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When is PID a good choice?

Kristian Soltesz ∗ Anton Cervin ∗

∗Dept. Automatic Control, Lund University
P.O. Box 118, SE-221 00, Lund, Sweden.
(e-mail: {kristian,anton}@control.lth.se)

Abstract: A new and freely available model-based PID design tool for Matlab is introduced. It
can be used to solve Maximal Integral Gain Optimization (MIGO) and (load) Integral Absolute
Error (IAE) problems. Robustness is ensured throughH∞ constraints on the closed-loop transfer
functions. A Youla parameter (Q design) method for comparison with the optimal linear time-
invariant (LTI) controller for the considered IAE optimization problem is presented. Several
realistic design examples are provided, in which the tool is used to compare achievable PID
and optimal LTI controller performance, to illustrate whether PID is a good choice for a given
combination of process dynamics and closed-loop robustness requirements.

Keywords: PID control, Youla parametrization, control performance, constrained optimization

1. INTRODUCTION

1.1 Outline

This paper compares achievable performance of PID con-
trollers using PIDopt1 , which is a free, open-source tool for
model-based design of (filtered) PID controllers. Designs
solve either of two constrained optimization problems,
using local algorithms introduced in Hast and Hägglund
(2015); Soltesz et al. (2017). In addition, PIDopt provides
a means of investigating how large room for improvement
a certain design has, if the controller type is relaxed from
PID to arbitrary-order linear time-invariant (LTI).

The paper is organized as follows: The two PID design
problems are introduced in Section 1.2 and further detailed
in Section 2. A general background with references to prior
work is given in Section 1.4. The Q (Youla) design method
is introduced in Section 2.2. Section 3 features illustrative
comparisons, in which the two PID and the Q design
methods are compared in terms of achievable performance.
A general discussion is provided in Section 4.

1.2 Design problem formulations

The setting of Figure 1 is considered. The objective is to
design a controller K, which stabilizes the process output
y in the presence of the load disturbance d, measurement
noise n, and some degree of uncertainty in the LTI process
dynamics P . The regulator problem is considered, explain-
ing the lack of a reference input in Figure 1. This is suf-
ficient, since the servo problem can be treated separately
through two degree-of-freedom designs, once K has been
designed, see Hast and Hägglund (2015).

A continuous-time setting is assumed, with asymptoti-
cally stable single-input single-output (SISO) dynamics P .

? The authors are members of the LCCC Linnaeus Center and the
ELLIIT Excellence Center at Lund University.
1 PIDopt is available under MIT license at https://gitlab.

control.lth.se/kristian/PIDopt.
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Fig. 1. Closed-loop control system with process P , con-
troller K, process output y, load disturbance d, con-
trol signal u, and measurement noise n.

None of these assumptions are a result of limitations: the
algorithms are readily portable to discrete-time process
and controller dynamics; they can be directly applied to
unstable dynamics, provided that they are initiated with
the parameters of a stabilizing initial controller; multiple-
input multiple-output (MIMO) dynamics can be treated
with the same techniques. See Boyd et al. (2015) for a
MIMO extension of the IE algorithm, presented below.
(Extending the exact formulation used in this paper re-
quires one of several possible generalizations of the cost
function to the MIMO setting.)

The two studied design problems are the load step Integral
Error (IE) minimization problem, hereafter referred to
as the IE problem, and the load step Integral Absolute
Error (IAE) minimization problem, hereafter referred to
as the IAE problem. The IE problem is also known as the
Maximal Integral Gain Optimization (MIGO) problem, as
maximizing PID integral gain leads to minimization of load
step IE, whenever the loop transfer function contains at
least one integrator, see Panagopoulos et al. (2002). Both
problems are of high practical significance and industrial
recognition. They are constrained optimization problems
of the form

minimize
θ

J(θ),

subject to ‖S‖∞ ≤Ms,

‖T‖∞ ≤Mt,

‖KS‖∞ ≤Mks,

(1)



where S = (1 + PK)
−1

is the sensitivity function, T =
1 − S is the complementary sensitivity function, and KS
is the noise sensitivity function (the transfer function
from measurement noise to control signal). Robustness is
enforced through the user-specified constraint vector M =

[Ms Mt Mks]
>

. Assuming that d is a step disturbance,
the IE problem aims to minimize the time integral of the
resulting output,

JIE =

∫
y(t)dt, (2)

while the IAE problem aims to minimize the time integral
of its modulus,

JIAE =

∫
|y(t)|dt. (3)

