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Abstract

Aims/Hypothesis

Studies on beta cell metabolism are often conducted in rodent beta cell lines due to the lack
of stable human beta cell lines. Recently, a human cell line, EndoC-BH1, was generated.
Here we investigate stimulus-secretion coupling in this cell line, and compare it with that in
the rat beta cell line, INS-1 832/13, and human islets.

Methods

Cells were exposed to glucose and pyruvate. Insulin secretion and content (radioimmuno-
assay), gene expression (Gene Chip array), metabolite levels (GC/MS), respiration (Sea-
horse XF24 Extracellular Flux Analyzer), glucose utilization (radiometric), lactate release
(enzymatic colorimetric), ATP levels (enzymatic bioluminescence) and plasma membrane
potential and cytoplasmic Ca®* responses (microfluorometry) were measured. Metabolite
levels, respiration and insulin secretion were examined in human islets.

Results

Glucose increased insulin release, glucose utilization, raised ATP production and respirato-
ry rates in both lines, and pyruvate increased insulin secretion and respiration. EndoC-BH1
cells exhibited higher insulin secretion, while plasma membrane depolarization was attenu-
ated, and neither glucose nor pyruvate induced oscillations in intracellular calcium concen-
tration or plasma membrane potential. Metabolite profiling revealed that glycolytic and TCA-
cycle intermediate levels increased in response to glucose in both cell lines, but responses
were weaker in EndoC-BH1 cells, similar to those observed in human islets. Respiration in
EndoC-BH1 cells was more similar to that in human islets than in INS-1 832/13 cells.
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Conclusions/interpretation

Functions associated with early stimulus-secretion coupling, with the exception of plasma
membrane potential and Ca?* oscillations, were similar in the two cell lines; insulin secretion,
respiration and metabolite responses were similar in EndoC-gH1 cells and human islets.
While both cell lines are suitable in vitro models, with the caveat of replicating key findings in
isolated islets, EndoC-H1 cells have the advantage of carrying the human genome, allowing
studies of human genetic variants, epigenetics and regulatory RNA molecules.

Introduction

Defective insulin secretion by pancreatic beta cells underlies type 2 diabetes mellitus (T2D), a

disease that increases globally and soon is estimated to affect >500 million people [1]. Despite
decades of research, neither the regulation of insulin secretion nor the mechanism underlying
the disease is completely understood.

Stimulus-secretion coupling in the beta cell links a rise in postprandial blood glucose levels
to insulin release. Glucose is transported into the beta cell and metabolized to yield pyruvate,
which in turn is further metabolized to raise ATP-levels [2]. This increase in the ATP/ADP-
ratio closes ATP-dependent K*-channels (K" s rp-channels) in the plasma membrane [2].
Closure of K'-channels depolarizes the cell membrane, causing an opening of voltage-gated
Ca®"-channels and release of insulin [3]. This pathway, known as the triggering pathway, is
complemented by an amplifying pathway [4]. Numerous studies have been devoted to eluci-
date the nature of the latter enigmatic pathway [5].

Stimulus-secretion coupling has primarily been studied in insulinoma cell lines and rodent
isolated islets. These studies imply differences between species as well as between clonal and
primary cells. In recent times, human islets have been made available to research, but their
number is limited. In addition to beta cells, islets also contain significant numbers of a-, 3-, PP,
e-cells and blood vessel endothelial cells [6,7], limiting the use of islets as a specific beta cell
model. Moreover, rodent and human beta cells and islets show differences in the expression of
key enzymes in glucose metabolism, in the insulin gene (two genes in rodents while one gene
in humans) [8], glucose transporters [9], and islet structure [10]. Attempts have been made to
develop human beta cell lines; however, these lines show low levels of insulin production, slow
growth rate or limited phenotypic and functional stability [11,12]. Recently, a stable human
beta cell line, EndoC-BH1, was derived using targeted oncogenesis in human fetal pancreatic
tissue [13]. EndoC-BH]1 cells produce and secrete insulin in response to glucose, are stable in
culture and express beta cell-specific markers, such as PDX1 and MAFA. Transplantation of
EndoC-BH1 cells reinstated normoglycemia in STZ-induced diabetic mice [13].

In the present study, we attempted to provide a comprehensive characterization of stimu-
lus-secretion coupling in the EndoC-BH]1 beta cell line by comparing glucose metabolism in
this cell line and in the clonal rat cell line, INS-1 832/13 [14,15]. Key experiments were repeated
in isolated human islets.

