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Abstract. We present the results of a quantum mechanical modelling of the Free

Carrier Absorption (FCA) in semiconductor heterolayers. Elastic and inelastic

scatterers are considered with emphasis on the interface defects (optical phonons)

contributions to the induced photon absorption for elastic (inelastic) scatterers.

Various approaches to FCA are also presented (perturbation, Green’s function

technique). The connection between inter-subband absorption and FCA is thoroughly

discussed. The absorption lineshape and its modification by suitable doping is

presented.
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1. Introduction

Intraband optical transitions in crystalline bulk materials are forbidden on account of the

translational invariance of the crystal on the one hand and on the very small magnitude

of the photon wavevector on the other hand. Both features lead to the impossibility for

a free carrier to absorb or emit a photon and remain in the same band. It is therefore

necessary that other agents, static scatterers (impurities) or inelastic scatterers (lattice

vibrations), supply the extra wavevector to help the carrier performing the intraband

transition. The Free Carrier Absorption (FCA) in non ideal bulk materials has been

measured in several semiconductors and is well explained by theory. The modelling

of this effect ranges from a Drude-like semi-classical approach, to quantum-mechanical

perturbation theory and to Green’s function formalism [1–11].

High quality, taylorable quasi two-dimensional (2D) semiconductor heterostructures

are routinely obtained by modern growth techniques such as Molecular Beam Epitaxy

(MBE) or Metal Organic Chemical Vapour Deposition (MOCVD)[12, 13]. The control of

the layer thickness as well as the variety of different materials which can be grown make

the quasi 2D heterostructures ideal candidates for opto-electronic applications. Actually,

the best lasers for near infrared or visible light are QuantumWell lasers. The alternation

of layers of different materials implies the loss of translation invariance along the growth

direction even for perfect materials. As a result, an ideal heterostructure can absorb

light due to intraband transitions provided the electric vector of the electromagnetic

wave is parallel to the growth direction while for the other light polarizations no optical

transitions are possible within the conduction band. Gornick and Tsui [14] reported

the first experimental observation of inter- subband emission spectra in an electron gas

in Si/SiO2 structures. Soon, Ando proposed a theory of the inter-subband transitions

taking into account scattering and many body effects [15]. An early proposal for a

laser based on inter-subband transitions was made by Kazarinov and Suris in 1971 [16].

One had to wait for improvements in the growth techniques to get the observation of

inter-subband emission in III-V materials [17–19] till, finally, the Quantum Cascade

Lasers (QCL) emerged, thanks to the conjunction of mastered growth and bandgap

engineering [20–22]. Besides the QCL’s, a number of optical devices based on the inter-

subband transitions and operating in the infrared and far infrared parts of the spectrum

exist already, notably the Quantum Well Infrared Photodetectors (QWIP) (for reviews

see e.g. [8, 9, 23]). Part of the QCL optimization amounts to limiting as much as

possible the losses, notably for the THz emitting QCL’s. Among other losses the free

farrier absorption due to intra- subband as well as inter-subband transitions needs to be

accurately modelled. We shall see that there does not exist any Drude-like modelling

of FCA in quasi 2D structures but that one should necessarily recourse to perturbative

estimates, Green’s function techniques or numerical approches to account for these FCA

losses.

This review is organised as follows. In part 2, we recall some salient features

regarding the FCA in bulk semiconductors. In particular, we shall show the relevance of
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the Drude model to explain experimental data and give representative figures of the FCA

coefficient in bulk semiconductors. In part 3.1, we briefly recall the envelope function

approximation that deals with heterolayers. Optical selection rules will be derived and

the fundamental anisotropy of the optical response of the quasi 2D heterostructures will

be highlighted. The existence of intra-subband and inter-subband transitions implies a

need for generalizing FCA in the presence of subbands. In analogy with bulk materials,

one of the central question in FCA type of calculations in heterolayers is the status of

collision broadening and the part played by the disorder in the FCA. Should the elastic

scatterers/phonons generate FCA by mixing unperturbed states or because they provide

an imaginary part of the electron energies expressing the decay of any unperturbed state?

It is worth stressing that there is a convenient way to modify the influence of the disorder

on the optical response. It consists in applying a quantizing magnetic field parallel to

the growth axis leading to a reorganization of the energy spectrum and also to a drastic

reduction of the available phase space for electrons. An overview of the scattering

mechanisms relevant to FCA will be presented in 3.2 with an emphasis on scatterers that

are genuine to the heterolayers: the interface defects. Section 3.3 will be devoted to a

discussion of the inter-subband and intra-subband absorption lineshape. Section 3.4 will

present the perturbative approach to intra-subband oblique transitions (genuine FCA)

and inter-subband oblique transitions in quasi 2D structures and discuss the results

based on that approach. Section 3.5 will be devoted to a survey of Green’s function

approach to inter-subband and intra-subband optical transitions. This approach will

be used to discuss the evolution from FCA in superlattices to FCA in bulk materials.

The link between FCA and the effect of the inter-subband transitions on the tail of the

absorption spectrum will be discussed in section 3.6. In 3.7 we will briefly discuss the

transition from 2D FCA towards bulk FCA. In 3.8 we shall point out the existence of

quasi selection rules that exist in imperfect heterolayers. In particular, we shall show

how an ad hoc location of ionized impurities can effectively suppress impurity-related

optical features. Finally, conclusions will be drawn in section 4.

2. Free Carrier Absorption in bulk semiconductor crystals

The translation invariance of crystalline materials leads to the existence of Bloch states

|n~k〉 with energies εn~k for the electron states, where n is the band index and ~k the

wavevector. In the following, we restrict our considerations to cubic materials. In

semiconductors doping and/or finite temperature induce a finite population in the

conduction band. At thermal equilibrium and due to the low carrier concentration

(compared to metals), it is fair to approximate the dispersion relations by parabola

around the conduction band minimum. In the following we shall use an isotropic

dispersion for the conduction band corresponding to the effective mass m∗, a situation

approximately realized in several technologically important materials like GaAs. The

generalization to anisotropic bands, as relevant for the conduction band mimina of Si,

is straightforward. At this point it is easily proven that the intraband transition |c~k〉 →
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|c~k′〉 with the simultaneous absorption of a photon
(

ω = h̄
2m∗

(k′2 − k2) , ~q = ~k′ − ~k
)

is impossible because both energy and wavevector conservations cannot be satisfied.

The departure from ideality of any crystal breaks the translation invariance and allows

such an oblique (in ~k space) transition. The simplest way to account for these

oblique transitions is to perform a semi-classical Drude analysis. Let us consider an

electromagnetic progressive plane wave characterized by a ~k vector and an angular

frequency ω. The associated electric field accelerates the conduction electrons which

are also slowed down by a visquous friction force −m∗ ~v
τ
, where τ is a characteristic

relaxation time. In the stationary state, both forces balance and the electron velocity

becomes proportional to the electric field leading to the Ohm law:

~J(ω) = σ(ω) ~E(ω) ; σ(ω) =
σ0

1− iωτ
(1)

where σ0 =
n3De2τ

m∗
is the static conductivity and n3D the three dimensional (3D) electron

concentration. (Note, that we use the time-dependence J(t) ∼ J(ω)e−iωt throughout the

paper.) The dispersion relation of the electromagnetic wave is related to the effective

relative dielectric function ε̃(ω) by:

k2 =
ω2

c2
ε̃(ω) ; ε̃(ω) = εr(ω) + i

σ(ω)

ε0ω
(2)

where ε0 is the vacuum dielectric constant and εr(ω) is the real part of the relative

dielectric function, due e.g. to polarization effects. The absorption coefficient α(ω) is

equal to:

α(ω) =
n3De

2

nrm∗cε0ω2τ
(3)

where nr is the refractive index at the angular frequency ω and ωτ ≫ 1. For GaAs-like

parameters (m∗=0.07m0, nr=3.5, n3D=1016 cm−3, τ=1 ps) one finds α ≈ 0.12 cm−1 for

a wavelength λ=10 µm, a value within a factor of 3 off the more reliable one obtained

by solving the Boltzmann equation and evaluating the parameter τ [2]. Of course,

the Drude-like approach has several limitations, both physical (e. g. lack of quantum

mechanical description) but also numerical since there is no a priori knowledge of the

parameter τ and a fortiori of its variations with temperature T or wavelength λ. A

more microscopic approach is at stake and one can solve the Boltzmann equation with

scattering probabilities deduced from the quantum matrix elements of the scattering

potential. Or one attempts a perturbative approach of the disorder by expanding the

carrier eigenstates to the first order in disorder. This method will be detailed in section 3

when we shall discuss the FCA in quasi 2D heterostructures. Otherwise, the frequency

dependent conductivity, which is the only ingredient to plug in the Maxwell equations,

can be evaluated by Green’s function techniques. Again this will be detailed in section 3

in quasi 2D situations. Suffice here to say that at the lowest order in the small parameter

(ωτ)−1 an expression similar to (3) is retrieved for bulk materials, with the important

improvement that the phenomenological parameter τ is now a well defined quantity

that can be precisely calculated in terms of the band parameters, temperature, elastic

scatterers and phonons present in the material.
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Figure 1. Theoretical and experimental values of the absorption coefficient as a

function of electron concentration in GaAs at room temperature. Walukiewicz et al .

Reprinted with permission from [2]. Copyright 1979, American Institute of Physics.

Figure 1 shows a representative example of FCA in bulk semiconductors. In

figure 1 the material is GaAs and T=300 K. The absorption coefficient at λ=10 µm is

plotted versus the electron concentration n3D. Several scattering mechanisms have been

considered: ionized impurities, electron-Longitudinal Optical (LO) phonon and electron-

acoustical phonon interaction by deformation potential. Theory and experiments agree

quantitatively on the absolute magnitude of FCA at λ=10 µm as well as on the

wavelength dependence of FCA. While the Drude model predicts αFCA(λ) ∝ λ2,

Boltzmann type of calculations points out a λp behaviour with an exponent p that

is dependent on the scattering mechanism: p ≈ 2.5 for scattering by optical phonons;

p ≈ 3.5 for ionized impurity scattering and p ≈ 1.5 for acoustical phonon scattering

[2]. Similar (but not identical) dependencies were found in other bulk materials. It

might have been feared that FCA would be detrimental to interband lasers. Their usual

operating wavelengths (λ ≤ 1 µm) make that, despite the large electron concentrations

(n3D ≈ 1018 cm−3) present in these interband lasers, FCA remains very small. Haug [5]

reviewed FCA in bulk lasers including the photon absorption promoting a conduction

electron to an upper band and concluded that FCA was so small that it becomes

irrelevant to the lasing action in bulk semiconductors.
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3. Intra- and inter-subband absorption in quantum structures

3.1. Envelope function approach in quasi two-dimensional heterostructures

Advanced growth techniques such as MBE or MOCVD have made possible the growth

of nanometer thin layers with (relatively) well controlled interfaces (for a recent review

see e.g. [12, 13]). With this synthesis breakthrough, all sorts of semiconductor

heterostructures are within reach, ranging from single quantum well structures with

only two interfaces, periodic sequences (called superlattices) up to the most elaborate

ones: the Quantum Cascade Laser consisting of series of wells and barriers with different

thickness repeated hundreds of times.

A number of theoretical techniques have been employed to calculate the electronic

structure of these man made materials. Here, we restrict our considerations to the

Envelope Function Approximation [24]. In its simpler version (one band), the envelope

functions Fc are the solutions of the effective Hamiltonian Heff [25]:
[

pz

(

1

2m∗(z)

)

pz +
p2x + p2y
2m∗(z)

+ Vconf (z) + Vdis(~r)

]

Fc(~r) = εFc(~r) (4)

where m∗(z) is the conduction band effective mass that has become position dependent

because there are different layers in the heterostructure along the z growth direction.