The parameter vector θ of (1) parametrizes the (filtered)
PID controller K = FC, where

C(s) = kp +
ki
s

+ kds (4)

is an ideal PID controller, linear in its parameters θc =

[kp ki kd]
>

. A conventional second-order filter,

F (s) =
1

s2T 2 + 2ζsT + 1
, (5)

is used to guarantee high-frequency roll-off for the common
case of at most one derivator (factor s) in the loop transfer
function PK. The PIDopt IE problem algorithm only
works for fixed T = 0 in (5), i.e., for designing an ideal,
unfiltered PID controller K(s) = C(s) with parameter
vector θ = θc. For the IAE (3) design, a filtered PID
controller is considered, through the addition of the filter

time constant, T , to the parameter vector: θ =
[
θ>c θf

]>
,

where θf = T . The relative damping ratio is fixed to

ζ = 1/
√

2, but can readily be treated as a free optimization

variable, θf = [T ζ]
>

, although the resulting benefit is
limited and outweighed by increased execution time as
pointed out in Soltesz et al. (2017). Relatedly, it is possible
to omit elements of θ in both algorithms. For instance,
kd = 0 can be enforced to design a PI type controller.

The IE algorithm has an advantage in that J(θ) = −ki,
is convex (even linear) in θ. This enables the utilization of
an efficient convex-concave technique introduced in Yuille
and Rangarajan (2003). For practical applications, it is
recommended to use a low-pass filter F , which provides
high-frequency roll-off, as explained in Hägglund (2012).
Unfortunately, the introduction of F voids constraint con-
cavity in the IE problem (upon which the convex-concave
technique relies), meaning that F needs to be chosen prior
to optimizing C. (This process can be iterated in order to
find the optimal K for the IE problem.) Another drawback
of the IE problem formulation, exemplified in Section 3.4,
is that it can lead to closed-loop systems with oscillatory
load responses if robustness is not sufficiently enforced
through M .

The IAE problem makes use of a gradient-based technique,
enabling simultaneous optimization of C and F . Its main
disadvantage is that the evaluation of the Jacobian, needed
in each optimization step, makes the algorithm somewhat
slower (typical 1 min) than the very fast (typical 2 s)

IE algorithm 2 . The quoted times assume that the IE
algorithm has been used to provide an initial parameter
vector for the IAE algorithm.

In addition to finding the optimal PID controller—in the
sense of (1), with objective being either (2) or (3)—it is
relevant to know how much room there is for improvement
if the class of possible K is expanded beyond (filtered) PID
controllers. To this end, PIDopt provides an algorithm
for solving (1) with the IAE objective (3) for LTI K of
arbitrary order. This is done using a Youla (Q) parameter
design problem, hereafter referred to as the Q problem,
described in Section 2.2 and demonstrated in Section 3.1.

1.3 Practical applicability

The purpose of the developed tool is to answer, for a
particular set of constraint levels of (1), whether it is
worthwhile to use a more complex (higher-order) LTI
controller, for the dynamics of a certain stable SISO LTI
process. This might be worthwhile if the performance
benefit, in terms of (1), is deemed sufficiently large by
the user. The tool could also be used to answer the
question of the title in a broader sense—by categorizing for
which types of dynamics and which constraint levels the
mentioned difference becomes large, although such a study
is outside the scope of this paper. The tool is currently in a
proof-of-concept state and offers a set of Matlab functions
for the various designs described in this paper.

1.4 Prior work

PID tuning techniques can roughly be divided into two
categories: heuristic rules of thumb (such as Skogestad
(2003)), and fully model-based techniques (such as the
ones in this paper). The main advantage of the latter
is that they are tailored for a specific process, with
specific design objectives. Their main disadvantage is
that solving the design problem involves more complex
computer software than what is needed for most heuristic
tuning rules.

The prospect of designing PID controllers, with or with-
out filter, through solving constrained optimization prob-
lems, has been investigated in several works. Particularly
for H∞ and mixed H∞/H2 problems, there exist effi-
cient approaches, as implemented in for example Mat-
lab’s hinfstruct based on Apkarian and Noll (2006), and
the toolbox of Sadeghpour et al. (2012). While IE, and
particularly IAE, are industrially recognized performance
measures, they cannot be minimized within the H∞ and
H∞/H2 frameworks, motivating the development of new
methods. The problems described herein have been previ-
ously studied (see for example Panagopoulos et al. (2002);
Garpinger (2015)), but thus far their solutions have relied
on slow simplex-type optimization methods. There is also
a rich literature on PID design by solving closely related
constrained optimization problem, see Kristiansson and
Lennartson (2002); Sekara and Matausek (2009) for a few
examples.

