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Abstract—The Auxiliary Particle Filter is a variant of the
common particle filter which attempts to incorporate information
from the next measurement to improve the proposal distribution
in the update step. This paper studies how this can be done
for Mixed Linear/Nonlinear Gaussian models, it builds on a
previously suggested method and introduces two new variants
which tries to improve the performance by using a more detailed
approximation of the true probability density function when
evaluating the so called first stage weights. These algorithms are
compared for a couple of models to illustrate their strengths and
weaknesses.

I. INTRODUCTION

The particle filter (PF) [1][2][3] has become one of the
standard algorithms for nonlinear estimation and has proved its
usefulness in a wide variety of applications. It is an application
of the general concept of Sequential Importance Resampling
(SIR)[4]. At each time the true probability density function is
approximated by a number of point estimates, the so called
particles. These are propagated forward in time using the
system dynamics. For each measurement the weight of each
particle is updated with the corresponding likelihood of the
measurement. The last step is to resample the particles, this
occurs either deterministically or only when some criteria is
fulfilled. This criteria is typically the so called number of
effective particles, which is a measure of how evenly the
weights are distributed among the particles. The resampling
is a process that creates a new set particles where all particles
have equal weights, which is accomplished by drawing them
with probability corresponding to their weight in the original
set. This process is needed since otherwise eventually all the
weights except one would go to zero. The resampling thus
improves the estimate by focusing the particles to regions with
higher probability.

The Auxiliary Particle Filter (APF)[5][6][7] attempts to
improve this by resampling the particles at time t using the
predicted likelihood of the measurement at time t + 1. If
done properly this helps to focus the particles to areas where
the measurement has a high likelihood. The problem is that
it requires the evaluation of the probability density function
p(yt+1|xt). This is typically not available and is therefore often
approximated by assuming that next state is the predicted mean
state, i.e. xt+1 = x̄t+1|t and the needed likelihood instead
becomes p(yt+1|xt+1 = x̄t+1|t).

This paper focuses on the special case of Mixed Lin-
ear/Nonlinear Gaussian (MLNLG) models, which is a special
case of Rao-Blackwellied models. For an introduction to the
Rao-Blackwellized Particle Filter see [8]. Rao-Blackwellized

models have the property that conditioned on the nonlinear
states there exists a linear Gaussian substructure that can be
optimally estimated using a Kalman filter. This reduces the
dimensionality of the model that the particle filter should solve,
thereby reducing the complexity of the estimation problem.
The general form for MLNLG models is shown in (1), where
the state vector has been split in two parts, x = (ξ z)T . Here
ξ are the nonlinear states that are estimated by the particle
filter, z are the states that conditioned on the trajectory ξ1:t
are estimated using a Kalman filter.

ξt+1 = fξ(ξt) +Aξ(ξt)zt + vξ (1a)

zt+1 = fz(ξt) +Az(ξt)zt + vz (1b)

yt+1 = g(ξt+1) + C(ξt+1)zt+1 + e (1c)
(

vξ
vz

)

∼ N

(

0,

(

Qξ(ξt) Qξz(ξt)
Qzξ(ξt) Qz(ξt)

))

(1d)

e ∼ N(0, R(ξt)) (1e)

In [9] an approximation is presented that can be used
with the APF for this type of models, section II presents
that algorithm and two variants proposed by the author of
this paper. Section III compares the different algorithms by
applying them to a number of examples to highlight their
strengths and weaknesses. Finally section IV concludes the
paper with some discussion of the trade-offs when choosing
one of theses algorithms.

II. ALGORITHMS

A. Auxiliary Particle Filter introduction

xt+1 = f(xt, vt) (2a)

yt = h(xt, et) (2b)

Looking at a generic state-space model of the form in (2)
and assuming we have a collection of weighted point estimates
(particles) approximating the probability density function of

xt|t ≈ ∑N

i=1 w
(i)δ(xt − x

(i)
t ) the standard particle filter can

be summarized in the following steps that are done for each
time instant t.

1) (Resample; draw N new samples x̃
(i)
t from the

categorical distribution over x
(i)
t with probabilities

proportional to w
(i)
t . Set w̃

(i)
t = 1

N
.)



2) For all i; sample v
(i)
t from the noise distribution

3) For all i; calculate x
(i)
t+1|t = f(x̃

(i)
t , v

(i)
t )

4) For all i; calculate w
(i)
t+1 = w̃

(i)
t p(yt|x(i)

t+1|t)

The resampling step introduces variance in the estimate, but
is necessary for the long term convergence of the filter. Step
1 is therefore typically not done at each time instant but only
when a prespecified criteria on the weights are fulfilled.

