedom mobile base combined with a three degrees-of-

freedom manipulator. Other examples of motion coordination

are [6], [7], where the coordination is solved by viewing

the mobile base as the mechanism with coarse and slow

dynamics, and the manipulator is the fast and accurate

device. The coordination between the two devices is then

done considering internal forces. In [8] the problem of door

opening is considered. The mobile base motion is indepen-

dent of the arm motion, whereas the arm motion is coupled

to the mobile base through sensing of the reaction forces

of the environment. Another work is [9], where a behavior-

based system for controlling the platform is integrated with

a hybrid dynamic system for the manipulator control.

An early framework for specifying end-effector tasks is

known as the operational space formulation, see [10]. For

general tasks that involve end-effector motion and contact

forces, generalized task specification matrices are introduced

to facilitate modeling. A work on specification of tasks for

force control is [11], where a theory of force control based

on models of the task geometry is introduced.
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B. Outline

The experimental setup and pick-and-place scenario are

introduced in Section II. The task modeling is explained in

Section III. A step-by-step description of the pick-and-place

scenario is found in Section IV. The experimental results are

shown in Section V. Finally, the conclusion and future works

are in Section VI.

II. EXPERIMENTAL SETUP

A. Robot System

The robot system used was composed of a four-wheeled

omni-directional mobile robot equipped with eight motors,

two for each wheel, together with the new concept robot from

ABB named FRIDA, see [12]. The mobile robot, which was

built at IPA Fraunhofer in Stuttgart, was previously used in

the DESIRE project, see [13]. For the experiments in this

work it was equipped with a six degrees-of-freedom IMU

from Xsens, see [14] for more information, aligned with

the coordinate frame of the robot. A calibration procedure

was used to calibrate for imperfections in the physical

alignment of each component, gains, offsets and temperature

relations. The IMU provided measurements with a rate of

100 (Hz). Using the calibration the accelerometer and gyro

vectors, expressed in the IMU’s local coordinate frame, were

computed using an onboard processor. The wheel encoder

measurements were the basis of the velocity measurements;

based on the kinematics of the robot the velocity vector was

extracted with a rate of 20 (Hz). The mobile base used ROS,

see [15], for control and navigation.

FRIDA, see Fig. 1, is a dual-arm lightweight manipulator.

Both arms have seven degrees of freedom, which means that

they have one redundant degree of freedom each. The robot

is designed to be intrinsically safe, which is accomplished

by having low payload and robot inertia, a mechanical

design free from sharp edges, as well as covering exposed

regions with soft padding. Also, power and speed limitations

together with collision detection are implemented. The robot

is controlled with the ABB IRC5 robot control system, which

has been extended with an external control system, see [16]

and [17], that makes it possible to alter the references for

the low-level joint velocity and position loops. The external

controllers were built in Matlab/Simulink. The Real-Time

workshop toolbox was used for code generation, and the

program was run on a Linux Xenomai PC with communi-

cation between the IRC5 control system and the external

control system via a dedicated Ethernet connection. For

communication between the two robots Java with PalCom,

see [18], was used.

A two-fingered vacuum tooling was used to grip items.

Since the gripper only has two fingers care has to be taken

when designing the strategy so that the gripper does not lose

the item because of external forces.

For time being FRIDA is not mounted on the mobile

base, nor does it have a wrist-mounted force/torque sensor.

Hence, to perform pick-and-place operations a six degrees-

of-freedom ATI Mini40 force/torque sensor was mounted on

Fig. 1. The new ABB concept robot FRIDA used in the experiments. A
two-fingered vacuum tooling is attached to each wrist.

the mobile base. On top of the force sensor a plate with

elevated borders was placed to simulate a shelf with walls,

see Fig. 2 for a picture of the setup. That the mobile base

and the manipulator are not rigidly connected, and that the

force sensor is not yet mounted on the manipulator’s wrist

is not any real limitation. Because of iTaSC the kinematic

calculations are easily adapted to that scenario. Also, because

of the robustness of the mobile base the dynamics should not

influence the controllers in an undesired way.