2 Both algorithms have been implemented in Matlab, and no op-
timization for execution speed has been considered. The typical
execution times are representative for a normal desktop or laptop
computer 2018.



In this paper, we will utilize a set of 124 asymptotically
stable processes, which was used to arrive at the AMIGO
tuning rule in Åström and Hägglund (2004). (The original
set contains 134 processes, of which 10 contain an integra-
tor, making them only marginally stable.)

2. METHOD

2.1 PID design

Detailed descriptions of the IE and IAE algorithms, be-
yond that of Section 1.2, are provided in Hast et al.
(2013), Soltesz et al. (2017), and through the PIDopt git
repository 3 .

Both algorithms evaluate constraints over a discrete an-
gular frequency grid. The default grid is generated by ap-
plying the Matlab bode command to P to get a frequency
range, which is then extended both upward and downward
by one decade (to cater for designs where the closed-loop
bandwidth is pushed either up or down by the controller).
A grid comprising N = 103 logarithmically spaced points
has proven sufficient for all thus far considered designs.

In all design examples of Section 3, the IE algorithm
has first been applied to obtain a parameter vector, with
which the IAE algorithm was initialized. For cases where
Mks < ∞, the IE algorithm has been configured to
yield a PI controller, as the lack of high-frequency roll-
off (due to F = 1) would force kd → 0 if sufficiently
high frequencies were considered in the optimization. The

resulting parameter vector was extended with [kd T ]
>

=

[0 0]
>

before it was passed to the IAE algorithm. The
result of the IAE design is in turn used as a nominal
controller in the Q design, as explained below.

2.2 Q design

Looking beyond PID controllers, the Q parametrization to-
gether with convex optimization can be used to search for
an LTI controller of arbitrarily high order that solves (1),
assuming the IAE criterion (3). The general procedure is
outlined in Boyd and Barratt (1991) and is here specialized
for the design problem at hand.

Given that P is stable, all possible stable closed-loop
systems can be characterized via a stable Q parameter

Q =
K

1 + PK
. (6)

The sensitivity functions of interest can be expressed as

S = 1− PQ,
T = PQ,

KS = Q,

(7)

while the unit load step response is given by

Y (s) = P (s)S(s)s−1 =
(
P (s)− P 2(s)Q(s)

)
s−1. (8)

The above expressions are affine in Q, which together with
the norms in (1) and (3) imply that the problem is convex.
The IAE-optimal filtered PID controller, here denoted K0,
is used as a starting point in the optimization.

3 The PIDopt git repository (subject to change) is found at git@

gitlab.control.lth.se:kristian/QPID.git.

To facilitate the search for the optimal Q, a discrete-time
formulation is used. The sample time is selected as h =
0.1/ωb, where ωb is the 3 dB bandwidth of T when the IAE-
optimal filtered PID controller is used. This corresponds
to a Nyquist frequency about 30 times larger than the
closed-loop bandwidth. The sample time is however lower
bounded by L/15, where L is the deadtime of the process,
to avoid sampled models of very high order.

The nominal controller and the process are approximated
by their first-order hold equivalents:

K0d(z) = FOH(K0(s), h),

Pd(z) = FOH(P (s), h).
(9)

The Q parameter is expressed as the discrete-time Ritz
approximation

Qd(z) = Q0d(z) +

Nq∑
k=1

xkQkd(z), (10)

where xk are the scalar variables to be optimized, Nq is
the order of the approximation, and Qkd(z) = zk−1. The
constant term is given by

Q0d(z) =
K0d(z)

1 + Pd(z)K0d(z)
(11)

and ensures that the Q design will be at least as good as
the sampled filtered PID, even with very few terms in (10).
The IAE objective (3) is discretized as

Jd = h

Nt−1∑
k=0

|y(kh)|, (12)

where Nt = bT0.5%/hc, T0.5% being the time until the
magnitude of the response has settled below 0.5% of its
peak value.