Vconf (z) is the position dependent conduction band edge. Both Vconf (z) and m∗(z)

display sudden changes at the interfaces between different layers. The term Vdis accounts

for impurities, alloy fluctuations like in bulk materials. It also comprises a contribution

genuine to heterolayers: the interface defects. Finally, electrons interact with phonons.

In polar materials, the Fröhlich interaction between the electrons and the LO phonons

is written:

He−ph =
∑

~Q,Qz

v( ~Q,Qz)e
−i ~Q.~ρe−iQzza†~Q,Qz

+ v∗( ~Q,Qz)e
i ~Q.~ρeiQzza ~Q,Qz

v( ~Q,Qz) =
iCF

√

Q2 +Q2
z

; CF = e

√

h̄

2ε0εr(∞)ωLO

(ω2
LO − ω2

TO) (5)

In (5) ~ρ = (x, y) and bulk-like phonons are assumed. ~Q = (Qx, Qy); ωLO, ωTO are

the angular frequencies of longitudinal and transverse optical phonons respectively and

εr(∞) is the high frequency dielectric permittivity. A similar expression holds for

longitudinal acoustical phonons; for details see [26].

The size quantization allows the tailoring of the energy levels and, thus, of the

absorption/emission line position. One finds readily that the infrared (IR), far IR

and even THz parts of the electromagnetic spectrum can be covered by a suitable

design of the layer thicknesses. These features are at the heart of the QWIP and

QCL devices. Both QWIP and QCL have already received a considerable attention

and the reader is referred e.g. to [9, 21–23] for suitable reviews. As an example of the

taylorability of the QCL emission energy, we show in figure 2 the calculated energy levels

of a 10 nm/2 nm/L2 biased double quantum well (DQW) subjected to a longitudinal
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static electric field ~F//z with F=12 kV/cm varying the well thickness L2 and keeping

the intermediate barrier thickness Lb=2 nm constant. The material parameters are

appropriate to the (Ga,In)As/Ga(As,Sb) lattice-matched heterolayers where each alloy

is treated in the Virtual Crystal Approximation i.e. a conduction band discontinuity

equal to 360 meV and an electron effective mass m∗
w=0.043m0 in the well material

(Ga,In)As and m∗
b=0.045m0 in the barrier material Ga(As,Sb). The energy spectrum

for the bound states is organized in doublets corresponding to the hybridization between

the single well solutions. We see in figure 2 the familiar anticrossing schemes where a

level (E1, E3) essentially localized in the 10 nm well and with a constant energy versus

L2 anti-crosses levels with decreasing energy versus L2. This happens near L2=10 nm

where the eigenstates (χ3, χ4) and (χ1, χ2) are delocalised over the two wells. (Due to

the curvatures of the lines before crossing, the minimal separation in energy is slightly

shifted to higher values of L2.) At large L2 the spatial localization of the eigenstates

increases with increasing well thickness.

Figure 2. Calculated energy levels of (Ga,In)As/Ga(As,Sb) 10 nm/2 nm/L2 DQW

for a fixed electric field F . The parameters of the calculation are: m∗
w=0.043m0,

m∗
b=0.045m0, Vb=360 meV. F=12 kV/cm.

In the presence of a plane progressive wave propagating along the ~q direction with

electric vector ~E = ~εei(~q.~r−ωt) where ~ε is the polarization vector, one should at the dipole

approximation add a term

Hlight =
e

iω
~ε.
1

2

[

1

m∗(z)
~p+ ~p

1

m∗(z)

]

e−iωt ; ~ε.~q = 0 (6)

to the electron effective Hamiltonian Heff . An ideal heterostructure is translation

invariant in the (x, y) plane but has lost its translation invariance along the growth

z axis. As a result, there will be no light absorption for the polarization vector laying

in the (x, y) plane whereas an electromagnetic wave propagating in the layer plane with

its polarization vector along z may induce electronic inter-subband transitions. In fact,

the (envelope) eigenstates of Heff for an ideal heterostructures can be written:

〈~r | n~k 〉 = χn(z)
ei
~k.~ρ

√
S

(7)
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where ~k = (kx, ky), S is the sample area and the corresponding eigenenergies are

εnk = En +
h̄2k2

2m∗
. The index n is discrete (continuous) for the bound (extended) states

χn(z) of the z motion. With this, we find readily the momentum matrix elements:

〈n′~k′ | ~ε.~p | n~k 〉 = δ~k,~k′
[

〈n′|pz|n〉εz + h̄~ε.~kδn,n′

]

(8)

Note that intra-subband transitions (n′=n) remain energetically forbidden in any

polarization. However, elastic scatterers and phonons will allow these intra-subband

transitions.

The notion of FCA has to be redefined in quasi 2D heterostructures since the direct

analogy with FCA in bulk materials would be restricted to the intra-subband absorption.

Actually, for a given photon energy, say the lasing energy in a QCL, besides an intra-

subband absorption, one may also find inter-subband transitions. Hence, FCA in quasi

2D structures must comprise both types of transitions. It is in fact mandatory to include

the inter-subband oblique transitions if one wants to describe the FCA evolution from

a quasi 2D structures to that in a bulk material (see section 3.5) [27].

One of the most powerful tools of investigation of quasi-2D materials is the

application of a very strong magnetic field parallel to the growth axis. The continuous

in-plane dispersion becomes replaced by a fan of discrete Landau levels which are

equidistant for parabolic dispersion. In fact, for an ideal heterostructure Heff becomes:
[

pz

(

1

2m∗(z)

)

pz +
p2x + (py + eBx)2

2m∗(z)
+ Vconf (z)

]

Fc(~r) = εFc(~r) (9)

where the transverse gauge ( ~A = (0, Bx, 0)) has been used. The solutions of (9) are:

Fc(~r) = 〈~r|n, p, ky〉 = χ(p)
n (z)

eikyy
√

Ly

ϕp(x+ λ2ky) ; λ =

√

h̄

eB
(10)

where ϕp is the pth Hermite function:

ϕp(x) =
1

√

2pp!λ
√
π

exp

(

−(x+ λ2ky)
2

2λ2

)

Hp

(

(x+ λ2ky)

λ

)

Hp(x) = (−1)pex
2 dp

dxp
(e−x2

) (11)

Note that the eigenenergies do not depend on ky, which leads to a macroscopic

degeneracy of the eigenenergies εnp. The z dependent eigenfunctions χ(p)
n (z) depend

on the Landau level index p because the effective mass m∗(z) is position dependent.

But this dependence is very weak for tightly bound states that are usually the ones

involved in the lasing action of QCL’s. One of the most striking consequences of the

Landau quantization is the modulation of inter-subband scattering [28]. For instance,

in absence of magnetic field, elastic scatterings allow inter-subband transitions for any

initial in-plane wavevector. On the contrary, when B 6= 0 an electron initially in the

state |n, p, ky〉 can undergo an elastic scattering to |n′, p′, k′
y〉 only if the energies of

the two states coincide, which is usually impossible. When this is made possible by an

accidental degeneracy between εnp and εn′p′ the evaluation of the scattering rate requires

going beyond the Born approximation [3, 15, 29].
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3.2. Scattering mechanisms in quasi two-dimensional heterostructures

While the scatterers in quasi 2D structures may be the same ionized impurities as

in bulk materials, the breakdown of translation invariance along z implies important

modifications of their scattering efficiency together with a marked dependence upon the

impurity location. An important difference between bulk and quasi 2D materials is the

existence of a novel scattering mechanism that is genuine to heterolayers: the interface

defect scattering. The efficiency of alloy scattering is also modified in quasi 2D materials

since it can be very much weakened if the alloy scattering occurs in the barrier-acting

materials. On the other hand, apart from the existence of interface phonon modes, the

scattering by phonons in bulk and quasi 2D materials are qualitatively the same. They

however quantitatively differ.

3.2.1. Impurities While it is clear that the unit cell that hosts an impurity is

irrelevant in a bulk crystal, it becomes very important to specify the relative position

of the impurities and the initial and/or final state in heterostructures. Typically,

the impurity scattering will be efficient if the impurity location along the z axis is

close from a maximum of the square modulus of the envelope functions for the initial

or final state, while it will be negligible if the impurity is far away from the states

involved in the transition. We illustrate this feature by displaying the variations of

the inter-subband matrix element of the Coulomb potential created by one impurity

〈2~k| −e2

4πε0εr
√

(~ρ− ~ρj)2+(z−zi)2
|1~k′〉 versus zi for the DQW structure of figure 2 and a fixed

~q = ~k′ − ~k where (~ρj, zi) is the impurity location. One finds readily:

〈2~k| −e2

4πε0εr
√

(~ρ− ~ρj)2 + (z − zi)2
|1~k′〉 = −e2

2ε0εrS
×e−i~q. ~ρj〈2|e−q|z−zi||1〉

q
(12)

Figure 3. The impurity form factor 〈1|e−q|z−zi||2〉 is plotted versus the impurity

location zi along the growth axis for several q values in the case of the double quantum

well structure 10/2/12 nm of figure 2 with E1=46.8 meV and E2=56.3 meV.
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Thus, it is enough to display in figure 3 the zi dependence of the impurity form factor

〈2|e−q|z−zi||1〉 for several values of q since the in-plane impurity location ~ρj disappears in

a Born type calculation where the scatterers are assumed uncorrelated. As a matter of

fact, when there are many impurities distributed at random, the different phase factors

e−i~q. ~ρj oscillate and as a result the squared modulus of the sum of the impurity matrix

elements reduces to N times that of a single impurity. Hence, the in-plane location is not

so important as expected from unperturbed eigenstates that are uniformly distributed

in the layer plane. On the reverse, the impurity location along the growth axis does

matter since the modulus of the matrix element can be very small (impurity far in

the right hand side or left hand side barriers) or, as shown in figure 3, may reach a

maximum when zi is near the maximum of either |χ1|2 or |χ2|2. These considerations

are of relevance when the optimisation of a structure is searched.

The Coulombic potentials are screened by the free carriers (see e.g. [3] for a

thorough discussion of screening effects in quasi 2D heterostructures). But in QCL

structures the carrier concentration is very low (typically 4×1010 cm−2 for THz QCL’s)

and the screening is quite weak. Low carrier concentrations ensure the validity of the

Debye-Huckel approximation, in particular when T is not too low. It has been pointed

out [30] that for extended structures such as superlattices or QCLs, 3D Debye-Huckel

screening might be a better approximation to the actual screened potential than the 2D

Debye-Huckel screening. In such a 3D case, the screened coulombic potential created

by a donor located at (~ρj, zi) admits the Fourier Bessel expansion:

V (~ρ, z) =
−e2

2ε0εrS

∑

~Q

ei
~Q.(~ρ− ~ρj)

√

Q2 +Q2
s

e−|z−zi|
√

Q2+Q2
s (13)

where Qs is the classical wavevector:

Qs =

√

e2n3D

ε0εrkBT
(14)

where n3D is the equivalent 3D carrier concentration. For n3D=1015 cm−3, T ≈ 100 K

and εr=12.4, one finds Q−1
s ≈ 70 nm, i.e. a distance much larger than a typical effective

Bohr radius. Thus, impurities will be little screened and their bound states will survive

with a substantial binding.