The Auxiliary Particle Filter introduces an additional step
to incorporate knowledge of the future measurement yt+1

before updating the point estimates x
(i)
t .

1) For all i; calculate w̃
(i)
t = l(i)w

(i)
t , where l(i) =

p(yt+1|x(i)
t )

2) (Resample; draw N new samples x̃
(i)
t from the

categorical distribution over x
(i)
t with probabilities

proportional to l(i)w
(i)
t . Set w̃t =

1
N

.)

3) For all i; sample from v
(i)
t from the noise distribution

4) For all i; calculate x
(i)
t+1|t = f(x̃

(i)
t , v

(i)
t )

5) For all i; calculate w
(i)
t+1 =

w̃
(i)
t

l(i)
p(yt|x(i)

t+1|t)

The difference between the algorithms in the rest of section
II is in how the first stage weights, l(i), are approximated for
the specific class of model (1).

B. Algorithm 1

The first algorithm considered is the one presented in
[9]. It computes p(yt+1|xt) using the approximate model
shown in (3). This approximation ignores the uncertainty in
the measurement that is introduced through the uncertainty
in ξt+1, thereby underestimating the total uncertainty in the
measurement. Tbjs could lead to resampling of the particles
even when the true particle weights would not indicate the need
for resampling. Here Pzt denotes the estimated covariance
for the variable zt. In (3e) the dependence on ξt has been
suppressed to not clutter the notation.

p(yt+1|xt) ∼ N(ȳt+1, Pyt+1) (3a)

ξ̄t+1 = fξ(ξt) +Aξ(ξt)z̄t (3b)

z̄t+1 = fz(ξt) +Az(ξt)z̄t (3c)

ȳt+1 = g(ξ̄t+1) + C(ξ̄t+1)z̄t+1 (3d)

Pyt+1 ≈ C(AzPztA
T
z +Q)CT +R (3e)

C. Algorithm 2

Our first proposed improvement to the algorithm in section
II-B is to attempt to incorporate the uncertainty of ξt+1 in
our measurement by linearizing the measurement equation
around the predicted mean. For the case when C and R has
no dependence on ξ the pdf of the measurement can then be
approximated in the same way, except for Pyt+1 which instead
is approximated according to (4), here Jg is Jacobian of g. The
difference compared to model 1 lies in the additional terms for
the covariance Pyt+1 due propagating the uncertainty of ξt+1

by using the Jacobian of g.

Pyt+1 ≈ (JgAξ + CAz)Pzt(JgAξ + CAz)
T

+ (Jg + C)Q(Jq + C)T +R (4)

D. Algorithm 3

If the linearization scheme presented in Section II-C is to
work well g must be close to linear in the region where ξt+1

has high probability. Another commonly used approximation
when working with Gaussian distributions and nonlinearities is
the Unscented Transform used in e.g. the Unscented Kalman
Filter[10]. The second proposed algorithms uses the UT to
approximate the likelihood of the measurement. It propagates
a set of so called Sigma-point through both the time update (2a)
and the measurement equation (2b) and estimates the resulting
mean and covariance of the points after the transformations.
This is then used as the approximation for ȳt+1 and Pyt+1 . This
avoids the need to linearize the model, and can thus handle
discontinuities and other situations where linearization cannot
be used or gives a poor approximation.

The Sigma-points, x
(i)
σ , were chosen according to (5), using

twice the number of points as the combined dimension of the
state and noise vectors (Nx). Σx is the combined covariance
matrix. (

√
NxΣx)i is the i-th column of R, where NxΣx =

RRT . All the points were equally weighted. This conforms to
the method introduced in section III-A in [10].

Σx = diag(Pzt , Q, R) (5a)

W (i) = (2Nx)
−1, i ∈ 1..2Nx (5b)

x(i)
σ = x̄+ (

√

NxΣx)i, i ∈ 1..Nx (5c)

x(i+Nx)
σ = x̄− (

√

NxΣx)i, i ∈ 1..Nx (5d)

III. RESULTS

To study the difference in performance of the three algo-
rithms we will look at two models, the first one was introcuded
in [11] and is an extension of a popular nonlinear model to
include a linear Gaussian substructure. The second model was
designed to highlight problems with the approximation used
in Algorithm 1.