Methods
In vitro models and human islets

EndoC-BH1 cells (EndoCells, Paris, France) [13] were grown on Matrigel-fibronectin coated
(100 pg/mL and 2 pg/mL, respectively, Sigma-Aldrich, Steinheim, Germany) culture vessels in
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DMEM containing 5.6 mM glucose, 2% BSA fraction V (Roche Diagnostics, Mannheim, Ger-
many), 10 mM nicotinamide (Merck Millipore, Darmstadt, Germany), 50 uM 2-mercaptoetha-
nol, 5.5 ug/mL transferrin, 6.7 ng/mL sodium selenite (Sigma-Aldrich), 100 U/mL penicillin,
and 100 pg/mL streptomycin (PAA Laboratories, Pasching, Austria). INS-1 832/13 cells were
cultured as previously described [14]. Both cell lines were cultured at 37°C in air with 5% CO.,.
Cell viability was assessed by trypan blue exclusion. Unless otherwise stated, EndoC-H1 cells
were seeded at 2.3x10° cells/cm” and INS-1 832/13 cells at 1.5x10 cells/cm? in 24-well plates
(Matrigel-fibronectin coated or uncoated) and cultured for 72 hours followed by an overnight
pre-incubation in 2.8 mM glucose media (starvation media) before assays were performed.
Human islets, isolated and treated as previously described [16], from non-diabetic donors
(aged 61.1+3.3 years, BMI of 26.9+0.8, HbA . of 5.9+0.1) were supplied from the Human Tis-
sue Laboratory at Lund University Diabetes Centre, which receives islets on a regular basis
from the Nordic Center For Clinical Islet Transplantation (Uppsala, Sweden; Professor Olle
Korsgren). Experimental procedures were approved by the Lund University Ethical Board. The
procedure adhered to the Declaration of Helsinki (2000) and the World Medical Association.

Insulin secretion, insulin content and lactate secretion

EndoC-BH1 cells were incubated in HEPES-buffered Krebs-Ringer Buffer (KRB—115 mM
NaCl, 24 mM NaHCOs3, 5 mM KCl, 1 mM MgCl,, 1 mM CaCl,, 10 mM HEPES, 0.2% BSA,
pH 7.4) and INS-1 832/13 cells in HEPES-balanced salt solution (HBSS) [17] containing

0.5 mM glucose for 1 hour. Finally, cells were incubated in KRB or HBSS containing 1 or

20 mM glucose supplemented with either 5 or 35 mM KCl, or 10 mM pyruvate for 1 hour. In-
sulin secretion from 300 human islets was determined as previously described in detail [18].
Acid-Ethanol extraction was used for insulin content [19]. Insulin secretion and content were
measured by the Coat-a-Count radioimmunoassay (RIA) (Siemens Medical Solutions Diag-
nostics, Los Angeles, CA) according to manufacturer’s instructions. Lactate released from cells
was measured using a colorimetric lactate assay kit (BioVision, San Francisco, CA).

Gene Expression

mRNA levels of genes important to cellular metabolism in INS-1 832/13 cells were determined
by the Gene Chip Rat Gene 1.ST Array (Affymetrix, Santa Clara, CA) [17]. Expression levels in
EndoC-BH1 cells were determined by the Gene Chip Human Genome U133 Plus 2.0 Array

(Affymetrix).

RNA isolation and Quantitative real-time PCR

Total RNA was extracted from EndoC-BH1 cells, INS-1 832/13 cells and human islets using
TRI Reagent (Sigma Aldrich) according to manufacturer’s protocol. RNA concentrations were
determined using a NanoDrop Spectrophotometer (Thermo Scientific). Equal quantities of
total RNA were reverse transcribed using RevertAid First-Strand cDNA synthesis kit (Fermen-
tas, Vilnius, Lithuania) in reactions containing 500 ng of total RNA. Quantitative real-time
PCR (Q-PCR) was performed using the TagMan gene expression assay (CACNA1A/Ca,1.2:
Hs00930488, Rn00709287; CACNA1C/Ca,1.3: Hs00167753, Rn01453378; CACNA1D/Ca,2.1:
Hs01579431, Rn00563825; CACNA1H/Ca,3.2: Hs00234934, Rn01460348; Assay on demand,
Applied Biosystems, Life Technologies, Carlsbad, CA), using a 7900HT Fast Real-Time System
(Applied Biosystems). The qPCR was carried out as previously described [20]. Gene expression
was quantified by the comparative Ct method, in which the amount of target is expressed as
274 ysing hypoxanthine-guanine phosphoribosyl transferase (HPRT1) as reference gene.
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Metabolite profiling

Metabolism of cells and islets from the insulin secretion assay was quenched by adding 70 pL
ice-cold Milli-Q water and 300 uL ice-cold extraction solvent, respectively [21]. Metabolites
were extracted and derivatized as previously described [21,22]. Metabolite extracts were ana-
lyzed on an Agilent 6890N gas chromatograph (Agilent Technologies, Atlanta, GA) equipped
with an Agilent 7683B auto-sampler (Agilent Technologies) and coupled to a LECO Pegasus
III TOEMS electron impact time-of-flight mass spectrometer (LECO Corp., St. Joseph, MI) as
previously described [23].

Respiration

Oxygen consumption rates (OCR) were measured by the XF24 Extracellular Flux Analyzer
(Seahorse Bioscience, North Billerica, MA) as previously described [17]. Cells or human islets
were pre-incubated for 1 hour at 37°C in air after which respiration was measured in the pres-
ence of 1 mM glucose, 20 mM glucose or for cells lines also 10 mM pyruvate. Oligomycin, car-
bonyl cyanide-p-trifluoromethoxy-phenylhydrazone (FCCP) and rotenone were injected as
described previously unless otherwise stated [17,24]. All calculations were done as previously
described [25].

Glucose utilization

Cells were incubated in KRB or HBSS containing D-[5->H] glucose and glucose to a final con-
centration of 1 or 20 mM glucose. Glycolytic rate was estimated from the rate of [*’H]OH pro-
duction from D-[5-> H]glucose, as measured by liquid scintillation [17].