3.2.2. Interface roughness A scattering mechanism genuine to heterolayers is the

interface roughness. By this it is meant that the interface separating two materials

deviates from a plane. Note that we have implicitly assumed working in the envelope

function formalism. In a more microscopic approach the interface, even ideal, does not

reduce to a plane but to a collection of ideally placed atoms. Because little is known on

the formation of interfaces, people have tried to use interface models that are as simple

as possible [31, 32]. A very popular model is the one that relates interface roughness

potential to correlated in-plane fluctuations of the position of the interface. This model

is detailed e.g. in [3] and [15]. Let ∆(~ρ) be the deviation of the interface from a plane.
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The nominal hetero-interface is at z=z0 and the barrier height is Vb. Hence, an electron

experiences a potential energy:

V (~ρ, z) = VbY (z − z0 +∆(~ρ))

= VbY (z − z0) + Vb [Y (z − z0 +∆(~ρ))− Y (z − z0)] (15)

where Y (x) is the step function: Y (x) = 1 if x > 0; Y (x) = 0 if x < 0. The potential

energy has been written as the sum of an unperturbed contribution due to the ideal

interface and a perturbation δVdef = Vb [Y (z − z0 +∆(~ρ))− Y (z − z0)]. The matrix

element between |n~k〉 and |n′~k′〉 of this perturbation is equal to:

〈n~k|δVdef |n′~k′〉 = Vb

S

∫

d2ρei(
~k′−~k).~ρ

×
∫

dzχ∗
n(z)χn′(z) [Y (z − z0 +∆(~ρ))− Y (z − z0)] (16)

If one assumes that ∆ remains small compared to the penetration length of the

unperturbed envelope functions in the barrier, we get:

〈n~k|δVdef |n′~k′〉 = Vb

S

∫

d2ρei(
~k′−~k).~ρ

∫ z0

z0−∆(~ρ)
dzχ∗

n(z)χn′(z)

≈ Vb

S
χ∗
n(z0)χn′(z0)

∫

d2ρei(
~k′−~k).~ρ∆(~ρ) (17)

The fluctuations ∆(~ρ) have a zero average. Hence, there is no energy shifts to the first

order in ∆. When calculating scattering rates one should average the squared modulus

of the matrix elements:

〈
∣

∣

∣〈n~k|δVdef |n′~k′〉
∣

∣

∣

2 〉av =
V 2
b

S2
|χ∗

n(z0)|2|χn′(z0)|2

×
∫ ∫

d2ρd2ρ′ei(
~k′−~k).(~ρ−~ρ′)〈∆(~ρ)∆(~ρ′)〉av (18)

In this approach of the interface roughness the correlation function 〈∆(~ρ)∆(~ρ′)〉av plays
the central role. Very often [3], one assumes it is a Gaussian function of |~ρ− ~ρ′|:

〈∆(~ρ)∆(~ρ′)〉av = ∆2 exp

(

−(~ρ− ~ρ′)2

Λ2

)

(19)

Alternatively, one can use an expontential distribution

〈∆(~ρ)∆(~ρ′)〉av = ∆′2 exp

(

−|~ρ− ~ρ′|
Λ′

)

(20)

which appears to fit better with experimental data [33–35]. Choosing Λ′ = Λ/
√
6 and

∆′ =
√
3∆ provides identical Fourier transforms around q = 0.‡

Finally, one gets the averaged matrix element:

〈
∣

∣

∣〈n~k|δVdef |n′~k′〉
∣

∣

∣

2 〉av =
V 2
b

S
|χ∗

n(z0)|2|χn′(z0)|2∆2πΛ2 exp



−(~k′ − ~k)2Λ2

4



(21)

where the statistical coefficients ∆ and Λ are usually treated as fitting parameters. Note

that we have neglected any modification of the band bending effects due to mobile and

‡ Martin Lindskog, private communication



12

fixed charges associated with interface fluctuations. Ando et al have discussed these

modifications in details in particular in the Si/SiO2 case. In QCL structures we expect

these modifications to be small on account of low carrier concentrations present in these

structures compared to those in Si MOSFET (a few 1012 cm−2).

In this review, we shall use a slightly different model of interface roughness.

Compared to the nominal interface z=z0, the interface fluctuations are represented

by Gaussian protrusions either from the well in the barrier or vice versa. They will be

attractive (repulsive) in the former (latter) case. These protrusions are centred at the

site ~ρj and are characterized by an in-plane extension σ and by a depth hdef : for an

ideal barrier (z ≤ z0)/well (z ≥ z0) interface:

δVdef (~ρ, z) = Vbg(z)
∑

~ρj

exp

(

−(~ρ− ~ρj)
2

2σ2

)

g(z) = +Y (z − z0)Y (hdef − z + z0) for repulsive defects

g(z) = −Y (−z + z0)Y (hdef + z − z0) for attractive defects (22)

Besides the characteristic in-plane size σ, the defects are characterized by their areal

concentrations ndef = Natt+Nrep

S
or equivalently by the fractional coverage of the surface

fr:

fr = πσ2ndef (23)

One of the advantages of this model is that the σ and fr parameters allow to have an

immediate picture of the disorder extension. The link between the two models can be

made by evaluating the averaged squared modulus of the scattering matrix element.

Assuming no correlations between both the attractive and repulsive sites we get:

〈
∣

∣

∣〈n~k|δVdef |n′~k′〉
∣

∣

∣

2 〉av =
V 2
b

S
4π2σ4

×




Nrep

S

∣

∣

∣

∣

∣

∫ z0+hdef

z0
dzχ∗

n(z)χn′(z)

∣

∣

∣

∣

∣

2

+
Natt

S

∣

∣

∣

∣

∣

∫ z0

z0−hdef

dzχ∗
n(z)χn′(z)

∣

∣

∣

∣

∣

2




× exp
(

−(~k′ − ~k)2σ2
)

(24)

In the limit where the envelopes vary slowly on the scale of hdef we obtain:

〈
∣

∣

∣〈n~k|δVdef |n′~k′〉
∣

∣

∣

2〉av =
V 2
b

S
|χn(z0)|2|χn′(z0)|24π2σ4h2

def

(

Nrep +Natt

S

)

× exp
(

−(~k′ − ~k)2σ2
)

(25)

Comparing (21) and (25) we get:

Λ = 2σ ; ∆ = hdef

√

fr (26)

Another advantage of writing δVdef as a random muffin tin potential lays in its capability

to handle bound states associated with the interface defects. These bound states

are however shallow (of the order of 1 meV) in GaAs/(Ga,Al)As heterostructures

because hdef is small (one monolayer) and very often the wavefunctions are small at

the interfaces. The interface roughness affects the various subbands differently since
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the amplitudes of the wavefunctions at the interfaces markedly depend on the subband

index. We show in figure 4 the potential energy landscape for the in-plane motion in a

GaAs/(Ga,Al)As DQW for the E1 subband. To draw figure 4 the 3D defect potential

δVdef (~ρ, z) is averaged over the χ1 state:

δVdef,2D(~ρ) =
∫ +∞

−∞
dzχ2

1(z)δVdef (~ρ, z)

= −Vb

∫ z0+hdef

z0
dzχ2

1(z)
∑

~ρatt

exp

(

−(~ρ− ~ρatt)
2

2σ2

)

+ Vb

∫ z0

z0−hdef

dzχ2
1(z)

∑

~ρrep

exp

(

−(~ρ− ~ρrep)
2

2σ2

)

(27)

The attractive and repulsive sites are random 2D vectors and figure 4 corresponds to

one particular realisation of the interface disorder. Note that any calculated property

associated with the interface roughness has to involve an average over the disorder

realisation; in practice each property is calculated for a large number of different choices

for the repulsive and attractive sites.

Figure 4. Potential energy landscape for the in-plane motion of an electron in a

7/2/10 nm GaAs/Ga0.75Al0.25As DQW. The barrier height is 217.5 meV. The defect

parameters are fr=0.3, σ=3.6 nm and hdef = 0.283 nm. The interface defects are

placed on the second interface starting from the left.

To illustrate the shallowness of the bound states created by interface defects in

the GaAs/GaAlAs system we show in figure 5 the calculated in-plane squared envelope

functions of several states (bound and unbound) associated with the E2 subband of a

9/2/3nm GaAs/Ga0.75Al0.25As DQW. In these calculations the inter-subband scattering

is neglected and attractive potentials bind states for the in-plane motion below each

of the En edges. The numerical diagonalization is undertaken in a 200 nm × 200 nm

box using a basis of periodic plane waves. Taking the inter-subband contribution into

account transforms these discrete states into resonances. These resonances may be long

lived (as well as the trapping of carriers onto the defects effective) if the binding energies
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are larger than the broadening due to escape. This is barely true for interface defects in

figure 5 but is well obeyed for donor impurities , as discussed later. Interface roughness

is expected to play a more important part in systems where the anions are different, e.g.

InAs/(Ga,Al)Sb or (Ga,In)As/Ga(As,Sb). This is because the growth always ends up

with a group V plane. Hence, in a AlSb/InAs/AlSb single QW the barrier growth stops

at a Sb plane. Then, the InAs growth proceeds letting an InSb double layer in between

the AlSb and InAs layers. The InAs growth ends by an As plane. The growth of the

second AlSb barrier leaves an AlAs double layer between the InAs and AlSb layers.

The atomic structures of these double layers are not very well known and a fortiori the

structure of an interface defect is certainly much more complex than in the systems with

common group V elements and should probably have a deeper extension along the z

axis than one monolayer as found in GaAs/(Ga,Al)As.

Figure 5. Normalized in-plane squared envelope functions of several states with energy

E and associated with the E2 subband of a 9/2/3 nm GaAs/Ga0.75Al0.25As DQW. The

barrier height is 217.5 meV. The inter-subband scattering is neglected. Panel a: E=E2-

1.3 meV (first bound state). Panel b: E=E2+5 meV. Panel c: E=E2+10 meV. Panel

d: E=E2+20 meV.

3.2.3. Alloy scattering The effect of alloy scattering is much affected by the size

quantization due to the unequal spatial distribution of the eigenstates among the

different layers. Clearly, alloy scattering that takes place in the barriers is for most

heterolayers less prevalent than the one that takes place in the well-acting materials.

The alloy scattering is due to a sum of uncorrelated short-range scatterers. For example,

in Ga1−xAlxAs alloys each group III site is occupied by a Ga atom with a probability x

or an Al atom with a probability 1− x. In an ideal alloy the sites are independent. Ga

and Al are isovalent and the bonds between Ga and As or Al and As are very similar. So,

in a first approximation, one can define a virtual crystal where all the group III element
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sites are occupied by an average atom that contributes to a crystalline potential by a

quantity (1 − x)VGa + xVAl. The difference δValloy between the actual and the Virtual

Crystal Approximation (VCA) potential scatters the VCA Bloch waves. People are used

to write:

δValloy =
∑

~RGa

x(VGa − VAl)−
∑

~RAl

(1− x)(VGa − VAl)

= ∆V ω0



x
∑

~RGa

δ(~r − ~RGa)− (1− x)
∑

~RAl

δ(~r − ~RAl)



 (28)

where ω0 is the volume of the VCA unit cell and ∆V an effective strength (a fraction

of an eV) which is the average of (VGa − VAl) over this unit cell. ∆V is not very well

known but it is often assumed to be related to the conduction band offset. With (28)

one finds readily:

|〈n~k|δValloy|n′~k′〉|2 =
(

∆V ω0

S

)2

×
∣

∣

∣

∣

∣

∣

x
∑

~RGa

χn(zGa)χn′(zGa)e
i(~k′−~k).~ρGa − (1− x)

∑

~RAl

χn(zAl)χn′(zAl)e
i(~k′−~k).~ρAl

∣

∣

∣

∣

∣

∣

2

(29)

In (29), the summations run on the Ga1−xAlxAs parts of the heterostructure. Averaging

over Ga and Al sites and assuming these sites to be uncorrelated, we get:

〈
∣

∣

∣〈n~k|δValloy|n′~k′〉
∣

∣

∣

2〉av =
x(1− x)ω0(∆V )2

S

∫

Ga1−xAlxAs
dzχ2

n(z)χ
2
n′(z) (30)

We show in figure 6 the period length Lz dependence of 〈Malloy〉 =

〈
∣

∣

∣〈1, ~k|δValloy|1, ~k′〉
∣

∣

∣

2〉av in a (Ga,In)As/Ga(As,Sb) single QW structure. The ∆V pa-

rameters have been assumed equal (0.6 eV) for both alloys. Unless the well is extremely

narrow (such that the integrated probability in the well and in both barriers are com-

parable), the alloy scattering in the barrier remains negligible compared to that taking

place in the well-acting material.

