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Abstract

Force sensing provides robots the capability to accomplish tasks where
physical interaction with the environment is required, such as assembly.
Small position uncertainties can then be corrected for by sensing the con-
tact forces. This thesis considers the problem of force-controlled assembly,
including how tasks can be specified in a simple and intuitive way and
how robust task execution under uncertainties can be accomplished.

A framework for performing robotic assembly is presented. An assem-
bly tasks is composed of a number of skills, where skills both can be
force controlled and be carried out using standard position-based control.
The skills using force control are specified as sequences of constrained
motions, where transitions between the motions are triggered by sensor
events. These events can either be simple threshold levels, or be more
advanced classifiers based on machine learning. A method for explicitly
modeling and resolving uncertainties is presented, as well as a method for
adaptation of force control parameters based on identification of a contact
model. Specification of sensor-based skills usually requires expert knowl-
edge. To make the specification procedure more easy and intuitive, this
thesis presents a method where force-controlled skills can be specified on
a high level, and where an executable low-level description is generated.
Experimental implementations of multiple assembly scenarios are used to
validate the methods and to investigate the potential for force-controlled
assembly with industrial robots.

A force sensor may not always be available. The thesis presents two
different methods for performing force estimation, based on the measured
joint motor angles and the joint motor torques. Friction in the joints is
the major disturbance when doing force estimation. A method to increase
the accuracy of force estimation using dithering to decrease the effective
friction level is proposed. Lead-through programming, to manually guide
the robot, is useful for simple and intuitive robot programming. The thesis
presents a method for performing such lead-through programming with-
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out any force sensor, based on disabling the low-level joint controllers,
only feedforwarding the torque to compensate gravity.

Specification and execution of tasks based on external sensing is diffi-
cult for non-experts. The methods presented in this thesis all contribute
to making it easier and more intuitive to use industrial robots for per-
forming assembly tasks.

6



Acknowledgments

First of all I thank my supervisors Rolf Johansson and Anders Roberts-
son, who have always been supporting in my work and have been given me
guidance and encouragement. I am further thankful for having been in-
troduced into the field of robotics. Although getting a robot to do what you
want is challenging, primarily due to all practical considerations in the
lab, it is very rewarding when you succeed and can see the result. Thanks
also goes to Klas Nilsson, for always being helpful with everything, from
theoretical to practical aspects of all robotics related issues.

Much of my work has been performed in close cooperation with Magnus
Linderoth, who has been a very good work partner. His concern for details
and theoretical issues has been very rewarding in our cooperation and
led to the solution of many problems. I am especially thankful for the
proofreading of all my work, this thesis included. Magnus has also made
me appreciate hiking in general, and mountain hiking in particular, where
he forced me to conquer my fears for mountains during a conference trip
to Alaska.

I also thank my colleagues in the ROSETTA project, within which the
major part of the research presented in this thesis was performed. I have
had many interesting discussions and collaborations, as well as received
valuable feedback on my work.

The Department of Automatic Control offers a very nice place to work
at, and I am very thankful for being a part of this. The research envi-
ronment is very stimulating, and the regular ’fika’ times encourages dis-
cussions about every possible topic. The social events, such as the yearly
Christmas and crayfish parties have been very much appreciated. Fur-
ther, administrative matters always run smoothly, and the computers and
other equipment are almost always working as intended thanks to the ad-
ministrative and technical staff.

I am further thankful to be working together with all colleagues in
the Robotics Lab. I am especially honored to be part of ”The Guys from
Lund”, a prestigious title awarded at a summer school in Bavaria 2011,

7



together with Magnus Linderoth, Olof Sörnmo, Björn Olofsson, and Karl
Berntorp. Every now and then, I get reminded of this event when visiting
conferences etc. Special thanks also goes to Fredrik Bagge, Martin Karls-
son, and Maj Stenmark for good cooperation and for help with this thesis,
both regarding proofreading and improving the quality of the graphics.

I also thank Olof Sörnmo, Martin Hast, Josefin Berner, and Meike
Stemmann for sharing office with me. You have all contributed to creating
a good working environment, where every possible issue can be discussed.
The working days have been unpredictable, as you always have to watch
your back to avoid practical jokes. For instance, if you leave your computer
unlocked, the keyboard layout may be in Arabic when you return, and 2.5
years after my return from parental leave some of my office furniture is
still wrapped in magazine paper.

Finally I thank my wife Emma, my sons Gustav and Viktor, my fam-
ily, and friends. I am especially thankful for all help during the writing
of this thesis, with the premature birth of Viktor as an extraordinary
circumstance.

The research leading to these results has received funding from
the European Community’s Seventh Framework Programme FP7/2007–
2013 – Challenge 2 – Cognitive Systems, Interaction, Robotics – under
grant agreement No 230902 - ROSETTA. This document reflects only the
author’s views and the European Community is not liable for any use that
may be made of the information contained herein.

The author is a member of the LCCC Linnaeus Center, supported by
the Swedish Research Council, and the eLLIIT Excellence Center at Lund
University, supported by the Swedish Government.

8



Contents

1. Introduction 13
1.1 Motivation and Background . . . . . . . . . . . . . . . . . 13
1.2 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3 Outline and Contributions . . . . . . . . . . . . . . . . . . 19

2. Hardware and Interfaces 21
2.1 Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Interface to the robots . . . . . . . . . . . . . . . . . . . . . 22
2.3 Force sensing . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3. Robotic Assembly 25
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Task specification and control framework . . . . . . . . . 27
3.3 Emergency stop button use case . . . . . . . . . . . . . . . 40
3.4 Shield can use case . . . . . . . . . . . . . . . . . . . . . . 53
3.5 Experimental results . . . . . . . . . . . . . . . . . . . . . 56
3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4. Uncertainty Estimation in Robotic Assembly 62
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3 Example from snapfit assembly . . . . . . . . . . . . . . . 63
4.4 Experimental results . . . . . . . . . . . . . . . . . . . . . 66
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5. Detection of Contact Force Transients 71
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3 Experimental results . . . . . . . . . . . . . . . . . . . . . 79
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

9



Contents

6. Generation of Sensor-Based Robot Programs from High-
Level Task Specifications 91
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2 High-level task specification . . . . . . . . . . . . . . . . . 93
6.3 Low-level task specification . . . . . . . . . . . . . . . . . . 98
6.4 Code generation from high-level to low-level task specifi-

cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.5 Experimental results . . . . . . . . . . . . . . . . . . . . . 102
6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7. Adaptation of Force-Control Parameters 104
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.2 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.3 Experimental results . . . . . . . . . . . . . . . . . . . . . 110
7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8. Robotic Force Estimation without Force Sensor 120
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
8.2 Robotic force estimation using joint position-control errors 122
8.3 Robotic force estimation using motor torques and modeling

of low-velocity friction disturbances . . . . . . . . . . . . . 132
8.4 Comparison of methods . . . . . . . . . . . . . . . . . . . . 148
8.5 Force estimation for industrial robots . . . . . . . . . . . . 159
8.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
8.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

9. Dithering to Improve the Accuracy of Force Estimation 168
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
9.2 Dithering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
9.3 Force estimation using dithering . . . . . . . . . . . . . . . 173
9.4 Application scenario . . . . . . . . . . . . . . . . . . . . . . 175
9.5 Experimental results . . . . . . . . . . . . . . . . . . . . . 175
9.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
9.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

10. Sensorless Friction-Compensated Passive Lead-Through
Programming 186
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
10.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
10.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 193
10.4 Experimental results . . . . . . . . . . . . . . . . . . . . . 194
10.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
10.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

11. Conclusions 206

10



Contents

A. Position-Control Reference Generator 210
B. Derivation of Force Estimation Equations 214

B.1 Maximum-likelihood . . . . . . . . . . . . . . . . . . . . . . 215
B.2 Bayesian approach . . . . . . . . . . . . . . . . . . . . . . . 216

Bibliography 217

11





1
Introduction

1.1 Motivation and Background

Traditional industrial robots are most commonly position controlled. Their
task is to follow predefined trajectories, where the only sensors used are
the motor angle sensors in the joints. Modern robot controllers are very
good at performing these tasks, being both fast and achieving good accu-
racy. Typical robotized applications include welding, painting, packaging,
and palletizing. The introduction of robots in industry has relieved human
workers from repetitive and/or dangerous tasks, and the robots have be-
come indispensable in some sectors, the automotive industry being one
such example.

A classical robot installation usually requires much effort to be spent
on structuring the environment around the robot. This includes, e.g., mak-
ing sure that objects are delivered to or located at known positions, and
tooling are tailored for the specific task. The programming is normally
time consuming, where much effort is spent on identifying and handling
commonly occurring variations. The work spent on setting up a robotic
workcell are in spite of these efforts usually economically profitable, due
to the robots’ ability to be precise and work fast, and the commonly large
volume of products to produce.

Some types of tasks are less robotized, and thus still mostly relying
on human labor. One such category of tasks are those that require phys-
ical interaction between the robot and the environment. These tasks are
difficult to handle for a robot using position control. Although the robot
is very accurate, a small error in position may lead to a very large force
error if the environment is stiff. Assembly is an example of a task that is
not that robotized. The reason for this is that several types of uncertain-
ties make it difficult to use the traditional position-controlled approach.
Things as part variations, inaccurate gripping, and small tolerances make
it hard to achieve the desired accuracy a position-controlled implementa-
tion would need. A remedy may be to use different kinds of fixtures and
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specialized procedures, e.g., for grasping to make sure that the object
ends up at exactly the same position in the gripper each time. Such an
implementation, however, is very time consuming, both regarding the de-
sign of the workcell and the programming of the robot, and may also put
restrictions or induce costs in the actual design of the product. These so-
lutions are also inflexible. If something changes, e.g., if a component in
the assembly is replaced by another one produced in a different cheaper
material, the properties of the new component may mean that some of
the specialized procedures do not work as intended any more. Reusing
a position-controlled program is also not especially convenient. Although
an assembly task is similar to another, the positions used for the task
will most likely all have to be reprogrammed for the second task. The
current trend is further going towards more short-series production, and
allowing customized products. This means more changes in the tasks, and
thus more time for programming the robots will be required, unless new
methodologies and techniques are introduced.

A current trend in robotics is that robots are going from being heavy,
stiff, very accurate, and stationary, to being mobile and more light-weight.
These new robots are further designed to be safe to use in proximity to hu-
mans by reducing their mass and power, and making the structure some-
what compliant. These new features open up possibilities for human-robot
collaboration, in contrast to the traditional industrial robot that needs to
work behind physical or electronic safety fences. Some of these new robots
include the PR2 [Willow Garage, 2015], Baxter [Rethink Robotics, 2015],
and Nextage [Kawada Industries, 2015]. The ABB YuMi [ABB Robotics,
2015d] is another example of this type of robot, which also is one of the
experimental platforms in this thesis. This new type of robot is beneficial
to use in assembly operations. The lower inertia combined with the com-
pliant structure will mean that lower forces will be exerted by this kind
of robots, making them less prone to damage equipment. The compliance,
however, also means that the accuracy will be worse compared to a tradi-
tional robot. There will hence be more uncertainty which will have to be
handled.

Introducing additional sensing is a way to make robots useful in a
wider context, to make them able to function in an unstructured environ-
ment, or at least in an environment less structured than today. Sensors
are needed to enable the robots to detect events occurring around them.
Further, cognition is needed for the robots to be able to interpret the sen-
sor data and to be able to choose appropriate reaction strategies. In other
words, the robots need to become more human-like.

For robots to be better suited for accomplishing assembly tasks, force
sensing is beneficial. A force sensor can give the robot capability to com-
pensate for insufficient position accuracy, both of the robot and the work-
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1.2 Publications

cell, by sensing the contact forces. The workcell does not even have to be as
structured as before, i.e., less work has to be spent on designing fixtures
etc. Force sensing makes it also possible to handle other types of uncer-
tainty, e.g., part variations. All magic, however, comes with a price; ad-
ditional sensing makes the specification of tasks a harder problem, more
advanced than to just follow a predefined trajectory. The sensor data must
be interpreted and related to the motion of the robot, and in the case of
force sensing, force controllers that are tuned for both stability and perfor-
mance are needed. These things make it really difficult for a non-expert
robot user to specify advanced sensor-based implementations of tasks.
Easy and intuitive ways to teach robot programs are needed, both for
standard position-based programs and sensor-based. Lead-through pro-
gramming is one such approach, where the user manually guides the
robot to either demonstrate the task, or to teach positions for the robot
program.

A force sensor does not only contribute to making the task specification
difficult, it is commonly also quite expensive. It would be useful if the
internal sensing in the robot, usually including joint position sensors and
motor torques, could be used for estimating the external forces, and thus
make it possible to perform sensorless force control. One potential usage
is the above mentioned lead-through programming, which is useful for
teaching robot programs. Investing in a force sensor just to be able to
perform the teaching of programs, however, might not be economically
justified, and a sensorless approach might be a solution.

The research problem considered in this thesis is how to perform
robotic assembly. This includes how to specify tasks in a simple way, as
well as how to accomplish robust execution. The approach used in the
thesis is based on force control, and how force sensing can be used for
adaptation to uncertainties and different environments. A force sensor
may not always be available, and the thesis also considers the problem of
using sensorless force control and estimation as an alternative to a force
sensor. Throughout the thesis, experiments are performed to show the
usefulness of the contributions.

1.2 Publications

The thesis is based on the following publications.

Stolt, A., M. Linderoth, A. Robertsson, and R. Johansson (2011). “Force
controlled assembly of emergency stop button”. In: Proc. IEEE
Int. Conf. Robotics and Automation (ICRA 2011). Shanghai, China,
pp. 3751–3756.
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Stolt, A., M. Linderoth, A. Robertsson, and R. Johansson (2012). “Force
controlled robotic assembly without a force sensor”. In: Proc. IEEE
Int. Conf. Robotics and Automation (ICRA 2012). St. Paul, MN, USA,
pp. 1538–1543.

Linderoth, M., A. Stolt, A. Robertsson, and R. Johansson (2013). “Robotic
force estimation using motor torques and modeling of low velocity fric-
tion disturbances”. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots
and Systems (IROS 2013). Tokyo, Japan, pp. 3550–3556.

Stolt, A., M. Linderoth, A. Robertsson, and R. Johansson (2013). “Robotic
assembly of emergency stop buttons”. In: Proc. IEEE/RSJ Int. Conf.
Intelligent Robots and Systems (IROS 2013). Video contribution (URL:
http://www.youtube.com/watch?v=7JgdbFW5mEg). Tokyo, Japan.

Stolt, A., M. Linderoth, A. Robertsson, and R. Johansson (2015). “Detec-
tion of contact force transients in robotic assembly”. In: Proc. IEEE
Int. Conf. Robotics and Automation (ICRA 2015). Seattle, WA, USA,
pp. 962–968.

The above publications have A. Stolt and M. Linderoth as main contrib-
utors and equal contribution is asserted. The work was produced through
close cooperation between the main authors, but A. Stolt had a focus to-
ward implementation and experimental evaluation while M. Linderoth
had a focus toward the theoretical aspects of the methods. A. Robertsson
and R. Johansson assisted with discussion of the ideas and structuring of
the manuscripts. The paper ”Force controlled robotic assembly without a
force sensor” recieved the Best Automation Paper Award at ICRA 2012,
and the paper ”Detection of contact force transients in robotic assembly”
was a finalist for the Best Automation Paper Award at ICRA 2015.

Stolt, A., M. Linderoth, A. Robertsson, and R. Johansson (2012). “Adap-
tation of force control parameters in robotic assembly”. In: Proc. IFAC
Symp. Robot Control (SYROCO 2012). Dubrovnik, Croatia, pp. 561–
566.

Stolt, A., A. Robertsson, and R. Johansson (2015). “Robotic force estima-
tion using dithering to decrease the low velocity friction uncertainties”.
In: Proc. IEEE Int. Conf. Robotics and Automation (ICRA 2015). Seat-
tle, WA, USA, pp. 3896–3902.

The above publications have A. Stolt as the main contributor, and
the co-authors assisted with discussing the ideas and structuring of the
manuscripts.
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Stenmark, M. and A. Stolt (2013). “A system for high-level task specifica-
tion using complex sensor-based skills”. In: Robotics: Science and Sys-
tems (RSS) 2013 Workshop on Programming with Constraints. Berlin,
Germany.

Stenmark, M., J. Malec, and A. Stolt (2014). “From high-level task de-
scriptions to executable robot code”. In: IEEE Intelligent Systems ’2014.
Vol. 323. Warsaw, Poland, pp. 189–202.

The above publications have M. Stenmark and A. Stolt as main con-
tributors. M. Stenmark was focused on the high-level programming side,
while A. Stolt was focused on the low-level work. J. Malec assisted with
discussing the ideas and structuring of the manuscripts.

Stolt, A., F. Bagge Carlson, M. M. Ghazaei Ardakani, I. Lundberg,
A. Robertsson, and R. Johansson (2015). “Sensorless friction-
compensated passive lead-through programming for industrial robots”.
In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS
2015). Hamburg, Germany.

The above publication has A. Stolt as main contributor. M. Ghazaei
had the initial idea of the passive lead-through programming, and I. Lund-
berg discovered the increased sensitivity to external torques by increasing
the integral gain. The co-authors assisted with discussing the ideas and
structuring of the manuscript.

All of the above publications are available for download from
http://www.control.lth.se/Publications.html.

Other Publications
The following publications, where the author also has made contributions
in related areas, were decided not to be part of the present thesis.

Stolt, A., M. Linderoth, A. Robertsson, and R. Johansson (2012). “Robotic
assembly using a singularity-free orientation representation based on
quaternions”. In: Proc. IFAC Symp. Robot Control (SYROCO 2012).
Dubrovnik, Croatia, pp. 549–554.

The above publication describes how a singularity-free orientation repre-
sentation can be used within the assembly framework that is presented
in this thesis.
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Björkelund, A., L. Edström, M. Haage, J. Malec, K. Nilsson, P. Nugues,
D. Störkle, A. Blomdell, R. Johansson, M. Linderoth, A. Nilsson, A.
Robertsson, A. Stolt, and H. Bruyninckx (2011). “On the integration
of skilled robot motions for productivity in manufacturing”. In: Proc.
IEEE Int. Symp. Assembly and Manufacturing (ISAM 2011). Tampere,
Finland, pp. 1–9.

The above publication treats one of the assembly scenarios that is consid-
ered in this thesis, and the same assembly framework as is described in
this thesis was used for one of the implementations.

Jonsson, M., T. Murray, A. Robertsson, A. Stolt, G. Ossbahr, and K. Nils-
son (2010). “Force feedback for assembly of aircraft structures”. In:
Proc. SAE Aerospace Manufacturing and Automated Fastening Con-
ference. Wichita, KS, USA.

Stolt, A., M. Linderoth, A. Robertsson, M. Jonsson, and T. Murray (2011).
“Force controlled assembly of flexible aircraft structure”. In: Proc.
IEEE Int. Conf. Robotics and Automation (ICRA 2011). Shanghai,
China, pp. 6027–6032.

Jonsson, M., A. Stolt, A. Robertsson, T. Murray, and K. Nilsson (2011).
“Force controlled assembly of a compliant rib”. In: SAE2011 Aerotech
Congress & Exibition. Toulouse, France.

Jonsson, M., A. Stolt, A. Robertsson, S. von Gegerfelt, and K. Nilsson
(2013). “On force control for assembly and deburring of castings”. Pro-
duction Engineering 7:4, pp. 351–360.

The above publications considers an assembly scenario from the aircraft
industry. The same assembly framework that is described in this thesis
was used in these publications.

Ceriani, N. M., A. M. Zanchettin, P. Rocco, A. Stolt, and A. Robertsson
(2013). “A constraint-based strategy for task-consistent safe human-
robot interaction”. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots
and Systems (IROS 2015). Tokyo, Japan, pp. 4630–4635.

Ceriani, N., A. Zanchettin, P. Rocco, A. Stolt, and A. Robertsson (2015).
“Reactive task adaptation based on hierarchical constraints classifica-
tion for safe industrial robots”. IEEE/ASME Transactions on Mecha-
tronics 99. DOI: 10.1109/TMECH.2015.2415462.

The above publications is about safe human-robot interaction in the con-
text of assembly, where the experiments are based upon the assembly
framework presented in this thesis.
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1.3 Outline and Contributions

The first part of this thesis, Chapters 3–7, presents work on force control.
The second part, Chapters 8–10, describes work done in the context of
force estimation and sensorless force control. Finally, conclusions are given
in Chapter 11.

The chapters have been written so they should be possible to read inde-
pendently. This comes at the cost of some repetition between the chapters.

Chapter 2 – Hardware and Interfaces
The robots and other hardware used in the experiments in this thesis are
presented in this chapter, together with the interface available for control.

Chapter 3 – Robotic Assembly
The framework used for specifying and executing assembly tasks are the
topic of this chapter. Two different assembly use cases illustrate the use
of the framework. The implementations of the use cases are compared to
the state of the art in assembly, namely the human assembly worker.

Chapter 4 – Uncertainty Estimation in Robotic Assembly
This chapter presents how uncertainties can be modeled and resolved
within the assembly framework. Two different uncertainties from an as-
sembly task are used to illustrate the methodology, and it is shown in
experiments how the uncertainites can be resolved.

Chapter 5 – Detection of Contact Force Transients
A force controlled assembly task is usually implemented as a sequence of
simple motions, where the transitions between these motions are made
when new contact situations are detected. These new contact situations
results in transients in the measured force/torque data. In this chapter,
a systematic procedure for training machine learning based classifiers for
detecting these transients is presented. In an example assembly task, it
is shown how the method can be used to decrease the cycle time.

Chapter 6 – Generation of Sensor-Based Robot Programs from
High-Level Task Specifications
When a human instructs another human how an assembly task should
be performed, almost exclusively a high-level description is given. The
topic of this chapter is a system that makes it possible to do this also for
a robot. The high-level specification is used to generate executable code
for the robot. Experiments are used to verify the concept in a realistic
assembly setting.
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Chapter 7 – Adaptation of Force-Control Parameters
Tuning of force controllers are often tedious work, and it will make it much
simpler for for non-expert users if an adaptive functionality is available.
In this chapter, such a method for self-tuning of force controllers used
for robots is described. The method is also integrated into the assembly
framework and experimentally evaluated.

Chapter 8 – Robotic Force Estimation without Force Sensor
Two new methods for estimation of external forces acting on the end-
effector of a robot are presented in this chapter. The first method is
based on the joint position-control errors, and the second one on the motor
torques together with modeling of the low-velocity friction disturbances.
Both methods are experimentally evaluated in numerous assembly tasks
and compared to each other.

Chapter 9 – Dithering to Improve the Accuracy of Force
Estimation
A method to increase the accuracy of force estimation by using dithering
to decrease the low-velocity friction disturbances are presented in this
chapter. The method is experimentally evaluated and applied in a lead-
through programming scenario.

Chapter 10 – Sensorless Friction-Compensated Passive
Lead-Through Programming
A method for lead-through programming without the use of a force sensor
is the topic of this chapter. The method works by disabling the low-level
servo controllers and only feedforward the torques to balance gravity and
compensate for friction. As no position- or force-feedback loops are active,
the method becomes stable for any environment, no matter how stiff it is.
Further, the sensitivity to external forces when the joints are not moving
is shown to be improved by enabling the low-level servo controllers with
increased integral gain. The lead-through programming method is imple-
mented and experimentally evaluated on two different industrial robots.
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2
Hardware and Interfaces

All experiments presented in this thesis have been made in the Robotics
Lab of the departments of Automatic Control and Computer Science at
Lund University. This chapter gives a brief overview of the hardware and
interfaces used.

2.1 Robots

Three different robots have been used in this thesis. The first one was the
ABB IRB140 robot [ABB Robotics, 2015b] (see Fig. 2.1), which is a common
industrial robot with 6 degrees of freedom. It has a payload of 6 kg, a
reach of 810 mm, and a position repeatability of ±0.03 mm. The second
robot was the ABB IRB120 [ABB Robotics, 2015a] (see Fig. 2.2), which

Figure 2.1 The ABB IRB140 robot used in the experiments in this thesis.
The robot is equipped with a wrist-mounted JR3 force/torque sensor.
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Chapter 2. Hardware and Interfaces

Figure 2.2 The ABB IRB120 robot used in the experiments in this the-
sis.

is a small industrial robot with 6 degrees of freedom. It has a payload of
3 kg, a reach of 580 mm, and a position repeatability of ±0.01 mm.

The third robot used was ABB YuMi [Kock et al., 2011; ABB Robotics,
2015d] (previously known as FRIDA) (see Fig. 2.3), a dual arm robot
designed for performing assembly. Each of the two arms is redundant
with 7 degrees of freedom. The robot is weak and lightweight, and much
effort has been spent on making it safe to use next to humans [Matthias
et al., 2011]. All sharp edges have been covered with soft padding, and
together with the low mass and the power and speed limitations the robot
is designed not to be able to hurt a human.

2.2 Interface to the robots

The robot systems considered in this thesis were controlled by the ABB
IRC5 control system. It had a control structure such that each joint was
individually controlled, with a main computer that calculated references
for each of the joints. A cascaded control structure was used for each joint,
see Fig. 2.4 for a joint model and a block diagram of the control struc-
ture. The outer position loop had proportional feedback, while the inner
velocity loop had both proportional and integral feedback. The controller
parameters were the three gains Kp, Kv, and Ki. There was further a
control loop for the electrical current in the motor. The current control
loop ensured that the motor actuated the desired torque.

The research interface available to the robots [Blomdell et al., 2005;
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2.2 Interface to the robots

Figure 2.3 The ABB YuMi robot used in experiments in this the-
sis. The robot is in this photo equipped with wrist-mounted ATI Mini40
force/torque sensors.

Σ Kp Σ Ki
∫

dt

Kv

Σ Motor

Position
sensor

−1 Derivative
filter

−1

Gearbox Link

Joint model

qre f

q̇re f

τ f f w

τ r

q

qarm

LoadFrictionFriction

Figure 2.4 Block diagram of the low-level joint controller running at
2 kHz. The joint position q refers to the motor position, while qarm refers
to the arm side position. In the joint model, there is a dynamic relation
between the link and the motor via the gearbox.
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Blomdell et al., 2010] made it possible to alter the signals sent from the
main computer, i.e., one could send position and velocity references and a
torque feedforward signal. Whereas it was possible to modify the control
gains (Kp, Kv, Ki), it was not possible to change the controller structure.
Available measurements included joint positions, and velocities as numer-
ically differentiated and filtered positions. The torque reference sent to
the motors was also an available signal, which will be close to the actual
torque exerted by the motors as the current loop was tightly controlled.
The low-level control loops ran with a sampling frequency of 2 kHz, while
the research interface for setting the references and reading measure-
ments ran at 250 Hz.

The external controller using the interface was executed on an exter-
nal PC running with Linux and Xenomai [Xenomai, 2015] for real-time
performance. The communication with the robot controller was made with
the LabComm protocol [LabComm, 2015], which allows the specification
of data types that should be sent over a socket. The communication over-
head has been kept to a minimum and the protocol is thus appropriate
for sending data in real time.

2.3 Force sensing

The IRB140 robot was equipped with a wrist-mounted six degrees-of-
freedom JR3 100M40A force/torque sensor [JR3, 2015]. The workcell with
the YuMi robot was equipped with one or two six degrees-of-freedom ATI
Mini40 force/torque sensors [ATI, 2015], either one sensor placed on the
table, or wrist-mounted sensors for each of the arms.
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3
Robotic Assembly

3.1 Introduction

There exist a few different strategies for performing robotic assembly,
where different amounts of sensor information are used. One way is to use
pure position control of the robot. This approach relies on that the accu-
racy of the robot, of the parts involved, and of the workcell are sufficiently
good. What is meant with sufficiently good varies, but for small-parts as-
sembly tasks it is usually in the sub-millimeter scale, and to achieve this
accuracy task specific fixtures and toolings are commonly needed. Fur-
ther, one has to be certain that nothing unexpected will happen during
the assembly operation, as this is hard to discover without an external
sensor. It is possible to handle some degree of part variation by using a
compliant tool.

A second strategy is to use binary information from sensors. This
means that the assembly is divided into several steps, in which the infor-
mation from the sensors is used to trigger transitions between the steps.
This strategy can be used when there are a few uncertainties, e.g., some
variations in the parts. One example can be to use a sequence of search
movements in order to find a certain feature of an object, and once this
feature is found, it is possible to use pure position control to finish the
assembly operation.

Yet another alternative is to use sensors for continuous feedback con-
trol. This strategy makes it possible to cope with large uncertainties, but
it is also the strategy that is the most difficult to program for a robot oper-
ator. One example of this strategy is force controlled assembly, where force
sensing can be used to identify contact situations, keep contacts and find
new contacts during an assembly operation. If contacts only are detected
in a binary fashion, as described in the previous paragraph, there is a
risk of losing contact or getting very large contact forces during sliding
motions. Hence, continuous sensing can make assembly possible when
more uncertainties are involved, and also reduce the risk of damaging
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equipment. This strategy also makes it possible to reuse programs, as the
same program can be used in similar tasks where the sensing can handle
and compensate for the differences.

The strategies described in the previous paragraphs can handle differ-
ent amounts of uncertainties and the type of effort one has to spend to get
them running is different. In the case of pure position control one has to
assume that the position accuracy is very good, the workcell is well struc-
tured with all parts where they are supposed to be, and that everything
will go as planned. These requirements can be relaxed when binary sensor
information is used, but then one has to take care of the sensor signals
in an appropriate way instead. Using continuous sensing demands even
more sensor processing, and requires feedback control strategies which
may be hard to tune. The two last strategies also require a sensor, which
may be expensive. The increased robustness to uncertainties and the pos-
sibility for reusability, however, are incitements to use the strategy based
on continuous sensing.

This chapter considers the problem of accomplishing assembly tasks in
a robust way with industrial robots using force control. A framework for
specifying and performing force-controlled assembly tasks is presented.
The state of the art for performing assembly tasks is the human assem-
bly worker, and the performance of the robot is therefore evaluated in
comparison to the human.

Traditional position-controlled robotic tasks are specified as trajecto-
ries for the robot to follow. When external sensors are introduced, this way
of specifying tasks is not very good as it is difficult to relate the sensor
measurements to the trajectories. An early framework for specifying force-
controlled tasks is via hybrid position/force control [Raibert and Craig,
1981], where different control modes are used in different Cartesian di-
rections using selection matrices. An alternative to the hybrid control ap-
proach is the parallel force/position controller [Chiaverini and Sciavicco,
1993], where both a force controller and position controller are simulta-
neously active in each Cartesian direction, but where the force controller
is designed to dominate over the position controller. Other frameworks
for specifying the end-effector motion are, for instance, the operational
space formulation [Khatib, 1987], the use of the compliance frame [Ma-
son, 1981], or the task frame formalism [Bruyninckx and De Schutter,
1996]. All these frameworks specify different controllers for each direction
in a certain coordinate frame. The task specification framework used in
this thesis is based on the constraint based task specification framework,
iTaSC (instantaneous Task Specification using Constraints) [De Schut-
ter et al., 2007], where control modes, or constraints, can be specified in
arbitrary directions in task space by the use of so called feature frames.
The iTaSC framework makes it possible to incorporate multiple exter-
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3.2 Task specification and control framework

nal sensors and also take geometric uncertainties into account. The force
controllers used in this thesis are impedance controllers [Hogan, 1985],
which aim at controlling a dynamic relationship between the robot and
the environment.

A survey of the requirements for autonomous robotic assembly is given
in [Bruyninckx et al., 2001], where the needed components are reviewed
and directions for future research are outlined. The authors focus on
explicitly modeling the possible contact formations and how the system
should be able to use this information. For non-convex objects however, the
number of possible contact formations become huge, which becomes diffi-
cult to handle. In this thesis, assembly is accomplished by not explicitly
modeling the contact formations. A previous example of robotic assembly
can, e.g., be found in [Arai et al., 2006], where optimization of force control
parameters with respect to cycle time was made in assembly of a clutch.
Another example is presented in [Jörg et al., 2000], which describes an
assembly scenario where sensor fusion of vision and force sensing was
used to insert cylinders into a rotating engine. Yet another example from
the automotive industry is given in [Gravel et al., 2008], which describes
powertrain assembly. A peg-in-hole assembly implemented in a dual robot
setting is presented in [Caccavale et al., 1998]. One of the arms was per-
forming the insertion of the peg in a position-based manner, while the
other arm was holding the hollow part. Experiments show that much bet-
ter performance was achieved when the arm holding the hollow part was
force-controlled to be compliant, as compared to when it was mechani-
cally breaked. The experiments show that force control is beneficial for
assembly. An example of assembly from the construction industry where
position control was used is given in [Gambao et al., 2000]. An application
of force control in robotics other than assembly is [T. Olsson et al., 2010],
where force control was used to avoid sliding movements when drilling.

3.2 Task specification and control framework

A hierarchical structure was used for specifying the assembly tasks. A task
was divided into a number of skills, e.g., procedures for picking objects or
specific assembly operations. A skill was composed of a number of motions,
which could be a movement from one position to another, or a search
motion in a specific direction. This section presents how force-controlled
motions are specified and how they are composed into skills.

Specification of force-controlled motions
The force-controlled motions were specified using the iTaSC-framework
[De Schutter et al., 2007; Smits, 2010]. A detailed illustration of how the
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Figure 3.1 The parts involved in the snapfit assembly task are shown
to the left, and the final assembled product to the right.

framework can be applied in the context of assembly is given in this the-
sis, and a flexible implementation that is able to handle general tasks
is presented. An example of another implementation of iTaSC is based
on OROCOS [OROCOS 2015]. The implementation in this thesis uses
the original iTaSC definitions and control scheme, but is extended with
more controller types, and support for modeling of known time-varying
transformations are added.

The iTaSC framework specifies the relative motion of objects by impos-
ing constraints, such as position or force constraints. To be able to specify
these constraints in an easy way, kinematic chains are introduced. They
contain object and feature frames that are used to simplify the task spec-
ification. The modeling procedure is illustrated on the snapfit assembly
task, where the involved parts and the final assembled product are dis-
played in Fig. 3.1. The dark gray electrical switch should be snapped into
place in the light gray bottom box. The tolerances are very small, which
makes it very difficult to implement this scenario using position control.

The object frames should be attached to the objects that are part of the
task. In the snapfit scenario, the relevant objects are the bottom box, the
switch, and the robot. The first object frame, o1, is attached to a corner
of the bottom box, as illustrated in Fig. 3.2. The second object frame, o2,
is chosen to coincide with the flange1 frame of the robot.

The feature frames should be used to make the task specification as
simple as possible. They should therefore be attached to specific features
on the objects that are relevant for the task. In the snapfit scenario,
important features are the slot that the switch should be mounted in,
and the ends of the switch that should make contact with the slot. The
first feature frame, f 1, is therefore attached to the slot that the switch

1 The connector plate at the end of the robot arm, where the tool is mounted.
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Figure 3.2 Illustration of the coordinate frames in the snapfit scenario.
Object frame o2 is placed at the flange of the robot, not displayed in this
photo.
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Figure 3.3 Schematic illustration of the kinematic chain used in the
snapfit assembly task.

should be placed in. The second feature frame, f 2, is attached to the end
of the switch that should be put into the slot where f 1 is placed.

Further, one needs to specify a world coordinate frame, w. In the snap-
fit scenario this is chosen to coincide with the base frame of the robot.
The object frames can now be given relations to w, a fix transformation
for o1, and a transformation depending on the robot joint coordinates, q,
for o2. In the case that the bottom box would be traveling on a conveyor
belt, the fix transformation can be replaced by a time-varying transfor-
mation parameterized by χk, the known coordinates. The transformation
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between o1 and o2, via f 1 and f 2, should have 6 degrees of freedom that
parametrize the transformation. These degrees of freedom are called the
feature coordinates, χ f ; they are further divided into χ f I , χ f I I , and χ f I I I ,
denoting the coordinates between o1 and f 1, f 1 and f 2, and f 2 and o2,
respectively. A schematic illustration of the kinematic chain is given in
Fig. 3.3. In the snapfit scenario, f 1 is fix relative to o1, and f 2 is fix rel-
ative to o2, i.e., all degrees of freedom are in the transformation between
f 1 and f 2. The feature coordinates chosen are first three translations
along the coordinate axes of f 1, then three Euler XYZ angles to describe
the reorientation from f 1 to f 2, i.e, they are given as

χ f I = (−) , χ f I I = (x, y, z,ϕ ,θ ,ψ ) , χ f I I I = (−) (3.1)

Geometric uncertainties can be modeled by introducing uncertainty
frames, which represent the modeled position of the frame, e.g., uncer-
tainty frame o1′ is the modeled position of the actual frame o1. The de-
grees of freedom in the transformations between the uncertainty frames
and the true frames are called the uncertainty coordinates, χu. They rep-
resent the pose uncertainty in the frame, see further details about uncer-
tainty management in Chap. 4.

The variables to be constrained are chosen by specifying outputs y.
In general, each output can be a function of the feature and the robot
joint coordinates, but if the kinematic chains have been chosen properly
the outputs will in most cases directly correspond to some of the feature
coordinates. Multiple kinematic chains may be used to choose appropriate
outputs for the task. The outputs are in general defined by

y= f (q, χ f ) (3.2)

In the snapfit scenario, the outputs are chosen to be all of the feature
coordinates, i.e, they are chosen according to

y= χ f (3.3)

The kinematic chains should be closed, which implies a relation be-
tween the robot joint coordinates (q), the feature coordinates (χ f ), the
uncertainty coordinates (χu), and the known coordinates (χk). This rela-
tion can be expressed as

l(q, χ f , χu, χk) = 0 (3.4)

Such a function can be expressed by the following position-loop constraint,
i.e., a product of homogeneous transformation matrices

T o1′
w (q, χk)T o1

o1′(χu)T f 1′
o1 (χ f I)T f 1

f 1′(χu)T f 2
f 1 (χ f I I)...