ATP levels

Cells were lysed by 200 mM NaCl, 2 mM EDTA, 50 mM Tris and 1% Triton X-100 (pH 7.4)
followed by flash-freezing on dry-ice/ethanol. ATP was assayed using a luciferase-based lumi-
nescent assay (BioTherma, Handen, Sweden) according to manufacturer’s instructions.

Plasma membrane potential changes

Cells were seeded onto Matrigel-fibronectin coated 8-well chambered cover glasses (Lab-Tek,
Naperville, IL) and incubated overnight in starvation medium, followed by incubation in

400 pL of buffer P (135 mM NaCl, 3.6 mM KCl, 1.5 mM CaCl,, 0.5 mM MgSOy,, 0.5 mM
Na,HPO,, 10 mM HEPES, 5 mM NaHCO;, pH 7.4) containing 2.8 mM glucose for 2 hours. A
vial from a FLIPR membrane potential assay kit, explorer format component A, containing a
proprietary plasma membrane potential (Ay,,) indicator (“PMPT”) (R-8042; Molecular Devices,
Sunnydale, CA) was reconstituted in 10 mL water, and 4 pL added to the incubation immedi-
ately prior to imaging as described previously [26,27]. Excitation was performed at 514 nm and
emission recorded with a 530 nm long-pass filter [26] on a Zeiss LSM510 inverted confocal
fluorescence microscope.

Cytoplasmic free Ca®*

After pre-incubation in starvation media, cells were incubated in 400 pL of buffer P. After

1.5 hours, 2 uM Fluo-4 AM (Invitrogen, Life Technologies, Carlsbad, CA), 0.25 mM sulfinpy-
razone (a multi-specific inhibitor of organic anion transporters) and BSA (1 mg/mL) were
added and the incubation was continued for a further 30 min. Finally, Fluo-4 AM was excited
at 488 nm and emission recorded at 505-530 nm. Free cytoplasmic Ca** traces were displayed
in arbitrary fluorescent units.
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Statistical analysis

Data are shown as means + S.E.M. for the indicated number of experiments. Unless otherwise
stated, paired Student’s ¢-test was used to compare differences between stimulation conditions
and either a Student’s t-test or a Mann-Whitney U-test if variances were significantly different
was used to compare differences between cell lines. Seahorse data were analyzed with Kruskal-
Wallis tests and Dunn’s multiple comparisons test or Mann-Whitney U-tests as well as princi-
pal component analysis (PCA). Mean-centered and unit-variance scaled normalized metabolite
data were analyzed in SIMCA-P* 12.0 (Umetrics, Umed, Sweden) by PCA and orthogonal pro-
jections to latent structures discriminant analysis (OPLS-DA).

Results
Proliferation, viability and insulin secretion

The INS-1 832/13 cells proliferated at a higher rate than EndoC-pH1 cells. The average dou-
bling time of EndoC-BH1 cells was 174 hours compared to 44 hours for INS-1 832/13 cells.
The viability in both cell lines was similar; approximately 95% (S1 Fig.).

Stimulation of EndoC-BH1 and INS-1 832/13 cells with 20 mM glucose provoked a 2.4-fold
and a 9.2-fold increase in insulin release, respectively. Basal and stimulated insulin secretion
were 19-fold and 5-fold higher in EndoC-BH1 compared to INS-1 832/13 cells. KCl raised in-
sulin secretion 2.8-fold and 4.2 fold at low and high glucose, respectively, in EndoC-BH1 com-
pared with 7.2-fold and 23.4-fold in INS-1 832/13-cells (Fig. 1A,B). Glucose (16.7 mM)
provoked a 2.4-fold increase in insulin secretion from human islets (Fig. 1C), similar to the
fold increase of EndoC-BH1 cells. Pyruvate stimulation induced a 2.5-fold and 10.3-fold in-
crease in insulin secretion in EndoC-BH1 and INS-1 832/13 cells, respectively (Fig. 1D). Insulin
content was more than 3-fold greater in EndoC-H1 than in INS-1 832/13 cells (Fig. 1E). The
fold-responses to glucose stimulation were higher in all models when calculations were based
on individual experiments rather than averaged data, as presented in the article (S2 Fig.). This
was due to variability in insulin output at basal and stimulated conditions between experi-
ments; this was particularly evident in the human islets where the stimulated output between
islets batches ranged from 1.1 to 9.8 pU/islet/hr.

Gene Expression

Next, mRNA expression of key metabolic enzymes and calcium channels was determined. The
analysis revealed that out of the 41 genes examined all were expressed in INS-1 832/13 cells ex-
cept G6PC2, while in EndoC-BHI cells nine were not expressed (SLC2A4, HK1/2/3, LDHC,
SLC1A3, PCK1, G6PC, ALDOB), and two genes (LDHD, G6PC3) presented inconclusive re-
sults (SI Table). qPCR analysis of four voltage dependent calcium channels (CACNAIA/
Ca,1.2, CACNA1C/Ca,1.3, CACNA1D/Ca,2.1, CACNA1H/Ca,3.2) revealed differential ex-
pression between INS-1 832/13 cells and EndoC-BH1 cells for CACNA1C and between INS-1
832/13 cells and both EndoC-BH1 and human islets for CACNA1H (S3 Fig.).