3.3. Inter-subband and intra-subband absorption lineshape (z polarization)

For the sake of definiteness, we shall consider in the following the z polarization in

the electromagnetic field: ~ε//ẑ. For an ideal heterostructure, there is no intra-subband

transition while the inter-subband transition is allowed and gives rise for parabolic in-

plane dispersion relations to a delta-like absorption. In the following, we shall present

results in terms of absorption coefficient (like in 3D materials). To do so, we shall first

evaluate the energy loss rate of electrons P (ω) by using the Fermi Golden Rule to handle

the interaction between matter and electromagnetic (e.m.) wave and relate this P (ω)

to the absorption coefficient α(ω) by assuming that light is uniform over the Np periods

(one period length Lz) of the structure. Under such an assumption, α and P are related

by:

α(ω) =
2P (ω)

ε0cnrE2
emLzS

(31)
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Figure 6. Lz dependence of 〈Malloy〉 =〈
∣

∣

∣〈1,~k|δValloy|1, ~k′〉
∣

∣

∣

2

〉av in a

(Ga,In)As/Ga(As,Sb) single QW structure. m∗
w=0.043m0, m

∗
b=0.04m0, Vb=360 meV.

where Eem is the electric field strength of the em wave. Note that eq.(31) is

established under the assumption of weak absorption (in the evaluation of

the flux of the Poynting vector, plane waves for the e.m. fields are used). As

expressed in terms of the real (k1) and imaginary (k2) parts of the wavevector

of the e.m. waves, this means that k1 ≫ k2. But if the weak absorption limit

is valid k1 ≈ nrω
c
, where nr is the refractive index. On the other hand, k2 is

linked to the absorption coefficient α(ω) by k2 = α(ω)
2

. As long as k1/k2 ≫ 10

the weak absorption limit is well justified. We will show in figures 9 and

14, taken as representative examples, together with α(ω) the variations of

k1/k2 versus the photon energy h̄ω. We shall see that the weak absorption

limit is well followed, except in the immediate vicinity of resonances where

the perturbative approches used become unreliable and must be replaced by

more refined or even exat approches. The latter will be handled in sections

3.5 and 3.6.

For an ideal heterostructure both Pintra and αintra vanish for intra-subband

transitions while:

α1→2
inter(ω) =

πe2

m∗2ωε0cnrLz

(n1 − n2)|〈1|pz|2〉|2δ(E2 − E1 − h̄ω) (32)

where n1 and n2 are the 2D concentrations of electrons in the subband 1 and 2

respectively and where we have neglected the z dependence of the effective mass. By

using ih̄pz
m∗

=
[

z, p2

2m∗

]

, (32) can be written in term of the inter-subband dipole operator:

α1→2
inter(ω) =

πe2ω

ε0cnrLz

(n1 − n2)|〈1|z|2〉|2δ(E2 − E1 − h̄ω) (33)

Here, we used E2 −E1 = h̄ω which is justified due to the delta function. Alternatively,

one obtains this expression if one approximates the coupling to the electromagnetic field

via the ~E · d̂ term (where d̂ is the electric dipole moment), while we used ~A · p̂-coupling
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in the Fermi’s golden rule treatment above. Taking broadening effects into account

empirically transforms the delta function into a Lorentzian:

α1→2
inter(ω) =

e2ω

ε0cnrLz

(n1 − n2)|〈1|z|2〉|2
Γ

Γ2 + (E2 − E1 − h̄ω)2
(34)

Without the delta-function, the ω-dependence of the prefactor provides different

behavior, depending on the coupling to the electromagnetic field used. At this stage,

we do not have a convincing argument, which one is better, but obviously, one has to

be careful if E2−E1 and h̄ω strongly differ. For Γ=2 meV, n1−n2=1011 cm−2, nr=3.5,

|〈1|z|2〉|=2.2 nm, Lz=30 nm, h̄ω=100 meV, we find at resonance: α1→2
inter ≈ 2.3×103 cm−1.

Thus, inter-subband absorption is a strongly allowed transition. Note that the high

energy tail of α1→2
inter (h̄ω − E2 + E1 ≫ Γ) varies like ω

(h̄ω−E2+E1)2
while the absorption

coefficient varies like ω at very low frequency.

There are two difficulties with (34). The first one is the incorrect identification of

the absorption peak with the single particle energy difference E2 − E1. This difference

comprises the level renormalisations due to scattering and the depolarization and exciton

shifts and increases with n1−n2. The latter one amounts to a few meV’s when n1−n2 is

a few 1011 cm−2 in the GaAs/GaAlAs heterostructures [18]. Secondly, the status of the

broadening parameter Γ in (34) is unclear since there is no handling of the real scattering

mechanisms, in particular of their subband dependence. Frequently one applys state-

dependent semiclassical scattering rates, see, e.g., [36], where collisional broadening was

included. However, this may be problematic far from resonance |h̄ω − E2 + E1| ≫ Γ,

which is of high relevance for the low-fequency absorption. In view of the strong

dependence of the ionized impurity, alloy scattering and interface roughness on the

location of the scatterers in the heterostructures, it is highly desirable to have a full

understanding of the broadening if one wants to improve the design of the structures.

The convenient Drude approach of FCA in bulk materials fails as such in quasi

2D heterostructures because for the z polarization (by far the most used in devices

such as QCLs and QWIPs) there is no balance between the electric force −e ~Eem and

the friction force that lays in the xOy plane (figure 7). This implies the vanishing of

the zero-frequency conductivity σ0 in Eq. (1)§. So, any estimate of FCA absorption

coefficient by means of the Drude model is likely to be off by several decades. In fact,

if we were to believe (3) and apply it to THz QCL’s, we would conclude that no lasing

is possible.

In contrast to the bulk case, conductivity at finite frequency arises due to oscillating

polarisations between the subbands in quantum well structures. This has to be treated

by different models and the first non-trivial one is the perturbative approach of elastic

scatterers/phonons modifications of the electronic states.

§ For quantum well structures attached to leads, such as superlattices or QCLs, a dc current is possible,

but the conductivity is strongly reduced in comparison to the bulk case.
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Figure 7. Comparison between the Drude model in 3D and quasi 2D situations[27].

3.4. Perturbative approach to oblique optical transitions

The idea is to get a non vanishing z current thanks to the combined actions (see figure 8)

of light-matter coupling (necessarily inter-subband and vertical in ~k space) and elastic

scatterers/phonons coupling (either intra-subband or inter-subband and oblique in ~k

space). There is a qualitative difference between the inter-subband and intra-subband

oblique transitions. In ideal structures the former are forbidden because of the in-

plane translation invariance while the latter are doubly forbidden because they not only

violate the in-plane translation invariance but, in addition, have a zero optical matrix

element in ideal structures. One may therefore anticipate on general grounds that the

intra-subband oblique transitions will be weaker than the inter-subband ones.

In the following, we develop the perturbative approach of the oblique transitions.

In the examples we shall use the parameters of the DQW structure described in [27].

The well thicknesses are L1=23.2 nm, L2=9.8 nm and the intermediate barrier thickness

is Lb=3.1 nm. The wells are GaAs and the barriers are Ga0.85Al0.15As corresponding to

a barrier height of 115 meV. The DQW supports 6 bound states for the z motion and

the lasing action is supposed to occur between E2 and E1 (E2 − E1=16.9 meV). The

aim of this example is to estimate the detrimental absorption from carriers in subband

2. There are few carriers in these structures with n2D=2.17×1010 cm−2 distributed

over the different subbands [37]. Hence, the depolarization shift can be neglected

and the screening effects will not be very effective. We shall also present results for

(Ga,In)As/Ga(As,Sb) heterostructures to highlight the part played by alloy scattering

in these heterostructures.

In order to estimate the absorption, we consider the modification of eigenstates due

to the disorder potential Vdis. Within first-order perturbation theory we find:

|Ψn~k〉 = |n~k〉+
∑

~k′

|n~k′〉〈n~k′|Vdis|n~k〉
εn~k − εn~k′

+
∑

m 6=n,~k′

|m~k′〉〈m~k′|Vdis|n~k〉
εn~k − εm~k′

(35)

The energy loss rate Pij(ω) associated with the transitions |Ψi~k〉 → |Ψj ~k′〉 is given by:

Pij(ω) =
πe2E2

em

ωm∗2

∑

~k,~k′

(

fi~k − fj ~k′
) ∣

∣

∣〈Ψi~k|pz|Ψj ~k′〉
∣

∣

∣

2
δ(εj ~k′ − εi~k − h̄ω) (36)

where fi~k, fj ~k′ are the distribution functions in the initial and final subbands
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Figure 8. Energy dispersion of the E1, E2 and E3 subbands. Right part: quantum

mechanical path followed by an electron to undertake an intra-subband oblique

transition mediated by static scatterers. Left part: quantum mechanical paths followed

by an electron to undertake an inter-subband oblique transition mediated by static

scatterers. Dotted lines refer to electron-photon interaction; solid lines refer to electron-

scatterers interaction. Black dots are initial and final states, gray dots are virtual

intermediate states[27]. In this figure, the oblique transitions occur at the same energy

as the designed lasing energy E2 − E1.

respectively. Note that (36) takes into account the stimulated emission (second term of

(36)). For an intra-subband transition (i = j), we find:

〈Ψi~k|pz|Ψi~k′〉 =
∑

m 6=i

〈i|pz|m〉〈m~k|Vdis|i~k′〉
Ei − Em + h̄ω

+
〈i~k|Vdis|m~k′〉〈m|pz|i〉

Ei − Em − h̄ω
(37)

where we see the interferences between the two paths shown in figure 8. We also note

that the ω−p law of the 3D Drude FCA will not be followed in quasi 2D materials. Instead

we shall obtain a divergence any time the photon energy matches the energy distance

between subbands. This divergence is artificial to the extent that collision broadening

will blur the matching between h̄ω and Ei−Em. In the context of QCL this divergence

indicates a poor design since h̄ω is the laser photon energy and a resonant FCA would

mean that the photon will be re-absorbed by parasitic inter-subband transitions. For
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the oblique inter-subband matrix element we find:

〈Ψi~k|pz|Ψj ~k′〉 =
∑

m

〈i|pz|m〉〈m~k|Vdis|j~k′〉
Ei − Em + h̄ω

+
∑

m

〈i~k|Vdis|m~k′〉〈m|pz|j〉
Ej − Em − h̄ω

(38)

