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Abstract
Energies with high-order non-submodular interactions

have been shown to be very useful in vision due to their high
modeling power. Optimization of such energies, however, is
generally NP-hard. A naive approach that works for small
problem instances is exhaustive search, that is, enumera-
tion of all possible labelings of the underlying graph. We
propose a general minimization approach for large graphs
based on enumeration of labelings of certain small patches.
This partial enumeration technique reduces complex high-
order energy formulations to pairwise Constraint Satisfac-

tion Problems with unary costs (uCSP), which can be ef-
ficiently solved using standard methods like TRW-S. Our
approach outperforms a number of existing state-of-the-art
algorithms on well known difficult problems (e.g. curvature
regularization, stereo, deconvolution); it gives near global
minimum and better speed.

Our main application of interest is curvature regular-
ization. In the context of segmentation, our partial enu-
meration technique allows to evaluate curvature directly on
small patches using a novel integral geometry approach. 1

1. Introduction

Optimization of curvature and higher-order regularizers,

in general, has significant potential in segmentation, stereo,

3D reconstruction, image restoration, in-painting, and other

applications. It is widely known as a challenging problem

with a long history of research in computer vision. For ex-

ample, when Geman and Geman introduced MRF models to

computer vision [8] they proposed first- and second-order

regularization based on line process. The popular active
contours framework [12] uses elastic (first-order) and bend-

ing (second-order) energies for segmentation. Dynamic

programming was used for curvature-based inpainting [18].

Curvature was also studied within PDE-based [5] and level-
sets [6] approaches to image analysis.

Recently there has been a revival of interest in second-

order smoothness for discrete MRF settings. Due to the

1 This work has been funded by the Swedish Research Council (grant

2012-4213), the Crafoord Foundation, the Canadian Foundation for Inno-

vation (CFI 10318) and the Canadian NSERC Discovery Program (grant

298299-2012RGPIN).

success of global optimization methods for first-order MRF

models [3, 10] researchers now focus on more difficult

second-order functionals [34] including various discrete ap-

proximations of curvature [27, 7, 30]. Similarly, recent

progress on global optimization techniques for first-order

continuous geometric functionals [20, 23, 16, 35] has lead

to extensions for curvature [4].

Our paper proposes new discrete MRF models for ap-

proximating curvature regularization terms like
∫
∂S

|κ|dσ.

We primarily focus on the absolute curvature. Unlike length

or squared curvature regularization, this term does not add

shrinking or ballooning bias.

Our technique evaluates curvature using small patches

either on a grid or on a cell complex, as illustrated in Fig.1.

In case of a grid, our patches use a novel integral geometry
approach to evaluating curvature. In case of a complex, our

patch-based approach can use standard geometry for evalu-

ating curvature. The relationship to previous discrete MRF

models for curvature is discussed in Section 2.

We also propose a very simple and efficient optimiza-

tion technique, partial enumeration, directly applicable to

our patch-based curvature model and some other high-order

problems. Our approach reduces high-order discrete energy

formulations to pair-wise Constraint Satisfaction Problem
with unary costs (uCSP). The details of our patch-based op-

timization technique and related work are discussed in Sec-

tion 3. Our contributions can be summarized as follows:

• simple patch-based models for curvature

• integral geometry technique for evaluating curvature

• easy-to-implement partial enumeration technique re-

ducing patch-based MRF models to a pairwise Con-
straint Satisfaction Problem with unary costs directly

addressable with many approximation algorithms

• our uCSP modification of TRWS outperforms sev-

eral alternatives producing near-optimal solutions with

smaller optimality gap and shorter running times

The experiments in Sections 3 and 4 show that our patch-

based technique obtains state-of-the-art results not only

for curvature-based segmentation, but also for high-order

stereo and deconvolution problems.
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(a) curvature patches on a cell complex (basic geometry) (c) curvature patches on a pixel grid (integral geometry)

(b) our cell-complex patches (8-connected), (d) our pixel-grid patches (3x3),

up to symmetries, and resulting segmentation. up to symmetries, and resulting segmentation.

