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Gawain has a Masters in Economics from University College London. He has 
worked as a labour economist for the Civil Service in London, UK, with a fo-
cus on poverty policy. This thesis is an empirical investigation of two important 
public policies and their impact on health and income related health inequality: 
education and drinking age laws. The thesis contributes to the literature by de-
veloping a new health inequality decomposition method. It also uses a number 
of quasi-experiments to identify the impact of education and drinking age laws 
on health. The results find no support for a health or health inequality improving 
impact of increased years of education, but do find support for Sweden’s parti-
cular design of minimum legal drinking age.
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1. Introduction 

This thesis combines three large areas of economic research: the measurement of 
socioeconomic related health inequality; the decomposition of socioeconomic 
related inequality into its explanatory factors; and the treatment effects and policy 
evaluation literature. The thesis is comprised of four papers that stand as 
individual contributions but together they have a common theme: they assess the 
impact of public policy (education and drinking age laws) on health and health 
inequality. 

Background 

Health inequality 

On the 4th of August 1997 Jeanne Calment died aged 122 years. According to the 
Guinness Book of World Records she is the oldest verified person to have lived. 
Not everyone lives to 122, nor do people expect to either. Indeed, average life 
expectancy is a lot less than 122 years. Life expectancy for someone born in 
Sweden today is 82 years (Statistics Sweden, 2015). There is a lot of variation in 
length of life and this is because, amongst other things, we are not born genetically 
equal. In health we appear to accept that fortune has an inevitable role to play. The 
health inequality literature has therefore taken the view that it is not differences in 
health themselves that are of interest. Instead it is differences in health that also 
mirror differences observed elsewhere, especially differences in socioeconomic 
status (Wagstaff et al., 1991). Socioeconomic status is a descriptive term for an 
individual’s position in society often thought of as some combination of income, 
education and occupation but not necessarily limited to these criteria. 

Another reason that socioeconomic related health is of interest stems from the fact 
that many countries have introduced public health care provision providing free 
access to healthcare at the point of need. The expectation has been that access to 
medical care, a key determining factor of health differences by socioeconomic 
status, was then in principle equalised for all members of society. These countries 
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should therefore observe much smaller differences in health that are related to 
socioeconomic status. 

Despite the existence of comprehensive public health systems across countries it is 
now well documented that socioeconomic inequalities in health exist for many 
different measures of health including mortality, various morbidities and even 
health related behaviours (Deaton, 2003, 2013; Mackenbach et al., 2008, 2015). 
This observation has led to the formation of a number of health inequality 
commissions, including the World Health Organisation commission on the social 
determinants of health (Marmot et al., 2007) in Britain (Marmot et al., 2010), 
Malmö, Sweden and also Europe (Marmot et al., 2012). 

Decomposition methods 

The natural question that follows from the discovery of extensive socioeconomic 
inequalities in health is: what could explain this? To this end decomposition 
methods have been developed for a range of inequality measures including 
measures of socioeconomic related health inequality (Wagstaff et al., 2003).  

Decomposition methods in general, including the method of Wagstaff et al. 
(2003), do not seek to recover the economic mechanisms underpinning a measure 
of inequality. Instead they have the aim of highlighting which potential 
explanatory factors are quantitatively important. For example, if we have found a 
strong relationship between health and socioeconomic status, decomposition 
methods can indicate if differences in education are an important explanation 
behind this. Indeed, results using the method of Wagstaff et al. (2003) tell us, for a 
fixed level of inequalities (the mean of health and the socioeconomic ranking of 
individuals is fixed), which factors potentially account for a large fraction of the 
observed socioeconomic inequality in health. However, the method of Wagstaff et 
al. (2003), like all decomposition methods, leaves the question of how education 
impacts the health income relationship unanswered. 

The approach of Wagstaff et al. (2003) requires a number of assumptions to hold 
and these are particularly restrictive if we want to move away from descriptive 
analysis towards the more interesting question of cause and effect. The first 
assumption is a common and stringent assumption made by all regression based 
decomposition methods and it is the assumption of no general equilibrium effects. 
Let us consider the impact of education on health as an example of what this 
means in practice. Any estimates of the impact of education on health will be 
based on a partial equilibrium analysis. That is the estimates are valid for changes 
to individual characteristics as long as not too many individuals are affected so 
that wider changes in the economy start to ensue. As an example, let us raise the 
level of education so that everyone has a university degree. This will of course 
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impact the outcomes of those who would have had less than a university education 
otherwise. The partial equilibrium analysis may be valid if only a small number of 
people did not have a university education before the change. However, if there 
were a lot of individuals without a university education it is likely that the labour 
earnings returns will change due to this sudden large increase in supply of young 
adults with a degree. There could also be peer composition effects from more 
mixed classes at university which impact health related behaviours. Partial 
equilibrium based analysis assumes that these effects, even for large changes, are 
zero. The approach of Wagstaff et al. (2003) has the explicit aim of explaining 
inequality as a sum of its factor components. That is, how much inequality is due 
to each explanatory factor. Because it is based on partial equilibrium analysis, any 
causal interpretation has to be made on the assumption that there are no general 
equilibrium effects.  

A second assumption made by the decomposition method of Wagstaff et al. (2003) 
is that health is a function linear in variables, not just parameters and we know that 
for many health variables this is a stringent assumption (Van Doorslaer et al., 
2004a,b; Van Ourti et al., 2009; Van de Poel et al., 2009). This assumption is just 
as restrictive for descriptive decompositions as it is for decompositions aimed at 
answering questions of cause and effect, given the aim of the approach is to model 
the entire distribution of health, not just the mean. Third, the decomposition 
method of Wagstaff et al. (2003) holds the mean of health and the socioeconomic 
variable fixed. This means that we are only explaining the health part of the 
inequality index when most explanatory variables we can think of will also likely 
impact socioeconomic rank. This is less of an issue for descriptive decompositions 
but it means the approach is not ideally suited to the consideration of changes 
because for changes in inequality we are interested in the change in the mean of 
health and socioeconomic rank. 

What should be clear from the above discussion is that the decomposition of 
socioeconomic related health inequality is not a solved problem. Indeed there is a 
need for a less parametric approach to the decomposition of socioeconomic related 
health inequality that allows us to quantitatively assess the importance of 
potentially important public policy levers, such as education, in determining the 
level of inequality. Indeed, the strict assumptions imposed by the decomposition 
method of Wagstaff et al. (2003) are potentially why very little research has 
looked at identifying the causal impact of important public health policy levers on 
measures of socioeconomic related inequality.  

This thesis addresses this issue directly by developing a new decomposition 
method for socioeconomic related health inequality that makes much weaker 
parametric assumptions than those of existing methods.  
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Education as a public health policy lever 

Study after study has documented the strong association between education and 
health in all its forms. Indeed some have gone as far as to suggest that in order to 
address the socioeconomic gradient in health we need to address the social 
determinants of health (Marmot et al., 2010). Education policy could potentially 
play an important part, but only if education causes differences in health. 
However, it is not clear that the well documented association between education 
and health is a causal relationship.  

There are a number of theories that suggest that it could be a causal relationship. 
One of the most influential theories in health economics regarding the formation 
of health is the one by Grossman (1972) that states amongst other things that 
health is an increasing function of education. In this model individuals are 
assumed to produce their own health, using their own time and goods as inputs. 
Education is predicted to improve the efficiency of this production, reducing the 
time and resources needed to produce health and thereby raising the optimal level 
of health of the individual. In epidemiology, a number of theories suggest that the 
distribution of power, money and resources are driving inequalities in health 
(Marmot et al., 2010). These in turn could all be influenced by differences in 
education. Cutler and Lleras-Muney (2008) also review a number of additional 
theories that suggest a causal pathway between education and health. 

The education gradient in health may, however, just reflect a missing third hard to 
observe variable that predicts both education and health. Both time preferences 
(and therefore willingness to invest in both education and health) (Fuchs, 1980) 
and innate ability (Bijwaard, 2015) have been suggested as potential candidates. 
These are hard to observe yet may explain why individuals who have higher levels 
of education also have better health. For instance those with high ability are more 
likely to find it easier to obtain higher levels of schooling and find it easier to 
maintain their health. Or, those who prefer now very much compared to the future 
(they have a high discount rate of the future) may also be less willing to spend 
time investing in their education and also spend time investing in their health if the 
pay-offs for these investments accrue a long time into the future. That education is 
associated with health may therefore reflect that we do not observe innate ability 
or time preferences. The association between education and health may also be 
due to reverse causality where current health is just a reflection of initial health 
and it is initial health endowments that determine educational achievement. 

What the above discussion highlights is that whilst there is reason to believe 
education improves health, it is not clear that it in fact does. That study after study 
shows a strong association between education and health does not prove that 
differences in education cause differences in health. What is needed is a 
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convincing “instrument”. This is a variable that induces variation in the 
explanatory variable (education) but has no direct effect on the outcome variable 
(health). A randomised experiment would do this, but at great cost. Instead quasi-
experimental techniques are often used. A review by Grossman (2015) of the 
recent quasi-experimental research of the impact of education on health found that 
results pointed either to an increasing or a zero effect. It was hard to draw any 
conclusions as a result of this. 

This thesis looks to help improve our understanding of the role of education in 
determining health and income related health inequality. A variety of quasi-
experimental techniques are used to identify the impact of education on health. 
This analysis is then extended to assess the impact of education on income related 
health inequality using the new decomposition method developed as part of this 
thesis. 

Minimum legal drinking ages as a public health policy lever 

Education is not the only public policy tool available to policy makers that can 
potentially be used to improve health and reduce health inequalities. Rules, 
legislation and health information campaigns are all widely used in this regard, 
and one of the most researched pieces of legislation regarding alcohol 
consumption in the United States is the Minimum Legal Drinking Age (MLDA).  

Episodic heavy drinking is very common amongst young adults aged between 16 
and 30 in both the US (Carpenter & Dobkin, 2011) and in Sweden (Ramsted, M., 
et al. 2010). Over 40 per cent of young adults in Sweden reported drinking four or 
more cans of strong beer/bottle of wine or more or equivalent in one sitting in the 
previous month (Ramsted, M., et al. 2010).  Heavy drinking can impair judgement, 
co-ordination, reaction time and vision. Unsurprisingly then, accident related 
deaths (motor vehicle related, homicides, suicides, alcohol related, narcotics 
related and other external causes) are the most common causes of death for this 
age group. The same causes also form a substantial proportion of hospital 
admissions. Can we design an MLDA in such a way as to minimise alcohol related 
health costs? 

There is an active debate in the United States (Carpenter & Dobkin, 2011) and in 
Australia (Toumbourou et al., 2014; Lindo & Siminski, 2014) about what the 
optimal age the country’s MLDA should be set at. This debate, however, ignores 
the possibility that an MLDA can be designed in more than one way. In fact, 
Sweden’s MLDA is quite different to MLDAs imposed elsewhere in that it has 
two parts: one at 18 years of age for on-licence consumption and one at 20 years 
of age for off-licence purchasing. Perhaps Sweden’s MLDA is better designed 
than MLDAs offered elsewhere?  
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This thesis assesses the impact of Sweden’s MLDA on alcohol consumption and 
on health and also obtains an estimate of the causal impact of alcohol on health.  

Aims 

The overall aim of this thesis is to robustly assess the health and health inequality 
impacts of two important branches of public health policy; education and 
minimum legal drinking age laws. The thesis has the following specific aims: 

First, provide a method of socioeconomic related health inequality decomposition 
that can be easily applied in combination with the tools from the treatment effects 
literature (Paper I). 

Second, assess the impact of education on both the level of health and its 
socioeconomic related inequality (Papers 1, II and III). 

Third, assess the impact of Sweden’s MLDA on alcohol consumption and health 
and relate these findings to the wider literature on the impacts of MLDAs (Paper 
IV). 
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2. Methods 

Measuring income related health inequality 

The Concentration Index 

As noted in the introduction, there is a concern that there are systematic 
differences in health that are related to socioeconomic status. In health economics, 
income is often used as a proxy for socioeconomic status because it allows a finer 
level of ranking compared to say education or social class. I follow this approach 
in this thesis using either income rank of the individual or the parents, depending 
on the age of the individual.  

 

Figure 1. The concentration curve 
Figure notes: The concentration curve plots the cumulative fraction of the population ranked by income against the 
cumulative fraction of health. The Concentration Index is calculated as CI = 2(a-c).  
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In health economics socioeconomic related health inequality is commonly 
measured using the Concentration Index (CI). It is a summary index of the 
relationship between health and socioeconomic status (income) and is derived 
from the concentration curve (CC). The CC plots the cumulative fraction of the 
population ranked by socioeconomic status, proxied by income in our case, against 
the cumulative fraction of health (see Figure 1). The further the CC is away from 
the 45 degree line (line of equality, see Figure 1) the greater the level of inequality. 
The Concentration Index captures the degree of inequality by adding up the area 
between the CC and the line of equality. The area of the box is one. If the CC goes 
below the line of equality we take the area above the CC and below the line of 
equality and double it. If the CC goes above the line of equality we take the area 
below the CC and above the line of equality and double it. If the CC traces the line 
of equality then the CI is zero – there is no relationship between health and income 
in this case. The CI is therefore bounded between 1 (if area A in figure 1 was 
equal to all the area under the line of equality) and -1 (if area C in figure 1 was 
equal to all the area above the line of equality). A positive value means health is 
concentrated amongst the rich, and a negative value means health is concentrated 
amongst the poor. 

Choosing an index involves a range of value judgements 

The CI is a relative measure of income related health inequality, which means if 
everyone receives an equal proportional increase in health it does not change. 
However, there is no consensus as to whether a relative measure is of interest. An 
equal proportional increase in health would necessarily increase absolute 
inequality and this may be of concern. It is therefore prudent to consider both 
relative and absolute inequality (Kjellsson et al., 2015). The absolute version of 
the CI is given by multiplying the CI by the mean of health.  

A further complication with measuring health inequality as an index is that when 
health is measured by a bounded variable, which many health measures are, such 
as obesity rates, cancer rates or death rates, the results can change depending on 
whether we measure health or ill-health. This was first illustrated by Clarke et al. 
(2003). This is an issue that only affects relative measures of inequality and a 
suggested solution is to consider both shortfalls and attainments as they represent 
the potential bounds of different value judgements (Kjellsson and Gerdtham, 
2013a,b). In addition adaptations of the CI have been developed that are not 
affected by the choice of health or ill health of bounded variables and include the 
Erreygers Index (EI) (Erreygers, 2009) and the Wagstaff Index (WI) (Wagstaff, 
2005). This thesis acknowledges these issues when measuring inequality. 
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A method for determining the causes of income related 
health inequality 

The particular question we want to answer is: how is the health CI or its variants 
affected by public policy? Paper I of this thesis presents a new statistical method 
that allows one to answer the above question and requires very few stringent 
parametric assumptions. It is shown that any bivariate statistic, such as the CI, can 
be expressed in terms of individual influences on the statistic. The really useful 
part of this new approach is that it allows all versions of the CI to be calculated as 
the mean of all the individual influences. In statistics, the mean is well understood. 
Probability theory, the role of expectations and the Law of Iterated Expectations 
and, by extension, linear regression techniques are focussed on the mean. That we 
can express any bivariate statistic as a mean of all the individual influences then 
opens up all of the tools we have for investigating the mean, allowing us to apply 
them to the CI. 

In standard analysis of the mean and under a linear setting we use Ordinary Least 
Squares (OLS) with our dependent variable (health) on the left hand side and our 
explanatory variables on the right hand side. Paper I derives the Recentered 
Influence Functions (RIF) for the common forms of the CI. Using the formulas 
presented in paper I yields each individual’s (recentered) influence on the CI. In an 
OLS regression each individual’s RIF value replaces health as the dependent 
variable and using this we can state to what extent education increases or 
decreases the health CI. This is RIF-I-OLS regression. 

Identifying the causal impact of public policy on health 
and health inequality 

This thesis considers the causal impact of two important public policy 
interventions on health and health inequality. The first is the impact of education; 
the second is minimum legal drinking age (MLDA) laws. The golden standard for 
any policy evaluation is a randomised trial. There are clear concerns that both the 
quantity of education and the MLDA are endogenous. That is, an important part of 
the simple association of our public health policies on health outcomes can 
plausibly be explained by hard to observe third factors (potential confounders) or 
that causality even runs the other way. Randomisation of education and drinking 
laws respectively would allow us to identify the impacts of these policies but is not 
feasible for a variety of reasons including and not limited to ethical concerns, costs 
and time. Instead this thesis relies on what are known as quasi-experimental 
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techniques; techniques that aim to replicate the conditions of an experiment using 
observational data. 

Twins 
In paper I monozygotic twins are used to get nearer to the causal effect of years of 
education on health and health inequality. Monozygotic twins (commonly known 
as identical twins) come from the same egg and are born with the same genetic 
make-up. The concern is that association between education and health is in part 
due to unobserved factors common within twins such as genetics, innate ability 
and early life factors. These unobserved factors are biasing the years of education 
estimates. To deal with this, differences within twin pairs are taken and this way 
unobserved factors that are common to both twins such as genetics or 
environmental exposure are differenced out of the equation yielding a less 
unbiased estimate. That is we used a within twin pair Fixed Effects (FE) strategy. 
The data used in paper I comes from the Swedish Twin Records and covers twins 
who took part in a telephone interview including a question on Self-Reported 
Health, conducted between years 1998 and 2002. Administrative records on 
education and income are then linked using each individual’s unique personal 
identification number. 

Difference-in-Differences 
In paper II two compulsory school reforms are used to identify the causal impact 
of years of education on health. The reforms were rolled out progressively over 
time across municipalities. This resulted in individuals who were born in the same 
year but in different municipalities receiving a different amount of compulsory 
schooling. Similarly, individuals born in different years but in the same 
municipality could have gone to the same school but received a different number 
of years of compulsory schooling. This variation over birth cohorts and 
municipalities allows differences to be taken in years of schooling and health 
outcomes across municipalities and across birth cohorts. That is, we use the quasi-
experimental technique of Difference-in-Differences (DiD). The assumption is that 
any remaining variation in years of education and health is then due to the reform. 
The data used in paper II comes from the Swedish Interdisciplinary Panel, a 
dataset combining various population based administrative records on income, 
education, mortality, hospital visits and more for all individuals in Sweden 
between 1930 and 1980 and their parents. 
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Regression Discontinuity Design 
Papers II, III and IV utilise the quasi-experimental technique of Regression 
Discontinuity (RD) design. RD requires detailed data and a large sample combined 
with an explanatory variable of which the outcome variable is a smooth function 
except for a jump caused by some arbitrary rule. RD utilises this arbitrary rule. 
The assumption is that very close to rule cut-off, an individual below yet very near 
the cut-off will be very similar in observable and unobservable characteristics to 
someone just above the cut-off yet the person above the cut-off is subject to the 
rule change that the person below is not subject to. Assuming individuals either 
side of the cut-off are indeed similar we can identify the impact of the arbitrary 
rule on our outcomes of interest.  

Figure 2. Paper II - Impact of two Swedish school reforms on minimum years of schooling 
Figure notes: Scatter plots of the proportion with the new minimum years of schooling by age in months measured as 
months to reform implementation in their municipality. Left panel is for the 8 year reform, right panel the 9 year reform. 
Reform implementation is at time zero. 

Paper II uses an individual’s year and month of birth combined with the school 
year cut-off of the 1st of January and year of reform implementation to identify the 
impact of the reforms on years of schooling and later health outcomes. As shown 
in figure 2, the level of education increases smoothly with year of birth, reflecting 
the trend of increasing levels of education over time. At the reform year cut-offs 
however, there are clear jumps in schooling. It is this exogenous variation in 
schooling that allows identification of the impact of education on health.  

In paper III, university attendance is a smooth function of how many credits a 
student achieved of a full program at upper secondary school (see Figure 3). There 
is a cut-off however for university eligibility at the 90 per cent of a full program. 
In figure 3 it can be seen that this eligibility rule leads to a clear jump in the 
probability of university attendance for females of about 10 percentage points. It is 
this exogenous jump in university attendance that we use to assess the impact of 
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university on medical care use. Paper III uses administrative data for education, 
income, hospital admissions and prescriptions for students graduating between 
years 2003 and 2005 and follows them up until 2013.  
 