T f 2′
f 2 (χu)T o2

f 2′(χ f I I I)T o2′
o2 (χu)Tw

o2′(q, χk) = I4$4
(3.5)
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where I4$4 is the 4$4 identity matrix. Note that both T o1′
w and Tw

o2′ may be
functions of q and χk. In a dual arm scenario, both of the transformations
will be dependent of q, but in a single arm scenario, only one of T o1′

w
and Tw

o2′ will be a function of q. The known coordinates, χk, can both be
constant, i.e., correspond to a fix transformation, or be time-varying, e.g.,
modeling a conveyor belt.

Control
The control in this thesis has been performed both on the velocity level and
on the acceleration level. The control signal should be references for the
low-level servo controllers, either q̇re f or q̈re f , i.e., joint velocity reference
or joint acceleration reference. In the sequel, the robot is assumed to track
the given references and the subscript re f is dropped.

Velocity level On the velocity level, a control law for the robot joint
velocities, q̇, has to be derived. The time derivative of (3.2) is

ẏ= Cqq̇+ Cf χ̇ f (3.6)

where Cq = � f/�q and Cf = � f/�χ f are the Jacobians of f with respect
to q and χ f , respectively. Further, the loop constraints (3.4) have the time
derivative

Jqq̇+ J f χ̇ f + Ju χ̇u + Jk χ̇k = 0 (3.7)

where Jq = �l/�q, J f = �l/�χ f , Ju = �l/�χu, and Jk = �l/�χk are
the Jacobians of l with respect to the different coordinates. The feature
coordinate time derivatives χ̇ f can be solved from (3.7), according to

χ̇ f = −J−1
f (Jqq̇+ Ju χ̇u + Jk χ̇k) (3.8)

To be able to do this it is required that J f is invertible, and this will be
the case if the feature coordinates parametrize all 6 degrees of freedom
in task space. Equation (3.8) can now be substituted into (3.6), giving

Aq̇ = ẏ+ Bu χ̇u + Bk χ̇k (3.9)

where A = Cq − Cf J−1
f Jq, Bu = Cf J−1

f Ju, and Bk = Cf J−1
f Jk.

All constraints should be expressed at the velocity level, and this
means specifying ẏ = ẏ0

d, where ẏ0
d is the desired velocity of the outputs.

To be able to use more than velocity constraints, ẏ0
d is chosen according

to
ẏ0

d = ẏd + C (3.10)

where ẏd is a feedforward velocity term and C is a feedback controller
that might use additional sensing, such as a force sensor.
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If the robot is assumed to be an ideal velocity controlled system, the
control signal that has to be calculated is q̇. This can be made according
to

q̇ = A−1 (ẏ0
d + Bu ˙̂χu + Bk χ̇k

)
(3.11)

where ˙̂χu denotes the estimate of χ̇u. Note that A will have to be invertible
for this calculation to be possible, which will be the case, e.g., if the task
is completely specified (constraints in all 6 degrees of freedom) and the
robot has 6 degrees of freedom and is not in a singular configuration. The
calculated value of q̇ is integrated to get a position reference, and both
the position and velocity are sent as control signals to the robot.
Acceleration level When the control is performed on the acceleration
level, a control law for the joint accelerations, q̈, has to be derived. This
can be performed by using the same approach as in the velocity level
control derivation, but taking an extra derivative with respect to time.
Taking one more time derivative of (3.6) gives

ÿ= Cqq̈+ Ċqq̇+ Cf χ̈ f + Ċ χ̇ f (3.12)

where Ċq = dCq/dt and Ċf = dCf /dt. Also taking the time derivative of
(3.7) gives

Jqq̈+ J̇qq̇+ J f χ̈ f + J̇ f χ̇ f + Ju χ̈u + J̇u χ̇u + Jk χ̈k + J̇k χ̇k = 0 (3.13)

The feature coordinate accelerations, χ̈ f , can now be solved for

χ̈ f = −J−1
f
(
Jqq̈+ J̇qq̇+ J̇ f χ̇ f + Ju χ̈u + J̇u χ̇u + Jk χ̈k + J̇k χ̇k

)
(3.14)

As in the velocity control case, cf. (3.8), J f is required to be invertible,
which is the case if the feature coordinates for each kinematic chain
parametrize all six degrees of freedom in task space. By substituting
(3.14) into (3.12), the following equation is achieved

Aa q̈ = ÿ+ Ba,qq̇+ Ba, f χ̇ f + Ba,u1 χ̈u + Ba,u2 χ̇u + Ba,k1 χ̈k + Ba,k2 χ̇k (3.15)

where

Aa = Cq − Cf J−1
f Jq Ba,q = Cf J−1

f J̇q − Cq Ba, f = Cf J−1
f J̇ f − Ċf

Ba,u1 = Cf J−1
f Ju Ba,u2 = Cf J−1

f J̇u
Ba,k1 = Cf J−1

f Jk Ba,k2 = Cf J−1
f J̇k

All constraints should now be expressed on the acceleration level, i.e.,
specifying ÿ = ÿ0

d. In the same manner as with the velocity level control,
ÿ0

d is chosen according to
ÿ0

d = ÿd + Ca (3.16)

32



3.2 Task specification and control framework

where ÿd is a feedforward acceleration term and Ca is a feedback controller
on the acceleration level, which might use external sensing.

If the robot would have been an acceleration controlled system, the
control signal to be sent to it would be (derived from (3.15))

q̈ = A−1
a
(
ÿ0

d + Ba,qq̇+ Ba, f χ̇ f + Ba,u1 ¨̂χu + Ba,u2 ˙̂χu + Ba,k1 ¨̂χk + Ba,k2 χ̇k
)

(3.17)
where ¨̂χu and ˙̂χu denotes the estimates of χ̈u and χ̇u, respectively.

The robots used in the experiments in this thesis are, however, position
controlled with possibility of giving a velocity reference as well. The con-
trol signal must therefore be the joint positions, q, and the joint velocities,
q̇, which can be calculated by integrating (3.17) twice

q̇ =
∫

q̈dt , q =
∫

q̇dt (3.18)

A discretization of (3.18) can, e.g., be given by Tustin’s method [Åström
and Wittenmark, 1996]

q̇(kh+ h) = q̇(kh) + h
2 (q̈(kh+ h) + q̈(kh))

q(kh+ h) = q(kh) + h
2 (q̇(kh+ h) + q̇(kh)) (3.19)

where h is the sampling period and k the sampling index.
Redundancy The iTaSC framework is suitable to handle both over- and
under-constrained tasks, as well as manipulators with redundant degrees
of freedom. The motion specification is calculated by solving for the robot
joint velocities, q̇, in (3.9), or the joint accelerations, q̈, in (3.15). When the
task is redundant, or over-constrained, the matrix A (or Aa) will not be
square, and hence a pseudoinverse must be used. In case of a redundant
task at the velocity level, the weighted pseudoinverse A† in (3.20) can be
used. The interpretation is that the optimization problem (3.21) is solved,
where M is a positive definite weighting matrix. For the acceleration
level, the same pseudoinverse can be used, but where Aa replaces A in
(3.20), and the corresponding optimization problem will have a quadratic
objective function in q̈ with the constraint being (3.15).

A† = M−1 AT (AM−1 AT)−1
(3.20)

minimize
over q̇

q̇T M q̇

subject to Aq̇ = ẏ0
d + B ˙̂χu

(3.21)

Feedback controllers on task level
As mentioned in the previous section, all constraints have to be given at
the velocity level (or the acceleration level). Three different kinds of con-
straints have been used throughout this thesis, namely position, velocity,
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and force constraints. Each such constraint was handled by a feedback
controller, that outputs an appropriate velocity (acceleration) for the cor-
responding output. Scalar controllers were used for each component of the
output vector y.

Position controller on the velocity level The position controller used
was a proportional controller on the velocity level, that for each position
controlled output yi was given as

ẏ0
d,i = K (yi

re f − yi) (3.22)

where K is the proportional gain and yi
re f is the position reference. The

output from the controller was limited to avoid too large velocities when
new position references (possibly far away from the current position) were
given. The rate of change of the controller was also limited, i.e., limiting
the acceleration. No feedforward term was used.

Position controller on the acceleration level A state feedback con-
troller was used, with a double integrator as process model, such that

ẍ = u (3.23)

where u is the control signal (the acceleration) and x is the position co-
ordinate to control. A state space realization of (3.23) is[

ẋ1
ẋ2

]
=

[
0 1
0 0

] [
x1
x2

]
+

[
0
1

]
u

x =
[

1 0
] [ x1

x2

] (3.24)

and a zero-order-hold sampled realization is[
x1(kh+ h)
x2(kh+ h)

]
=

[
1 h
0 1

] [
x1(kh)
x2(kh)

]
+

[
h2/2

h

]
u(kh)

x =
[

1 0
] [ x1(kh)

x2(kh)

] (3.25)

where h is the sampling period, and k denotes the sampling index.
The control signal u(kh) is given as

u(kh) = L
[

x1(kh) − x1,re f (kh)
x2(kh) − x2,re f (kh)

]
+ u f f w(kh) (3.26)

and the applied control signal, i.e., as defined in Eq. (3.16), is

ÿ0
d,i(kh) = u(kh) (3.27)
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where x in (3.23) is assumed to represent output yi.
The feedforward part, u f f w, was given from a reference generator that

calculates the time-optimal trajectory to the position reference, given con-
straints on velocity and acceleration, see App. A. The feedback part was
chosen as a linear quadratic (LQ) controller [Åström and Wittenmark,
1996]. The state reference values, x1,re f and x2,re f , were given from the
reference generator, and the values of x1, the value of the controlled out-
put, and x2, the time derivative of the output, were both available (see
the section on model update and estimation on page 36). The feedforward
part handles the desired trajectory, and the feedback part takes care of er-
rors, mostly originating from the sampled integration of the acceleration,
i.e., the errors associated with performing (3.19).
Velocity controller on the velocity level The velocity controller used
was based on pure feedforward, according to

ẏ0
d,i = ẏi

re f (3.28)

where ẏi
re f is the velocity reference. The low-level joint control loops were

assumed to track the desired velocity, such that no feedback was needed.
To handle large reference changes, the rate of change of the velocity ref-
erence ẏi

re f was limited.
Velocity controller on the acceleration level A proportional con-
troller was used, that for each velocity controlled output yi was given
as

ÿ0
d,i = K

(
ẏi

re f − ẏi) (3.29)

where K is the proportional gain and ẏi
re f is the reference, i.e., the desired

velocity. The acceleration was limited by saturating ÿ0
d,i.

Force controller Impedance controllers [Hogan, 1985] were used to
handle force constraints. This controller gives the desired acceleration
for the output yi, according to

ÿ0
d,i =

1
M
(
Fi − Fi

re f − Dẏ0
d,i
)

(3.30)

where Fi denotes the force in the direction of yi, and Fi
re f the force ref-

erence value. The parameter M is the virtual mass and D the virtual
damping of the impedance that the controller acts like. The output accel-
eration, ÿ0

d,i, was limited, and also the output velocity. On the acceleration
level, the velocity was limited by modifying the acceleration such that the
velocity in the next sample would not exceed the maximum velocity. On
the velocity level, the limited acceleration was integrated and used as
controller output, which also was saturated to limit the velocity.
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Controller switching When a switch of controllers for the same output
is made, e.g., when a velocity constraint is changed to a force constraint,
the output velocity is made continuous by adjusting the initial state of the
new controller. This ensures a smooth transfer, as the velocity becomes
continuous.

Model update and estimation
The state of the system, i.e., the values of the feature coordinates χ f
and estimates of the uncertainty coordinates χu, are calculated in each
sample. The position loop constraints (3.5) are used to make sure that the
values of χ f are consistent with the robot joint coordinates, q, which are
given as measurements from the robot, and the known coordinates, χk.
The uncertainty coordinates are first assumed to be constant when the
value of χ f is calculated, and then updated, more about this in Chap. 4.

As it is assumed that the only unknown variable of (3.5) is χ f , the
left hand side can be written as T(χ f ) and the goal is to achieve

T(χ f ) = I4$4 (3.31)

This equation holds if χ f is known, when this is not the case, the identity
matrix will be replaced by

Terr =

[
Rerr terr
01$3 1

]
(3.32)

Here Rerr represents the orientation error and terr the translation error.
A linear approximation of the error is given by

J f ∆χ f =

[
terr
aerr

]
(3.33)

where ∆χ f is the error in the feature coordinates, and aerr is an axis/angle
representation of Rerr. As J f is invertible, this relation can be used to
calculate a new estimate of χ f , according to

χ i+1
f = χ i

f − ∆χ f = χ i
f − J−1

f (χ
i
f )

[
ti

err
ai

err

]
(3.34)

where i denotes the iteration index. One such iteration would be sufficient
if the original system was linear. This is not the case and therefore some
iterations of this procedure are needed. As the feature coordinates are
calculated continuously in each sample, the initial value is the value cal-
culated in the previous sample, and therefore only one or a few iterations
are needed for convergence.
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3.2 Task specification and control framework

The values of the outputs y are straightforwardly calculated using
(3.2). The time derivatives of the outputs, ẏ, can be calculated from (3.9),
where the joint velocities, q̇, is a measurement from the robot. The forces
acting in the feature coordinate directions, Ff , are calculated as

Ff = JT
f F (3.35)

where F is the force/torque applied at the end of the kinematic chain
as measured by a force sensor. The force applied in the direction of the
outputs, Fy, is then calculated as

Fy = C−T
f Ff (3.36)

where C−T
f must be replaced with a pseudoinverse if the task is not com-

pletely specified, i.e., if CT
f is not invertible, e.g., if the task is underspeci-

ficied such that fewer than six outputs are specified.

Skill specification
A skill is composed of a number of motions, each accomplishing a part of
an assembly task. The sequencing is modeled by a finite state machine
[Gill, 1962]. In the snapfit assembly scenario, uncertainties in part lo-
cations and gripping made it impossible to use pure position control to
accomplish the assembly task. The strategy was therefore to use a se-
quence of search motions, where each of these motions were designed to
resolve some of the uncertainty. Each state in the state machine contains
a set of kinematic chains and constraints specifying the motion. For in-
stance, a linear search motion in the z-direction is described by position
constraints for all coordinates except for the z-coordinate, which instead
has a velocity constraint. State transitions are based on sensor measure-
ments, e.g., a detected contact force or that a certain position has been
reached.

The state machine used for the snapfit skill is displayed in Fig. 3.4,
and snapshots from the sequence showing the search directions during an
execution of the assembly task are displayed in Fig. 3.5. For the snapfit
scenario it was assumed that the position and orientation of the of the
bottom box were not known sufficiently well to go straight into the slot.
The area in front of the slot, however, was larger and thus possible to hit.
Initial contact was therefore established with the bottom of the box in this
area (state number two), and the slot was found by two successive search
motions (while contact was kept with the bottom). Next, state number
five, the switch was rotated around the contact point in the slot, such
that it also made contact with the other end of the switch. The initial
pose of the switch was chosen such that it was known in which direction
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Move to start position 1

Reached start position

Move in negative z-direction 2

Large contact force in z-direction

Start force control in z-direction
Move in negative y-direction 3

Large contact force in y-direction

Start force control in y-direction
Move in negative x-direction 4

Large contact force in x-direction

Start force control in x-direction
Move in negative ψ -direction 5

Large contact torque in ψ -direction

Start torque control in ψ -direction
Move in negative ϕ -direction 6

Large contact torque in ϕ -direction

Start torque control in ϕ -direction
Move in negative ψ -direction 7

Snap detected

Lift assembly in positive z-direction 8

Figure 3.4 The state machine used for the snapfit assembly scenario.
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2 3

4 5

6 7

8 8

Figure 3.5 Snapshots from an execution of the snapfit assembly sce-
nario. The arrows show the search direction in each state, with state num-
bers defined in Fig. 3.4.
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to turn the switch to find the other side of the slot, and a rotation was
performed in this direction until the switch slid down into the slot (a
torque was applied on the switch during the rotation). The remaining
step was to push the switch completely into the slot.

Software implementation
The assembly framework was implemented using Mathworks’ Mat-
lab/Simulink environment [Mathworks, 2015a]. Executable code was
generated via the Simulink Coder [Mathworks, 2015b], and the compiled
program was run as an external controller using the research interface
presented in Chap. 2.

Force-controlled assembly skills were coordinated with finite state ma-
chines. Both statecharts using Mathworks’ Stateflow [Mathworks, 2015c]
and sequential function charts using JGrafchart [JGrafchart, 2015] were
used for the implementation. The state machine outputs kinematic chains
to use in each state, encoded as lists of simple transformations. Further,
the types of constraints to use are communicated, i.e, which type of con-
troller to use. Finally, various different types of parameters are sent, e.g.,
controller parameters and reference values. The inputs to the state ma-
chine are measurements, i.e., values of the outputs, and forces and veloc-
ities in the output directions.

The framework was such that it could be integrated with a standard
ABB RAPID program [ABB Robotics, 2012]. In this way, position con-
trolled skills such as initial positioning and picking of parts from well-
defined trays could be performed with the specialized position control
architecture in the ABB controller. When external sensing was needed,
the execution could be handed over to the external controller, and the ex-
ecution could be handed back to the ABB controller once the task using
external sensing was finished.

In the implementation, a RAPID program was used for coordinating
the execution of a task. A number of skills were used, executed both in
sequence and in parallel if possible. Some of the skills were position-
controlled RAPID procedures, and some were force-controlled skills, which
were executed by handing over the execution to the external controller.

3.3 Emergency stop button use case

An assembly graph for the assembly task is displayed in Fig. 3.6. The
assembly can be divided into three main parts.

The red button assembly The parts for this scenario are displayed in
the upper right part of Fig. 3.6. First the red button should be inserted
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3.3 Emergency stop button use case

Figure 3.6 Assembly graph for the emergency stop button assembly sce-
nario.

into the hole on top of the yellow case, i.e., a peg-in-hole assembly. Once
inserted, the nut should be screwed on the button to attach it to the yellow
case.

The snapfit assembly The upper left part of Fig. 3.6 shows the parts
for the snapfit assembly scenario. The dark gray electrical switch should
be placed in one of five available slots in the light gray bottom box. Each
slot is slightly larger than the switch, but flexibility in the switch makes
it possible to snap it into the correct position.

The complete assembly With the two sub-assemblies performed, i.e.,
the snapfit and the red button assemblies, the last operation is to place
the yellow case with the button on top of the bottom box with the switch.
Finally, the screws should be screwed to finish the assembly, this part
of the assembly is, however, not considered in this thesis, as this would
require some specialized tooling.
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Figure 3.7 The workcell for the emergency stop button use case with
the YuMi robot.

Workcell
The assembly scenario was implemented with different robots with dif-
ferent setups. The main structure of the workcell was, however, similar
in all cases. A fixture was used to make it possible to do some of the
assembly operations using one robot arm. The workcell used for the im-
plementation with the YuMi robot is displayed in Fig. 3.7. The fixture can
be seen in the bottom center of the photo. Three different grippers were
used in the implementation. A force/torque sensor was placed beneath
the fixture, such that force control could be performed when in contact
with the fixture. For other operations not performed in contact with the
fixture where force control was needed, such as screwing the nut, force
estimation as described in Chap. 8 was used.

The snapfit assembly and parts of the red button assembly were also
performed using the IRB140. In this setup, a wrist-mounted force/torque
sensor was used to perform force control.

Assembly sequence
To complete the assembly, a number of different operations had to be per-
formed. Each of these skills are presented in more detail on the following
pages.

• Pick yellow case

• Put yellow case on fixture

• Pick red button
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3.3 Emergency stop button use case

• Insert red button into yellow case

• Pick nut

• Lift red button and yellow case and turn them around

• Screw nut

• Align yellow case against fixture

• Check if yellow case should be turned 180 degrees

• Put yellow case in intermediate storage

• Change tool

• Pick gray box

• Put gray box on fixture

• Pick switch

• Do snapfit

• Put switch and gray box on table

• Pick yellow case from intermediate storage

• Put yellow case on top of gray box and slide them to the side

• Change tool

The left arm of YuMi had to change tool to be able to complete the as-
sembly task. The first tool was used for the red button assembly, and
the second tool for the snapfit assembly. To reduce the number of tool
changes, a number of red button assemblies were performed and placed
in an intermediate storage before the tool was changed.

Position-controlled skills
Some of the skills were implemented as procedures in RAPID, based on
pure position control. These skills included all picking skills, which were
possible as all parts were placed in well-defined trays. The tool exchange
skill was another RAPID based skill, that was performed with a fixed tool
stand. Finally, also the last parts of the sequence, including moving the
switch and the gray box from the fixture to the table, and putting the
yellow case and the button on top of the gray box to finish the assembly,
were implemented as RAPID skills.
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Figure 3.8 A nut in
the correct pick position
in the slider.

Figure 3.9 A nut that
has ended up too far to
the left in the slider.

Figure 3.10 A nut that
has ended up too far to
the right in the slider.

Robust picking of nut The nuts were picked from a slider, which can
be seen in the right part of Fig. 3.7. The bottom part of the slider was
designed such that the nut to pick should end up in a pre-determined
position with a known orientation. When a nut had been picked and the
rest of the nuts slid down, however, it was quite common that the next nut
to pick ended up in another position than what was expected. Examples
of different nut positions are displayed in Figs. 3.8–3.10. As no external
feedback signals were available, a robust picking skill was implemented
to prevent these situations from causing errors.

The nut could be forced into the pre-determined pick position by push-
ing on it from the side. As it could end up both to the left and to the
right of the intended pick position (Figs. 3.9 and 3.10), the nut had to
be pushed from both sides. The pushing procedure was performed before
every nut was picked, and the resulting failure rate was very low.

Turning of red button and yellow case This skill was used to lift
the yellow case and the red button from the fixture on the force sensor
to a position that was suitable for screwing the nut. It was possible to do
the turning using only one arm, but the nearby tray with red buttons and
kinematic limitations of the robot arm made it very difficult. Instead, the
turning was performed using both of YuMi’s arms. The arm holding the
button first performed a rotation around the edge of the yellow case, such
that it was possible for the other arm to help in the lifting from the other
side, see photo in Fig. 3.11.

The lifting was performed as a synchronized motion, i.e., such that one
of the arms was controlled to keep a constant position and orientation with
respect to the other arm. The yellow case and the button were turned such
that the button pointed upwards (see Fig. 3.12), as this was a favorable
position for the screwing of the nut.
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3.3 Emergency stop button use case

Figure 3.11 Turning of the red button and the yellow case.

Force-controlled skills
Screwing This skill was to fasten the button to the yellow case by screw-
ing the nut. The right arm of the robot held the button with the case on
top, and the left arm held the nut and performed the screwing. The arm
holding the button was used only for holding the button and the case still.
Whereas screwing also with this arm might have increased the assembly
speed, uncertainties in the exact position of the button in the gripper
made the screwing very unreliable then. The initial configuration before
the screwing started is displayed in Fig. 3.12, and the frames used for
modeling the skill are illustrated in Figs. 3.12–3.13.

Two kinematic chains were used for the nut screw scenario. The first
one (chain a) was used for specifying the relative motion between the
arms, and the second (chain b) for specifying the motion of one of the
arms with respect to the world coordinate frame, in this case the right
arm.

The first chain is illustrated in more detail in Fig. 3.13 (here the su-
perscript a has been dropped). The world coordinate frame, w, was placed
at the base of the robot and the chain began with the left YuMi arm.
Object frame o1 was placed on the flange of the robot arm, and feature
frame f 1 in the middle of the gripped nut. Feature frame f 2 was placed
at the bottom of the yellow case, centered in the button. The second object
frame, o2, was placed at the flange of the right robot arm. The chain was
closed by going back to w through the right arm.

The feature coordinates used were all gathered between f 1 and f 2,
first three translations along the coordinate axes of f 1 and then three
Euler angles to describe the reorientation. The translations described
the relative distance between f 1 and f 2, e.g., a positive z-translation
resulted in the arms moving apart (at least for the configuration shown
in Fig. 3.13).

The second kinematic chain, b, began once again in the robot base.

45



Chapter 3. Robotic Assembly
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Figure 3.12 Illustration of the two kine-
matic chains used in the nut screw assembly
scenario.
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Figure 3.13 A detailed view
of the kinematic chain a in the
nut screw assembly scenario.

This chain was used to specify the motion of one of the arms, and as
no relevant features were present for this task, both o1b and f 1b were
chosen to coincide with the world coordinate frame w. Feature frame f 2b

and object frame o2b were further chosen to coincide with the flange of
the right robot arm. The chain was closed by going back to w through
the robot arm. The feature coordinates used were three translations and
three Euler angles, all gathered between f 1b and f 2b.

No force sensors were available on the arms, and the assembly op-
eration therefore had to rely on the estimated forces using the methods
described in Chap. 8.

The nominal assembly strategy was as follows

1. Initial positioning

2. Put nut on the button by a search in f 1 z-direction

3. Re-grip nut
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3.3 Emergency stop button use case

4. Screw until nut is tightened

5. Release nut and move away

Because of various types of uncertainties, this assembly strategy would
most likely fail. To make the execution more robust, both proactive and re-
active strategies were implemented. A sketch of the actual state machine
coordinating the assembly skill is displayed in Fig. 3.14.

To start with, the red button with the yellow case on it was placed
in a vertical position. The second arm, with the nut in the gripper, ap-
proached the first arm and tried to put the nut on the button (as in
Fig. 3.12). This was made as a search in the negative f 1a z-direction. The
search was ended when a contact force was detected, and if the distance
between the arms was small enough, the nut was put on the button, and
this scenario corresponded to the nominal strategy. On the other hand, if
the distance between the arms was not small, the hole was missed. The
recovery strategy was to move the robot back, slightly modify the position,
and try again. This operation continued until the nut was mounted on the
button.

The gripper for the nut could grasp the nut in two ways. The first grip
was used for putting the nut on the button, and the second for screwing.
The nut therefore had to be released and re-gripped, and this might cause
a movement of the nut. To be robust against this type of error, a proactive
strategy was applied, namely to push on the nut to make sure it was all
the way down on the button. The next step was to go down to the nut,
grip it, and start screwing. The robot could screw one revolution, and then
had to release the nut and go back to the start position again, before the
process was repeated.

It was known that it took 2.5 to 3.5 revolutions to tighten the nut, de-
pending on where on thread the screwing was started. Detecting that the
nut was tightened could not be done through the estimated torque around
the screwing axis, due to too large disturbances. What usually happened
was that the grip of the nut was lost when it became tightened, and then
the screwing arm pushed on the arm holding the button, resulting in a
large side force that could be detected. If this happened during the third
or the fourth revolution of screwing, it was assumed that the reason was
that the nut was tightened. If no large side forces had occurred after four
revolutions, the button had most likely slid in the gripper, which meant
that it had been tightened.

During screwing, there was a risk that the nut was gripped in a non-
centric way, and this might also cause large side forces although the nut
was not tightened. If such a force was detected and less than three rev-
olutions had been screwed, the screwing was stopped. The nut was then
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Initial
positioning 1

Position reached

Search in f 1
z-direction 2

Nut on button Nut not on button

Release nut
and move away 3 Goto new start

position 2.5

Position reached Position reached

Push down nut
on button 4

Large z-force

Go down to nut
and grip it 5

Gripper closed

Screw 6

Screw finished Large side force

Open gripper
and move away 7 Stop screwing

and open gripper 6.3

#screws == 4

#screws ≥ 3 #screws < 3#screws < 4

Screw back 7.5 Assembly
finished

8 Move back and
close gripper 6.7

Screwed back Gripper closed

Figure 3.14 The state machine used for modeling the assembly strategy
for the nut screwing skill. The expression #screws refers to the number of
revolutions screwed.
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Figure 3.15 Putting the red button on the yellow box, a peg-in-hole
operation.

released, the robot arms were slightly moved apart, and then the nut was
gripped again, and the screwing continued. This set of actions was an-
other example of an automatic error recovery strategy, and it usually led
to a better grip.

The arm holding the button was controlled to be still, as a motion of
this arm might introduce disturbances to the screwing, due to errors in
the kinematic models of the robot arms.

Snapfit The snapfit skill was presented in Sec. 3.2.

Peg-in-hole of red button in yellow box Putting the red button in the
yellow box was a peg-in-hole operation. In the approach phase the button
was tilted as in Fig. 3.15. The tilted orientation gave the button a more
pointed contact surface, and hence less position accuracy was needed to
hit the hole in the yellow box.

Once contact was made, the button was pressed downward and the
forces in the radial directions of the hole were controlled to zero, in order to
center the button in the hole. The button was then tilted until the center
axis was in the vertical direction and the button slid down in the hole
due to force control in the vertical direction. The orientation of the button
was represented as a quaternion and the reorientation was performed by
turning the button toward a target quaternion. For more details about
how quaternions can be used together with the iTaSC framework, see
[Stolt et al., 2012].

Putting a box in a fixture Putting a yellow or gray box in the fixture
was performed by three guarded search motions in sequence as described
in the bullet list below, see also Figs. 3.16(a) and 3.16(b).
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(a) The yellow case.
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(b) The gray box.
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(c) Insertion into the in-
temediate storage.

Figure 3.16 Putting a box in a fixture skill.

1. The box is moved to an initial position close to the fixture, using
position control. The initial position is slightly further in the positive
directions of the x-, y- and z-axes than the final position, as shown
in Fig. 3.16.

2. The box is moved in the negative z-direction until a downward force
is detected on the fixture.

3. A force controller is used to keep pressing the box in the negative
z-direction and the box is moved in the negative x-direction until a
force in the negative x-direction is measured on the fixture.

4. A force controller is used to keep pressing the box in the negative
x-direction on the fixture and the box is moved in the negative y-
direction until a force in the negative y-direction is measured on the
fixture.

5. The box is now assumed to be in the slot on the fixture. The box is
released and the robot is moved away.

The same strategy could also be used for inserting the yellow case
with the button in the intermediate storage. This operation was, however,
started in a tilted position to minimize the contact surface between the
yellow case and the wooden table such that large friction forces were
avoided, see Fig. 3.16(c), and a reorientation to the horizontal position
was made in the end of the sequence. As no force sensor was available for
this operation, force estimation as described in Chap. 8 was used. Due to
compliance in the gripper, the robot moved back 2 mm after the estimated
force had exceeded the threshold level used for detecting a contact.
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3.3 Emergency stop button use case

Figure 3.17 Example of initial position for the align box skill. The ori-
entation of the yellow case in the gripper is unknown after screwing due
to sliding in the gripper.

Aligning the box after screwing The orientation of the yellow case
was unknown after the screwing, as sliding in the grip frequently oc-
curred. An aligning phase against the fixture was therefore performed. A
simple strategy would be to start from the position displayed in Fig. 3.17
and then perform a search motion towards the sensor until contact was
established. The aligning against the fixture could then be performed by
controlling the torque around the axis going through the button and the
gripper to zero. This solution was, however, difficult to make fast, as the
torque controller had to be well damped to be stable and therefore very
slow.

To make the procedure faster, the following strategy was applied

1. Goto start position (beside the fixture as in Fig. 3.17)

2. Search for contact against fixture

3. If the distance to the fixture is not small enough, go back and rotate
a certain angle and go back to previous step

4. Rotate to make contact with other end of case (rotation direction
determined from measured torque)

5. Rotate to middle position

6. Search for contact against the fixture

7. Control torque to zero
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No slot for peg

Slot for pegNo peg

Peg

Figure 3.18 Photos showing the small peg on the yellow box and the
matching slot on the gray box.

The skill has two extra phases compared to the simple strategy. The
first one was used to quickly get to an orientation similar to the one in
Fig. 3.17, i.e., the configuration where the short side of the yellow case
was facing the fixture was ruled out. The second phase was used to get a
start position for the torque control phase that was really close to being
aligned with the fixture.

Check orientation of yellow case When the yellow case of the box
was put on the gray bottom part, it may look like you could turn the
yellow case 180 degrees around the center axis of the hole in the case,
and it would still fit. This rotation was, however, not possible, due to a
small peg in the yellow case and a corresponding slot in the gray part,
illustrated in Fig. 3.18.

When the assembly was performed, it was assumed that the orien-
tation of the gray part was known in its pallet. After the screwing and
aligning of the yellow box (described in the previous subsections) it was
not known if the yellow box was in its desired orientation or if it was
turned 180 degrees.

To determine the orientation of the yellow case, it was put in contact
with the fixture. The box was then moved in the positive y-direction,
coordinate frame illustrated in Fig. 3.16(a), and if a force in the positive
y-direction was detected by the force sensor, the peg was in the corner
with the largest x and y coordinate. If the box could be moved a given
distance without any detected force in the y-direction, the peg was in the
corner with the smallest x and y coordinates.
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3.4 Shield can use case

Figure 3.19 The vacuum gripper used in the shield-can assembly sce-
nario. Left: Unloaded gripper. Right: Shield can in the gripper.

3.4 Shield can use case

This use case is a subassembly of a mobile phone. A ’shield can’ (metal
lid) should be assembled onto a printed circuit board (PCB), the parts can
be seen in Fig. 3.20. The shield can should be pressed onto a socket on the
PCB. There are no tolerances between the shield can and the socket, and
the shield can will therefore have to be deformed to fit. The parts involved
are small and fragile, and the assembly therefore has to be performed with
care not to break anything.

Robot tooling
To make it possible to perform the mobile phone assembly, special tooling
had been produced. A fixture had been designed for keeping the PCB in
position. A suction tool was used to grasp the shield can, see Fig. 3.19.
The maneuverability in contact was good in the vertical direction (the f 2
z-direction in Fig. 3.20), but worse orthogonal to this direction ( f 2 x- and
y-direction in Fig. 3.20), since the shield can might slide.

Task modeling
A kinematic chain was used in the assembly task and it is illustrated
in Fig. 3.20. A schematic description of the kinematic chain is given in
Fig. 3.21.

• Object frame o1 is attached to the fixture holding the PCB. It is
related to the world coordinate frame by a constant transformation.

• Feature frame f 1 is attached to one of the corners of the socket on
the PCB. It is related to o1 by a constant transformation.

• Feature frame f 2 is attached to one of the corners on the shield can.

• Object frame o2 coincides with the flange frame of the robot. The
transformation between f 2 and o2 is fix.
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Figure 3.20 Illustration of the frames used in the shield can assembly
task.
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Figure 3.21 Schematic illustration of the kinematic chain used in the
shield can assembly task.

The feature coordinates were all collected into the transformation
between f 1 and f 2. The first three were Cartesian translations along
the coordinate axes of f 1 and the remaining reorientation was then
parametrized by three Euler XYZ angles. The feature coordinates were
divided into three groups depending on which frames they related to,
according to:

χ f I = (−) o1 → f 1
χ f I I = (x, y, z,ϕ ,θ ,ψ ) f 1 → f 2
χ f I I I = (−) f 2 → o2
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yu

xu

zu

ϕ u

f 1

f 1′

Figure 3.22 Illustration of the uncertainties in the shield can assembly
task. The magnitude of the uncertainty is scaled up to make room for the
frames and the labels.

Outputs were chosen to be all of the feature coordinates, according to
y1 = x y2 = y y3 = z y4 = ϕ y5 = θ y6 =ψ

Uncertainties Uncertainties in the task included the exact location and
orientation of the fixture holding the PCB, and also how the shield can
had been grasped. The first one could be modeled by introducing an un-
certainty frame f 1′. This frame represents the modeled position of the
socket corner on the PCB, while f 1 gives the real position. It was as-
sumed that the fixture was mounted such that the PCB was placed in
the horizontal plane, but the exact location and orientation in this plane
were uncertain. This was modeled by introducing three uncertain trans-
lations and one uncertain reorientation angle (around the f 1 z-axis), see
Fig. 3.22. Similarly, in the grasp, the orientation around the z-axis and
the translations along the x- and y-axes in frame f 2 were uncertain.

The prior distribution of the uncertainty coordinates was assumed
to have a standard deviation of a few millimeters and a few degrees,
respectively. The only sensor information available was the contact force.

Assembly strategy The assembly strategy was designed such that the
uncertainties were resolved in a robust way. A suitable strategy was to
first find a corner of the socket with the shield can in a tilted position,
see Fig. 3.20, by executing a sequence of guarded search motions, i.e., the
search motions were stopped once the corresponding contact force was
sensed. Once the corner was found, the shield can was rotated to what
was estimated to be the correct orientation and it was then pressed onto
the socket. When a certain force and torque were applied, the shield can
could be considered to be mounted correctly.

By inspecting the PCB a suitable corner to try to find was the one
where frame f 1 was placed, see Fig. 3.22. The area in front of this corner
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Figure 3.23 Snapshots from the shield can assembly sequence to illus-
trate how the corner is found. The arrows indicate in which direction the
shield can is in contact. In the leftmost photo the robot is in state 5 and
has sensed contact in the y-direction, in the middle photo the robot is in
state 6 and has sensed contact in the x-direction, and in the rightmost
photo the robot has found the corner.

was almost free of small edges that could lead to problems during the
assembly. It was further large enough to be possible to find, considering
the variance of the modeled uncertainties. A detailed assembly sequence
is given below:

1. Pick up shield can from tray

2. Goto start position

3. Search for contact in negative f 1 z-direction

4. Search for contact in positive f 1 y-direction

5. Search for contact in negative f 1 x-direction

6. Find corner of socket by yet another search in positive f 1 y-direction
(force control in x-direction)

7. Make a rotational search around the f 2 x-axis and the f 2 y-axis

8. Press shield can into position

9. Release shield can and move away with robot

An illustration of how the corner of the socket was found is given in
Fig. 3.23.

