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Plasmon-mediated Coulomb drag between graphene waveguides
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We analyze theoretically charge transport in Coulomb coupled graphene waveguides (GWGs). The GWGs
are defined using antidot lattices, and the lateral geometry bypasses many technological challenges of earlier
designs. The drag resistivity ρD , which is a measure of the many-particle interactions between the GWGs, is
computed for a range of temperatures and waveguide separations. It is demonstrated that for T > 0.1TF the drag
is significantly enhanced due to plasmons, and that in the low-temperature regime a complicated behavior may
occur. In the weak coupling regime the dependence of drag on the interwaveguide separation d follows ρD ∼ d−n,
where n � 6.
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I. INTRODUCTION

An electric current in one conductor can induce a voltage
in a neighboring conductor even though the two systems are
electrically isolated. This phenomenon—Coulomb drag—has
a rich phenomenology and it has been studied extensively
in coupled quantum wells since the pioneering experiments
by Gramila et al. [1]. Coulomb drag is a unique transport
phenomenon in the sense that the signal is entirely determined
by the Coulomb interaction, and thus it provides detailed
insight into the many-particle interactions in low-dimensional
systems. Two recent developments have further enhanced
the importance of Coulomb drag. On one hand, samples
with graphene layers separated by a nanometer thick boron
nitride insulator enter into a new parameter regime, where
the interlayer distance is shorter than the mean carrier
separation in the two layers [2,3]. On the other hand, new
technologies in sample preparation have allowed the study
of drag between one-dimensional (1D) quantum wires, which
is particularly interesting because of the expected Luttinger
liquid formation [4–6], thus making the plethora of existing
theoretical predictions accessible to experimental tests (e.g.,
Refs. [7–12]).

In the present paper we introduce and analyze a device
concept which allows one to study Coulomb drag in one-
dimensional graphene systems (see Fig. 1) in a technologically
favorable geometry. The device consists of two graphene
waveguides (GWGs), defined with the help of graphene
antidot lattices (GALs). The lateral geometry makes an
independent contacting of the two waveguides relatively
simple, it avoids complicated gatings [5], and no difficult
vertical integration is required as in stacked geometries [6].
Also the graphene waveguide geometry allows one to avoid
complications associated with different electronic properties
depending on the orientation of the graphene lattice (zigzag
or armchair). The boundary conditions utilized in the Dirac
model for GAL defined waveguides do not involve the precise
atomistic structure of the edges and thus make a unified
description possible. The device design is based on the
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following considerations. The antidot lattice creates a band
gap [13], which can theoretically reach several hundreds of
meV [14], and thus effectively separates the two waveguides.
Theoretical estimates show that three to five rows of antidots
provide sufficient electrical isolation [15], implying a minimal
separation of a few tens of nanometers. The waveguides
defined via GALs have been shown to have good conduction
properties [16], i.e., they are not so severely affected by
disorder as graphene nanoribbons fabricated via an etching
process [4]. A number of experimental techniques are available
for the fabrication of GALs, including block-copolymer [17]
and nanosphere [18] masks, ion beam etching [19], and e-beam
lithography [20].

The proposed device geometry is, in addition to studies
of Coulomb drag, highly relevant to other studies of cou-
pled one-dimensional (1D) structures based on graphene.
For example, the propagation of plasmons [21,22], or the
effect of a van der Waals interaction [23], have been in-
vestigated recently both theoretically and experimentally in
similar systems.

The paper is organized as follows. In Sec. II we de-
scribe three basic ingredients entering our calculations: the
model for GAL waveguides, the Coulomb drag theory,
and the evaluation of the dielectric function in the ran-
dom phase approximation (RPA). Section III presents our
numerical results and conclusions, which are summarized
in Sec. IV.

II. MODEL

A. Graphene antidot lattice waveguide

Low energy excitations in graphene waveguides can be
modeled by the Dirac equation with a mass term m(y), which
describes the region of graphene sheet with antidots [16], i.e.,
m(y) > 0, |y| > W/2, where W is a width of the waveguide
[see Fig. 1(a)]. Thus we have to solve the Schrödinger equation
Ĥψ(r) = Eψ(r), with the Hamiltonian

Ĥ = �vF

(
m(y) −i ∂

∂x
− ∂

∂y

−i ∂
∂x

+ ∂
∂y

−m(y)

)
. (1)
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(a) (b)

(c)

FIG. 1. (Color online) (a) Schematic illustration of a graphene
waveguide (GWG): a region of pristine graphene of width W

sandwiched between regions of GALs. (b) Dispersion relation of
GWG with W = 20 nm; the black dotted line shows a representative
Fermi level EF = 0.054 eV, which corresponds to the charge density
n � 3 × 1011 cm−2. (c) Coulomb drag setup: two parallel GWGs
separated by the region of GAL of the width d .