Letting Ssd(z) = Csd(zI −Asd)−1Bsd +Dsd, where the Q
parameter appears affinely in Bsd and Dsd, the discrete-
time maximum sensitivity constraint

‖Ssd(eiω)‖∞ ≤Ms (13)

can be expressed as a frequency-independent linear matrix
inequality (LMI)

Psd AsdPs Bsd 0
PTsdA

T
sd Psd 0 PsdC

T
sd

Bsd 0 1 DT
sd

0 CsdP
T
sd Dsd M2

s

 � 0, (14)

with Psd being a symmetric matrix variable of the same
size as Asd, see De Oliveira et al. (2002). Similar LMIs
hold for Mt and Mks. (It can be noted that transforming
constraints into LMIs for continuous-time PID designs is
only possible for delay-free process dynamics, as delays do
not have a finite-dimensional continuous-time state-space
representation.)

Finally, to guarantee that the IAE converges as t→∞, the
controller must have integral action, implying Ssd(1) = 0.
This can be enforced by adding the steady-state constraint

Qd(1) = P−1d (1). (15)

All above constraints are closed-loop convex, meaning that
a solution can be found efficiently. Once the optimal Qd
has been found, the controller is recovered as

Kd =
Qd

1−QdPd
. (16)
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Fig. 2. Load step responses of the closed-loop with process
P of (17) and either of the IE-optimal PI (blue),
IAE-optimal filtered PID (red), Q-optimal high-order
LTI (green) controllers. All controllers honor the
constraint levels Ms = Mt = 1.5, Mks = 10.

The optimization problem is specified and solved in Mat-
lab using CVX, see Grant and Boyd (2014), with the
MOSEK solver, see MOSEK ApS (2015), using default
settings. Through experiments, it was found that Nq = 50
represents a good compromise between optimization time
and quality of the approximation. Execution times for
finding a controller is around 20–60 seconds and mainly
depends on the sampled process model order.

3. COMPARISONS

3.1 A case example

In this example, the process

P (s) =
1

4s+ 1
e−s, (17)

being a lag dominated process with normalized time delay
τ = 0.2, is considered.

The H∞ constraints on S and T are set to Ms =
Mt = 1.5, being reasonable values close to those used
to arrive at the heuristic SIMC, Skogestad (2003), and
AMIGO (approximate MIGO), Åström and Hägglund
(2004), tuning rules. While S, and consequently T =
1 − S, are both unitless, the noise sensitivity KS is
not. Consequently, the choice of Mks is problem instance
dependent and it is not possible to recommend a general
default. In this example we will use Mks = 10, which will
be put into context by subsequent design examples.

For each process, a PI controller (blue) was designed by
solving the IE problem, a filtered PID controller (red)
was designed by solving the IAE problem, and a high-
order LTI controller (green) was designed by solving the Q
problem. Figure 2 shows the resulting load step responses.
Bode plots of the controllers are shown in Figure 3. The
Bode magnitudes of S, T and KS are shown together with
corresponding constraint levels Ms, Mt, and Mks (black)
in Figure 4.

Parameters (rounded to 4 decimals) of the resulting de-
signs are shown in Table 1; resulting IAE and constraint
function values in Table 2. Active constraints (in practice)
are shown in italic. The filtered PID controller of the IAE
design resulted in an IAE decrease of 37%, compared to
the PI controller of the IE design. The Q design further
decreased IAE by 11%.
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Fig. 3. Controller Bode plots. Controllers and colors as in
Figure 2.
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Fig. 4. Bode magnitudes of S, T , and KS. Controllers and
colors as in Figure 2. Black lines showH∞ constraints.

Table 1. Controller and filter parameters for the IE and
IAE design problems for the example of Section 3.1.

Problem kp ki kd T

IE 1.3620 0.5768 0 0

IAE 2.1786 1.0698 0.9838 0.0817

Table 2. IAE and constraint function values for the IE,
IAE, and Q design problems of the example in Section 3.1.

Problem IAE ‖S‖∞ ‖T‖∞ ‖KS‖∞
IE 1.9322 1.5000 1.1741 2.4232

IAE 1.2194 1.5000 1.3336 10.0000

Q 1.0843 1.5000 1.3278 9.9997
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Fig. 5. A representative view of how achievable perfor-
mance is affected by constraining noise sensitivity for
processes of varying relative time delay, τ . Blue marks
show performance deterioration, IAE10/IAE∞, when
going from Mks = ∞ to Mks = 10. Red marks show
IAE1/IAE∞ (same notation).

3.2 The influence of noise sensitivity

Before further comparing solutions of the IAE and Q
problems, it is worthwhile to characterize how the noise
sensitivity constraint level, Mks, affects performance of the
filtered PID controllers, which solve the IAE problem. To
this end, designs for Ms = Mt = 1.5 and Mks ∈ {1, 10,∞}
were obtained for the process set mentioned in Section 1.4.