3.5 Experimental results

The assembly use cases presented in Secs. 3.3 and 3.4 were implemented
with industrial robots and experimentally evaluated. The cycle time and
the robustness of the robot implementations were compared to that of a
human performing the same tasks.
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Table 3.1 Time taken for the skills in the emergency stop button assem-
bly scenario with the YuMi implementation. The times for the position-
controlled skills also include movements to and from the trays. The table
also shows which of the arms was performing which skills.

Skill Time Right arm Left arm
Pick yellow box 3 s - X

Put yellow box in fixture 2 s - X
Pick red button 3 s X -

Insert red button in yellow box 5 s X -
Pick nut 4 s - X

Lift and turn yellow box and red button 4 s X X
Put nut on thread 3 s X X

Screw nut 9 s X X
Movement from screwing to alignment 2 s X -

Align yellow box 2 s X -
Check orientation 2 s X -

Put in intermediate storage 4 s X -
Change tool 6 s - X

Pick gray box 2 s - X
Put gray box in fixture 2 s - X

Pick switch 2 s - X
Do snapfit 4 s - X

Put gray box and switch on table 1 s - X
Pick from intermediate storage 2 s X -

Put yellow box on top of gray box 3 s X -
Change tool 5 s - X

Emergency stop button
The complete assembly task was implemented with YuMi, the snapfit and
the red button assembly skills were also implemented with the IRB140.

Timing of the assembly sequence—Robot implementations The to-
tal time for one cycle of the complete assembly task was 48 s. The mea-
sured time for the different skills are given in Table 3.1. Some of the
skills could be performed in parallel, such as the picking of the red but-
ton and the picking of the yellow box, while some skills had to wait for
other skills to finish using the shared resources, i.e., the fixture together
with the force sensor.

Whereas the robustness properties for each one of the particular skills
were quite good, it was rather worse for the entire task, as this required
all skills to be successful. Common error cases included that the screwing
skill failed, e.g., due to the robot losing the grip of the nut, or that the
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Chapter 3. Robotic Assembly

nut ended up with a bad angle on the thread such that it got stuck. The
success rate for the complete task was estimated to be 75 % when all skills
were well tuned.

The snapfit and the red button skill were also implemented with
IRB140. The snapfit assembly had a cycle time of 9 s and the red button
assembly a cycle time of 11 s. The cycle times are thus more than doubled
with IRB140 as compared to YuMi. The reason for this is that IRB140 is
much heavier and stiffer than YuMi, which means that all search motions
had to be much slower as the contact forces otherwise grew too large when
contacts were established. The cycle time could be decreased by model-
ing and accounting for the uncertainties, as is described in Chap. 4, and
doing this with the IRB140, the snapfit cycle time became approximately
the same as for the YuMi implementation.

Timing of the assembly sequence—Manual assembly The cycle time
for a human familiar with the task performing the assembly sequence
was about 10–15 s, if the human was allowed to perform the assembly
without restrictions. If the human had to perform the assembly using
the fixture, in the same way as the robot, then the cycle time became
17 s. The measured time for each particular skill is given in Table 3.2.
The human obviously does not need to change tool, and can also skip
the alignment skill. Further, the human also waited with checking the
180 degree orientation of the yellow box until finalizing the assembly and
putting it on top of the gray box.

Shield can
The shield can assembly task was implemented with YuMi. In an experi-
ment, the task was executed 30 times with six different shield cans. The
position of the shield can in its tray was varied between the executions,
movements up to 3 mm, but not more than that the pins of the gripper
supported the shield can when it was grasped. This variation was used to
test the robustness of the task. The success rate was 83 % and the cycle
time was 10 s. The error cases that occurred was that either the corner
of the socket was not correctly detected, or that the shield can was not
completely pressed onto the socket. A human who performed the same
task completed the assembly in 2–3 s.

The robot implementation described in the previous paragraph used
force control to maintain established contacts during sliding search mo-
tions. The search speeds had to be slow for the force controllers to be able
to control the contact force in a robust manner. An alternative implemen-
tation was to use force sensing only for detecting the contact positions and
then use position control to control the contact position. This strategy will
be possible to use if the uncertainties in the orientation of the PCB in the
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Table 3.2 Time taken for the skills in the emergency stop button assem-
bly scenario with the human.

Skill Time Note
Pick yellow box 1 s

Put yellow box in fixture 1 s
Pick red button 1 s

Insert red button in yellow box 1 s
Pick nut 2 s

Lift and turn yellow box and red button 2 s
Put nut on thread 0 s Done while turning

Screw nut 4 s
Movement from screwing to alignment 0 s Skipped by human

Align yellow box 0 s Skipped by human
Check orientation 1 s

Put in intermediate storage 2 s
Change tool 0 s Not necessary

Pick gray box 1 s
Put gray box in fixture 1 s

Pick switch 1 s
Do snapfit 1 s

Put gray box and switch on table 1 s
Pick from intermediate storage 1 s

Put yellow box on top of gray box 1 s
Change tool 0 s Not necessary

fixture are small. The assembly task was executed using this strategy in
Chap. 8 (using force estimation instead of a force sensor), and the cycle
time could then be decreased to 3.5 s.

3.6 Discussion

This chapter has described how assembly tasks can be specified and ex-
ecuted. Some skills could be position-controlled, but other skills needed
to be performed using force-control. The need for force-sensing thus con-
firms that the approach to robotic assembly taken in this thesis using
force control was appropriate.

Based on the experiments performed, it can be concluded that a skilled
human assembly worker can perform assembly with a lower cycle time
than a robot. For the emergency stop button assembly task, the human
was approximately 3–4 times faster than the robot. There are possibilities
to speed up the robot implementation by, e.g., optimizing trajectories for
free space motions and minimizing the time that the arms have to wait for
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each other during the assembly sequence. It is, however, not reasonable
to believe that the cycle time can be made as fast as the human with
the current workcell, i.e., with the only external sensor being the table-
mounted force sensor. The human has several superior advantages, one
is the vision feedback coming from the eyes. This makes it possible to
start all assembly operations much closer to the final configuration than
the robot was able to. For the force-controlled skills, the human uses
force/tactile feedback with a strategy that is similar to that of the robot,
but the human force control capabilities are much better than those of
the robot.

The robot performs the screwing in 9 s, and the human in 4 s. The
human hand is really much more suited for this kind of task than the
gripper used for the robot, as the human uses a finger to spin the nut
to efficiently fasten it. If the robot would not have needed to screw back
after each revolution, because of limits of the robot joints, then the time
needed for the screwing would be more than halved, and thus comparable
to that of the human. It could, for instance, also be possible for the robot
to use a specialized screwing tool in the workspace, then it could actually
be possible to do it faster than the human.

An advantage with a robot is that it can work 24 hours per day, and 7
days per week, and it will in this time have time to complete about 12,600
stop buttons (with a cycle time of 48 s). This can be compared to a human
that works 8 hours per day, and 5 days per week, that will be able to
complete 9,600–14,400 stop buttons (with a cycle time of 10–15 s). In this
sense, the current robot implementation has a cycle time comparable to
that of a human assembly worker.

The analysis so far has been made with the assumption that nothing
goes wrong. Some of the skills have been extended, such that they can
detect and recover from common errors, but there are still many errors
that are not handled by the system. For instance, the screwing skill is
very error prone, as the fast screwing speed makes it crucial to detect
bad grips very fast, and the estimated force is not always this fast and
the result is that the robot stops. In the current setting it must be manu-
ally restarted, but in the future of course it could be automatically taken
care of. Producing over 10,000 stop buttons per week with the current im-
plementation is therefore unrealistic, but by adding more sensors to the
system, e.g., wrist-mounted force sensor and vision system, together with
an easy way for an operator to include detection of and recovery strategies
from common errors. By handling errors, the system will become less er-
ror prone over time, and then it may be realistic to reach the robustness
needed to be able to compete with the human assembly workers.

The control in this thesis was both performed on the velocity and
the acceleration levels. The control performance for the different control
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modes were similar, and with the available research interface, the ac-
celeration level specification was not really necessary. It would, however,
be useful to know the accelerations if a dynamic model of the robot was
available, as dynamic torque feedforward then could be used to increase
the control performance.

Assembly experiments were performed both using YuMi and IRB140.
For the IRB140, the velocities when searching for contact had to be slow,
as the stiff and heavy robot structure led to that forces were quickly built
up when contacts were established, with risk of damaging equipment. For
YuMi, on the other hand, the light-weight robot resulted in a lower inertia,
and together with the weaker and somewhat compliant structure, much
larger search velocities could be used without getting too large contact
forces. The YuMi robot was in this sense forgiving during contact opera-
tions, and thus more suitable for small parts assembly than the IRB140.

Specifying the assembly tasks considered in this chapter can not be
considered as being easy. Expert knowledge is required, which is some-
thing that hampers real industrial applications. Teaching a human to
perform these assembly tasks is much easier, and for the robot to be com-
petitive, the teaching phase must be simplified. One approach for doing
this is to perform the task specification on a higher level, similar to how
a human is instructed. This approach is the topic of Chap. 6. The teach-
ing phase can also be simplified using lead-through programming, i.e.,
teaching skills to the robot by manually guiding it, which is the topic of
Chap. 10.

3.7 Conclusions

A framework for robotic assembly was presented. Constraint-based specifi-
cation of force-controlled skills based on the iTaSC framework were used,
both on the velocity and the acceleration level. It was further reported
how standard position-based control using an industrial controller was
integrated with an external controller performing force control.

The task specification framework was illustrated in detail for two dif-
ferent assembly tasks. Results from implementation of these assembly
tasks were reported, and the performance was compared to that of a hu-
man. It was concluded that a human was faster than the robot, but the
robot could reach the same level of productivity as the human by working
around the clock. The robustness of the robot implementation is still, how-
ever, not sufficient for industrial usage, and further work must be spent
on simplifying addition of error detection and recovery strategies.
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4
Uncertainty Estimation in
Robotic Assembly

4.1 Introduction

Traditional position-controlled robots require a very structured environ-
ment to work well, as everything within the task must be known with
a certain accuracy for the robot to be able to complete the task. The re-
quired accuracy depends on, e.g., the tolerances of the gripper and the
parts involved in the task. A position-controlled system like this has diffi-
culties in handling uncertainties in the tasks. Accurate fixtures and other
task-specific solutions are used to minimize the uncertainties, so they are
within the tolerances of the system, e.g., specialized procedures for grip-
ping parts in exactly the same way every time. These implementations
are quite time consuming and also inflexible, as much work usually is
required when something in the task changes.

Relaxing the requirements on a structured environment directly intro-
duces uncertainties in the task, e.g., positions of parts might no longer
be exactly known and exact gripping might not be possible any more. To
be able to cope with these circumstances, extra sensing might be needed,
such as vision and force sensing. A systematic way of modeling geomet-
ric uncertainties and incorporating external sensing is provided in the
constraint-based task specification framework (iTaSC) [De Schutter et
al., 2007].

An introduction to the importance of taking uncertainties into account
in robotics, along with the challenges that arise, is given in [Thrun, 2002].
An early framework for incorporation of uncertainties in the context of mo-
tion planning is described in [Donald, 1986]. Two examples of uncertainty
management within the context of force control and compliant motion are
[De Schutter, 1988] and [Lefebvre et al., 2005]. The first one considers how
estimation of the motion of an object can be used to improve force control
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against the same object, and the second is about how active sensing can
be used to resolve uncertainties.

A method to handle uncertainties in assembly tasks is presented in
[Xiao and Volz, 1989], where automatic replanning was performed when
undesired contact situations were detected. Uncertainties of the sensor
measurements were taken into consideration, which included position,
velocity, and force. Another approach for handling uncertainty within the
context of force-controlled assembly is presented in [Huang and Schim-
mels, 2003]. In that paper, uncertainty was handled by designing the force
controller, an admittance controller, such that the motion resulting from
contacts reduced the part misalignment. In this thesis, undesired contact
situations and part misalignment were handled at the skill level, by the
design of an appropriate state machine.

This chapter describes how uncertainties in robotic assembly can be
modeled and resolved using force sensing. Two different uncertainties
from the snapfit assembly scenario will be used as illustrating examples.

4.2 Modeling

Uncertainties are handled in iTaSC by assuming that the pose of some
of the modeled frames are uncertain. Uncertainty coordinates, denoted
by χu, are used to represent the directions in which the uncertainty is
present.

The model update and estimation procedure (Sec. 3.2) is divided into
two parts when uncertainty coordinates are introduced. First, the un-
certainty coordinates are assumed to be known and constant when the
feature coordinates are calculated. Then an estimator is fed with mea-
surement data and the values of the uncertainty coordinates are updated.
There is no general procedure for how to create such an estimator. Instead
it has to be derived in each particular case.

The general goal with modeling and estimating uncertainties is to
increase the performance of the task execution. Less uncertainty makes
it possible to achieve a decreased failure rate, and it can also make it
possible to decrease the cycle time of the task.

4.3 Example from snapfit assembly

The snapfit assembly scenario was described in Sec. 3.2, and it will be
used to illustrate how uncertainties in an assembly task can be modeled
and resolved. Uncertainties in the task include the exact location and
orientation of the bottom box. These uncertainties can be modeled by in-
troducing an uncertainty frame f 1′. It represents the estimated position
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and orientation of the frame f 1, which is defined with respect to the ac-
tual position of the bottom box. The uncertainty coordinates are three
translations and three Euler angles, i.e., uncertainties in all directions.
The uncertainties can be resolved by using guarded search motions, i.e.,
motions that are velocity controlled in the search direction and stopped
when a corresponding contact force is detected. Once contact is made, an
estimate of the corresponding uncertainty coordinate will be available.
When all guarded search motions in the assembly sequence have been
performed, the system will have an estimate of the position of frame f 1.
After performing the assembly several times, the system will learn where
the box usually is, i.e., it will learn a probability distribution of the posi-
tion of frame f 1. This knowledge can be used to decrease the cycle time,
by increasing the speed of the guarded search motions when no contact
is expected to be made, and use the slow nominal search speed when the
expected contact position is approached.

The exact grasp of the switch is also assumed to be uncertain, and the
y- and z-distances from f 2 to o2 (Fig. 4.1) are therefore modeled as the
uncertainty coordinates yu and zu. The distance in x is also uncertain,
but it is small compared to the other distances and therefore considered
to be known with sufficient accuracy.

An illustration of the uncertainty coordinates yu and zu is given in
Fig. 4.1. As the only sensor available is a force sensor, the estimation can
only be performed when the switch is in contact with the environment.
The uncertainty can be estimated by performing a rotation in ψ (rotation
around f 2 x-axis, see illustration in Fig. 4.2) while keeping the switch in
contact with the box (this corresponds to state 5 in the assembly sequence,
see Fig. 3.4). If yu and zu were known exactly, the contact forces at the
origin of f 2 would remain constant during the rotation without any force
control. In practice the contact forces will change and force controllers
will modify the position and velocity references in the y- and z-directions
to maintain the forces.

Let us assume that there is an estimation error ỹu = yu − ŷu and
z̃u = zu − ẑu, illustrated in Fig. 4.2, where ŷu and ẑu are estimates of
yu and zu, respectively. These estimation errors give rise to attempted
rotations around the origin of frame f 2′ instead of around the origin of
f 2. Since the contact is force controlled the actual rotation will, however,
be made around the origin of f 2, and the velocity of o2 will be

v = [ψ̇ , 0, 0]T $ [xdist, yu, zu]T = [0,−ψ̇ zu,ψ̇ yu] (4.1)

where $ denotes the vector cross product. This assumption holds only if
the force controllers manage to control the contact forces to the reference
values, i.e., the force controllers have to be fast, the estimation errors
small, or the rotational search speed low.
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Figure 4.1 Illustration of the uncertainty coordinates yu and zu between
the two frames f 2 and o2.

The assumption described in the previous paragraph can be used to
set up a dynamical model for yu and zu, according to (4.2), where the state
s = [yu, zu]T and the measurement m = v is the linear velocity of frame
o2, � and n are Gaussian noise.{

ṡ = �(t)
m = −ψ̇ s+ n(t) (4.2)

A Kalman filter [Kalman, 1960] can be used to estimate s. A discretized
model of (4.2) is (4.3), where k denotes the sampling index. The system
matrices are defined in (4.4). The noise covariances are assumed to be
given by Eq. (4.5). {

s(k+ 1) = As(k) +w(k)
m(k) = C(k)s(k) + e(k) (4.3)

A =
[

1 0
0 1

]
, C =

 0 0
0 −ψ̇
ψ̇ 0

 (4.4)

E
[
w(k)wT(k)

]
= Q(k)

E
[
w(k)eT(k)

]
= 0

E
[
e(k)eT(k)

]
= R(k)

(4.5)
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Figure 4.2 Illustration of the uncertainty coordinates yu and zu.

A Kalman filter for the model (4.3) is given by (4.6)–(4.12).

ŝ(kpk− 1) = Aŝ(k− 1pk− 1) (4.6)
P(kpk− 1) = AP(k− 1pk− 1)AT + Q(k) (4.7)

m̃(k) = m(k) − C(k)ŝ(kpk− 1) (4.8)
S(k) = C(k)P(kpk− 1)CT(k) + R(k) (4.9)
K (k) = P(kpk− 1)CT(k)S−1(k) (4.10)

ŝ(kpk) = ŝ(kpk− 1) + K (k)m̃(k) (4.11)
P(kpk) = (I − K (k)C(k)) P(kpk− 1) (4.12)

4.4 Experimental results

The estimation schemes described in the previous section were imple-
mented and evaluated experimentally. The distribution of the position
and orientation of the bottom box was learned by performing the assembly
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Figure 4.3 Time evolution of the state sequence from the snapfit as-
sembly task with IRB140 with and without learning of the position and
orientation of the bottom box. The vertical dashed lines indicate when the
assembly operations finish.

operation a number of times, using a slow search speed that was tuned to
be as fast as possible without generating too large forces when contacts
were established. In the experiments, the box was placed in a fixture,
and the variation of its position between executions was therefore very
small, and it was sufficient to perform the assembly about 5–10 times
to learn the distribution. The experiment was first performed with the
ABB IRB140. Here it was possible to increase the search speed 4 times in
areas where no contact was expected, and this decreased the cycle time
from 8.6 s to 3.6 s. The states over time with and without learning are
displayed in Fig. 4.3. The same experiment was also performed with the
ABB YuMi. There was much less benefit of using the learning strategy
now. The reason is that the slow searches could be made much faster with
YuMi, as the robot has a lower inertia and is much less stiff, which re-
sults in that forces do not build up as quickly as when the IRB140 is used.
As compared to the IRB140 implementation, the slow search speeds with
YuMi could be made six times faster, i.e., even faster than the increased
search speeds with the IRB140. Increasing the free space search speeds
in the YuMi implementation then only resulted in a negligible decrease
in cycle time.

The estimation scheme for the gripping uncertainty was implemented
with the IRB140 in a scenario similar to the snapfit assembly. Initial con-
tact was searched for in the z-direction, when this contact was established
it was force controlled and a new search in the y-direction was performed.
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Figure 4.4 Experimental data from the three gripping uncertainty es-
timation experiments. The uppermost row of diagrams shows the y- and
z-forces, measured data with solid lines and references with dashed lines.
The second row of diagrams shows the y- and z-velocities, i.e., the force con-
troller outputs, which should be equal to zero (indicated by black dashed
lines). The lowermost rows of diagrams finally show the time evolution of
the uncertainty coordinate estimates (blue), the dashed lines indicate the
correct value, and the green lines show the estimate used for control, i.e.,
the initial guess used until the estimation covariance had settled down.
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Once contact was established also in this direction, it was force controlled
and a rotation in ψ (around the f 2 x-axis) was started. Simultaneous to
the rotation, the estimator was also started. Three different initial guesses
were used and the result is displayed in Fig. 4.4, where each column of
diagrams corresponds to one initial guess.

The state and measurement covariances (4.5) were chosen to be con-
stant and diagonal. The covariances were manually tuned to give a satis-
factory estimation performance.

All three experiments started with relatively large force transients.
The explanation for this was the inaccurate initial guess of the uncer-
tainty coordinates, which meant that the rotation was not performed
around the contact point. A contribution to the transient was also the
newly established contact, the force controller needed some time to settle
down after making contact as the environment was quite stiff. This latter
explanation for the transient behavior was not modeled, and it therefore
resulted in some temporary estimation errors, which can be seen in the
beginning of the resulting estimates for the three experiments. The initial
behavior was also caused by the fact that the initial state covariance was
chosen to be large, as it was assumed that the initial guess was poor. The
actual estimate of the uncertainty coordinates used during the execution
was the initial guesses, at least until the Kalman filter had converged.
This was considered to have happened when the rate of change of the
covariance had decreased below a threshold.

The estimation performance was good, as estimation errors of up to
30 mm converge in less than 2 s for all three experiments. Once the es-
timates have converged, the forces track the references in a satisfactory
way, 3 N in the y-direction and 5 N in the z-direction. The velocity cor-
rections made (by the force controllers) can also be seen to become very
small. With the uncertainty coordinates known, it is possible to increase
the assembly speed, as the force controllers now have to do less correc-
tions. The risk for errors occurring is also decreased.

The yu-estimate can be seen to increase fast in the end of each exper-
iment, this was caused by the rotational search making contact with the
other end of the switch. The switch then had two contact points, i.e., a
contact situation that was not modeled.

4.5 Conclusions

A method of modeling uncertainties in robotic assembly based on the
iTaSC framework was described. The methodology can be applied to any
geometric uncertainty, as long as it is possible to relate it to the measure-
ments from a sensor. The method requires the user to manually derive
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an estimator for each uncertainty to resolve, including a measurement
model. Making it completely automatic, i.e., generating an estimator to
an uncertainty coordinate specified by the user, is, however, difficult and
was not within the scope of this work.

Two different types of uncertainties in the snapfit assembly scenario
were modeled and resolved. By learning the approximate position of the
bottom box, it was possible to speed up the search motions and decrease
the cycle time. Experiments with two different industrial robots were per-
formed, and it was seen that the strategy was especially beneficial when
used with a stiff robot, where the nominal search speeds have to be slow
when the uncertainties are large. The second considered uncertainty was
a gripping uncertainty that was resolved using a Kalman filter.
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5
Detection of Contact Force
Transients

5.1 Introduction

Industrial robots are usually position-controlled, i.e., controlled to follow
predefined trajectories. The robots do the trajectory following very well,
with high speed and very good repeatability. But not all types of tasks are
suitable for this control strategy. Tasks that require interaction with the
environment, such as assembly, would require a very high accuracy of the
robot and the calibration of its workcell to be able to accomplish the tasks
using position control. Small uncertainties in position may lead to very
large forces and potentially damaged equipment. An alternative strategy
is to introduce additional sensors, such as a force sensor. Uncertainties
can then be compensated for by sensing the contact forces.

A force-controlled assembly task can be implemented as a sequence
of simple motions, usually in the form of search motions that are used to
resolve uncertainties in the task. Examples of this strategy was presented
in Chap. 3. The condition for switching between two such simple motions
is that some event occurs, e.g., that a new contact situation is established.
These events can often be detected by using a threshold on the measured
force/torque data. What really is detected is a transient in the measured
data. In many cases, the events can be detected from other transients as
well, occurring before the force/torque build up detected by the threshold.
This effect can be exploited to reduce the total assembly time. This chapter
considers the problem of detecting transients in force/torque data in the
context of force-controlled assembly, but it could also be applied to any
other signal in a different context. A systematic approach for training
machine-learning based classifiers will be used to accomplish this. The
snapfit assembly scenario presented in Secs. 3.2–3.3 will be used as an
experimental case.
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Machine learning approaches within assembly have previously been
used in [Rodriguez et al., 2010], where a single-axis force sensor was used
to detect failures in an assembly scenario. A somewhat different approach
was applied in [Di Lello et al., 2012], where a Hierarchical Dirichlet Pro-
cess Hidden Markov model was used to monitor an assembly task, for
detection of errors. Another approach to monitoring assembly tasks was
presented in [Rojas et al., 2012], where a hierarchical taxonomy was used
to monitor a snap assembly task. The force/torque signatures were inves-
tigated with respect to relative changes in several different layers that
could be used to discriminate nominal behavior from errors. Machine
learning has also been used for detecting failures, e.g., [S. Cho et al.,
2005] and [Hsueh and Yang, 2008], where support vector machines were
used to detect tool breakage in milling processes.

Assembly scenario
The assembly scenario considered in this chapter is the snapfit assem-
bly scenario, presented in Secs. 3.2–3.3. The assembly sequence is con-
trolled by a state machine, with force/torque measurements triggering
state transitions. Simple threshold detectors for some force or torque chan-
nels can be used for all transitions. However, the overall assembly time
can be decreased by instead detecting transients in the force/torque data.
Another positive effect is that the magnitude of the forces in the task can
be decreased, as the largest forces usually relate to the thresholds used,
which usually need to be large to get robustness. In state number 6 (see
state sequence in Figs. 3.4 and 3.5), the switch slides along a surface to
find the slot and the search is finished when contact is established with
an edge. A possible improvement is to instead detect the transient aris-
ing from the switch sliding into the slot, which happens before contact
with the edge is established. This motion will be called the slide motion
in the rest of the chapter. Another improvement is for the state where
the switch is snapped into place (state number 7), where the transition
event can be detected from the snap transient, instead from when contact
is established with the bottom of the box. This motion will be called the
snap motion.

5.2 Procedure

To get a classifier for a transient from an assembly sequence, several steps
have to be taken. First, data have to be gathered and preprocessed, then
the classifier has to be trained. The procedure is described in this section,
and the classifiers considered are introduced. For method description, the
snap motion transition is used as an example.
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Figure 5.1 The recorded data from the snap motion, in total 60 differ-
ent executions with 12 different switches. To increase the readability, all
sequences have been shifted such that the transient occurs at t = 0 s. The
force/torque directions refer to the feature coordinates defined in Sec. 3.2.

Data acquisition
In a production setting, each emergency stop button that the robot assem-
bles will have new components. To mimic this scenario, it would therefore
be a benefit to have a large number of different switches available, record-
ing one assembly operation from each one of them. In the current setup,
however, only 12 switches were available, and only using them once would
give a rather small training data set. Therefore, five recordings were made
for each switch, and the total number of recordings made was thus 60.

The training data were divided into two halves, one to be used for
training and one to be used for validation. The division was made such
that the training and the validation data set did not contain any record-
ings from the same switch.

The transients considered, during the slide motion and the snap mo-
tion, were manually marked in each recording. The force/torque data from
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the recorded snaps are displayed in Fig. 5.1. For the human eye, the eas-
iest way to recognize the snap is probably to look in the ψ -torque data.
It might seem to be an easy task to detect a snap in these data, but the
classifier should be able to do it with only a subset of the data available.
The smaller subset, the better, as that would decrease the computational
burden, and also decrease the delay from when the snap occurs until the
detection is done. The previously used threshold detector was that the
ψ -torque should exceed 0.8 Nm.

Data pretreatment
The data contained six different channels of force and torque data, i.e.,
the three force directions and the three torque directions as displayed in
Fig. 5.1. A subset of these channels were used by the classifier. A number
npre of samples before the transient and a number npost of samples after
the transient were taken from the channels that were used and were
put after one another in a vector, which will be called a sequence. If
the number of channels used was nch, then a sequence will be a vector in
Rnch⋅(npre+1+npost). The job of the classifier is thus to determine if a sequence
contains a transient or not.

Before forming the sequence vector, the mean value was removed from
each channel. This should make the classifier independent to any offset
force/torque, e.g., the offset seen for some of the executions in the θ -
torque in Fig. 5.1. The data were also prescaled such that all force/torque
components got approximately the same magnitude. This should make
the problem of training the classifiers better numerically conditioned.

Data for training
Every recording contained one interesting transient and a lot of back-
ground sequences, i.e., data not containing a transient. The number of
background sequences in each recording is approximately equal to the
length of the recording, which was about 100 for the snap transient ex-
ample. Using all background sequences would give an unreasonably large
training data set. Instead, a number of N (chosen to be 20) randomly se-
lected background sequences and the sequence containing the transient
were used from each recording. These selected sequences were used for
training the classifier, and then it was validated against all background
sequences in the recordings chosen for training. If any misclassified se-
quences were found, i.e., ’hard examples’, these were included into the
training sequences and the training of the classifier was performed once
again. This procedure was iterated until no more misclassified sequences
in the recordings chosen for training were found, not already included
in the training sequences, or until a maximum number of iterations was
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reached (10 was used). A similar approach for choosing training samples
was used in [Dalal and Triggs, 2005], in the context of detecting humans
in images.

There is a risk, however, that this strategy will lead to different classi-
fiers depending on the initial choice of background sequences. To average
this effect out, for every choice of parameters, the classifier was trained a
number of Nseeds, usually around 10–20, each time with a different con-
figuration of the random number generator used for choosing the initial
background sequences. The score for the given parameters was then taken
as the average of the Nseeds performed trainings.

Cost function
It might be more important not to make any false positive classifications
than any false negative classifications, or the other way around. In the
experimental scenario considered, classifying a background sequence as a
transient would be worse than missing a transient, as backup classifiers
based on threshold levels existed. This asymmetry in the problem can be
included by using the following cost function for training

J = costFP ⋅ nFP + costFN ⋅ nFN (5.1)

where costFP and costFN are the costs associated with false positives and
negatives, respectively, and nFP and nFN are the number of false positives
and false negatives.

Classifiers considered
Four different classifiers were applied to the data, a simple least-squares
classifier, two different versions of support vector machines, and a boost-
ing classifier. A detailed description of the methods can, e.g., be found in
[Bishop, 2006], and a summary of them can be found below.

Least-squares method The first classification method used was based
on the least-squares (LS) method. The model used was

y(x) = wT x +w0 = [ wT w0 ]︸ ︷︷ ︸
w̃T

[
x
1

]
︸ ︷︷ ︸

x̃

= w̃T x̃ (5.2)

where x denotes the data sequence, w̃ the parameters, and y should be
1 for a transient and −1 for the background. The classifier is based on
finding a hyperplane that separates the transients from the background.
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All training data can be described by
y1
y2
...

yn


︸ ︷︷ ︸

Y

=


x̃T

1
x̃T

2
...

x̃T
n


︸ ︷︷ ︸

X̃

w̃ (5.3)

and by using a sum-of-squares error function

JLS(w̃) =
n∑

i=1
ci(yi − x̃T

i w̃)2 = (Y − X̃ w̃)T C(Y − X̃ w̃) (5.4)

where C is a diagonal matrix describing the cost for the element i, the
optimal w̃ is given by

w̃ =
(

X̃ T CX̃
)−1 X̃ T CY (5.5)

The cost matrix C was chosen such that ci = costFP if yi = −1 and
ci = costFN if yi = 1. This gives an approximation of the cost function
(5.1). Classification is performed by calculating y(x), and the classification
boundary is 0, i.e., y(x) > 0 means that x is classified as a transient.
Support vector machines The simplest form of support vector ma-
chines (SVM) uses the model (5.2), but instead of choosing the param-
eters based on the error function (5.4), the parameters are chosen such
that the resulting hyperplane is the one with the largest margin to the
different classes of data. The problem can be stated as the optimization
problem

minimize
over w,ζ

P
n∑

i=1
ciζ i +

1
2qw̃q2

2

subject to yiy(xi) ≥ 1− ζ i , i = 1, . . . , n
ζ i ≥ 0 , i = 1, . . . , n

(5.6)

where ζ i are slack variables that allow for misclassifications, ci is the
cost for the misclassification, and y(x) is defined as in (5.2). The cost
is chosen as ci = costFP if yi = −1 and ci = costFN if yi = 1, i.e., an
approximation of (5.1). The sum of the misclassifications is penalized
by the parameter P. This parameter will control the trade-off between
classifying everything correct versus having a large margin with possibly
a few incorrect classifications. The optimization problem (5.6) is convex,
and it can therefore be solved efficiently with guarantee of finding global
minimum. This classifier will be called the primal SVM.
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By considering the dual formulation of (5.6), it can be shown [Bishop,
2006] that the following problem is equivalent to solve

minimize
over a

n∑
i=1

ai −
1
2

n∑
i=1

n∑
j=1

aia j yiyj k(xi, x j)

subject to 0 ≤ ai ≤ Pci , i = 1, . . . , n
n∑

i=1
aiyi = 0

(5.7)

The function k(xi, x j) = xT
i x j is a kernel function, which can be replaced

by any other positive definite kernel function.
The formulation (5.7) was used together with a Gaussian kernel,

k(xi, x j) = e−(xi−x j)
T (xi−x j)/l, where l > 0 is a parameter that corresponds

to the width of the kernel. The classification function is given by

y(x) =
n∑

i=1
aiyik(x, xi) + b (5.8)

Most of the ai are zero, and the non-zero ones correspond to the support
vectors xi. The parameter b is calculated through

b = 1
NM

∑
i∈M

yi −
∑
j∈S

a j yj k(xi, x j)

 (5.9)

where S is the set of all support vectors, M is the set of indices of data
points having 0 < ai < Pci, and NM is the number of elements in M .
Boosting This is a classifier that uses the result from many simple
classifiers, called weak classifiers, to make the final classification. The
performance of the final classifier is usually significantly better than any
of the weak classifiers. During training, weights are used to give data
points that are hard for the weak classifiers to correctly classify more im-
portance. The final classifier is a weighted average of the weak classifiers,
which in turn has been trained with differently weighted training data.
The algorithm used is called AdaBoost and was first proposed in [Freund
and Schapire, 1996].

The weak classifiers considered were threshold detectors for one of the
coordinate axes. For each weak classifier, all axes were considered, and
the one giving the best separation, concerning the cost function (5.1) and
the importance weights, was chosen.

Training procedure
The first part of the training procedure consisted in deciding which chan-
nels to use, the number npost samples after the transient, and the number
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of npre samples before the transient. This is a difficult task, as the avail-
able parameter space is quite large. A proposal is that it can be performed
in three steps, by first selecting the channels to use, then the number of
samples after the transient, and finally the number of samples before the
transient.

The values of the parameters to be used can be found by choosing
one classifier and evaluate the performance on the validation data for
different parameter settings. It is also possible to use a combination of
classifiers.
Varying the channels to use The first step was to vary the channels
used. The values of npre and npost were chosen to be large (30 was used),
such that the limiting factor for the total information available was in the
choice of channels. All possible combinations of channels were evaluated.

One choice for continuing from this step would be to choose the combi-
nation of channels giving the best result, but this would most likely mean
that all channels should be chosen. That is undesirable, as the complex-
ity of the classifier increases with the number of channels used. Instead,
the best choices for one to four channels were chosen and used for the
following steps.
Varying npost The number of samples used after the transient should
be kept at a minimum, not delaying the detection of the transient more
than absolutely necessary. This was done by varying npost from zero to
a large value (30 was used), while fixing npre to a large value (30 was
used). In other words, all information before the transient was kept while
the amount of information after the transient was varied. The evaluation
was based on the performance measure J1, the sum of J defined in (5.1)
plus a quadratic penalty term.

J1 = J + p1n2
post (5.10)

Varying npre The trade-off for the number of samples used before the
transient is about performance versus complexity of the classifier. The
parameter npre was varied from zero to a large value (30 was used), with
npost given by the choice from the previous step. The evaluation was sim-
ilar as in the previous step, but now with the linear penalty p2npre. This
should reflect that it is not as costly to have some more samples before
the transient than after.
Training of other classifiers With all parameters concerning how
much data the classifier should use decided, choosing the classifier specific
parameters remained. Neither the LS nor the boosting classifier (N = 50
weak classifiers were used) had any specific parameters, but the SVM
classifiers considered had some further parameters to tune. The primal
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formulation has the so called misclassification penalty, P in (5.6). The
search for the best choice of this parameter was performed in two steps.
First the parameter space was coarsely gridded with logarithmic spacing.
A classifier was trained in every grid point and evaluated against the
validation data. The second step consisted in refining the grid around the
best grid points from the first step and performing the training in the
new grid points.

The dual SVM classifier had the width of the Gaussian kernel as an ex-
tra parameter, besides the misclassification penalty. The parameter space
was therefore two-dimensional. The training procedure was performed in
the same way as for the primal SVM classifier, but with an even coarser
grid to begin with to reduce the computational load.

Implementation
The training procedure described in this section was implemented in Mat-
lab. The training of the SVM classifiers was performed by using CVX, a
package for specifying and solving convex programs [CVX Research, 2012;
Grant and Boyd, 2008].

5.3 Experimental results

Robot system
The robot used in the assembly scenario was the ABB YuMi, a photo of the
experimental setup is displayed in Fig. 5.2. An ATI Mini40 six degrees-of-
freedom force/torque sensor was mounted on the table beneath the fixture
for the bottom box. The sensor was used without any configured low-pass
filter, and it was sampled at 250 Hz.

Snap detection
Three different choices of classifiers were used for the initial training
phase, namely LS, boosting, and the combination of LS and boosting.
These classifiers were used as they had no parameters to tune, and as
they were both quite computationally cheap. The first parameter to be de-
cided was which channels in the measured force/torque data to use. The
result on validation data for all combinations of channels is displayed in
Fig. 5.3. It can be seen that the variation in the performance decreases
when the number of channels is increased, which is intuitive as more
information becomes available. For the LS classifier, however, the perfor-
mance seems to deteriorate when the number of channels becomes large.
This is probably due to the classifier being over-fitted, and thus failing
on validation data. The best choice for one to four channels was used for
further training.
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Figure 5.2 The experimental setup used for the experiments.
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Figure 5.3 The classification results in the snap detection scenario when
all different combinations of channels were tested. A small random per-
turbation has been added to every marker, such that it should be possible
to see where multiple configurations led to the same result.
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Figure 5.4 The result when the number of samples after the transient,
npost, was varied. The cost refers to the cost function (5.1) with costFP =
costFN = 1. The total cost also contains the extra penalty term for large
npost.