Figure 1: Evaluating curvature of a segment on a complex (a,b) and on a grid (c,d) using standard and integral geometry. At sufficiently

high resolution, any segment C is a polygon. Thus, to minimize curvature functionals like
∫
C
|κ|ds we need to evaluate all corners. We

use (overlapping) patches created for each vertex on a complex (a) and for each pixel on a grid (c). A patch on a complex (a,b) consists of

all cells adjacent to a vertex and a grid patch (c,d) is a square window centered at a pixel. For π/4 precision as on 8-complex (a), we use

3x3 windows on a grid (b). For finer π/8 precision as on 16-complexes, we use 5x5 windows. Note that each corner on a complex (a) can

be directly evaluated from a configuration (labeling) of a single patch using standard geometry. However, each corner on a grid (c) should

be evaluated using integral geometry by summing over multiple patches covering the corner. Patch configurations in black occur at straight

boundaries and should contribute zero weights. Patch configurations in red correspond to curved boundaries. The weights A, . . . ,H for all

such configurations (d) can be pre-computed from a system of linear equations for all types of corners. The accuracy of integral geometry

approach to curvature on a grid is comparable to the standard basic geometry used on complexes, see (b) and (d).

2. Curvature on patches and related work
We discuss approximation of curvature in the context of

binary segmentation with regularization energy

E(S) =

∫
int(S)

f(x) dx+

∫
∂S

λ|κ|dσ, (1)

where κ is curvature, λ is a weighting parameter, and unary

potential f(x) is a data term.

Our grid-patches in Fig.1(c) and our complex-patches in

Fig.1(a) can be seen as “dual” methods for estimating curva-

ture in exactly the same way as geo-cuts [2] and complex-

based approach in [31] are “dual” methods for evaluating

geometric length. Our grid-patch approach to curvature ex-

tends ideas in geo-cuts [2] that showed how discrete MRF-

based regularization methods can use integral geometry to

accurately approximate length via Cauchy-Crofton formula.

We show how general integral geometry principles can also

be used to evaluate curvature, see Fig.1(c). The complex-

patch technique in Fig.1(a) uses an alternative method for

approximating curvature based on standard geometry as in

[27, 7, 30].

Our patch-based curvature models could be seen as ex-

tensions of functional lifting [4] or label elevation [21].

Analogously to the line processes in [8], these second-order

regularization methods use variables describing both loca-

tion and orientation of the boundary. Thus, their curvature

is the first-order (pair-wise) energy. Our patch variables in-

clude enough information about the local boundary to re-

duce the curvature to unary terms.

Curvature is also reduced to unary terms in [27] using

auxiliary variables for each pair of adjacent line processes.

Their integer LP approach to curvature is formulated over

a large number of binary variables defined on fine geomet-

ric primitives (vertexes, faces, edges, pairs of edges, etc),

which are tied by constraints. In contrast, our unary repre-

sentation of curvature uses larger scale geometric primitives

(overlapping patches) tied by consistency constraints. The

number of corresponding variables is significantly smaller,

but they have a much larger label space. Unlike [27] and us,

[7, 30] represent curvature via high-order factors.

Despite technical differences in the underlying formu-

lations and optimization algorithms, our patch-based ap-

proach for complexes in Fig.1(a) and [27, 30] use geometri-

cally equivalent models for approximating curvature. That

is, all of these models would produce the same solution, if
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there were exact global optimization algorithms for them.

The optimization algorithms for these models do however

vary, both in quality, memory, and run-time efficiency.

In practice, grid-patches are easier to implement than

complex-patches because the grid’s regularity and symme-

try. While integral geometry estimates curvature on a pixel

grid as accurately as the standard geometry on a cell com-

plex, see Figs.1(b,d), in practice, our proposed optimization

algorithm for the corresponding uCSP problems works bet-

ter (with near-zero optimality gap) for the grid version of

our method. To keep the paper focused, the rest of the pa-

per primarily concentrates on grid-based patches.