 

Figure 3. Paper III - Impact of university eligibility on university attendance 
Figure notes: This figure plots a scatter of the share who attended a first term of university against percentage 
completed of a full program with a bin width of 2 percentage points (pp) of a full program (the size of the smallest 
course) in each bin for those graduating upper secondary school between the years 2003 and 2005. The cut-off for 
university is marked by the dashed vertical line at 90pp of a full program. 

Paper IV uses an individual’s exact age and Sweden’s MLDA to identify the 
impact of the MLDA on both alcohol consumption and medical care use. In figure 
4 it can be seen that alcohol consumption is a smooth function of age, increasing 
during the late teens and then flattening out in the mid twenties. There is also a 
clear jump in the quantity of pure alcohol consumed at 18 years of age, but not at 
age 20. Data on alcohol consumption patterns come from the Monitor Project 
survey and are for the years 2001 – 2012. Data on hospital admissions and deaths 
come from health administrative data for the whole population for the years 1969 - 
2015. 
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Figure 4. Paper IV - Impact of two Swedish MLDAs on quantity of pure alcohol consumed in last 30 days 
Figure notes: This figure plots the scatter points of mean drinking behaviour by monthly age blocks. Data source is 
Monitor project survey 2001-2011. 

Impacts on income related health inequality 
The quasi-experimental techniques used in this thesis are all implemented in a 
linear setting. Papers I and III extend the analysis beyond the mean and consider 
the impact of years of schooling and university eligibility respectively on 
socioeconomic related health inequality using an extension of RIF-I-OLS. Paper I 
substitutes self-assessed health for the RIF of income related self-assessed health 
inequality and applies a within pair fixed effects regression to assess the 
importance of years of schooling on the level of inequality. Paper III substitutes 
medical care use with the RIF of parental income related medical use inequality 
and applies RD design to assess the importance of university eligibility on the 
level of inequality. In this way, more robust estimates of the impact of years of 
education and university eligibility on socioeconomic related health inequality are 
obtained. This is a key contribution of this thesis. 
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3. Results 

The impact of education on health 

Health 

Figure 5 summarises the empirical evidence contained in this thesis on the impact 
of years of education on health, specifically: mortality, self-reported Fair or Bad 
Health (FBH) and a utility score between zero and one based on Self-Reported 
Health (SRH). Results from paper I using monozygotic twins and within pair fixed 
effects find no evidence of an impact of years of schooling SRH.  

 

Figure 5. Education’s impact on health 
Figure notes: This figure presents coefficient estimates of years of education on health from paper I and paper II with 
corresponding 95% confidence intervals (Note that the confidence intervals are very small for the first 5 point 
estimates from the left-hand-side which is why they are hidden). MZ twins FE is monozygotic twins based within twin 
pair Fixed Effects. FBH is self-reported Fair or Bad Health. SRH is Self-Reported Health. See respective papers for 
details. 
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In paper II the impact of two different reforms on a variety of health outcomes 
including mortality and FBH are assessed. Two quasi-experimental strategies are 
used to identify the causal impact of education on health, DiD and RD. The two 
reforms were different but were rolled out across overlapping cohorts. Any 
observed differences in effects between the reforms are therefore due to the 
characteristics of the reforms. In figure 5 the Two Stage Least Squares (2SLS) 
estimates are presented from paper II and we find no impacts of education on 
mortality using DiD and RD and for either reform. The results for FBH, whilst less 
precisely estimated than those for mortality, find no convincing evidence of 
increased education leading to improved health. In paper II a number of sensitivity 
checks are performed where differences across genders and modelling strategies 
are considered and the results are robust to sub-group and modelling strategy. 

Medical care use 

Measures of health and medical care use do not necessarily measure the same 
thing. Health is often of larger interest, but medical care use can give us insights 
into the health production function of individuals. It also has the advantage of 
being objectively measured and available for the whole population of Sweden, 
both improving the precision of the estimates. Figure 6 summarises the findings in 
this thesis of the impact of education on medical care use. In paper II the causal 
impact of years of education on hospital days is considered and no evidence is 
found to support the hypothesis that years of education have a health improving 
impact (see first four estimates in Figure 6). More detailed analysis by cause of 
hospital visit is considered in paper II and the conclusions remain the same. In 
paper III no impact on frequency of all cause hospital admissions or prescriptions 
in general due to university eligibility is found. More detailed analysis by cause 
however finds a clear positive impact of university eligibility on the proportion of 
females who are prescribed contraceptives.  
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Figure 6. Education’s impact on medical care use 
Figure notes: This figure presents 2SLS based coefficient estimates of years of education on health from paper II (first 
4 coefficients from the left hand side) and intention to treat coefficient estimates of university eligibility from paper III 
(last four coefficients on the right hand side) with corresponding 95% confidence intervals. See respective papers for 
details. 

The impact of education on health inequality 

Health 

Paper I considers the impact of education on income related health inequality by 
decomposing the CI and its variants using the method developed in the same paper 
(RIF-I-OLS). Using within twin pair fixed effects together with RIF regression of 
income related SRH CI, no evidence is found of an impact of years of education 
on the CI. This conclusion also holds for the Erreygers Index and the Wagstaff 
Index. 
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Medical care use 

Paper III considers the impact of university eligibility on the CI of parental income 
related medical care amongst young adults aged up to 30 years. Whilst a clear 
positive impact was found for the level of prescriptions of contraceptives for 
females no clear impacts were found for parental income related medical care use, 
either for all causes or specific causes including contraceptives for females.  

The impact of minimum legal drinking age laws on 
health 

 

Figure 7. Swedish MLDA impact on alcohol related hospital admissions 
Figure notes: This figure presents scatter points which are monthly age blocks of hospital visits/100,000 person-years 
for the years 1969-2015. See paper IV for details. 

Paper IV considers the impact of Sweden’s two-part MLDA on alcohol 
consumption and on health. The MLDA has a clear protective effect on alcohol 
consumption before 18 years of age. A clear jump in participation of alcohol 
consumption and quantity consumed is observed after turning 18. It appears that 
the quantity effect is a combination of increased participation (of about 6%) and 
also more frequent heavy drinking of about 16%. There is no clear evidence of a 
protective effect of the MLDA at 20 years of age in terms of alcohol consumption.  
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The jump in alcohol consumption at age 18 coincides with a clear jump in alcohol 
specific causes of hospital admission but not for mortality. Figure 7 shows the 
impact on alcohol specific causes of hospitalisation. There are clear birthday 
impacts at both 18 and 20. There is also a clear longer-term, non-birthday party 
impact of the MLDA at 18 where hospitalisations are estimated to increase by 
about 5%. 

Whilst no clear impacts on alcohol consumption are observed at the MLDA of 20 
years of age, clear protective impacts on hospitalisations are. Both hospitalisations 
due to homicides and self-harm jump after turning age 20. A drop in suicides is 
also found. The alcohol consumption data used, whilst very detailed, does not 
present any obvious explanations for these changes at age 20. 
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4. Discussion 

Decomposing the Concentration Index 

The first part of this thesis has presented a new method for the decomposition of 
socioeconomic related health inequality, RIF-I-OLS. This method can be used to 
answer questions of the form: could an increase in the level of education impact 
the CI? This type of decomposition based on RIF-I-OLS offers results derived 
under plausible assumptions. The value of RIF regression is that it can be used 
alongside the tools widely used in the treatment effects literature.  Previous work 
that developed the idea of RIF regression has also laid out clearly what 
assumptions need to be made in order to approximate a random experiment (see 
e.g. Fortin et al. (2011), for a discussion of the issue of identification in 
decomposition). In addition, RIF-I-OLS can be used alongside Oaxaca-Blinder 
type techniques to decompose changes in the CI over time or differences between 
groups (e.g. gender) or across time periods following the line of argument of 
Fortin et al. (2011).  

As outlined in the background a common and stringent assumption that is made by 
all regression based decomposition methods is the assumption of no general 
equilibrium effects. The assumption of no general equilibrium effects is a strong 
assumption, especially if large changes are considered. RIF-I-OLS makes the same 
assumption but because RIF-I-OLS is only valid for small changes this assumption 
is not a great threat to the validity of the results.  

Another common feature of regression based decompositions is that they do not 
say anything about the channels leading to effects in our outcome measures. They 
are like black boxes where a change is observed in an explanatory variable and an 
effect is observed in our outcome measure but the economic mechanisms that 
produce this impact are hidden in the black box and cannot be seen. RIF-I-OLS 
can tell us how the CI may change with a change in education for example but it 
tells us nothing about the economic mechanisms that produce this change.  

A potential misunderstanding of RIF-I-OLS is that it is only valid for individuals 
and not for sub-groups. This confusion comes about because the RIF value for 
each individual is the influence of the individual on the statistic. Using a RIF, one 
can remove an individual from the sample and very quickly calculate what the 
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statistic will be without that individual and therefore negating the need to 
recalculate the statistic for the new population. This is how a RIF works, but it is 
not a helpful way to understand how RIF regression works. RIF regression uses 
conditional distributions so thinking in terms of individuals can cause confusion. 
What RIF-I-OLS does is it calculates the conditional CI – an approximation of 
what the CI is for all subgroups. It therefore tells us how the CI would change if 
the population changed in the direction of a particular subgroup assuming that the 
CIs for all subgroups remain the same (no general equilibrium effects) and that the 
change is small. 

RIF-I-OLS decomposition and existing methods for the decomposition of 
socioeconomic related health inequality (Wagstaff et al., 2003; Kessels & 
Erreygers, 2016) are all unable to speak to economic mechanisms that explain the 
inner workings of the decomposition results. The natural solution is not to extend 
these methods further but to take a step back and build a structural model of 
health. From there we can then create a measure of health inequality. This is the 
suggestion of Fleurbaey and Schokkaert (2009) and also Fortin et al. (2011). This 
is a good end goal but one that is ambitious and not often empirically feasible. 
Where this is not possible RIF-I-OLS can be used where exogenous variation in 
explanatory variables is identifiable to answer specific policy evaluation questions 
in conjunction with the tools from the treatment effects and policy evaluation 
literatures. This has been a key goal of this thesis, to show how the treatment 
effects literature and decomposition of the CI can be jointly applied to answer 
immediate policy relevant questions. In this way RIF-I-OLS can be used to 
identify the key forces underlying changes in the CI. This can then be 
complemented in the future with more structural type approaches to explain the 
economic mechanisms underpinning the decomposition results. 

The role of education in determining health and health 
inequality 

This thesis provides important evidence of the impact of education on health and 
medical care use. 

The results from paper I indicate no clear impact of years of education on self-
reported health or on various forms of CI when using within twins fixed effects 
and this is based on one of the largest twins datasets available worldwide. Twins 
based evidence of education’s impact on health has the advantage that the 
differences in education between twins are across the spectrum of education from 
compulsory schooling all the way through to postgraduate studies. The estimated 
impacts therefore have a general external validity to the education question.  
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Various criticisms of results based on twin differences have been made however. 
A common critique is simply that twins are different and not representative of the 
general population. This may be true, but Gerdtham et al. (2016) who use the exact 
same data as that used in paper I find that the twins used are very similar to the 
general population across important measurable characteristics. Another critique is 
that research from epigenetics has shown that whilst twins are born with identical 
genetic make-ups, their genetics in fact evolve differently over time (see for e.g. 
Fraga et al., 2005). This is of concern if these differences also impact education 
and our health variable. There is also evidence that not even twins are born equal, 
where birth weight has shown to differ enough to explain substantial differences in 
education (Behrman et al. 1994). These are valid concerns but the potential biases 
that may occur from these differences all point to an overestimation of the impact 
of education on health yet no discernible differences are found in paper I.  

A potentially more relevant concern to the twins based evidence of paper I is the 
issue of measurement error when taking differences within twin pairs. Griliches 
(1979) showed that any measurement error in the education variable will be 
exacerbated when a differencing method is applied to it and this will lead to 
downward biased results. The education variable used in paper I is derived from 
Swedish administrative records and research has shown this has a relatively low 
measurement error (see e.g. Holmlund et al., 2011). Even so, small measurement 
errors are magnified when differencing and could still cause a problem of 
downward bias in our estimates. Furthermore twins interact with each other so that 
there are likely to be strong peer effects where one twin’s education will impact 
the other twin’s health outcomes. To use the jargon, we cannot be sure the Stable 
Unit Treatment Value Assumption holds, and in this case the bias is again 
probably downwards. To be sure that we can rely on the conclusions from paper I 
it would be beneficial to confirm the findings using alternative data and or 
identification strategies. 

Paper II assesses the causal impact of education on health using two compulsory 
school reforms to yield exogenous variation in years of schooling. The results 
show small and insignificant impacts of education on mortality and these are 
estimated with high precision. Results using survey data of self-reported health 
outcomes and behaviour also fail to find a positive relationship between education 
and health. The results of paper II therefore confirm the results of paper I.  

The results of paper II provide an important contribution to the literature on the 
causal impact of education on health. Recent reviews of the literature on the causal 
impact of education on health have found it hard to draw conclusions from the 
evidence due to conflicting results (see Cutler and Lleras-Muney, 2012 and 
Grossman, 2015 for recent reviews). Results using compulsory school reforms 
have shown both improved health outcomes as well as very small or zero impacts 
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on health. Various suggestions have been given for this including analysis of 
different populations, in different time periods or using instruments that affect 
different sub-groups. Paper II is an important contribution to this wider literature 
because the nature of the Swedish school reforms allows many of these 
explanations for variation between studies to be pinned down and tested. Two 
school reforms that are different in character were rolled out on average just 7 
years apart within municipalities in Sweden. Both reforms were rolled out 
progressively over time so that concerns about resource shocks due to teacher 
shortages for example or concerns about large general equilibrium effects of a 
whole cohort having an extra year of schooling do not apply. The reforms were 
overlapping in their roll out across Sweden and therefore students were entering 
similar labour markets and health systems. This allows for a clean comparison of 
the two reforms. In addition the paper uses a large dataset derived from population 
based administrative data, two identification strategies (DiD and RD), which 
assess the sensitivity of the results to the sub-groups analysed, and different 
modelling approaches. Analysis also considers various measures of health: 
mortality, self-reported health and health behaviours and medical care use (namely 
hospital admissions). The finding of no health improving effects of education is 
robust to school reform type, choice of DiD or RD, modelling approach and health 
outcome. 

To date, Clark and Royer (2013) provide probably the most convincing evidence 
of the impact of education on health and they find zero or very small effects. The 
evidence provided in paper II confirms their findings of no or small effects of 
education on health but estimated for a different sample. Concerns that the results 
of Clark and Royer (2013) are specific to Britain, to the way the reforms were 
introduced or the cohorts they analysed appear to not be important. The results 
from paper II are similar to those of Clark and Royer (2013), but for Sweden based 
on two reforms rolled out progressively over time and for overlapping cohorts. 
Together, the results of paper II and of Clark and Royer (2013) provide important 
evidence that the role of education in determining health outcomes is small at the 
lower end of the education distribution. 

The fact that there is convincing evidence that compulsory school reforms have a 
limited impact in determining health outcomes does not preclude education at any 
level having an impact on health. Indeed there is some evidence from the USA, 
using the Vietnam draft as an Instrumental Variable for college education, that 
shows college education leads to improved health behaviours and reduced 
mortality (De Walque, 2007; Buckles et al., 2016).  

Paper III adds to the relatively limited literature on the impact of 
university/college education on health and considers the impact of university 
eligibility in Sweden on medical care use and medical care use inequality. The 
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identification strategy uses the fact that students need to achieve a pass rate of 
90% of the upper secondary school program in order to go to university. Using RD 
the results show that females who achieve 90% of a complete program are much 
more likely to go to university. No clear overall impacts are found for hospital 
admissions or prescriptions but the proportion of females who received a 
prescription for contraceptives jumps at the 90% threshold. This result is a 
behaviour change relevant to the age group assessed (the observation window 
follows individuals up to age 30) and could be interpreted as a health investment, 
protecting against unwanted pregnancy. It could also be interpreted just as a 
fertility decision and a preference to delay childbirth amongst those who attend 
university. There are also indications that mental health of male students for this 
sub-population is negatively impacted by university attendance. No clear impacts 
are found for parental income related medical care use inequality using RD 
combined with RIF-I-OLS.  

The overall conclusion that can be drawn from the evidence provided in this thesis 
is that the impact of education on health and on socioeconomic related health 
inequality is small. The impact is nearly always smaller than the OLS derived 
associations and possibly very small. Whilst there is a large body of evidence 
showing a clear association between education and health, it is far from clear that 
public policy should be orientated to increasing education levels in order to 
improve public health and reduce its socioeconomic related inequalities. 

The effectiveness of Sweden’s minimum legal drinking 
age policy 

The evidence presented in this thesis casts doubt on the premise that education is 
an important public policy tool for improving public health. Paper IV considers an 
altogether different form of public policy, that of an MLDA.  

Paper IV assesses the impact of Sweden’s two part MLDA on alcohol 
consumption and health. It finds that while the MLDA at 18 years of age has 
similar protective effects in terms of alcohol consumption to that of the MLDA at 
21 years of age in the United States, there are no negative impacts of the jump in 
alcohol consumption at age 18 on alcohol related causes of mortality. Jumps are, 
however, observed for alcohol related causes of hospital admissions. This suggests 
that young adults in Sweden make the transition to unrestricted alcohol without the 
large negative consequences observed in the United States. Potentially the two part 
MLDA is a reason for this alongside the other alcohol control policies in place in 
Sweden, notably the state controlled alcohol off-licence monopoly that restricts 
access to off-licence alcohol and that the blood alcohol content limit for driving a 
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motorised vehicle is set very low at 0.02 per cent (vs 0.08 in the United Kingdom 
and the United States). 
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5. Conclusion 

In this introductory chapter I have presented the common theme for the thesis, 
health, inequality and the impact of public policy. 

The decomposition of socioeconomic inequality in health is not a solved problem. 
This is not a controversial statement and has been made elsewhere (see e.g. Van 
Doorslaer et al., 2004a,b; Van Ourti et al., 2009; Van de Poel et al., 2009; Jones 
and Nicolás, 2006; Erreygers and Kessels, 2013; and Kessels and Erreygers 2016). 
This thesis has made explicit the restrictive parametric assumptions that need to be 
made for current decomposition methods to yield valid estimates and has proposed 
a less ambitious yet more believable alternative. 

Using three different quasi-experiments to identify exogenous variation in 
education, no clear evidence is found for a health improving impact of education 
on health. No impact of education on health is found using variation in education 
identified by either a twins differencing strategy or variation in schooling induced 
by two major compulsory school reforms. Using eligibility rules for university 
education combined with RD, evidence is found that university education leads to 
greater contraceptive use amongst women, but this impact may just be a 
consequence of family planning rather than a health investment per se.  

The same quasi-experimental techniques have been applied in combination with 
the new decomposition method developed as part of this thesis to assess whether 
differences in education can explain income related health inequality. Even though 
a clear association between education levels and income related inequality in 
health is observed, no clear impacts of education on income related inequality are 
observed once a more convincing control strategy is used. 

Sweden’s MLDA, however, does appear to have an impact on alcohol 
consumption and in particular episodic heavy drinking. The combination of the 
specific design of Sweden’s two part MLDA and other alcohol control policies in 
place appear to both protect young underage adults and also mitigate the large 
negative health effects of increased alcohol consumption in the transition to full 
legal access to alcohol. In particular the large increases in mortality that 
accompany the large increases in drinking observed in the United States at age 21 
when purchasing of alcohol is legalised are not observed in Sweden even though 
large increases in drinking in Sweden are observed. 
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POLICY RECOMMENDATIONS 

No evidence has been found that increasing levels of education leads to 
improvements in health or changes in income related health inequality. Public 
health policies aimed specifically at health behaviours are potentially likely to be 
more effective. An example of which is the combination of Sweden’s two-part 
MLDA policy, restrictive access to alcohol through the state run alcohol monopoly 
off-licence and a stringent blood alcohol limit for driving which has reduced the 
negative health consequences observed elsewhere of increased consumption of 
alcohol among young adults. 
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We  introduce  a general  decomposition  method  applicable  to  all  forms  of bivariate rank dependent indices
of  socioeconomic inequality  in  health, including the  concentration  index. The technique  is  based  on recen-
tered  influence  function regression  and  requires only  the application of OLS to a transformed  variable
with  similar interpretation.  Our method  requires few identifying  assumptions  to yield valid estimates
in  most common  empirical  applications, unlike current  methods favoured in the  literature. Using the
Swedish  Twin Registry  and a within twin  pair fixed effects identification  strategy,  our new  method  finds
no  evidence of a causal effect of education  on  income-related  health  inequality.
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1. Introduction

Socioeconomic differences in health are well documented across the western world (Deaton, 2003; Mackenbach et al., 2008, 2015).
This  awareness has led to a rapidly growing interest in the measurement and analysis of socioeconomic inequality in health. In terms of
measurement,  the dominant family of measures of socioeconomic inequalities in health are the various versions of the concentration index
(CI)  – a family of bivariate rank dependent indices. A bivariate rank dependent index summarises the relationship between cumulative
health and socioeconomic rank, where a positive or negative socioeconomic gradient in health is represented by a positive or negative index
value  (Wagstaff et al., 1991; Fleurbaey and Schokkaert, 2009). These measures are bivariate because they relate an individual’s level of
health  to her relative socioeconomic status. They are rank dependent because relative socioeconomic status is given by the socioeconomic
rank  of the individual.