Metabolite profiling

Microarray and qPCR analysis of the cell lines revealed expression of virtually the same meta-
bolic enzymes (S1 Table). To further assess metabolic regulation, metabolites were profiled at
1 mM and 20 mM glucose. In this analysis, 74 metabolite derivatives were identified, corre-
sponding to 68 unique metabolites. Data were analyzed separately for the two cell lines, using
orthogonal projections to latent structures—discriminant analysis (OPLS-DA) [28]. In these
analyses, systematic variation in metabolite levels unrelated to the glucose stimuli as well as

PLOS ONE | DOI:10.1371/journal.pone.0120879 March 24, 2015 5/18



el e
@ : PLOS ‘ ONE Characterization of Stimulus-Secretion Coupling in EndoC-BH1 Cells

A EndoC-BH1 B -1 832/1
25000 P 6000 INS-1832/13
= *kk = *kk
=) ] .5 50001 i
£ 20000 | g |
3 s = 4000 .
= 15000- s k s
= & 3000 .
S 10000- -5 follaka
8 % 2000 *kk r
= 1 c I
S 5000 = 4000 I
£ =
0 0l ——
Glucose (MM) 1 20 1 20 1 20 1 20
KCI(mM) 5 5 35 35 5 5 35 35
c D
6 —~ 15
(1]
(/2]
* (50
o) *%*
5 S
8T 4 -2 10 = -
o c el o
o ~ e
] c
» 0 .0
C = -
S35 [
= 3 ]
2 = 2 | I 3 97 =
< I et
£ * kil :
: N
(/2]
£
0 L 0-
EndoC-H1 INS-1 832/13
15000
@
3
(3]
=)
= 10000 .
-]
=2
e
g
[
S 50004 -
£
3 I
[2])
£
O |

EndoC-pH1 INS-1 832/13

PLOS ONE | DOI:10.1371/journal.pone.0120879 March 24, 2015 6/18



el e
@ : PLOS | ONE Characterization of Stimulus-Secretion Coupling in EndoC-BH1 Cells

Fig 1. Glucose-stimulated insulin secretion in EndoC-BH1, INS-1 832/13 cell lines and isolated human islets. Basal (1 mM glucose) and glucose-
stimulated (20 mM glucose) insulin secretion in EndoC-BH1 (A) and INS-1 832/13 cells (B) in the presence of 5 mM or 35 mM KCI. (C) Basal (2.8 mM
glucose, white bar) and glucose-stimulated (16.7 mM glucose, black bar) insulin secretion in isolated human islets (n = 14 donors). (D) Insulin secretion after
stimulation with 20 mM glucose (black bar) or 10 mM pyruvate (checkered bar) in both cell lines. (E) Total insulin content was evaluated as the sum of the
intracellular and secreted insulin after basal (1 mM glucose, white bar) or glucose stimulated (20 mM glucose, black bar) insulin secretion for both cell lines.
Data are expressed as mean +S.E.M (n = 3, EndoC-BH1 and n = 4, INS-1 832/13). Differences within cell line were assessed by the paired Student's t-test.
*p<0.05, **p<0.01, ***p<0.001.

doi:10.1371/journal.pone.0120879.g001

noise are removed; thereby isolating variation associated with the glucose stimuli. Consequent-
ly, the original 74 dimensions, defined by the number of detected metabolite derivatives, were
reduced to one dimension (the predictive component). In addition, the contribution of all me-
tabolites to the glucose elicited metabolic response is isolated. The score scatter plots, where
the position of each point was determined by levels of all detected metabolite derivatives in a
sample, revealed a perfect separation of samples from low and high glucose stimulated cells
(Fig. 2A, 2B). This means that glucose stimulation provoked a profound and systematic shift in
metabolism in both cell lines.

Loadings for the predictive components of the two models, scaled as correlations, were plot-
ted in a shared-and-unique-structures (SUS)-like plot (Fig. 2C). Thereby, glucose- elicited
changes in metabolite levels similar (shared) or different (unique) between the two cell-lines
can be identified [29]. Metabolites displaying significantly altered levels were identified from
the loading plots with jack-knifed confidence intervals. This plot revealed that the overall meta-
bolic response to glucose stimulation was similar; regulation of the majority of metabolite levels
was shared between the two cell lines. In both cell lines, glucose increased glycolytic and tricar-
boxylic acid (TCA)-cycle intermediates levels, such as glucose-6-phosphate (Glu6P; 11.3-fold
for EndoC-BH1 vs. 5-fold for INS-1 832/13) and glyceric acid 3-phosphate (GlyA3P; 1.6-fold
vs. 1.2-fold, respectively) (Fig. 2D). However, some metabolites were uniquely regulated in one
of the cell lines; increased intracellular lactate (Lac; 3.1-fold) and reduced aspartate level (Asp;
2.8-fold) were observed only in INS-1 832/13 cells. Both cell lines expressed lactate dehydroge-
nase (LDH), and critical enzymes and carriers in the malate-aspartate- and glycerolphosphate-
shuttles (S1 Table).