A roof mounted camera was situated above the robots’

workspace. Using the camera the absolute position and ori-

entation of the mobile robot was calculated. The algorithms

for object tracking and feature detection fall outside the scope

of this article, but are surveyed in [19]. For an introduction

to inertial and visual sensing see [20]. In this work the vision

algorithm gave position measurements with a frame rate of

approximately 3 (Hz).

Note that the vision algorithm handles frame rates up to

25 (Hz), but sometimes, because of limited communication

or computation resources, it is advantageous to be able to run

at lower frame rates and still have high precision. Therefore

the low frame rate should be seen as a robustness measure of

the control loops. Furthermore, the vision algorithm provides

a timestamp. To get correct and robust estimates a pose

estimation algorithm has to consider the time delay that the

vision algorithm gives rise to. This will be discussed briefly

in Section III-D. The vision algorithm as well as the pose

estimation algorithm were implemented in Matlab.

B. Pick-and-Place Scenario

The scenario considered is the following: The manipulator

should first pick up a can positioned at a fixed known

position. The size of the can may be unknown, but it should

of course fit into the gripper’s fingers. The shape of the can is

cylindrical. The manipulator should be able to place the item

at the corner of the plate while the mobile base drives around.

Furthemore, it should be able to place several cans next to

each other. The size of the can is considered unknown up to

a couple of centimeters in each direction, so force control is

used to ensure that the item is placed in the correct position.
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Fig. 2. The setup for the experiments. Under the shelf, seen in the middle
of the figure, a force sensor is mounted. The orange hull visible under the
force sensor is the IMU. Note that only the mobile base and the arm holding
the grocery are used in this setup.

III. MODELING

A. Constraint-Based Task Specification

As mentioned previously, for task modeling the constraint-

based task specification framework is used. Since a thorough

discussion about this framework already exists in [4], only a

summary of the parts and extensions used for this work will

be given here.

The constraint-based task specification framework speci-

fies the relative motion of objects by introducing constraints.

Constraints can express geometric relationships, force re-

lationships, velocity relationships, or some other relation-

ships. These constraints are specified using kinematic chains.

Normally a kinematic chain contains two object frames, o1
and o2, and two feature frames, f1 and f2. The object

frames are rigidly attached to the manipulated object and

the object that manipulates. The feature frames should be

attached in such a way that they simplify the problem of

specifying constraints that define the task. Furthermore, they

should be linked to o1 and o2, respectively. The different

transformations between the frames may either be constant

or nonconstant. In total there are six degrees of freedom dis-

tributed over the transformations, and these are represented

by the feature coordinates χf . The feature coordinates are

usually partitioned as χf = (χfI χfII χfIII)
T, where

χfI represents the relative motion of f1 with respect to o1,

χfII represents the relative motion of f2 with respect to f1,

and χfIII represents the relative motion of o2 with respect

to f2. To obtain the feature coordinates parts of the inverse

kinematics of the kinematic chains have to be solved.

Normally not all transformations are exactly known, im-

plying that some uncertainties exist. These uncertainties are

modeled by introducing auxiliary transformations, placed

between the frames where the uncertainties occur. The de-

grees of freedom of the uncertainties are given by χu, the

uncertainty coordinates. For example, frame o1′ could model

the uncertainty of o1, where the degrees of freedom between

the two frames are represented by χu.

The variables that are of interest to constrain are chosen

by specifying outputs y. These can, in general, be functions

of the feature and joint coordinates, but often the kinematic

chain is chosen such that y directly corresponds to some

or all of the feature coordinates χf . If fewer outputs are

chosen than the degrees of freedom in the robot system the

system will be underconstrained, and then the redundancy

can be utilized to perform an additional task— for example,

minimizing the norm of the joint velocities. It could also be

used for emphasizing that not all joints are equally important,

since sometimes it may be advantageous to concentrate most

of the motion to either the mobile base or the manipulator.

B. Kinematic Chain and Task Specification for Pick-and-

Place Scenario

One kinematic chain is used to model the task, and the

resulting object and feature frames are shown in Fig. 3.

For further clarification of how the feature and uncertainty

coordinates connect the different transformations, see Fig. 4.:

• The world frame, w, is rigidly connected to the base of

the manipulator.