Policymakers’ and researchers’ interest in socioeconomic inequality in health also extends beyond measurement through to explaining
and  understanding its underlying causes. One way  to examine this issue is to decompose an inequality measure into a function of its
(potential)  causes. The dominant decomposition procedure to decompose a bivariate rank dependent index is the technique developed by
Wagstaff  et al. (2003) (WDW,  onwards) which has been used extensively to explore the determinants of the well documented socioeconomic
gradient  (see, e.g., Leu and Schellhorn, 2004; Gomez and Lopez-Nicholas, 2005; Lauridsen et al., 2007; Hosseinpoor et al., 2006; McGrail
et  al., 2009; Morasae et al., 2012).1 As well as being extensively applied, the WDW  decomposition method has also been developed to
expand  its potential for application to a greater set of empirical situations such as health variables that are non-linear in nature (see, e.g.,

∗ Corresponding author at: Health Economics Unit, Lund University, Medicon Village, SE-223 81 Lund, Sweden. Tel.: +46 766-486666.
E-mail  address: Gawain.heckley@med.lu.se (G. Heckley).

1 Gravelle (2003) is acknowledged for developing the same method although the explicit aim of his paper was not to decompose, but to standardise, the concentration
index.  The resulting methodology is nevertheless the same as that of WDW  decomposition.

http://dx.doi.org/10.1016/j.jhealeco.2016.03.006
0167-6296/© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).



90 G. Heckley et al. / Journal of Health Economics 48 (2016) 89–106

Van Doorslaer et al., 2004a,b; Van Ourti et al., 2009; Van de Poel et al., 2009) and the inclusion of heterogeneous responses (Jones and
Nicolás,  2006).

The  health inequality toolbox is to a large extent adopted from the income inequality literature. The concentration index, for instance, is
an  adaptation of the Gini index, a popular index in the income inequality literature that measures the degree of income concentration. One
important  dimension in which measures of socioeconomic related health inequality differ from measures of income inequality, such as the
variance  or the Gini index, is that the latter consider a single distribution whereas the former consider the joint distribution of health and
socioeconomic rank. Specifically to the issue at hand, bivariate rank dependent indices should be thought of as two-dimensional indices that
consider  the covariance between health and rank. Unfortunately, the leading decomposition method for bivariate rank dependent indices,
the  WDW  decomposition method, is one-dimensional because it focuses on health but ignores rank (Erreygers and Kessels, 2013). That is,
the  WDW  decomposition method explains the degree of variation in health rather than the covariance between health and rank. In response
to  this, Erreygers and Kessels (2013) and Kessels and Erreygers (2015) derive a set of two-dimensional decomposition methods, where rank
and  health are both estimated.2 However, both the WDW  decomposition and the alternatives proposed by Erreygers and Kessels (2013)
and  Kessels and Erreygers (2015) also suffer from another limitation: they can only correctly decompose one form of rank dependent index,
yet  there is an abundance of rank dependent measures used in the literature. So whilst one may  wish to measure inequality in different
ways,  these approaches will yield the same results no matter which measure one chooses. We will illustrate later how the WDW  method is
only  able to decompose absolute inequality measures (i.e., measures invariant to the addition or subtraction of an equal amount of health
for  all individuals in the population), which for example does not include the standard concentration index.

The various issues with the WDW  methodology are closely linked to the general critique of decomposition methods raised by Fortin
et  al. (2011): many decomposition methods have focused on the derivation of procedures without first specifying the object of interest nor
how  to identify this object (i.e., stating what we want to estimate and the assumptions required to interpret the estimates). Indeed, both
the  derivation of the WDW  method and the subsequent variations thereof have focussed on the procedure rather than identification of the
object  of interest. The discussion of identification has come second at best, potentially because these decompositions have been seen as an
accounting  exercise. As a consequence it is unclear how to actually interpret the parameters, and the so called contributions, within these
decompositions. The relevance of this critique for the existing variations of the WDW  decomposition is implicitly illustrated by Erreygers
and  Kessels (2013). Following a similar line of logic to that of the standard WDW  decomposition, Erreygers and Kessels (2013) derived a
set  of two-dimensional decompositions by making small changes to the starting point of the procedure. These different methods yield a
wide  range of results, yet it is unclear which is preferred, and how to interpret the estimated coefficients. Erreygers and Kessels (2013)
were  unable to choose a preferred method because, as they noted themselves, they did not consider the identification issue.3 In sum, the
literature  has shown that the WDW  method is not only a one-dimensional decomposition of just one specific form of a bivariate rank
dependent index but also just one possible method of many similar alternatives, the choice of which greatly affects the results.

We  contribute to this literature by deriving and empirically illustrating an alternative regression based decomposition method for
rank  dependent indices that overcomes the criticisms of the decomposition methods currently available. This method aims to explain the
causes  of socioeconomic inequality, not by focussing on the variables that form the covariance, but by directly decomposing the weighted
covariance of health and socioeconomic rank, i.e., the rank dependent index. This new approach builds on the concept of regression of a
recentered  influence function (RIF). A RIF is a concept that originates from the robustness literature of statistics that yields an approximation
of  the derivative (gradient) of a statistic. Intuitively, the RIF is a vector where each element corresponds to a particular individual’s influence
on  the statistic. That is the RIF value for a specific individual tells us how the statistic would change if that individual were to be removed
from  the sample (weighted by the inverse of the sample size). The RIF is useful for decomposition because it allows any statistic to be
expressed as a mean of the RIF vector and this allows all the regression tools for standard mean analysis to be used to link individual
characteristics to a statistic. Importantly RIF regression already has a defined object of interest and it is clear how to identify it (Firpo et al.,
2009):  regressing the vector of RIF values on a set of covariates yields the unconditional partial effect of covariates on the statistic.

In  this paper we apply the concept of RIF regression to a bivariate rank dependent index. Firpo et al. (2007, 2009) applied RIF regression
to  an income inequality question, estimating and decomposing RIFs for univariate measures such as the variance, the unconditional
quantile, and the Gini index. The major contribution of this paper, and a key step forward for health inequality analysis, is that we derive
the  RIF for a general bivariate rank dependent index, and also specifically for familiar versions such as the concentration index and the
adjustments suggested by Wagstaff (2005) and Erreygers (2009). Decomposition of the index is then performed by a two-step procedure
of  first computing the RIF of the rank dependent index, and then regressing the RIF on a set of covariates yielding the marginal effects of
the  covariates on the index.

The  application of the RIF regression method to the decomposition of rank dependent indices has a few important benefits. First, the
object  of interest of the method is clear and therefore discussion of identification is much more straightforward. Second, the method
directly decomposes the weighted covariance of health and socioeconomic rank. As a consequence it overcomes the critique of Erreygers
and  Kessels (2013) and it can be used to decompose all forms of bivariate rank dependent indices. Being able to decompose all forms of
bivariate  rank dependent indices is a key feature of this new method because each form of rank dependent index has a different set of
underlying value judgements with respect to inequality (Allanson and Petrie, 2014; Kjellsson et al., 2015) and there remains no actual
consensus as to which index is preferred. The ability to decompose several indices is therefore key for health inequality analysis.

A  further benefit of RIF regression decomposition is that the results are familiar in their interpretation. Assuming a linear relationship
means the RIF is the dependent variable in an OLS regression whose coefficients equal the marginal effect of covariates X on the rank
dependent index. This interpretation is analogous to that of an OLS regression of a random variable. Indeed, a RIF decomposition of the

2 In the more recent paper by Kessels and Erreygers (2015), they propose a structural equation modelling approach where rank and health are both estimated. This
two-dimensional  decomposition is one potential way to acknowledge the bivariate nature of these inequality indices, but the requirements of such a structural modelling
approach  is data demanding (requires two instrumental variables for health and for rank respectively), limiting the potential scope for such a solution. This solution also
doesn’t  address the other issues raised in this paper.

3 In the conclusion of their paper, Erreygers and Kessels (2013) call for an “axiomatic approach” to derive the most preferred method. We interpret this as a call for
specifying  the object of interest in beforehand, and then set up the assumptions needed to identify this object.
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mean (assuming a linear function of the dependent variable) is simply OLS of a random variable (Firpo et al., 2009). As most researchers are
familiar  with OLS, assuming linearity makes the RIF regression straightforward to estimate and the conditions needed to obtain a causal
parameter  are well known. This familiarity makes RIF decomposition a useful tool, not only for descriptive analysis, but also in a policy
evaluation framework.

In  order to help the reader understand why  RIF regression based decomposition is a useful addition to the analyst’s toolkit for the
analysis of bivariate rank dependent indices, a brief description of rank dependent indices and the standard WDW  decomposition method
is  provided (in Section 2) before a discussion of the identifying assumptions of WDW  decomposition (Section 2 again). Although the
health  inequality literature has previously highlighted that these identifying assumptions may  be restrictive (Van Doorslaer et al., 2004a,b;
Erreygers  and Kessels, 2013; Gerdtham et al., 2016), they have never been summarised clearly in one place, and may  therefore be unknown
to  practitioners. The literature suggests that the usefulness of the WDW  decomposition should be questioned, as the violation of these
conditions is potentially severe. The paper then presents a new method for decomposing a bivariate rank dependent index based upon RIF
regression  that requires fewer identifying assumptions. To help develop the intuition of this new method the concept of the RIF is briefly
introduced  before deriving the RIF for a general bivariate rank dependent index (Section 3). RIF decomposition is then discussed in detail
(Section  4).

To  illustrate the differences in interpretation between the RIF and the WDW  decomposition we present an empirical example using the
Swedish  Twin Register (Section 5). The empirical example also highlights the importance of being able to decompose different forms of
rank  dependent index showing that the choice of index has bearing on the association between education and health inequality. We find
no  association of education with socioeconomic health inequality using RIF regression. To highlight how one can use the RIF decomposition
for  establishing causal relationships, we use a twin differencing strategy to attempt to isolate the effect of education on socioeconomic
related heath inequality. The results suggest there is no causal effect of education on any common choice of bivariate rank based measure
of  health inequality.

Having  illustrated RIF regression of a bivariate index we  then discuss the relative merits of this new approach compared to WDW
decomposition (Section 6) concluding that RIF-I-OLS will uncover the (causal) parameters of interest under common empirical conditions.
Evidence  from the literature and also presented in this paper suggests that when concern lies with covariates that are known to impact on
the  ranking variable and or the weighting variable, WDW  decomposition is likely to yield biased results. Conversely, RIF regression does
not  require these identifying assumptions and this makes the RIF regression of a bivariate rank dependent index easier to interpret and
a  preferable descriptive decomposition tool. In addition, RIF regression is also well suited to policy evaluation. RIF regression allows the
effect  of a policy to be evaluated across a wide range of statistics, highlighting its potential in the field of program evaluation.

2. Preliminaries

2.1. A rank dependent index

The  general term for a statistic, such as the mean, variance or the Gini for example, is a functional, v(F), where F is a probability measure
for  which v(F) is defined.4 Let us define H ∈ [0,+∞)5 as a random variable of health with mean denoted as �H and with probability measure
denoted as FH. We rank each individual by a random variable for socioeconomic status, Y. The CDF of Y, FY, yields the fractional rank for
each  individual, which by definition has mean ½ (FY is uniformly distributed over the unit interval). The joint distribution of H and FY is
given  by FH,FY . The functional for the general form of a rank dependent index (I) is then given by:

I  = vI(FH,FY ) = vωI (FH)vAC (FH,FY ), (1)

where  vωI (FH) is a weighting function specific to a particular form of rank dependent index, and the absolute concentration index (AC) is
given  by twice the covariance between H and FY:

AC = vAC (FH,FY ) = 2cov(H, FY ), (2)

We  refer to this as the absolute concentration index as it is invariant to the addition or subtraction of an equal amount of health for all
individuals in the population.6 The relative counterpart is the standard concentration index (CI), which is invariant to equi-proportional
changes in health. The weighting functions for these common forms of rank dependent index are:

Absolute  concentration index:

vωAC (FH) = 1 (3)

Concentration index:

vωCI (FH) = 1
�H

(4)

Different choices of weighting function imply different value judgements, in this case a preference for absolute or relative inequality.
The choice of index, and therefore the choice of weighting function, is more complex when the health variable of interest has both an upper
and  lower bound denoted as bH and as aH respectively, i.e., H ∈ [aH, bH] (Wagstaff, 2005; Erreygers, 2009; Erreygers and Van Ourti, 2011;
Kjellsson and Gerdtham, 2013a,b; Kjellsson et al., 2015). For such a variable, health can be represented as both attainments (H − aH) and
shortfalls  (bH − H), and the choice of which affects the value of the concentration index. One set of indices adjusted for bounded variables

4 The symbol v is used to signify a functional and comes from the class of statistics called v-statistics.
5 We define H in the general case as an unbounded measure without any loss of generalisability for bounded health variables.
6 In the literature the absolute concentration index is sometimes called the generalised concentration index, although it is not a generalisation of the concentration index.

We  label it the absolute concentration index because it is an absolute measure of socioeconomic-related health inequality (it is not affected by the addition or subtraction of
a  certain amount of health).
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assures that the level of inequality is the same irrespective of this representation. The weighting functions for two  rank dependent indices
that  make this adjustment are:

Erreygers index:

vωEI (FH) = 4
bH − aH

(5)

Wagstaff index:

vωWI (FH) = bH − aH
(bH − �H)(�H − aH)

(6)

The Erreygers Index (EI) is an absolute index adjusted for a bounded variable, whereas the underlying value judgement of the Wagstaff
Index  (WI) is more complex (Wagstaff, 2005; Kjellsson and Gerdtham, 2013a,b; Allanson and Petrie, 2014). It is also possible to define
a  concentration index that is invariant to either proportional changes in attainment or shortfalls of bounded health variables. Following
Kjellsson et al. (2015), we denote these as:

Attainment-relative concentration index (ARCI)7

vωARCI (FH) = 1
(�H − aH)

(7)

Shortfall-relative concentration index8 (SRCI)

vωSRCI (FH) = 1
(bH − �H)

(8)

There  exists no actual consensus as to which index is preferred, but the literature stresses that any choice of index represents a value
judgement (Allanson and Petrie, 2014; Kjellsson et al., 2015). Given this lack of consensus it is arguably important that any decomposition
analysis is able to encompass as broad a view as possible.

2.2.  The standard decomposition

The  leading decomposition method applied to I is the WDW  decomposition method based on a linear regression of health. Assuming
health, represented by h, an n × 1 vector of drawings from H, is observed alongside covariates, X, and that health can be expressed as a
linear  in variables model in X, together yields the following regression equation:

h =  ̨ + X ′
 ̌ + e, (9)

where  X is a k × n matrix,  ̨ is an intercept,  ̌ is a k × 1 vector of regression coefficients, and e is a n × 1 vector of error terms. Following
Wagstaff et al. (2003), I can then be decomposed by substituting Eq. (9) into (1), yielding the following formula:

I  = vI(FH,FY ) = vωI (FH)
K∑
k=1

ˇk2cov(Xk, FY ) + vωI (FH)2cov(e, FY ), (10)

where  ˇk is the regression coefficient corresponding to the kth regressor from the linear regression Eq. (9), 2cov(Xk, FY) is the absolute
concentration index of the kth covariate Xk and 2cov(e, Fy) is the absolute concentration index of e. The first part of the WDW  decomposition
formula, given by Eq. (10), expresses the change in vI(FH,FY ) predicted by a change in either cov(Xk, FY) or ˇk, what we  will call marginal
contributions. The first part of equation (10) has also been used to express I as the proportion explained by X, “the explained part” (what
we  will refer to as percentagewise contributions), plus the second part of Eq. (10), as “the unexplained part”. What can be immediately
observed from Eq. (10) is that the WDW  decomposition implicitly holds the weighting function, vωI (FH), constant and assumes that if one
made  any changes that impacted

∑K
k=1ˇk2cov(Xk, FY ) this would have no impact on the weighting function. A consequence of this is that

percentagewise contributions are the same no-matter which index one uses.

2.3. The identifying assumptions of WDW  decomposition

To the best of our knowledge the identifying assumptions that underpin WDW  decomposition, whilst not new to the literature, have
never  been stated explicitly in one place, neither in its application or otherwise. To be explicit we  set out these assumptions below and
then  discuss each assumption in turn.

The identifying assumptions required by the WDW  decomposition are:

I. The determinants of health do not determine rank (rank ignorability).
II. The determinants of health do not determine the weighting function (weighting function ignorability).

III. Health can be modelled as a function linear in variables X and an error term.
IV.  Exogeneity: The errors from the health regression have zero conditional mean.

7 Erreygers and Van Ourti (2011) first suggested this as the generalised version of the corrected concentration index.
8 An index using this weighting function is equivalent to applying the (attainment-relative) concentration index representing the health variable in terms of shortfalls, or

ill  health.
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If all the identifying assumptions above hold, WDW  decomposition identifies both percentagewise and marginal contributions yielding
results  of potentially great empirical interest.9 In most empirical applications identifying assumption IV – which OLS  requires for causal
interpretation – is not seen as a necessary condition and WDW  decomposition is generally viewed as a “simple descriptive accounting
exercise” based on some correlations from an OLS regression (Gerdtham et al., 2016). WDW  decomposition is therefore generally thought
of  as yielding descriptive percentagewise contributions. However, even as a descriptive accounting exercise, this still requires the results
to  be interpreted in light of identifying assumptions I, II & III, which in empirical practice often are unreasonable to impose. This muddies
the  interpretation of the results.

The restrictiveness of rank ignorability (Identifying assumption I) has previously been pointed out by Erreygers and Kessels (2013) as
well  as in Kessels and Erreygers (2015). They criticise the WDW  decomposition approach for being a one-dimensional decomposition (of a
bivariate  index) because it only decomposes one part of the covariance (health). Ignoring the association between the covariates and rank
means  that for any (causal) explanation of changes in covariates the income rank is assumed to remain the same even after the change.
Indeed  Erreygers and Kessels (2013) and Kessels and Erreygers (2015) both find important differences in the results when this assumption
is  relaxed. It is important to note that their results are based on an approach that still maintains the other identifying assumptions.

Assumption II, weighting function ignorability, is similarly restrictive because the weighting function, vωI (FH), is generally a function of
health,  and will by design be correlated with the covariates, as the covariates are predictors of health. As seen in Eqs. (3)–(8), the weighting
functions of CI, WI,  ARCI, and SRCI are all functions of mean health. Only absolute versions of the rank dependent index (such as AC and EI)
have  a constant weighting function. Because weighting function ignorability requires the analyst to assume that the weighting function is
unaffected  by a change in these covariates, a WDW  decomposition of any rank dependent index implicitly decomposes an absolute version
of  the index. In practice this restriction means that the WDW  decomposition is only applicable to absolute inequality indices (even though
it  was developed for the relative concentration index).10

In regard to assumption III, health is a function linear in variables; there are few health outcomes that can truly be modelled in a linear
way.  It is common to find non-linear health functions: outcomes may  be categorical (Underweight, normal, overweight, obese), censored
at  zero (doctor visits) or two-part decisions (quantity smoked) all of which are non-linear. The linearity assumption of WDW,  however,
requires more than the standard linearity assumption: To provide the popular interpretation of percentagewise contributions of each
variable  of interest, WDW  requires the model to be not only linear in parameters, but linear in variables. Potential solutions have been
proposed  (see, e.g., Van Doorslaer et al., 2004a,b; Van Ourti, 2004; Van de Poel et al., 2009; Van Ourti et al., 2009), but they require the
non-linear estimates to be translated back to the linear setting in order to yield percentagewise contributions or are applicable only to
changes.  With that said, the linearity assumption has not been found to be that restrictive in practice (Van Doorslaer et al., 2004b; Van
de  Poel et al., 2009). In addition, linearity is an assumption that empirical economists are often willing to make (especially in the policy
evaluation literature). The flexibility and simplicity of methods such as OLS generally provide a powerful framework for empirical analysis.
The  available evidence does indicate that assumption III ranks as a less restrictive assumption compared to both I and II.