Due to the translational symmetry in the x direction, the
solution of Eq. (1) can be written in the form

ψn(r) = eikx

(
φa(y)
φb(y)

)
. (2)

We assume that the bang gap produced by GALs is much
larger than the Fermi energy, i.e., EGAL

g � EF , which is
mathematically expressed as m → ∞,|y| > W/2 (the infinite
mass limit). Then, by applying the Berry-Mondragon bound-
ary conditions [24], we get the wave function

ψn(r) = 1

2
√

W
√

L
eikx

(
seiθ e−ikny + eikny

seiθ eikny + e−ikny

)
, (3)

where θkn,k = arctan(kn/k) and s = sgn(E). The energy dis-
persion is given by a set of subbands

En(k) = s�vF

√
k2 + k2

n, kn = π

W

(
n + 1

2

)
. (4)

The lowest energy excitations can be approximated by
quadratic dispersion

Ek ≡ E0(k) = �vF

√
k2

0 + k2 ≈ Eg

2
+ �

2k2

2m�
, (5)

with the effective mass m� = k0�/vF and the band gap
Eg = 2�vF k0. If the Fermi energy lies in the lowest subband,
the density of carriers is n = gsgv

πW
kF , where gs = gv = 2 is a

spin and valley degeneracy and kF is a Fermi wave vector.
We emphasize that even though the appropriate dispersion is
parabolic, the pseudospin nature of graphene permeates in the

calculations due to the wave-function overlap factor discussed
below.

B. Drag calculation

We use the standard expression for the drag resistivity,
where the subsystem interaction is taken into account per-
turbatively up to second order [25–27],

ρ21 = �
2

16πe1e2n1n2kBT

1

W

∫ ∞

−∞

dq

2π

∫ ∞

−∞
dω|U12(q,ω)|2

×Γ1(q,ω)Γ2(q,ω)

sinh2
(

�ω
2kBT

) , (6)

where the subscript i = 1,2 defines the waveguide and T

is the temperature, Γi(q,ω) is the nonlinear susceptibility,
and U12(q,ω) is the Fourier component of the screened
interwaveguide Coulomb interaction.

In what follows we consider only the lowest subband. This
approximation can be justified by the following arguments.
First, for the parameters chosen for the calculations, namely,
Eg � kBT , the contribution from the interband transition
is small compared to the intraband contribution. Also, an
analysis of Eq. (6) shows that the drag resistivity decreases
rapidly within increasing Fermi level. If the charge densities
are equal in both waveguides, the drag resistivity scales by
the factor 1/n2. Moreover, as we show in detail below, the
dominant contribution to ρ21 comes from backscattering with
momentum transfer kF � q � 2kF (see Fig. 3). In this case the
interaction between waveguides, described by the U12(q,ω)
term, decays rapidly with an increase of EF . Therefore, in
order to get a measurable signal, one has to operate at low
doping, which corresponds to the Fermi level located in the
vicinity of the lowest subband edge.

The nonlinear susceptibility, which describes a response
of the charge density to an external potential, is given in the
Boltzmann limit (weak disorder) by [28]

Γi(q,ω) = 2πeigsgv

�μtr,i

∫ π
a

− π
a

dk

2π
δ(Ek − Ek+q − �ω)

× [f (Ek) − f (Ek+q)][τk+qvk+q − τkvk]

×F (k,k + q), (7)

where τk is the transport scattering time, μtr,i is a mo-
bility in a sense that j = enμtrE, vk = 1

�

∂E(k)
∂k

is a group
velocity, and f (E) is the Fermi-Dirac distribution function.
The function F (k,k + q) = [1 + cos(θk0,k+q − θk0,k)]/2 is the
wave-function overlap, which stems from the calculation of the
Coulomb interaction matrix element 〈k,k + q|V (r1,r2)|k +
q,k〉.

In general, the transport scattering time is a function of
momentum (or energy) τ = τ (k). In the low-temperature limit,
T � TF , which we consider here, the drag resistivity is not
sensitive to the precise functional dependence of τ (k) [29], so
that the relaxation time approximation τ (k) � τF = const can
be employed [30,31]. Due to the delta function in Eq. (7), the
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integral can be evaluated analytically,

Γ (q,ω) = sgn(q)
k0gsgv

�vF

[
f (Eks

) − f
(
Eks+q

)]
F (ks,ks + q),

(8)

where we used that μtr = eτ/m� and

ks = −k0

q

ω

vF

− 1

2
q (9)

is a root of the equation Eks
− Eks+q − �ω = 0.