• Frame o1 is fixed to the mobile base with its z-axis

along the world z-axis. It is related to w by the traversed

path of the mobile base (i.e., qmob). The unknown

position of the mobile base is modeled by o1′.
• Frame o2 is fixed to the flange of the manipulator. It is

related to w by the kinematics of the robot (i.e., qman).

• Frame f1 is located at one of the corners of the mobile

base’s plate. It is related to o1 by a constant translation.

• Frame f2 is connected to the tool center point, related

to o2 by a constant translation. The unknown length of

the gripped item is modeled by f2′.

The feature coordinates are collected into the transforma-

tion between f1 and f2 as

χfII = (x y z ψ θ φ)T,

where y should be interpreted as translation in the y-

direction. Since all degrees of freedom are collected between

f1 and f2, both χfI and χfIII are zero-dimensional.

The first three feature coordinates are cartesian translations

along the axes of f1, and the last three are rotational

coordinates parametrized by ZYX (yaw-pitch-roll) Euler

angles. The uncertainties in the task include, as already

mentioned, the three-dimensional pose of the mobile base,

and the three-dimensional size of the gripped item. Modeling

of the pose uncertainty is collected into the transformation
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Fig. 3. The frames used to specify the task.
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Fig. 4. Feature and uncertainty coordinates and how the frames are
connected. The primed frames represent the modeled frames while the others
represent the true frames.

between o1 and o1′ as χuI = (xuI yuI ψuI)T. The

length, width and height of the gripped item are modeled by

the transformation between f2 and f2′. However, the length,

width and height are resolved using force control; that is, the

motion in the x, y, and z directions are guarded by a force

sensor when searching for contact. When reaching contact

in the z-direction the motion is force controlled to maintain

contact, while the x and y directions are both position

controlled. Therefore no explicit uncertainty coordinates are

used to model this uncertainty, which implies that χuII is

of dimension zero. Furthermore, all feature coordinates are

chosen as outputs, which implies that the output vector is

y1 = x, y2 = y, y3 = z,

y4 = ψ, y5 = θ, y6 = φ.

C. Redundancy Control

The constraints used to specify the task are in this work

either position, velocity, or force based. Since the control

system for FRIDA only allows to alter the joint velocity and

position references, and since there are unmodeled dynamics

and disturbances in the system the constraint equation has to

include feedback at position, velocity or force level to not

violate the constraints in stationarity. Here, a velocity-based

control scheme is employed. First generation of the modified

desired output velocities, ẏ0
d, is done according to

ẏ0
d = f(r, ẏd, ym). (1)

Here ẏd denotes the desired output velocities that would

be generated if the system would be an ideal velocity

controlled system, and r and ym denotes the reference and

measured and/or estimated positions, velocities, or forces.

As an example, if an impedance-based position controller is

used, (1) will be generated by integrating

ÿ0
d =

1

M
(F −D(ẏd − ẋ) −K(yd − x)) (2)

once. In (2), M , D and K are tuning parameters, F is

the measured force, and x is the measured and/or estimated

position. If force control is used, a force reference is added

to the controller in (2). The relation

Aq̇ = ẏ0
d +Bχ̇u (3)

is used to solve for the joint velocities q̇. Here A and B

are matrices composed of the different jacobians involved.

Output relation (3) is obtained by differentiating the position

loop constraints, see [4] for more information.

Since the task specification only has six constraints, three

translational and three rotational, and since the mobile base

and the manipulator have more degrees of freedom than six

the matrix A will not be square. Hence an inverse does not

exist. Instead the optimization problem

minimize q̇TMq̇, (4)

subject to Aq̇ = ẏd +Bχ̇u

is solved to find a pseudoinverse A#, with the solution

A# = M−1AT(AM−1AT)−1.

When M is chosen as the identity matrix A# becomes

the well known Moore-Penrose pseudoinverse, and (4) then

minimizes the norm of the joint velocities.

D. Uncertainty Estimation

The uncertainty coordinates are constituted by the pose of

the mobile base— that is, the position in the plane and the

yaw angle. By introducing the states as described in Table

I, the state vector at time t is given by the 11-dimensional

vector

xt =
(

pt vt at ba,t ψt ωt bω,t
)T
.