The underlying issue with the current available methods to decompose a bivariate rank dependent index is the critique raised by Fortin
et  al. (2011): many decomposition methods have not been explicit about what the parameter of interest is and the required identifying
assumptions. The methods that are currently available have been developed with a focus on procedures with little thought given to
identification. As set out in the introduction, Erreygers and Kessels (2013) implicitly illustrate the consequence of this ambiguity and
derive  quite a few alternative decomposition methods. A consequence of not defining the parameter of interest is that it is not immediately
obvious how to interpret these various different methods of decomposition yet alone be able to choose a preferred method. However, the
results  obtained by Erreygers and Kessels (2013) vary quite dramatically depending on the method chosen and therefore the choice of
method  matters. Combined with the literature highlighting the implicit identifying assumptions of WDW,  the findings of Erreygers and
Kessels  (2013) reveal that the results of the WDW  decomposition are not as easily interpreted as once thought.

In the next section we derive a completely different approach to regression-based decomposition of a bivariate rank dependent index that
allows  two of the identifying assumptions of WDW  decomposition to be relaxed simultaneously: rank and weighting function ignorability.
Importantly, we explicitly state our parameter of interest and the assumptions required to identify this parameter. This method has
the  potential to identify the parameters of interest under much more common empirical conditions, yielding results that have a clear
interpretation.

3.  The RIF for a general bivariate rank dependent index

The  RIF is derived from the influence function (IF), which originates from the robustness literature of statistics. Hampel (1974) introduced
the  concept of the IF with the original purpose to explore how various statistics are affected (or influenced) by particular observations,
hence the name, influence function. The RIF has the same properties as the IF with the singular exception that the RIF has a different
expected value to that of the IF. Firpo et al. (2009) developed the concept of the RIF, RIF regression and hence RIF decomposition. In this
section  we first introduce the concept of the IF and the RIF in a univariate setting, before deriving the RIF for a general bivariate rank
dependent index.

3.1.  The influence function and the recentered influence function

The influence function is a specific form of a directional derivative (or Gâteaux derivative). A directional derivative is used to find the
influence  of a perturbation or contamination in a distribution, for example from FH towards a new distribution, on a statistic. The IF is

9 It is worth noting that percentagewise contributions is a global parameter and requires the assumption that under large changes in the covariate there will be no
(unaccounted  for) general equilibrium effects.

10 A Potential solution to weighting function ignorability has been developed by Van Ourti et al. (2009) but this still assumes rank ignorability and is applicable only for
decomposition  of changes.
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the particular form of a directional derivative where the new distribution, denoted as ıh, equals a cumulative distribution function for a
probability  measure that puts mass 1 at a particular value h:

ıh(l) =
{

0 if l < h

1 if l ≥ h
, (11)

where  l is a draw from H.11 To define the IF of the functional v(FH) evaluated at point h, denoted as IF(h; v), we  first define Gh as a mixing
probability distribution of FH and ıh:

Gh = (1 − ε)FH + εıh, (12)

where  ε ∈ (0, 1) is a probability, or a weight, representing the relative change in the population through the addition of ıh. That is, Gh is a
distribution  that is ε away from FH in the direction of ıh. IF(h; v) is then defined as:

IF(h; v) = ∂v(Gh)
∂ε

∣∣∣∣
ε=0

= limε→0
v(Gh) − v(FH)

ε
, (13)

if  the limit is defined for every point h ∈ R,  where R  is the real line.12 Intuitively speaking, the IF captures the (limiting) influence of
an  individual observation on the functional v(FH) (Wilcox, 2005) and this can be used to understand how the addition/subtraction of an
observation would affect a statistic without having to re-calculate the statistic. In practice, calculating an IF yields an influence function
value  for each individual in the sample.

Having defined the IF it is now possible to define the RIF. One can think of the RIF in two ways. First, as a linear approximation of the
functional, the RIF consists of the first two leading terms of a Von Mises linear approximation. The RIF is also a minor transformation of
the  IF, and is obtained from the IF by adding back the original functional, v(FH):

RIF(h; v) = v(FH) + IF(h; v). (14)

While  the expectation of the IF is zero (Monti, 1991), the expectation of the RIF is equal to the original distributional statistic v(FH)
(Firpo  et al., 2009). This is a useful property because, as we  discuss later, it allows standard regression tools for the mean to be applied to
(and  therefore decompose) any statistic.

To illustrate the two concepts, the IF and the RIF, assume the statistic of interest is the mean. The IF of �H equals
IF(h  ; �H) = limε→0((1 − ε)�H + εh − �H)/ε = h − �H. This states that adding or removing an observation will have an effect on �H equal
to the distance between the observation, h, and the mean (standardised by the sample size). Adding the statistic, �H, to IF(h ; �H) yields
the  RIF of the mean, RIF(h ; �H) = �H + (h − �H) = h.

3.2. The RIF for a general (bivariate) rank dependent index

As  the rank dependent index, I, is a functional of the joint probability distribution FH,FY , we need to extend the definitions in Eqs. (11)–(14)
from  a univariate to a bivariate setting. Let Gh,FY (y) be a bivariate distribution function obtained by an infinitesimal contamination of FH,FY
in both h and FY(y):

Gh,FY (y) = (1 − ε)FH,FY + εıh,FY (y). (15)

Here  ıh,FY (y) denotes a joint cumulative distribution function for a joint probability measure that gives mass 1 to (h, FY(y)) jointly:

ıh,FY (y) (l, r) =
{

0 if l < h or r < FY (y)

1 if l ≥ h and r ≥ FY (y)
,  (16)

where  l  and r are draws from H and FY respectively. In analogy with Eq. (13), we  then define the bivariate IF of vI(FH,FY ) evaluated at point
(h,  FY(y)) as13:

IF(h,  FY (y); vI) = ∂vI(Gh,FY (y))

∂ε

∣∣∣∣
ε=0

= limε→0
vI(Gh,FY (y)) − vI(FH,FY )

ε
,  (17)

given  that this limit is defined for every point (h, FY (y)) ∈ R
2, where R

2 denotes the real plane. The RIF of I is then defined as:

RIF(h,  FY (y); vI) = vI(FH,FY ) + IF(h, FY (y); vI). (18)

In  Proposition 1 we state the expression of the RIF for a general bivariate rank dependent index for socioeconomic related health
inequality, leaving the proof to Appendix A, before we present the RIF for the common forms of I that appear in the health inequality
literature.

11 Note that the definition of h is no longer an n × 1 vector as defined previously for the WDW  decomposition.
12 Another way of checking whether the IF exists is to check if the functional is continuous (has no jumps or spikes) and the differential is bounded.
13 Note that I is a covariance not of two random variables but a covariance of a random variable, H, and the ranking variable, FY , which is a function of a random variable.

Deriving  the IF is therefore more complicated than deriving the IF of a standard covariance because the ranking function is also affected by the infinitesimal contamination.
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Proposition 1. Let vI(FH,FY ) = vωI (FH)vAC (FH,FY ) be a general rank dependent index, the AC be defined as vAC (FH,FY ) = 2cov(H, FY ) and FH,FY be
the joint CDF of H and FY with corresponding pdf denoted as fH,FY . Then the RIF for vI(FH,FY ) is given by:

RIF(h, FY (y); vI) = vI(FH,FY ) + IF(h; vωI ) ∗ vAC (FH,FY ) + vωI (FH) ∗ IF(h, FY (y); vAC ),

where IF(h; vωI ) denotes the IF of the weighting function for I and IF(h, FY (y); vAC ) = −2vAC (FH,FY ) + �H − h + 2hFY (y) −
2
∫ y ∫ +∞

hfH,FY dhdFY (z) denotes the IF for AC.

Proposition 1 shows that for any general rank dependent index, the RIF of I equals the sum of the original statistic, vI(FH,FY ), and its IF,
of  which the IF is found by application of the product rule of vωI (FH)vAC (FH,FY ). The IF for the AC consists of terms familiar from standard
inequality analysis; the AC, the mean of health, an individual’s health, an individual’s rank, and the absolute concentration curve co-ordinate
of  the individual, vACC (FH,FY (y)) = (2

∫ y ∫ +∞
hfH,FY dhdFY (z)). The RIF of any I follows from calculating the IF of the weighting function for

the particular I in question and then slotting this into the formula for the RIF given in Proposition 1. Corollary 1 presents the formulas for
the  RIF of the specific versions of I, again leaving the proof to Appendix A.14

Corollary 1. The RIFs for the AC, EI, CI, ARCI, SRCI and the WI  are given by:

RIF(h,  FY (y); vAC ) = vAC (FH,FY ) + IF(h, FY (y); vAC )

RIF(h, FY (y); vEI) = vEI(FH,FY ) + 4
bH − aH

IF(h, FY (y); vAC )

RIF(h,  FY (y); vCI) = vCI(FH,FY ) + (�H − h)

�2
H

∗ vAC (FH,FY ) + 1
�H
IF(h, FY (y); vAC )

RIF(h, FY (y); vARCI) = vARCI(FH,FY ) + (�H − h)

(�H − aH)2
∗ vAC (FH,FY ) + 1

�H − aH
IF(h, FY (y); vAC )

RIF(h,  FY (y); vSRCI) = vARCI(FH,FY ) + (−�H + h)

(bH − �H)2
∗ vAC (FH,FY ) + 1

bH − �H
IF(h, FY (y); vAC )

RIF(h, FY (y); vWI) = vWI(FH,FY ) + −(bH − aH)[(bH + aH − 2�H)(h − �H)]

((bH − �H)(�H − aH))2
∗ vAC (FH,FY ) + bH − aH

(bH − �H)(�H − aH)
IF(h,  FY (y); vAC )

The  RIF formulas may  appear complex, however they are just a linearisation of the statistic. Practical implementation of RIF estimation
is  straight forward and to illustrate this we consider empirical estimation of the RIF where the empirical RIF for I is estimated using sample
data  as:

R̂IF(h, FY (y); vI) = v̂I(FH,FY ) + ÎF(h; ωI) ∗ v̂AC (FH,FY ) + v̂ωI (FH)
[
−v̂AC (FH,FY ) + �̂H − hi + 2hiF̂Y (yi) − v̂ACC (FH,FY (yi))

]
(19)

To  empirically estimate the RIF, the data of N observations is first ordered using the ranking variable, Y, so that y1 ≤ y2 ≤ . . . ≤ yi ≤ . . . ≤ yN.

Then  estimates of the I, v̂I(FH,FY ), the AC, v̂AC (FH,FY ), the weighting function, v̂ωI (FH), and the mean �̂H are obtained using the formulas in

Section 2. The estimate of the rank, F̂Y (yi), and the absolute concentration curve coordinate, v̂ACC (FH,FY (yi)), can be calculated as follows:

F̂Y (yi) =
∑1

i 1

N
(20)

v̂ACC (FH,FY (yi)) =
∑1

i hi
N

, (21)

where  the numerators are a sum that follow the orderings of the i values of Y.15 Together these yield the empirical RIF. It is important to
note  that the formulas are the same for all empirical applications, no matter what form the health and socioeconomic ranking variable.
Consequently, estimation of the RIF can be automated. To this end the Stata do file used in our empirical example of this paper is provided
as  an Appendix (see online supplementary material) that allows estimation of the RIFs derived in this paper and also provides a working
example of how to decompose the RIF and yield bootstrapped standard errors.16 For decomposition analysis (RIF regression) the empirical
RIF  is used as a dependent variable in a regression. We now turn to the concept of RIF regression.

14 The formula for the RIF for the CI is very similar to the RIF for the univariate Gini. Indeed we  show in Appendix B that if we derive the RIF for the univariate Gini from
the  covariance formula, as we have done in the proof of proposition 1, this is the same as presented in Firpo et al. (2007) where the RIF for the Gini has been derived from a
formula  for the Lorenz curve.

15 The absolute concentration curve is a mapping of cumulative health and fractional rank (Wagstaff et al., 2003).
16 A Stata ado file is also available that allows users to perform OLS based RIF regression of a number of forms of the concentration index and also save the RIF values to

perform  graphical analysis and is found at: https://sites.google.com/site/gawainheckley/home/stata-code?pli=1.
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4. RIF regression decomposition

RIF  regression is a method that allows us to decompose a RIF of any functional into a function of the sources of its variation, the covariates,
X.  Our focus is decomposition of I and hence RIF of I regression decomposition. Firpo et al. (2009) identify two parameters of interest that can
be  estimated using RIF regression: the marginal effect of covariates X on a functional, which is an individual effect, and the unconditional
partial effect, which is a population effect measure. The latter captures the impact of a marginal location shift in a continuous covariate or
the  impact of marginal changes in the conditional distribution of a binary covariate holding everything else constant. Relating this to the
topic  of the paper, the unconditional partial effect measures how an equal marginal increase in education for everyone would impact on
the  bivariate rank dependent index (Note that RIF regression estimates marginal contributions, not percentagewise contributions as WDW
decomposition results are often presented). In this section we show how RIF regression of I obtains these parameters and the assumptions
required to identify them.

4.1.  RIF regression

The  recentering of the IF yielding the RIF implies that vI(FH,FY ) can be expressed as an expected value of the RIF:

vI(FH,FY ) =
∞∫

−∞

RIF(h, FY (y); vI) · dFH,FY (h, FY (y)) = E[RIF(H, FY ; vI)] (22)

In  order to link vI(FH,FY ) to the covariates X, we follow Firpo et al. (2009) applying the law of iterated expectations to express vI(FH,FY )
as a conditional expectation:

vI(FH,FY ) =
∞∫

−∞

RIF(h, FY (y); vI) · dFH,FY (h, FY (y)) =
∞∫

−∞

∞∫
−∞

RIF(h, FY (y); vI) · dF(H,FY )|X (h, FY (y)|X = x) · dFX (x)

=
∞∫

−∞

E[RIF(H, FY ; vI)|X = x] · dFX (x) (23)

where  FX is the CDF of X.17 Thus, decomposing vI(FH,FY ) boils down to a problem of estimating a conditional expectation, which can be
solved by standard regression methods. For a general function of covariates X and an error term ∈ , denoted as �(X, ∈ ), the conditional
expectation of RIF(h, FY (y); vI) may  then be modelled as:

E[RIF(H, FY ; vI)|X = x] = �(X, ∈ ) (24)

The  first parameter of interest, the marginal effect with respect to X, is given by the partial derivative of the regression estimates of
(24):

dE[RIF(H, FY ; vI)|X = x]
dx

= d�(X, ∈ )
dx

(25)

The second parameter of interest is the unconditional I partial effect. For a continuous covariate, this captures the response of I to a small
location  shift in the covariate (unconditional on the other covariates). For a binary covariate, this captures the response of I to marginal
changes in the conditional distribution of the binary covariate given the other covariates. The k × 1 vector of unconditional I partial effects,
denoted  as �(vI), is a vector of average partial derivatives expressed as:

�(vI) =
∞∫

−∞

dE[RIF(H, FY ; vI)|X = x]
dx

·  dFX (x) =
∞∫

−∞

d�(X, ∈ )
dx

·  dFX (x) (26)

The  potential choice of regression methods one could use to model the conditional expectation of RIF(h, FY (y); vI) and recover these
parameters is limitless, but the eventual choice will depend on the form one is willing to assume for the function �(.). Assuming �(.) to be
linear  and applying OLS to estimate the parameters, yields an estimator we refer to as RIF-I-OLS. We  use RIF-I-OLS as our working example
for  illustration of the method, because it is both simple and attractive from an operational perspective. As is the case for standard OLS, the
restriction  to a linear in parameters functional form, still allows for a fairly flexible functional form by inclusion of non-linear or higher
order  transformations of the covariates.

17 Noting that FH,FY (h, FY (y)) =
∫
F(H,FY )|X (h, FY (y)|X = x) · dFX (x), which is substituted into the second equality.
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4.2. RIF-I-OLS

RIF-I-OLS identifies our parameters of interest, the marginal effect and the unconditional I partial effect, under the following assump-
tions:

Additive linearity. Assuming a functional form linear in parameters with an additive error term for the regression model for the RIF of
I,  we may  rewrite Eq. (24) as:

E[RIF(H, FY ; vI)|X = x] = X ′  + � (27)

Zero  conditional mean. E[�|X] = 0. Assuming conditional mean independence of the error term means our coefficient estimates,  ,
have  a meaningful interpretation.

Using vAC as an example, assuming a linear functional form implies the assumption that the sum of: health, the product of health and
fractional rank, and the individual’s position on the absolute concentration curve, can together be modelled as linear in parameters. As is
the  case for standard OLS, linearity implies that the marginal effects are constant along the distribution of X and the derivative of Eq. (27)
with  respect to the covariates X equals the coefficient  :

dE[RIF(H,  FY ; vI)|X = x]
dx

= d[X ′  + �]
dx

=  , (28)

and  the unconditional I partial effect equals  :

�(vI) =
∞∫

−∞

d[X ′  + �]
dx

·  dF(x) =   (29)

Thus,  under the linearity and zero conditional mean assumptions, the marginal effect and the unconditional partial effect are the same
and  RIF regression is optimally estimated using OLS. The procedure of RIF-I-OLS first involves estimating the empirical RIF, as we outlined
in  the final part of Section 3. This yields empirical estimates of each individual’s recentered influence on I. Then, using the empirical RIF
as  the dependent variable in an OLS regression we yield the unconditional I partial effects. In practical terms the distinction between the
marginal  effect and unconditional partial effect becomes important when one relaxes the linearity assumption. As RIF-I-OLS estimates are
a  first-order approximation of the effect of X on I, the unconditional I partial effect is a local effect estimate of a small change in X. That
RIF-I-OLS is a local estimate implies that it should only be considered for relatively small changes. The definition of relatively small will
depend  on the empirical context, for example the degree to which the true functional form is non-linear and/or the importance of general
equilibrium effects.

5.  An empirical illustration of WDW  decomposition and RIF-I-OLS

In  this section we aim to empirically illustrate what the RIF function is, and how WDW  decomposition and RIF-I-OLS compare in their
interpretation. We also show how RIF-I-OLS is both a well-suited method for determining the causal effect of a covariate on I given a
suitable  identification strategy and a useful descriptive decomposition method when no causal inference can be made. The illustrative
example presented here focuses on the effect of education on income-related health inequality controlling for age and gender and uses
data  on monozygotic (“identical”) twins.

The data is a replica of the data used in Gerdtham et al. (2016). Performing a WDW  decomposition, Gerdtham et al. (2016) find education
to  be significantly associated with a higher level of health and to significantly contribute to the level of inequality, however, this all but
disappears  when controlling for family and genetic fixed effects common to twin pairs using a twins differencing strategy. To see if these
results  hold subject to a theoretically less restrictive decomposition method, we  extend the analysis by decomposing income-related health
inequality  using RIF-I-OLS. As in Gerdtham et al. (2016), we  first apply a naïve selection on observables identification strategy using OLS
and  then a twin fixed effects identification strategy.18 We use the former primarily to illustrate the difference in the interpretation of the
results  of the two methods but also because most decomposition studies tend to use OLS and even in this descriptive setting RIF-I-OLS
has  important advantages. We use the twin fixed effects identification strategy to highlight that RIF-I-OLS is well suited to reduced form
causal  impact analysis where RIF-I-OLS potentially has the most to offer. First, however, we  introduce the data and illustrate the empirical
RIF  of I (focusing on EI in particular).