Grid patches were also recently used for curvature eval-

uation in [28]. Unlike our integral geometry in Fig.1(c),

their method computes a minimum response over a number

of affine filters encoding some learned “soft” patterns. The

response to each filter combines deviation from the pattern

and the cost of the pattern. The mathematical justification of

this approach to curvature estimation is not fully explained

and several presented plots indicate its limited accuracy. As

stated in [28], “the plots do also reveal the fact that we con-

sistently overestimate the true curvature cost.” The extreme

“hard” case of this method may reduce to our technique if

the cost of each pattern is assigned according to our integral

geometry equations in Fig.1(c). However, this case makes

redundant the filter response minimization and the pattern

costs learning, which are the key technical ideas in [28].

3. Simple Patch-based Optimization
One way to optimize our patch-based curvature model is

to formulate the optimization problem on the original image

pixel grid 〈V, C〉 in Figure 2(a) using pixel variables x =
{xi|i ∈ V }, high-order factors α ∈ C, and energy

E(x) =
∑
α∈C

Eα(xα) (2)

where xα = {xi|i ∈ α} is the restriction of x to α. Opti-

mization of such high-order energies is generally NP-hard,

but a number of existing approximate algorithms for cer-

tain high-order MRF energies could be applied. Our experi-

mental section includes the results of some generic methods

[14, 11] that have publicly available code.

We propose a different approach for optimizing our high-

order curvature models that equivalently reformulates the

problem on a new graph, see Fig.2(b). The motivation is as

follows. One naive approach applicable to NP-hard high-

order energies on small images is exhaustive search that

enumerates all possible labelings of the underlying pixel

graph. On large problems one can use partial enumeration

to simplify high-order problems. If some set of relatively

small overlapping patches covers all high-order factors, we

can build a new graph where nodes correspond to patches

(a) pixel-based graph (b) patch-based graph

Figure 2: Patch-based models in Fig.1, represented either on a

pixel-graph with high-order interactions (a) or on a patch-graph

where each patch corresponds to one node (b). In (b) the curvature

reduces to unary terms, but the graph includes pairwise consis-

tency constraints due to patch overlaps.

and their labels enumerate patch states, as in Fig.2(b). Note

that high-order interactions reduce to unary potentials, but,

due to patch overlap, hard pair-wise consistency constraints

must be enforced.

Our general approach transforms a high-order optimiza-

tion problem to a pair-wise Constraint Satisfaction Problem

with unary costs (uCSP). Formally, the corresponding en-

ergy could be defined on graph 〈V, E〉 in Fig.2(b) where

nodes correspond to a set of patches V with the following

property: for every factor α ∈ C there exists patch β ∈ V
such that α ⊆ β. For example, V = C works, but, in gen-

eral, patches in V can be bigger than factors in C. We refer

to nodes in V as super nodes. Clearly, (2) could be equiva-

lently rewritten as an energy with unary and pairwise terms:

Esuper(X) =
∑
α∈V

Uα(Xα) +
∑

(α,β)∈E
Pαβ(Xα, Xβ) (3)

The label Xα of a super node α corresponds to the state of

all individual pixels xα within the patch. By enumerating

all possible pixel states within the patch we can now encode

the higher order factor Eα(xα) into the unary term Uα(Xα)
of (3). The pairwise consistency potential Pαβ(Xα, Xβ) =
0 if variables Xα and Xβ agree on the overlap α ∩ β, and

Pαβ(Xα, Xβ) = +∞ otherwise. The set of edges E may

contain all pairs {α, β} ⊂ V such that α ∩ β 	= ∅, but a

smaller could be enough. For example, the graph in Fig.2(b)

does not need diagonal edges. A formal procedure for se-

lecting the set of edges is given in our extended technical

report [22].