The next parameter to decide was npost, the number of samples to
use after the snap. The result on validation data when this parameter
was varied from 0 to 30 for the different choices of channel selections is
displayed in Fig. 5.4. The training based on the combination of LS and
boosting has been omitted from the figure to increase readability. The
stars (*) show the cost according to (5.1), i.e., the number of misclassifi-
cations as costFP = costFN = 1, and the rings (#) the total performance
measure (5.10). The constant p1 was chosen as 0.09, and it was chosen
such that it gave a quite low value for npost for this case. The LS classifier
behaves as expected, i.e., the performance increases with npost. The boost-
ing classifier, on the other hand, first shows a performance degradation
before giving perfect classification for npost ≥ 14. For all cases the npost
given by the performance measure was a low value.

The final parameter to decide was npre. The result from varying this
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Figure 5.5 The result when the number of samples before the transient,
npre, was varied. The cost refers to the cost function (5.1) with costFP =
costFN = 1. The total cost also contains the extra penalty term for large
npre.

parameter from 0 to 30, with the other parameters decided by the pre-
vious experiments, is displayed in Fig. 5.5. The boosting classifier still
has some problems in the middle region, while the LS classifier shows a
monotone-like performance increase. The performance measure constant
p2 was chosen as 0.5, such that it gave a slowly increasing cost for grow-
ing npre. The final parameter choices are summarized in the left part of
Table 5.1.

The considered scenario is in some sense asymmetric, as was concluded
in Sec. 5.2. To see the effect of including the asymmetry, the entire train-
ing procedure was performed one more time, with costFP being ten times
as large as costFN . The final parameter choices are listed in the right part
of Table 5.1. It can be seen that the parameters for the initial training
with LS are similar to the symmetric case, but that npost is much larger
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Figure 5.6 The classification results for training the primal SVM clas-
sifier. The cost refers to the cost function (5.1) with costFP = costFN = 1.

for the other initial training methods. The difference is that the LS clas-
sifier was very careful and made almost no false positive classifications,
but the other two initial training methods had some false positives for low
values of npost. Only a few false positives gave a large cost, so large that
not even the quadratic penalty could force a low value of npost. For the
initial training with LS, the quadratic penalty was the dominating term
as there were mostly false negatives, and the result was a low value for
npost.

SVM training Parameters for the SVM classifiers were found by grid-
ding the parameter space, as described in Sec. 5.2. For the primal SVM
classifier, with equal cost for false positives and negatives, the result of the
parameter search is displayed in Fig. 5.6, which shows the cost (5.1) with
costFP = costFN = 1 for different values of the misclassification penalty.
It can be seen that no parameter setting gives perfect classification. The
best result was achieved with four channels used and the initial train-
ing made with LS. All the best SVM classifiers for the different initial
training methods are listed in Table 5.2.

An example result from the grid search for the parameters for the dual
SVM classifier is displayed in Fig. 5.7. The asymmetric approach was used
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Figure 5.7 The classification results for training the dual SVM classifier
using the asymmetric approach with one channel and where the combina-
tion of LS and boosting was used for the initial training. The cost refers
to the cost function (5.1) with costFP = 10costFN .

with one channel, and the initial training method was the combination
of LS and boosting. Although hard to see, some of the parameter settings
give perfect classification, and one of them is listed in Table 5.2.

The best classifiers for all choices of number of channels and initial
training are listed in Table 5.2. It can be seen that the best performance
was achieved with the asymmetric approach, giving perfect classification.
The main difference between the two approaches was the choice of npost
versus npre. In the symmetric case, npost was small and npre usually larger,
resulting in a classification with only a small delay. In the asymmetric
case, however, npost was large and npre small when boosting and the com-
bination of LS and boosting were used for the initial training, giving a
longer delay, but on the other hand giving perfect classification. Depend-
ing on sampling time, this delay might be of more or less importance. In
this scenario, with a sampling time of 4 ms, the extra delay in the asym-
metric case becomes 40–50 ms, which is quite short and this suggests that
the penalty for choosing npost might have been a bit too large.

The results from the SVM training give no unanimous answer to how
many channels that should be used, as there were classifiers performing
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the best in all cases, with one to four channels used. A feasible strategy
could be the one taken in this chapter, i.e., evaluate a number of different
choices of number of channels and choose the one performing best. The
best option for the initial training was the combination of LS and boost-
ing, giving the best performance in all cases except for the primal SVM
classifier in the symmetric case.

The reduction in assembly time for using the transient detection com-
pared to the threshold detector earlier used was approximately 0.31 s,
with a standard deviation of 0.064 s.

Slide motion transient
The training procedure was applied also to the slide motion transient, see
the recorded transients in Fig. 5.8. Based on the results from the snap
detection, the combination of LS and boosting was used for the initial
training. The same parameter values for p1 and p2 were used. For this
transient, both the symmetric and the asymmetric case gave low values
for npost and somewhat larger for npre. The final SVM training resulted
in perfect classification for both the primal and the dual variants. This is
an indication of that this transient was easier to detect than the snap.

The reduction in assembly time for using the transient detection com-
pared to the threshold detector earlier used was approximately 0.18 s,
with a standard deviation of 0.041 s.

Real-time implementation
Classifiers for the two transients were implemented and used for exe-
cuting the assembly operation. The classifiers chosen for implementation
were both dual SVM classifiers that resulted in perfect classification for
training and validation data. The asymmetric formulation was used, and
the previously used thresholds were used as backup classifiers. The num-
ber of support vectors was 35 for the slide motion classifier and 53 for
the snap motion classifier. As was mentioned in Sec. 5.2, all available
switches were used for training/validation, so the experiments were per-
formed using a subset of these switches, namely two switches from the
training data set and two from the validation data set.

An unforeseen problem occurred when the classifiers were both used
in the assembly operation. The shape of the force/torque signals directly
following the slide motion transient were similar to the snap motion tran-
sient, cf. Figs. 5.1 and 5.8. These data were not used for training the snap
classifier, and the classification algorithm was therefore confused when
faced to these data and the result was quite many false positive classi-
fications right in the beginning of the snap motion. One solution to this
problem would be to include these data for training. Another solution was
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Figure 5.8 The recorded data from the slide motion. To increase the
readability, all sequences have been shifted such that the transient occurs
at t = 0 s. The force/torque directions refer to the feature coordinates
defined in Sec. 3.2.

to wait for the slide motion transient to die away before the snap classifier
was activated. In Fig. 5.8 it can be seen that the slide motion transient
has died away after around 0.1 s, and in Fig. 5.1 it can be seen that it
takes at least 0.3 s from the snap motion is started until the snap occurs.
The time to wait was therefore set to 0.1 s.

The assembly operation was performed 20 times. None of the tran-
sients were missed and no false positive classifications were made. The
total reduction in assembly time by using the classifiers was in average
0.49 s (standard deviation 0.070 s), which meant a reduction of the total
time to insert the switch in the bottom box with approximately 15 %.
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5.4 Discussion

The classifiers considered in this chapter were supposed to replace simple
threshold detectors that have been used before. The automatic procedure
for training the classifiers makes it possible for inexperienced robot oper-
ators to get robust classifiers in a simple way. The advanced classifier can
also be used to for enable detection of contact events with a lower force
level, as compared to the threshold detector. The two investigated state
transitions showed that there also is time to gain, i.e., the production can
be sped up.

The procedure described in Sec. 5.2 to pick out background sequences
to include into the training data was applied as using all background
sequences for training would be too computationally expensive. On the
other hand, it was computationally cheap to perform validation on all the
background sequences. That made it possible to start with a small set of
background sequences, and include more if needed, as this will lead to a
more robust classifier.

One of the design goals of the presented procedure was to reduce the
number of channels used. This was done by investigating all possible
combinations of channels and in the end use the one giving the best result.
An alternative could be to employ Principal Component Analysis (PCA),
and instead find one or more linear combinations of channels to use.
PCA would pick out combinations of channels with large variance, but
this might not be the important information for doing classification. It
remains as future work to investigate this approach.

The complexity of the classifiers has been kept low, in the sense of us-
ing as little data as possible. Aside from keeping the training time from
increasing and also making classification faster, it will give some robust-
ness. In an assembly scenario like the one considered in this chapter, the
training data size will be quite small, at least initially. A too complex
classifier will then tend to model also the noise, and therefore being a
worse classifier when faced to new data. The parameters used for choos-
ing the complexity of the classifiers (p1 and p2) in the example scenario
may, however, have given too much emphasis on low complexity. This was
especially the case when boosting was used as the initial classifier for the
snap, when very few samples before and after the snap were used for the
classifier.

In a production setting, all erroneous classifications should be saved
and, perhaps, also the successful ones. These data should be used to redo
the training of the classifier to improve performance. With more data
available, maybe also the complexity of the classifier can be increased.

Automating a task like the one considered in this chapter is difficult.
Every new task will be different, with different requirements. Still, a
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systematic approach, such as the one presented, will be a step towards
a complete solution. The experiments performed show a proof of concept
that it works.

Performing the training procedure takes a really long time, which may
take in the order of days on a standard computer, depending on the grid
size used in the SVM training. But the training procedure is possible to
parallelize and thus to use multiple machines. It would therefore be per-
fect as a cloud service. Record some training data, send them to the cloud,
and receive a classifier in response. With large computational resources
it might further be feasible to vary more parameters, e.g., other kernels
for the dual SVM classifier, as well as other types of classifiers.

5.5 Conclusions

A systematic procedure for finding machine-learning based classifiers to
detect transients in force/torque data was presented, but it would also
be feasible to use the method with any other time-series data. A force-
controlled assembly task was used as an experimental case to show that
the method worked. In the implementation of the assembly task, the clas-
sifiers were used to replace simple threshold detectors that were used be-
fore. The replacement resulted in the total assembly time being reduced
with 15 %.

90



6
Generation of Sensor-Based
Robot Programs from
High-Level Task
Specifications

6.1 Introduction

When a human teaches another human a task, a high-level description
is most commonly given. A simple assembly task, such as the snapfit
assembly task in Chap. 3, can be taught by describing only the final con-
figuration, i.e., the geometric relation between the switch and the bottom
box. Details, such as how to grasp the parts and what forces to apply, can
usually be learned by experimentation, and they do not need to be part of
the task instruction. To deploy the same assembly task on an industrial
robot involves a substantial amount of programming work, e.g., specifying
grasping positions and trajectories for the robot. Extensive background
knowledge and experience of the application domain are usually required.
Even simple assembly tasks may demand many days of implementation
work for skilled system integrators.

Programming standard position-based robot programs can be per-
formed using so called engineering tools, such as RobotStudio for ABB
robots [ABB Robotics, 2015c], see an example of a YuMi robot station in
Fig. 6.1. A graphical user interface together with a simulation environ-
ment makes it quite straightforward to program a task. The robot can be
taught with a high-level description, i.e., specifying certain positions to go
to, and the motion between these points is then generated automatically
for each joint. These engineering tools, however, do not offer any func-
tionality to incorporate external sensors, e.g., a force sensor, in the task
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Figure 6.1 A screenshot from the engineering tool. The robot station is
the one that is used for the experiments in this chapter.

programming. The work presented in this chapter is aimed at extending
the engineering tool with possibilities to program also sensor-based skills
on a high level. This can be done by either loading ready-to-use skills from
a library, or to create the skills from scratch. The high-level task descrip-
tion from the engineering tool is translated to a low-level description that
is executable on the robot system.

A widely used concept for programming industrial robots is online pro-
gramming, i.e., using the teach pendant, a control unit with joystick, to
manually move the robot between positions to be used in the program.
In [Pan et al., 2012] a survey of different methods for programming in-
dustrial robots was presented. It is usually desirable to minimize the
downtime for the robot, and offline programming methods are therefore
more suitable, where the programs can be simulated before the actual
robot is needed, e.g., the approach presented in [Mitsi et al., 2005]. Vi-
sual programming languages and graphical user interfaces can be used to
simplify the programming for non-expert operators. The available tools,
however, only offer generation of programs using native code of the robot
controllers, usually only including standard position-based control.

An approach to high-level programming of sensor-based tasks that
is close to the one taken in this chapter is presented in [Beetz et al.,
2010], where high-level actions are translated into robot programs, using
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knowledge-based techniques. The system is designed for mobile robots
and the resulting code is at the level of ROS primitives [ROS, 2015],
which does not provide any real-time guarantees often needed in an in-
dustrial setting. The same research group also presents an approach to
map high-level constraints to control parameters in order to flip a pan-
cake with a robot [Kresse and Beetz, 2012]. A convenient way of hiding
the detailed control structures is using reusable skills or manipulation
primitives [Kröger et al., 2011]. They become an interface to the low-level
control, and they are similar to the iTaSC specified motions used in this
thesis. The manipulation primitives are more involved than the iTaSC
motions, including such functionality as stop conditions, tool commands,
error handling, etc., and thus require more implemented low-level code
than is the case for the method in this chapter.

Using skills as building blocks to program robotic tasks is another ap-
proach similar to the method in this chapter. In [Pedersen et al., 2014]
skills are combined in a simple way using a touchpad, and gestures are
used for teaching parameters. The approach does not, however, offer any
simple way to create new skills, and it is focused on simple skills such as
pick-and-place. A similar method is also described in [Waibel et al., 2011],
where predefined skills are combined into action recipes. The focus is,
however, not on the specification of tasks, but on reusability of the task
specification and sharing information between robots. Another method
for reusability and task transfer between robot systems is described in
[Huckaby and Christensen, 2012], where a taxonomy for modeling assem-
bly tasks using skill primitives is presented.

6.2 High-level task specification

When an assembly task is specified, the highest level is the assembly
graph. It is represented by a partially ordered tree of assembly opera-
tions. An example for the emergency stop button use case was given in
Fig. 3.6, and the corresponding assembly graph as visualized in the en-
gineering tool is displayed in Fig. 6.2. The leaves correspond to the parts
to be assembled, and the root node to the resulting assembled product.
The intermediate nodes between the leaves and the root correspond to
sub-assemblies. Each assembly operation is specified by the desired geo-
metrical relation between the parts involved. These relations are specified
as constraints between coordinate frames that are attached to the involved
objects. Such a constraint can be that the frames on two different objects
should coincide.

Task specification on a high level is suitable to perform in a simu-
lation environment. Coordinate frames attached to different objects can
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Figure 6.2 The assembly graph for the emergency stop button assembly
scenario as visualized in the engineering tool. Note that the boxes with
multiple components represents the assembled (sub)products.

then easily be specified and visualized, see an example in Fig. 6.3. Con-
straints can also easily be specified, for instance, by moving the objects
in the simulation environment to the desired configuration. An example
is displayed in Fig. 6.4, where the relation between the fixture and the
bottom box in the snapfit assembly scenario (Sec. 3.3) is specified.

To make it possible for a robot to accomplish an assembly task, such
things as which type of gripper to use and how to grasp the objects must
also be specified. It would be good functionality if the program could au-
tomatically do this matching based on the available grippers and the ge-
ometry of the parts. This is an active area of research, and future work in-
cludes integrating existing algorithms. It is, however, also quite straight-
forward for the user to manually specify this information.

A step towards an executable robot program from the assembly graph
is to create sequences of operations. These sequences should take such
things as the number of robot arms, and the grippers and sensors avail-
able into consideration when creating a program. For instance, if the
snapfit assembly should be performed using one manipulator arm to-
gether with a fixture, the following sequence could be the solution:

• Pick the bottom box

• Put the bottom box in the fixture

• Pick the switch

• Perform the snapfit assembly
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Figure 6.3 A screenshot from the engineering tool, which shows how
the coordinate frame on the fixture is visualized. The frame-axis coloring
follows the rgb-convention, that is, the red axis is the x-axis, the green the
y-axis, and the blue the z-axis.

• Move the final assembly away from the fixture

Each of the operations in the sequence can either be performed using
standard position-based control, or be sensor-controlled skills. If the parts
are placed in well-defined trays, then the robot can pick the parts using
position-based operations, otherwise a vision system might be needed for
the system to be able to localize the parts. The assembly operations are,
on the other hand, more suitable to perform using force control, in order
to be able to handle position uncertainties and part variations.

In a high-level programming environment, the system should be able
to automatically generate these sequences for each node in the assembly
graph. Based on the available devices, such as the type of robot, grip-
pers, sensors, etc., the system should know if position-based operations
are possible to perform, or if sensor-based skills are necessary. In case a
sensor-based skill is needed, the system should be able to choose a suit-
able skill from the library, or if no appropriate skill was available, prompt
the user to create a new skill from scratch. In the implementation, a se-
quence was automatically created from the assembly graph, but which
skill to use had to be chosen manually. The user could choose where an
assembly operation should be performed, i.e., in which fixture, and the
system then automatically generated the code for picking the components
and for the movements to the fixture.
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Figure 6.4 Specification of a geometric relation between the fixture and
the box in the engineering tool.

Another even more high-level functionality is natural language sup-
port, such that the user can express a task using natural language sen-
tences. The sentences are parsed and semantically analyzed in order to
identify the operations to be performed and objects to be manipulated.
In [Stenmark and Malec, 2014] an approach using natural language for
specifying assembly tasks is presented.

Generation of position-based robot programs is already today available
for commercial industrial robot systems. The novelty is to add sensor-
based skills, including the whole chain from a high-level description to
low-level executable code. This functionality was integrated with the ex-
isting one in the engineering tool. The sensor-based skills can either be
predefined skills that are saved in a library, or be created in the system.
The skills in the library should have a description saying what they do,
what they require in terms of devices (robots, sensors, fixtures, etc.), and
what parameters they require to be set. The skills to be created can be
in the form of guarded search motions, i.e., a search motion in a direction
that is ended when the corresponding contact force is detected. Most as-
sembly tasks can be accomplished by using a number of guarded motions,
including all assembly use-cases that are considered in this thesis.

A guarded motion is defined by a search direction, a search velocity,
and a force/torque threshold level that should be exceeded to finish the
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Figure 6.5 The sequence of operations for the snapfit example, as shown
in the engineering tool.

motion. In an assembly task, it can be useful to maintain established
contacts by using force control, e.g., if a search should be performed along
a surface and the search direction does not match the surface, then either
contact will be lost or the contact force will increase. Keeping contacts
using force control can also handle searches along surfaces that are not
flat. The guarded motion may be specified to perform force control in
certain directions by specifying force constraints, i.e., to keep the desired
force in a direction. Each force constraint must be specified with desired
force value, direction and a force controller with parameters.

Example snapfit
The snapfit assembly scenario, described in Secs. 3.2–3.3, will be used
as an example to illustrate how an assembly task can be specified. The
left arm of YuMi was used, and to accomplish the assembly a fixture
placed in front of the robot was used. A force/torque sensor was mounted
beneath the fixture, such that force control could be used when carrying
out operations in contact with the fixture. An overview of the robot station
in the engineering tool is displayed in Fig. 6.1. The sequence of operations,
as shown in the engineering tool, is displayed in Fig. 6.5. Firstly, the
bottom box had to be picked from its tray, which could be performed using
a position-based operation called pickbox. This was a standard operation,
which contained the following actions

• Go to a position above the tray

• Move linearly down to the gripping position
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• Close the gripper

• Move linearly up above the tray

The next operation was to put the bottom box in the fixture. Perform-
ing this operation using position-based control was not a good alternative
as the margins in the fixture were small. Further, the tray was slightly
larger than the box, which resulted in uncertainty of the position of the
grasped box in the gripper and thus made it even more difficult to fit
the box into the fixture using position-control. A force-controlled strategy
was therefore used. The robot started in a position above the fixture, and
then three consecutive guarded motions were used to push the box into a
corner of the fixture. The coordinate frame used is displayed in Fig. 6.3.
The first guarded motion was performed along the negative z-direction.
The next search was along the negative y-direction. During this search a
constraint was added to keep the z-force, i.e., the box kept the contact with
the fixture and eventually slid down into it. Finally, a guarded search in
the negative x-direction was added, with constraints to keep the forces in
the y- and z-directions.

The following operation was to pick the switch from its tray, called
pickswitch, which could be performed using a similar operation as the
picking of the bottom box. The next operation was to attach the switch
to the bottom box. This was performed by reusing a previously defined
skill, the snapFitSkill. It took a number of parameters, such as search
velocities and tool transformation, which could be set by the user. The
last step was to move the final assembly away from the fixture, using an
operation called retract.

6.3 Low-level task specification

The interface to the robot was assumed to be the one described in Chap. 2.
The low-level task specification was therefore about generating motions
for each joint of the robot. The iTaSC-framework, as described in Sec. 3.2,
was used for doing this. To be able to do it, at least one kinematic chain
was needed, together with a number of outputs to control. A guarded
motion is an operation with a constant velocity in the search direction,
i.e., the corresponding output should be velocity-controlled. The force con-
straints correspond to outputs being force-controlled. To completely spec-
ify the task, i.e., all six degrees of freedom, any remaining Cartesian
directions were position-controlled to keep their positions.

The state machine coordinating the simple search motions was also
a part of the low-level task specification. Each state corresponded to one
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guarded search motion and the transition conditions were based on force
measurements using threshold levels, as was described in Sec. 3.2.

6.4 Code generation from high-level to low-level task
specification

Position-controlled motions could be executed by the native robot con-
troller by using the available move commands. For sensor-controlled mo-
tions, however, an external controller had to be used, and a coordinating
skill state-machine had to be generated.

The description of the sequence of guarded search motions created in
the engineering tool was extracted into an intermediate xml-format. An
example of what this format looks like is given below, which shows the
skill from Fig. 6.5, i.e., to put the bottom box in the fixture. First a number
of initial declarations are given, such as coordinate frames, tool transfor-
mations, and force controller parameters. After the initial declarations,
a number of actions follow. The actions are to be executed in the order
they are appearing in the xml-document. Each action should have one
Direction, which defines in which direction the guarded search motion
is to be performed. The search speed and the force threshold level should
also be specified. The actions can also have constraints, i.e., directions
that are force controlled. The constraints must specify which controller to
use and a force reference value, together with the direction that should
be force controlled.
<?xml version="1.0"?>
<SkillSpecification>

<Frame id="f1">
<origin>[ 490 , 6 , 43 ]</origin>
<quaternion>[ 1 , 0 , 0 , 0]</quaternion>

</Frame>

<ToolTransform id="tool1">
<trans>[0,0,87]</trans>
<quaternion>[0,-0.707106781,0.707106781,0]</quaternion>

</ToolTransform>

<ImpedanceControlParams id="z-controller">
<M>0.01</M>
<D>0.2</D>

</ImpedanceControlParams>

<ImpedanceControlParams id="y-controller">
<M>0.02</M>
<D>0.6</D>

</ImpedanceControlParams>
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<Action id="z-search" tool="tool1">
<Direction>

<searchVelocity unit="mm/s">-30</searchVelocity>
<motionframe>f1</motionframe>
<motiondir>z</motiondir>
<threshold unit="N">3</threshold>

</Direction>
</Action>
<Action id="y-search" tool="tool1">

<Direction>
<searchVelocity unit="mm/s">-40</searchVelocity>
<motionframe>f1</motionframe>
<motiondir>y</motiondir>
<threshold unit="N">3</threshold>

</Direction>
<Constraint>

<type>forcecontrolled</type>
<controllerId>z-controller</controllerId>
<motionframe>f1</motionframe>
<motiondir>z</motiondir>
<value unit="N">3</value>

</Constraint>
</Action>
<Action id="x-search" tool="tool1">

<Direction>
<searchVelocity unit="mm/s">40</searchVelocity>
<motionframe>f1</motionframe>
<motiondir>x</motiondir>
<threshold unit="N">-6</threshold>

</Direction>
<Constraint>

<type>forcecontrolled</type>
<controllerId>z-controller</controllerId>
<motionframe>f1</motionframe>
<motiondir>z</motiondir>
<value unit="N">2</value>

</Constraint>
<Constraint>

<type>forcecontrolled</type>
<controllerId>y-controller</controllerId>
<motionframe>f1</motionframe>
<motiondir>y</motiondir>
<value unit="N">3</value>

</Constraint>
</Action>

</SkillSpecification>

The program used for executing the state machines, JGrafchart, takes
state machine descriptions also in an xml-format. The JGrafchart spec-
ification also includes information about how the state machine should
be displayed in the graphical user interface. The JGrafchart specifica-
tion had to be generated by the system, based on the skill specification
xml-document, such as the one given above. The information about the
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Figure 6.6 The generated state machine as displayed in JGrafchart.
The signals beginning with i.y_meas refer to measurement signals from
the external controller, where numbers 49–51 correspond to the forces in
the x-, y-, and z-directions, respectively.

skill also had to be transformed to fit the interface to the external con-
troller. For instance, a kinematic chain must be specified. One kinematic
chain was created for each coordinate frame defined in the xml-document.
The chain was defined in such a way that the feature coordinates corre-
sponded to the directions of the specified coordinate frames. Procedures
for initialization of an external skill, including the handover from the na-
tive controller to the external controller, also had to be added, as well
as procedures for when a skill is finished, i.e., the handover back to the
native controller. The generation of the executable state machine, i.e., the
JGrafchart specification xml-file, was handled by a program that could
be called as a service from the engineering tool. The resulting state ma-
chine could be opened and examined in JGrafchart, see the state ma-
chine in Fig. 6.6, and it could also be edited. Modifications of the state
machine could, however, not be propagated back to the skill description
xml-document and the engineering tool.
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The execution of a complete task was initiated from the engineering
tool, which called the program for generating the executable state ma-
chine. The execution of the task was coordinated from JGrafchart, which
either ran sensor-based skills or native robot instructions, which were
commands sent as strings via a network connection to a program run-
ning on the native controller.

6.5 Experimental results

In order to verify that the code generation worked as expected, the se-
quence displayed in Fig. 6.5 was used as a test case. The generated code
was executed on the robot system several times with successful task com-
pletion each time. Sensor-based skills have further been generated also
for the IRB120 and IRB140 robots.

6.6 Discussion

The presented system makes it possible for non-expert users to create
sensor-based skills from scratch. No low-level knowledge, such as how to
implement control algorithms and how to use the iTaSC framework, is
required. Kinematic chains, tool transformations, and other parameters
are extracted from the engineering tool and code generation is used to
transform it all into a low-level description. The system further makes
it possible to combine predefined skills into advanced tasks. All these
features significantly simplifies the task specification for the user. The
system is, however, not yet especially intelligent, in the sense that most
of the task description must be created manually. Making the procedure
more automatic would simplify the task specification even more for the
user, and it is something that is part of the future work. Another simplifi-
cation for the user would be if demonstrations can be used for specifying
sensor-based skills, i.e., extracting search directions, force levels, and force
constraints.

The current implementation has quite some limitations. The exter-
nal control program is fixed, e.g., with hard-coded robot kinematics and
sensor calibration. To make the system more flexible, also the external
controller should be automatically generated from the specification such
that both robots and sensors can be modified. This would also enable
easy deployment on a new robot system, as no dependency of any existing
implemented code then is needed.

The system enables non-expert users to create sensor-based skills from
scratch. When such a skill is used for performing assembly, there will most
likely occur unexpected things, which should be taken care of by adding
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error detection and recovery. This should, however, be performed in a skill
editor, where the state machine is visible. As yet, modifications made to
the state machine were not propagated back to the engineering tool. Extra
states for error handling might be hard to visualize in the sequence format
as displayed in Fig. 6.5. Error handling might be something that should
be handled by expert users and, then, it should be appropriate to use an
external tool, e,g., JGrafchart that was used in this work.

The guarded search motions are quite simple. One possible extension
would be to add multiple conditions to finish the motion instead of only a
force threshold. For instance, a timeout condition could be used to handle
cases where the surface that is searched for is not where it was supposed
to be. The force constraints require force controllers with parameters.
Tuning of these parameters is usually tedious work, and an automatic
tuning strategy, such as the one presented in Chap. 7, would be very
useful.

6.7 Conclusions

It was presented how an engineering tool was extended such that it was
possible to program sensor-based skills on a high level. Multiple levels of
task specification were considered, where the specification was refined at
each level. Code generation was used to transform the high-level specifi-
cation into an executable program on the robot system.

103



7
Adaptation of Force-Control
Parameters

7.1 Introduction

There is a need to make it easy for robot operators to specify tasks, espe-
cially when external sensing is used. One such example is force-controlled
assembly. Force sensing is beneficial in these tasks, as it increases the ro-
bustness towards uncertainties, e.g., caused by inaccurate gripping, com-
pared to for instance a position-controlled implementation. The environ-
ment is often stiff, which makes it crucial to design appropriate force
controllers to maintain stability of the force-controlled system. This is a
non-trivial task that may be hard for the task programmer. One solu-
tion to this problem is to offer a self-tuning mechanism, making the force
controllers adaptive.

In this chapter, the problem of robotic assembly based on force sensing
only is addressed. An adaptive algorithm for choosing force control param-
eters in a predefined controller structure is presented. A contact model
is identified, and it is used to tune the force controller. The approach is
finally integrated in the snapfit assembly scenario (Chap. 3).

Identification of contact model parameters has previously been con-
sidered by many researchers. In [Erickson et al., 2003], four different
methods for estimating the environment contact model were described
and experimentally verified. One of the methods was originally presented
in [Love and Book, 1995], which describes how the parameters in an
impedance controller can be chosen when using contact model parameters
estimated with the Recursive Least Squares (RLS) method. A compari-
son of different algorithms for real-time identification of contact model
parameters are described in [Haddadi and Hashtrudi-Zaad, 2008], among
them RLS. In [Roy and Whitcomb, 2002], an adaptive force controller was
presented, being based on an estimate of the contact stiffness. A similar
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Kenv

Denv

x xenv

Figure 7.1 Contact model.

approach was presented in [Kröger et al., 2004], which considers adaptive
force controllers within the Task Frame Formalism. An adaptive force con-
troller extending a position controller is presented in [Villani et al., 1999].
The position reference is scaled in the force-controlled direction such that
the force can be controlled. The scaling factor is made adaptive when the
stiffness of the environment is unknown. In [Mallapragada et al., 2006]
estimates of contact stiffness and damping are used in a gain scheduler
based on an artificial neural network for a PI force controller.

An approach to identification of a contact model with multiple contact
points is given in [Weber et al., 2006]. The geometry was assumed to be
known and this made it possible to calculate the contact locations; the
results presented are based on simulations. An extension of the results
provided in [Weber et al., 2006] is [Verscheure et al., 2010], which also
considers geometric uncertainties and presents experimental results.

A method for designing force controllers when given environment stiff-
ness by the robot user was presented in [Natale et al., 2000]. An industrial
robot with a position-controlled interface is assumed, and the robot dy-
namics are taken into consideration when doing the controller design.

7.2 Modeling

Contact model
The environment is modeled to consist of a spring and a damper, accord-
ing to Fig. 7.1, where x denotes a Cartesian position coordinate. Thus,
interacting with the environment gives the reaction force, F, given by

F = Kenv(xenv − x) − Denv ẋ (7.1)

where ẋ denotes the velocity in the direction x. The stiffness of the en-
vironment is denoted by Kenv, the damping by Denv, and the location of
the unloaded environment by xenv. The environment is further assumed
to be decoupled, such that there is one relation (7.1) for each Cartesian
direction.
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The environment perceived by the robot will not equal the actual en-
vironment, it will rather be a combination of the stiffness and damping
properties of the tool attached to the robot (the force sensor), the robot
itself, and the actual contact. Hence, a stiff environment might be per-
ceived as a soft one if the tool on the robot is soft. Further on, if the tool
has different stiffness properties in different directions, even an isotropic
contact material will be perceived to have different stiffness in different
directions.

Adaptation algorithm
The algorithm chosen was the Recursive Least Squares (RLS) method
[Johansson, 1993]. The contact model (7.1) is nonlinear, because of the
product Kenvxenv. This product can, however, be seen as a separate model
parameter, and then the model is linear. It can be cast in regressor form
according to

y= ϕ Tθ ,


y= F
ϕ =

[
−x −ẋ 1

]T
θ =

[
Kenv Denv Kenvxenv

]T (7.2)

where all parameters have been gathered in θ .
The RLS algorithm is given as [Johansson, 1993]

θ̂ k = θ̂ k−1 + Pkϕ kε k
ε k = yk −ϕ T

k θ̂ k−1

Pk =
1
λ

(
Pk−1 −

Pk−1ϕ kϕ T
k Pk−1

λ+ϕ T
k Pk−1ϕ k

) (7.3)

where the subindex k denotes the sample index, and y, ϕ , and θ are
defined in (7.2). The update of the parameter estimate, θ̂ , is calculated
as the previous estimate plus a correction term based on the estimation
error ε . The adaptation gain matrix P is propagated according to the last
equation. The forgetting factor λ can be used to cope with time varying
parameters by setting it to a value less than 1. A value of λ = 1 gives the
usual least-squares solution. An initial value for the parameters and the
adaptation gain matrix have to be chosen. Usually P is chosen to have a
large magnitude, which means that the initial guess of the parameters is
not to be trusted. The large P will further lead to a fast convergence of
the parameters.

Each force controlled direction will have nominal controller parame-
ters, likely not well tuned. These will be used during the phase when the
contact model parameters are estimated. To assure that the input signals
to the estimator are persistently exciting [Johansson, 1993], the force ref-
erence is set to a sufficiently exciting signal, e.g., a square wave. As the
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covariance of the estimate is decreased (proportional to the P-matrix), the
controller parameters are updated based on the contact model parame-
ter estimates. Once the covariance is considered to be low enough, this
adaptation phase is finished.

Force controller
The force controller used in the assembly framework was decoupled
impedance control [Hogan, 1985] for each Cartesian direction x. This setup
makes it possible to perform force control in some directions and, e.g., po-
sition control in others. The control law used for the impedance controller
is given by (7.4).

ẍdes =
1
M (Fx − Fx,re f − Dẋdes) (7.4)

The controlled direction is denoted by x and its desired behavior by
xdes, Fx and Fx,re f denote the force and the force reference in the direction
of x, respectively. The parameter M is the virtual mass and D the virtual
damping of the impedance the robot is controlled to behave like (in the
direction x). No position reference was used, as it was only interesting to
control the force.

To make the controller safe to use, the maximum output velocity (ẋdes)
was limited. This limitation was made in such a way that no wind-up
problems occurred. The switching between different control modes, e.g.,
from position to force control, was made by bumpless transfer, i.e., the
new controller was initially being set to have the same control signal as
the previous controller.

Choice of force control parameters
The controller parameters were chosen according to a pole placement de-
sign, of the poles in the transfer function from the force reference, Fre f ,
to the measured force, F. The controller (7.4) together with the contact
model (7.1), where the location of contact is ignored, gives{

ẍ = 1
M (F − Fre f − Dẋ)

F = −Kenvx − Denv ẋ (7.5)

In (7.5) the velocity level control scheme of the assembly framework
(Sec. 3.2) is used and the assumption of an ideal velocity controlled robot
is made, i.e., ẋ = ẋdes. The time-domain equations can be transformed to
the frequency domain by the Laplace transform, giving{

s2 X (s) = 1
M (F(s) − Fre f (s) − DsX (s))

F(s) = −Kenv X (s) − DenvsX (s) (7.6)
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Figure 7.2 Illustration of the pole placement design (7.8).

By eliminating X (s) in (7.6) the following relation between Fre f and
F is achieved

F(s) =
D
M s+ Kenv

M
s2 +

Denv + D
M s+ Kenv

M

Fre f (s) (7.7)

Hence, the measured force is related to the force reference by a second-
order linear time-invariant dynamical system. A stable pole placement
design for such a system can be parameterized according to Fig. 7.2, which
gives the denominator polynomial

s2 + 2ζ ω s+ω 2 (7.8)

Comparison of the coefficients of the denominator in (7.7) and the
specification polynomial in (7.8) gives that the force control parameters
should be chosen as

M =
Kenv
ω 2 , D =

2ζ Kenv
ω

− Denv (7.9)

where estimated values of the contact stiffness and the damping should
be used.

The actual force controllers were implemented in discrete time, han-
dled by discretization of the control law (7.4) (the sampling period used
was 4 ms). The largest approximation is the assumption of neglected robot
dynamics in the realization of the control law (7.4). This will only be ap-
proximately true up to a certain bandwidth, and the stability margins will
depend on unmodeled dynamics, e.g., robot stiffness dynamics and time
delays originating from sensor processing. The bandwidth of the force con-
troller, ω , will thus have to be chosen with these considerations taken into
account.
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Torque control parameters
Torque control during assembly operations often means two or more point
contacts. A change in the torque reference will therefore change the mea-
sured force, as there is a coupling between the measured force and torque.
Usually the contact material for all contacts is approximately the same,
which means that the same contact model that was identified during the
first phase with only one contact can be reused. The remaining uncer-
tainty is about the location of the second contact relative to the first,
and this can be estimated, e.g., with an RLS estimator. Once the location
of the contact is estimated, the formulas for controller parameters (7.9)
can once again be used, with the stiffness K̂env L̂ and the damping D̂env L̂,
where L̂ is the estimated distance between the two contact points, and
K̂env and D̂env are the estimated stiffness and damping, respectively.

Alternative specification of torque control
When performing assembly operations with two-point contacts, it is not
always easy to choose appropriate set point values for the force and the
torque controllers. Instead, an alternative is to control the force in each
contact point. The estimation outlined earlier in this section gives the
required information about the relative location of the contacts, i.e., the
distance between them. This makes it possible to calculate the force orig-
inating from each contact, and transform force references in each contact
to equivalent forces and torques.

This way of specifying the force and the torque during a two-point
contact assembly operation will simplify the procedure for the user. The
easiest way to implement it is to transform the two-force reference from
the user, to force and torque references, and keeping separate control of
force and torque. The user should, however, be presented with measure-
ments transformed into forces from two contacts.

Assembly task
The assembly task considered as an example was the snapfit assembly
scenario described in Sec. 3.2, with kinematic chains and the coordinate
frames illustrated in Fig. 3.2. The assembly strategy used was the one
displayed in Fig. 3.4.