5.1. Data material

The data used in this empirical example is a subset from the Swedish Twin Registry consisting of respondents that took part in a
telephone interview, including a question on self-assessed health, called Screening Across the Lifespan Twin study (SALT) conducted
between the years 1998–2002. The final sample size includes 3328 twin pairs born between the years 1931–1958. The survey data is
matched  with registers from Statistics Sweden on annual taxable gross income (income from earnings, own business, parental leave
benefits,  unemployment insurance and sickness benefits) and education level. Register data should have relatively small measurement
error, which is very important as measurement errors are magnified when differencing between twins, as we do here in the final part
of  this section. Income is measured as an average of gross income over ages 35–39 years.19 The education variable is measured as years
of  schooling and ranges between 8 and 20 years of schooling.20 To obtain a health measure appropriate for a rank dependent index, we

18 We refer the reader to Gerdtham et al. (2016) for both an up-to-date discussion on the merits of twin design based studies in revealing the treatment effect of education
and  for more detailed discussion of the dataset and the twin based fixed effects methodology.

19 This point is discussed further in Gerdtham et al. (2016).
20 Years of schooling is imputed from register data using the highest educational degree obtained in the year 1990 as outlined in the appendix in Gerdtham et al. (2016).
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Table  1
Variable descriptions, 1st moments and algorithm weights.

Variable Description Mean Algorithm weight

Health Health utility from TTO algorithm 0.916
Health1  1 = Very Good Health (self assessed) 0.379 (Reference)
Health2  1 = Good Health (self assessed) 0.37 −0.0315
Health3  1 = Fair Health (self assessed) 0.169 −0.1414
Health4  1 = Poor Health (self assessed) 0.064 −0.3189
Health5  1 = Very Poor Health (self assessed) 0.018 −0.4817
Age4044  1= aged between 40 and 44 years 0.083 0.0109
Age4554  1= aged between 45 and 54 years 0.427 0.0179
Age5564  1= aged between 55 and 64 years 0.449 0.0235
Age6567  1= aged between 65 and 67 years 0.042 0.0193
Female  1 = female, 0 = male 0.551 0.0058
Schooling  Number of years in education 11.571
Income  Gross income (35–39 years)a 199,145
Constant  1 0.9589

Notes:
a Income is in 2010 prices, SEK.

cardinalise the categorical self-rated health measure using a linear algorithm from Burström et al. (2014) (see model 3, supplementary
table 8 of their paper) that transforms self-rated health to a time trade-off (TTO) quality of life utility value. The algorithm values taken
from  Burström et al. (2014) are shown in column 4 of Table 1.21 Summary statistics are also presented in Table 1.22

5.2. Empirical estimation of the RIF

The Erreygers index (EI) for estimated health utility scores is 0.03 (Table 2) indicating that higher health utility is more concentrated
amongst the rich. The empirical RIF for EI of health utility score ranked by income is calculated as explained in Section 3 and the result is
shown  in a scatter plot in Fig. 1. Each scatter point in Fig. 1 is an individual’s recentered influence value of EI plotted against their income
rank.  If an individual were to be removed from the sample, the influence on the statistic would be minus that individual’s RIF value weighted
by  the inverse of the sample size. The figure shows that those at the extreme ends of the income distribution have greatest influence on the
EI.  This is similar to the findings in Monti (1991) for income concentration as measured by the Gini (a univariate rank dependent index):
individuals whose income value is at the extremes of the income distribution have greatest influence on the Gini. As the EI is a bivariate
index,  health, in addition to the ranking variable, affects the degree of influence an individual has on EI. In this particular example those
with  very poor health (squares) and income levels at the extreme ends of the distribution are the ones with the greatest influence on EI.23

This result is important to note for researchers and policy makers and whilst it may  be known to some, the RIF allows it to be shown as a
figure.  Researchers estimating a rank dependent index as a measure of socioeconomic related health inequality need to be sure that the
observations  with the largest influence on the statistic are not miss-codings. Policy makers may  want to focus attention towards those
individuals they can help with most influence on inequality – the extreme poor with poor health in this instance.

5.3.  Interpretation of RIF decomposition and comparison with WDW  decomposition

To provide more information on the characteristics of the individuals that are influencing the statistic, either positively or negatively
and  to a greater or lesser extent, one may  plot the RIF against another variable or turn to the RIF regression method.24 Table 2 reports
descriptive decomposition results of WDW  decomposition of EI, and RIF-EI-OLS decomposition, in addition to results for RIF-I-OLS for
AC,  ARCI, SRCI, and WI  alongside standard mean regression. In a descriptive RIF-I-OLS decomposition the estimated coefficients  ̂may  be
interpreted  as an association between the covariate and the influence on I, providing valuable information as to which groups of individuals
influence  the inequality index. If we (naively) assume the error term, ∈ , and covariates, X, are independent having controlled for selection
on  observables then the RIF-I-OLS parameter  ̂  identifies the (causal) unconditional I partial effects of a shift in the distribution of X on I.
Thus,  interpretation of  ̂  is similar to the interpretation of the coefficients in standard mean regression (the results of which are shown in
column  (1) of Table 2). Indeed, RIF decomposition of the mean of health, assuming a health function linear in parameters, is standard OLS
(Firpo  et al., 2009).

In  the decomposition analysis, years of schooling enters the model as an explanatory variable alongside age, gender and interview
year dummies (because each twin was not necessarily interviewed at the same time). We only control for age and gender because these
variables  are exogenous and predetermined before school was  attended thereby avoiding the issue of “bad controls” (see 3.2.3 of Angrist
and  Pischke, 2008). Proceeding in this way allows us to interpret the education coefficient in a meaningful way. Even for descriptive analysis,
care  should be taken not to introduce mediators that may  complicate interpretation. It is for this reason we do not include employment

21 Health economists often value health states of people by the TTO method where respondents value quality of life in relation to length of life; respondents are asked to
imagine  living in a given state of health for (typically) ten years, and then to state the shorter amount of time in full health which makes them indifferent between the two
options  (Drummond et al., 2005). Reference categories are very good self rated health, age 18–24 years and female.

22 Gerdtham et al. (2016) show that the Swedish Twin Registry data used here is fairly representative of Sweden’s population more widely, which otherwise may  be a
concern  for twin based datasets.

23 The bivariate rank dependent index gives zero weight to those at the median rank (which is the mean ranking value) and increasing weight to those further away from
the  median. Health values at the mean (in this case those with good health or thereabouts) also have zero impact. This is because the covariance is driven by those furthest
away  from the mean of the two variables.

24 One could for example plot a Lowess curve of the RIF and explanatory variable to visually assess a potential relationship and any functional form assumption. We did
this  for education but there was  no real relationship by years of education and therefore do not report the results here.
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Fig. 1. Scatter plot of individual RIF of EI values plotted against individual’s fractional income rank. Each scatter point represents an individual’s recentered influence on EI
plotted  against their fractional income rank by health value.

Table  2
RIF-I-OLS and WDW  decomposition estimates of years of schooling, age and gender on income related health inequality.

OLS RIF-I-OLS decomposition WDW EI–OLS decomposition

Statistic Health AC EI ARCI SRCI WI Contribution % contribution
(1)  (2) (3) (4) (5) (6) (7) (8)

Years schooling 0.005*** 0.000 0.001 0.000 0.009*** 0.010*** 0.008*** 0.282***
(0.000)  (0.000) (0.001) (0.000) (0.003) (0.003) (0.001) (0.035)

Age −0.000*  0.000 0.001 0.000 0.002 0.003 0.001 0.022
(0.000)  (0.000) (0.001) (0.000) (0.002) (0.002) (0.000) (0.014)

Male 0.009***  0.003*** 0.014*** 0.004** 0.051*** 0.054*** 0.006*** 0.212***
(0.002)  (0.001) (0.005) (0.001) (0.016) (0.017) (0.002) (0.050)

Constant 0.930***  −0.016 −0.066 −0.018 −0.181 −0.199
(0.018)  (0.015) (0.058) (0.016) (0.167) (0.183)

Mean  of RIF 0.916 0.007 0.030 0.008 0.089 0.098
Observations 6656 6656 6656 6656 6656 6656 6656 6656
WTP  FE NO NO NO NO NO NO NO NO

Notes: Each column represents a separate decomposition. Column 1 is OLS of the health variable, which is RIF decomposition of the mean assuming linearity in parameters and
is  optimally estimated using OLS. AC = absolute concentration index, EI = Erreygers Index, ARCI = Attainment relative concentration index, SRCI = Shortfall relative concentration
index,  WI = Wagstaff Index, WDW = Wagstaff, Van Doorslaer and Watanabe (2003) decomposition. The mean of RIF is the value of the statistic being decomposed. All
decompositions  control for year of interview fixed effects. Robust standard errors in parenthesis for RIF-mean-OLS and bootstrap standard errors in parenthesis for RIF-I-OLS,
999  repetitions with replacement. Bootstrap standard errors are calculated by bootstrapping the whole procedure (Both for RIF and WDW  procedures). Testing null of the
coefficient/contributions/%  contribution: * p < 0.1, ** p < 0.05, *** p < 0.01.

status, for example, as an explanatory variable. Employment status predicts health but it is also an outcome variable affected by education.
Its  inclusion complicates the interpretation of the education coefficient. The coefficient estimates from RIF-EI-OLS in column (3) of Table 2
suggest,  if interpreted as the unconditional I partial effect, that if one made an equal marginal increase to the number of years of education
for  everyone in the population, this would have no discernible effect on EI. There also appears to be no age profile regarding EI.

Importantly and in contrast to the contribution estimates of WDW  decomposition, RIF-I-OLS identifies the effect of the covariates X on
the  full statistic. That is, the parameter estimate  ̂ captures  the effect of the covariates on the product of the AC (which is two times the
covariance of the level of health and fractional rank) and the weighting function ωI(h). The parameter estimates  ̂ presented  in Columns
2–6  of Table 2 also vary between rank dependent indices depending on the weighting function. Education is found to be significantly
associated with the RIF of WI  and SRCI, but not with the RIF of AC, EI, or ARCI. That is, more educated individuals have larger influence
on the inequality index when measured as WI  and SRCI, but not when the AC, EI, or ARCI are considered. This highlights an important
issue. The differences in weighting functions, and hence value judgements, among the inequality indices can also lead to important
differences in the decomposition results. In this particular example the judgement of whether to consider attainment relative inequality
or  shortfall relative inequality has bearing on whether education has a potential impact.25 It is worth noting that it is possible to identify
the  effect of a particular weighting function by comparing decomposition results for I with decomposition results for AC: AC has a constant
weighting  function, so any differences in the (standardised) decomposition results compared to those for the AC will be due to the weighting
function.

25 Note that the results divide the indices into two groups. On the one hand EI, AC, ARCI, and on the other hand WI and SRCI. This is a consequence of the high mean of the
health  utility index.
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The last two columns in Table 2 report the results from WDW  decomposition of EI. The interpretation is different from any standard
form of mean decomposition and to RIF-I-OLS decomposition. The marginal interpretation of WDW  (vωI (FH)ˇk) (as described in Eq. (10))
implies  that a change in the covariance of the covariate and the socioeconomic rank (due to a change in the distribution of the covariate)
affects EI by a factor of 4 × 0.005, with regard to education in this application. It also implies that a change in beta, the health return to
the  covariate of interest, affects EI by a factor of 4 * 2cov(X, FY). The procedure also summarises I as a summation of the contribution of
each  covariate, where these are the covariate-rank covariances weighted by a linear health-covariate correlation. Following the standard
practice,  we report the WDW  decomposition results as contributions from the covariates in levels and percentagewise contributions of
the  total index. The results suggest that about 28% of the income-related inequalities in health is due to income-related inequalities in
education.  The contribution is statistically significant suggesting that eliminating income-related inequalities in education might reduce
the  EI of health, assuming no change in the ranking variable and a linear health function.26 As the procedure ignores the potential impact of
the  covariates on the weighting function, vωI (FH), the percentagewise “contributions” are the same no matter the choice of I (only levels
vary  with the weighting function). That is, WDW  decomposition of any inequality measure implicitly decomposes an absolute index such
as  EI or AC.

Whilst  the results of the two decomposition methods are not directly comparable, as they have different units of measurement, they
nevertheless draw contrasting conclusions. WDW  decomposition finds a significant contribution due to education whereas RIF for the EI
or  AC – the most comparable basis, as WDW  decomposition holds the weighting function constant and EI and AC have constant weighting
functions – finds no significant effect of education. In this particular case we are focussing on a covariate that is well known to causally
impact the level of income. Indeed using within twin pair fixed effects on slightly different sample of the same twins population Isacsson
(1999)  found a significant impact of years of schooling on income and this is a generally accepted finding (Card, 1999). It is hard to interpret
the  results of WDW  decomposition when one knows that a key identifying assumption does not hold (rank ignorability). This is not an
uncommon  situation; most covariates that impact health also impact the ranking variable. It is our view that the results obtained from
RIF  regression in this kind of situation are much clearer in their interpretation. RIF-I-OLS results allow us to conclude that there is no local
association  of education with absolute income related health inequality, but there is a local association with relative short-falls income
related  health inequality.

5.4.  The causal effect of education on income-related health inequality

In  the previous section, our identification of the unconditional partial effects did not use twin fixed effects but instead (naïvely) relied on
selection  on observables to satisfy the assumption that the errors are independent of the covariates. To highlight the importance of causal
inference  in decomposition analysis we now apply a twins differencing strategy that allows unobserved heterogeneity common between
twins  to be differenced out. That is, we control for factors such as innate ability and early life factors common to both twins, which may
invalidate the exogeneity assumption and yield biased parameter estimates. In the case of income-related health inequality the concern
is  specifically that this unobserved heterogeneity may  be correlated with education and the weighted covariance of health and income
rank.

To  formally derive the within twin pair (WTP) fixed effect decomposition, we denote the RIF values of the jth twin pair, RIF(h, FY (y); I)1j
and RIF(h, FY (y); I)2j . Further, we let uj denote unobserved factors that vary between twin pairs but not within pairs, such as genetic
characteristics and certain early life environmental factors and e1j and e2j denote unobserved factors specific to each twin. Assuming a
linear  functional form for the RIF, we may  write these as:

RIF(h,  FY (y); I)1j = X ′
1j  + uj + e1j (30)

RIF(h,  FY (y); I)2j = X ′
2j  + uj + e2j (31)

where  X1j is a k × n matrix of covariates for the first twin in the twin pair j, X2j is for the second twin in the twin pair and   is a k × 1 vector
of unconditional I partial effects. Taking the difference yields the WTP  estimator:

RIF(h, FY (y); I)1j − RIF(h, FY (y); I)2j =
(
X1j − X2j

)′
 WTP + e1j − e2j (32)

where   WTP is the WTP  estimator of the effect of education. The unobserved factors that are common to both twins such as genetics
or environmental exposure captured by uj will be differenced out of the equation yielding an unbiased OLS-estimator of  ̂ (given  that
these  are the only sources of unobserved heterogeneity).27 Applying the WTP  approach to the RIF of EI using OLS yields the RIF-EI-WTPFE
estimator.

Table 3 reports the monozygotic WTP  fixed effects results for EI, AC, CI, and WI  alongside standard mean fixed effects regression and
WDW  decomposition. The results for the RIF-I-WTPFE decomposition suggest that if one gave an equal marginal increase in the number
of  years of education to everyone in the population, this would have no discernible effect on any measure of I, nor the mean. It therefore
appears that either education has no effect on income-related health inequality, or possibly better put: the variation in education that
exists  under an extensive egalitarian education system cannot explain the observed income-related health inequality.

26 In the case of EI, the weighting function is a constant and therefore the condition that the weighting function is constant is not binding in this case. However WDW
decomposition  of CI and WI would also assume that the weighting function is a constant, which it is not.

27 For a further discussion of potential sources of unobserved heterogeneity see Gerdtham et al. (2016).
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Table  3
RIF-I-WTPFE and WDW-WTPFE decomposition estimates of years of schooling on income related health inequality.

OLS-WTPFE RIF-I-WTPFE decomposition WDW -EI- WTPFE decomposition

Statistic Health AC EI ARCI SRCI WI Contribution % contribution
(1)  (2) (3) (4) (5) (6) (7) (8)

Years schooling 0.001 −0.000 −0.002 −0.000 −0.004 −0.004 0.001 0.05
(0.001)  (0.001) (0.002) (0.001) (0.009) (0.007) (0.002) (0.058)

Constant 0.930***  0.020 0.081 0.022 0.256 0.277
(0.034)  (0.029) (0.117) (0.032) (0.452) (0.401)

Mean  of RIF 0.916 0.007 0.030 0.008 0.089 0.098
Observations  6656 6656 6656 6656 6656 6656 6656 6656
WTP  FE YES YES YES YES YES YES YES YES

Notes: Each column represents a separate decomposition. Column 1 is simply OLS with FE of the health variable. AC = absolute concentration index, EI = Erreygers Index,
ARCI  = Attainment relative concentration index, SRCI = Shortfall relative concentration index, WI = Wagstaff Index, WDW=  Wagstaff, Van Doorslaer and Watanabe (2003)
decomposition.  The mean of RIF is the value of the statistic being decomposed. All decompositions control for year of interview fixed effects. Robust standard errors in
parenthesis  for OLS-WTPFE and bootstrap standard errors in parenthesis for RIF-I-WTPFE and WDW,  999 repetitions with replacement. Bootstrap standard errors are
calculated  by bootstrapping the whole procedure (Both for RIF and WDW procedures). Testing the null of the coefficient/contributions/% contribution: * p < 0.1, ** p < 0.05,
***  p < 0.01.

6. Discussion

Having introduced and illustrated both the WDW  decomposition and RIF-I-OLS decomposition, we  now compare the two  approaches
by  summarising the underlying identifying assumptions and differences in interpretation. For clarity, we start by giving a side-by-side
comparison of the identifying assumptions of the two approaches.

WDW  identifying assumptions: RIF-I-OLS identifying assumptions:
I.  The determinants of health do not determine rank. I.  I is differentiable and the differential is bounded.
II.  The determinants of health do not determine the

weighting  function.
II.  RIF(h, FY(y) ; I) can be modelled as a linear in parameters
function  of X and an additive error term

III.  Health can be modelled as a function linear in variables
X  and an error term.

III. Exogeneity: The errors from the RIF OLS regression
have  zero conditional mean.

IV.  Exogeneity: The errors from the health regression have
zero  conditional mean.

It is clear from the comparison that RIF-I-OLS requires fewer, and less restrictive, identifying assumptions than WDW  decomposition.
The first condition for RIF-I-OLS holds as shown in the proof. Exogeneity is of huge importance for causal inference and is common to both
methods–but  both methods may  be used as descriptive exercises without this assumption. Linearity is also common to both methods, but
this  is an assumption often applied in wider empirical practice and the immediate available evidence suggests this is not a particularly
limiting assumption to impose (Van de Poel et al., 2009, Van Doorslaer et al., 2004b, Firpo et al., 2009). This fits with the perceived wisdom
that  OLS generally provides a good approximation. However, the remaining identifying assumptions of WDW  decomposition (rank and
weighting  function ignorability) are often restrictive as illustrated in this paper and in Erreygers and Kessels (2013). When concern lies
with  covariates that are known to impact on the ranking variable and the weighting function WDW  is likely to yield biased results, which
is  not true for RIF-I-OLS.

An  additional benefit of RIF regression is that it is familiar in its interpretation. The results in Tables 2 and 3 highlight how education’s
effect on income-related health inequality as estimated by RIF-I-OLS can be shown alongside its effect on mean health in a consistent
manner. Similar to mean OLS regression coefficients, the RIF-I-OLS coefficients should be interpreted as how a marginal shift in the
distribution of a covariate, e.g., education, influences the inequality index. The interpretation of RIF-OLS estimates and mean OLS regression
estimates  are similar because RIF-OLS estimates of the mean are in fact exactly the same as mean OLS estimates. We  can use this fact to
illustrate  the difference between WDW  decomposition and RIF-I-OLS. WDW  is based on a mean OLS regression of health. The contribution of
covariate  k in WDW  decomposition corresponds to its coefficient in an OLS regression on the mean of health - weighted by the weighting
function and twice the covariance between covariate k and rank, i.e., ˇkvωI (FH)2cov(Xk, FY ). WDW  is therefore equivalent to a RIF-OLS
decomposition of the mean of health weighted by two functions that are themselves not decomposed. In comparison, RIF-I-OLS estimates
the  impact of covariates on the index itself, the weighted covariance between health and rank, and therefore decomposes all parts of the
index.