Through modeling the process as a constant acceleration

process the model is

xt+1 = Fxt + vt,

where

F =





















I T I T 2

2
I 0 0 0 0

0 I T I 0 0 0 0
0 0 I 0 0 0 0
0 0 0 I 0 0 0
0 0 0 0 I T I 0
0 0 0 0 0 I 0
0 0 0 0 0 0 I





















.

The submatrices I and 0 are of appropriate dimensions, and
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TABLE I

MOBILE BASE STATES WITH DESCRIPTION AND DIMENSION.

State Description Dim.

p Vehicle position in world coordinates 2
v Vehicle velocity in world coordinates 2
a Vehicle acceleration in world coordinates 2
ba Bias state for acceleration measurement 2
ψ Yaw angle relative to the world frame 1
ω Yaw velocity in world coordinates 1
bω Bias state for angular velocity measurement 1

T = 0.01 (s) is the sample time. The process noise vt is

assumed independent and Gaussian, according to

vt ∼ N (0,Q),

Q = GQvGT,

where

G =























T 3

6
I 0 0 0

T 2

2
I 0 0 0

TI 0 0 0
0 TI 0 0

0 0 T 2

2
0

0 0 T 0
0 0 0 T























,

and

Qv = diag(qa, qba, qω, qbω).

All q-variables are process noise variance parameters.

The measurement model is given by

zt = ht + et =













pt
Ro1w vt

Ro1w at + ba,t
ψt

ωt + bω,t













+ et,

where Ro1w is the rotation matrix between the mobile base

and the world frame origin. The measurement noise et is

assumed to be independent and Gaussian, leading to

et ∼ N (0, Qe), Qe = diag(qp, qv, qma, qψ, qmω).

The matrix Qe is determined experimentally.

Due to different sample rates and computational demands

the measurements arrive with different delays, something

which causes degraded performance if not accounted for.

The described model is used together with an extended

Kalman filter (EKF) [21] exploiting the out-of-sequence

measurements approach to estimate the pose of the mobile

base. See [1] and [2] for algorithm details. Since the vision

algorithm has much larger delays than the wheel encoder

measurements, only the vision measurements are considered

to have any delay.

To summarize the estimation algorithm: When IMU and/or

wheel encoder measurements arrive, use the standard EKF

to update state estimates and covariances. When a posi-

tion measurement arrives from the camera, use the out-of-

sequence measurements approach to take into account the

computational time of the vision algorithm.

IV. PICK-AND-PLACE SCENARIO

The strategy for picking and placing the cans was chosen

such that all uncertainties could be eliminated in a robust way

while not degrading performance too much. As previously

mentioned the plate with borders could simulate a shelf with

walls. Therefore it is important that the manipulator’s arms

do not intersect the extension of the borders. By inspecting

the setup in Fig. 2 an intuitive choice would then be to place

the item with the right arm (seen from FRIDA), but because

of reachability issues and for the purpose of exploiting the

extra degree of freedom of the manipulator the left arm

was used with the elbow controlled such that collision was

avoided. Secondly, the items should be placed one after

another. A convenient solution to this was to first search

in one direction in the xy-plane. When contact was reached

search in the other translational direction was commenced.

A flowchart is shown in Fig. 5. In state 1 the manipulator

picked up the item. When entering state 2 the mobile

base started moving with varying velocity, and kept moving

approximately until the can was released. In state 2 the

manipulator moved to a position above the plate, where the

orientation was chosen such that frames f1 and f2 were

aligned in the z-direction. In state 3 a search motion using

velocity control in the z-direction was made. The position

and orientation were kept constant in the other directions

using impedance control for the translational movements

and PI control for the rotational movements. When contact

was made the state machine entered state 4, where the

control in the z-direction now switched to an impedance-

based force controller. In states 4 and 5 the search for contact

using velocity control was done for the y- and x-directions,

respectively, which means that the constraints on y2 and

y1 were velocity constraints. As soon as contact was made

for either direction, the controller was switched back to a

position-based impedance controller. Finally, the item was

released and the procedure could be restarted or terminated.