The adaptation strategy described should only be used when the force
control parameters are not well tuned, i.e., usually the first time the as-
sembly is performed or when something has changed, e.g., at the use of a
new gripper. The adaptation phases can be considered as separate states
in between the nominal ones, see a part of the state machine implement-
ing the sequence in Fig. 7.3, cf. Fig. 3.4.
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Search for
contact in

f 1 z-direction
2

(NOT adapt) AND
contact_zDirection

adapt AND
contact_zDirection

Adapt parameters
for force controller
in f 1 z-direction

2.5

adaptation_finished

Search for
contact in

f 1 y-direction
3

Figure 7.3 A part of the state machine implementing the assembly se-
quence. The parameter adapt decides whether the adaptation phase should
be entered or not.

7.3 Experimental results

Contact with different materials
An experiment where contact was made with three different environments
was used to test that the adaptation gave the desired performance. An
initial search towards the environment was made until a contact force
was detected. A force controller was then started with poorly tuned pa-
rameters, i.e., a default initial setting, and the adaptive algorithm was
initiated. The force reference given was a square wave, and the forgetting
factor λ was chosen to be 1, as the environment was not assumed to vary
over time. Once the covariance of the contact model parameter estimates
became low, the force control parameters were updated. A bandwidth of
ω = 5 rad/s and a relative damping ζ = 0.8 were chosen for the controller.

Experimental data are shown in Fig. 7.4, the left column shows the
measured force and the force reference, and in the right column, the es-
timated stiffness and damping are displayed. In the top-most diagrams
the environment was a soft plastic foam. The fact that the material was
soft can be seen in the force response when contact was made, as the
force is slowly built up. The nominal force control parameters were used
in the first period of the reference signal, and the parameters were so
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Figure 7.4 Experimental data from an experiment where contact was
made with different environments. The top diagrams show contact with
soft plastic foam, the middle diagrams contact with a mouse pad, and the
bottom diagrams contact with a table surface. The left diagrams show the
measured force in blue and the force reference in black. The right diagrams
show estimated stiffness and damping.

poorly tuned that hardly anything happened. When the estimated contact
parameters were used, however, the reference was satisfactorily tracked.
The estimates of the contact stiffness and the damping can be seen to
converge in less than 5 seconds.

The second environment used was a mouse pad, and results are dis-
played in the middle diagrams in Fig. 7.4. This material was stiffer, but
both the control and estimation behavior was similar to the first case.
The last environment was a table surface, and results are displayed in
the bottom diagrams in Fig. 7.4. The initial force transient shows that
this environment clearly was the stiffest. When the estimated contact pa-
rameters were used, the resulting control performance was worse than
in the two previous cases. This was probably caused by that the assump-
tions made when deriving the control parameters were not completely
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valid for the chosen control bandwidth and the stiffness of the contact
material. Even though the performance is worse than for the previous
environments, it is acceptable in regular assembly tasks.

The estimate of the stiffness started with a large transient for all
environments, which was caused by the choice of a large initial covariance.
Choosing it smaller, however, would lead to slower convergence for the
parameter estimates.

Adaptation in an assembly sequence
The adaptation strategy was used to tune the force control parameters in
an assembly sequence, experimental data are displayed in Figs. 7.5–7.8.
Force data from the beginning of the sequence are shown in Fig. 7.5. State
2 was the search motion in the f 1 z-direction, and the adaptation of the
force control parameters for the z-coordinate was started in state 2.51,
when contact was detected. The initial parameters were poor, as shown
by the large initial force transient. On the other hand, the transient gave
good excitation for the estimation algorithm. Initially, the force reference
in state 2.5 was a sinusoid, to get a reference that would not be too hard for
the poor controller to follow. Once the covariance of the estimate decreased
below a threshold, the reference was switched to a square wave, to get
more excitation. In order not to disturb the estimation algorithm, all other
output directions were controlled to keep their current position during the
adaptation phase. This phase was finished once the covariance decreased
below a second threshold.

Search motions and adaptation in the f 2 y- and x-directions then fol-
lowed. Here it can be noted that the initial transients were much lower
than for the z-direction and that the adaptation phases lasted somewhat
longer. State 5 was the rotational search around the f 2 x-axis, where the
forces were controlled to be constant to keep the contact.

The identified contact model parameters and the norm of the P-matrix
(a measure of the size of the covariance of the estimates) are shown in
Fig. 7.6. It can be seen that the contact in the z-direction was consider-
ably stiffer than in the other directions. The contact material itself had
approximately the same properties in all directions, but the gripper and
the switch was much stiffer in the z-direction than in the others. The
slower convergence for the estimation in the y-direction can clearly be
seen in the plot of the norm of P. Occasionally the algorithm gave unrea-
sonable estimates, such as negative parameters, and to avoid problems
with this the algorithm was supervised. The values used for chosing force
controllers were projected into allowed intervals, see e.g., the damping

1 The half states correspond to the adaptation states, e.g., as was illustrated for state
number 2 in Fig. 7.3.
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Figure 7.5 Experimental data from the beginning of the assembly se-
quence. The top diagram shows the state sequence, with state numbers
defined in Fig. 3.4, and the decimal states defined according to Fig. 7.3.
The remaining diagrams show the measured force (blue) and the force ref-
erence (black) for the coordinate directions in frame f 1. The reference is
only shown when the coordinate is force controlled. The adaptation phases
are marked with vertical green lines.

parameter between t = 11 s and t = 15 s. The estimation of the contact
location, xenv in (7.1), is not shown because it is not relevant for the assem-
bly sequence, but it also converged to a reasonable value for each contact
model.

The search speeds in the assembly sequence had to be slow to handle
the initial force control parameters, see e.g., the transient in the z-force
in Fig. 7.5 at t = 4 s. Once the control parameters had been tuned, it was
possible to increase all search speeds.

The data shown in Figs. 7.5 and 7.6 have only been a one-point con-
tact. The two-point contact was made in the second part of the assembly,
see experimental data in Figs. 7.7 and 7.8. The adaptation for the torque
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Figure 7.6 Experimental data from the beginning of the assembly se-
quence. The top diagram shows the state sequence, the second the stiffness
parameter estimate, the third the damping parameter estimate, and the
last diagram the norm of the P-matrix. The beginning of each adaptation
phase is marked with a green line. The first phase is for the parameters
in the z-direction, the second in the y-direction, and the third in the x-
direction. Adaptation was only performed in the adaptation states, i.e.,
the half states.

controller (around f 2 x-axis) started when the two-point contact was de-
tected, i.e., when state 5.5 was entered. The resulting controller, active in
the end of the adaptation phase, shows some overshoots when the refer-
ence is a square wave. This means that better reference tracking probably
can be achieved by decreasing the control bandwidth, but this is not good
for the performance in the assembly sequence, where it needs to react
fast to disturbances caused by movements in other directions not to lose
contact. The following action in the assembly sequence was to find the
slot with the second contact point, by a search around the f 2 z-axis. Once
found, detected by a large z-torque, the switch was pushed down until
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Figure 7.7 Experimental data from the final part of the assembly se-
quence. The top diagram shows the state sequence. The second diagram
shows the measured force (solid lines) and the force reference (dashed
lines) for the coordinate directions in frame f 1. The third diagram shows
the measured torque (solid lines) and the torque reference (dashed lines)
around the coordinate axis of frame f 2. The adaptation phase is marked
with vertical green lines. Only the torque around the x-axis is controlled
in the adaptation phase.

it was correctly inserted. Finally, the whole assembly was lifted to show
that the sequence had finished.

The estimation of the distance between the two contact points is shown
in Fig. 7.8. The estimate initially varies, and even becomes negative, which
is handled by the previously mentioned supervision of the algorithm. A
negative distance is further considered to be more of an issue than a
negative damping parameter, so the P-matrix was also reset to a larger
magnitude to restart the estimation. The estimate finally converges to
approximately 34 mm, which is within 1 mm from the true value.

Alternative specification of torque reference
The approach where the user specifies two forces instead of one force and
one torque in a two-point contact situation, described on page 109, was
implemented in the assembly sequence. The only relevant state in the
sequence was state 6, and experimental data from this state are shown in
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Figure 7.8 Experimental data from the final part of the assembly se-
quence. The top diagram shows the state sequence, the second diagram the
distance parameter estimate (between the contact points), and the last di-
agram the norm of the P-matrix. The adaptation phase is marked with
green lines.

Fig. 7.9. The first contact point was the end of the switch that first made
contact, and the force reference for this point was set to 5 N, enough to
not lose contact. It was desired that the other end of the switch slides
down into the slot, and the reference was therefore a larger force, here
15 N. By using the identified distance between the two contact points, the
given specification was translated to a force and a torque reference, see
the two top diagrams in Fig. 7.9.

The control performance is good in the beginning of the time slot shown
in Fig. 7.9. The references are lost in the end, and this was caused by the
switch sliding down into the slot, i.e., contact was lost for the second
contact point. The lost contact point can also be seen in the torque dia-
gram, as the torque approaches zero. This behavior is an indication of a
successful assembly.

7.4 Discussion

The adaptation algorithm described in Sec. 7.2 was successfully imple-
mented on an industrial robot system. The achieved performance was
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Figure 7.9 Experimental data from state 6 in the assembly sequence.
The top diagram shows the z-force, the middle diagram the x-torque, and
the bottom diagram the estimated equivalent forces acting on the two ends
of the switch. Measured force/torque are shown with solid lines and refer-
ences with dashed lines.

satisfactory, both for soft and stiff contacts, and it could be used to free
the user from the tedious work of tuning the force controllers manually.
Some performance degradation for stiff contacts was present that was
not foreseen by the design procedure. This was caused by a too coarse ap-
proximation of the robot dynamics, by making the assumption of an ideal
velocity controlled robot. To get a better control design, which considers
the limitations of the robot system, also the robot dynamics have to be
modeled.

An option that might enhance the control performance is to resort to
an optimal controller, e.g., an LQG or H∞-controller. But this means that
the impedance control structure has to be abandoned, which might not be
desirable. The impedance control parameters have a physical interpreta-
tion that might be valuable, e.g., in an error situation.

In this work, only decoupled contact models and force controllers were
considered. This was convenient concerning the use of force controllers
in the assembly framework, but using coupled contact models and force
controllers might be a way to increase the control performance. One dif-
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ficulty with this approach is the identification phase, it will be hard for
the system to autonomously know when it is possible to identify a coupled
model, i.e., when the robot is in contact in several directions. The solution
might be to include this information in the task specification.

The adaptation was implemented as separate states in the controlling
state machine. A dedicated excitation signal was used to assure that in-
put data to the estimation algorithm were sufficiently exciting. The use of
an excitation signal might disturb the assembly process and the involved
components, but as a low force amplitude was used and as the robot was
not moving during the adaptation phase, it was assumed that the con-
tinuation of the assembly process would be unaffected by the adaptation
phase. A further development of the adaptation algorithm could be to run
the adaptation in each assembly operation without a dedicated excitation
signal.

The contact locations have been estimated during the assembly se-
quence, but this information was not used. One way to use it is to decrease
the search times, by increasing the velocity of search motions when being
far from the identified contact locations, i.e., using the strategy that was
described in Chap. 4.

The method of using two forces instead of one force and one torque
in a two-point contact scenario simplifies the task specification for the
user, as the coupling between the force and the torque can be ignored.
Generalizing the strategy to more than two-point contacts is hard, as the
conversion from force and torque measurements to multiple forces is very
hard or even impossible to solve.

The stop criterion used for finishing the adaptation phases in this
work was based on thresholding the norm of the P-matrix (7.3). These
thresholds will have to be chosen with respect to the noise level from the
force sensor, which might be difficult to do before running the adaptation
algorithm. Another option would be to instead rely on the rate of change
of the norm of the P-matrix, i.e., stopping the adaptation phase when this
rate becomes lower than a threshold.

The stability of the system presented has not been addressed. An at-
tempt to prove stability would need approximations of the dynamics of the
robot and the servo control system, and then the impact of these approx-
imations would have to be considered as well. In this work, a supervision
approach was taken to make sure that the system did not become unsta-
ble. By making sure that all estimated parameters stayed within prede-
fined bounds and that the velocity of the robot was limited. Further, if
the measured contact force exceeds a threshold, the robot will stop and
require assistance from an operator.

To the best of the author’s knowledge, a similar approach has not been
previously presented within assembly. Adaptive force control with compa-
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rable results has been performed, e.g., in [Roy and Whitcomb, 2002] and
[Kröger et al., 2004]. They both show similar results for corresponding
contact stiffnesses, but this thesis also considers significantly stiffer con-
tact environments. A stiffness of over 100 N/mm was estimated in Fig. 7.4,
compared to a stiffness around 20 N/mm in [Kröger et al., 2004] and below
1 N/mm in [Roy and Whitcomb, 2002].

7.5 Conclusions

A method for self-tuning of force controllers to use in industrial robots
has been described. It was based on identification of a contact model us-
ing an RLS algorithm. The force controller considered was an impedance
controller and its parameters were chosen according to a pole placement
design. The method was implemented on an industrial robot system and
used in an assembly task.
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8
Robotic Force Estimation
without Force Sensor

8.1 Introduction

The traditional way of programming industrial robots is to use position
control and follow predefined trajectories, using feedback from the joint
position sensors. Modern robot controllers are very good at this and per-
form these tasks both fast and with high accuracy. In tasks where the
robot has to physically interact with the environment, however, this con-
trol strategy is less advantageous. The accuracy of the robot and the loca-
tion and geometry of everything in the workspace have to be known with
high precision, and this is usually hard to achieve. A remedy to this prob-
lem is to introduce additional sensing, e.g., a force sensor that gives the
robot capabilities to handle position uncertainties by sensing the contact
forces. A force sensor can thus be used to make the robot system more
robust towards uncertainties.

Force sensing can be achieved in a number of different setups. One
alternative is to use a wrist-mounted sensor, another option is to use a
sensor that is mounted in the workspace, i.e., not on the robot. A third
approach is to have torque sensors in each joint of the robot, e.g., as
was done in the DLR light-weight arm [Albu-Schäffer et al., 2007]. The
main drawbacks with using force sensors are that they usually are very
expensive and may add unnecessary mass to the system, and in the case
of a sensor in the workspace, force sensing will only be available when
the robot is in contact with the sensor.

An alternative to using a force sensor is to estimate the external forces
applied to the robot based on sensing already available in the robot. Usu-
ally this includes position sensors in the joints and torques exerted by the
motors, or the motor currents. The main problems with estimating forces
is how to handle the large disturbances that are present, e.g., originating
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from friction. Further problems arise if there are gearboxes in the robot,
since a high gear ratio will scale down external forces applied to the arm
side when measured on the motor side. This is tightly connected with
the notion of backdrivability; a robot is backdriveable if it is possible to
move it when the motors are off. Backdrivability has been identified as
an important property for human-robot interaction [Krebs et al., 2004]. A
too high gear ratio will make it really difficult to overcome the friction in
the motors, and it will make the robot in practice non backdriveable and
it will also be very difficult to estimate any external forces.

One example of a force estimation method using the motor currents
is [Simpson et al., 2002], where also friction disturbances were carefully
modeled. Another approach using the motor torques is [Wahrburg et al.,
2014]. It is also possible to use the motor torques together with a dynami-
cal model of the robot to estimate the forces. In [Van Damme et al., 2011]
it is presented how this can be performed by using a filtered dynamic
model and a recursive least-squares estimator.

Another approach is to use some kind of observer. One way is to use
disturbance observers, i.e., to use a dynamical model of the robot and con-
sider deviations from this as disturbances caused by external forces, see,
e.g., [Eom et al., 1998] and [Ohishi et al., 1992] for examples of this ap-
proach. Direct force observers can also be used. In [Ohishi et al., 1991] an
H∞ force observer was used, and in [Murakami et al., 1993; Ohishi, 1993]
torque observers together with dynamic models were used. In [Hacksel
and Salcudean, 1994] and [Alcocer et al., 2003] the force was estimated by
considering how position estimation errors behaved as a damped spring-
mass system.

Force estimation can also be performed by using adaptive methods. In
[Jung et al., 2006] a method based on the extended Kalman filter together
with an adaptive law was presented. Another adaptive force estimation
approach is given in [Sararoody et al., 2005]. Estimation of the robot joint
velocities and accelerations together with a dynamic model are used to
perform impedance control without a force sensor in [Tachi et al., 1990].

A clear disadvantage with the proposed methods using observers and
adaptive methods is that they usually require a dynamic model of the
robot. Such a model is straightforward to derive in theory, but in practice
you often do not know the values of all parameters involved. It is possible
to perform identification experiments, but identifying all of the dynamic
parameters for a manipulator with six or seven joints is difficult, as the
experiments to be performed must be chosen with care to be sufficiently
exciting to make all parameters identifiable. The friction in the joints
is also hard to model in a good way. These difficulties seem to be hard
to overcome, as almost no force estimation method based on observers
or adaptive methods presents experiments using a robot with more than
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Chapter 8. Robotic Force Estimation without Force Sensor

three joints.
Another type of model-based approach is based on using the gener-

alized momentum, e.g., presented in [De Luca and Mattone, 2005] and
[De Luca et al., 2006]. The benefit of using the generalized momentum is
that joint acceleration measurements are not needed, but the method still
requires knowledge of a dynamical model for the robot. The generalized
momentum method has mostly been used for collision detection, and ex-
perimental results with the DLR lightweight robot was presented in [De
Luca et al., 2006]. An extension of the method is presented in [Wahrburg
et al., 2015], where the external forces are modeled as a linear system
such that the forces can be estimated with a Kalman filter.

Methods for force estimation and sensorless force control are also avail-
able in commercial robot systems, e.g., both Toshiba [Toshiba, 2015] and
ABB [ABB Robotics, 2011] provide such products. These systems are, how-
ever, designed to work well for large forces and they are therefore not
suitable in small-parts assembly, as is considered in this thesis.

In previous work, e.g., [Murakami et al., 1993; Ohishi, 1993; Simp-
son et al., 2002], it was assumed that the joints were always moving,
and no attention was given to the large uncertainties in the friction
torques at velocities close to zero. The performance of force estimation can
be improved by modeling the friction carefully and considering position-
dependent torque variations, e.g., see [Popovic and Goldenberger, 1998;
Simpson et al., 2002]. In [Du and Nair, 1999; H. Olsson et al., 1998] mod-
eling of low-velocity friction phenomena are considered. These models,
however, require knowledge of many parameters that are challenging to
identify and prone to change, due to, e.g., temperature and wear.

This chapter will propose two different methods of how to perform force
sensing without a force sensor, by instead estimating the forces from the
joint position control errors or the joint motor torques. The methods are
experimentally verified in a number of experiments, including real-world
small part assembly tasks. A comparison of the methods is also presented.
The main focus of this chapter is on force estimation for the light-weight
YuMi robot, but also force estimation for a standard industrial robot, the
IRB140, is considered and experimentally evaluated.

8.2 Robotic force estimation using joint position-control
errors

Method
This section will present an approach that is possible when each joint on
the lowest level is individually controlled, which is a common solution in
industrial robots. By disabling the integral action in the joint controllers,
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Virtual spring
F

Control error

Figure 8.1 An illustration of what happens when an external force F is
applied to a joint of a robot. The applied force will give rise to a position
control error.

they will act as virtual springs, and the deviation of each joint angle from
its reference will correspond to a joint torque, see illustration in Fig. 8.1.
Due to friction and gravity, the joint errors may become large if the in-
tegral action is removed completely, leading to bad performance in the
position control loops and bias in the force estimate. One remedy to this
problem is to use a small integral part, which allows force transients to
be detected, but over time the position errors will be removed. Estima-
tion of forces based on joint errors, using small intergal action, acts as a
high-pass filtered version of the forces.

The joint torques τ and the end effector forces F are related by

τ = JT F + e (8.1)

where J = J(q) is the robot Jacobian, q is the robot joint coordinates,
and e are disturbance joint torques with the assumption E[e] = 0 and
E[eeT ] = Re. The minimum variance estimate of the force is then given by
F̂ = (JR−1

e JT)−1JR−1
e τ according to the Gauss-Markov theorem [Kailath

et al., 2000], but if the disturbances are large, the estimate may be of very
poor quality. By adopting a Bayesian approach and using prior knowledge
about the particular assembly operation, it may be possible to improve
the force estimates. Assume that the prior knowledge about F can be
described by E[F] = F̄ and E[

(
F − F̄

) (
F − F̄

)T
] = RF , and that the

distribution of τ conditioned on F is given by (8.1), then the minimum
variance unbiased estimate of F is [Kailath et al., 2000]

F̂ = (JR−1
e JT + R−1

F )
−1(JR−1

e τ + R−1
F F̄) (8.2)

For example, it may be known that the contact torques on the end effec-
tor may be very small during an assembly operation. By reflecting this
knowledge in RF , the estimates of the contact forces can be improved.

Calibration
The robot used in experiments was the ABB YuMi. The force estimation
performance is affected by how the detuning of the joint controllers has
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Figure 8.2 Estimated force (black) and measured force (green) in one
direction for some different values of the integral gain in the joint con-
trollers. The nominal controllers have the integral gain K nom

i . The topmost
diagram has integral gain K nom

i , the second diagram 0.1K nom
i , the third

diagram 0.01K nom
i , and the lowermost no integral action at all.

been performed. If the integral part is completely removed there will be
problems with offsets, because of gravity and friction forces. Keeping the
integral part, however, makes it impossible to estimate a constant force, as
this would require the joint controllers to have a stationary error. Keeping
the integral action will act as a high-pass filter on the estimated forces,
which means that only transients can be detected. The behavior for dif-
ferent detunings is shown in Fig. 8.2, where the force sensor was used to
find contact in one direction and control the contact force to a constant
value. It can be seen in the diagrams that a high integral gain gives a
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Figure 8.3 Experimentally determined spring constants for the different
joints. The joints are numbered from shoulder to wrist. The different colors
denote values obtained from different arm configurations.

transient with a short duration, which may be hard to detect. Removing
the integral action completely, however, introduces a bias in the estimate.
The final controller detuning chosen to be used in the assembly task was
with Ki = 0.03K nom

i as integral gain, where K nom
i is the integral gain in

the nominal joint controllers.
A large disturbance when doing force estimation is friction in the

joints. Experiments were performed to estimate the friction magnitude
in each joint, which mostly consisted of Coulomb friction. These values
were used to choose the diagonal elements of Re, the variance of the
disturbance forces in Eq. (8.1). The effect of gravity was assumed to vary
slowly, such that the remaining integral part in the joint controllers could
compensate for it.

According to the identified joint friction torques, they will lead to force
estimation errors with an order of magnitude of 1 N. Estimation errors of
this size were measured for the experimental execution of the assembly
task, see Fig. 8.5.

To determine the spring constants of the joints, forces or torques were
applied to the tool of the robot, and the amplitude of the resulting joint
error transients were recorded. Doing this for three different arm config-
urations, it was possible to determine the stiffness of all joints. Approxi-
mately five experiments were performed for each arm configuration, and
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Figure 8.4 The setup for the shield can assembly task. The force/torque
sensor, mounted beneath the fixture, was only used for verification and
evaluation of the estimated forces.

the results can be seen in Fig 8.3. For each joint, the mean value of the
experiments was later used for force estimation.

Assembly task
The force estimation method was used to accomplish the shield can assem-
bly task, described in Sec. 3.4, using the left arm of YuMi, see experimen-
tal setup in Fig. 8.4. A six degrees-of-freedom ATI Mini40 force/torque
sensor, mounted beneath the fixture for the printed circuit board (PCB),
was used to get validation data.

Experimental results
The assembly strategy that was described in Sec. 3.4 had to be modified
when the estimated force was used. The high-pass character of the force
estimates made it impossible to control constant forces. As an alternative,
once a search motion made contact, the position was controlled instead
of the force. This modification of strategy made the assembly less robust,
but the effect was small concerning the uncertainties in this particular
task, with the PCB being placed in a well-defined fixture and the main
uncertainties being the position of the shield can in the gripper. As the
contact torque estimates were found out to be unreliable, the rotational
search in state 7 was replaced with a position controlled motion to the
estimated final position of the shield can. To be able to do this maneuver
successfully it had to be assumed that the mounting plane of the PCB was
known with good accuracy, which was a reasonable assumption to make,
as the PCB was placed in a fixture. Gripping uncertainties, corresponding
to small rotations around the f 2 z-axis, were not expected to be a problem,
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Figure 8.5 Measured and estimated forces from the assembly sequence
without force sensor together with the state sequence. Forces estimated
with a priori information about the low torques are shown in blue, and
forces estimated without a priori information in black. For reference, raw
force data from the force sensor is shown in green, and high-pass filtered
force data in red. The data from the force sensor have not been used for
control in this execution.
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Figure 8.6 Selected part of the measured and estimated x-force around
the transition from state 5 to 6.

as the gripper was compliant in this direction and because the shield
can was rotated down when in contact with a corner of the socket, such
that the shield can was forced onto the socket by its edges. Once the
rotating motion was finished, the robot pressed the shield can with a large
force towards the socket to be certain that the shield can was assembled
correctly. The robot kept pressing for 0.3 s and then the assembly was
assumed to be finished.

Force data from an experimental execution are given in Fig. 8.5. The
high-pass character of the estimated force is verified by including a high-
pass filtered version of the measured force. Two versions of the estimated
force are shown, with and without a priori information about the low
contact torques. The first state shown is the search for contact in the f 1
z-direction. The transition condition, a large positive z-force can be seen in
all force curves at t = 0.5 s. The following state is the search in the positive
y-direction and it makes contact at t = 0.7 s, which is seen by a large
negative y-force. State 5 is then a search in the x-direction. The search
motion was made with contact in both the z- and the y-directions, and this
initially caused a friction peak in the x-force (at t = 0.8 s), the relevant
part of the x-force is displayed in Fig. 8.6. The force then disappears
and the contact was made at t = 1.1 s. The estimated force with a priori
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Figure 8.7 Measured and estimated torques from the assembly sequence
without force sensor together with the state sequence. Torques estimated
with a priori information about the low torques are shown in blue, and
torques estimated without a priori information in black. For reference,
raw torque data from the force sensor is shown in green, and high-pass
filtered torque data is shown in red.
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information shows the same behavior as the measured force, but the force
estimate without a priori information does not. The transition to the next
state was finally made at t = 1.2 s. The final search for the corner of the
socket was then made in two steps; first a y-search in state 6 and then
an x-search in a new state, here called 6.5. The transition condition for
the y-search can be seen at t = 1.6 s and the transition condition for the
x-search at t = 1.9 s. The transitions can be seen in both estimated forces,
but the resemblance with the measured force is better for the estimate
with a priori information. State 7 is the position control of the orientation,
such that the shield can was rotated down onto the socket. The rotation
was made around the origin of frame f 2. Modeling errors in the position
of this frame was the reason for the large z-forces around t = 2.7 s, as
the rotation was not made exactly around the origin of f 2. These forces
were detected and the reference position in the z-direction was adjusted.
The shield can was pressed onto the socket with a large force in state 8,
which can be seen in the z-force at t = 3.0 s. Finally, the robot waited
0.3 seconds in state 8.5 and then moved away in state 9.

Measured and estimated contact torques from the experimental exe-
cution are given in Fig. 8.7. It can be seen from the sensor measurements
that torques significantly different from zero only are present during the
last stage of the assembly, i.e., during state 7 and 8. The estimate with no
a priori information is really bad, neither the magnitude nor the shape
show any resemblence with measured data. Using the a priori information
gives a reasonable magnitude on the estimate, but it does not react to the
applied torques in state 7 and 8 and the estimate is therefore unreliable.

The empirical distribution of the force estimation errors during the
execution of the assembly scenario for the case when a priori information
about the size of the contact torques were used is displayed as a histogram
in Fig. 8.8. It can first be noted that the errors can not be explained as
Gaussian noise. The magnitude of the errors is quite large concerning the
force levels during the assembly. The estimated forces were reasonably
correct when there was contact, but the performance was worse when no
contact was present, see, e.g, after t = 3.4 s in Fig. 8.5, which partially
explains the large portion of errors far from zero in Fig. 8.8. Another
explanation for the estimation errors was the presence of friction in the
joints. The similarity between the high-pass filtered force data and the
force estimate, as can be seen in Fig. 8.5, at least in the case when a priori
information was used, verifies the high-pass character of the estimate.

Discussion
Estimating forces from the joint control errors instead of using a force
sensor introduces some difficulties in the implementation of the assembly
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Figure 8.8 Histogram of the force estimation errors in Fig. 8.5 (for the
force estimated using a priori information about the low torques). Each
bin in the histogram has a width of 0.2 N.

operation, as compared to using a force sensor. Doing it the way presented
in this thesis requires you to choose an appropriate detuning of the joint
controllers. Since the disturbances in the estimates may be quite large,
special care must be taken when choosing force thresholds in the design
of the assembly sequence. The force estimation method was not very good
at estimating the correct force level, it was, however, better at detecting
the transients from when different contact situations were established,
which made it possible to accomplish the assembly task.

When the robot is not moving, the Coulomb friction in the joints makes
it particularly hard to estimate the forces, since the contribution from
gravity and other disturbance forces is unknown, and it is very difficult to
predict how much additional torque is needed in the different directions to
overcome the friction and make the joint move. When the robot is moving,
however, the Coulomb friction torque is constant and even a small external
force (e.g., caused by a collision) can affect the motion and be seen as
a transient in the joint control-errors. Since the disturbances from the
friction are very similar between different executions of the same motion,
the situation becomes even better and it is possible to robustly detect
forces with the same order of magnitude as the friction disturbances.
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Since the disturbances are velocity dependent, however, there may be a
need to retune the force thresholds if the speed of motion is changed.

When moving at high speeds, dynamic effects and lag in the position
tracking may cause large errors in the force estimation, but sometimes
increasing the speed of motion makes the sensing easier, since transients
caused by collisions then become easier to detect in the high-pass filtered
data.

The fact that the disturbances to a large extent are systematic, indi-
cates that adaptation or learning techniques could be successful in improv-
ing the performance. By further on considering the entire signal instead
of its instantaneous value it is probably possible to find more robust tran-
sition conditions. Another set of parameters that possibly can be adapted
is those concerning the detuning of the joint controllers.

In the shield can assembly scenario, the sensing problem is very hard,
since the contact forces are in the same order of magnitude as the dis-
turbances caused by friction in the joints. To get useful estimates of the
forces, the contact torques had to be assumed to be very small. In a dif-
ferent scenario, where contact forces are much larger than the friction
disturbances, it should be possible to perform assembly without assum-
ing that the contact torques are small.

8.3 Robotic force estimation using motor torques and
modeling of low-velocity friction disturbances

Introduction
In this section, a method for force estimation using the motor torques is
presented. The method is based on modeling the friction disturbances in
the joints and taking this into account when calculating the force estimate.

The focus of the method presented in this section is not on estimating
the friction torques of the individual joints rigorously, but on modeling
the velocity-dependent uncertainties in the friction torques and combin-
ing measurements from multiple joints to compute an accurate estimate
of the contact force. In particular, the noise in the velocity measurement
is taken into account, and it is modeled that the Coulomb friction is quite
well known when a joint is moving, but has much larger uncertainty for
velocities close to zero. The force is estimated by solving a convex optimiza-
tion problem, and an approximate confidence interval is also calculated.

The validity of the approach is investigated by comparing the esti-
mated forces with measurements from a force sensor. The method is fi-
nally tested in a dual-arm screwing assembly task, described in Sec. 3.3,
with the setup shown in Fig. 8.9.
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Figure 8.9 The setup for the screwing assembly task. The force/torque
sensor, mounted at the wrist of the robot’s right arm, was only used for
verification and evaluation of the estimated forces.

Motivation Measured motor torques are often available measurements
in a robot system, but they contain large disturbances. An example of
measured motor torque from a dual-arm assembly task execution is dis-
played in Fig. 8.10. The right robot arm was controlled to be still while
the left robot arm was manipulating an object held by the right robot
arm. The actual external torque, as measured by a force sensor, is also
displayed in the figure. It can be seen that the disturbances are larger
than the signal of interest. It can further be seen that the disturbances
are different for the two arms, with a distinct Coulomb friction pattern
for the arm that is controlled to move, while the arm that is controlled to
be still appears to have less predictable disturbances.

Method
Modeling The method used for force estimation in this section is based
on the measured joint motor torques. The model used is

τ m = τ�rav + τ dynamic + τ ext + τ e (8.3)

where τ m denotes the measured motor torques, τ�rav denotes the torques
originating from gravity, τ dynamic denotes dynamic torques originating
from accelerations of the robot, τ ext denotes external torques, and τ e de-
notes disturbances due to, e.g., friction, measurement noise, and modeling
errors.
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Figure 8.10 Measured motor torque and applied external torque from
an assembly sequence. The diagrams in the left column show data from
the left arm, which was controlled to move, and the diagrams in the right
column show data from the right arm, which was controlled to be still. The
upper diagrams show data from base joints, and the lower diagrams show
data from wrist joints1. The joints chosen for display are those where the
external torques were the most visible. It can be seen that the disturbances
were as large or even larger than the signal of interest.

The influence from gravity, τ�rav, can be calculated if the mass and cen-
ter of mass are known for each link of the robot. If they are not known, it
is fairly easy to perform identification experiments to find these param-
eters. The actual calculation is, e.g., described in [Siciliano et al., 2009].
The dynamic torques, τ dynamic, can also be calculated if the dynamic pa-
rameters of the robot are known, i.e., moment of inertia for each link of
the robot. The dynamic torques will, however, be small in tasks where
it is interesting to use force estimation, as the robot will be interacting
with the environment and thus needs to move quite slowly. It is therefore
assumed that the dynamic torques can be neglected.

1 With joint numbering according to the ABB convention, joint 2_3 is joint 2_7, joint 2_5
is joint 2_4, and joint 1_6 is joint 1_5
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The external joint torques originate from external forces and torques
applied to the robot. If it is assumed that all external forces are applied
to the end effector of the robot, the external joint torques are given by

τ ext = JT F (8.4)

where J = J(q) is the Jacobian of the robot, q the joint coordinates, and
F denotes the force/torque applied to the end effector.
Disturbance torques The disturbance, τ e, influencing each joint mostly
consists of Coulomb friction, which can be modeled to give the following
contribution for joint i

τ i
Coulomb =

{
τ i

C,max , q̇i > 0
τ i

C,min , q̇i < 0 (8.5)

where q̇i denotes the velocity of joint i, and τ i
C,max and τ i

C,min denote the
constant friction levels for positive and negative velocities, respectively.
What happens at zero velocity is not given by the model, and the torque
might be anywhere in the interval [τ i

C,min,τ i
C,max]. Therefore, for low ve-

locities close to zero, the Coulomb friction contribution can be modeled by
a uniform random variable.

Another type of friction is viscous friction. It can be modeled to give
the following contribution for joint i

τ i
viscous = ci q̇i (8.6)

where ci is a constant specific for each joint.
Another large disturbance is measurement noise, which can be mod-

eled to have a zero-mean Gaussian distribution.
Disturbance model To find out the disturbance characteristics, an
identification experiment was performed for each joint. The joint was then
moving back and forth with a low piecewise constant acceleration, without
any external forces applied to the robot. Two versions of this experiment
are displayed in Fig. 8.11; the upper diagram shows an experiment with
low velocities, and the lower diagram an experiment with higher veloc-
ities. The raw data, sampled at 250 Hz, were low-pass filtered with the
discrete-time filter (8.7) to remove some of the noise influence.

H(z) = 0.4
1− 0.6z−1 (8.7)

The Coulomb friction is easy to see in both experiments, but other
effects such as stiction or Stribeck friction [H. Olsson et al., 1998] is not
visible. As was suggested earlier, the amount of friction for zero velocities
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Figure 8.11 Motor torque data from an experiment where one joint of
the robot was controlled to move back and forth with piecewise constant
acceleration. The upper diagram shows an experiment with only low veloc-
ities, and the lower diagram shows an experiment with higher velocities.
The disturbance characteristics are clearly visible in this experiment. Also
shown is one standard deviation of the measurement noise multiplied with
a velocity dependent factor, and the upper and lower limits for the uniform
distribution describing the Coulomb and the viscous friction.

varies between τ C,min and τ C,max, and due to noise in the velocity mea-
surements this is true also for measured velocities slightly different from
zero. Aside from Coulomb friction, the experiment with large velocities
exhibits viscous friction. Further, there is also noise present.

A probabilistic model of the disturbances is therefore that the Coulomb
and the viscous friction are the outcome of a uniform random variable
with a velocity-dependent range. This range is zero for large velocities
and the range grows for low velocities. One way to describe this range is
by using sigmoid functions for describing the upper and the lower limits.
To incorporate also viscous friction, a linear term is added. The upper
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and lower limit for each joint can be described by the following functions
(joint index skipped)

τ f ,max(q̇) = τ C,min +
τ C,max − τ C,min

1+ e−A(q̇+B) + cq̇

τ f ,min(q̇) = τ C,min +
τ C,max − τ C,min

1+ e−A(q̇−B) + cq̇
(8.8)

The parameter A determines the slope of the sigmoid function, and the
parameter B the width of the area between the curves. Parameters for
such functions were manually tuned for each joint of the robot, and an
example is seen as magenta curves in Fig. 8.11.

A Gaussian noise term is used to account for measurement noise, un-
certainty in the friction limits and unmodeled disturbances. It can be
seen in Fig. 8.11 that the variance of the noise increases when the veloc-
ity increases. The model used is therefore that the variance of the noise
is velocity dependent and the standard deviation for different velocities is
calculated as the standard deviation for low velocities multiplied with a
factor (1+ kpq̇ip), where k ≥ 0 is a parameter. One standard deviation of
the noise is displayed in Fig. 8.11. Data recorded during assembly opera-
tions indicated that the actual disturbances at high velocities were higher
than the measured data in Fig. 8.11 indicate. Hence, the one-standard-
deviation limit may appear overly pessimistic in this figure.