As  a result of not imposing weighting function ignorability, RIF-I-OLS has the benefit that it allows the analyst to assess the impact of
covariates  on different forms of I. RIF-I-OLS includes the impact of the covariates on the weighting function and therefore the importance of
the  covariates may  differ between particular indices. Indeed, we illustrate this in our empirical application based on the simple correlations
(not  WTP  fixed effects), where we find that education had no association with the AC, EI and ARCI, but had a significant association with
WI  and SRCI. Whereas WDW  decomposition only allows for decomposing an absolute index, RIF-I-OLS allows researchers to explore how
the  policy impacts on the level of inequality and how this differs depending on the particular value judgement and hence the particular
inequality index policy makers sympathise with. We view this as a necessary part of any inequality analysis because there is no consensus
as  to which inequality measure is preferred.

In this paper we have highlighted the identifying assumptions of the WDW  decomposition method and shown they rarely hold in
practice  and that this makes interpretation difficult. It appears that the central issue with WDW  decomposition is that the parameter
of  interest is not clear and consequently neither are the conditions under which it will be identified. As Erreygers and Kessels (2013)
implicitly show, this results in many potential decomposition methods that can yield very different results. Erreygers and Kessels (2013)
conclude  with a warning that until it is understood which form of WDW  type of decomposition is preferred, all decomposition methods
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should be used with caution. It is our view that this conclusion should be made a little more explicit and that decomposition methods
that  are unclear as to what they estimate and what the necessary identifying assumptions are should be used with caution. Our approach
differs from currently available decomposition methods for bivariate rank dependent indices: first, we  are clear as to what our parameter
of  interest is (the unconditional I partial effect); second, we derive a decomposition method that yields this parameter, based on RIF
regression.

On  a much simpler level RIF also allows useful graphical presentation of the data. In the empirical example we  showed who  influence
the  statistic most – those with very poor health and very low income. Those with very good health have very little impact on the statistic
no  matter their income rank. This may  not be immediately obvious to practitioners and policy makers and is a great way  to illustrate who
would  have greatest impact if targeted. RIF also allows the statistic to be plotted against another covariate and simple bivariate plots can
show  any potential relation that may  be of interest.

The  RIF approach does have its limitations; the leading one is that it is a local approximation. It is therefore not reasonable to calculate
percentagewise contributions using RIF regression. The usefulness of a local estimate should, however, be placed into the larger context
of  the overall aims of decomposition analysis and the available alternative approaches. The approach suggested by Kessels and Erreygers
(2015)  potentially solves the rank ignorability issue but ignores the weighting function assumption. It also requires a structural model,
but  if one were to have a structural model to hand it may  not be preferable to decompose a bivariate index of health inequality. Instead,
Fleurbaey and Schokkaert (2009) convincingly make the case for a structural model approach to be used for analysing fair and unfair
inequalities in health. As a road map  for the health inequality literature this may  very well be the goal or ideal that we all should be aiming
for.  However, if no structural model is available or feasible it may  still be of huge interest how a policy change (which is most often a
marginal  one) impacts both average health and health inequality. RIF of I regression allows this reduced form type of analysis to be made
without  the need for restrictive assumptions making it a useful addition to a health economist’s toolkit.

7.  Conclusion

In this paper we have summarised the literature that has identified the identifying assumptions required by WDW  decomposition and
presented  evidence that these assumptions can be important for the decomposition results. Causal analysis using WDW  decomposition is
therefore  troublesome. Even when WDW  decomposition is interpreted purely as a descriptive accounting exercise the evidence suggests
that  results from the WDW  decomposition will be difficult to interpret if one is concerned about the rank ignorability and weighting
function assumptions. We have introduced an alternative rank dependent index decomposition method that simultaneously relaxes the
rank  and weighting function ignorability assumptions. This alternative is based on a RIF regression. We have extended the RIF concept
from  a univariate setting to a general bivariate rank dependent index, providing a method that yields the unconditional I partial effect of
a  shift in the distribution of X on the inequality index and has strong links to the program evaluation literature. This new decomposition
approach is simple to estimate and the interpretation resembles that of standard conditional mean analysis. Our empirical application
using  the Swedish Twin Registry found a discrepancy between the results of the two methods: WDW  decomposition finds a significant
association of education and income related health inequality, RIF regression finds no such association. In this example we  know that
education  impacts the ranking variable (income) and therefore interpretation is muddied by the assumptions imposed by WDW  decom-
position.  In comparison, interpreting the results from RIF regression is much clearer and the results suggest there is no local impact of
education  on income related health inequality. In an attempt to illustrate RIF-I-OLS’s close link to the treatment effects literature, we used
linear  WTP  fixed effects and found little evidence that (twin differences in) education causally impact income-related health inequality
in  Sweden.

Finally, it is worth noting that the usefulness of the RIF regression goes beyond the estimation of unconditional I partial effects using
OLS.  One can for example use instrumental variables for endogenous variables by adding control functions as per Rothe (2010) to obtain
consistent estimates of the marginal effects. RIF regression also allows Oaxaca-blinder type decompositions of between group/time differ-
ences  to be decomposed for statistics other than the mean under some further identifying assumptions (Fortin et al., 2011). We have not
discussed  these in any great detail but they highlight the potential of our suggested decomposition method and its applicability to a wide
range  of empirical questions.
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Appendix  A. Derivation of the RIF for a general rank dependent index (I), the IF for the AC and the RIFs for AC, EI, CI, ARCI, SRCI
and  WI.

Proposition 1. Let vI(FH,FY ) = vωI (FH)vAC (FH,FY ) be a general rank dependent index, the AC be defined as vAC (FH,FY ) = 2cov(H, FY ) and FH,FY be
the  joint CDF of H and FY with corresponding pdf denoted as fH,FY . Then the RIF for vI(FH,FY ) is given by:
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RIF(h, FY (y); vI) = vI(FH,FY ) + IF(h; vωI ) ∗ vAC (FH,FY ) + vωI (FH) ∗ IF(h, FY (y); vAC ),

where IF(h; vωI ) denotes the IF of the weighting function for I and IF(h, FY (y); vAC ) = −2vAC (FH,FY ) + �H − h + 2hFY (y) −
2
∫ y ∫ +∞

hfH,FY dhdFY (z) denotes the IF for AC.

Proof. To show RIF(h, FY (y); vI) = vI(FH,FY ) + IF(h; vωI ) ∗ vAC (FH,FY ) + vωI (FH) ∗ IF(h, FY (y); vAC ), we  first apply the definition of the IF given
by  Eq. (17) to I yielding:

IF(h,  FY (y); vI) = d

dε

[
vωI (FH)vAC (FH,FY )

]∣∣
ε=0

(A1)

Applying the product rule to Eq. (A1) yields:

IF(h, FY (y); vI) = IF(h; vωI ) ∗ vAC (FH,FY ) + vωI (FH) ∗ IF(h, FY (y); vAC ) (A2)

As  per Eq. (18), adding the functional vI(FH,FY ) to Eq. (A2) yields the RIF for vI(FH,FY ).

To  show that IF(h, FY (y); vAC ) = −2vAC (FH,FY ) + �H − h + 2hFY (y) − 2
∫ y ∫ +∞

hfH,FY dhdFY (z), we first note that the absolute concentration
index  can be written as:

vAC (FH,FY ) = 2cov(H, FY ) = 2

∫
hFYdFH,FY − 2

∫
hdFH,∞

∫
FYdF∞,FY (A3)

Eq.  (A3) states that AC is a functional of the joint probability distribution FH,FY and the probability distribution FY. Substituting vAC (Gh,Fy )
and  vAC (FH,FY ) for vI(Gh,Fy ) and vI(FH,FY ) in the formula for the bivariate IF given by Eq. (17) yields:

IF(h,  FY (y); vAC ) = limε→0
2
∫
hGydGh,FY (y) −

∫
hdGh,∞

∫
GydG∞,FY (y) − cov(H, FY )

ε
(A4)

Substituting Gy as defined in Eq. (12) and Gh,FY (y) as defined in Eq. (15) into Eq. (A4) yields:

IF(h, FY (y); vAC ) = limε→02

[∫
h((1 − ε)FY + εıy)d((1 − ε)FH,FY + εıh,FY (y)) −

∫
hd((1 − ε)FH,∞ + εıh,∞)

∫
((1 − ε)FY + εıy)d((1 − ε)F∞,FY + εı∞,FY (y)) − cov(H, FY )

]
ε

(A5)

Which after taking the limit and re-arranging yields:

IF(h,  FY (y); vAC ) =  2

[
−2

(∫
hFYdFH,FY −

∫
hdFH,∞

∫
FYdF∞.FY

)
+

∫
hdFH,∞

∫
FYdF∞,FY −

∫
hdıh,∞

∫
FYdF∞,FY

+
∫
hFYdıh,FY (y) −

∫
hdFH,∞

∫
FYdı∞,FY (y) +

∫
hıydFH,FY −

∫
hdFH,∞

∫
ıydF∞,Fy

]
(A6)

Term  by term Eq. (A6) is equal to:

−2

∫
hFYdFH,FY + 2

∫
hdFH,∞

∫
FYdF∞,FY = −vAC (FH,FY ), (A7)∫

hdFH,∞

∫
FYdF∞,FY = �H

2
,  (A8)

−
∫
hdıh,∞

∫
FYdF∞,FY = −h

2
, (A9)∫

hFYdıh,FY (y) = hFY (y), (A10)

−
∫
hdFH,∞

∫
FYdı∞,FY (y) = −�HFY (y), (A11)

−
∫
hdFH,∞

∫
ıydF∞,FY = −�H

∫ +∞ ∫ +∞
ıyf∞,FY dhdFY (y) = −�H

∫ +∞

y

∫ +∞
1f∞,FY dhdFY (z) = −�H

∫ +∞ ∫ +∞
1f∞,FY dhdFY (y)

+ �H

∫ y ∫ +∞
1f∞,FY dhdFY (z) = −�H + �HFY (y), (A12)

∫
hıydFH,FY =

∫ +∞ ∫ +∞
hıyfH,FY dhdFY (y) =

∫ +∞

y

∫ +∞
hıyfH.FY dhdFY (z) =

∫ +∞ ∫ +∞
hfH,FydhdFY (y) −

∫ y ∫ +∞
hfH,FY dhdFY (z)

= −�H −
∫ y ∫ +∞

hfH,FY dhdFY (z). (A13)



104 G. Heckley et al. / Journal of Health Economics 48 (2016) 89–106

Together these yield:

IF(h,  FY (y); vAC ) = −2vAC (FH,FY ) + �H − h + 2hFY (y) − 2

y∫ +∞∫
hfH,FY dhdFY (z), (A14)

This  completes the proof. �

Corollary 1. The RIFs for the AC, EI, CI, ARCI, SRCI and the WI  are given by:

RIF(h,  FY (y); vAC ) = vAC (FH,FY ) + IF(h, FY (y); vAC )

RIF(h, FY (y); vEI) = vEI(FH,FY ) + 4
bH − aH

IF(h, FY (y); vAC )

RIF(h,  FY (y); vCI) = vCI(FH,FY ) + (�H − h)

�2
H

∗ vAC (FH,FY ) + 1
�H
IF(h, FY (y); vAC )

RIF(h, FY (y); vARCI) = vARCI(FH,FY ) + (�H − h)

(�H − aH)2
∗ vAC (FH,FY ) + 1

�H − aH
IF(h, FY (y); vAC )

RIF(h,  FY (y); vSRCI) = vARCI(FH,FY ) + (−�H + h)

(bH − �H)2
∗ vAC (FH,FY ) + 1

bH − �H
IF(h, FY (y); vAC )

RIF(h, FY (y); vWI) = vWI(FH,FY ) + −(bH − aH)[(bH + aH − 2�H) (h − �H)]

((bH − �H)(�H − aH))2
∗ vAC (FH,FY ) + bH − aH

(bH − �H)(�H − aH)
IF(h,  FY (y); vAC )

Proof. To show the result of Corollary 1, Proposition 1 states the IFs for the weighting functions for the AC, EI, CI, ARCI, SRCI and WI  need
to  be calculated. The weighting functions for both the AC and EI are constants, therefore the IFs for their weighting functions will be zero
and  we can plug in straight away the functions we need into the formula for the RIF of I. The IF for the CI weighting function is:

IF(h;  ωCI) = d

dε

1[
(1 − ε)

∫
hdFH + εh

] − 1

−
∫
hdFH

|ε=0. (A15)

Differentiating Eq. (A15) and taking the limit with respect to ε and noting that
∫

hdFH = �H gives us:

IF(h;  ωCI) =
∫
hdFH − h∫
hdFH

∫
hdFH

= (�H − h)

�2
H

(A16)

Substituting Eq. (A16) into the formula for the RIF for I yields the RIF for CI:

RIF(h, FY (y); vCI) = vCI(FH,FY ) + (�H − h)

�2
H

∗ vAC (FH,FY ) + 1
�H
IF(h, FY (y); vAC ) (A17)

The  IF for the ARCI weighting function is:

IF(h; ωARCI) = d

dε

1[
(1 − ε)

∫
(h − aH)dFH + ε (h − aH)

] − 1

−
∫

(h − aH)dFH
|ε=0 (A18)

Differentiating Eq. (A18) and taking the limit with respect to ε gives us:

IF(h; ωARCI) =
∫

(h − aH)dFH − (h  − aH)∫
(h − aH)dFH

∫
(h − aH)dFH

= (�H − h)

(�H − aH)2
(A19)

Substituting Eq. (A19) into the formula for the RIF for I yields the RIF for ARCI:

RIF(h, FY (y); vARCI) = vARCI(FH,FY ) + (�H − h)

(�H − aH)2
vAC (FH,FY ) + 1

�H − aH
IF(h, FY (y); vAC ) (A20)

Following a similar argument as for ARCI, the IF for the SRCI is given by:

IF(h; ωSRCI) =
∫

(bH − h)dFH − (bH − h)∫
(bH − h)dFH

∫
(bH − h)dFH

= (−�H + h)

(bH − �H)2
(A21)

Substituting Eq. (A21) into the formula for the RIF for I yields the RIF for SRCI:

RIF(h, FY (y); vSRCI) = vSRCI(FH,FY ) + (−�H + h)

(bH − �H)2
∗ vAC (FH,FY ) + 1

bH − �H
IF(h, FY (y); vAC ) (A22)
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The IF for the WI  weighting function is given by:

IF(h;  ωWI) = d

dε

[
bH − aH(

bH −
∫
hd

(
(1 − ε) FH + εı

))  (∫
hd

(
(1 − ε) FH + εı

)
− aH

) − bH − aH
(bH − �H)(�H − aH)

]
|ε=0 (A23)

Expanding gives us:

IF(h;  ωWI) = d

dε

[
bH − aH

(bH(1 − ε)�H + bHεh − bHaH − (1 − ε)2�2
H − (1 − ε)εh�H + (1 − ε)aH�H − (1 − ε)εh�H − ε2h2 + εaHh)

− bH − aH
(bH − �H)(�H − aH)

]
|ε=0 (A24)

Differentiating with respect to ε and taking the limit w.r.t. ε yields:

IF(h;  ωWI) = −(bH − aH)[(bH + aH − 2�H)(h − �H)]

((bH − �H)(�H − aH))2
(A25)

Substituting Eq. (A25) into the formula for the RIF for I yields the RIF for WI:

RIF(h, FY (y); vWI) = vWI(FH,FY ) + −(bH − aH)[(bH + aH − 2�H)(h − �H)]

((bH − �H)(�H − aH))2
vAC (FH,FY ) + bH − aH

(bH − �H)(�H − aH)
IF(h,  FY (y); vAC ), (A26)

This  completes the proof. �

Appendix B. Linking proposition 1 and corollary 1 to Essama-Nssah and Lambert (2012) and Firpo et al. (2007)

The (R)IF for a univariate rank dependent index, the Gini index (a measure of the concentration of one variable), has been derived in
Essama-Nssah and Lambert (2012) and Monti (1991) (only for the IF) and reported in Firpo et al. (2007). If a univariate setting is assumed,
where  individuals are ranked by health instead of income (i.e., FH is substituted for FY), our derivation of the RIF of the concentration index
coincides  with previous derivations of the (R)IF of the Gini. As Essama-Nssah and Lambert (2012) show that their result is the same as
shown  in Firpo et al. (2007), we only need to link our results to the latter.

The IF for the AC is given by proposition 1:

IF(h, FY (y); vAC ) = −2vAC (FH,FY ) + �H − h + 2hFY (y) − 2

y∫ +∞∫
hfH,FY dhdFY (z) (B1)

If  in deriving Eq. (B1) we had used FH as the ranking variable instead of FY we would have got the IF for the absolute Gini index (AG):

IF(h,  FH(h); vAG) = −2vAG(FH,FH ) + �H − h + 2hFH(h) − 2

h∫ +∞∫
hfH,FH dhdFH(z) (B2)

Similarly to how the RIF of CI was derived in Appendix A, we find the RIF of the Gini index (GI) equals:

RIF(h;  vGI) = −h − 2�H
�H

vGI(FH,FH ) + 1
�H
IF(h; vGI) (B3)

Rearranging yields

RIF(h;  �GI) = −h − 2�H
�H

�GI(FH,FH ) + 1
�H

[
−2�AG(FH,FH ) + �H − h + 2hFH − 2

∫ h ∫ +∞
hfH,FHdhdFH(z)

]

= −h − 2�H
�H

�GI(FH,FH ) + −2�GI(FH,FH ) + 1 − h

�H
+ 2
�H
hFH − 2

�H

∫ h ∫ +∞
hfH,FH dhdFH(z) (B4)

Note:  Firpo et al. (2007) denote the Lorenz ordinate as:

1
�H

h∫ +∞∫
hfH,FH dhdFH(z) = 1

�H
q(˛, FH) (B5)

where   ̨ is the fractional rank. Firpo et al. (2007) also denote the area under the Lorenz curve as:

R(FH) =
1∫
0

q(˛, FH)d  ̨ (B6)



106 G. Heckley et al. / Journal of Health Economics 48 (2016) 89–106

The Gini index equals the area between the line of equality and the Lorenz curve:

vGI(FH,FH ) = 1 − 2R(FH) (B7)

Substituting Eqs. (B5)–(B7) into Eq. (B5) yields:

RIF(h; vGI) = − (h − 2�H)(1 − 2R(FH))
�H

− 2 + 4R(FH) + 1 − h

�H
+ 2
�H

(hFH − q(˛, FH))] (B8)

which  after re-arranging yields the expression presented in Firpo et al. (2007):

RIF(h; vGI) = 1 + 2hR(FH)
�H

− 2
�H

(h(1 − FH) + q(˛, FH))] (B9)

This  completes the proof. �

Appendix C. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.jhealeco.2016.03.006.
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Erratum to ”A general method for decomposing

the causes of socioeconomic inequality in health”

[Journal of health economics 48 (2016) (89-106)]

February 15, 2018

I would like to thank Toshiaki Aizawa for pointing out the following typos
in the paper. Fortunately they have no impact on the final derivations, the
conclusions or the Stata code but they may lead to confusion. The typos are as
follows:

1. On page 95,

Equation (19), a 2 is needed in front of v̂AC(FH , FY ). That is, it should
read as follows:

ˆRIF (h, FY (y); vI) = v̂I(FH , FY )+ ˆIF (h; I)v̂AC(FH , FY )+v̂wI(FH)[−2v̂AC(FH , FY )+
µ̂Hhi + 2hiF̂Y (yi) − v̂ACC(FH , FY (yi))]

2. Page 95 again,

Equations (20) and (21), the lower and upper limits should be the other
way around and should be as follows:

ˆFY (yi) =

∑1

i
1

N

v̂ACC(FH , FY (yi)) =

∑1

i
hi

N

3. Page 103,

Equation (A13), there should not be a negative sign in front of µH .

4. Page 104,

Equation (A15), there should not be a negative sign in front of
∫
hdFH .
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The long-term impact of education on mortality and health:
Evidence from Sweden
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Abstract

There is a well-documented large positive correlation between education and health
and yet it remains unclear as to whether this is a causal relationship. Potential reasons
for this lack of clarity include estimation using different methods, analysis of different
populations and school reforms that are different in design. In this paper we assess
whether the type of school reform, the instrument and therefore subgroup identified and
the modelling strategy impact the estimated health returns to education. To this end we
use both Regression Discontinuity and Difference in Differences applied to two Swedish
school reforms that are different in design but were implemented across overlapping
cohorts born between 1938 and 1954 and follow them up until 2013. We find small and
insignificant impacts on overall mortality and its common causes and the results are
robust to regression method, identification strategy and type of school reform. Extending
the analysis to hospitalisations or self-reported health and health behaviours, we find no
clear evidence of health improvements due to increased education. Based on the results
we find no support for a positive causal effect of education on health.
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1 Introduction

The existence of an education gradient in health has been documented across various countries

and for a variety of health measures including mortality, disability and various measures of

morbidity (see for example, Mackenbach et al. 2003, 2008; Marmot et al. 2012; O’Donnell et al.

