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Statistical Modelling of Spike Libraries for Simulation of Extracellular

Recordings in the Cerebellum

P. T. Thorbergsson, Student Member, IEEE, M. Garwicz,

J. Schouenborg, A. J Johansson, Member, IEEE

Abstract— Brain machine interfaces with chronically im-
planted microelectrode arrays for signal acquisition require
algorithms for successful detection and classification of neural
spikes. During the design of such algorithms, signals with a
priori known characteristics need to be present. A common way
to establish such signals is to model the recording environment,
simulate the recordings and store ground truth about spiking
activity for later comparison. In this paper, we present a
statistical method to expand the spike libraries that are used in
a previously presented simulation tool for the purpose described
above. The method has been implemented and shown to suc-
cessfully provide quick access to a large assembly of synthetic
extracellular spikes with realistic characteristics. Simulations of
extracellular recordings using synthesized spikes have shown to
possess characteristics similar to those of in-vivo recordings in
the cat cerebellum.

I. INTRODUCTION

Brain Machine Interfaces (BMIs) are an emerging field

within neuroscience. BMIs allow uni-/bidirectional commu-

nication with the central nervous system (CNS), facilitating

studies of neuronal mechanisms as well as extraction of

control signals for operating prosthetic devices. One class

of BMIs uses extracellular recordings in the cerebral cor-

tex as their input signals. These recordings are done with

chronically implanted electrode arrays connected to external

devices for data acquisition and signal processing. A major

problem in this type of BMIs is the amount of data obtained

from the recordings. This makes it necessary to implement

efficient algorithms for extraction of relevant information and

thereby reduction of data to be stored or transmitted through

the system.

The extracellular recordings consist of two major com-

ponents; a low frequency local field potential, representing

mainly synaptic activity, and high frequency “spiking activ-

ity”, representing activity of single neurons [1]. Extraction

of information from single-unit spiking activity depends on

successful detection and classification of spikes. During de-

velopment of algorithms for these tasks, signals with a priori

known characteristics (spike times and classes) are needed.

We have previously implemented and reported on a simulator

that is based on statistical models for spike times and basic
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assumptions about the recording environment [2], [3]. The

simulator assigns a spike waveform to every contributing

neuron and assumes that the waveform does not change

during the recording. The waveforms are randomly selected

from an assembly of experimentally obtained spikes. Such

an assembly is referred to as a spike library. Spike shapes

depend on several factors, including type and geometry of

the neuron and spatial relationship between the neuron and

the recording electrode [4], [5]. Although the original spike

library spans a wide range of waveform morphologies, its

discrete and sparse nature poses obvious restrictions in this

regard.

In this paper we report on a method to expand a spike

library to an arbitrary size in order to cover a wider range of

waveform morphologies. We find the basis waveforms (prin-

cipal components) that describe the original spike library and

estimate parameters in a statistical model describing their

weights. We then use the model to generate new weights that,

when applied to the principal components, result in new spike

waveforms that follow the statistics of the original data. The

method has been shown to be successful in synthesizing an

arbitrary number of spike waveforms to use in the simulation

of extracellular recordings for testing of spike detection and

sorting algorithms.

II. BACKGROUND

A. The Original Spike Library

Spikes were detected in and extracted from several record-

ings in the cat cerebellum [6]. Spikes from each recording

were sorted using Chronux [7], [8], ensemble averaging

was used for noise reduction and average spike waveforms

were stored. The original spike library consists of 85 spike

waveforms. In the simulations presented in this paper, some

of the spikes in the original library are considered to be

outliers due to excessive deviations in location and shape of

major waveform landmarks and are therefore discarded in

the modelling procedure described here.

B. Principal Component Analysis

When performing principal component analysis (PCA) on

an ensemble of spikes, we find an orthonormal basis to

describe the spikes by applying singular value decomposition

(SVD) on the original spike matrix with the mean waveform

subtracted from each spike. The output of the analysis are the

basis vectors (principal components), their relative contribu-

tions to the total variability in the dataset (eigenvalues of the

covariance matrix of the data, “latent roots”), and component
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weights for every spike in the dataset [9]. By using all the

principal components, the dataset can be entirely described

by

S = PW (1)

where the i-th original spike is in column i of the matrix S,

principal component j is in column j of the matrix P and

the weight of principal component j for spike i in column i

and row j of the matrix W.