V. EXPERIMENTAL RESULTS

A. Uncertainty Estimation

For verification of the pose estimation FRIDA was used

as ground truth. Given that the control system is ideal the

only thing that moves the outputs away from its references

are incorrect pose and velocity estimates. In Fig. 6 the

results from an experiment is shown where the aim was to

keep outputs y1 and y2 positioned at the origin when the

mobile base drove around. The other outputs were velocity

controlled to zero velocity. The upper diagram shows the

difference between the mobile base translation estimates and

the x- and y-coordinates of the flange, and the lower diagram

shows the estimated mobile base velocities.

The minor deviations that occur are when the base ac-

celerates. This is something that can be explained by the

relatively low sampling rates of the wheel encoders and

vision algorithm, but also because the system is not perfectly

controlled. Hence, (1) only keeps the constraints fulfilled at
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Move to contact x
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Fig. 5. A flowchart describing the pick and place strategy used in the
experiments. From state 2 and forwards the mobile base kept moving
approximately until entering state 6.

 

 

 

 

0

0

0

0

5

5

10

10

10

15

15

20

20

20

25

25

30

30

35

35

40

40

-10

-20

-100

-200

100

200

Time (s)

Time (s)

E
rr

o
r

(m
m

)

x-error

y-error

x-velocity

y-velocity

V
el

o
ci

ty
(m

m
/s

)

Fig. 6. Verification of the uncertainty estimation algorithm. The upper
plot shows the x (blue) and y (red) error between FRIDA’s flange and the
position of the mobile base when outputs y1 and y2 should be kept at zero
position. The lower plot shows the estimated velocities of the mobile base,
where the x-velocity is shown as blue, and the y-velocity as red. Note that
the positions and velocities are shown with respect to the world frame.

stationarity. Note that if the estimation algorithm would not

take into account the time delay of the vision algorithm the

outputs would violate the constraints also during nonaccel-

erating movements. The results seem to indicate that the

estimation is smooth and correct enough to perform high-

precision coordinated control, at least when the acceleration

is not too large.

B. Pick-and-Place Scenario

Force data from an experiment is shown in Fig. 7, together

with the state sequence. The threshold set to trigger transi-

tions to state 4 is -4 (N) for the z-force, which is seen in

Fig. 7. To trigger transitions to states 5 and 6 the threshold

is 2 (N) for the y- and x-forces, respectively, which also

can be seen in Fig. 7. The y- and x-directions are position

controlled using impedance controllers in all states except

in states 4 and 5, respectively, where search motions with

constant velocity references instead are set. The force in

the z-direction is controlled to -5 (N) as soon as contact is

made, which it seems to keep reasonably well. The rotational

coordinates are velocity controlled to zero velocity in all

states from state 3.

Velocity data for the mobile base and desired outputs are

shown in Fig. 8 from the same experiment. By inspection the

search motions become clear. From approximately t = 1.8−
5 (s) the z-velocity is controlled to keep constant velocity.

Between t = 5 − 8.5 (s) the y-velocity is controlled, and

between t = 9 − 10.8 (s) the x-velocity is controlled. The

release of the can occurs where the z-control signal goes to

nonzero velocity at t = 10.8 (s). The path that the mobile

base traversed and the state transitions are found in Fig. 9.

VI. CONCLUSIONS AND FUTURE WORKS

A kinematically redundant manipulator was used to per-

form pick and place on a mobile robot while it was moving.

The movement of the mobile robot was estimated with a

modified extended Kalman filter. To get increased robustness

with respect to the remaining uncertainties force control was

used. The constraint-based task specification methodology

was exploited to specify the task, taking into account ad-

ditional sensors, uncertainty estimation and the redundant

degrees of freedom. Although the current setup may look

quite different from the intended one, they are very similar

with respect to the control and kinematics.

Future work includes mounting FRIDA on the mobile

base and the force sensor on the wrist. More vision will be

used, both for object recognition and for improving the pose

estimation algorithm with cameras mounted on the robot for

floor-texture detection.
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Fig. 8. Velocity data for the mobile base and desired output velocities
from an experiment. The upper diagram shows the x-velocity (blue) and
the y-velocity (green). The lower diagram shows the x (blue), y (green),
and z (red) control signals; that is, the modified desired output velocities
in (1). The control signals for the ZYX-Euler angles are not showed, since
they were practically zero throughout the experiment. Note that the internal
ABB-controller is active in state 1, which is the reason why the control
signals show zero velocities although in reality they are not.
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