Optimization of pairwise energy (3) can be addressed

with standard methods like [13, 9] that can be modified

for our specific consistency constraints to gain significant

speed-up (see Sec.3.2).

LP relaxations When we apply method like TRW-S [13]

to energy (3), we essentially solve a higher-order relaxation

of the original energy (2). Many methods have been pro-

posed in the literature for solving higher-order relaxations,

e.g. [29, 15, 19, 33, 14] to name just a few. To understand
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the relation to these methods, in [22] we analyze which

specific relaxation is solved by our approach. We then ar-

gue that the complexity of message passing in our scheme

roughly matches that of other techniques that solve a simi-

lar relaxation. 2 In practice, the choice of the optimization

method is often motivated by the ease of implementation;

we believe that our scheme has an advantage in this respect,

and thus may be preferred by practitioners.

Other related work The closest analogue of our approach

is perhaps the “hidden transformation” approach [1] that

converts an arbitrary CSP into a pairwise CSP (also known

as the “constraint satisfaction dual problem”). We provide a

weighted version of this transformation; to our knowledge,

this has not been studied yet, and the resulting relaxation

has not been analyzed.

Our method bears some resemblance to the work [15]

that also uses square patches. However, we believe that the

relaxation solved in [15] is weaker than ours; details are

discussed in [22].

Researchers also considered alternative techniques for

converting a high-order energy of binary variables into a

pairwise one. We will compare to one such technique, [11],

which generalizes roof duality to factors of order 3 and 4.

3.1. Application to π/2-precision curvature

In this section we illustrate our approach on a very coarse

approximation of curvature where we only allow boundary

edges that are either horizontal or vertical. It is shown in [7]

that the resulting energy can be formulated as in (2) where

C contains the edges of an 8-connected neighborhood, see

Fig. 6. In contrast we formulate the problem as (3) where

V is the set of all 2 × 2 patches. Consider the patches in

Figure 4 and their curvature estimates. The patches have

Figure 4: Four of the 16 patch states used to encode curvature

with penalties 0, π/2, 0 and 2π respectively.

4 pixel boundaries that intersect in the middle of the patch.

To compute the curvature contribution of a patch we need to

determine which of the 4 pixel boundaries also belong to the

segmentation boundary. If two neighboring pixels (sharing

a boundary) have different assignments then their common

boundary belongs to the segmentation boundary.

Figure 5 shows the approach. We start by forming

2Message passing techniques require the minimization of expressions

of the form Eα(xα) + . . . where dots denote lower-order factors. Here

we assume that this expression is minimized by going through all possible

labellings xα. This would hold if, for example, Eα(·) is represented by

a table (which is the case with curvature). Some terms Eα(·) used in

practice have a special structure that allow more efficient computations; in

this case other techniques may have a better complexity. One example is

cardinality-based potentials [32] which can have a very high-order.

Figure 5: Super nodes formed in a sliding window fashion. The

red pixel occurs in 4 super nodes. Pairwise interactions ensure that

shared pixels are assigned the same value.

patches of size 2 × 2 into super nodes. This is done in a

sliding window fashion, that is, super node (r, c) consists of

the nodes (r, c), (r, c+1), (r+1, c) and (r+1, c+1), where

r and c are the row and column coordinates of the pixels.

Each super node label can take 16 values corresponding

to states of the individual pixels. The curvature interaction

and data terms of the original problem are now transformed

to unary potentials. Note that since patches are overlapping

pixels can be contained in up to four super nodes. In order

not to change the energy we therefore weight the contribu-

tion from the original unary term, f(x) in (1), to each patch

such that the total contribution is 1. For simplicity we give

pixels that occur k times the weight 1/k in each super node.

Finally to ensure that each pixel takes the same value in

all the super nodes where it is contained we add the ”consis-

tency” edges E between neighboring super nodes (see Fig.

5). Note it is enough to use a 4-connected neighborhood.