We estimate the number of principal components needed

to describe the information contained in the data by looking

at the relative contributions of the principal components to

the variance in the data. The remaining components are

assumed to describe background noise and are discarded. By

setting a threshold for what percentage of variance should be

considered to contain information, we can automatically find

the number of principal components needed do describe the

data. Since the number of principal components needed is

usually smaller than the number of samples in each spike,

this allows us to reduce the dimension of the problem from

the original number of samples/spike to the number of princi-

pal compoents used to describe the data. This is a commonly

used approach in spike sorting, where principal component

weights are used as spike features. An approximation of the

spike matrix in the first N principal components is

Ŝ = PNWN (2)

where PN contains the first N columns of P and WN

contains the first N rows of W in Equation (1).

C. Weight Distributions

The statistics of the spike waveforms can be examined

by looking at the distributions of the weights of the first N

principal components across the entire original dataset. The

distributions of individual component weights can be visu-

alized in a histogram over the rows of WN in Equation (2).

However, it is assumed that certain combinations of principal

components are less likely than others. This motivates us to

look at the joint distributions of all component weights and

assume that the component weight distribution is described

by a Gaussian mixture model in N dimensions and with K

mixture components. I.e. the columns of WN in Equation

(2) are assumed to be stochastic variables coming from an

N−dimensional K−modal Gaussian distribution.

A key assumption of this paper is that the original spike

library is a sample drawn from a large population of spikes.

This sample can be used to derive information about the sta-

tistical properties of the underlying population. By estimating

model parameters, we get an idea of what the rest of the

spikes in the population might look like and by generating

principal component weights according to this model, we

can synthesize an arbitrary number of spikes with similar

characteristics as the original spikes, and with shapes within

the spectrum of “possible” shapes.

III. METHODS

A. Derivation and Utilization of Model Parameters

Principal component analysis is performed on the original

spike library to obtain principal components, component

weights and latent roots. The cumulative sum of latent roots

is plotted and a variance threshold of 99% is applied to

select the number of principal components to use, N . The

component weights are fitted to an N -dimensional K-modal

Gaussian mixture model using the function gmdistribution.fit

in MATLAB R© . Since the number of modes, K , is unknown,

the parameter estimation is carried out for one to six modes

(K ∈ [1, 6]) and the model with the lowest Bayesian

information criterion (BIC) is selected. The BIC is used as

it favors models with low complexity. The estimated model

is used to generate a matrix of random principal component

weights, W̃ and the new spikes are constructed by

S̃ = PNW̃. (3)

The entire procedure is illustrated in Figure (1).

Fig. 1. Principal component analysis (PCA) is performed on the original
spike library and the parameters of a Gaussian mixture model describing the
resulting weight distribution are estimated. The model is used to generate
new weights which are applied to the first N principal components, resulting
in a synthesized spike with similar characteristics as the original spikes.

B. Evaluation of Synthesized Spike Libraries

To evaluate the overall quality of the modelling, we

carry out several comparisons between the original and

synthesized spike libraries. The library features of interest

are distribution of spike durations, distribution of Euclidean

interspike distances and sample intensity. The features are

examined in histograms across the spike libraries. Usability

in simulation of extracellular recordings is evaluated by

running simulations in EAPSim [2], [3] with a real and

synthesized spike library and comparing the power spectral

densities of the simulated recordings. General appearance of

spikes is evaluated in a double blind test on neuroscientists

with long experience in working with spike data.

1) Feature Comparison: Original vs. Synthesized Spike

Libraries: We define spike duration as the time period during

which the absolute amplitude of the largest phase of the spike

is above half its peak value [2]. Spike duration is calculated

for all spikes in the real and synthesized spike library and

the distributions are compared in histograms.
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Euclidean interspike distance between spikes si and sj is

defined as

di,j =

√

√

√

√

M
∑

m=1

(si(m) − sj(m))2. (4)

where m is the sample index. For each spike library, the

distance is calculated for every spike pair in that library.

We define sample intensity as the histogram across every

row of the spike matrices S and S̃. Sample intensity provides

a qualitative measure of the range of spike morphologies

spanned by a spike library. A similar measure has previously

been used in [7] to visualize dominating spike waveforms in

an assembly of spikes in spike sorting.

2) Evaluation of Simulated Recordings: Four sets of sim-

ulated extracellular recordings are generated with EAPSim

[2], [3]. Each set consists of five recordings. In two sets,

we use the original spike library and in two sets, we use

a synthesized library with 2000 spike waveforms. The sets

have zero and four target units present respectively. Power

spectral density (PSD) is estimated for all recordings using

Welch’s method and the mean of the PSDs of all recordings

at a given setting is compared between the datasets.

3) Double Blind Test: To evaluate the quality of synthe-

sized spikes with respect to general appearance, we present

two experienced neuroscientists with a double blind test.