The same comments as for (37) can be made for (38) regarding the divergences. We can

note that (38) is dominated by m = j in the first sum and m = i in the second because

inter-subband matrix elements are generally smaller than the intra-subband ones. If we

restrict the summations to these dominant terms (38) reduces to:

〈Ψi~k|pz|Ψj ~k′〉 =
〈i|pz|j〉

Ei − Ej + h̄ω

(

〈j~k|Vdis|j~k′〉 − 〈i~k|Vdis|i~k′〉
)

(39)

where only the difference between the intra-subband matrix elements of the disorder

potential in the initial and final subbands shows up. (39) also corresponds to a 3

subbands description of the system: the lasing action occurs between E2 and E1 while

FCA corresponds to an oblique transitions between the E2 and E3 subbands. The

transitions originating from E1 are neglected because QCL’s are engineered to efficiently

depopulate the ground subband of the lasing transition. We note that if one could

engineer disorder displaying subband independent matrix elements, there would be no

FCA due to intersubband processes at all. This result is fairly general: if the initial

and final subbands are identically broadened then the inter-subband absorption has no

broadening [3, 38, 39]. Once the pz matrix elements established, the Fermi Golden Rule

allows computing the energy loss rate and by (31) the absorption coefficient. An average

of the random positions of the scatterers has to be performed. As an example, we give in

(40) the absorption coefficient for oblique E2−E3 transitions due to the alloy scattering:

αalloy(ω) = Neff
e2x(1− x)(∆V )2ω0

m∗h̄2ωε0cnrLz

× |〈2|pz|3〉|2
(h̄ω − E3 + E2)2

∫

where alloy
dz(χ2

2 − χ2
3)

2

Neff =
∫

d2k

(

f2

(

E2 +
h̄2k2

2m∗

)

− f3

(

E2 +
h̄2k2

2m∗
+ h̄ω

))

× Y

(

h̄ω − E3 + E2 +
h̄2k2

2m∗

)

(40)

In (40), the z integral runs over that part of the heterostructure where the alloy

scattering takes place. For thermalized (Boltzmann) carriers in both 2 and 3 subbands,

the difference between the f ’s gives a factor
(

1− e−βh̄ω
)

to transform Neff into:

Neff =
(

1− e−βh̄ω
)

2πn2

× (Y (h̄ω − E3 + E2) + Y (−h̄ω + E3 − E2) exp (−β(−h̄ω + E3 − E2)))(41)

where β = (kBT )
−1 and T is the electronic temperature. The FCA due to oblique

inter-subband transitions is proportional to electron population of the initial subband,

a general result. The factor
(

1− e−βh̄ω
)

accounts for the stimulated emission. Note

that it is far from being negligible in the THz range because the argument of the

exponential can be of the order of 1. We recover in (40) the expected feature that

if the alloy scattering occurs in the barrier it will essentially be negligible. We show
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in figure 9 the h̄ω dependence of the oblique inter-subband absorption coefficient due

to alloy scattering in a (Ga,In)As/Ga(As,Sb) DQW. In practice, only the scattering in

the (Ga,In)As wells is important. The absorption coefficient is only a few cm−1 to be

compared to the 103 cm−1 of the allowed (vertical in ~k space) inter-subband transition.

Of course, near the threshold E3 − E2 the oblique in ~k absorption becomes large but

one faces difficulties with collision broadening since the latter is not properly included

in (40-41). Far from resonance, when the empirical absorption coefficient has no reason

to be valid the perturbative approach provides a reliable estimate of the absorption.

Notice that the weak absorption limit in which we are working is justified

by the result of the calculation of k1/k2 (where k = k1 + ik2 is the wavevector

of the electromagnetic wave) shown in the lower panel of figure 9. One sees

very clearly that this ratio exceeds 10 except in the immediate vicinity of

the intersubband absorption where the perturbative estimate (that generates

the divergency) becomes unreliable.

Figure 9. (higer panel)The inter-subband absorption coefficient due to

oblique in ~k transitions assisted by alloy scattering is plotted versus the

photon energy h̄ω in a Ga0.47In0.53As/GaAs0.48Sb0.52 23.2/3.1/9.8 nm DQW

n2=2.17×1010 cm−2. T=100 K. (lower panel) The ratio k1/k2 versus the

photon energy calculated for the same structure with the refractive index

nr=3.7.

For the Gaussian interface defects, one obtains after averaging over the positions
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of the defects in the layer plane:

αdef
ij =

πe2n2V
2
b σ

4

ε0cnrm∗Lzh̄

(

1− e−βh̄ω
)

× |〈2|pz|3〉|2
h̄ω

Rij(ω)I
def
ij (ω) (42)

Rij is a resonant factor for intra-subband (i = j) and inter-subband (i 6= j) transitions:

R22(ω) =
(

1

h̄ω − E3 + E2

+
1

h̄ω + E3 − E2

)2

R23(ω) =
(

1

h̄ω − E3 + E2

)2

(43)

and

Idefij (ω) = φij(ω)
∫ ∞

0
dxe−x(1+C)I0

[

C
√

x2 + βx(h̄ω − Ej + Ei)
]

× Y (x+ β(h̄ω − Ej + Ei))

φij(ω) = 2πF def
ij exp

(

−2m∗σ2(h̄ω − Ej + Ei)

h̄2

)

; C =
4m∗σ2

βh̄2 (44)

where I0 is the Bessel function of order zero with an imaginary argument and where:

F def
22 =

∑

z0
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(45)

The F ’s account for the values of the wavefunctions associated with the states involved

in the virtual coupling, close to the disordered interfaces. We see that the intra-subband

F requires both the wavefunctions to be sizeable while the inter-subband F needs only

one to be sizeable. That is why the absorption coefficient associated with the oblique

inter-subband transitions is larger than the one associated with intra-subband transi-

tions. Again, we find that the interface roughness intra-subband and inter-subband

absorptions have no Drude-like ω−p features but a resonance at the E3 − E2 transition

energy. We show in figure 10 the h̄ω dependence of the absorption coefficient for E2-E2

and E2-E3 absorption in a 23.2/3.2/9.8 nm GaAs/Ga0.85Al0.15As DQW. In this struc-

ture the E2 − E1 lasing energy is 16.9 meV. We evidence in figure 11 the importance

of the Fij terms on the magnitude of the assisted absorption coefficient by plotting

the L2 dependence of αdef
22 at the lasing energy h̄ω = E2 − E1 in a 23.2 nm/3.1nm/L2

GaAs/Ga0.85Al0.15As DQW.

The contributions of ionized impurities to oblique transitions are handled like those

due to roughness scattering. We find for unscreened impurities located on the planes

z=zl (zl = 0 corresponds to the first barrier/well interface of the DQW structure):

αimp
ij (ω) =

e6n2

(

1− e−βh̄ω
)

16πε30ε
2
rcnrm∗Lzh̄

× |〈2|pz|3〉|2
h̄ω

Rij(ω)I
imp
ij (ω)
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Figure 10. Photon energy h̄ω dependence of the absorption coefficient in presence

of interface defects for E2-E2 and E2-E3 oblique absorptions in a 23.2/3.1/9.8 nm

GaAs/Ga0.85Al0.15As DQW. The interface roughness parameters are: σ=3.6 nm,

fr=0.3 and hdef=0.283 nm. The defects are placed on the two inner interfaces of

the DQW. n2=2.17×1010 cm−2. T=100 K.

Figure 11. αdef
22

× R−1

22
(h̄ω = E2 − E1) versus L2 in a 23.2 nm/3.1 nm/L2

GaAs/Ga0.85Al0.15As DQW structure.The interface roughness parameters are:

σ=3.6 nm, fr=0.3 and hdef=0.283 nm. The defects are placed on the two inner

interfaces of the DQW. n2=2.17×1010 cm−2. T=100 K.

I imp
ij (ω) =

∑

zl

n2D
imp(zl)

∫ ∞

0
dxe−xY [x+ β(h̄ω − Ej + Ei)]

×
∫ 2π

0
dθ

F imp
ij (Qij(x, θ, ω), zl)

Q2
ij(x, θ, ω)

(46)

where the resonant factors Rij have been defined previously and:

Q2
ij(x, θ, ω) =

2m∗

h̄2β

[

2x+ β(h̄ω − Ej + Ei)− 2 cos θ
√

x2 + βx(h̄ω − Ej + Ei)
]

F imp
22 (Q22) =

∫

dzχ2(z)χ3(z)e
−Q22|z−zl|

F imp
23 (Q23) =

∫

dz[χ2
3(z)− χ2

2(z)]e
−Q23|z−zl| (47)
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We show in figure 12 the importance of the impurity location on the strength of the

oblique transitions in the 23.2/3.2/9.8 nm GaAs/Ga0.85Al0.15As DQW structure. In

figure 12 there is a single impurity plane and we show the magnitude of the absorption

coefficient at the lasing energy versus the location zl of the impurity plane. It is seen

that one may find dopant locations that inhibit the losses due to intra-subband and

inter-subband oblique transitions.

Figure 12. Absorption coefficient at the lasing E2 − E1 transition energy versus

the impurity location zl in a 23.2/3.1/9.8 nm GaAs/Ga0.85Al0.15As DQW structure.

n2=2.17×1010 cm−2. T=100 K.

The most efficient inelastic scattering arises from the Fröhlich coupling between

electrons and LO phonons. Let us assume monochromatic bulk-like LO phonons and

denote by TL and T the lattice and the electron temperatures and by βL = (kBTL)
−1.

The absorption coefficient for LO phonon absorption is given by:

αLO abs
ij (ω) =

e4n2ωLO

16πε20εrcnrm∗Lz

NLO
|〈2|pz|3〉|2

h̄ω
Rij(ω)Sij(ω)

Sij(ω) =
(

1− e−βh̄ωe(βL−β)h̄ωLO

)

ILO abs
ij,K (ω) +

n2πh̄
2β

2m∗

×
(

e−βh̄ωe(βL−β)h̄ωLO − e−βh̄(ω+ωLO)
)

ILO abs
ij,Ξ (ω) (48)

where NLO is the Bose occupation function for the phonons and the functions ILO abs
ij,Q (ω)

with Q = K or Ξ are given by:

ILO abs
ij,Q (ω) =

∫ ∞

0
dxe−xY (x+ β(h̄ω + h̄ωLO − Ej + Ei))

×
∫ 2π

0
dθ

FLO
ij (Qij(x, θ, ω))

Qij(x, θ, ω)

FLO
22 =

∫ ∫

dz dz′χ3(z)χ3(z
′)χ2(z)χ2(z

′)e−Q22|z−z′| (49)

FLO
23 =

∫ ∫

dz dz′[χ2
3(z)χ

2
3(z

′) + χ2
2(z)χ

2
2(z

′)− 2χ2
3(z)χ

2
2(z

′)]e−Q23|z−z′|

where Qij = Kij or Ξij:

K2
ij(x, θ, ω) =

2m∗

h̄2β
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×
[

2x+ β(h̄ω + h̄ωLO − Ej + Ei)− 2 cos θ
√

x2 + βx(h̄ω + h̄ωLO − Ej + Ei)
]

Ξ2
ij(x, θ, ω) =

2m∗

h̄2β
(50)

×
[

x+ β(h̄ω + h̄ωLO − Ej + Ei)− cos θ
√

x2 + 2βx(h̄ω + h̄ωLO − Ej + Ei)
]

Similar expressions are found for the oblique transitions assisted by LO phonon emission

[27]. The spatial localizations of the initial and final states play a large part in the

phonon assisted oblique transitions as evidenced by the Fij functions. We show in

figure 13 the absorption coefficient normalized by the resonant factor Rij associated

with the LO phonon assisted intra-subband transition in the 23.2 nm/3.2 nm/L2

GaAs/Ga0.85Al0.15As DQW structure at the lasing frequency when T=TL=100 K and

300 K. There is an enhancement of the absorption for structures where χ2 and χ3

delocalise due to level anticrossing L2 ≈ 9 nm.