Our two approaches from Figure 1 and [27, 7, 30] all

assign the same curvature costs for the patches in Figure 4.

Therefore, assuming that the global minimum can be found,

they yield the same solution for π/2-precision curvature.

3.2. Efficient Message Passing

Since the number of labels can become very large when

we have higher order factors it is essential to compute mes-

sages fast. The messages sent during optimization has the

form

mt
αβ(Xβ) = min

Xα

(Pαβ(Xα, Xβ) + h(Xα)), (4)

where h is some function of super node label Xα.

To compute the message we order the labels of both node

α and β into (disjoint) groups according to the assignments

of the shared pixels. The message values mt
αβ(Xβ) for all

the Xβ in the same group can now be found by searching

for the smallest value of h(Xα) in the group consistent with

the Xβ . The label order depends on the direction of the edge

between α and β, however it does not change during opti-

mization and can therefore be precomputed at startup. The

bottleneck is therefore searching the groups for the minimal

value which can be done in linear time.

Note that this process does not require that all the possi-

ble patch assignments are allowed. For larger patches (see
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λ TRW-S Energy TRW-S Lower bound Unlabled by GRD(-heur) TRW-S running time GRD(-heur) running time

2.5 · 10−5 4677 4677 0% (0%) 0.934s 10737s (7.08s)

2.5 · 10−4 4680 4680 0% (0%) 0.961s 9287s (10.7s)

2.5 · 10−3 4707 4707 0.2% (0.2%) 2.43s 10731s (7.32s)

2.5 · 10−2 4910 4910 6.7% (6.8%) 3.98s 12552s (6.96s)

2.5 · 10−1 5833 5833 100% (100%) 14.3s 12337s (10.9s)

2.5 · 100 7605 7605 100% (100%) 28.8s 7027s (22.2s)

Figure 3: Our results for 2 × 2 curvature with different regularization weight λ (top row of images). TRW-S with super nodes gives a

tight lower bound. The figures within parenthesis are results when using the heuristics proposed for speedup in [11]).

Section 3.4) some of the patch states may not be of interest

to us and the corresponding labels can simply be removed.

Figure 3 compares our approach for π/2-precision cur-

vature to Generalized Roof Duality (GRD) [11]. We used

TRW-S [13] with 2 × 2 patches and our efficient message

passing scheme. Our approach gives no duality gap.

3.3. Lower Bounds using Trees

As observed in [7] the 2 × 2 curvature interaction re-

duces to pairwise interactions between all the pixels in the

patch. In this discrete setting (1) reduces to (2) where C
consists of the edges of the underlying (8-connected) graph,

see Figure 6. Therefore it could in principle be solved us-

ing roof duality (RD) [25] or TRW-S [13]. (Note that this

is only true for this particular neighborhood and the inter-

action penalty.) However, it may still be useful to form su-

per nodes. Methods such as [13] work by decomposing the

problem into subproblems on trees and combining the re-

sults into a lower bound on the optimal solution. Sub-trees

with super nodes are in general stronger than regular trees.

Figure 6: Left: 8-connected graph. Right: Sub-tree T .

Figure 7: T2×2 contains two copies (red and green) of T .

Consider for example the sub-tree T in Figure (6). We

can form a similar sub-tree T2×2 using the super nodes, see

Figure 7. Note that the edges that occur twice within the

super nodes have half the weight of the corresponding edges

in Figure 6. Looking in the super nodes and considering the

consistency edges we see that we can find two instances of

T within T2×2 (see Figure 7) both with weights 1/2 (here

the edges that have weight 1 are allowed to belong to both

trees). Hence if we view these two instances as independent

and optimize them we get the same energy as optimization

over T would give. In addition there are other edges present

in T2×2, and therefore this tree gives a stronger bound.