A. Model 1

ξt+1 =
ξt

1 + ξ2t
( 0 0.04 0.044 0.008 ) zt +

+ 0.5ξt + 25
ξt

1 + ξ2t
+ 8 cos 1.2t+ vξ,t (6a)

zt+1 =







3 −1.691 0.849 −0.3201
2 0 0 0
0 1 0 0
0 0 0.5 0






zt +

+ vz,t (6b)

yt = 0.05ξ2t + et (6c)

ξ0 = 0, z0 = ( 0 0 0 0 )
T

(6d)

R = 0.1, Qξ = 0.005 (6e)

Qz = diag(0.01 0.01 0.01 0.01) (6f)



Notice the square in the measurement equation in (6c),
depending on the magnitude of uncertainty in ξt a linearizion
of this term might lead to a poor approximation. So we
might expect that for this model the unscented transform based
approximation might fare better.

The performance of the algorithms was tested by generat-
ing 25000 dataset from (6), all the algorithms were then tested
on this collection for a number of different particle counts.
The average RMSE values are presented in table I, they are
also shown in Fig. 1. The relative RMSE of the algorithms
compared to the standard particle filter is shown in Table II.
As can be seen both algorithm 2 and 3 outperform Algorithm
1, most of the time Algorithm 3 also beats Algorithm 2. This
is expected since they use a more detailed approximation of
the true density of p(yt+1|xt).

N PF Alg. 1 Alg. 2 Alg. 3

10 1.701 1.611 1.607 1.600

15 1.395 1.338 1.322 1.322

20 1.234 1.170 1.153 1.154

25 1.121 1.061 1.060 1.052

30 1.049 0.992 0.978 0.978

40 0.955 0.893 0.885 0.880

50 0.874 0.831 0.824 0.819

75 0.782 0.737 0.732 0.730

100 0.720 0.689 0.686 0.687

TABLE I. AVERAGE RMSE FOR ξ OVER 25000 REALIZATIONS OF

MODEL 1. AS CAN BE SEEN THE IMPROVED APPROXIMATIONS IN

ALGORITHM 2 AND 3 LEAD TO SLIGHTLY BETTER PERFORMANCE, BUT

FOR THIS MODEL THE DIFFERENCE IN PERFORMANCE OF THE

ALGORITHMS IS SMALL

N Alg. 1 Alg. 2 Alg. 3

10 94.7% 94.5% 94.1%

15 96.0% 94.8% 94.7%

20 94.8% 93.4% 93.5%

25 94.6% 94.5% 93.8%

30 94.5% 93.2% 93.2%

40 93.5% 92.7% 92.1%

50 95.0% 94.2% 93.7%

75 94.2% 93.5% 93.3%

100 95.7% 95.2% 95.4%
TABLE II. RMSE COMPARED TO THE RMSE FOR THE REGULAR

PARTICLE FILTER, FOR ξ OVER 25000 REALIZATIONS OF MODEL 1. AS CAN

BE SEEN THE IMPROVED APPROXIMATIONS IN ALGORITHM 2 AND 3 LEAD

TO SLIGHTLY BETTER PERFORMANCE, BUT FOR THIS MODEL THE

DIFFERENCE IN PERFORMANCE OF THE ALGORITHMS IS SMALL

B. Model 2

ξt+1 = 0.8ξt + atzt + vξ (7a)

zt+1 = 0.8zt + vz (7b)

yt = ξ2t + atzt + et (7c)

vξ ∼ N(0, 0.5at + 0.1(1− at)) (7d)

vz ∼ N(0, 0.1) (7e)

R ∼ N(0, 0.1) (7f)

at =

{

0, t even

1, otherwise

The model in (7) was constructed to exploit the weakness
of neglecting the uncertainty introduced in the measurement
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Fig. 1. Average RMSE as a function of the number of particles when
estimating model 1 with the three algorithms in this paper. The particle filter
is included as a reference. Average over 25000 realizations. Data-points for
10, 15, 20, 25, 30, 40, 50, 75 and 100 particles

due to the uncertainty of ξt+1. In order for this to affect the
estimate it is also important that the trajectory leading up to
the current estimate is of importance. Since zt depends on the
full trajectory ξ1:t it captures this aspect. The estimate of z
for different particles will also influence the future trajectory,
this implies that even if two particles at time t are close to the
same value of ξ the path they followed earlier will affect their
future trajectories. This means that a premature resampling
of the particles due to underestimating the uncertainty in the
measurement can lead to errors in the following parts of the
dataset.

To clearly demonstrate this issue a time-varying model was
chosen were the z-state only affects every second measurement
and every second state update. It turns out that this model is
difficult to estimate, and when using few particles the esti-
mates sometimes diverge with the esimated states approaching
infinity. To not overshadow the RMSE of all the realization
were the filters perform satisfactorily they are excluded, the
number of excluded realizations are presented in Table III.