To conclude, the total disturbance torque is modeled as

τ e = τ f + e (8.9)

where τ f ,min(q̇) ≤ τ f ≤ τ f ,max(q̇), and e is zero-mean Gaussian with di-
agonal covariance matrix E[eeT ] = Re(q̇) = diag(1 + kpq̇p)2Rslowvel

e , where
Rslowvel

e is the noise covariance for slow velocities, and 1 is a vector of ones
with the same dimension as q̇.

Force estimation Let τ̄ be the motor torques compensated for gravity,
calculated as

τ̄ = τ m − τ�rav (8.10)

Using (8.3), (8.4), (8.9), and the assumption that the dynamic torques
are negligible, this gives

τ̄ = τ ext + τ e

= JT F + τ f + e
(8.11)

where τ̄ and J are given, and τ f and e are random variables with uniform
and Gaussian distributions, respectively. The ML (Maximum Likelihood)

137



Chapter 8. Robotic Force Estimation without Force Sensor

estimate of F is then given by the F solving the following optimization
problem (see derivation in App. B)

minimize
over F,τ f

1
2
(
τ̄ − JT F − τ f

)T R−1
e
(
τ̄ − JT F − τ f

)
subject to τ f ,min ≤ τ f ≤ τ f ,max

(8.12)

The estimate given by (8.12) can be improved by adopting a Bayesian
approach and using prior knowledge of F in the particular task. The type
of prior knowledge that can be used is, for instance, that the contact
torques are small compared to the torque disturbances, and by reflecting
this knowledge in the distribution of F it is possible to improve the quality
of the estimated contact forces. This is the same strategy that was used
in Sec. 8.2.

Assuming that the prior on F is Gaussian with E[F] = F̄ and
E[(F − F̄)(F − F̄)T ] = RF , and that F and e are uncorrelated, the max-
imum a posteriori (MAP) estimate of F is given by the F solving (see
derivation in App. B)

minimize
over F,τ f

1
2
(
τ̄ − JT F − τ f

)T R−1
e
(
τ̄ − JT F − τ f

)
+ 1

2
(
F − F̄

)T R−1
F
(
F − F̄

)
subject to τ f ,min ≤ τ f ≤ τ f ,max

(8.13)

The optimization problem (8.13) is convex and can be solved numerically
in real time, as described on page 141.
Confidence interval estimation The uncertainty of the estimate given
by (8.13) varies significantly with, e.g., the velocity of the different joints
and the robot Jacobian. Hence, it is important to calculate the uncertainty
of every estimate individually.

It is difficult to compute exact quantiles for the solution of (8.13),
but this section describes a method for extracting approximate confidence
intervals that can be computed in real time. The method is first described
for the case with a single robot joint without prior, and then generalized
to handle multiple joints and a prior distribution on F.

One-dimensional case The proposed confidence interval for the case
of a single robot joint with no prior and the Jacobian J = 1 is illustrated
in Fig. 8.12. The limits are calculated as

τ con f ,min = τ f ,min − λσ
τ con f ,max = τ f ,max + λσ

(8.14)

where σ is the standard deviation of the Gaussian tails and λ is a pa-
rameter deciding the confidence level of the confidence interval.
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τ con f ,min τ f ,min τ f ,max τ con f ,max
τ e

PD
F

Figure 8.12 Illustration of the proposed confidence interval on the prob-
ability density function (PDF) of τ e = τ f + e, a flat part and two Gaussian
tails. The blue areas indicate the portion of the measurements expected
to be outside the confidence interval.

τ con f ,min τ f ,min τ f ,max τ con f ,max
τ e

−
lo

gL
(τ

e)

Figure 8.13 The log-likelihood for τ e, where the probability density func-
tion was illustrated in Fig. 8.12.

For the special case where τ f ,min = τ f ,max (the distribution of τ e is
Gaussian), the portion of the measurements outside the confidence inter-
val is 2(1 − Φ(λ)), where Φ(⋅) is the cumulative distribution function of
the zero-mean unit-variance Gaussian distribution.

An alternative way of finding the limits (8.14), is to minimize the
negative log-likelihood function of τ e and adding a gradient to push the
solution toward the upper or lower limit. The procedure is illustrated in
Fig. 8.13, which shows the negative log-likelihood of τ e, and in Fig. 8.14,
where the addition of the gradient is illustrated. The log-likelihood of a
zero-mean Gaussian with standard deviation σ is given by

logL(e) = − e2

2σ 2 + const. (8.15)

d
de (logL(e)) = − e

σ 2 (8.16)

Hence, at the limits of the confidence interval, the derivative of the neg-
ative log-likelihood function of τ e is

−
d
de (logL(±λσ )) = ±

λ
σ

(8.17)
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Figure 8.14 Illustration of the log-likelihood of τ e added with a gradient
(the thick black line). The upper limit of the confidence interval is the
minimum of this function. By instead adding the gradient with reversed
sign, the lower limit of the confidence interval will be the minimum of the
function.

Consequently, adding a gradient with one of the slopes (8.17) to the neg-
ative log-likelihood of τ e and finding the minimum, gives one of the limits
(8.14) as the solution. This way of calculating the limits is described be-
cause it generalizes to higher dimensions better than (8.14).

Multi-dimensional case For the multi-joint problem (8.13), first as-
sume that τ f ,min = τ f ,max, (i.e., Gaussian distribution). The standard de-
viation σ of the marginal distribution of F in the direction of the unit
vector v is then given by

σ =

√
vT
(
JSR−1

e JT + R−1
F
)−1 v (8.18)

where S is the identity matrix for the Gaussian case but may have other
values for the general case, as described later in this section. The limits of
the confidence interval in the direction v are then given by the F solving

minimize
over F,τ f

1
2
(
τ̄ − JT F − τ f

)T R−1
e
(
τ̄ − JT F − τ f

)
+ 1

2
(
F − F̄

)T R−1
F
(
F − F̄

)
∓ λ

σ vT F
subject to τ f ,min = τ f = τ f ,max

(8.19)

where the “−” in the “∓” is for the upper limit, and the “+” is for the
lower limit. This formulation is obtained by adding the gradient (8.17) to
the problem (8.13).

Returning to the general case, when τ f ,min ,= τ f ,max, some of the joints
may get an estimated τ e in the range τ f ,min < τ e < τ f ,max. The cost function
for that joint is then locally flat, cf. Fig. 8.12, and should not be considered
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when calculating (8.18). The optimization problem to solve becomes

minimize
over F,τ f

1
2
(
τ̄ − JT F − τ f

)T R−1
e
(
τ̄ − JT F − τ f

)
+ 1

2
(
F − F̄

)T R−1
F
(
F − F̄

)
∓ λ

σ vT F
subject to τ f ,min ≤ τ f ≤ τ f ,max

(8.20)

To find out for which joints the estimated τ e ends up in the Gaussian part
of the distribution, the following algorithm is proposed. It is assumed that
n joints are used for force estimation and that Re is diagonal.

1. Set S = 0n$n

2. Calculate (8.18)

3. Solve (8.20)

4. For the joints where τ f = τ f ,min or τ f = τ f ,max, set the corresponding
diagonal elements of S to 1

5. If S was modified in step 4, go to step 2. Else quit.

The intuition behind the above algorithm is the following. The prob-
lem (8.20) is first solved using a gradient based only on the prior. If the
Coulomb friction for all joints is large, the resulting τ e may all be within
the flat part of the distribution and only the prior is used for determining
the confidence interval. If any of the estimated τ e reaches the Gaussian
parts of the distributions, the gradient based only on the prior will not be
able to push the estimate far down the Gaussian tails. The value of σ in
(8.18) is then modified to include all joints where the τ e estimate is in the
Gaussian part, resulting in a steeper gradient, which may in turn push
the estimate of additional joints to the Gaussian part of the distribution.
The process (steps 2–5) is iterated until convergence.

Implementation
The optimization problem (8.13) is a convex optimization problem of fairly
small size and can be solved in real time in a reliable manner. To this pur-
pose, CVXGEN [Mattingley and Boyd, 2012] was used. It is a code gener-
ator for embedded convex optimization. The generated code is library-free
C code, and this code has been connected to the robot controller via an
Ethernet connection.

The generated solver is run on a Linux PC and the computation time
to arrive to a solution is in the order of 0.3 ms. The robot controller is
run with a sampling time of 4 ms, and the speed of the solver is therefore
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sufficient to be run in each sample. It may, however, be difficult to calcu-
late confidence intervals for all force/torque components, but this problem
can be avoided by only calculating a subset of them. The solution with the
Ethernet connection introduces a delay of one sample, as the indata to
the solver is sent one sample before the solution is returned.

Assembly task
The force estimation method was used to accomplish the screwing in the
emergency stop button assembly task, described in Sec. 3.3, using the
YuMi robot. A six degrees-of-freedom ATI Mini40 force/torque sensor,
mounted on the wrist of the right arm, was used to get validation data.
The experimental setup is displayed in Fig. 8.9.

Experimental results
Calibration An experiment where the robot was programmed to slowly
move around in its workspace was performed to identify the parameters
used for calculating the gravity torque, τ�rav. The resulting parameters
resulted in a mean absolute error ranging from 0.05 Nm for the wrist
joints to 0.3 Nm for the base joints.

The friction model parameters were tuned by performing experiments
of the type that were displayed in Fig. 8.11.

Force estimation The force estimation method was tested in an exper-
iment where forces were applied to a static arm (controlled not to move).
The estimated forces and confidence intervals are displayed in Fig. 8.15,
together with validation data from the force sensor. All confidence inter-
vals in this chapter were estimated with λ = 1.96 in (8.20), which would
give a 95 % confidence interval for a Gaussian random variable. The pa-
rameter k was set to 5 s/rad.

Fig. 8.15 shows that the estimated force tracked the measured force
well, but the confidence intervals seem to be overly pessimistic. The
Coulomb friction is, however, a very large disturbance for low velocities.
When the robot is moving, the uncertainty in the Coulomb friction is much
smaller, as can be seen on the magenta-colored curve in the upper dia-
gram of Fig. 8.11. Large external forces make the robot move slightly, and
this gives significantly tighter confidence intervals than when the robot
is still, see, e.g., the z-force at t = 15 s and t = 18 s in Fig. 8.15.

The prior used in this experiment was defined by

F̄ = 06$1 RF = diag(10 N, 10 N, 10 N, 0.1 Nm, 0.1 Nm, 0.1 Nm)2
(8.21)

such that no mean force and only small contact torques were expected. The
benefit of using the prior is shown in Table 8.1, where the mean absolute
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Figure 8.15 Data from an experiment where forces were applied to the
end effector of the robot. A wrist-mounted force sensor was used to get
validation data, which are displayed as black solid curves. The estimated
force is displayed together with a confidence interval.

Table 8.1 Mean absolute estimation errors (N) for the experiment in
Fig. 8.15.

Force direction x y z
With prior 0.67 0.69 0.87

Without prior 1.58 1.22 2.12

estimation errors with and without the use of the prior are listed, showing
significantly decreased estimation errors when the prior was used.
Screwing assembly task Estimated and measured forces from an exe-
cution of the screwing assembly task are displayed in Fig. 8.16. The forces
are given in the coordinate frame f 1 illustrated in Fig. 3.13. It can be seen
that the estimated forces tracked the measured forces, at least when the
measured forces were non-zero, i.e., during contact operations. When the
measured force was zero, however, the estimated force was sometimes a
bit wrong, e.g., in the y- and the z-directions around t = 1.6 s. This es-
timation error was most likely due to modeling errors, as the robot was
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Figure 8.16 Measured and estimated forces from an execution of the
screwing assembly task. Forces are given in the coordinate frame f 1 illus-
trated in Fig. 3.13. The computed confidence intervals are also shown.

moving quite fast in this part of the assembly, but it was known that the
movement would be performed in free space when the robot was mov-
ing fast, and therefore it was not that important to get a perfect force
estimate.

For the assembly task, some of the important forces to detect were the
contact forces in the z-direction when the nut was put on the thread. They
were correctly detected at t = 0.2 s and t = 3 s, and the confidence interval
was tight at these moments. The screwing was finished when a large side
force was detected at t = 12.6 s; a zoom-in view on this part of the data
is displayed in Fig. 8.17. It can be seen that the force estimate was both
quite correct and confident when the forces occurred. Some oscillations
can be seen in the force estimate, e.g., in the z-force around t = 12.2 s.
This might be caused by unmodeled disturbances, like cogging torques in
the motors or mechanical resonances.

The estimated contact torques together with those measured with the
force sensor are displayed in Fig. 8.18. For most samples, the confidence
intervals for the estimated contact torques included the zero torque, since
the friction torques were very large in comparison to the contact torques.
Consequently, larger contact torques would be required for the estimator
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Figure 8.17 A zoom in on the measured and estimated force data from
Fig. 8.16.

to be able to detect them reliably.
The force estimates presented in Figs. 8.16–8.18 were calculated using

data from both arms, and in Table 8.2 they are compared to estimates
based on only the right (static) or left (moving) arm. It can be seen that
the estimate using the static arm, gave the most measurements within the
confidence interval. These data should, however, only be used to evaluate
the quality of the confidence intervals, not the force estimates. When the
joints were not moving, the large uncertainty in the Coulomb friction re-
sulted in wide confidence intervals, and hence many measurements were
inside the confidence intervals. When the robot was moving, however, the
model seemed to be a bit too confident about the estimate. Only looking
at the samples when external forces were present did not change much.

The lower part of Table 8.2 shows the mean absolute estimation error.
Here it can be seen, that when all samples were considered, the estimates
from the static arm were the best, but only slightly better than the es-
timates using both arms. It may be surprising that using only one arm
can give better results than using both arms, but when only the static
arm was used, the confidence interval was large and usually enclosed the
prior, which was F̄ = 06$1 in this example. Hence most estimates were
pulled to the prior, which was almost equal to the actual forces for most
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Figure 8.18 Measured and estimated contact torques from an execution
of the screwing assembly task. The computed confidence intervals are also
shown.

samples in this sequence. When there were external forces present, which
is the situation when the force estimation is really useful, the estimates
based on both arms were significantly better than those based on any
single arm, as seen in the lower right part of Table 8.2.

The prior knowledge used in the assembly scenario was that the con-
tact torques should be quite small, but not zero. This prior knowledge
gave a slight increase in estimation performance compared to not using
a prior, but it was not dramatic. More is gained in scenarios with only a
point contact, where it is known that the contact torques should be zero,
such as the experiment where forces where applied to the static robot
arm.

Discussion
Experiments showed that, when the arms were in contact, complement-
ing motor torque data from a moving arm with data from a static arm,
significantly improved the quality of the estimated forces. The static arm
could not have been exploited with previously published force estimation
methods, which do not account for the uncertainty of the Coulomb friction
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at low velocities.
The magnitudes of the contact torques in the experiments in this sec-

tion were small compared to the uncertainties in the torque estimates,
both with and without the use of a prior distribution on F. This was
mainly caused by the relatively large disturbances. The contact torques
considered were in the order of 0.1–0.3 Nm, which was in the same or-
der of magnitude as the errors in the gravity compensation. Also errors
in the Coulomb friction modeling gave disturbances in the same order of
magnitude as the contact torques. Estimating forces was more beneficial,
as relatively small forces could give rise to relatively large joint torques
through long lever arms.

Some of the parameters used for force estimation in this section were
manually tuned, including A and B in (8.8), the low-pass filter (8.7),
and the velocity dependence of the Gaussian noise term. This should be
possible to do in an automatic fashion, i.e., make experiments of the type
displayed in Fig. 8.11 and choose the parameters by optimizing some crite-
rion. This would further simplify the use of the method and it is considered
as some of the future work.

This method for force estimation can also be used when the robot is
in singular configurations, i.e., when the Jacobian, J, is singular. The
force estimate will then rely on the prior, but the confidence interval will
be huge in the singular direction, i.e., reflecting the uncertainty of the
estimate.

A similar method to the one presented in this section is described
in [Wahrburg et al., 2014]. The same approach is used, but with some
differences. The most important difference is that the authors do not take
the low velocity friction uncertainties into account, they only rely on a
simple friction model with Coulomb and viscous friction. In this way, the
force estimate can be calculated through matrix calculations, basically
(8.2), and the optimization problem (8.13) does not have to be solved.
Another main difference is that the covariances Re and RF are chosen
to match data by solving an optimization problem using data from an
experiment where the robot moves around in its workspace with a known
load. In this thesis, these covariances were chosen with respect to the
estimated noise levels and knowledge about which magnitudes of forces
and torques that were expected.

8.4 Comparison of methods

The force estimation methods presented in this chapter, that is the joint
control error method in Sec. 8.2 and the motor torque method in Sec. 8.3,
were compared in two different experiments. Aside from the performance
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of the estimators, also the detuning of the servo controllers was evaluated.
The first experiment was to manually apply forces to a static robot arm,
and the second experiment was an assembly task, namely putting the
gray box in the fixture in the emergency stop button use case, described
in Sec. 3.3. The left arm of the YuMi robot was used for both experiments,
and a wrist-mounted force/torque sensor was used to get validation data.

Both experiments were carried out twice, the first time with the nom-
inal servo controller parameters, and the second time with detuned servo
controllers, with Ki = 0.03K nom

i , as was used in Sec. 8.2. The parameters
for the joint control error method, i.e., the joint stiffnesses, were estimated
from the same type of experiments that was described in Sec. 8.2. The
identification experiments were carried out for each servo controller set-
ting. The parameters for the motor torque method were estimated from
experiments that were described in Sec. 8.3. In contrast to the friction
model parameters chosen in Sec. 8.3, the B-parameter in (8.8) was cho-
sen to be larger such that a larger velocity was required to reduce the
uncertainty than the parameter choice displayed in Fig. 8.11. This means
that the velocity noise influence will be reduced when the joints are not
moving. The assumption of small contact torques were used for both esti-
mation methods, i.e., choosing RF as was done in Secs. 8.2 and 8.3.

Applying forces to a static robot
In the first experiment, forces were manually applied to the end effector
of the robot. The configuration of the robot together with the coordinate
frame the forces were measured in is displayed in Fig. 8.19. The results
from when the nominal parameters for the servo controllers were used are
displayed in Fig. 8.20 (the motor torque method) and Fig. 8.21 (the joint
control error method). The first column shows the result when forces were
applied in the x-direction, the second column when forces were applied
in the y-direction, and the third column when forces were applied in the
z-direction. The approximate confidence intervals are also displayed for
the motor torque method. It can be seen in Fig. 8.20 that the motor torque
method detects all the applied forces with confidence, and the estimation
error is relatively small. There are some false estimates for the directions
that the forces were not applied in, but the measured force stayed within
the confidence interval estimates. It can further be seen that the different
choice of friction model (larger B in (8.8)) compared to what was chosen
in Sec. 8.3 lead to significantly less noise, cf. Fig. 8.15.

The joint control error method, with results shown in Fig. 8.21, also
detected the applied forces, but with quite large errors in magnitude, ex-
cept for the y-direction. As was described in Sec. 8.2, the force estimates
will be a high-pass filtered version of the actual applied forces. The forces
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x

y

z

Figure 8.19 The setup for the experiments performed to compare the
force estimation methods. The left arm of YuMi is in the configuration used
for the experiment where forces were manually applied, and the coordinate
frame the forces are measured in is displayed. The fixture for the assembly
task can be seen in the lower right part of the photo, here with a bottom
box placed inside it.

were, however, not static, and high-pass filtering will give them approxi-
mately the same appearance. There are some erroneous estimates in the
directions that the forces were not applied in, e.g., the z-direction for the
applied x-force, but they were quite small.

Similar experiments were performed with detuned servo controllers.
The results are displayed in Fig. 8.22 for the motor torque method, and
Fig. 8.23 for the joint control error method. The motor torque method
performed just as well, or even better, as compared to when the nominal
servo controller parameters were used. Especially the applied x-force was
estimated with more confidence, i.e., tighter confidence intervals. The
reason for this was that with detuned controllers, the applied force lead
to a larger deviation of the robot and also a longer time period until
the deviation was eliminated, i.e., the joints were moving and this gave
a reduced Coulomb friction uncertainty. The joint control error method
detected all the applied forces, but with large errors in magnitude, and
also large false force estimates in the directions where the forces were
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Figure 8.21 Measured and estimated forces from an experiment where
forces were manually applied to the robot. The nominal servo controller
parameters were used, and the joint control error method was used for
estimating the forces. Each column corresponds to a separate experiment.

not applied. The detuned controllers were slow to eliminate the control
errors, and this lead to false force estimates after each applied force.

In this experiment, the motor torque method performed best, irrespec-
tively if the servo controllers were detuned or not. The joint control error
method worked quite well when the nominal servo controller parameters
were used, but the method could not be trusted if it was important to
estimate correct force magnitudes.

Assembly task
The assembly task considered was to put the gray bottom box in the
fixture in the emergency stop button assembly scenario, as described in
Sec. 3.3. As none of the force estimation methods are suitable for con-
trolling small static forces, the same strategy as for putting the yellow
box with the button in the intermediate storage was used (Sec. 3.3), i.e.,
when a contact has been detected, keeping the position instead of control-
ling the contact force. The robot moves back 0.5 mm after each detected
contact, to account for compliance in the gripper and the robot. An extra
z-search was added in the end of the sequence, to make sure that the
box was released in the fixture when the gripper opened. When the force
sensor was used for the assembly, force control in the z-direction made
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Figure 8.23 Measured and estimated forces from an experiment where
forces were manually applied to the robot. The detuned servo controller
parameters were used, and the joint control error method was used for
estimating the forces. Each column corresponds to a separate experiment.

sure that the box was in contact with the bottom of the fixture.
The assembly task was first performed using the nominal servo con-

troller parameters, and the motor torque method was used for detecting
the contact forces. The estimated forces using the motor torque method
are displayed in Fig. 8.24, and the forces estimated with the joint con-
trol error method in Fig. 8.25. The robot starts the first z-search from
rest, which explains the large confidence intervals in the beginning of
Fig. 8.24. The first force detected was the z-force at t = 0.4 s, which was
followed by a detected y-force at t = 0.9 s. The next force to be detected
was a large negative x-force, which appeared at t = 1.4 s. The estimator,
however, underestimated the force magnitude, but the force could still be
detected. Finally, the last z-search was detected at t = 1.7 s. The force
estimator performed well in the beginning of the assembly task, but the
performance was quite poor in the end. The relevant forces could, however,
be detected with good robustness.

The estimated forces with the joint control error method are displayed
in Fig. 8.25 (the same assembly execution that was displayed in Fig. 8.24).
It can be seen that the force estimate gives the correct reaction for all
the interesting forces, but there are also a lot of false estimates. Most of
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Figure 8.24 Measured and estimated forces from the assembly task,
with nominal servo controller parameters and the motor torque method
used for both force estimation and accomplishing the assembly.

the false estimates, however, occur for directions that are not interesting
for the current state in the assembly sequence. The force estimate could
therefore be used anyway, at least for the x- and the y-direction. For the
z-direction, however, it would be difficult to use a threshold detector for
the detections to be made at t = 0.4 s and t = 1.7 s.

The assembly task was performed once again, but now with detuned
servo controllers. Experimental data from an execution where the motor
torque method was used for force estimation is displayed in Fig. 8.26. The
result is very similar to the execution displayed in Fig. 8.24, and detuning
of the servo controllers does hence not seem to have any effect on the force
estimates.

Finally, the assembly task was performed one time where the joint
control error method was used for detecting the contact forces (with de-
tuned servo controllers), and the resulting estimated forces are displayed
in Fig. 8.27. The first thing to notice is that the assembly time here is
almost doubled compared to the executions in Figs. 8.24–8.26. The reason
for this was that the assembly strategy had to be modified. In the previ-
ous executions, when a contact force was detected, the robot immediately
started the next search motion while a position controller was initiated
in the earlier search direction, with a position reference 0.5 mm retracted
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Figure 8.25 Measured and estimated forces from the assembly task,
with nominal servo controller parameters and the joint control error
method used for force estimation, but the assembly was accomplished us-
ing forces estimated with the motor torque method (the same execution as
is displayed in Fig. 8.24).

from the detected contact position. The retracting movement gave, how-
ever, too large estimation disturbances for the joint control error method,
i.e., the movements generated control errors that misled the estimator to
believe that there were contact forces present. The remedy to this prob-
lem was to finish the retracting motion before the next search motion was
started, and this was the reason for the increased assembly time. The
force estimate in Fig. 8.27 can be seen to give the correct reaction for all
the interesting forces, i.e., the z-force at t = 0.4 s, the y-force at t = 1.3 s,
the x-force at t = 1.9 s, and the z-force at t = 2.8 s. The estimation errors
in between the interesting forces were, however, very large, and it would
be somewhat difficult to interpret the result without the validation force
data.

Discussion
The joint control error method is a simple and approximate force esti-
mation method. It has a simple calibration procedure and only requires
access to the joint control errors. The estimate is calculated via a few
matrix calculations, making it suitable for real-time implementation. The
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Figure 8.26 Measured and estimated forces from the assembly task,
with detuned servo controller parameters and the motor torque method
used for both force estimation and accomplishing the assembly.

main drawbacks are that it only gives high-pass filtered force estimates,
that it gives large estimation errors which sometimes are hard to distin-
guish from the actual forces, and that it may require the servo controllers
to be detuned.

The motor torque method is a theoretically justified force estimation
method. It requires access to the motor torques, and the calibration pro-
cedure is more comprehensive than for the joint control error method,
including gravity compensation and joint friction models. The force esti-
mate is calculated by solving an optimization problem numerically. The
method further provides approximate confidence intervals, which were
shown to be trustworthy in experiments. A drawback with the method
is the computation time required. A sampling time of 4 ms was used in
the experiments, and this is about as fast the method can run on a stan-
dard computer to be able to both compute the force estimate and the
confidence interval. The computation time can be sped up, however, by
selectively choosing in which directions the confidence interval needs to
be calculated. A drawback compared to the joint control error method is
the need for a gravity compensation model.

Detuning the servo controllers does not make that much of a difference
for the motor torque method. For the joint control error method, detun-
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Figure 8.27 Measured and estimated forces from the assembly task,
with detuned servo controller parameters and the joint control error
method used for both force estimation and accomplishing the assembly.

ing was not beneficial in the experiment where forces were applied to
a static robot, as was seen in Figs. 8.21 and 8.23. But in the assembly
task, the robot became too stiff without detuning, such that it was hard to
distinguish control errors coming from the motion of the robot from con-
trol errors due to external forces. Detuning the servo controllers makes
the robot more compliant, and this is something that can be beneficial in
assembly tasks. This effect was, however, not especially visible in the per-
formed experiments. An advantage with the motor torque method is that
the detuning is optional, while the joint control error method sometimes
requires it, such as in the assembly task.

Both methods were shown to be able to estimate forces in several tasks.
The motor torque method is superior when it comes to giving accurate
estimates, and giving confidence bounds. The joint control error method is,
however, much simpler to implement and calibrate, and it can therefore be
a serious alternative in some tasks, although it might require some more
time for designing the assembly strategy to use, e.g., as in the performed
assembly experiment where extra states had to be added to finish the
retracting movements to avoid too large erroneous force estimates.
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8.5 Force estimation for industrial robots

All experiments presented so far in this chapter were performed with
YuMi. This is a light-weight robot with quite low friction torques. In this
section, force estimation with the IRB140 is considered. It is a much heav-
ier and stiffer robot than YuMi. The friction torques are approximately
a factor of ten larger for IRB140 than for YuMi, also the noise levels are
a factor of 5–10 larger for IRB140. The larger friction and noise levels
do not, however, depend on the gear ratio, as they are approximately the
same as for YuMi. In addition to the larger disturbances, the IRB140 con-
tains one joint less, i.e., one less measurement to use. These properties
make it difficult to estimate small external forces.

The force estimation method based on the motor torques presented
in Sec. 8.3 will be used. The estimation performance is evaluated in two
experiments. First, forces were manually applied to a static robot, and sec-
ondly, the snapfit assembly task described in Sec. 3.2 was accomplished.

Extended friction model
The YuMi-robot is constructed such that there is one separate gearbox
for each motor. The IRB140, however, has a coupled gearbox for the three
wrist joints. This means, e.g., that moving the fourth motor will result
in that all three wrist joints will move on the arm side. Another effect is
that although a motor is moving with a constant velocity, the arm side of
the joint may have a non-constant velocity depending on how the coupled
motors are moving; the arm side of the joint may, for instance, change the
direction of movement. To account for these effects, the friction on both
the arm side and the motor side have to be modeled. The result from one
experiment where the fourth and the fifth motor have been moving with
piecewise constant acceleration is displayed in Fig. 8.28, which shows the
motor torque for the fifth joint. Here it can be seen that there are both
arm side and motor side Coulomb friction present, thus confirming the
need for the extended friction model.

The total friction torque, τ f , experienced by the motors will now be
modeled as

τ f = τ C, motor + τvisc, motor︸ ︷︷ ︸
τ f , motor

+JT
�earratio

τ C, arm + τvisc, arm︸ ︷︷ ︸
τ f , arm

 (8.22)

where τ C denotes Coulomb friction, τvisc denotes viscous friction, and
where limits on each component of τ f , motor and τ f , arm are given by mod-
els on the form (8.8). Further, J�earratio is the gear-ratio matrix, relating
how the arm side of the robot will move when the motors move, i.e.,
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Figure 8.28 The motor torque for the fifth motor of the ABB IRB140
versus the motor velocity (upper diagram) and the arm side velocity (lower
diagram). Apart from the fifth motor, the fourth motor was also running,
which is the reason for that the arm side velocity changes direction. It can
be seen that Coulomb friction exists both on the motor side and the arm
side.

q̇arm = J�earratio q̇motor. The relation (8.22) can be rewritten as

τ f =
[

I JT
�earratio

]︸ ︷︷ ︸
JT

f ric

[
τ f , motor
τ f , arm

]
︸ ︷︷ ︸

τ f , tot

(8.23)

For the ABB IRB140, the gear-ratio matrix has the following structure

JT
�earratio =


∗ 0 0 0 0 0
0 ∗ 0 0 0 0
0 0 ∗ 0 0 0
0 0 0 ∗ ∗ ∗

0 0 0 0 ∗ ∗

0 0 0 0 0 ∗

 (8.24)

where stars (*) indicate non-zero elements. As can be seen, only arm side
friction for the fifth and the sixth joints will influence some other motor
than the corresponding one, i.e., arm side friction for the fifth joint will
influence also the fourth motor apart from the fifth motor, and arm side
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friction for the sixth joint will also influence the fourth and the fifth motor
apart from the sixth motor. It is thus only necessary to model the arm
side friction for the fifth and the sixth joints. For all other joints, it will be
impossible to separate the arm side friction from the motor side friction,
assuming that the coupling between the motor and the arm side of the
joint is rigid. All friction for the first four joints are therefore modeled to
be motor side friction. The optimization problem to solve to get the force
estimate is now given by (cf. (8.13))

minimize
over F,τ f , tot

1
2

(
τ̄ − JT

m F − JT
f ricτ f ,tot

)T
R−1

e

(
τ̄ − JT

m F − JT
f ricτ f , tot

)
+ 1

2
(
F − F̄

)T R−1
F
(
F − F̄

)
subject to τ f , min ≤ τ f , tot ≤ τ f , max

(8.25)
where Jm = JJ�earratio and J is the robot Jacobian such that the arm
side joint torque τ arm = JT F, and the corresponding relationship for the
motor side joint torque is τ motor = JT

m F. Further, J f ric is a 8 $ 6-matrix
and τ f , tot is a vector with 8 elements. Note that all equations in Sec. 8.3
were expressed on the arm side, i.e., the τ f in Sec. 8.3 was the friction
torques on the arm side, while τ f in this section is the friction torques on
the motor side.

Experimental results
Calibration The parameters for calculating the gravity torque, τ�rav,
were identified from an experiment where the robot was slowly moving
around in its workspace. The identified parameters resulted in a mean
absolute error ranging from 0.5 Nm for the wrist joints to 2 Nm for the
base joints. To tune the friction model parameters (in the model (8.8)),
special care had to be taken when designing the experiments as some of
the off-diagonal elements in J�earratio were small, such that it was possible
to identify both the motor side and the arm side friction.
Forces applied to a static robot An experiment was performed where
forces were manually applied to the end effector of a static robot, i.e., a
robot controlled not to move. The result can be seen in Fig. 8.29, where
it should be noted that each column of subplots shows the same experi-
ment. It can be seen that large forces were required to get any reaction
in the estimated force. The Coulomb friction for the base joints were 15–
20 Nm, i.e., corresponding to forces of 30–40 N applied at the end effector
with a lever arm of 0.5 m. This explains why the applied forces in this
experiment hardly gave any reactions in the estimated force, as either
the applied forces gave no reaction in the motor torques, or the reaction
could be explained as friction torques. The good performance in the y-
direction (relative to the other directions) can be explained by a favorable
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configuration of the robot. In this direction, the applied forces had a quite
long lever arm to the fourth joint, which like the other wrist joints, had
comparably low Coulomb friction.

Assembly task The snapfit assembly scenario, described in Chap. 3,
was used as an example assembly task. This task is challenging to per-
form using force estimation, considering that quite small forces need to
be detected in order to accomplish the assembly task without damaging
the parts involved. The original assembly strategy, illustrated in Figs. 3.4
and 3.5, was based on that contacts were force controlled after they had
been established. This would be difficult using force estimation, due to
the relatively small contact forces and the large uncertainties in the force
estimate. An alternative strategy is to use position control after a con-
tact has been detected, which will work if the orientation of the contact
surfaces the robot searches along are known with sufficient accuracy. In
the scenario considered, the bottom box was placed in a fixture, and the
orientation of the box should thus be known with the required accuracy.
The original strategy further uses some contact torque threshold levels to
transition between the search motions. Doing this with force estimation
will be difficult, as large torques will be required to make it possible to
detect them, with risk of damaging the parts. The torques to be detected,
however, originate from two-point contacts (as was earlier exploited in
Chap. 7), and they will therefore also give rise to forces. The ψ -torques
can therefore be detected by large z-forces, but the ϕ -torque threshold was
not possible to replace with an x-force threshold, as no net x-force could
be detected in this state. The remedy was to abandon the small torque
assumption for the ϕ -torque, which was not valid anyway, but keeping it
still improved the force estimates. Further, large contact torques had to
be accepted to make it possible to detect the torque.

Measured and estimated forces from an execution of the assembly task
are displayed in Fig. 8.30 and the torques in Fig. 8.31. It can first be
noted that the confidence intervals are significantly tighter now, which
is due to the fact that most joints were moving, which means that the
Coulomb friction torques were assumed to be known and there were thus
significantly less uncertainties left compared to when the robot was static.
The force estimate was far from perfect, but the measured force was within
the confidence interval estimates most of the time. To be certain that a
force was present, both the estimated force and the confidence interval
were considered, e.g., at t = 1 s, a large z-force was detected as both the
estimated z-force was above 10 N and the lower confidence interval limit
was larger than 5 N. The estimator seemed to have problems to separate
x- and z-forces, e.g., around t = 4.5 s there is both an x- and a z-force
present, but according to the estimator, both forces were most likely zero.
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Figure 8.30 Measured and estimated contact forces from the execution
of the snapfit assembly scenario using the IRB140.

This effect was probably due to the fact that it was the same joints that
were beneficial for estimating both of these forces.

The most difficult part of the assembly task using force estimation
was to perform the two last guarded search motions, i.e., state number
6 and 7 in Fig. 3.4. The transition for state number 6 was detected as a
large z-force at t = 5.3 s. In the ψ -torque diagram (Fig. 8.31), this can
be seen as a large ψ -torque, which the estimator does not detect. The
assumption of small contact torque is not valid here, and this is probably
the reason why the z-force was underestimated. Changing the assumption,
however, did not lead to that the torque could be detected, and it further
led to that the overall estimation performance was degraded. For state
number 7, the guarded search in the ϕ -direction, the transition condition
used with a force sensor was that the ϕ -torque exceeded 0.25 Nm. With
force estimation, the torque had to exceed 1.5 Nm before the estimator
was certain that it appeared, see the top diagram in Fig. 8.31 at t = 8.2 s.
The electric switch was ”quite strong” for applied torques in this direction
and could therefore handle it. It can also be noted that the noise level for
the estimated ϕ -torque was significantly larger than for the other torque-
directions. This was due to the larger variance of the prior distribution;
the estimator had more freedom to explain the noisy measured motor
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Figure 8.31 Measured and estimated contact torques from the execution
of the snapfit assembly scenario using the IRB140.

torques as contact torque in the ϕ -direction. Further, in this state (number
7), the switch slides into the slot, and to make sure that this actually
happened, both the y- and the ψ -position references were changed if the
estimated y- and z-forces either became high or low.

The remaining operation was to snap the switch into the slot. This was
performed in three steps. First a search in the ψ -direction was performed.
During this search, it was made sure that the switch was pressed into the
slot by requiring a large y-force, but the switch would not snap into the
final position if it was pushed too hard into the slot. Therefore, after the
first ψ -search had triggered (at t = 10 s), the y-position reference was
changed such that no net y-force was applied (the reference was changed
as long as there was an estimated y-force present), and then one more
ψ -search was performed, which ended when a large z-force was detected
at t = 13 s. The described procedure usually resulted in that the switch
became correctly assembled.
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Chapter 8. Robotic Force Estimation without Force Sensor

Discussion
The experiment where forces were applied to a static robot showed that
the force estimator required quite large forces to be certain that there
was an external force present. The reason was the large friction levels in
the IRB140, whereas the corresponding experiment with YuMi, Figs. 8.15
and 8.20, showed much better responsiveness.

Accomplishing the snapfit assembly task with IRB140 using force es-
timation was difficult, as quite small forces had to be detected and as the
assembly strategy had to be carefully designed not to damage the involved
parts. For this particular task, the accuracy of force estimation was barely
enough, but it showed the potential of using it. For force estimation to be
a serious alternative, larger forces/torques should be allowed to make it
possible to make robust detection. An alternative is to use a robot with
less disturbances, e.g., YuMi instead of the IRB140.