In a similar way, we can construct even stronger trees

by increasing the patch size further (event though the inter-

actions might already be contained in the patches). If we

group super nodes in a sliding window approach we ob-

tain a graph with 3 × 3 patches, see Figure 9. (We refer to

the new nodes as super-duper nodes.) If we keep repeating

this process we will eventually end up enumerating the en-

tire graph, so it is clear that the resulting lower bound will

eventually approach the optimum.

=

Figure 9: Super-duper nodes containing patches of size 3× 3 are

created by grouping super nodes of size 2 × 2 in groups of 2 × 2
in a sliding window fashion.

In Table 1 the same problem as in Figure 3 is solved

using TRW-S without forming any super nodes.

3.4. Application to π/4 and π/8 precision curvature

For patches of size 2× 2 it is only possible to encourage

horizontal and vertical boundaries. Indeed, along a diagonal

boundary edge all 2× 2 patches look like the second patch

in Figure 4. To make the model more accurate and include

directions that are multiples of π/4 radians we will look at

patches of a larger size, see Figure 1(c).
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(a) (b) (c) (d)

Figure 8: Segmentation results on a 81× 81 pixel image using different patch sizes with same very high regularization weight (λ = 20).

(a) - Data term, (b) - 2×2 patches clearly favors horizontal and vertical boundaries , (c) - 3×3 patches, favors directions that are multiples

of π/4, (d) 5× 5 patches, favors directions that are multiples of π/8.

λ Energy Lower bound

2.5 · 10−5 4677 4677

2.5 · 10−4 4680 4680

2.5 · 10−3 4709 4705

2.5 · 10−2 5441 4501

2.5 · 10−1 16090 -16039

2.5 · 100 15940 -19990

Table 1: Same as in Figure 3 without super nodes.

For multiples of π/4 radians it is enough to have 3 ×
3 patches and for π/8 radians we use patches of size 5 ×
5. However, the number of distinct patch-labels needed to

encode the interactions (transitions between directions) is

quite high. It is not feasible to determine their costs by hand.

To compute the specific label costs we generate repre-

sentative windows of size slightly larger than the patch (for

3 × 3 patches we use 5 × 5 windows) that contain either

a straight line or a transition between two directions of

known angle difference. From this window we can deter-

mine which super node assignments occur in the vicinity

of different transitions. We extract all the assignments and

constrain their sum, as shown in Figure 1, to be the known

curvature of the window. Furthermore, we require that the

cost of each label is positive. If a certain label is not present

in any of the windows we do not allow this assignment. This

gives us a set of linear equalities and inequalities for which

we can find a solution (using linear programming). The pro-

cedure gives 122 and 2422 labels for the 3 × 3 and 5 × 5
cases respectively. More details are given in [22].

Figures 8 illustrates the properties of the different patch

sizes. Here we took an image of a circle and segmented it

using the 3 types of approximating patches. Note that there

is no noise in the image, so simply truncating the data term

would give the correct result. We segment this image using

a very high regularization weight (λ = 20). In (b) horizon-

tal and vertical boundaries are favored since these have zero

regularization cost. In (b) and (c) the number of directions

with zero cost is increased and therefore the approximation

improved with the patch size. Figure 10 shows real seg-

mentations with the different patch sizes (with λ = 1). Ta-

ble 2 shows energies, lower bounds and execution times for

a couple of methods. Note that all methods except GTRW-

S use our super node construction, here we use the single

separator implementation [14]. Thus, GTRW-S solves a

weaker relaxation of the energy (this is confirmed by the

numbers in Table 2). GTRW-S requires specifying all label

combinations for each factor. For the patch assignments that

we do not use to model curvature we specify a large cost

(1000) to ensure that these are not selected. Furthermore,

TRW-S and Loopy belief propagation (LBP) both use our

linear time message computation. For comparison TRW-S

(g) uses general message computation. All algorithms have

an upper bound of 10,000 iterations. In addition, for TRW-

S and GTRW-S the algorithm converges if the lower bound

stops increasing. For MPLP [29] we allow 10,000 iterations

of clustering and we stop running if the duality gap is less

than 10−4. Figure 11 shows convergence plots for the 2× 2
case.