C. Screening

The dynamically screened interwaveguide Coulomb inter-
action is

U12(q,ω) = V12(q)

ε(q,ω)
, (10)

where ε(q,ω) is the dielectric function calculated within the
random phase approximation [25–27],

ε(q,ω) = [1 − V11(q)�11(q,ω)][1 − V22(q)�22(q,ω)]

−V21(q)�11(q,ω)V12(q)�22(q,ω), (11)

and Vij (q) are the 1D Fourier components of the bare Coulomb
interaction,

Vij (q) = eiej

2πεrε0

∫
dy1

Wi

∫
dy2

Wj

K0(q|y1 − y2|), (12)

where K0(y) is a zero-order modified Bessel function, and
εr = 2.5 is the relative dielectric permittivity. The finite-T
polarizability is given by the bare bubble diagram [32]

�mn(q,ω) = gsgv

L

∑
k

f
(
Em

k+q

) − f
(
En

k

)
Em

k+q − En
k − �(ω + iη)

F (k,k + q),

(13)

where L is a length of the waveguides.

III. RESULTS

For the sake of simplicity we consider two equal GWGs,
i.e., W1 = W2 = 20 nm, with equal chemical potential and
temperature [see Fig. 1(c)]. The distance between GWGs is
40 nm. The band gap inside the waveguide, caused by quantum
confinement, is Eg = 0.092 eV. In order to appreciate the role
of screening, we first calculate the drag using a bare Coulomb
interaction, i.e., ε(q,ω) = 1. Figure 2 shows the drag resistivity
as a function of temperature for different values of chemical
potential. One can see that the value of ρD is very sensitive to
the value of EF . An increase of EF by just a few meV’s results
in a significant drop of the drag resistivity for two reasons.
First, a change of the chemical potential induces extra carries
in the system, which decreases the drag resistivity because of
the factor n−2 (for equivalent waveguides) according to Eq. (6).
The second reason is related to the fact that scattering with
momentum transfer of the order of kF , described by U21(q), is
much smaller for a larger EF .

In the case of an unscreened Coulomb interaction the
temperature dependence of the drag resistivity exhibits the
following behavior: At small temperatures the drag grows
rapidly with increasing T , reaching the maximum value at

(a)

(b)

(c)

(b) (c)

(e)(d)

FIG. 2. (Color online) (a) Drag resistivity between equal ballistic
waveguides as a function of temperature for different chemical
potentials. The width of the waveguides W1 = W2 = 20 nm and
d = 40 nm. Nonlinear susceptibility at different (b) T = 5 K and
(c) T = 100 K temperatures of the system and EF = 0.050 eV. (d),
(e) Normalized drag intensity calculated using Eq. (14).

T ≈ 0.05TF . A further increase of the temperature results in
either decay of ρD (for EF = 0.050 eV) or saturation of its
value (for EF = 0.056 eV). The explanation for this behavior
is based on a phase-space consideration of �(q,ω) function,
as we now discuss.

Figures 2(b) and 2(c) show the nonlinear susceptibility
�(q,ω) as a function of transferred momentum and energy.
At low temperatures [T = 5 K, Fig. 2(b)] there are two types
of excitations available: (i) forward scattering with a small
momentum q → 0 and (ii) backscattering with momentum
transfer q � 2kF . [Note that scattering with a momentum
around q = kF requires a large energy transfer and is therefore
suppressed due to the factor sinh−2(�ω/2kBT ) in Eq. (6).]
Even though there is much more phase space available around
q = 2kF , the forward scattering with a small momentum
transfer produces a dominant contribution to the drag, which
can be shown by calculating the drag intensity,

I (q) =
∫ ∞

−∞
dω

|U12(q,ω)|2Γ1(q,ω)Γ2(q,ω)

sinh2(�ω/2kBT )
, (14)

as depicted in Fig. 2(d). With an increase of the temperature
[T = 100 K, Fig. 2(c)] the phase space in between q = 0
and q = 2kF is distributed almost evenly for low energy
excitations. Taking into account that the matrix element of
the bare Coulomb interaction grows rapidly with q → 0,
the forward scattering is also a dominant process at high
temperatures, as shown in Fig. 2(e).
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Next we analyze the effect of screening on the drag
resistivity. For this purpose we compare the drag resistivity
calculated with the bare and the screened Coulomb interaction
[see Fig. 3(a)]. The increase of “screened” ρD with increasing
temperature can be understood by using the same phase-space
arguments as in the case of the drag calculated with a
bare Coulomb interaction. However, at small temperatures,
ρscreened

D � ρbare
D . This is an intuitively expected result, since

screening normally lowers the interaction and hence sup-
presses the drag. With a further increase of the temperature
the relation between the drag calculated with a bare and
screened interaction becomes opposite, ρscreened

D � ρbare
D . We

attribute this behavior to a plasmon-mediated enhancement of
the Coulomb drag. Since the drag depends on the screened
Coulomb interaction U12(q,ω) = V12(q,ω)/ε(q,ω), for a cer-
tain ω(q) corresponding to a plasmon mode, the dielectric
function tends to zero, Re[ε(q,ω)] → 0, which results in
a large U12(q,ω) and, in turn, increases the drag. Plasmon