The model was also modified by moving the pole corre-
sponding to the ξ-state to 0.85 and the one for the z-state
to 0.9, this makes the estimation problem more difficult. The
corresponding number of diverged estimates are shown in
Table IV. It can seen that even though all three algorithms
are more robust than the standard particle filter, Algorithm 1
clearly outperforms the rest when it comes to robustness.

The RMSE of the algorithms are shown in Fig. 2 for model
(7) and Fig. 3 for the case with the poles moved to 0.85
and 0.9. Surprisingly the RMSE of Algorithm 1 increases as
the number of particles increases. The author believes this is
an effect of the particles being resampled using a too coarse
approximation, thus introducing a modeling error. When the
number of particles is increased the estimate of a particle filter
normally converges to the true poster probability density, but
in this case the estimate is converging to the true posterior for
the incorrect model, leading to an incorrect estimate.
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Fig. 2. Average RMSE as a function of the number of particles when
estimating model 2 with the three algorithms in this paper. Data-points for
30, 35, 40, 50, 60, 75, 100, 125, 150 and 200 particles. The particle filter is
included as a reference. Average over 1000 realizations, excluding those that
diverged (RMSE ≥ 10000). Both algorithm 2 and 3 beat the PF for low
particle counts, but only the algorithm 3 keeps up when the number of particles
increases. Surprisingly algorithm 1’s performance degrades as the number of
particles increases.
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Fig. 3. Average RMSE for the three algorithms as a function of the number
of particles when estimating the modified model 2 (poles in 0.85 and 0.9
instead). Data-points for 50, 75, 100, 125, 150, 200 and 300 particles. The
particle filter is included as a reference. Average over 5000 realizations,
except for the PF where 25000 realizations were used for 50, 75, 75, 100
and 125 particles due to the large variance of those estimates. The RMSE
was calculated excluding those realizations that diverged (RMSE ≥ 10000).
All filters beat the PF for low particle counts, but only algorithm 3 keeps
up when the number of particles increases. Surprisingly the performance of
algorithm 1 degrades as the number of particles increases.

N PF Alg. 1 Alg. 2 Alg. 3

25 3 0 0 2

50 2 0 0 0

75 1 0 0 0

100 0 0 0 0

125 0 0 0 0

150 0 0 0 0

200 0 0 0 0
TABLE III. THE NUMBER OF DIVERGED ESTIMATES FOR 1000

REALIZATIONS OF MODEL 2. A DIVERGED REALIZATION IS DEFINED AS

ONE WHERE THE RMSE EXCEEDED 10000.

N PF Alg. 1 Alg. 2 Alg. 3

50 124 1 40 35

75 62 0 12 13

100 45 0 7 8

125 22 0 5 4

150 17 0 4 2

200 9 0 1 2

300 1 0 0 0
TABLE IV. THE NUMBER OF DIVERGED ESTIMATES FOR 5000

REALIZATIONS OF MODEL 2 WITH THE POLE FOR ξ MOVED TO 0.85 AND

THE POLE FOR z IN 0.9 INSTEAD. A DIVERGED REALIZATION IS DEFINED

AS ONE WHERE THE RMSE EXCEEDED 10000.



IV. CONCLUSION

The three algorithms compared in this paper are all variants
of the general Auxiliary Particle Filter algorithm, but by choos-
ing different approximations when evaluating the first stage
weights (l) they have different performance characteristics.

As was especially evident when looking at model 2 all three
auxiliary particle filters were more robust than the ordinary
particle filter, particularly when using fewer particles. Algo-
rithm 1 is especially noteworthy since it almost did not suffer
at all from the problem with divergence that was noted for the
other approximations when estimating model 2. However it
does seem to have problems approximating the true posterior,
as evident by the high RMSE that also was unexpectedly
increasing when the number of particles were increased.

Algorithm 2 and 3 both beat the standard particle filter both
in terms of average RMSE and robustness. Algorithm 3 has
the best performance, but also requires the most computations
due to the use of an Unscented Transform approximation for
each particle and measurement.

In the end the choice of which algorithm to use has to
be decided on a case by case basis depending on relative
computational complexity for the different approximations for
that particular model, so this article can not present any defini-
tive advice for this choice. The linearization approach doesn’t
increase the computational effort nearly as much as using the
Unscented Transform, but it doesn’t always capture the true
distribution with the needed accuracy. However, for models
where the linearization works well this is likely the preferred
approximation due to the low increase in computational effort
needed.

When it is possible to increase the number of particles
it could very well be most beneficial to simply use the
standard particle filter with a higher number of particles,
thus completely avoiding the need to evaluate p(yt+1|xt). As
always this is influenced by the specific model and how the
uncertainty in the update step compares to the uncertainty in
the measurement.
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