1 10 100 1000
1500

2000

2500

Time (s)

E
n
er

g
y

TRW-S energy
TRW-S lower bound
TRW-S (g) energy
TRW-S (g) lower bound
LBP energy
GTRW-S lower bound
MPLP lower bound
Optimal solution

Figure 11: Logarithmic time plot for energy and lower bound

over time for the 2 × 2 experiment in Table 2. For MPLP and

GTRW-S we only show the final energy as a dot.
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Figure 10: Segmentation of the camera man using (from left to right) 2× 2, 3× 3 and 5× 5 patches with λ = 1.

Energy Lower bound Time (s)

TRW-S 1749.4 1749.4 21

TRW-S (g) 1749.4 1749.4 1580

MPLP 1749.4 1749.4 6584

LBP 2397.7 1565

GTRW-S 1867.9 1723.8 2189

(a) 2× 2 patches.

Energy Lower bound Time (s)

1505.7 1505.7 355

1505.7 1505.7 41503

‡ ‡ ‡
∗ 3148

99840 1312.6 10785

(b) 3× 3 patches.

Energy Lower bound Time (s)

1417.0 1416.6 8829

‡ ‡ ‡
‡ ‡ ‡
∗ 157532
‡ ‡ ‡

(c) 5× 5 patches.

Table 2: Cameraman (256× 256 pixels) with λ = 1 run with with different path sizes. Resulting segmentation can be seen in Figure 10.

(‡) Creating the problem instance not feasible due to excessive memory usage. (∗) Inconsistent labeling.

4. Other Applications

Our framework does not only work for curvature but ap-

plies to a general class of problems. In this section we will

test our partial enumeration approach for other problems

than curvature regularization.

4.1. Binary Deconvolution

Figure 12 (a) shows an image convolved with a 3 × 3
mean value kernel with additional noise added to it. The

goal is to recover the original (binary) image. We formulate

the energy as outlined in [24]. The resulting interactions are

pairwise and Figure 12 (b) shows the solution obtained us-

ing RD, here the gray pixels are unlabeled. For comparison

we also plotted the solution obtained when solving the the

same problem as RD but with [29] (c) and TRW-S (d). For

these methods there are substantial duality gaps. In contrast

(e) shows the solution obtained when forming super nodes

with patches of size 3 × 3 and then applying TRW-S. Here

there is no duality gap, so the obtained solution is optimal.

4.2. Stereo

In this section we optimize the energies occurring in

Woodford et al. [34]. The regularization of this method pe-

nalizes second order derivatives of the disparity map, either

using a truncated �1- or �2-penalty. The 2nd derivative is es-

timated from three consecutive disparity values (vertically

or horizontally), thus resulting in triple interactions.

To solve this problem [34] uses fusion moves [17] where

proposals are fused together to lower the energy. To com-

pute the move [34] first reduces the interactions (using aux-

iliary nodes) and applies Roof duality (RD) [25]. In contrast

we decompose the problem into patches of size 3 × 3, that

contain entire triple interactions. Since the interactions will

occur in as many as three super nodes we weight these so

that the energy does not change.

Table 3 shows the results for the Cones dataset from

[26] when fusing ”SegPln” proposals [34]. Starting from

a randomized disparity map we fuse all the proposals. To

ensure that each subproblem is identical for the two ap-

proaches, we feed the solution from RD into our approach

before running the next fusion. We also tested the ”im-

prove” heuristic [25] which gave a reduction in duality gap

for RD. Running ”probe” [25] instead of improve is not fea-

sible due to the large number of unlabeled variables.

We also compared the final energies when we ran the

methods independent of each other (not feeding solutions

into our approach). For �1 regularization our solution has

0.82% lower energy than that of RD with ”improve” and

for �2 regularization our solution is 7.07% lower than RD

with ”improve”.
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