(a)

(b) (c)

(d) (e)

(b)

(c)

FIG. 3. (Color online) Drag resistivity as a function of temper-
ature with unscreened (green solid line, the same as in Fig. 2) and
screened (blue dashed line) Coulomb interaction. Pink dots on the
curve correspond to the temperature points examined on (b) and
(c). Inset: Low-temperature behavior of ρD . (b), (c) The nonlinear
susceptibility calculated at different temperatures. Red curves show
dispersion ω(q) of the plasmon modes. (d), (e) The normalized drag
intensity.

enhancement of the drag has been considered for coupled
quantum wells in Refs. [33–35] and for two-dimensional (2D)
graphene in Ref. [36]. Thus, we need the plasmon dispersion
for the coupled graphene waveguides, i.e., the solutions of
Re[ε(q,ω)] = 0. As it is shown in Figs. 3(b) and 3(c) (red solid
lines), two plasmon modes are supported: the out-of-phase
(acoustic) ω−(q) and in-phase (optic) ω+(q) plasmon modes.
At small q the modes are energy resolved and ω+(q) > ω−(q),
while at large q the two branches merge. These coupled
plasmon modes are similar to those calculated for the case
of two graphene nanoribbons [22,37]. As it is shown in
Fig. 3(b), at the temperature T = 0.07TF the plasmon modes
lie outside the particle-hole continuum defined by �(q,ω). In
this case the screening is effective and therefore ρscreened

D �
ρbare

D . With an increase of the temperature [T = 0.15TF ,
Fig. 3(c)] the nonlinear susceptibility �(q,ω) is nonzero at
ω(q)’s corresponding to the plasmon modes. In this case
the Coulomb interaction U12(q,ω) increases (“antiscreening”),
which eventually leads to the enhancement of the drag.
Interestingly, screening modifies also the drag intensity. Its
maximum lies in between q = kF and q = 2kF , as shown in
Figs. 3(d) and 3(e), which means that the backscattering is a
dominant process contributing to the drag.

Finally, the inset of Fig. 3(a) shows that the drag resistivity
may show an upturn at the very lowest temperatures, depending
sensitively on the Fermi energy. We have not identified
a simple physical reason for this behavior: It is a result
of a complex interplay between the various factors in the
drag formula, Eq. (6). A similar behavior is predicted in
drag between Luttinger liquids [38] and has been recently
measured experimentally [6]. In Ref. [39] the upturn of the drag
resistivity was also observed in GaAs-AlGaAs electron-hole
bilayers. This effect was considered as a signature of exciton
superfluidity. Intriguingly, according to their measurements,
the upturn may be followed by a downturn of the drag as

FIG. 4. (Color online) Drag resistivity between two identical
(W1 = W2 = 20 nm) GWGs as a function of distance d between them
calculated at T = 0.085TF (green line, left axis) and T = 0.15TF

(red line, right axis). The Fermi temperature is TF = 580 K and
kF = 0.0318 1/nm. The black dotted line illustrates asymptotic
behavior in the regime kF d > 1.
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T → 0. Our calculations exhibit similar trends, but arise here
from single particle excitations within the Fermi liquid theory.

Finally, we investigate the interwaveguide distance depen-
dence of the drag, which is depicted in Fig. 4. These calcula-
tions have been carried out at two representative temperatures,
T = 0.085TF and T = 0.15TF , which correspond to the
screened and enhanced Coulomb interaction, respectively.
Both curves being properly scaled have approximately the
same functional dependence. However, in contrast to the
case of 2D graphene sheets, where theoretical predictions
[40,41] and experimental measurements [2] show a ρD ∼ d−4

dependence, we find that in the weak coupling regime kF d > 1
the distance dependence of the drag between two 1D graphene
wires follows ρD ∼ d−n, where n = 6.0 ± 0.5.

IV. SUMMARY

In the present paper we have studied the Coulomb drag
between graphene waveguides, defined with the help of a
graphene antidot lattice. The energy dispersion of GWGs was

calculated using the Dirac model with the effective mass term.
Using the lowest-subband approximation we computed the
drag resistivity. We showed that despite the relatively large
interwaveguide separations required for isolated GWGs, the
magnitude of Coulomb drag resistivity is in the experimentally
measurable range. By performing a detailed analysis of the
RPA screening, we found that plasmons provide a significant
enhancement of the drag at temperatures T > 0.1TF . At low
temperatures the drag resistivity may exhibit a complicated
behavior, namely, the upturn of the drag, which is always
followed by downturn. Finally we showed that in the weak
coupling regime the dependence of the drag on interwaveguide
separation has ρD ∼ d−n asymptotic with n � 6. We believe
that the device concept suggested here is quite versatile, and
may function as a platform for many other investigations.
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