Finally, it is interesting to compare the contributions of the various processes to

oblique transitions. We show in figure 14 the calculated inter-subband absorption in

a triple well structure based on ternary materials (Ga,In)As/Ga(As,Sb) where two

monolayers interface defects have been assumed with a fractional coverage of fr=0.3.

The LO phonon energy was chosen equal to 34 meV and the impurity concentration was

1.5×1010 cm−2. TL=T=100 K and 300 K. The plots of figure 14 display a divergence

at the subband energy difference (h̄ω ≈ 55 meV). For the LO phonon absorption

mechanism, we also note a second peak at h̄ω ≈ 21 meV which corresponds to a

coulombic divergence that occurs when h̄ω = E2 − E1 − h̄ωLO.

Figure 13. αLOabs
22

× R−1

22
associated with the LO phonon assisted intra-subband

transition in a 23.2 nm/3.1 nm/L2 GaAs/Ga0.85Al0.15As DQW structure at the lasing

energy E2 −E1 when T=TL=100 K and 300 K. h̄ωLO=36 meV. n2=2.17×1010 cm−2.

The most striking feature displayed in figure 14 is the relative smallness of the

absorption due to oblique transitions. While tens or hundreds of cm−1 come from a blind

application of the 3D Drude model, actual calculations performed for realistic structures

point out that FCA≤ 20 cm−1 out of resonance in most QCL structures. Hence, the laser
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Figure 14. (right panel) Calculated E4-E5 inter-subband absorption in

a 12.5/0.9/11.7/2.6/21.0 biased triple well structure based on ternary

materials (Ga,In)As/Ga(As,Sb). The lasing energy is E2 − E1=15.3 meV.

F=12 kV/cm. (left panel) The ratio k1/k2 versus the photon energy

calculated for the same structure with the refractive index nr=3.7.

re-absorption by the free carriers of the QCL structures is comparable to the losses in the

cladding waveguide. The small FCA is the result of the very low carrier concentrations

in these structures (a few 1010 cm−2) and of the excellent control of the layers and their

interfaces. At TL < 100 K, the dominant interaction processes causing FCA are elastic

scatterers while above 200 K the electron-LO phonon dominates at the lasing energy.

In GaAs based materials, interface roughness appears to be dominated by intentionally

placed dopants while in heterostructures with no common anion, like InAs/AlSb, it

appears that the interface roughness is a more likely cause of FCA. The alloy scattering,

essentially inexistent in a GaAs-based heterostructures is a very important process in

ternary-based QCL’s. It appears clear that there is still some room for improving QCL

structures since neither the materials, nor the designs are at their best yet [40].

3.5. Green’s function approach to oblique optical transitions.

The Green’s function approach allows for a self-consistent treatment of level broadening

effects and is thus particularly appropriate for the study of optical transitions far from
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resonance. The central idea is to focus on the lesser Green’s function (for details, see

Ref. [10])

G<
αβ(

~k; t1, t2) = i〈â†
β~k
(t2)âα~k(t1)〉 . (51)

This is a generalisation of the standard density matrix towards two different time

arguments in the annihilation (âα~k(t)) and creation (â†
α~k
(t)) operator for the state with

wavevector ~k in subband α within the Heisenberg picture. In a stationary state (here

indicated by a tilde), the Green’s function depends only on the time difference t1 − t2
and can be written as

G̃<
αβ(

~k; t1, t2) =
∫ dE

2π
G̃<

αβ(
~k, E)e−iE(t1−t2)/h̄ . (52)

This energy dependence (i.e., the Fourier parameter E) displays the distribution of

occupation over energy in a broadened state. In thermal equilibrium, the diagonal

elements dominate and are given by

G̃<
αα(

~k, E) = iff (E)Aret
α (~k, E) (53)

where 0 ≤ ff (E) ≤ 1 is the Fermi function and the spectral function describing the

broadening of the subband state α,~k reads

Aα(~k, E)) = ±2ℑ
{

G̃adv/ret
αα (~k, E))

}

=
Γα(~k, E)

[E − ǫα~k −Rα(~k, E)]2 − Γ2
α(
~k, E)/4

(54)

where Γα(~k, E) = ±2ℑ{Σ̃adv/ret
αα (~k, E))} and Rα(~k, E) = ℜ{Σ̃adv/ret

αα (~k, E)). These self-

energies Σ take into account scattering processes, where Γα(~k, E)/h̄ corresponds to

the total scattering rate and provides the full width at half maximum of the spectral

function. We see, that this energy dependence naturally represents broadened states.

However, one has to pay the price that the energy E appears as an independent variable

in addition to the state indices α and k, which requires strong effort on numerical

schemes. The basis of our numerical calculations is outlined in Ref. [41] where the

full non-diagonal structure of Green’s functions and self-energies is taken into account,

while for the analytical considerations in this section, we focus on the diagonal spectral

functions Aα for the equilibrium state.

A perturbation potential eFacẑe
−iωt (e > 0 is the elementary charge) corresponds

to the electromagnetic field (here in Lorenz gauge [42] and long-wave approximation),

for electromagnetic fields with a polarisation of the electrical field perpendicular to the

layers. In linear response this provides a lesser Green’s function

G<
αβ(

~k, t1, t2) = G̃<
αβ(

~k; t1, t2) +
∫ dE

2π
δG<

αβ(
~k, ω, E)e−iE(t1−t2)/h̄e−iωt1 (55)

By evaluating the dynamical conductivity, one obtains the absorption coefficient [42]

α(ω) = − 2e

ch̄ǫ0nrFacALz

ℜ











∑

αβ,~k

∫ dE

2π
WβαδG

<
αβ(

~k, ω, E)











(56)
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where‖

Wβα = −h̄2
∫

dz ϕ∗
β(z)

1

m∗(z)

∂

∂z
ϕα(z) = (Eβ − Eα)zβα

with the subband energies Eα and Eβ. In linear response with respect to the ac field

we find [42]:

δG<(~k, ω, E) = G̃
ret(~k, E + h̄ω)δU (ω)G̃<(~k, E)

+ G̃
<(~k, E + h̄ω)δU (ω)G̃adv(~k, E)

+ G̃
ret(~k, E + h̄ω)δΣret(~k, ω, E)G̃<(~k, E)

+ G̃
ret(~k, E + h̄ω)δΣ<(~k, ω, E)G̃adv(~k, E)

+ G̃
<(~k, E + h̄ω)δΣadv(~k, ω, E)G̃adv(~k, E) , (57)

where the capital bold-face symbols are matrices in the subband indices α, β and

δU(ω) = eFaczαβ in ~E · d̂ coupling. Neglecting the changes of the self-energies δΣ,

assuming diagonal stationary Green’s functions G̃, and considering only two subbands

α = 1, 2, we thus obtain

α(ω) =
e2|z21|2(E2 − E1)

ch̄ǫ0nrALz

∑

~k

∫ dE

2π
[fF (E)− fF (E + h̄ω)]

×
[

A2(~k, E + h̄ω)A1(~k, E)− A1(~k, E + h̄ω)A2(~k, E)
]

(58)

This equation is visualised in Fig. 15, displaying the essential origin of the linewidth and

-shape for intersubband transitions. For E2 > E1 the term Ã1(~k, E+ h̄ω)Ã2(~k, E) is the

counter-rotating term. If one uses ~A · p̂ coupling (corresponding to Coulomb gauge [42]),

one obtains an additional factor (E2−E1)/h̄ω and a sign change in the counter-rotating

term. Numerically, both approaches provide very similar results, if a sufficiently large

basis is applied [41, 42]. It appears that the ~E · d̂ coupling via δU(ω) = eFaczαβ is more

stable because there is no diverging factor 1/ω in the beginning.

Assuming constant values Γα(~k, E) ≈ Γα as well as constant occupation functions

fF (E) ≈ fF (ǫα~k) in the range of the respective spectral functions, and omitting the

counter-rotating term (which is the rotating wave approximation) we find

α(ω) ≈ e2|z21|2(E2 − E1)

ch̄ǫ0nrALz

∑

~k

Γ2 + Γ1

(E1 + h̄ω − E2)2 + (Γ2 + Γ1)2/4
[fF (ǫ1~k)−fF (ǫ2~k)](59)

which is essentially Eq. (32), if one replaces E2 − E1 by h̄ω (actually this form can be

obtained if one calculates the absorption via the susceptibility instead the conductivity

as done here). However, the full Green’s function approach contains several corrections

to this simplified result:

• The energy dependence of the Fermi functions, provide a slight blue shift of the

spectrum, as one can immediately see from Fig. 15. This is directly related to the

dispersive gain addressed in [43], see also [44].

‖ This definition of W equals [42]. It corresponds to LzWprev for the expression Wprev used in [41],

where the average is taken over the length Lz covering all states.
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Spectral function

ε1

ε2

 E
 

A1(E)
A2(E)

h-ω

Figure 15. Sketch of absorption as evaluated by Eq. (58) for a fixed ~k. The grey

scale provides the occupation function fF (E). The total absorption is the sum of all

upward arrows weighted with the product of spectral functions and the difference in

occupations taken at start and end point.

• The self-energies Σ̃αα(~k, E) are not constant. For elastic scattering with scattering

matrix elements Vαβ(~q) we find within the Born approximation (here not self-

consistent)

Γα(~k, E) = 2π
∑

β~k′

|Vβ,α(~k − ~k′)|2δ(E − ǫβ~k′)

Thus the term with β = α vanishes for E < ǫα~0 and the spectral functions become

very asymmetric for small ~k. (Higher-order corrections starting with the self-

consistent Born approximation provide finite values also for a small range of energies

below ǫα~0.) For the oblique transitions with h̄ω ≪ E2 − E1 we find

α(ω) =
e2|z21|2(E2 − E1)

ch̄ǫ0nrALz

∑

~k~k′

[

fF (ǫ1~k)− fF (ǫ1~k′)
] 2π|V1,2(~k − ~k′)|2δ(ǫ1~k′ + h̄ω − ǫ1~k′)

(E1 + h̄ω − E2)2

These correspond to the oblique intersubband transitions addressed in Sec. 3.4.

• The width of the spectrum is reduced due to the terms δΣ Eq. (57), which had

been neglected in obtaining Eq. (58). As shown in [39], for special situations one

finds a width proportional to the scattering matrix elements |V11 − V22|2 as already
noticed by [45].

3.6. Link between FCA and inter-subband absorption tail. Comparison between

different approaches

The intersubband absorption lineshape in an imperfect heterostructure results from two

combined effects. On the one hand, the static or dynamic disorder blurs the eigenenergies

of the system and results in a lineshape that is no longer described by a delta function.

Simultaneously, the static and dynamic disorder breaks the translation invariance in

the layer plane, which results in the possibility to observe oblique transitions. Let us

consider the absorption of a photon with energy h̄ω < E2−E1. The question we address

in this paragraph is to know to which extent the absorption process results from the

blurring of the energy conservation or from tthe breakdown of the optical selection rules.
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We shall see that depending on the magnitude of h̄ω versus E2 − E1 one or the other

mechanism prevails: close to E2 − E1, the absorption mainly arises from the blurring

of the eigenenergies while, far detuned from E2 − E1, it is the existence of oblique

transitions that triggers the photon absorption. A complete numerical calculation will

be very useful in ascertaining the respective parts played by the two mechanisms.