8.6 Discussion

In this chapter it was shown that force estimation could be used to replace
a force sensor in numerous assembly tasks. The accuracy of the estimator
is not as good as a force sensor, but usually good enough to be able to detect
the forces of interest. A drawback with using force estimation is that it is
usually not possible to use the same assembly strategies as with a force
sensor, due to problems with estimating static forces and contact torques.
Some of the benefits are that no investment in an expensive sensor is
needed, and nothing has to be mechanically mounted on the robot that,
for instance, decreases the payload.

The use of a prior distribution for the external force F with small
variance on the contact torques can be seen as putting a soft constraint
on the contact torques. Instead of estimating a three degrees of freedom
force and a three degrees of freedom torque, the problem is then almost
reduced to estimating only a three degrees of freedom force. The increased
redundancy in the problem gives a better force estimate.

The prior distribution for F was chosen to be Gaussian, which is a
really crude approximation of the true distribution. Using a Gaussian
prior, however, leads to fast calculations, and it has been shown that it
can also give a significant performance increase, despite its simplicity. The
variance of the prior should be chosen according to process knowledge;
how large forces and torques that are expected.

The current trend in robotics, where the robots are becoming more
light-weight and safe to use in proximity to humans, is good for force
estimation. These new robots usually have lower friction levels than tra-
ditional industrial robots, which makes it possible to achieve good force
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estimation performance. The experiments in this chapter clearly showed
that force estimation worked better for YuMi than for the traditional in-
dustrial robot IRB140.

Other methods for force estimation commonly rely upon that a dy-
namical model of the robot is known, e.g., [Alcocer et al., 2003; Eom et al.,
1998; Van Damme et al., 2011]. Such dynamical models were not avail-
able for the robots used in experiments in this thesis and, therefore, these
methods were not tested.

8.7 Conclusions

Two different methods for estimating forces without any force sensor have
been presented. The first method was based on viewing the controlled
robot joints as virtual springs, and approximating the joint position con-
trol errors as torques applied to the joints. The second method was based
on the motor torques and modeling of the velocity dependent friction un-
certainties. Both of the methods were subject to large disturbances, but
the resulting force estimates could anyhow be used to replace a force sen-
sor in many tasks. This was exemplified in implementations of multiple
assembly tasks with different robots.

The motor torque method was better than the joint control error
method at estimating the correct force magnitude, but both methods could
be used to detect force transients. Neither method was good at estimating
small static forces, and the assembly strategy where established contacts
were force controlled had to be modified.

In contrast to most previously published methods for force estimation,
the methods presented in this chapter were implemented on real indus-
trial robot systems and successfully applied in real world assembly tasks.
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9
Dithering to Improve the
Accuracy of Force
Estimation

9.1 Introduction

Force sensing can give robots the capability to correct for small position
uncertainties by sensing the contact forces. This makes it possible to ac-
complish, for instance, assembly tasks in a robust way as was presented
in Chap. 3. A force sensor may also be used for easy programming of
a robot. By letting the robot be manually guided by an operator, a lead-
through programming scenario, the robot can easily be taught what to do.
A force sensor may, however, be too expensive, especially if lead-through
programming is the only intended use. A sensor may also be sensitive to
different environments, e.g., varying temperatures, and it may add un-
necessary mass to the system, i.e., reducing the effective workload. An
alternative is therefore to estimate the external forces, by using sensing
already available in the robot, see further Chap. 8.

When a robot is not moving, the main disturbance for force estimation
is the Coulomb friction. It is usually quite large for industrial robots,
which often have gear boxes with high gear ratios. This means that large
external forces are needed to overcome the friction and make it possible
to estimate the force, as was seen in Sec. 8.5. When the robot is not
moving, the friction force may be anywhere within the friction band, and
the force to overcome the friction is thus unknown. Previous research has
been performed about compensating for friction, e.g., in [Freidovich et al.,
2010] the dynamic LuGre model was used for friction compensation. For
force estimation, however, knowing the friction in more detail will not give
better estimates, as the external force still must overcome it. By using a
feedforward torque within the friction band, however, the torque can be
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x
z

y

Figure 9.1 The ABB IRB140 robot used in the experiments. The wrist-
mounted JR3 force/torque sensor (blue cylinder) was used for verification
of the estimated entities. The reference coordinate frame is also displayed.

controlled to be close to the border of the friction band. Then, only a small
external force is needed to overcome the friction. This feedforward torque
may be in the form of a dithering signal, i.e., a high-frequency zero-mean
signal.

Dithering has previously been used, for instance, to suppress quan-
tization effects. This has been done by adding the dithering signal as a
noise signal. A survey of its use in audio signal processing is presented
in [Lipshitz et al., 1992]. Another application where dithering was used
to suppress quantization effects is precise current control [Zhu and Fu-
jimoto, 2013]. Dithering has also been used in the context of robotics. In
[Ipri and Asada, 1995; Lee and Asada, 1995] dithering was used in as-
sembly tasks to overcome friction between the parts, which corrupted the
force measurements. It was further presented how the dither parameters
could be tuned online. Dithering can also be used to compensate for stic-
tion in valves. In [Hägglund, 2002] a dithering-like signal was added to
the control signal to compensate for stiction in pneumatic control valves
in the process industry.

This chapter considers the problem of force estimation when the robot
is not moving and subject to Coulomb friction. A dithering signal was used
to decrease the static friction uncertainty, and hence increase the force
estimation accuracy. The method was implemented and tested experimen-
tally with an industrial robot in a lead-through programming scenario.
The experimental setup is displayed in Fig. 9.1, where the fixed work-
space reference directions are illustrated.

169



Chapter 9. Dithering to Improve the Accuracy of Force Estimation

A similar approach to the one presented in this chapter where force es-
timation was performed together with dithering to suppress the friction
uncertainties is presented in [H. Cho et al., 2014]. The external torque
applied to each joint of the robot was estimated through disturbance ob-
servers, and a dithering signal was used to make the robot more sensi-
tive to external forces. Another force estimation method using dithering
is presented in [Chen and Kazanzides, 2013]. The method is targeted for
non-backdrivable robots, in contrast to the method presented in this chap-
ter. A sawtooth dithering signal was used to make the robot move slightly,
as the non-backdrivability made it impossible to estimate forces when the
robot was not moving.

9.2 Dithering

The robot used for experiments in this chapter was the IRB140, see
Fig. 9.1. The interface available to the robot was described in Sec. 2.2.

One joint
To see the benefit for force estimation of using dithering, a simple exper-
iment was first performed. A force was applied to the robot by manually
pushing its end effector, and the resulting motor torque for one of the
joints is shown in the upper diagram in Fig. 9.2. The diagram also con-
tains the external torque, τ ext, as measured by a force sensor, and an
estimate of the Coulomb friction band. It can be seen that there is not
much of a response in the motor torque data, although the last push ex-
ceeded the friction band. The joint controller was active in the experiment,
controlling the position of the joint, otherwise the last push would have
resulted in the robot starting to move.

The same experiment as above was conducted once more, but this
time with a torque feedforward dithering signal, see the lower diagram in
Fig. 9.2. The last two pushes are now clearly visible in the motor torque
data, and almost the first one as well. By adding the dithering signal,
it is thus possible to detect smaller forces than was possible without the
dithering. This result is similar also for the other joints of the robot.

Dithering signal generation
The dithering signal used in this chapter was a square wave, and it was
sent to the robot system as a torque feedforward signal, τ f f w in the block
diagram of the joint controller in Fig. 2.4. When the robot is not moving,
the torque for each joint may be anywhere within the Coulomb friction
band. Therefore, to center the dithering signal inside the friction band
requires some control. A feedback control scheme was used in this case.
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Figure 9.2 Resulting torques for one joint from an experiment where
forces were manually applied to the robot, without dithering in the upper
diagram and with dithering in the lower diagram.

To be able to control towards the center at all, the position loop in the joint
controller had to be disabled, i.e., setting Kp = 0 in Fig. 2.4. Otherwise,
the position control loop would counteract any static torque feedforward.
One reason for this could be that the motor could move slightly without
moving the arm side of the joint, with the gears acting as a spring for
torques within the friction band. The reference for the center torque was
in the middle of the estimated friction band, i.e., the estimated torque
due to gravity. The center of the measured torque signal was calculated
as the mean over an integer number of periods of the dithering signal,
see illustration in Fig. 9.3. An integral controller was used for closing the
feedback loop.

The amplitude of the dithering signal also had to be controlled. The
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Figure 9.3 Illustration of how the dithering signal parameters are cal-
culated. The center is calculated as the mean of an integer number of
periods, five periods in the diagram. The upLevel and the lowLevel are
the means of the samples above and below center, respectively. The am-
plitude is calculated as half the difference between upLevel and lowLevel.
The calculated values are used at the end of the marked interval, i.e., at
t = 0.43 s.

motor torque measurements were actually the references sent to the cur-
rent control loops in the motors, as true motor torque could not be mea-
sured. This means that to be able to detect external torques, the joint
controllers had to be active. However, this also resulted in the control
counteracting the dithering signal, meaning that a slightly larger feed-
forward signal was needed than the desired torque response. A feedback
loop with an integral controller solved this problem. The amplitude was
calculated as the mean of half the difference of all samples above and
below the center for an integer number of periods of the dithering signal.
The pseudo-code below was used for the calculation:
function CALCDITHERSIGNALPARS(trq)

trqHistory ← [trq , trqHistory(1..end-1)]
center ← mean(trqHistory)
upLevel ← mean(trqHistory>center)
lowLevel ← mean(trqHistory<center)
amplitude ← (upLevel-lowLevel)/2
return center, amplitude

end function
The variable trqHistory is a persistent variable between calls to the

function, and it contains a history of the torque for an integer number of
dithering periods. The calculation of upLevel (and lowLevel) is done by
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9.3 Force estimation using dithering

taking the mean of all samples being greater than (lower than) the mean
of trqHistory. An illustration is given in Fig. 9.3, where five periods of
the dithering signal was used. The value for the calculated signals in the
figure are used in the end of the marked interval, i.e., at t = 0.43 s.

When an external torque appears, the feedback controllers will try to
counteract the deviations. But as the measurement signals are based on
an average over the last periods, and as the control loops are not too tight,
it will be possible to detect the external torque. Once it has been detected,
the robot is supposed to act upon it and turn off the dithering signal.

The set-point amplitude for each joint was chosen as large as possible
before the dithering signal resulted in a vibrating robot. About one hun-
dredth of a motor radian, which would correspond to 0.0001 arm radians,
was chosen as an acceptable level of vibration. The dithering amplitude
for the different joints varied between 50–90 % of the estimated friction
band.

9.3 Force estimation using dithering

The method for force estimation used in this chapter is the motor torque
method presented in Secs. 8.3 and 8.5.

Extracting torque signal and friction bounds
As was seen in Fig. 9.2, when a joint was fed with a dithering signal, the
external torque appeared as a superimposed signal on the dithering sig-
nal. Actually, the external torque appeared on both sides of the dithering
signal. Another example of a dithered joint where an external torque has
been applied is displayed in the upper diagram of Fig. 9.4. The two curves
marked as upper (red) and lower torque (green) are the one-period means
of all samples above and below the mean of all samples within the last
dithering period, respectively. The mean of these two signals should be an
estimate of the applied external torque. Taking the mean has the effect
that it shifts the signal to the center of the dithering signal, as well as
taking away some noise. The lower diagram of Fig. 9.4 shows the estimate
together with the actual external torque, as measured by a force sensor
for verification. Whereas the actual torque is underestimated, the shape
of the signal is captured. A slight response delay can also be seen.

As the external torque is added to the dithered signal, only a small
external torque is required to exceed the friction band. This has the effect
that the friction band is effectively decreased. In Fig. 9.4 the set-point for
the dithering signal was 90 % of the friction band, and thus only 10 % of
the friction band remained. This is illustrated in the lower diagram in
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Figure 9.4 Illustration of how the torque signal and Coulomb friction
bounds are extracted. The upper diagram displays how an upper and a
lower torque signal are calculated. The lower diagram shows the new
torque signal, the mean of the upper and lower torque in the upper dia-
gram, together with the external torque, as measured with a force sensor.
The new and old friction band estimates are also displayed.

Fig. 9.4, where the new friction band is the old friction band shifted down
with the dithering set-point amplitude.

Dithering on several joints
When dithering signals are sent to all joints of the robot simultaneously,
there might be interactions between the joints which amplifies the vibra-
tion. This meant that the dithering amplitude had to be decreased for
some of the joints, as compared to when the joints were dithered sepa-
rately.
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9.4 Application scenario

The dithering method was implemented in a lead-through programming
scenario, i.e., to let the user guide the robot by holding on to the end
effector (or to any other part of the robot). For the force estimation, it
was assumed that all external forces were applied at the end effector.
This means that the torques around the end effector will be small, and
this information was used for choosing the prior, F̄ = 06$1 and RF =
diag(20 (N), 20 (N), 20 (N), 0.3 (Nm), 0.3 (Nm), 0.3 (Nm))2 in (8.25), i.e.,
forces of 20 N expected and only small contact torques. Dithering was
initiated when the robot was still, and it was turned off when a force was
detected that made the robot move.

Only translational movements with a fix orientation were allowed, due
to the difficulty of estimating external contact torques. Long lever arms
made estimation of forces beneficial, while the low signal-to-noise ratio for
torques makes it almost impossible to estimate them, at least when only
small contact torques were expected, as in the lead-through programming
scenario.

The lead-through programming was accomplished by using a force con-
troller, which was implemented as an impedance controller in task space
with zero stiffness. To avoid that noise and incorrect force estimates moved
the robot, a deadzone of 10 N was used on the force estimate. Another op-
tion could have been to use the confidence interval estimate and avoid
using a deadzone, by setting the force to zero if the interval contains
zero, and otherwise use the limit with the lowest magnitude. The confi-
dence interval width, however, decreases rapidly when the robot starts to
move, which results in that the force driving the robot will either be zero
or quite large. The resulting robot motion would then be quite jerky and
thus be discomforting for the operator.

9.5 Experimental results

Robot system
The robot used in the experiments was an IRB140. A wrist-mounted JR3
force/torque sensor was used for verification of the estimated forces, see
the blue cylinder at the wrist of the robot in Fig. 9.1. The external joint
torques were calculated as τ ext = JT Fsens, where J is the robot Jacobian
and Fsens the force/torque measurement from the sensor.

The friction model parameters in (8.25), Re, τ f , min, and τ f , max, were
estimated from the same types of experiments as were used in Sec. 8.3.
The noise terms acting on the different joints were assumed to be inde-
pendent, such that Re became diagonal.
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Figure 9.5 An example of the dithering signal control performance. The
top diagram shows the reference and the measurement signals. The middle
diagram displays the control signals. No reference or control signal are
displayed until dithering is activated, which happens at t = 1 s. The bottom
diagram shows the actual motor torque signal together with the center
torque measurement and the friction band estimate.

Control of dithering signal
Experimental data from one joint showing the control of the dithering
signal are given in Fig. 9.5. The top diagram shows the reference sig-
nals and the corresponding measurement signals for the center level and
the amplitude of the resulting motor torque signal. They were calculated
by averaging over the five last periods of the dithering signal, as was
illustrated in Fig. 9.3. The dithering was started at t = 1 s, and it was
ramped up to the final set-point, both the center and the amplitude, to
get a smooth transition. The ramping is further important, as the torque
before the dithering is started may be close to the friction band boundary,
as was the case in Fig. 9.5, and starting the dithering signal with the full
amplitude, there would be a large risk of getting a torque outside of the
friction band such that the robot would start to move. The middle dia-
gram displays the control signals, i.e., the static torque feedforward and
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the square wave amplitude. The bottom diagram shows the motor torque
and the friction band estimate, and the center measurement signal is also
displayed. The angular frequency of the dithering signal was chosen to be
12.7 Hz (80 rad/s).

The robot program was running with a sampling frequency of 250 Hz,
but the dithering control loops were only updated every 10th sample, i.e.,
running at 25 Hz. The control signals were further kept constant when
the measurement signals were close to the references, which here meant
about 2 % of the estimated friction band. This means that the dithering
signal can be seen as mostly a feedforward signal, and there will be time
to detect applied external torques before the dithering control loops will
start to eliminate the ”disturbance”, which the external torque will be
interpreted as by the dithering control loops.

Comparison of using and not using dithering
Several experiments where external forces were applied to the robot in
the Cartesian directions (see coordinate frame in Fig. 9.1) were performed
to investigate which magnitude of forces that could be detected. Forces
were applied in each direction approximately 50 times. The robot was
positioned such that each applied force would result in torques influencing
at least one joint, see Fig. 9.1. These experiments were first performed
without using the dithering technique, i.e., the same type of experiment
that was performed in Sec. 8.5, and some of the results are displayed in
Fig. 9.6. Note that each subplot shows a separate experiment. In Fig. 9.7,
a corresponding result from when dithering was used is displayed. All
confidence interval estimates were calculated according to the method
presented in Sec. 8.3, where λ = 1.96 such that a 95 % confidence interval
would be given in the Gaussian case.

It can first be noted that when dithering was used, the force estimator
was able to detect smaller forces in all directions. For the z-direction,
however, the performance using dithering is only slightly improved as
compared to without dithering. The second thing to notice is that the
confidence interval estimate is tighter for the dithering case, and even
a little bit too tight for the y-direction. Also the forces can in general
be seen to be underestimated. The explanation to this is partly that the
prior used for force estimation drives the estimate towards zero when
the optimization problem (8.25) is solved; the measurement is explained
as friction instead of external force. When dithering is used, part of the
explanation also lies in the tendency of the method to underestimate the
applied torque, as was displayed in Fig. 9.4. The underestimation effect
gets reduced when the external forces become larger in relation to the
friction torques, i.e., resulting in a decreased estimation error.
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Figure 9.6 Estimated and measured forces from an experiment where
external forces were applied to the end-effector of the robot, without using
dithering.

The confidence interval estimate seems to be overly pessimistic for
both cases, especially when the external force was zero. But when external
forces were present, it can be seen that the confidence intervals seem to
be more appropriate.

The confidence intervals sometimes seem to contain some information
about the external force that is not visible in the actual force estimate,
e.g., in the z-direction for the dithering case at t = 2 s, t = 5.7 s, and
t = 7 s. The reason for this not showing up in the force estimate is that
it is absorbed by the remaining Coulomb friction, when solving the opti-
mization problem (8.25). The Coulomb friction is modeled by a uniformly
distributed random variable, as it may be anywhere within in the fric-
tion band. For the dithering case, however, the torque is controlled to
stay in the center of the friction band. The uniformly distributed part
of the disturbance torques can therefore be ignored in the optimization
problem. Doing this removes uncertainty from the problem, which can
be compensated for by increasing the variance of the noise parameter
that is modeled as a Gaussian random variable. The increase of variance
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Figure 9.7 Estimated and measured forces from an experiment where
the dithering method was used and external forces were applied to the
end-effector of the robot.

can, for instance, be performed by approximating the Coulomb friction
with a Gaussian random variable, uncorrelated with the noise term, and
consider the new noise term as the sum of the old noise term and the
approximated Coulomb friction. The result of doing this is displayed in
Fig. 9.8. The estimation performance in the x- and y-directions are sim-
ilar, but the z-force estimate has improved significantly and it is now as
good as in the other directions. An effect of ignoring the uniform term
was that non-zero force estimates when the external force was zero were
much more frequent, e.g., the x-force at t = 6 s and the z-force at t = 4 s.

Based on all performed experiments, 50 in each direction, both without
and with dithering, it was investigated how large the applied force had to
be to give a response that exceeded the noise level in the estimated force.
Without dithering, no force smaller than 32 N gave any response in the
x-direction and 22 N in the y- and z-directions. With dithering, responses
could be seen in all directions already for forces with a magnitude of 10 N.
It was also investigated how much force that was needed to estimate a
force significantly different from zero, which here was chosen to be an
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Figure 9.8 Estimated and measured forces from an experiment where
external forces were applied to the end-effector of the robot. The dithering
method was used without the Coulomb friction modeled as a uniformly
distributed random variable.

estimated force above 10 N. Without dithering an applied force of 40 N
was needed in the x-direction and 30 N in the y- and z-directions. When
dithering was used, an applied force of 20 N was enough in all directions.

Lead-through programming
A lead-through program was implemented that was using the estimated
external force. Dithering was initiated when the robot was not moving,
and turned off as soon as a force was detected that resulted in that the
robot started to move. The transitions between dithering and not dithering
were made smooth by ramping the dithering signal up and down, as was
displayed in Fig. 9.5.

Experimental data from a lead-through programming experiment are
displayed in Fig. 9.9. The robot was first moved in the z-direction, then
in the y-direction, and then in the x-direction before the experiment was
ended with the robot being moved in several directions simultaneously.
It can be seen that the estimated force in general follows the measured
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Chapter 9. Dithering to Improve the Accuracy of Force Estimation

force. During transfer from a zero-valued force to a non-zero value, it can
be seen that the estimate is lagging behind somewhat, e.g., the z-force at
t = 1 s and the x-force at t = 20 s. This is an effect that can be seen in
other experiments as well, for instance, in Fig. 9.4.

The confidence interval estimate becomes significantly tighter when
the robot starts to move, see, for instance, between t = 30 s and t = 40 s,
where the width of the interval is approximately halved, compared to
when the robot is not moving. The reason for the increased confidence is
that the Coulomb friction is now assumed to be known, and only uncer-
tainty in the Gaussian noise parameter remains. There are some false
force estimates, e.g., the x-force estimate around t = 12 s and t = 24 s.
The confidence interval still contains the measured force, though.

9.6 Discussion

The dithering method presented in this chapter made it possible to detect
external torques that were much smaller than the friction band. Without
dithering, these external torques would most likely not have been noticed
at all.

When using the dithering method, there is a risk that a too high am-
plitude of the torque feedforward signal is used. Doing that would result
in a vibrating robot, which would result in anything but a user-friendly
experience. The amplitudes chosen in this chapter were based on the mea-
sured motor angles, but also on the actual hands-on impression one got
from the robot. Applying the dithering signal can be heard as a slight
change in the sound coming from the motors, and it can be felt as a faint
vibration when holding on to the end effector. It is, however, not discom-
forting. A person not aware of what is going on would probably not notice
that much of difference from a robot not being applied to dithering. There
is further a risk that the dithering signal will introduce unneccesary wear
of the motors and the gear boxes. With the amplitude kept low and only
used when needed, e.g., during lead-through programming, it should not
be a problem.

The configuration of the robot is of high importance for the force es-
timation performance. If many joints can be used to estimate the force
in a certain direction, then good estimates and tight confidence intervals
can be expected, as information from many joints are combined. For the
experiments in this chapter, the y-direction was a beneficial direction,
while the other two, x and z, were slightly less beneficial. This could for
instance be seen on the confidence interval estimates. When developing
robot programs utilizing force estimation, the configuration of the robot
is something the programmer has to bear in mind.
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9.6 Discussion

The dithering signal used in this chapter was a square wave. Other
types of wave forms are also possible and it remains as future work to
try them out. The frequency of the dithering signal is also something
that should be further investigated. The frequency used was the same
for all experiments, and chosen to provide a satisfactory torque response.
When using a high-frequency signal there is a risk that aliasing becomes
a problem, but no such problem has been observed.

The experiments performed in this chapter have shown that the
torques due to external forces get underestimated. The reason for this
could be that it is the motor torque reference that is the measurement,
instead of the actual motor torque. For the reference to change, there
have to be a position or velocity error, which may lead to a lower torque
reference than the torque that was actually applied.

The applicability of force estimation depends on the task you intend to
perform. Friction constitutes a fundamental difficulty that will give rise
to estimation errors, which will limit the accuracy of force estimation. For
the robot used in the experiments, an external force of around 10 N was
needed for the estimator to notice it and around 20 N for it to be certain
that there actually was a force when the robot was not moving. This is a
significant improvement as compared to when no dithering was used, as
forces with the magnitude of 20–30 N then were needed to get a reaction
in the estimated force, and 30–40 N for the estimator to be certain that
there actually was an external force present. Using dithering effectively
decreases the Coulomb friction level, and increases the backdriveability
of the robot. For another robot with more or less friction, the accuracy
will be different.

Dithering was only used for joints that were not moving. The friction
uncertainty for a moving joint was so small that dithering was unneces-
sary, and using dithering would probably only lead to a vibrating robot.
The dithering method is thus only applicable in scenarios where the robot
is not moving. The lead-through programming scenario investigated in
this chapter is one such example. Another possible application is dual-
arm operations where one of the arms only supports the second arm, e.g.,
a screwing task where one of the arms performs the screwing operation
while the other only holds the pieces being screwed together.

The use of dithering was shown to increase the accuracy of force esti-
mation in the case when the robot was not moving. The performance is,
however, still quite far from that of a force sensor. In the lead-through
programming scenario, the improved accuracy is hard to notice, as quite
large forces usually are applied, so large that they would be detected
without dithering as well. But for another scenario where it would be
important to detect forces of small magnitude, much could be gained by
using dithering.
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Comparison to related work
A similar approach using dithering to reduce the effect of friction was
presented in [H. Cho et al., 2014]. In that paper, a dual observer [Park
and Lee, 2007] was used to estimate the external torque affecting each
joint, where the joints were modeled as flexible two-mass systems and
where the dynamics of the external torque was assumed to be known
and given by a linear system. The Cartesian end effector force was then
calculated by multiplying the estimated external torques with the inverse
transposed robot Jacobian. This method needs identification of models
for all joints, a model for the dynamics of the external torque, and also
gravity compensation. Friction was not explicitly modeled.

To suppress friction in the joints, a sinusoidal dithering signal was
sent as a torque feedforward signal. The interface to the robots used was
similar to the one used in this thesis, at least according to available sig-
nals, but a difference is that the torque reference for each motor could
be measured before the torque feedforward signal was added. The am-
plitude of the dithering signal was chosen to be equal to the estimated
Coulomb friction level and the frequency as fast as the controller could
handle, but how fast is not stated in the paper. The paper mentions noth-
ing about vibrations, which were present for the robot used in this thesis
if the dithering amplitude was chosen as large as the Coulomb friction
level. The addition of the dithering signal should take away the effect
of friction, and thus explaining why it has not been modeled. The paper
mentions no difference in behavior for moving and static joints.

The experiments in the paper are not very well documented. All axis
markers have been taken away, such that it is impossible to get any appre-
hension for the force estimation accuracy of the system. One experiment
shows that dithering makes the system more responsive to applied ex-
ternal forces, such that the system reacts to forces with 20–36 % lower
magnitude with dithering as compared to without dithering. These num-
bers can be compared to the performance of the method presented in this
chapter, where a similar experiment showed that only about 50 % of the
applied force was needed when dithering was used. Two different assem-
bly experiments are described, but with no experimental data presented.
The authors give very little guidelines for how all parameters of their
method should be chosen, which makes it very difficult to make an im-
plementation of their method and reproduce their results.

9.7 Conclusions

A method for improving the accuracy of force estimation when the robot
is not moving was presented. It was based on using dithering as a feed-
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9.7 Conclusions

forward torque signal. This made it possible to decrease the Coulomb fric-
tion uncertainty. Experimental results with an industrial robot verified
that the method works, making it possible to detect forces of magnitudes
around 10 N, as compared to 20–30 N when no dithering was used. An
implementation in a lead-through programming scenario was also pre-
sented.
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10
Sensorless
Friction-Compensated
Passive Lead-Through
Programming

10.1 Introduction

Industrial robots have become indispensable in many places in industry
today, such as the automotive industry. They have relieved human work-
ers from hazardous and/or repetitive and monotone tasks, and they have
increased the productivity and quality of the manufactured products due
to their high speed and precision. The robots are usually placed in struc-
tured environments that are supposed to remain the same for a long time.
This makes it worthwhile to put the required effort into performing the
robot programming, which usually takes long time.

In other parts of the manufacturing industry, it is much more com-
mon with short-series production. For robots to be competitive here, the
teaching phase must be quick and easy to perform to minimize the down-
time. One easy way to accomplish a straightforward teaching method is
to manually guide the robot, which is usually called lead-through pro-
gramming or walk-through. This makes it possible for the robot to both
learn positions and trajectories. It becomes especially convenient for the
operator as no consideration of different coordinate frames etc. is needed.
Lead-through programming for industrial robots is usually implemented
by using force sensors. They are, however, often very expensive, and it
would be preferable if lead-through programming could be accomplished
in a sensorless setting.
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10.1 Introduction

Figure 10.1 The robots used in experiments. Left: ABB YuMi. Right:
ABB IRB120

A survey of different methods for programming industrial robots was
presented in [Pan et al., 2012]. It was concluded that although online pro-
gramming, i.e., using the joystick on the teach pendant to move the robot
between positions to be used in the program, has several drawbacks, it is
widely used. Further, several methods for incorporating sensors to sim-
plify the online programming phase are described, e.g., using force sensors
or vision systems. An application of lead-through programming is pre-
sented in [Ang et al., 2000], where lead-through programming was used
to simplify the teaching of weld paths in a shipyard. To accomplish the
lead-through programming, the robot was equipped with a force/torque
sensor.

Programming by demonstration is a field where lead-through pro-
gramming can be used for performing the demonstration, which some-
times also is called kinesthetic teaching. One such example is presented
in [Wrede et al., 2013], where the authors focus on how to treat redun-
dancy during kinesthetic teaching. The experiments were performed with
a seven-degree-of-freedom robot, and a user study showed that it was
beneficial to assist the operator by controlling the null-space of the robot,
according to a redundancy resolution that was trained during an initial-
ization phase. Another example of kinesthetic teaching is presented in
[Calinon and Billard, 2007], where skills were taught to a robot in two
steps. First, motion sensors were used to record the demonstrated task.
Then the robot tried to perform the task and the teacher could interact
through kinesthetic teaching, which was accomplished by choosing which
motors of the robot that should become passive.

Methods for performing sensorless force control were reviewed in
Chap. 8. An approach for detection of external torques without external
sensing using the generalized momentum is [De Luca et al., 2006], where
the method relies on knowledge of a dynamical model of the robot.
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Figure 10.2 Schematic block diagram of the low-level joint controller
running at 2 kHz.

This chapter will present a method for sensorless lead-through pro-
gramming. It is based on disabling the low-level servo controllers in the
joints and only feedforward the torques to balance gravity, i.e., the robot is
in a passive mode with no position- or force-feedback loops running. This
makes the interaction between the robot and any environment stable. It
is further described how the lead-through programming performance can
be improved by adding friction compensation. Experimental results from
implementations on the ABB YuMi and ABB IRB120 are also presented,
see Fig. 10.1 for the experimental setups.

10.2 Method

The robot system considered in this chapter has the control structure and
interface described in Chap. 2. A schematic block diagram of a low-level
joint controller is also given in Fig. 10.2.

Passive lead-through programming
Lead-through programming of the robot was accomplished by disabling
the low-level joint control loops, i.e., setting the control gains Kp, Kv,
and Ki to zero, see block diagram in Fig. 10.2. To prevent the robot from
falling due to gravity forces, the torque feedforward signal was used to
apply the motor torques needed to counteract gravity. As the joint torques
commanded were purely based on feedforward, external forces applied to
the robot could lead to movements if they exceeded the friction forces in
the joints. The friction forces, mainly Coulomb and viscous friction, were
helpful, as they made sure that the robot did not move when no external
forces were applied. The lead-through programming worked in the same
way as releasing the brakes of the robot, while maintaining feedforward
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gravity compensation. As no feedback loops were active, interaction with
the environment became stable without the need for tuning any control
parameters.

Note that the lead-through programming was implemented indepen-
dently for each joint, i.e., the implementation was made in joint space.

Gravity compensation
The rigid body dynamic model of a robot is linear in the parameters [Si-
ciliano et al., 2009]. The values of these parameters for the robots used
in experiments were, however, not known a priori and therefore needed
to be identified. Identifying all of the dynamic parameters is difficult,
as the experiments to be performed must be chosen with care to be suf-
ficiently exciting to make all parameters identifiable. For the intended
application, namely lead-through programming, the robot is expected to
move relatively slowly with low accelerations, which means that the dy-
namic torques will be small, and they were therefore neglected by setting
all velocities and accelerations to zero when deriving the equations. The
remainder of the dynamics model was therefore only related to gravity,
with four parameters representing the mass and a vector to the center of
gravity for each link of the robot. A simple friction model was also added,
where the friction torque, τ f ric, was modeled as

τ f ric = θ Csign(q̇) + θvq̇ (10.1)

where q̇ is the joint velocity, θ C is the Coulomb friction, and θv the viscous
friction parameter. Each link had thus in total six parameters, and as the
model was linear in the parameters, they could be estimated using the
least-squares procedure with data from an experiment where the robot
slowly moved around in its workspace.

Torque feedforward control
The gravity compensation torque was sent as a torque feedforward signal
to each of the low-level joint control loops. Due to the fact that the control
gain Ki is situated before the integral in Fig. 10.2, setting it to zero will
just stop the update of the integral state, but it will still hold its value.
This means that the feedforward torque signal will have to compensate for
this offset. To be certain that the desired torque was actuated, a combined
feedforward and feedback strategy was applied, see a block diagram of
the control loop in Fig. 10.3. The reference signal, denoted by τ re f , is the
desired torque, i.e., the torque due to gravity, the measurement signal is
the torque reference sent to the motor, τ r, and the control signal is the
feedforward signal, τ f f w.
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Controller z−d1 Σ z−d2

Value from
integral part

Plant model

τ re f
τ f f w τ r

Figure 10.3 Block diagram of the torque feedforward control loop, run-
ning at 250 Hz. In the plant model, z denotes the shift operator. The delays
d1 and d2 are unknown, but it is known that d1 + d2 = 3.

In the research interface used, there were delays both when references
were set and when measurements were received. These individual delays
were unknown, whereas their sum was estimated to be three sampling
periods. A model with these properties is given as the plant model in
Fig. 10.3. To account for the delays, the following modified measurement
signal was used

ymod(t) = τ r(t) +
2∑

k=1
∆u(t− kh) (10.2)

where ∆u(t) denotes the the update of the control signal at time t, and
h the sampling period. Using ymod(t) for feedback is the same as using a
Smith predictor [Smith, 1957], where the process model is a time delay. An
integral controller was used to close the loop, i.e., the torque feedforward
signal was calculated as

τ f f w(t) = τ f f w(t− h) + ∆u(t) (10.3)

where ∆u(t), the update of the control signal, was

∆u(t) = (τ re f (t) − τ re f (t− h))︸ ︷︷ ︸
feedforward

+ K (τ re f (t) − ymod(t))︸ ︷︷ ︸
feedback

(10.4)

where K is the feedback gain of the controller, and τ re f = τ G , i.e., the ref-
erence is the torque due to gravity, τ G . The feedforward part handles most
of the reference changes, and the feedback part handles disturbances, i.e.,
the value held in the integral part as shown in Fig. 10.3. Note that this
control loop is active only when the low-level control loop (Fig. 10.2) is
inactive, and vice versa.

Friction compensated passive lead-through programming
Friction torques in the joints are helpful as they prevent the robot from
moving except for when external torques are applied. At the same time,
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the friction torques make it heavy to move the robot, especially if the
friction torques are large. To make it easier to move the robot, addi-
tional torque feedforward can be used to compensate for friction based
on movement of the robot. Ideally, it should be possible to use the torque
due to gravity plus the Coulomb friction torque. Then the robot would
be truly free-floating. In reality, neither the torques due to gravity nor
the Coulomb friction will be exactly known, and to feedforward the entire
Coulomb friction estimate might result in an accelerating joint without
any external torque applied. There should still exist some friction that
stops the robot when no external forces are present and the residual fric-
tion required depends on the viscous friction level and the quality of the
Coulomb friction estimate.

The velocity measurement in the robot is based on numerical differen-
tiation of the position measurement, and consequently the standard de-
viation of the noise of the speed signal will be a factor

√
2/h larger than

the position measurement noise, where the sampling period h = 0.004 s in
our case. The obtained velocity is further low-pass filtered, which some-
what decreases the noise level. The friction compensation is added once
the velocity exceeds a threshold, which must be chosen with respect to the
noise level. To make a smooth transition when the torque feedforward is
added, the amount of friction compensation is made proportional to the
velocity for small velocities. Specifically, the friction compensation torque,
τ FC, was calculated as

τ FC =


0 , pq̇p < q̇0
pq̇p−q̇0
q̇1−q̇0

sign(q̇)aθ̂ C , q̇0 ≤ pq̇p < q̇1
sign(q̇)aθ̂ C , pq̇p ≥ q̇1

(10.5)

where q̇0 and q̇1 are the velocity thresholds defining the proportional
region, and a is the percentage of the Coulomb friction estimate θ̂ C that
is used as friction compensation. The velocity may increase fast, and the
friction compensation will then almost be in the form of a step, which could
be unpleasant for the operator since it would feel like an abrupt change
in the resistance of the joint in question. This situation was avoided by
also limiting the rate of change of τ FC.

The feedback control loop for the torque feedforward signal generation
is useful now, as the friction compensation torque can be handled by just
adding it to the reference, i.e., use τ re f = τ G + τ FC in Eqs. (10.3)–(10.4).

Increased sensitivity to external torques when a joint is not
moving
A major difficulty with sensorless lead-through programming is that the
Coulomb friction (or stiction) must be overcome to start moving the robot.
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This effect can be experienced both when the lead-through programming
is started from rest, and when one wants to move the end effector of the
robot while manually keeping the orientation fixed. In the latter scenario,
many joints will have to move simultaneously and there will most likely
be joints where the lever arm from the end effector is short, which means
that quite some force will be needed to overcome the friction in those
joints.