To investigate whether the differences in glycolytic and TCA-cycle metabolism observed be-
tween the rodent and human cell lines were cell line or species-specific, we measured the meta-
bolic response to glucose stimulation in human islets (Fig. 2E). Overall, fewer metabolites were
detectable with our GC/MS approach. Only two glycolytic intermediates (Glu6P and GlyA3P)
were observed; increases were not significant. In contrast, more TCA-cycle intermediates were
observed, and their levels generally increased significantly upon glucose stimulation. Also lac-
tate levels were found to increase after glucose stimulation.

Respiration

Since glucose- and pyruvate-stimulated insulin secretion was found to differ between the cell
lines and human islets, we investigated whether this was associated with altered respiration.
Respiration increased in both cell lines as well as in human islets in response to glucose

(Fig. 3A, 3C). After correction for non-mitochondrial respiration, INS-1 832/13 cells displayed
a significantly greater relative respiratory response to glucose (1.8-fold) compared to EndoC-
BH1 cells (1.2-fold) (Fig. 3A, 3D), while the glucose response in human islets was similar to the
response from EndoC-BHI cells (Fig. 3C, 3D). INS-1 832/13 cells also showed a greater re-
sponse to pyruvate (1.6-fold) compared to EndoC-BH1 cells (1.3-fold) (Fig. 3B). The relative
proton leak was higher in INS-1 832/13 cells compared to EndoC-BHI1 cells in the presence of
elevated stimulatory glucose or pyruvate levels, while the proton leak in human islets did not
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Fig 2. Metabolite levels after glucose stimulation in EndoC-H1, INS-1 832/13 cells and isolated human islets. Score scatter plots of the metabolite
profiles for (A) EndoC-BH1 and (B) INS-1 832/13 cells upon glucose stimulation with 1 mM (white triangles) or 20 mM (black triangles) glucose. (C) A SUS-
like plot revealing alterations in metabolite levels after glucose stimulation underlying the clustering observed in the score-scatter plots in two dimensions.
Dashed lines indicate significance levels; metabolites on the top and right sides are significantly increased while those on the bottom and left side are
significantly decreased according to the cell type on the x and y-axis. Hence, metabolites in the upper right and lower left quadrants are up- and down-
regulated, respectively, in both cell lines. Metabolites found in the middle right and left quadrants are up- and down-regulated, respectively, only in the INS-1
832/13 cells and those in the upper and lower centered quadrants are increased and decreased, respectively, after glucose stimulation in EndoC-gH1 cells.
Metabolites in the center of the plot are unchanged. (D) Levels of glycolytic and TCA-cycle intermediate metabolites in 20 mM glucose relative to 1 mM
glucose in EndoC-BH1 (white bars) and INS-1 832/13 (black bars) cells. (E) Relative levels of metabolites in 16.7 mM glucose relative to 2.8 mM glucose in
isolated human islets. Data are expressed as mean +S.E.M (n = 6 for cell lines, n = 14 for donors). Differences within cell line were assessed by the paired
Student’s t-test. *p<0.05, **p<0.01, ***p<0.001.

doi:10.1371/journal.pone.0120879.9002

differ from either of the cell lines (Fig. 3E). The coupling efficiency did not differ between the
two cell lines or the human islets (data not shown). Glucose-stimulated EndoC-H1 cells and
human islets showed an attenuated maximal mitochondrial respiration rate (response to FCCP
following oligomycin) compared to the INS-1 832/13 cells, whereas the relative response to
FCCP of pyruvate-stimulated cells was comparable between the two cell lines (Fig. 3A, 3B, 3F).
A PCA performed on the respiration data showed that EndoC-BH]1 cells were more similar to
human islets than to INS-1 832/13 cells (Fig. 3G).

Glucose utilization, lactate and ATP production in EndoC-BH1 and INS-1
832/13-cells

Metabolite profiling revealed increases of aspartate and lactate levels in INS-1 832/13 cells in
response to glucose. This suggests that cytosolic replenishment of NAD" may differ between
INS-1 832/13 and EndoC-BH1 cells. Since this process is critical to maintain a high glycolytic
rate, we next investigated the flux of glucose through glycolysis. Basal glucose utilization was
similar between the cell lines (Fig. 4A). Glucose stimulation provoked a 6-fold and 26-fold in-
crease in glucose utilization in EndoC-BH1 and INS-1 832/13-cells, respectively.

Since both cell lines expressed LDH (S1 Table), we investigated lactate release from the cells.
Basal lactate levels were similar, albeit near the limit of detection of the assay whereas glucose-
stimulated lactate release increased 14.3-fold and 8.3-fold in EndoC-BH1 and INS-1 832/
13-cells, respectively (Fig. 4B).

Next, we analyzed whether the differences observed in the rate of glucose metabolism and
respiration may be translated into differences in ATP levels, the main trigger of glucose-stimu-
lated insulin secretion (GSIS). Relative to basal conditions, glucose-stimulated ATP-levels were
increased between 1.5 to 2-fold in both cell lines (Fig. 4C).

Plasma membrane potential changes and cytoplasmic free Ca®*

Despite showing a similar fold increase in ATP levels in the presence of glucose, GSIS, express-
ed as fold-response, was lower in EndoC-BH]1 cells. Since the plasma membrane potential
(Ayy,) is largely controlled by the activity of K* sp-channels, we examined whether the cou-
pling of ATP to Ay, differed between the cell lines. To monitor changes in Ay, we used the
fluorescent Ay, indicator, plasma membrane potential indicator, termed “PMPI”, the cellular
uptake of which increases in response to plasma membrane depolarization [30].