Performance (IAE) was computed for the unconstrained
design (IAE∞), the design withMks = 10 (IAE10), and the
design with Mks = 1 (IAE1). Figure 5 shows IAE10/IAE∞
(blue), and IAE1/IAE∞ (red), plotted against the nor-
malized time delay, τ , for each process. (For higher-order
processes, the generalization τ = L/Tar, where Tar is
the average residence time, with Tar = L + T for FOTD
processes, has been used.)

One can note—for the considered process set—that Mks

plays an imperial role for lag-dominated processes with
τ < 0.2, while noise sensitivity affects performance with
at most a factor of two for balanced and delay-dominated
processes with τ > 0.4 (see dashed lines in Figure 5).

Furthermore, a closer look at the IAE-optimal filtered
PID controllers reveals that they are all (within numeric
tolerance) equal to their IE-optimal PI counterparts for
the most constrained case of Mks = 1. This is a combined
consequence of the lack of zero crossing oscillations of the
IE-optimal design, and that the introduction of derivative
action would violate the noise sensitivity constraint.

3.3 PID versus general LTI controllers

To assess whether PID control is a suitable choice for
particular process and constraint level combinations, the
relative load IAE improvements of the Q design over
the filtered PID design are shown for Mks = 1 (blue),
Mks = 10 (red), and Mks =∞ (green) in Figure 6.

For Mks = 1, IAE improvement never exceeds 50% over
the considered process set. For Mks = 10 and Mks = ∞
the maximal relative improvements are factors of 2.4 and
21, respectively.
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Fig. 6. Relative IAE improvement of Q over IAE design,
for Mks = 1 (blue), Mks = 10 (red), and Mks = ∞
(green), plotted against normalized time delay, τ , for
the processes considered in Section 3.2.
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Fig. 7. Relative performance improvement, (IAEIE-
IAEIAE)/IAEIE, for Mks = ∞, plotted against nor-
malized time delay, τ , for the processes considered in
Section 3.2.

3.4 IE versus IAE minimization

This final example investigates how much performance
is improved between the solution of the IE and IAE
problems. Figure 7 shows the relative IAE improvement,
(IAEIE-IAEIAE)/IAEIE (subscripts denoting design), of
the IAE-optimal PID controller over its IE-optimal PI
counterpart, for the processes considered in Section 3.2.

The performance improvement is larger for lag-dominated
processes (τ < 0.5), with the largest relative improvement,
21%, occuring for the same process yielding the maximal
improvement in Figure 8. Larger relative improvements
can be expected when relaxing the (complementary) sensi-
tivity constraints, enabling for more aggressive controllers
with zero crossing load step response oscillations.

4. DISCUSSION

Two previously published PID design algorithms have
been implemented in Matlab together with a new Q design
algorithm, and made available through the PIDopt soft-
ware package. It has been used in this paper to investigate
achievable performance for a large set of stable process
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Fig. 8. Load step responses of IE-optimal PI (blue) and
IAE-optimal PID (red) controllers corresponding to
the maximal relative improvement in Figure 7.

dynamics. Such comparisons could serve to decide whether
PID is a suitable controller type choice for a particular
combination of process and robustness requirements.

It should be pointed out that both PID design algorithms
rely on local optimization, and while they honor robustness
constraints, they come with no guarantees of finding the
global performance optima, although they have done so
in cases where the global optima have been previously
published, as mentioned in Soltesz et al. (2017).

The processes on which the methods have been evaluated
in this paper are all representative of process industry and
are known to be suitable for PID control. An expansion of
this work could be to make similar comparisons using other
types of dynamics for which PID controllers are typically
used, such as (mechanical) systems with oscillatory modes
found in robotic or automotive applications, or more
exotic dynamics, such as integrator-lead processes or heat
transfer dynamics.

While falling outside the scope of this paper, it should also
be straightforward to use PIDopt to compare other (fil-
tered) PID designs, obtained through for example tuning
rules such as Skogestad (2003) or Åström and Hägglund
(2004), with achievable LTI controller performance.

In some applications, it is desirable to limit the H2

(energy) rather than the H∞ (worst case) norm of the
noise sensitivity KS. This can be readily achieved for
the IAE-optimizing design, as explained in Soltesz et al.
(2017). Other natural extension of PIDopt include multi-
model designs, and designs for uncertain systems.
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