A convenient way to envision FCA for the intra-subband transition is to consider it

as the low energy tail of an absorption spectrum (see figure 16). Hence, we would find

from (34) an intra-subband absorption at h̄ω equal to:

αintra(h̄ω) ≡ αinter(h̄ω) ≈ αinter(E2 − E1)
h̄ωΓ2

(E2 − E1)2
(60)

where we have assumed E2 − E1 ≫ h̄ω. With the same parameters as used in (34) we

find for a photon energy h̄ω=10 meV an absorption coefficient of 0.16 cm−1. Here we

neglected the energy dependence of occupations in the subbands for simplicity, which

could be taken into account by a detailed density matrix theory [43] or Green’s function

technique as discussed above. As expected, we find a tail that is the more intense when

the inter-subband line is the broader. The order of magnitude of the absorption is too

large compared to microscopic calculations and this originates from the inability of (34)

to account for the doubly forbidden nature of the intra-subband absorption. Actually,

microscopic variants of (34) were obtained by Unuma et al [38], following Ando [3]. In

Unuma et al ’s model the parameter Γ acquires a status of material related quantity

that can be calculated if one knows the elastic scatterers, phonons etc..(see eqs. (25) in

[38]).

Figure 16. Right panel: dispersion relation ε(k) versus k and intra-subband

absorption process. Left panel: absorption coefficient α(ω) (dashed line) versus photon

energy corresponding to an inter-subband transition.

As explained in section 3.5, the Keldysh Green’s function formalism can be

implemented to compute the optical conductivity and the absorption coefficient. It
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is interesting to compare the outputs of the different models on a specific case [46]. We

consider the case of a 9/2/3 nm GaAs/Ga0.75Al0.25As DQW with Gaussian interface

defects placed on the two inner interfaces. These defects are characterized by the

parameters σ=3.6 nm and fr=0.3. We show in figure 17 the absorption coefficient of

the DQW based on a numerical exact solution of the Hamiltonian Heff (4) in presence

of interface defects [46](blue solid line). In all the plots shown in figure 17 the delta

function of energy conservation in the expression for the absorption coefficient α(ω)

has been replaced by a gaussian with full width at half maximum of 1.8 meV. It is

compared to the perturbative approach outlined in sections 3.3 and 3.4 (green dashed

line). The red solid line (dashed-dotted blue line) corresponds to a numerical calculation

of the initial and final states that includes only the intra-subband (inter-subband) matrix

elements of the interface defect potential. We see very clearly that the intra-subband

scattering controls the center of the absorption spectrum and the high energy tail, but

completely fails to account for the low energy absorption tail. Symmetrically, the inter-

subband scattering plays a negligible part in the build up of the center and the high

energy tail of the absorption spectrum but is overwhelming in the low energy tail. This

result agrees with the formulation developped for the perturbative model (section 3.4):

eqs.(37)-(39) show that intra-subband oblique optical transitions occour thanks to inter-

subband scattering, while inter-subband oblique optical transitions are assisted by intra-

subband scattering. Note that this clear dichotomy between the parts played by the

intra-subband and inter-subband matrix elements is likely to become invalidated when

going towards the THz range because E2 − E1 will be of the same order of magnitude

as the typical interface defect inter-subband matrix elements 〈n~k|δVdef |~k′n′〉, while the

case in figure 17 corresponds to E2 − E1 ≫ 〈n~k|δVdef |~k′n′〉.

Figure 17. Absorption spectrum for the E1-E2 transition calculated by: fully

numerical diagonalization (blue solid line); taking into account either only the intra-

subband matrix elements 〈n~k|δVdef |~k′n〉 (red solid line) or only the inter-subband ones

〈n~k|δVdef |~k′n′〉 (blue dashed-dotted line); and by expanding the electron wavefunction

to the first order in both 〈n~k|δVdef |~k′n〉 and 〈n~k|δVdef |~k′n′〉 (green dashed line).

T = 100 K. Reprinted with permission from [46]. Copyright 2012, American Institute

of Physics.
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While it is interesting to understand which physical effects controls the center

and the wings of the absorption line, it is also important to ascertain the validity of

approximate but useful derivations against exact numerical calculations. We show in

figure 18 the absorption line computed either numerically by exact diagonalization (blue

solid line), by using the Keldysh formalism (CRF1) or by the Unuma model (CRF2) [38].

We see that CRF1 (red solid line) gives a good description of the low ω behavior. On

the other hand CRF1 fails at large energy because of the approximation in the numerics

of all matrix elements by those of delta scatterers. This approximation overestimates

the scattering at large k compared to the regular Gaussian interface defects. In CRF2,

we use Unuma’s approach for the inter-subband absorption coefficient by converting its

real part of the frequency dependent conductivity into an absorption coefficient using

(2) and (3). It is clear that CRF2 poorly describes the FCA far from resonance. The

difference between CRF1 and CRF2 probably arises from the fact that CRF2 neglects

the off diagonal components of the Green’s function, i.e. the wavefunction admixture

due to the interface disorder that we have seen to be important for the absorption

tails. Close from the maximum of the inter-subband absorption, where the broadening

is dominated by intra-subband scattering, both correlation function models work well

since the wavefunction admixture is a negligible effect compared to the blurring of the

eigenstates.

Figure 18. Absorption spectrum for the E1-E2 transition calculated by three different

models: exact diagonalization (blue solid line), Keldysh Green’s function formalism,

CRF1 (red solid line), Unumas model, CRF2 (green dashed line). T = 100 K.Reprinted

with permission from [46]. Copyright 2012, American Institute of Physics.

3.7. From intersubband transitions to bulk free carrier absorption

The transition towards the bulk free-carrier absorption can be understood within a

two-step process as outlined in [11]. If one considers multiple quantum well structures,

there is a multitude of low lying states, which provide a rather broad spectrum at low

frequencies. In the limit of an infinite superlattice this provides the standard Drude
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form with the superlattice conductivity. Reducing the barrier width, this conductivity

increases and eventually approaches the bulk value. This clearly shows, that the

intersubband transitions include the entire absorption provided the obliques transitions

are properly taken into account.

3.8. Existence of quasi-selection rules in imperfect heterolayers

It is known since some time from Green’s function, density matrix or Boltzmann-like

approaches that the relevant quantity to ascertain the broadening of inter-subband

transitions involves the difference between the matrix elements of disorder between the

subband states that are connected by the photon [45]. Let us start with a simple case

and consider the situation where the level broadening of each of the involved subbands

is controlled by interface defects and where the carrier concentration is sufficiently small

to assume a Boltzmann equilibrium of the electrons. In addition, we assume that a very

strong magnetic field is applied parallel to the growth axis (magnetic quantum limit).

This situation is easily reached in actual QCL’s and one can even find THz QCL’s where

the magnetic quantization h̄ωc becomes larger than the subband spacing [47–50]. We

denote by |i, p, α〉 the exact eigenstates (with energies Ei + (p + 1/2)h̄ωc + εα) of the

intra-subband Hamiltonians Hi in the presence of magnetic field and interface defects:

Hi = PiHPi ; Pi =
∑

α

|i, p, α〉〈i, p, α|

〈~r|i, p, α〉 = χi(z)
∑

ky

cαi (ky)
eikyy
√

Ly

ϕp(x+ λ2ky) (61)

where H is the complete effective Hamiltonian excluding the coupling to the light but

including the interface roughness and the magnetic field. ϕp is the Hermite function

given at (11) and p is the Landau level index. In principle, the summation in (61) should

also comprise a summation on the Landau level index p. In the magnetic quantum limit

however there is very little Landau level mixing due to interface roughness and we shall

neglect it. Along the same line, the idea that the inter-subband scattering is weak allows

us to write the absorption coefficient from the states of the perturbed E1 subband of

a given Landau level p to the states of the perturbed E2 subband of the same Landau

level p as [51]:

α1→2(ω) ∝ |〈1|pz|2〉|2
(

1− e−βh̄ω
)

×
∑

ν,µ

|〈0ν|0µ〉|2e−βε1νδ(E2 + εµ − E1 − εν − h̄ω) (62)

where we have neglected the subband mixing by the interface roughness. In (62) only

p=0 is populated in the magnetic quantum limit, Boltzmann statistics are used and the

eigenenergies are written:

E1 +
1

2
h̄ωc + εν ; E2 +

1

2
h̄ωc + εµ (63)

A priori, it seems that any oblique transition ky → k′
y between the unperturbed states

is possible due to disorder. If there are N allowed ky values, we expect there will be
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N2 possible transitions. However, we shall show that there are only N allowed optical

transitions in spite of the disorder. In effect, for one interface we get using (22):

H1|1, 0, ν〉 =
∑

ky

cν1(ky)
(

E1 +
1

2
h̄ωc + δVdef

)

|1, 0, ky〉

=
(

E1 +
1

2
h̄ωc + εν

)

∑

ky

cν1(ky)|1, 0, ky〉 (64)

and a similar expression for |2, 0, µ〉. (64) leads to:
∑

qy

cν1 (ky + qy) 〈1, 0, ky|δVdef |1, 0, ky + qy〉 = ενc
ν
1(ky) (65)

Evaluating the matrix elements of the interface defect potential given in (22) we obtain:

〈1, 0, ky|δVdef |1, 0, ky + qy〉 = Vb
σ
√
2π

Ly

√

(1 + r)

∑

xj ,yj

〈1|g(z)|1〉eiqyyj (66)

× exp

[

−λ2q2y
4

(

1

r
+

1 + 2r

1 + r

)

]

exp

[

−(xj + λ2ky)
2

2σ2(1 + r)

]

exp

[

−qy(xj + λ2ky)r

(1 + r)

]

where r = λ2

2σ2 . This expression is interesting because it shows that the separability

in ~ρ and z of the interface roughness potential allows to re-expressing the Schrödinger

equation in a dimensionless form. In fact, the coefficients 〈1|g(z)|1〉 for attractive or

repulsive defects are quite similar because the defect depth is usually much smaller than

the scale of variation of the envelope function near the interface:

〈1|g(z)|1〉att =
∫ z0

z0−hdef

χ2
n(z)dz ≈

∫ z0+hdef

z0
χ2
n(z)dz

= 〈1|g(z)|1〉rep ≈ hdefχ
2
n(z0) (67)

Thus, the Schrödinger equation in ky space can be cast in the dimensionless form:
∑

qy

cν1(ky + qy)ν(ky, qy) = η1νc
ν
1(ky)

η1ν =
εν

Vb〈1|g(z)|1〉
; ν(ky, qy) =

〈1, 0, ky|δVdef |1, 0, ky + qy〉
Vb〈1|g(z)|1〉

(68)

The dimensionless Schrödinger equation actually does not depend on the subband index.

It would be the same for the motion in the p=0 Landau level of the E2 subband.