In basal conditions, EndoC-BH1 and INS-1 832/13 cells maintained a stable Ay,,. Since Ay,
oscillations in dispersed clonal cells are not synchronized, we compared the field average depo-
larization of approximately 100 cells. In both cell lines, glucose initiated a slowly increasing de-
polarization (Fig. 5A). Inhibition of the mitochondrial ATP synthase with oligomycin resulted
in repolarization as oxidative phosphorylation was inhibited. The repolarization was preceded
by a brief enhanced depolarization. Although EndoC-BH1 cells responded to glucose by
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Fig 3. Respiration in EndoC-H1, INS-1 832/13 cells and human islets. Oxygen consumption rates relative to basal (1 mM glucose) OCR upon glucose
stimulation (20 mM; A, C) or pyruvate stimulation (10 mM; B) in EndoC-BH1 cells (A, B; white symbols), INS-1 832/13 cells (A, B; black symbols) and human
islets (C; grey symbols). Glucose- and pyruvate-stimulated respiratory response (D), proton leak (oligomycin-insensitive glucose-stimulated respiration)

(E) and maximal mitochondrial respiration (F) each expressed as fold relative to basal. (G) Principal component analysis of respiratory parameters (EndoC-
BH1—dashed line, INS-1 832/13—dotted line, human islets—solid line) (PCA: R2X = 0.896; R2Y = 0.684; A = 3). All calculations were done after subtracting
non-mitochondrial respiration. Data are represented as mean +S.E.M (n = 8 for glucose, n = 4 for pyruvate and n = 3 for human islets). Statistical analysis
was done as described in methods. *p<0.05, **p<0.01, ***p<0.001.

doi:10.1371/journal.pone.0120879.9003

depolarizing, we failed to detect oscillations in individual cells, which were apparent in sub-
populations of INS-1 832/13 cells. Accordingly, parallel monitoring of cytoplasmic free [Ca**]
showed the absence of [Ca®*] spiking in individual EndoC-BHI cells (Fig. 5B). INS-1 832/13
cells showed a heterogeneous response to glucose stimulation, with some cells initiating Ay,
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Fig 4. Glucose utilization, lactate and ATP levels in EndoC-BH1 and INS-1 832/13 cells. Glucose utilization (A) and extracellular lactate levels (B) in
EndoC-BH1 cells in basal (1 mM glucose, white bars) and glucose-stimulated (20 mM glucose, black bars) conditions. Relative intracellular ATP levels (C)
after glucose stimulation in EndoC-BH1 (white bars) and INS-1 832/13 (black bars) cells. Data are expressed as mean +S.E.M (n = 3-6). Differences within
cell line were assessed by a paired Student’s t-test. *p<0.05, **p<0.01, ***p<0.001.

doi:10.1371/journal.pone.0120879.9004
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Fig 5. Plasma membrane potential and cytoplasmic free Ca* changes in EndoC-BH1 and INS-1 832/13 cells. Whole-field plasma membrane potential
changes (A) in EndoC-BH1 (bold line) and INS-1 832/13 (thin line) cells. Additions: G, glucose, 16.7 mM; O, oligomycin, 0.5 ng/uL; K, KCI, 25 mM. Plasma
membrane potential (thin line) and the free cytoplasmic Ca* (bold line) in (B) a single EndoC-BH1 cell and (C) a single INS-1 832/13 cell. (D) Representative
single cell plasma membrane potential changes in response to pyruvate stimulation (P, 10 mM) in EndoC-H1 (bold line) and INS-1 832/13 (thin line) cells.

Data shown are representative for n = 3 experiments.

doi:10.1371/journal.pone.0120879.9005

oscillations and others progressively depolarizing without oscillations. Individual INS-1 832/13
cells showed a sustained depolarization in response to glucose, with a sub-population showing

prolonged Ay, bursting and [Ca**] spiking (Fig. 5C). Pyruvate stimulation induced a quick
and sustained depolarization in EndoC-BHI cells, again without oscillations, whereas a propor-
tion of INS-1 832/13 cells oscillated. In both cell lines, oligomycin induced a repolarization be-
fore addition of KClI to calibrate the responses (Fig. 5D).