It was experimentally noted that it was possible to achieve an in-
creased sensitivity to external torques by activating the low-level joint
controllers with an increased integral gain when the joints were not mov-
ing [Lundberg, 2013]. In the experiments performed in this thesis, 100
times the nominal value of the integral gain was used, and then it be-
came possible to detect external torques that were significantly smaller
than the Coulomb friction level, see further the experimental results sec-
tion.

The idea is to activate the controller with high integral gain only when
a joint is not moving, and when an external torque is detected it should be
turned off again. If the detected torque is small, it will not overcome the
friction torque. Therefore, a short torque feedforward pulse is commanded,
and if the operator really intended to move the joint, i.e., keeps applying a
force, the pulse will help the joint start moving. Once the joint is moving,
the friction compensation, according to (10.5), will be active and help the
operator.

The detection of external torques is performed by using detection
thresholds. The torque measurement, τ r in Fig. 10.2, might end up in
other places than in the middle of the friction band when the controller
with high integral gain is activated. To account for this, the thresholds
were centered around a delayed and filtered version of τ r. To handle the
initialization phase, when there was uncertainty of where τ r would end
up inside the friction band, the thresholds were ramped down from the
Coulomb friction estimates to the final thresholds. The upper threshold,
Λup, was calculated as

Λup(t) =

 τ̂ center +
tλ + (T − t)(τ̂ G + θ̂ C)

T , t < T
τ̂ center + λ , t ≥ T

(10.6)

where the time t is assumed to be zero when the initialization starts, T
is the length of the initialization phase, τ̂ center is a low-pass filtered and
delayed version of τ r, λ is the final threshold, τ̂ G the estimated gravity
torque, and θ̂ C the estimated Coulomb friction. The lower threshold was
calculated analogously.
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10.3 Implementation

Small movements
Lead-through programming based on the features described earlier in this
section works very well for large movements. However, if the operator is
interested in doing small adjustments of the end effector, e.g., learning a
position for gripping an object, the friction compensation scheme becomes
counterproductive. An attempt to move the end effector a small distance
might result in a larger movement when the friction compensation torques
are activated. The reason is that at first, the operator applies a force to
start the movement, and as this force is sensed, extra help in the form of
friction compensation is activated, and then the applied force is too large
and the movement becomes larger than intended.

For small movements, it was found out in experiments that it is in
practice better to disable all friction compensation. This will make it
harder to move the robot, as the operator will have to overcome all fric-
tion forces. On the other hand, the constant friction resistance makes the
friction predictable and manageable.

The lead-through programming implementation will have to switch
between friction compensation on and off to work well for both large and
small movements. One way to do this is to investigate the maximum dis-
tance moved by the end effector during a fixed time window. Small move-
ments will almost always be fine adjustments of the end effector, e.g., fine
tuning a gripping position, and the end effector movement is therefore the
relevant measure to use. To be precise, the measure used for determining
when to switch between friction compensation on and off is defined as

maxDist = max
t0∈[t−∆t;t]

qp(t) − p(t0)q2 (10.7)

where p(t) denotes the Cartesian position of the end effector at time t,
and ∆t is the time window used. To make the transition smooth, a linear
region where the amount of friction compensation is proportional to the
value of maxDist was also introduced, i.e., using the friction compensation
torque τ new

FC = bτ FC, where τ FC is defined in (10.5) and the factor b as

b =


0 , maxDist < d1
d2 −maxDist

d2 − d1
, d1 ≤ maxDist < d2

1 , maxDist ≥ d2

(10.8)

where d1 and d2 defines the linear region.

10.3 Implementation

Two robots were used for experiments, see photos in Fig. 10.1. The first
one was the ABB YuMi and the other robot was the ABB IRB120. The
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Chapter 10. Sensorless Lead-Through Programming

YuMi robot was equipped with wrist-mounted ATI Mini 40, 6 degree-of-
freedom force/torque sensors, which made it possible to collect validation
data.

Demonstrators
The lead-through programming was implemented in two different ver-
sions. The first one was such that the operator teaches a number of po-
sitions, and when the taught program is being replayed, the trajectory
between the positions is planned by the native robot controller. For small
movements (the end effector moving less than a certain distance), the
robot first tries to move its end effector linearly, and if that is not possible
the fallback is a joint move, i.e., performing a linear motion in joint space
instead of in Cartesian space.

The other demonstrator records the actual lead-through programming
trajectory, by saving positions with a frequency of 10 Hz. When the learned
program is being replayed, the native controller performs joint moves be-
tween the recorded positions, with possibilities both to increase and to
decrease the velocity of the motion.

10.4 Experimental results

The experiments described in this section were made with the ABB YuMi,
unless otherwise stated.

Parameters
The parameters for the gravity compensation and for the friction model
were estimated from an experiment where the robot slowly moved around
in its workspace without any interaction with the environment. As the
friction model (10.1) is only valid for velocities different from zero, data
from the experiment where the velocity was close to zero were excluded
when performing the parameter identification. The resulting compensa-
tion gave a mean absolute error ranging from 0.3 Nm for the base joints
to 0.03 Nm for the wrist joints.

The friction compensation parameters in (10.5) were tuned manually.
The lower velocity level, q̇0, was chosen such that the noise in the veloc-
ity measurement did not trigger any torque feedforward, and the upper
level, q̇1, was chosen such that the transition from no torque feedforward
to full torque feedforward felt smooth when manually guiding the robot.
The parameter a, the percentage of the estimated Coulomb friction to
use as feedforward, was chosen as high as possible without getting any
drifting joints. This magnitude depended on the accuracy of the gravity
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Figure 10.4 Illustration of the threshold levels used for activating the
joint controllers with large integral gain. Both the filtered and the un-
filtered velocity must be below their respective threshold for the large
integral gain to be activated. When the large integral gain is active, it
is deactivated if any of the thresholds is exceeded. The left diagram dis-
plays an example of when a joint stops moving, and the right diagram an
example of when a joint starts moving.

compensation and the estimated Coulomb friction, and for the YuMi robot
60–80 % of the estimated Coulomb friction was used.

The parameters for switching the friction compensation on and off
used in (10.7)–(10.8) were chosen as ∆t = 0.5 s, and the start of the
proportional region as d1 = 2 cm, and full friction compensation was active
at d2 = 5 cm.

The other parameters used are described in the following subsections.

The use of large integral gain
The integral gain, Ki, was increased when the velocity became low. To get
rid of the noise in the velocity measurement, it was low-pass filtered, such
that a low threshold could be used. Filtering, however, delays detection of
the start of a joint movement, and therefore also the unfiltered velocity
measurement was thresholded, but with a significantly higher threshold.
Illustrations of the thresholds are displayed in Fig. 10.4. To increase Ki,
the velocity had to be below both of the above mentioned thresholds. Fur-
ther, to get some robustness towards when the velocity changes sign, the
velocity had to be below the thresholds for 0.1 seconds for the controller to
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Figure 10.5 Experiment where forces were applied to the end effector
of YuMi. Results from two joints are shown; the top row shows the result
for the first joint, and the bottom row shows the results for the sixth
joint1. The left subplots show the raw torque response for the nominal
controller parameters and the right subplots the response for the case
with high integral gain. The external torque has been measured with a
wrist-mounted force/torque sensor.

be activated. The controller with large integral gain resulted in a stable
system as long as the joint remained at rest. At rare occasions, though,
the noise triggered a motion that led to instability of the system. There-
fore, the velocity was supervised in this phase, and the large integral gain
was turned off if the velocity exceeded any of the thresholds previously
mentioned. When Ki was increased, the other controller parameters, Kp
and Kv, had their nominal values.

The benefit of using the controller with a large integral gain is dis-
played in Fig. 10.5. It shows an experiment where forces were applied to
the end effector of the robot. The experiment was carried out twice; the
left subplots show the case with nominal controller values and the right
subplots the case where Ki is 100 times larger than its nominal value. The

1 With the ABB convention, the sixth joint is called joint five.
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Figure 10.6 An illustration of the behavior of the detection thresholds
used when the joint controllers with high integral gain were active. At
t = 2.7 s an external torque was applied to the robot, which the motor ini-
tially counteracted, as can be seen in raw torque curve. When the threshold
was exceeded, a friction compensation torque was applied. The experiment
was performed with the sixth joint of YuMi2.

upper plots show the response in the first joint of the robot, and the lower
plots the response for the sixth joint. A wrist-mounted force/torque sensor
was used to give the validation measurement. The torque due to gravity
has been compensated for in the plots. It can clearly be seen that using the
large integral gain is beneficial, as external torques within the estimated
Coulomb friction band are clearly visible in the raw torque data, i.e., the
signal denoted τ r in Fig. 10.2. Without the use of high integral gain (the
left subplots), the raw torque is unpredictable with drifting curves, and it
would be very difficult to detect the applied forces without the validation
data. It can further be noted that the noise level is much lower for the
sixth joint, and also the other wrist joints, making it possible to detect
lower torques for these joints. The reason for this is probably that the
base joints support a larger part of the robot structure, with more noise
due to mechanical resonances.

2 With the ABB convention, the sixth joint is called joint five.
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An experiment that illustrates the behavior of the detection thresholds
used for detecting external torques is displayed in Fig. 10.6, where the
thresholds are displayed in red and the Coulomb friction estimate in the
dashed black lines. In the beginning of the experiment, the joint was
moving and a torque feedforward of 65 % of the friction band was applied,
which can be seen in the raw torque curve (blue). The applied torque can
also be seen in the external torque signal (validation data from a force
sensor). When the external torque disappeared (at t = 0.4 s), the joint
stopped moving and the torque feedforward was stopped as well. After
the velocity had been below the thresholds illustrated in Fig. 10.4, the
joint controller with the high integral gain was activated, as indicated
in the top of the plot. The raw torque shows a slight positive drift, which
was captured by the thresholds. At t = 2.7 s, an external torque appeared.
The motor first counteracted the external torque, i.e., tried to keep the
position of the joint, but when the detection was made, a helping torque to
compensate for friction was sent as feedforward. Initially, the feedforward
was in the form of a pulse with a duration of 0.2 s, as described in Sec. 10.2.
The length of the pulse was chosen such that the robot had time to start
moving in case the operator would keep applying a force, i.e., such that the
velocity-based friction compensation (10.5)was activated. In Fig. 10.6, this
is exactly what happens. The amplitude of the pulse was chosen to be the
same as the velocity based friction compensation, which explains why the
pulse can not be separated from the velocity-based friction compensation.
When the detection of the external torque was made, the joint controller
was deactivated.

The parameters used for the detection thresholds (10.6) were chosen
such that the initialization phase was T = 0.5 s, and the final threshold λ
somewhat larger than the noise level as can be seen in Fig. 10.6 between
t = 1 s and t = 2.7 s. The center of the threshold levels was taken as the
40 samples (0.16 s) delayed mean of 80 samples (0.32 s) of the raw torque
signal.

Torque feedforward control
An example of the performance of the torque feedforward controlller (de-
scribed on page 189) is displayed in Fig. 10.7, which displays the behavior
of the third joint of YuMi when an external torque was detected and a
friction compensation torque was commanded. In the beginning of the ex-
periment, for times less than t∗, the joint controller with high integral
gain was active, i.e., the torque feedforward controller was inactive. At
time t∗, an external force was detected and a torque feedforward of 80 %
of the estimated friction band was commanded, as can be seen in the
reference signal τ re f . As was described in Sec. 10.2, the feedforward part
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Figure 10.7 Experiment that illustrates the behavior of the feedforward
control loop for one joint (the third joint of YuMi3). An external torque
that generated a feedforward torque was detected at time t∗. The sample
period h = 4 ms.

of the controller handles most of the set-point change, as can be seen in
the fast response in the control signal, τ f f w. The limited rate-of-change of
τ f f w can also clearly be seen, as τ f f w was ramped down instead of being
changed in a step. The velocity increased quickly in this experiment, and
the region where the friction compensation torque was proportional to
the velocity as defined in (10.5) is not visible. By comparing τ r and τ f f w,
the delay can be noticed, and it can further be seen that ymod (defined in
Eq. (10.2)) works as an approximation of τ r without the delay.

The feedback component of the controller takes care of the deviation
of τ r from the reference, while the feedforward part handles the reference
change. The feedback gain, K in (10.4), was manually tuned such that the
controller was fast but without getting any overshoot when the controller
was activated, e.g., which happened at time t∗ in Fig. 10.7.

Lead-through programming performance
Experiments were carried out to investigate the lead-through program-
ming performance. The first experiment was performed to show how much
external torque was required to start moving a joint by manually apply-
ing an increasing force until the investigated joint started to move. The
experiment was carried out 30 times without friction compensation, and
another 30 times with friction compensation. Two different joints were in-

3 With the ABB convention, the third joint is called joint seven.
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Figure 10.8 Results from an experiment where the end effector of YuMi
was moved linearly while trying to keep the orientation fixed. The top
diagram shows the measured force magnitude from the wrist-mounted
force/torque sensor, and the bottom plot shows the torque magnitude. The
experiment was performed three times, first with no friction compensation,
then with friction compensation based on velocity only according to (10.5),
and finally with the full friction compensation.

vestigated, the first joint to represent the base joints, and the sixth joint4

to represent the wrist joints. For the first joint, on average only 55 % of
the applied torque was needed when friction compensation was active as
compared to when it was not. The standard deviation was 9 percentage
points. For the sixth joint, the corresponding result was that only 40 % of
the torque was needed, with a standard deviation of 15 percentage points.
The main reason for the difference in benefit was the larger noise level
for the base joints. When moving the end effector, however, the lever arm
is longer for the base joints, and this compensates for the fact that larger
torques are needed.

Another experiment analyzed friction compensation for linear end-
effector motion. The experiment was performed by manually moving the
end effector while trying to keep the orientation fixed. Results from this
experiment are displayed in Fig. 10.8, which shows the force and torque

4 With the ABB convention, the sixth joint is called joint five.
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magnitude from the wrist-mounted force/torque sensor. The experiment
was performed three times; first with no friction compensation, then with
friction compensation based on the measured velocity, i.e., according to
(10.5), and finally with the full friction compensation, where also the
method with large integral gain was used. Without friction compensa-
tion, the largest applied force and torque was needed, as can be seen in
the diagrams. Using friction compensation based on measured velocity
initially required the same force and torque to start the robot movement,
but after the initial transient when the friction compensation torques
were applied, lower external forces and torques were needed. For the full
friction compensation, moving the robot was easier, which can be seen in
Fig. 10.8 as lower applied force and torque. Especially, the lower applied
torque felt convenient when moving the robot.

The lead-through programming was compared to using the joystick
on the teach pendant to teach a simple task, namely to pick an object.
Three positions needed to be taught; a position above the object to pick,
a position where the gripper can close around the object, and a position
where the robot can safely move away to with the object. Using lead-
through programming, teaching these three positions took 25 s, but using
the teach pendant took over 2 minutes. The difficult part using the teach
pendant was to move the robot to the correct orientation to be able to pick
the object. Thus, lead-through programming can substantially decrease
the amount of time needed for teaching a robot program.

Lead-through programming of IRB120
The lead-through programming was also implemented on the ABB
IRB120, which has significantly more friction than YuMi. The gravity
compensation resulted in a mean absolute error that was 1 Nm for the
base joints and 0.1 Nm for the wrist joints. In contrast to YuMi, the
IRB120 has a significant amount of viscous friction in the joints, and
this made it possible to feedforward a larger amount of the Coulomb fric-
tion torque, and 80–100 % of the estimated Coulomb friction was used
for feedforward. Unfortunately, the IRB120 was not equipped with a force
sensor and, therefore, no validation data are available. An experiment
was performed to show that the benefit of using high integral gain was
valid also for this robot, see Fig. 10.9. Forces were manually applied to the
end effector; the left subplots show the result for the nominal controller
gains and the right subplots for when high integral gain was used. The
qualitative behavior is the same as the experiment performed with YuMi
presented in Fig. 10.5, but without validation it is difficult to say more.

The lead-through programming was implemented in the same way as
for YuMi, and it works well joint by joint. Moving the robot in Cartesian
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Figure 10.9 Experiment where forces were applied to the end effector
of IRB120. The results are shown for two of the joints; for the first joint in
the top row, and for the fourth joint in the bottom row. The left subplots
show the raw torque response for the nominal controller parameters and
the right subplots the response for the case with high integral gain. No
validation data are available as no force sensor for validation was mounted
on the robot. The manually applied forces were intended to be equally large
in both the left and the right subplots.

directions becomes quite hard, as a lot of force is required to move all
the joints that need to move, also without the strategy for turning off the
friction compensation for small movements defined in (10.7)–(10.8). The
main reason for this was the viscous friction. As compared to the YuMi
implementation, the lead-through programming with IRB120 was not as
good, but it would still be useful for teaching robot programs.

10.5 Discussion

The lead-through programming described in this chapter was passive, in
the sense that no force-feedback control loops were used. An alternative
implementation would be to make it active, i.e., such that each joint is
actively controlled. In the active approach, the problem is about estimat-
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ing the external forces in the presence of the friction disturbances, rather
than compensating for friction. A drawback with that method is that it is
difficult to get good performance in both free-space motions and when the
robot is in contact with the environment. A controller that performs well
in free-space motion may become unstable in contacts with stiff environ-
ments. Forces may build up quickly in contact with a stiff environment,
and the dynamics of the robot and time delays that exist in the con-
trol system, in spite of being small, become problematic for the feedback
interconnection [An and Hollerbach, 1987]. Stable controllers for stiff en-
vironments can be designed, e.g., using the notion of passivity, and the
performance can be increased by also modeling the environment [Buerger
and Hogan, 2006]. On the other hand, a controller performing well during
stiff contacts can be sluggish and hard to move during free-space motions.
A controller that switches between two different parameter settings can
solve this problem, but it would be difficult to automate the switching and
making the switching manually would decrease the user-friendliness. The
passive lead-through programming contains no feedback loops and hence
does not suffer from this drawback.

The presented lead-through programming implementation contained
a lot of different switches, i.e., it is based on a hybrid control approach
[Lunze and Lamnabhi-Lagarrigue, 2009]. A number of parameters have
to be tuned, which may make it difficult to use the method. On the other
hand, as each joint can be tuned individually, it is quite easy to perform
the tuning procedure. The implementation in this chapter was based on
the ABB research interface, but the implementation should be possible to
do with other robots and interfaces with similar performance, such as the
KUKA-FRI and Comau C5G Open.

Increasing the integral gain was only possible when a joint was not
moving. The larger gain resulted in instability when the joint was moving.
By using speed supervision, i.e., only using the large integral gain when
the velocity was zero, the resulting system became stable. Whereas the
reason why the increased sensitivity of external torques is possible is not
fully determined, a hypothesis is that the effect is coupled with the fact
that the investigated robots have harmonic drive gears, as the effect has
not been observed for robots with other types of gears. The large integral
gain increases the bandwidth of the control loop. The hypothesis is that
the increased bandwidth together with the measurement noise functions
as a dithering signal, which would mean that the motor is constantly
moving and thereby has a significantly lower resulting friction torque.
The effect of the large integral gain had a similar effect as the dithering
method described in Chap. 9. The large integral gain could, however, not
be used to replace the dithering method for IRB140, which have a different
type of gear box and therefore did not exhibit the same effect as YuMi and
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IRB120.
The lead-through programming was implemented in joint space, i.e.,

each joint of the robot moved independently. One benefit of doing this is
that no problems with singularities of the robot will occur. A disadvantage
is that in a purely passive approach it is not possible to make the robot
keep the end-effector orientation and only move linearly. On the other
hand, with the friction compensation, it was fairly easy to manually fix
the orientation of the end effector while moving the robot. For a redundant
robot like YuMi, lead-through programming implemented in task space
would further have to control the redundant degrees of freedom. With the
presented joint-space lead-through programming, it was quite intuitive to
use two hands; one to take the end effector to the desired position, and
the other to move the elbow of the robot accordingly.

Using a force sensor for implementing lead-through programming has
the advantage that problems with friction can be avoided, provided that
the friction in the joints is handled by the low-level joint controllers. The
sensor is usually attached to the wrist of the robot and it can be used
to perform lead-through programming of the end effector. Any redundant
degrees of freedom will have to be taken care of by the controller, and only
forces applied that the force sensor can measure will give rise to motions
of the robot. With a wrist-mounted sensor, forces applied to the robot arm
inside of the wrist can not be measured and will hence not lead to any
motion of the robot. As the implementation of lead-through programming
with a force sensor most commonly is the active version, the problem with
instability in contact with stiff environments is also present.

A simple friction model, Eq. (10.1), was used in this work. For the
YuMi robot, however, there are quite large position-dependent friction
torque variations [Bagge Carlson et al., 2015]. This is the main reason
why only a relatively small percentage of the Coulomb friction torque
could be used as friction compensation. By using a position-dependent
friction model for each joint it should thus be possible to use a larger
feedforward torque, and hence improve the lead-through programming
performance. This remains as future work.

The implemented lead-through programming was based on recording
positions and then to use the functionality in the native robot controller
to move between the saved positions. For the mode where a continuous
trajectory was recorded, future work includes putting more effort into
making the trajectories smooth. As of now, the trajectories sometimes
become a little bit jagged, as the trajectory generator only considers the
two positions the robot is moving in between when planning the path.

The proposed lead-through programming was evaluated experimen-
tally on two different robots. Lead-through programming with YuMi
worked better, mainly due to significantly lower amount of friction present
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in the joints. For lead-through programming purposes in particular, the
benefit of a force sensor increases with the amount of friction in the robot,
which is usually correlated with the size of the robot. Overcoming the fric-
tion with a sensorless approach for a large robot may demand too large
forces, but with a force sensor, the operator only has to apply a force that
is larger than the noise level of the sensor.

10.6 Conclusions

A method for performing sensorless lead-through programming with in-
dustrial robots was presented. The method works by disabling the low-
level joint controllers and only feedforward the torque due to gravity. It
was reported how friction compensation could be added based on the mea-
sured velocity, which was shown to decrease the external force needed
from the operator to move the robot. The sensitivity to external torques
when the robot was not moving was further shown to be improved sig-
nificantly by using the joint controllers with increased integral gain. The
lead-through programming was implemented on two different robots and
experimentally evaluated, and it was shown that the time for the program-
ming phase can be substantially decreased compared to using the teach
pendant. A version of this lead-through programming for ABB YuMi is
now commercially available [ABB Robotics, 2015d].
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11
Conclusions

This thesis presents work in the context of force-controlled robotic assem-
bly. The focus has been on making it possible to specify tasks in a simple
and intuitive way, and to include functionality to handle uncertainties
and adaptation to different environments. The problem of replacing the
force sensor with estimation of the contact forces using the internal sen-
sors in the robot was also treated. Experiments were used throughout the
thesis to validate the proposed methods.

A framework for robotic assembly was presented. An assembly task
was composed of different skills, which both could be standard position-
controlled procedures and skills using external sensing. A force-controlled
skill was specified as a sequence of simple motions coordinated by a state
machine, where each simple motion was specified using a constraint-based
methodology. Transitions between the simple motions could either be trig-
gered by threshold levels, or by more advanced classifiers based on ma-
chine learning. It was reported how the native position-based robot con-
troller was integrated with an external controller performing force control.
Two assembly scenarios were used to give detailed illustrations of the us-
age of the framework. The experimental implementations were compared
to the performance of humans. Whereas the ability of the human to per-
form assembly is still superior to the robot, the robot can nonetheless be
a competitive alternative by working around the clock. The major issue
for using force-controlled assembly in an industrial setting are the re-
quirements that then has to be fulfilled, usually including extreme high
demands on uptime and robustness. For industrial usage, the number of
times the robot stops due to error situations must be reduced, e.g., by
making it easy to include detection of and recovery from errors.

It was described how uncertainties in assembly tasks can be managed.
Geometric uncertainties were modeled by including uncertain transfor-
mations in the motion description, and the uncertainties were resolved by
using sensor measurements. To illustrate the method, two different un-
certainties were considered experimentally, namely an uncertain location
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and a gripping uncertainty. Another type of uncertainty is the environ-
mental properties. A method for adaptation of force control parameters
based on identification of a contact model of the environment was pre-
sented. The method was experimentally shown to work for a wide range
of environments with different stiffness properties. The ability of the as-
sembly framework to handle uncertainties makes it easier for the robot
operator to specify and accomplish assembly tasks.

Specification of an assembly task as was done in Chap. 3 is quite dif-
ficult and almost requires expert knowledge. Instructing a human how to
perform an assembly task is, however, much simpler. It is usually enough
to describe the final configuration, i.e., a high-level description is given.
The thesis presents a method for how high-level specification of sensor-
based skills can be performed for robots. The high-level description from
the operator is used to generate an executable low-level description. An-
other method to simplify the task specification procedure is lead-through
programming, i.e., to manually guide the robot. The thesis presents how
this can be used to either teach important positions or entire trajectories
for the robot.

Two methods for estimating the external forces applied to a robot with-
out any force sensor were presented. The first one was based on the joint
position-control errors. The method was simple to calibrate and imple-
ment, and it was good at detecting force transients, but the method was
not especially good at estimating the correct force magnitude. The second
method was based on the joint motor torques and modeling of the velocity-
dependent friction uncertainty. This method had a lower estimation error
than the first method, but a model for gravity compensation was needed
and an optimization problem had to be solved numerically to get the force
estimate. Both methods were implemented and were used to accomplish
several assembly tasks although the resulting force estimate was not as
good as a dedicated force sensor. A force sensor is usually quite expensive,
and force estimation may therefore be a competitive alternative for many
robotic tasks.

Friction in the joints is the major disturbance when performing force
estimation. A method to increase the accuracy of force estimation using
dithering was presented. A dithering signal was sent as a feedforward
torque signal to decrease the Coulomb friction level when the joints were
not moving. Experiments showed that the method made it possible to
detect forces of magnitudes around 10 N, as compared to 20–30 N when
no dithering was used.

Lead-through programming is useful for easy and intuitive robot pro-
gramming. The thesis presents a method for sensorless lead-through pro-
gramming based on disabling the low-level joint controllers and only feed-
forward the torque to balance gravity. As no position- or force-feedback

207



Chapter 11. Conclusions

loops were active, the system remained stable in contact with any envi-
ronment. The lead-through programming performance was improved by
adding friction compensation. The approach was experimentally validated
on two different industrial robots.

Concluding remarks

Force sensing provides robots the capability to accomplish assembly tasks
in a robust way. Specifying the tasks is, however, a difficult problem, as
well as tuning of all control parameters and transition conditions. The
approach to use high-level task specification is promising, but it must
be further developed to be useful in a real application. An alternative
approach is programming by demonstration, i.e., to demonstrate the task
and infer a task specification from the demonstration.

Achieving robust implementations of assembly tasks is tedious work.
It includes detecting common error situations and designing strategies to
either avoid them or recover from them. This process should at least be
semi-automatic, i.e., the system should be able to learn from the error
situations and be able to at least give suggestions to the operator for how
to avoid the experienced errors in the future. Automatic detection and
recovery may be possible by making the system aware of the desired and
the current contact situation. By modeling possible contact situations in
a contact graph, the system should be able to autonomously return to a
desired contact situation.

In this thesis it was investigated how force control could be used in
the context of assembly. In a real industrial setting, it may not always be
the best option to resort to force-controlled solutions for every assembly
operation. Position-controlled skills are easy and intuitive to program, and
they should be used whenever possible. Their field of application can be
expanded by using tools with passive compliance, such that some degree
of position uncertainty can be handled. For some skills, however, force
control is the best alternative, and for these cases it will be worthwhile
to put down the extra effort into the task specification and programming
phase.

Force estimation was shown to be an alternative to a force sensor
in several assembly tasks. The accuracy of force estimation is usually
good enough in many cases. Together with the reduced investment cost
when a force sensor is not needed, force estimation expands the domain
of tasks that can be robotized. For lead-through programming purposes,
force estimation makes it possible to move the robot by applying forces
anywhere on the robot. This can be compared to when a wrist-mounted
force sensor is used, where only forces applied to the wrist of the robot
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will result in movements.
The methods for force estimation presented in this thesis were focused

on detecting small external forces, which were small in the sense that the
interesting forces were in the same order of magnitude or smaller than
the disturbances. Many of the previously published methods for force es-
timation have presented experiments where the signal-to-noise ratio was
more favorable, and the resulting estimation problems thus simpler. Esti-
mating small external forces was a challenging problem, which sometimes
required modified strategies to be able to accomplish the assembly tasks.

Several methods to make specification easy and execution robust of
assembly tasks have been presented in this thesis. The methods have,
however, mostly been evaluated independently. It remains as future work
to implement them all together to find out their full potential in the
context of assembly.
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A
Position-Control Reference
Generator

The position controller in the acceleration level control scheme (Sec. 3.2)
uses a reference generator to calculate the minimum-time trajectory to
go from the current configuration to a desired position at rest. The tra-
jectory is calculated for one coordinate at a time, i.e., the problem is one-
dimensional. Both the velocity and acceleration should be bounded, but
no limitations are put on the jerk. The resulting acceleration will be in
the form of bang-bang control, according to

a(t) =

 a∗ , t0 ≤ t < t1
0 , t1 ≤ t < t2
−a∗ , t2 ≤ t < t3

(A.1)

where pa∗p = amax is the maximum acceleration with the sign to be cal-
culated, the time t0 is the start of the trajectory, and the times t1, t2,
and t3 should be calculated. The zero acceleration interval is needed if
the maximum velocity, vmax, is attained. The trajectory generator is as-
sumed to be invoked at time t = 0 with a reference position pr together
with the current position p0 and current velocity v0. If the start velocity
pv0p > vmax, an initial phase where the velocity is decreased is added. The
acceleration profile now becomes

a(t) =


−sign(v0)amax , 0 ≤ t < t0
a∗ , t0 ≤ t < t1
0 , t1 ≤ t < t2
−a∗ , t2 ≤ t < t3

(A.2)

The trajectory is defined from the acceleration a∗ and the times t0, t1,
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t2, and t3. The velocity profile becomes

v(t) =


v0 − sign(v0)amaxt , 0 ≤ t < t0
v(t0) + a∗(t− t0) , t0 ≤ t < t1
v(t0) + a∗(t1 − t0) , t1 ≤ t < t2
v(t0) + a∗(t1 − t0 − t+ t2) , t2 ≤ t < t3

(A.3)

where

t0 =

{
pv0p−vmax

amax
, pv0p > vmax

0 , otherwise
(A.4)

and
v(t0) = v0 − sign(v0)amaxt0 (A.5)

The position profile becomes

p(t) =


p0 + v0t− 1

2 sign(v0)amaxt2 , 0 ≤ t < t0
p(t0) + v(t0)(t− t0) +

1
2 a∗(t− t0)

2 , t0 ≤ t < t1
p(t1) + v(t1)(t− t1) , t1 ≤ t < t2
p(t2) + v(t2)(t− t2) −

1
2 a∗(t− t2)

2 , t2 ≤ t < t3

(A.6)

where
p(t0) = p0 + v0t0 −

1
2sign(v0)amaxt2

0 (A.7)

and
p(t1) = p(t0) + v(t0)(t1 − t0) +

1
2 a∗(t1 − t0)

2 (A.8)

and
p(t2) = p(t1) + v(t1)(t2 − t1) (A.9)

Two cases are possible, depending on if the maximum velocity is at-
tained or not. Firstly, case 1 below is tried, if no feasible solution is found,
case 2 is used instead.

Case 1—Maximum velocity not attained The times for the trajectory
are given as

t1 =
−v(t0)

a∗
±

√
v(t0)2

2a∗2 +
pr − p(t0)

a∗
+ t0 (A.10)

t2 = t1 (A.11)

t3 =
−v(t0)

a∗
± 2
√

v(t0)2

2a∗2 +
pr − p(t0)

a∗
+ t0 (A.12)

Choose a∗ = amax or a∗ = −amax such that t1, t2, and t3 becomes real
and such that t3 ≥ t2 ≥ t1 ≥ 0. If multiple solutions exist, choose the one
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Figure A.1 A generated trajectory where the maximum velocity is not
attained (Case 1).

where t3 is the smallest. This solution is feasible if pv1p < vmax, where v1
is the largest velocity during the trajectory, given by

v1 = a∗(t3 − t2) (A.13)

An example of this type of trajectory is displayed in Fig. A.1.

Case 2—Maximum velocity attained The times for the trajectory are
given as

t1 =
v∗ − v(t0)

a∗
+ t0 (A.14)

t2 = t0 +
pr − p(t0)

v∗
+

v(t0)
2

2a∗v∗
−

v(t0)

a∗
(A.15)

t3 =
v∗

a∗
+ t2 (A.16)

where
v∗ = sign(a∗)vmax (A.17)

Choose a∗ = amax or a∗ = −amax such that t3 ≥ t2 ≥ t1 ≥ 0. If multiple
solutions exist, choose the one where t3 is the smallest. An example of
this type of trajectory is displayed in Fig. A.2. In Fig. A.3, an example of
a trajectory where the initial velocity, v0, was too large is displayed.

212



Appendix A. Position-Control Reference Generator

0 = t0 t1 t2 t3

0

vmax

Ve
lo

ci
ty

0 = t0 t1 t2 t3

−amax

0

amax

Ac
ce

le
ra

tio
n

0 = t0 t1 t2 t3

p0

pr

Time

Po
si

tio
n

Figure A.2 A generated trajectory where the maximum velocity is at-
tained (Case 2).
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Figure A.3 A generated trajectory where the initial velocity was larger
than the allowed maximum velocity vmax.
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B
Derivation of Force
Estimation Equations

In this chapter, the optimization problems (8.12) and (8.13) used to calcu-
late the force estimates in the motor torque method in Sec. 8.3 are derived.
The gravity compensated measured motor torque, τ̄ ∈ Rn, are modeled as

τ̄ = JT F + τ f + e (B.1)

where n is the number of robot joints, J ∈ RnF$n is the geometric robot
Jacobian, F ∈ RnF is the force/torque applied at the end effector, nF = 6 is
the dimension of the force/torque vector, and e is a Gaussian disturbance
according to

e ∼ N (0, Re) (B.2)

and τ f is a uniformly distributed disturbance

τ f ∼ U(τ f ,min,τ f ,max) (B.3)

and F is assumed to have a Gaussian prior distribution

F ∼ N (F̄, RF) (B.4)

The probability density function for the total disturbance τ f + e is

pτ f+e(τ f , e) = pτ f (τ f )pe(e) (B.5)

as τ f and e are assumed to be independent, and

pτ f (τ f ) =

{ 1∏n
i=1(τ i

f ,max−τ i
f ,min)

, τ f ,min ≤ τ f ≤ τ f ,max

0 , otherwise
(B.6)
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where the superscript i refers to element i of the vector. Further, the
probability density functions for e and F are given as

pe(e) =
1√

(2π )n det Re
exp

(
−

1
2 eT R−1

e e
)

(B.7)

pF(F) =
1√

(2π )nF det RF
exp

(
−

1
2(F − F̄)T R−1

F (F − F̄)
)

(B.8)

The likelihood function is the probability density function of the mea-
surement τ̄ given the applied force/torque F

L(F) = p(τ̄ pF) = pτ f+e(τ f ,τ̄ − JT F − τ f )

=


exp(− 1

2 (τ̄−JT F−τ f )
T R−1

e (τ̄−JT F−τ f ))∏n
i=1(τ i

f ,max−τ i
f ,min)

√
(2π )n det Re

, τ f ,min ≤ τ f ≤ τ f ,max

0 , otherwise
(B.9)

B.1 Maximum-likelihood

The maximum-likelihood (ML) estimate of F is the one that maximizes
the likelihood function (B.9). Maximizing the likelihood function is equiv-
alent to minimizing the negative loglikelihood, which is given as

− logL(F) =
{

(τ̄−JT F−τ f )
T R−1

e (τ̄−JT F−τ f )
2 + �1(Re) , τ f ,min ≤ τ f ≤ τ f ,max

∞ , otherwise
(B.10)

where �1(Re) contains all terms not depending on F and τ f . The force
estimate, F̂, is calculated by minimizing (B.10) as

F̂ = argmin (− logL(F)) (B.11)

Also τ f is an optimization variable, and the minimization can be refor-
mulated to the following optimization problem

minimize
over F,τ f

1
2
(
τ̄ − JT F − τ f

)T R−1
e
(
τ̄ − JT F − τ f

)
subject to τ f ,min ≤ τ f ≤ τ f ,max

(B.12)

where all terms not depending on F or τ f have been excluded, and where
a constraint has been added to account for the bounds of τ f . The force
estimate is the F solving (B.12).
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B.2 Bayesian approach

In the Bayesian approach, the posterior is maximized instead of the like-
lihood [Murphy, 2012, p. 65–70]. This estimate is usually called the max-
imum a posteriori (MAP) estimate. The posterior p(Fpτ̄ ) can be derived
using Bayes law, according to

p(Fpτ̄ ) = p(τ̄ pF)pF(F)∫
p(τ̄ pF)pF(F)dF =

p(τ̄ pF)pF(F)
p(τ̄ ) (B.13)

In the same manner as with the ML-estimation, the negative loga-
rithm of the posterior is minimized, which is given as

− log p(Fpτ̄ ) = − log p(τ̄ pF)︸ ︷︷ ︸
− logL(F)

− log pF(F) + log p(τ̄ ) (B.14)

The first term is the negative loglikelihood, the last term does not depend
of F and can hence be excluded when performing the optimization. The
middle term involving the prior, pF(F), is

− log pF(F) =
(F − F̄)T R−1

F (F − F̄)
2 + �2(RF) (B.15)

where �2(RF) contains all terms not depending on F. The minimization
of the posterior results in the same optimization problem as for the ML-
estimation (B.12), but with the difference that the first term of (B.15) is
added to the objective function, according to

minimize
over F,τ f

1
2
(
τ̄ − JT F − τ f

)T R−1
e
(
τ̄ − JT F − τ f

)
+ 1

2
(
F − F̄

)T R−1
F
(
F − F̄

)
subject to τ f ,min ≤ τ f ≤ τ f ,max

(B.16)
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