2013). A range of theories has been posited to explain the existence of this gradient including

the suggestion that education has a causal effect through its impact on health production,

or through impacting differences in financial resources, preferences or self-empowerment,

understanding of information or better access to information (see for e.g. Cutler and Lleras-

Muney 2006; Grossman 2006; Mackenbach 2012 for overviews). To test these theories we

need credible instruments. A substantive part of the more recent empirical literature has

used differences in compulsory schooling as a source of exogenous variation for years of

education. Two recent reviews of the literature on the impact of education on health (Cutler

and Lleras-Muney, 2012; Grossman, 2015) have found the literature hard to summarise.

In this paper we address this lack of clarity in the literature looking at the causal effect

of education on health. We do this by pinning down many of the potential reasons that

have been given to explain the differences in the findings in the literature. Suggestions for

differences in results across studies include estimation on different populations and for different

periods (Cutler and Lleras-Muney, 2012) or that the instruments used affect different groups

(Grossman, 2015; Clark and Royer, 2013). Clark and Royer (2013) arguably provide the most

convincing evidence so far from Britain’s compulsory schooling law changes using month of

birth and Regression Discontinuity (RD) design and find small or zero impacts of education

on health. However, the reforms were implemented overnight, nationwide. The reforms

were also enacted during very different periods (1947 and 1972). It may be that overnight

implementation of the reforms reduced the wage returns to schooling because of the sudden

change in supply of more educated workers, and this could impact a key potential channel for

education to influence health. There is also cause for concern that the cohorts of 1947 and

1972 are not comparable. For example, Gathmann et al. (2015) provide indicative evidence

that results based on pre WWII cohorts show larger impacts on mortality than results based

on post WWII cohorts and this may be due to different base level mortality rates.

In this paper we consider the long-term impact of education on mortality and wider

measures of health. We want to know whether the type of school reform has an impact on the
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results, holding other variables constant. To this end we use two school reforms in Sweden

that increased years of schooling for cohorts born very close together in time but different in

nature. The first reform increased minimum years of schooling from 7 years to 8 years but

only for those who were not eligible or unwilling to take the academic track. This was rolled

out to about half of Sweden’s municipalities. The second reform increased minimum years

of schooling from 7 or 8 years (depending on municipality) to 9 years and introduced a new

national comprehensive school system involving a change in peer groups and the introduction

of a new national curriculum. The 9 year reform was rolled out nationally but phased in

across municipalities and has been found to have had a sizeable impact on years of schooling

(Meghir and Palme, 2005; Holmlund, 2007; Lundborg et al., 2014; Hjalmarsson et al., 2015).

In fact by utilising a methodological improvement in the measurement of years of schooling

we show that the 9 year reform had impacts on years of schooling twice that of previous

estimates. This paper is the first paper to use the 8 year reform. It was rolled out extensively

across Sweden and we show that it had a sizeable impact on years of education.

The particular set-up assessed in this paper is rather unique because the reforms are

overlapping in the sense that they occur on average 7 years apart within municipalities.

This means the reforms impacted individuals from similar backgrounds who entered similar

labour market structures under a similar health system. That is, under similar labour market

structures any returns to education should be similar for similarly aged cohorts. For each

reform, the nature of their phased roll out means we can compare two groups born in the

same year but who received different amounts of compulsory schooling based on where they

were born. An advantage of this paper is therefore that we are able to pin down the impacts

of the reforms separate of cohort effects. Also, because the reforms were rolled out over time,

the impacts of the reforms are less likely to suffer the same level of general equilibrium effects

that may be a concern if the reforms were rolled out nationwide overnight.

To help further isolate potential variables that explain differences across studies we employ

both difference-in-differences (DiD) and RD design to identify the causal impact of the reforms

on health. RD uses the cut-off for the school year, the 1st of January, combined with reform

year for each municipality. Using birth date in years and months, those too old and therefore

born before the reform year cut-off are not assigned reform status and those born on or after

are. There are as many cut-offs as there are years of reform implementation and we average
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over these to estimate the overall impact of the reform. Our DiD strategy compares across

cohorts in municipalities that didn’t implement the reform to those that did. To assess if

modelling approach matters, we perform analysis of mortality using both linear regression

and Cox proportional hazard regression for lifetime duration analysis.

Our data is based on the universe of Swedes born between 1932 and 1959. We link our

various administrative records together using each individual’s unique personal identification

number enabling us to assess the mortality and health outcomes of about 1.2 million individuals.

We consider the reform status of individuals born between 1938 and 1954. Mortality data is

provided by the Swedish Cause of Death Database and our observation period follows our

individuals up to the end of 2013 which means our oldest cohort born in 1938 and subject to

reform is 75 years old when our period of observation ends. We also consider leading causes of

death. We complement this analysis using Swedish hospital administrative data and a large

survey (The Swedish Health and Living Standards Survey) considering self-reported health

and health related behaviours. The survey data allows us to consider both contemporaneous

health and health related behaviours and therefore gives us the potential to pick up effects

using a more sensitive measure of health and also explain the pathways of any effects we

find. Compared to previous Swedish studies which only consider the 9 year reform using DiD

(Spasojevic, 2010; Lager and Torssander, 2012), the data we use has a much longer follow-up

with more up to date data, more outcome variables and a larger sample size and we analyse

this data using RD in addition to DiD. Meghir et al. (2017) also make the same contributions

as we do over and above those of prior Swedish studies. In comparison to Meghir et al. (2017),

our major contribution is that we introduce a new reform which has the novelty of allowing us

to perform instrumental variable analysis of the causal effect of education on health, compare

two different types of school reform across over-lapping cohorts. Further, we utilise a better

measure of schooling that captures the full effect of the reform which dramatically changes the

interpretation of the 9 year reform and we introduce new survey data measuring self-reported

health and health behaviours.

In the following section we describe the two Swedish compulsory schooling reforms. In

section 3 we introduce the data and in section 4 we outline our empirical strategy. In section

5 we present the results. Our findings show that there was a sizeable increase in years of

education due to both reforms but these increases did not lead to an improvement in life
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expectancy or health. The results are robust to reform, modelling choice, identification

strategy and health outcome. We then discuss the results in section 6 and argue that the

results are not only robust internally, they also have validity beyond the Swedish context.

Finally, we conclude in section 7.

2 The Swedish compulsory schooling reforms

During the 1950s and 1960s in Sweden, a large number of municipalities raised the minimum

years of compulsory schooling from 7 to 8 years gradually over a period between 1941 to 1962

(affecting birth cohorts born between 1927 to 1948). This is illustrated in figure 1 (See "Old

primary school 8-Year"). We call this the 8 year reform. From 1948 to 1969 municipalities

then gradually replaced the old system with a new comprehensive school system that also

raised the minimum years of schooling to 9 years (affecting birth cohorts born between 1938

and 1958). Again, this is illustrated in figure 1 (See "New Compulsory school"). We call

this the 9 year reform. This section provides some background information on these reforms,

leaving a more detailed description to Appendix A.

Prior to both reforms, students attended a common compulsory primary school (Folkskola)

up to and including the 6th grade. After the sixth grade, good performing students (defined

by an assessment) had the option to switch to an academic educational track and study at a

three year junior secondary school (Realskola).1 Those who continued on at primary school

studied up to seventh grade. Attending junior secondary school allowed students to continue

to higher secondary school (Gymnasium) and later university, an option denied to those who

stayed on at primary school. Only a small minority went on to junior secondary school, the

vast majority of students stayed on and completed compulsory education at primary school.2

The 8 year reform was a simple extension of the minimum years of schooling within the

municipality for those students who did not choose to go to junior secondary school. The

reform was seen as an opportunity to give more time for the students to learn without any

specific changes to the curriculum. It is therefore a credible instrument for years of education.

The 9 year reform introduced the Swedish comprehensive school system and was very different

in character to the 8 year reform, as not only did it increase the minimum years of schooling
1Students could also start junior school after the 4th grade and study a four year track.
2For the cohorts we consider the share was 16% (cohort 1938) and 30% (cohort 1951).
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within the municipality to 9 years (from 7 or 8 years) it also postponed tracking of students

with the aim of fostering greater equality of opportunity (Holmlund, 2007). The reform

also introduced a new national curriculum. The removal of early tracking is likely to have

broadened the peer group mix in the new comprehensive school system as higher ability

students who would have gone to junior secondary school now shared the same class as their

lower ability peers for longer compared to students under the old system. The curriculum

changes may well have led to quality changes in schooling.

Old primary school 7-Year

Old primary school 8-Year

New Compulsory school
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Fig. 1: Share of municipalities by length of compulsory education
Notes: This figure shows the proportion of municipalities in Sweden who have the 7 year old primary school
system, the 8 year old primary school system and the new 9 year compulsory school system by birth cohort.

Both reforms were rolled out at municipality level over time and this phased roll out was

at the discretion of the municipalities. The number of municipalities who had implemented

an 8th compulsory year gradually increased from 33 in 1946/47 to 207 in 1958/59. The early

birds in this development tended to be more urban and included most of the larger cities.

Smaller municipalities followed and in the end more than half of Sweden’s more than 1,000

municipalities had introduced a mandatory 8th grade before implementing the comprehensive
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9 year school reform. The previous literature referred to the 8 year extension as a rare

phenomenon mainly occurring in the largest cities (Holmlund, 2007). In fact the majority of

municipalities had rolled out a compulsory schooling length of eight years before the 9 year

comprehensive school was introduced. Figure 1 illustrates this development.3 Both reforms

were rolled out in such a way that within the same school older students were under the old

regime and younger students were under the reformed compulsory schooling regime. For the 8

year reform this simply meant that younger cohorts studied a year longer than older cohorts.

For the 9 year reform this meant two curricula were being taught within the same school.

The roll out of the reforms was not random. The 8 year reform roll out was chosen by the

municipalities themselves, both whether or not to implement at all and the timing. The 9

year reform in its early phase was introduced with explicit intention to evaluate the policy

reform. The process became less strict later on. In section 4 we set out how we control for

this to identify the exogenous variation in schooling we are after.

3 Data

To quantify the impact of the two education reforms on health outcomes we employ both

population based administrative data and survey data. The full population administrative

data is drawn from the Swedish Interdisciplinary Panel (SIP)4. We consider the universe of

those born in Sweden between 1932 and 1959, who survived to 16 years of age, and had not

emigrated from Sweden by 2012.5 These cohorts consist of 2,789,494 individuals.

To identify individuals as exposed or unexposed to the reforms we assign treatment status

based on year of birth and place of residence. Information on the timing of the 8 year reform

in each municipality was gathered from the Swedish National Archives. For the introduction

of the 9 year reform we rely on a dataset as used in Hjalmarsson et al. (2015), of which

an earlier version is described in detail in Holmlund (2007). Information on municipality
3In the early years of the introduction of the 9 year comprehensive school reform (between 1949 and 1962),

the reform was introduced as a social experiment in certain areas (Marklund, 1982). The National School
Board chose the areas from a group of applicants to form a representative set based on observable municipality
characteristics (Holmlund, 2007). In 1962 the Swedish parliament finally decided that all municipalities should
be obliged to offer the new comprehensive school system and by 1969 all municipalities were to have the new
system in place.

4This is based upon Statistics Sweden’s Multiple Generation dataset to which all other datasets are then
linked using personal identifiers. It is administered at the Centre for Economic Demography, Lund University,
Sweden. The present study was approved by the Lund University Regional Ethics Committee, DNR 2013/288.

5Very limited intergenerational information is available before 1932 explaining our chosen start point
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of residence which we use to infer reform assignment is obtained from the 1960 and 1965

censuses.6 In the empirical analysis we consider the reform status of cohorts born between

1938 and 1954 and use cohorts born before and after only as control groups. Our endpoint for

the analysis, the cohort born in 1954, is chosen because this is the last cohort questioned in

the 1970 census for which we have enough years to measure their years of schooling. Both

reforms were rolled out in different parts at different times within the cities of Stockholm,

Gothenburg and Malmo and therefore we exclude those resident in these cities. From the

original sample we have reform assignment for both reforms for 2,108,696 individuals.

Data on schooling is obtained from the 1970 census and this is combined with post schooling

attainments from the Education administrative database. We derive a measure of years of

education by assigning the years typically associated with different types of schooling (from

the census in 1970) and post-schooling qualifications from Education administrative database

and take the sum as an approximation for the total years of education. This approach is

an important innovation in how to measure years of education in Sweden as it allows us to

capture the effect of the 8 year reform on years of education and also better captures the effect

of the 9 year reform. Previous Swedish population administration data based studies have

approximated years of education by the average length associated with the highest educational

qualification (Hjalmarsson et al., 2015; Lager and Torssander, 2012; Lundborg et al., 2014).

We cannot use this approach for the 8 year reform because there is no information on whether

an individual went to 7 year or 8 year primary school. These are clumped together in the same

category in the variable capturing highest educational qualification. Using just administrative

based information on highest qualification also means the impact of the 9 year reform is

under-reported as this approach cannot distinguish between someone who attained more than
6For cohorts born between 1943 and 1948, we assume that place of residence in 1960 is also the municipality

where they went to school. For cohorts born on or after 1949 we follow the suggestion of Holmlund (2007) and
use the place of residence as recorded in the 1965 census. For those born before 1943 we use place of residence
of the mother (father if information is missing for the mother and if both parents are missing we use own place
of residence in 1960) as recorded in the 1960 census. An alternative approach would be to use the place of
birth as an approximation of place of residence during childhood. In theory this approach has a nice intention
to treat interpretation and avoids being susceptible to potential parental choice of reform assignment, itself
linked to the child’s ability. However, for the cohorts we consider births were increasingly occurring at a
hospital and before 1947 the hospital was recorded as the place of birth which often did not coincide with the
place of residence of the parents. Up to 1947 therefore, the place of birth becomes increasingly uninformative
as a measure of place of residence for the child at birth. From 1947 this practice changed and the place of
birth of the child was recorded as the place of residence of the mother (Holmlund, 2007). In figure B.1 in the
appendix we show that the misclassification from hospital recording is sizeable. As near half of our cohorts
are born before 1947 and Meghir and Palme (2005) provide evidence that inter-municipality migration is very
small (and therefore parental response to the reforms is small if there is one at all), we do not follow this
approach.
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compulsory schooling but had different amounts of compulsory schooling e.g. two people

who received vocational training but received different amounts of compulsory schooling

would be given the same number of years of education using just the information from the

administrative data on highest educational qualification. Our new method captures the

impact of the 9 year reform more accurately as it distinguishes schooling and post schooling

achievements when calculating years of schooling.7 How we construct our years of education

variable is a key contribution of the paper, as it not only allows us to capture the impact of

the 8 year reform, it also improves the measurement of the impact of the 8 year reform as

we shall show later.8 Our final sample size for those we also have information on years of

education is 2,022,174.

Data on cause of death and cause of inpatient care at hospital is obtained from the Swedish

Cause of Death database and the Hospital Patient database (stays at a hospital of more

than 24 hours) and merged using a personal identifier to our main dataset. The mortality

data covers the years from 1964 and cause specific information is from 1969 and runs up

to 2013. We consider the whole observation period and therefore measure the impact on

death up to age 75 for the oldest cohort.9 The inpatient data covers the years 1987 up to

2012. We therefore consider the impact on hospitalisations up to age 74. Underlying cause in

both datasets is recorded according to the 7th, 8th, 9th and 10th versions of the International

Classification of Diseases (ICD) depending on year of death/hospital admission. The data

also includes date of death, date of hospital visit (admission and discharge) and length of

hospital visit. We consider the most common causes of death and hospital visits and also the

number of hospital days from inpatient records (see appendix B table B.1 for variable ICD

codings). In table 1 we present the means of our administrative data based outcomes variables

by reform and whether treated or untreated. We include only those born within 10 years of
7We still have downward measurement error for cohorts born after 1951 because the years of schooling

measure in the census measures schooling up to age 19. For cohorts born 1952-1954 we impute years of
schooling using the modal years of schooling measured in the census corresponding to each level of further
education achieved as measured in the Education administrative data from earlier cohorts (1948-1950). For
cohorts after 1954 we assign 7 years of schooling for those with post schooling Swedish Education Nomenclature
2000 (SUN2000) classification of less than 200 and 9 years with a SUN2000 classification of 200-300. This
adjusts for the downward bias of measuring individuals’ schooling before they have reached 19 but will still
underestimate the reform effect.

8This is particularly important for interpretation of prior studies that used the 9 year reform as an
Instrumental Variable for years of schooling as they will have biased their causal estimates upwards using
years of education based on highest qualification from the Education administrative database.

9We consider death by 2013 so that we capture as much data as possible. We could consider death by a
certain age, but then we would lose a lot of information given most deaths are for older ages.
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reform implementation as this is the population we use in our main analysis. We observe

that on average for our 8 year reform sample the untreated have 9.4 years of schooling, 19%

have died by 2013 and predominantly of cancer and have spent 30 days in hospital whereas

the treated population have 10.9 years of schooling, only 9% have died by 2013 and have

spent 21 days in hospital. For the 9 year reform sample on average the untreated are again

less educated, more have died by 2013 and are more likely to have had a hospital visit and

for longer compared to those treated. For both reforms, the treated are younger and this

explains a large part of the differences in health outcomes between our treated and untreated

groups. We control for this in our analysis.

Table 1: Descriptive statistics - administrative data
Variable: 8 Year Reform 9 Year Reform

Untreated Treated Untreated Treated

Years of education 9.4 10.9 10.1 11.5
Dead 0.199 0.090 0.128 0.063
Proportion dead due to:

Cancer 0.080 0.035 0.050 0.021
Circulatory Disease 0.050 0.019 0.029 0.012
External Causes 0.010 0.011 0.011 0.012
Other 0.059 0.026 0.038 0.019

Days at hospital 29.7 21.3 24.0 20.3
Proportion who had a hospital visit due to:

Cancer 0.111 0.066 0.084 0.051
Circulatory Disease 0.156 0.083 0.113 0.062
External Causes 0.121 0.092 0.106 0.092
Other 0.313 0.269 0.284 0.293

Observations 215,846 318,557 640,093 607,715

Notes: This table shows the means for education and health outcomes for those treated and not treated by
each reform and born within 10 years of the first cohort impacted by the reform.
Source: SIP. Own calculations.

The survey data stems from the Swedish survey on living standards (ULF) (Statistics

Sweden, 2008).10 The survey includes self-reported health and health behaviour variables

which we consider as valuable complements to population based administrative data on cause

of death. We consider binary indicators for smoking behaviour, obesity, self-reported anxiety

or worry and self-reported fair or bad health (in contrast to good).11 In table 2 we present

the means of our education and health outcomes. The years of education means correspond
10The ULF survey is a well respected survey used for a wide range of research topics and in recent years

has formed the Swedish part of the European Union Statistics on Income and Living Conditions (EU-SILC).
11We define a binary variable bad or fair health equal to one if self-reported health is reported as fair or poor.

Smoke Daily is a binary indicator, indicating one if smoked daily in the past 30 days prior to interview, zero
otherwise. Anxiety is a binary variable, one indicating whether the individual self-reported having heightened
anxiety, concern or worry, zero otherwise. Obese is a binary indicator derived from information on height and
weight creating a Body Mass Index (BMI), one indicating a BMI of 30 or more, zero otherwise.
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to those for the administrative data in table 1 which suggests the sampling frame of the

survey data does well to represent the population estimate. Whilst self-reported fair or bad

health and obesity are more common amongst the untreated samples, smoke daily and anxiety,

concern are actually more common amongst the treated population. The survey itself is

carried out by face-to-face interviews of a randomly selected sample of the population. The

sample size is about 7,500 individuals per year and data is reported for years 1980 through to

2012. We therefore have 32 years of data. Information from different Swedish censuses and

on education attainment from the Education administrative data is linked to individuals in

the survey.