Discussion

The stable human beta cell line, EndoC-BH1, realizes a much needed tool for detailed studies
of human beta cell biology, circumventing the deficiency of sufficient amounts of primary
human tissue. However, as previous studies on beta cell function mainly have been performed
in rodent models, detailed knowledge on the human beta cells is still incomplete. To increase
such knowledge, we compared metabolism in human EndoC-BHI cells [12] with that in rat
INS-1 832/13 cells [14,15].
Both cell lines showed robust viability and proliferation over time, although the prolifera-
tion rate of INS-1 832/13 cells was higher than that of EndoC-BH1 cells. Overall, our results
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revealed similar glucose-induced changes in insulin secretion, glucose utilization, metabolite
profiles and respiratory rate in both cell lines, although the magnitudes of responses were
lower in EndoC-BHI cells. Depolarization with KCl induced additional insulin secretion, indi-
cating that the exocytotic machinery in both cell lines appears to function normally. Although
the amount of insulin released from EndoC-BHI1 cells in response to glucose was greater, per-
haps due to higher insulin content, the fold-response of GSIS in EndoC-BH1 cells was lower.
This may be due to higher basal secretion of insulin, which is sometimes observed under patho-
logical conditions. The lower rate of glucose utilization in EndoC-BH]1 cells may reflect expres-
sion of GLUT1 instead of GLUT?2, which is expressed in rodent beta cells, while the former
predominates in human beta cells [9]. However, despite 10-fold higher glucose uptake via
GLUT?, this is not expected to impact glycolytic rate as the rate of glucose uptake by GLUT1
and GLUT2 exceeds the rate of glucose phosphorylation by glucokinase (GCK) [9]. Moreover,
EndoC-BH1 cells expressed only GCK while INS-1 832/13 cells expressed both hexokinase 1
(HK1) and GCK (S1 Table). Clearly, this had no impact on glycolytic rate, which was higher in
INS-1 832/13 cells. In fact, contrary to what would be expected from a higher K, glucose trans-
port afforded by GCK, basal insulin secretion was higher in EndoC-BH1 cells.

In contrast to primary cell cultures, but in line with previous studies, both cell lines re-
sponded to pyruvate with increased insulin secretion and respiration [31-33]. If a beta cell is
responsive to pyruvate, it implies that insulin would be released during exercise, as pyruvate
and/or lactate are released from skeletal muscle. This would be physiologically detrimental.
The molecular correlate of this normal “unresponsiveness” to pyruvate is the low expression
level of monocarboxylate transporter (MCT/SLC16A1) in pancreatic beta cells [34]. A geneti-
cally determined exercise-induced hypoglycemia has been attributed to aberrant expression of
MCT in beta cells [35]. Indeed, MCT is viewed as one of the archetypal “forbidden/disallowed”
genes in the beta cell [36,37]. However, in clonal beta cells, MCT1 is constitutively expressed
[31-33]. MCT1 was also expressed in EndoC-BH1 and INS-1 832/13 cells (S1 Table). The rea-
son for expression of MCT1 in clonal beta cells is unclear. A possibility is that both are tumor
cell lines, which need to survive in an environment with a limited supply of substrates as well
as oxygen. It will thus be interesting to determine whether MCT1 expression decreases upon
growth arrest of EndoC-BH1 cells [38].

To further investigate glucose-stimulated metabolic responses, metabolite profiling was per-
formed at basal and stimulatory glucose levels. Overall, alterations in metabolite levels pro-
voked by glucose were similar between the cell lines. We refrained from making comparisons
between the different models since relative changes were determined. Minor changes in basal
levels may therefore have a profound effect on the fold-response, yielding apparent differences,
which may not relate to actual metabolite content. For regulatory purposes, however, changes
in metabolite levels may still be highly relevant. Bearing this in mind, fold-changes in TCA-
cycle intermediate levels seemed most vigorous in INS-1 832/13 cells followed by EndoC-BH1
cells and human islets. Observed differences could be species-specific rather than cell line spe-
cific. Metabolic rate has been suggested to decrease with increasing body size [39,40]. General-
ly, the glucose-induced increases in metabolites in human islets appeared lower than in the cell
lines. This may be due to time preceding isolation and time in culture as well as interactions be-
tween the cell-types which form human islets. Intracellular lactate levels were found to be glu-
cose-responsive in INS-1 832/13 and islets, confirming previous observations in cells [21], but
glucose-unresponsive in EndoC-pH1 cells. Again, the islet source of lactate is unclear; non-beta
cells may contribute to this release. In a previous study, lactate release, but not intracellular
level, was found to parallel glucose unresponsiveness [17]. Here, we found that lactate release
upon glucose stimulation was more pronounced in EndoC-H1 cells.
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Differences in metabolic responses may be due to alterations in mitochondrial metabolism
or coupling of cytosolic and mitochondrial metabolism. A difference in mitochondrial meta-
bolic flexibility is suggested since the relative stimulation in pyruvate-induced respiration was
lower in EndoC-BH1. Hence, both glycolysis and respiration were less fuel-responsive in
EndoC-BH1 compared to INS-1 832/13 cells.

Glucose-fueled respiration was associated with a lower relative proton leak in EndoC-fH]1
cells and human islets compared to the INS-1 832/13 cells; as well as with pyruvate-fueled res-
piration in the cell lines. However, the overall coupling efficiency was the same in EndoC-BH]1,
INS-1 832/13 cells and human islets. In EndoC-BH1 cells, maximal respiration, obtained after
FCCP addition, was blunted in response to glucose but not pyruvate. This blunted maximal
respiration rate was also observed in the human islets. Maximal respiratory capacity in the
presence of protonophore is dependent on processes ‘upstream’ of the mitochondrial proton
circuit (transport, metabolism, electron transport etc.). The failure of the EndoC-BH1 cells to
maintain respiration with elevated glucose following oligomycin and FCCP reflects a failure of
glycolysis. This may be explained by cytosolic ATP depletion following addition of oligomycin,
since pyruvate stimulated respiration, independent of cytosolic ATP, was enhanced under the
same conditions.