A 9 × 10 matrix of spike figures, each showing either an

original or synthesized spike, is shown to the subjects and

they are asked to identify synthesized spikes. For each of

the spike figures, we first select (with equal probability)

either the original or synthesized library. We then select

(without replacement) a random spike from that library. The

only information given to the subjects is that each figure

either shows an original or synthesized spike. The results

are evaluated with the VassarStats statistical tool [10].

IV. RESULTS

A. Model Parameters

Figure (2) shows the relative contribution of the first N

principal components to the variance in the original spike

library. A 99% variance threshold is applied and we conclude

that the first six principal components capture 99% of the

variance in the data. According to the Bayesian information
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Fig. 2. The relative contribution of the first N principal components to the
variance in the original spike library. N = 6 principal components capture
99% of the variance in the data.

criterion, we model the weight distribution with two compo-

nents (K = 2). As a result, the weight distribution is assumed

to be described by a 6-dimensional 2-component Gaussian

mixture model. Table (I) summarizes the results from the

parameter estimation. Figure (3) shows the first six principal

components and their individual weight distributions in the

original spike library.
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Fig. 3. The first 6 components and their original weight distributions (inset
histograms).

B. Feature Comparison: Original vs. Synthesized Spike Li-

braries

1) Feature Comparison: Figure (4) shows the compari-

son between features of the original and synthesized spike

libraries. A qualitative analysis of the figures shows that we

obtain close matches between original and synthesized spike

libraries in all cases.
2) Evaluation of Simulated Recordings: Figure (5) shows

means of power spectral densities for five simulated record-

ings with four target units, using original and synthesized

spike libraries. The results for background noise only (zero

target units) are very similar and are not shown here. In [2],

we showed that a good match in power spectral densities of

simulated and in vivo recordings could be obtained with our

original spike library. The close match between the curves in

Figure (5) among with the previously mentioned observations

shows that realistic spectral features in simulated extracellu-

lar recordings can be obtained even when using simulated

spike libraries.
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Fig. 5. Power spectral density of simulated extracellular recordings with
original and simulated spike libraries.
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TABLE I

GAUSSIAN MIXTUREMODEL PARAMETERS

Parameter Component 1 Component 2

Mixing proportion 0.62 0.38

Mean
[

2.66 −0.11 −0.08 0.08 −0.02 −0.01
] [

−4.4 0.18 0.13 −0.12 0.03 0.02
]

Covariance matrix















0.46 0.67 0.27 −0.23 0.15 0.14

0.67 5.29 −0.64 −0.49 0.00 0.13

0.27 −0.64 0.57 −0.05 0.16 0.11

−0.23 −0.49 −0.05 0.19 0.00 −0.05

0.15 0.00 0.16 0.00 0.29 0.00

0.14 0.13 0.11 −0.05 0.00 0.08


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
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


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





0.53 0.18 0.46 −0.49 −0.03 −0.05

0.18 4.49 1.02 0.84 −0.01 −0.22

0.46 1.02 1.62 0.11 −0.27 −0.19

−0.49 0.84 0.11 0.9 0.01 0.09

−0.03 −0.01 −0.27 0.01 0.31 0.00

−0.05 −0.22 −0.19 0.09 0.00 0.29
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Fig. 4. Feature comparison between the original (whole lines in a) and b)) and synthesized (dashed lines in a) and b)) spike libraries. Figures a) and b)
show distributions of spike durations and interspike distances respectively. Figures c) and d) show sample intensity for the original and synthesized spike
libraries respectively.

3) Double Blind Test: Analysis of the double blind tests

show, within a 95% confidence interval, that none of the

subjects performed significantly better than chance when

discriminating between original and synthesized spikes.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have described a method in which we

use principal component analysis to obtain a statistical model

to describe the waveforms in an experimentally obtained

spike library. The statistical model, among with the originally

obtained principal components, is used to synthesize a spike

library of arbitrary size. Our results show that the modelling

and synthesis result in spikes with realistic features, usable

for realistic simulation of extracellular recordings in the

cerebellum.

The model will be implemented into EAPSim [3] for com-

mon use. By allowing principal component weights to move

within the modelled distribution, we can model variations in

spike shapes over time within or between recordings. These

variations would facilitate studies on algorithms for spike

tracking and spike sorting under dynamic conditions.

Our results show that six principal components are suffi-

cient to describe 99% of the variance in the original spike li-

brary of cerebellum recordings. This result is consistent with

the independent results reported in [11] where the authors

performed principal component analysis on a large ensamble

of spikes coming from different neurons and concluded that

99% of the variance was described by the first six principal

components. These results give us reason to suspect that

spike sorting algorithms with correlation against a constant

set of basis shapes (PCs) might be feasible.
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