Therefore, if only one interface controls the broadening we find that the eigenstates

are subband independent. This immediately implies that the quantum numbers in

the two broadened Landau levels should be identical: µ=ν in (62) because the optical

matrix element only affects the z dependent wavefunctions. Hence, we are lead to the

conclusion that there exists an exact selection rule for the optical transitions, exactly

like in ideal material. In our case, however, it does not result from the translation

invariance along the y axis but by the fact that the disorder affects the initial and

final states in the same manner. Also, in contrast with the selection rule in ideal

materials that leads to a delta function for the absorption coefficient, the selection

rule in heterostructures with interface roughness does not imply an infinitely narrow
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absorption peak. For a given quantum number ν, because the scaling factors in (68)

are subband dependent, the eigenenergies in the initial and final subbands are different

despite identical wavefunctions for the in-plane motion. Hence in (62) the argument

of the delta function depends on the initial quantum numbers, which explains why the

absorption line has a finite width. We illustrate this point in figure 19 which shows the

absorption coefficient versus the photon energy in a 6/0.283/6nm GaAs/Ga0.55Al0.45As

DQW (m∗=0.07m0 in the wells and 0.094m0 in the barriers, Vb=0.393 eV) at different

magnetic fields and T=5 K or T=20 K. The eigenstates are obtained numerically by

diagonalization in a 200 nm × 200 nm grid using periodic plane wave basis. The ideal

DQW has a B and T independent inter-subband transition energy at E2−E1=59.95 meV

(left vertical bar in figure 19). The interface defects have a characteristic in-plane

extension of 10.8 nm, fr=0.15 and a width of one monolayer (0.283 nm). The effect

of the interface defects located on the outer interfaces is negligible and the width of

the E1 → E2 inter-subband transition is dominated by the interface roughness on the

central barrier. Each Landau level is broadened because of the interface roughness but

the ground subband is much more broadened than the excited one on account of the

χ1(z) (χ2(z)) maximum (minimum) probability to find the electron at the center of

the DQW (see inset of figure 19a). At low temperature and strong field, the electrons

mainly occupy the lowest possible states of the initial Landau level. The selection rule

forces their counterpart in the excited states to have the same quantum number. Thus,

the optical transition blue shifts at fixed B by lowering T or at fixed T by increasing

B. Note that with increasing B the absorption line is blue shifted towards the inter-

subband transition energy (70. 2 meV) (right vertical line in figure 19)) of a SQW of

width 12.283 nm which is the total extension of the DQW studied here. This means that

electrons strongly localized by B on the defects of the barrier feel the z-confinement as

if they were in a SQW of size 2L+0.283 nm instead of a DQW of size L/0.283 nm/L.

The question remains to ascertain whether this selection rule survives the removal

of the separability of the scattering potential and that of a small phase space associated

with the quantizing magnetic field. We have found no evidence that there exists a strict

selection rule for inter-subband transitions in general. However, in most structures,

there exist quasi-selection rules showing that the disorder effects may to a large extent

cancel in the optical spectra while they are very significant in either the initial or the

final subband states.

Now we consider a 9/2/3nm GaAs/Ga0.75Al0.25As DQW, where the second subband

has a stronger overlap with the interfaces compared to the first one and focus on the

case without magnetic field. We assume Gaussian interface defects with characteristic

in-plane extension of 3.6 nm and a fractional coverage fr=0.3. These defects are placed

on the two inner interfaces of the structure. The Schrödinger equation including inter-

subband coupling is solved numerically as described above. Figure 20 shows the in-plane

probability distribution for two states with energies, respectively equal to E1+3 meV

and E2+3 meV. The extra energies +3 meV are larger (respectively, smaller) than

the typical effective in-plane potential depths in the E1 and E2 subbands (0.4 meV
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Figure 19. Calculated absorption spectrum of the DQW at different magnetic fields

and (a) T=5 K and (b) 20 K. The upper inset panel in (a) depicts the field evolution of

the independently broadened Landau levels. The ground Landau level is much broader

than the excited one because of its larger probability of presence near the intermediate

thin barrier. The arrow show that transitions involving correlated states at low T

blueshift with increasing B.

and 6 meV respectively). Hence, these two in-plane electronic distributions look very

different: the quasi E1 state is extended in the (x, y) plane and its kinetic energy h̄2k2

2m∗

=3 meV is significantly larger than the characteristic potential depth. In contrast, the

“mostly E2 state“ is fairly localized by the interface defects. In figure 21 we show the

matrix |〈1ν|pz|2µ〉|2 for our calculated eigenstates of the disordered heterostructure. The

figure clearly displays two blurred straight regions around |E2+εµ−E1−εν |=73.8 meV,

corresponding to the subband spacing in this sample if it were ideal. If there were no

disorder, there would be no blurring since a single final state would match only one given

initial state. The fact that the matrix element is almost zero if the energy difference

between the true states differs strongly from the unperturbed inter-subband spacing

corresponds well with the conventional broadening picture but hides an important
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feature that is the taylorability of the inter-subband absorption width. It is interesting

to note that the blurring is strongly reduced if the wave functions χn(z) for the E1

and E2 subbands are of the same magnitude at each interface z=zi. Neglecting the

inter-subband coupling due to interface roughness, nearly identical χn(zi) provides very

similar in-plane wavefunctions for both subbands, leading to a strong selection rules for

the pz-matrix elements as noted above in the large B analysis. Note that in the case of

interface roughness this feature (nearly identical χn(zi)’s) is unlikely to happen because

the penetration of the wavefunctions in the barrier increases with increasing subband

energies.

Figure 20. Color plot of the normalized in-plane probability distribution for two

states with energies equal to E1+3 meV (left panel) and E2+3 meV (right panel).

The quasi E1 state is extended in the (x, y) plane while the quasi E2 state is fairly

localized by the interface defects.

Figure 21. Color plot of the decimal logarithm of the normalized squared modulus

of the optical matrix elements for the ensemble of transitions E2 − E1 + εµ − εν in

a disordered 9/2/3 nm GaAs/Ga0.75Al0.25As DQW. The disorder is due to interface

defects randomly distributed on the two inner interfaces of the structure.Reprinted

with permission from [46]. Copyright 2012, American Institute of Physics.

The interface defects are relatively short ranged, are separable in ~ρ and z and

produce shallow potential minima. Such is not the case of coulombic impurities
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that display long tails, singularities and are not separable in ~ρ and z. The inter-

subband absorption in superlattices in the presence of impurities has been calculated

and measured [52–54]. The most striking feature of these absorption experiments

and calculations is the existence of two absorption peaks corresponding respectively

to transitions between the 3D extended states and to transitions between the bound

or the quasi bound states attached to the two superlattice subbands. Similar results

were obtained in QW structures [54]. In the case of heterostructures with low carrier

concentration, we expect the binding energies of these bound or quasi bound states to

be significant. However, our ability to taylor not only the layer thicknesses but also

the doping profile allows a great flexibility in the inter-subband absorption lineshape.

Consider a dilute concentration of Coulombic scatterers on a plane z=z0 (nimpa
∗2 ≪ 1,

where nimp is the areal concentration of Coulombic scatterers and a∗ the effective Bohr

radius) of an heterostructure. These impurities are screened by ne mobile electrons

where ne=nimp. Since we shall set T=100 K and nimp=2.17×1010 cm−2, one can use a

3D Debye screening to account for the screening effects [30, 55]. Except in the vicinity

(within a∗) of the scatterers, there is (~ρ − ~ρj)
2 ≫ (z − z0)

2 and the screened Coulomb

potential reduces to − e2

4πε0εr |~ρ− ~ρj |
exp (−Qs|~ρ− ~ρj|), where Qs is given in (14). On the

other hand, very close from the impurity center there is:

〈n|VCoulomb|n〉 ≈ − e2

4πε0εr
χ2
n(z0) ln

(

|~ρ− ~ρj|
a∗

)

(69)

We see readily that the short-range behaviour of the effective in-plane potential will be

identical if the probability densities of the electrons are the same in either subbands.

Under such a circumstance, one should expect the emergence of an optical quasi-

selection rule as indeed confirmed by figure 22. In figure 22, we show the contour

plot analogous to that of figure 21 for Coulombic impurities sitting on the plane

z0=3 nm from the left hand side interface of the wide well including inter-subband

couplings. We note that the blurring effect is even smaller than that due to interface

defects. To illustrate the taylorability of the inter-subband absorption lineshape, we

show in figure 23 the inter-subband absorption versus photon energy at T=100 K. In

this figure three impurity planes have been considered: z0=3 nm, z1=8.45 nm where

the wavefunction amplitudes at z1 are identical and z2=12.3 nm that corresponds to

the maximum of the χ2 wavefunction. The unperturbed transition energy occurs at

73.8 meV. We see that the absorption line corresponding to z1 is narrower than in the

two other situations and comprises a single line while in the two other cases the line is a

doublet and is definitely broader [55]. The doublet corresponds to transitions between

extended states and transitions between bound states in complete analogy with what

was found in superlattices [53] and QW’s [54].

We have found numerically that the inclusion of inter-subband scattering very little

affects the emergence of quasi-selection rules as long as the subband spacing remains

larger than the effective potential depth. Figs. 24a,b show the calculated absorption line

in two GaAs/Ga0.75Al0.25As DQW structures (9/2/3 nm and 9.5/3/8.5 nm respectively)

that markedly differ in the unperturbed inter-subband transition energy (73.8 meV
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Figure 22. Color plot of the natural logarithm of the squared modulus of the optical

matrix elements between the initial and final states of an optical transition in a

disordered 9/2/3 nm GaAs/Ga0.75Al0.25As DQW. The disorder is due to coulombic

scatterers randomly distributed on the plane zl=3 nm in the wide well. The areal

concentration is 2.17×1010 cm−2.

Figure 23. Calculated absorption spectrum of a 9/2/3 nm GaAs/Ga0.75Al0.25As

DQW in presence of coulombic impurities randomly distributed on a plane located at

z0=3 nm (blue dashed-dotted line), z0=8.45 nm (green solid line) and z0=12.3 nm

(red dashed line). n2=nimp=2.17×1010 cm−2. T=100K.[55]

and 7.3 meV respectively). For both structures there is a planar doping with an areal

concentration of 2.17×1010 cm−2 located at the maximum of the wavefunction χ2
2(z) of

the second subband. The calculations have been done by either including (red solid lines)

or excluding (blue dashed lines) inter-subband scattering [46]. It is seen that neglecting

inter-subband scattering is a fair approximation in the large E2−E1 case while it gives a

very poor description of the absorption lineshape in a case where E2−E1 is comparable to

a typical binding energy. The increasing part played by inter-subband scattering in THz

structures is a feature that strikingly constrasts with more conventional heterolayers.
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Figure 24. Calculated absorption spectrum of a 9/2/3 nm (panel a) and a 9.5/3/8.5

(panel b) GaAs/Ga0.75Al0.25As DQW in presence of coulombic impurities randomly

distributed on a plane located at the maximum of χ2

2
. The calculations have been

done by either including (red solid lines) or excluding (blue dashed lines) inter-subband

scattering. n2=nimp=2.17×1010 cm−2. T=100K.

4. Conclusion

The low frequency Free Carrier Absorption in semiconductor heterostructures has a

unique feature compared to FCA in bulk materials which is that it corresponds to doubly

forbidden optical transitions associated with translation invariance and polarization

selection rules for light propagating in the layer plane. Such oblique transitions become

however possible in real structures, where the translational symmetry is broken due to

impurities, interface roughness, etc. This leads to a weak FCA, considerably weaker

than what could derive from an (incorrect) application of the Drude model. We have

discussed the parts played by elastic (impurities, alloy scattering, interface defect) and

inelastic (optical phonons) scatterers. We found that the interface defects in GaAs-based

materials are not prevalent over other mechanisms but can become dominant in materials

with non common anions such as (Ga,In)As/Ga(As,Sb). FCA can be evaluated in

different ways and we have discussed Green’s function techniques and perturbative

approaches. The link between FCA and the tail of inter-subband absorption has been

highlighted and we have thoroughly discussed which mechanisms control the absorption
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line center and its wings. Finally, the role of dopant location has been stressed and we

have established that one can control at will the lineshape of inter-subband absorption

by a judicious placement of the dopants.
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