Another possibility is decreased malate-aspartate- and/or glycerolphosphate-shuttle activity
leading to decreased regeneration of cytoplasmic NAD™. This may cause EndoC-BHI1 cells to
"leak" glucose-metabolites towards lactate production, substituting for the role played by the
two shuttles in NAD™ replenishment [41,42]. In accordance, metabolite profiling showed that
two components of the malate-aspartate shuttle, aspartate and malate, were regulated by glu-
cose in INS-1 832/13 cells, while only malate was increased in EndoC-BH1 cells. Clearly, differ-
ences in replenishment of cytosolic NAD™ via LDH and the malate-aspartate- and
glycerolphosphate-shuttles, could impact glycolytic rate, mitochondrial metabolism and respi-
ration and subsequently GSIS. The increased redirection of metabolites towards lactate produc-
tion could also account, at least partially, for the discrepancy between the 6-fold increase in
glycolytic rate and the 1.2-fold increase in respiration upon glucose stimulation in EndoC-pH1
cells; less reducing equivalents are produced for respiration when lactate is produced. It should
be noted that lactate generation and release will decrease the bioenergetic responsiveness of
cells to altered glucose availability, by allowing a Pasteur effect.

Plasma membrane depolarization and Ca®" influx are crucial for normal insulin secretion.
EndoC-BH1 as well as INS-1 832/13 cells exhibited depolarization of the plasma membrane in
response to glucose stimulation, an event also seen in human islets [43]. Surprisingly, the slow
plasma membrane depolarization of individual EndoC-BH1 cells triggered neither oscillations
nor Ca”* spiking. There is close parallelism between individual Ay, and Ca** oscillations, since
generally each depolarization induces a concomitant rise in the cytosolic Ca®" concentration,
which is the triggering signal for insulin secretion [44], seen also in human islets [45,46]. Ex-
pression of two VDAC differed between EndoC-BH1 and INS-1 832/13 cells but no significant
differences were found between EndoC-H1 cells and human islets. The absence of oscillations
in the EndoC-BHI cells needs further investigation to better understand the underlying pro-
cesses. This lack of Ca®* spiking may support the notion of lower NADH shuttle activity and
explain the lower TCA-cycle activity and insulin response observed in EndoC-H1 cells. Acti-
vation of the malate-aspartate shuttle [47] as well as TCA-cycle dehydrogenases have been
shown to depend on Ca®* [5].

Although differences were observed in stimulus-secretion coupling between the two cell
lines, the overall metabolic function was similar. Hence, previous knowledge on beta cell me-
tabolism largely translates from studies in the INS-1 832/13 cell line to the human EndoC-BH1
cell line. It is difficult to resolve whether the overall lower metabolic and proliferative rates in
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EndoC-BHI1 cells were due to the fact that humans have a lower metabolic rate than rodents, or
whether different protocols used for cell immortalization as well as culture conditions played a
role. To resolve this issue, sorted primary beta cells from humans and rodents would be helpful.
However, many of the experiments performed here are not feasible in sorted primary cells.
This notwithstanding, our analyses showed that EndoC-BH1 cells are as useful as the INS-1 cell
lines, with the advantage that human genetics of T2D now can be directly applied to an in vitro
model. In addition, this model is amenable to genetic and functional manipulations, such as
the study of the impact of single nucleotide polymorphisms, methylations, and histone modifi-
cations. In summary, the EndoC-BHI cell line may become a bridge between the abundant ro-
dent in vitro models and the scarce primary human material. This may resolve some of the
known and yet unknown species-dependent differences between rodents and humans that
hamper understanding of T2D pathogenesis.

Supporting Information

S1 Fig. Doubling times and viability in EndoC-$H1 and INS-1 832/13 cell lines. Doubling
times (solid symbols, left y-axis) based viable cell numbers and cell viability (open symbols,
right y-axis) for EndoC-BHI1 (squares) and INS-1 832/13 (circles) cells as a function of passage
number post thaw.

(TIF)

S2 Fig. Glucose stimulated insulin secretion in EndoC-BH1 cells, INS-1 832/13 cells and
human islets. Glucose stimulated insulin secretion in EndoC-BH1 cells (white bar), INS-1 832/
13 cells (black bar) and human islets (grey bar) expressed as the mean of the fold to basal from
each biological replicate as opposed to the fold of the averaged basal and averaged stimulated
levels (Fig. 1). Data are expressed as mean +S.E.M. Differences between conditions were evalu-
ated as described in the methods section. *p<0.05.

(TIFF)

S3 Fig. Expression levels of voltage dependent calcium channels in EndoC-BH1, INS-1 832/
13 cells and human islets. QPCR measurements of mRNA expression levels of CACNAIA,
CACNAIC, CACNAI1D and CACNAI1H in EndoC-BH1 (white bars), INS-1 832/13 (black
bars) cells and human islets (grey bars). Data are expressed as mean +S.E.M. Differences be-
tween conditions were evaluated as described in the methods section. *p<0.05, ***p<0.001.
(TIF)

S1 Table. Transcriptomics data for EndoC-BH1 and INS-1 832/13 cells. Check marks indi-
cate the gene was expressed in the cells and an X that it was not detected in the array.
(DOC)
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