Table 2: Descriptive statistics - survey data
Variable: 8 Year Reform 9 Year Reform

Untreated Treated Untreated Treated

Years of education 9.5 10.9 10.2 11.5
N 3,360 4,840 9,847 9,306
Fair or bad health 0.261 0.183 0.213 0.166
N 3,349 4,832 9,830 9,294
Smoke daily 0.226 0.276 0.255 0.268
N 3,325 4,813 9,776 9,257
Obese 0.129 0.090 0.105 0.083
N 2,139 2,857 6,004 5,510
Anxiety, concern etc 0.149 0.150 0.146 0.149
N 2,256 3,132 6,437 6,050

Notes: This table shows the means for education and health outcomes for those treated and not treated by
each reform and born within 10 years of the first cohort impacted by the reform.
Source: ULF-Survey. Own calculations.

4 Empirical Strategy

4.1 Identifying the impact of the reforms

In this section we outline the two empirical identification strategies we use to identify the

impact of the reforms on health outcomes: DiD and RD design. The purpose of using two

identification strategies is that it provides a sense of how robust the findings are. The two

methods rely on different identifying assumptions to identify the causal impact of the reforms

and potentially estimate the impact for different populations of compliers. We are therefore

able to assess if this is important to the conclusions we draw.

The impacts of the reforms on education, mortality, hospitalisations and self-reported

health outcomes are modelled in a linear setting, using either OLS or a Linear Probability
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Model (LPM) depending on the outcome variable, as is standard for both DiD and RD. Our

DiD empirical strategy utilises the fact that the education reforms were introduced slowly over

time across municipalities in Sweden. Two individuals born in the same year but one resident

in a reform municipality and the other not have different exposures to compulsory schooling.

This provides us with variation in reform exposure both over time and across municipalities.

However, the implementation was not random as discussed in Holmlund (2007). To control

for this we difference across municipalities and across birth cohorts using dummy variables

for both. Our linear DiD model is:

Hi,c,m = βDiD
0 + βDiD

1 Zc,m + βDiD
2 C + βDiD

3 M + βDiD
4 trendm + εi,c,m; (1)

where i indicates an individual, c the birth cohort, m the municipality, and Zc,m is a variable

equal to one for individuals assigned as exposed to the reform using their date of birth and

place of residence, zero otherwise. Hi,c,m is our outcome of interest, C is a vector of birth year

cohort dummies, M is a vector of municipality dummies, trend is a vector of municipality

specific trends and βDiD
0 is a constant term. The coefficient βDiD

1 measures the impact of the

reforms on our outcome measures. We estimate equation (1) separately for each reform.

The empirical strategy utilising RD design involves identifying the reform effect within

municipalities based on the year the school reform was introduced and the cut-off date for

the school year, which is the 1st of January. Individuals born before the reform year cut-off

are not assigned as exposed to the reform and those born on or after the cut-off are assigned

as exposed. The forcing variable, Ti,m, is birth date measured in years and months from the

reform cut-off date in their municipality. Our linear RD model takes the form:

Hi,c,m = βRD
0 + βRD

1 Zc,m + f(Ti,m) + µi,c,m; (2)

where i, c, m, Zc,m are as for equation (1). The coefficient βRD
1 captures the average impact

of the reforms across all of the municipality level cut-offs. The identifying assumption is that

the outcome variable is a smooth function of our forcing variable and that after adequately

modelling this function, f(Ti), any jump found at the cut-off is due to the education reform

and not some other unobserved variable. To capture the birth cohort relationship with the

outcome variable, we model f(Ti) using a polynomial in years-months from the cut-off, Ti,
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estimated separately either side of the cut-off combined with dummies for gender and month

of birth, to control for seasonality effects.12 To choose our preferred function for Ti we

followed the approach of Imbens and Lemieux (2008) and included progressively higher order

polynomials in T until the additional polynomials were insignificant. At the same time care

was taken to not over-fit the model, a concern raised by Gelman and Imbens (2017). We

found that a second order polynomial was sufficient for all outcomes.

It is potentially of concern that we include individuals much older or younger than the first

cohorts impacted by the reform within a municipality. To deal with this we use a bandwidth

of up to 10 years for both our DiD and RD regressions so that only those born up to 10 years

before or after the first cohort impacted by the reform are included in the analysis.13 We also

test the sensitivity of bandwidth choice and whether municipality level trends are important.

We consider mortality as our main health outcome. In addition to modelling mortality

using an LPM we also consider time until death during the observation period using a Cox

proportional hazard model (Cox and Oakes, 1984) together with our DiD and RD identification

strategies. In this way, we model the conditional probability of dying in the next period given

survival to the current period. By considering the survival nature of our data we use more

information, potentially increasing efficiency. It also allows us to deal with censoring because

of survival beyond the sample period of 2013 and is also a natural choice when considering

causes of death. If a particular cause of death is reduced by the reforms, by construction

this means other causes of death will be increased for a given level of mortality. Cox models,

under the independent competing risks assumption, deal with this. In our application of the

Cox model we estimate duration until death, d, and using DiD we stratify on municipality of

residence and include dummies for birth cohort which gives us:

I1,i,c,m(d|X) = I0,m(d)exp[δDiD
0 + δDiD

1 Zc,m + δDiD
2 γc + δDiD

3 trendz]; (3)

where I0,m is the baseline hazard stratified by municipality, cohort specific fixed effects are

given by γc, time trends for municipalities that roll out the reform in the same year are given

by trendz, and subscripts i, c and m, and Zc,m are as for equation (1).14 δDiD
1 is the reform

12For analysis of the survey data we also include survey year dummies to control for age and year effects.
13We say up to ten years because for the earliest cohort we only have cohorts up to 6 years older to compare

to and for later cohorts we only have cohorts up to 5 years younger to compare to.
14For estimation to be feasible we have to limit the municipality trends estimation to municipalities that
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impact on mortality. For our RD design, the Cox model takes the form:

I1,i,c,m(d|X) = I0(d)exp[δ
RD
0 + δRD

1 Zc,m + f(Ti,m)]; (4)

where I0 is the baseline hazard and subscripts i, c and m, and variables Zc,m and f(Ti,m) are

as for equation (2). The coefficient δRD
1 is the impact of the reform on mortality within each

municipality averaged over all municipalities.

All of the models we have outlined above are reduced form models. We also apply Two

Stage Least Squares (2SLS) using our linear equations (1) and (2) as the first stages with

years of education Y E in place of H as the dependent variable and instrumented with reform

status. Our second stages are:

Hi,c,m = αDiD
0 + αDiD

1 Ŷ Ei,c,m + αDiD
2 C + αDiD

3 M + αDiD
4 trendm + vi,c,m; (5)

Hi,c,m = αRD
0 + αRD

1 Ŷ Ei,c,m + f(Ti,m) + ui,c,m; (6)

where αDiD
1 and αRD

1 are the coefficients on years of education and are our coefficients of

interest. Both αDiD
1 and αRD

1 are identified by the variation in years of education that comes

from the variation generated by the school reforms.

To identify our 2SLS coefficients we need to assume that the reforms affected our health

outcomes only via their effects on years of education (the exclusion restriction) and that

reform exposure is as good as random given our control strategies. The exclusion restriction

would be violated if the reforms had other impacts on students over and above their impact on

years of education that then impacted on health. For the 8 year reform the education system

remained the same and so did the curriculum. However, for the 9 year reform, in addition

to the increase in years of compulsory schooling, both the curriculum and the school system

were changed. Prior to the 9 year reform, students were selected into different schools based

on their academic ability. The 9 year reform abolished this and instead, students were kept

in the same school and classes until the ninth grade.15 Tracking has been found to impact

educational achievement and later life outcomes (Betts et al., 2011) suggesting that its removal

roll out the reform in the same year rather than model trends for each individual municipality.
15There were some exceptions, where tracking was used for some subjects but overall students were much

more mixed.
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may have had an impact on educational quality. The removal of tracking will also have

changed the peer group mix that students were exposed to, potentially impacting learning,

health related behaviours and even assortive mating. Peer effects have been found for health

outcomes and health related behaviours such as drinking, smoking and drug use (see for e.g.

Sacerdote et al. 2011 for an overview on peer effects). In addition to the change in tracking,

the 9 year reform coincided with the introduction of a new national curriculum. Although we

have no evidence of the impact on quality this change made, it seems reasonable to assume

that it had some impact on the variation in quality of schooling across the municipalities.

In order to use the 9 year reform as an IV we have to assume that both the changes to

the tracking system and the introduction of a national curriculum had no impact on schooling

quality or peer effects that could in turn impact our health outcomes. A number of articles

have made this claim (Spasojevic, 2010; Lundborg et al., 2014) whilst others view this as

controversial and focus on estimating the reduced form effect of the reforms (Meghir and

Palme, 2005; Meghir et al., 2017). In this paper we take the latter view but present IV

estimates based on the 9 year reform as a way of quantitative comparison to the 8 year reform,

a reform which we argue more convincingly meets the exclusion restriction requirements.

4.2 First stage results and diagnostic tests

Both of our identification strategies build upon our method of treatment status assignment

performing well. In addition to this and the exclusion restriction, our 2SLS estimates require

our education reform impacts on schooling to be as good as random given our control strategies.

For our DiD estimates our control strategy hinges on the assumption that conditional on

birth cohort and municipality fixed effects, exposure to treatment is as good as random. For

our RD estimates our control strategy hinges on the assumption that conditional on our

modelling of age relative to the first cohort within the municipality impacted by the reform,

there are no jumps in the error term at the cut-off. In this case, any jumps we do find in

years of schooling at the cut-off can then be assumed to be as good as random. In this section

we establish the existence of a first stage and provide some diagnostic tests to assess the

plausibility of our identification assumptions.

In figure 2 we present the raw data of the probability of having achieved 8 years of old

primary schooling (left hand side panel) and 9 years of schooling (right hand side panel)
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Fig. 2: Effect of the reforms on the proportion with the new minimum years of schooling
Notes: Scatter plots of the proportion with the new minimum years of schooling by age in months measured
as months to reform implementation in their municipality. Left panel is for the 8 year reform, right panel the
9 year reform. Reform implementation is at time zero. Source: SIP. Own calculations.

against birth cohort measured in months relative to the first cohort impacted by each reform

respectively. For each monthly bin the proportion with 8 years/9 years of schooling is plotted.

We see that there is an increasing trend with time until exposure and that at the cut-off

there are clear jumps in the proportion with the new minimum years of schooling. Note

that it is entirely expected that a proportion of students have the new compulsory schooling

before reform implementation. Students who repeat a grade would naturally receive an extra

year of schooling. For both reforms it is also documented that there was partial roll out

that was non-mandatory prior to the reform becoming mandatory. We also see a jump in

the proportion with the new compulsory years of schooling in period t-1 and this is much

clearer for the 9 year reform. Hjalmarsson et al. (2015) suggest that the pre-reform increase in

schooling is due to either measurement error in the exposure variable or due to pupils being

in the wrong grade based on their age due to choosing to repeat a grade. Hjalmarsson et al.

(2015) cite evidence that grade repetition was not a common occurrence for those in the old 7

year primary school system but grade repetition and dropping out was for those who were

tracked into the junior secondary school. Those at junior secondary school who were born a

year too early but had dropped out would have normally gone back to old primary school,

but because of the reform they would have instead been caught by the 9 year school reform

and would as a consequence be a year older than their peers in the same class. This last
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explanation fits with what we see in the data. There is possibly a small jump in t-1 for the 8

year reform and this fits with the reported observation that grade repetition was not very

common in the old primary school system. There is however a clear jump in t-1 for the 9 year

reform, and this is quite likely in part driven by dropouts from junior secondary school.16

9
9.

5
10

10
.5

11
Y

ea
rs

-48 -36 -24 -12 0 12 24 36 48
Months to 8 year reform implementation

10
10

.5
11

11
.5

Y
ea

rs
-48 -36 -24 -12 0 12 24 36 48

Months to 9 year reform implementation

-.2
0

.2
.4

.6
.8

M
ar

gi
na

l E
ff

ec
t

-4 -3 -2 -1 0 1 2 3 4
Years to 8 year reform implementation

-.2
0

.2
.4

.6
.8

M
ar

gi
na

l E
ff

ec
t

-4 -3 -2 -1 0 1 2 3 4
Years to 9 year reform implementation

Fig. 3: Effect of the reforms on years of education
Notes: Top two panels: Scatter plots of mean years of schooling by age in months measured as months to
reform implementation in their municipality where the first cohort impacted is at zero. The bottom two
panels: plot regression coefficients of an individual’s birth year relative to the first reform cohort in their
municipality on years of education (spikes represent the 95% confidence interval for each coefficient estimate).
Municipality and birth year fixed effects and municipality level time trends are controlled for, a bandwidth of
10 years is used and clustered standard errors are estimated at the municipality level. Category 4 is four or
more years after the first reform cohort. The reference category is two years before the first reform cohort
(t-2).
Source: SIP. Own calculations.

In figure 3 the top two panels present the raw data in a similar fashion to that of figure
16In the appendix we also show figures equivalent to figure 3 but for the proportion with just 7 years of

schooling, just 8 years of schooling and just 9 years of schooling. These all confirm the jump at the cut-off.
They also confirm the pre-reform jump in t-1. The jump in t-1 for the 9 year reform coincides with a clear
drop in 8 years of old primary school in t-1 suggesting it is driven by individuals dropping out of junior
secondary school after one year in municipalities who had introduced the 8 year reform. We can also see that
there is measurement error in the exposure variable as after the 8 year reform there are still some with 7
years schooling. Similarly for the 9 year reform there is still a proportion with old primary school after reform
exposure. This is partly explained by partial implementation in the municipality where exposure is given as 1
if just part of the municipality enacted the reform.
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2, this time with years of education on the y-axis. The bottom two panels of figure 3 are

event study graphs from our DiD regressions and show the conditional marginal effect and

the corresponding 95% confidence interval for each year cohort relative to the first cohort

impacted by the reform (t=0) on years of education. The reference cohort is the cohort

born two years before the first treated birth cohort. The estimates are from a regression

controlling for municipality and birth cohort fixed effects and standard errors are clustered at

the municipality level. From figure 3 we can see a jump in the average years of schooling due

to both reforms and that this jump is larger for the 9 year reform.

Table 3 presents the regression results of the impact of the reforms on years of education

for all individuals, and also split by gender. Column (1) in table 3 presents the results for

the 8 year reform on years of education for all individuals and we find an increase of 0.23

years of schooling using RD and 0.27 years of schooling using DiD. Column (4) presents the

results for the 8 year reform for all individuals and we find an impact of 0.39 years using RD

and 0.53 years using DiD. Note that the 9 year reform estimates presented here are much

larger than previously documented (see e.g. Holmlund 2007; Lundborg et al. 2014; Meghir

et al. 2017) and the reason is because we use a different measure of years of education which

better captures the impact of increased compulsory schooling on years of education. Indeed,

using a schooling measure calculated in the same way as Holmlund (2007) we find that the

impact of the 9 year reform on years of schooling is 0.3 years using DiD and 0.25 years using

RD, both much smaller than our preferred estimates presented in table 3 (see model (7) of

table B.3 in the appendix for the administrative data based education variable results).
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Table 3: Compulsory schooling reforms’ impact on education
(1) (2) (3) (4) (5) (6)

8 year reform 9 year reform
All Females Males All Females Males

Difference in Difference 0.272∗∗∗ 0.227∗∗∗ 0.316∗∗∗ 0.523∗∗∗ 0.493∗∗∗ 0.551∗∗∗

(0.023) (0.029) (0.026) (0.019) (0.019) (0.023)
F-stat 140.64 59.44 147.39 779.52 688.97 576.09
N 534,403 264,237 270,166 1,247,808 613,317 634,491

Regression Discontinuity 0.230∗∗∗ 0.208∗∗∗ 0.251∗∗∗ 0.392∗∗∗ 0.349∗∗∗ 0.433∗∗∗

(0.023) (0.031) (0.030) (0.023) (0.027) (0.024)
F-stat 101.29 44.25 72.36 299.31 172.71 317.89
N 534,403 264,237 270,166 1,247,808 613,317 634,491

Notes: This table shows the impact of the 8 year and 9 year school reforms on years of education. Each
coefficient is from a separate regression by reform, method and group. DiD specification includes birth cohort
and municipality fixed effects and municipality level time trends. Regression discontinuity estimates have
separate second polynomials in the running variable either side of the cut-off and a full set of dummy
variables for month of birth and gender. Bandwidth of up to 10 years is used for both DiD and RD. Robust
standard errors clustered by municipality level (for DiD) and by the running variable (for RD) are in
parentheses. Testing the null of the coefficient: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
Source: SIP. Own calculations.

The 9 year reform had a larger impact on years of education compared to the 8 year

reform. This makes sense because the 9 year reform increased years of schooling by two years

for students who were in municipalities only offering 7 years of primary school and one year

for those offering 8 years, whereas the 8 year reform was just a single year increase for all

municipalities affected. The 8 year reform was also predominantly rolled out in urban areas

that had less potential compliers as more students in urban areas went to junior secondary

school. The results split by gender show that the impact for males is slightly larger across

modelling strategies and reforms. The F-statistic results suggest across the board that we

have a strong first stage, based on the the rule of thumb for weak instruments of an F-statistic

above 10 (Stock et al., 2002). In table B.3 in the appendix we investigate whether the results

in table 3 are sensitive to our choice of bandwidth and inclusion of municipality specific linear

trends (DiD only). Using bandwidths with a range of 2 years to up to 12 years we find that

the point estimates change only slightly (see columns (1-6) in table B.3). Inclusion of trends

in our DiD estimates makes little difference to the point estimates.

The event study graphs in figure 3 show increases in years of education for the birth

cohort born a year before the first treated birth cohort (t-1) although this is much smaller for

the 8 year reform. Hjalmarsson et al. (2015) find the same pattern when including lags of the

treatment in their assessment of the 9 year reform. We also find that our RD estimates are

consistently smaller than our DiD estimates. The increase we observe for the t-1 cohort in the
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figure explains most of the difference between our RD and DiD estimates. The RD estimates

only capture the impact of the reforms in the reform period whereas the DiD estimates capture

some of the pre-reform treatment differences. We illustrate this by dropping the t-1 cohort as

a sensitivity test (see model (8) table B.3 in the appendix) and find that the gap between the

RD and DiD estimates largely disappears.

We conclude that both the 8 year and 9 year reforms lead to increased years of education,

that the increases were slightly larger for males and that the 9 year reform actually had much

more bite than previous research has suggested. Our RD estimates are smaller than our DiD

estimates and this is likely due to DiD capturing more compliers to the reform. This is a

consequence of them capturing different sub-populations.17

We have shown that the reforms coincide with substantial increases in years of education

using both DiD and RD and therefore that our method of reform assignment is working well.

In addition to a strong first stage regression, our 2SLS estimates require exposure to reform to

be as good as random, conditional on our control strategies. This may be violated if selective

migration to and from reform municipalities occurred, either to escape or gain access to the

reform. In previous work assessing the 9 year reform, both Meghir and Palme (2005) and

Holmlund (2007) have tested for selective migration and have found that it was not a problem.

We are not able to test it for the 8 year reform but make the assumption that the results

of both Meghir and Palme (2005) and Holmlund (2007) apply to the earlier reform as well.

We view this as a plausible assumption given that the 8 year reform was just a pure years

of schooling change and would have provided much less of a reason to move compared to

the comprehensive 9 year school reform - a reform that itself led to very limited selective

migration.

Our estimates are robust to the inclusion of lags and leads and various forms of model

specification but there may still be concern that our error term remains correlated with

our explanatory variables, in particular reform assignment. In figure 4 we perform an RD

diagnostic test of manipulation of the forcing variable in the spirit of McCrary (2008) by
17We have also tested whether seasonal variation in years of schooling changes after the reforms. We find

no impact for the 8 year reform and a small negative impact for the 9 year reform on years of schooling but
not on later health outcomes. This is consistent with work looking at the impact of school starting age on
longer term labour market outcomes, that also finds both an impact on years of schooling but also no impact
on later life outcomes (Fredriksson and Öckert, 2014). Including separate monthly dummies each side of the
threshold however comes at a severe loss of efficiency, we therefore choose to model month effects without a
reform interaction.
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Fig. 4: Diagnostic tests
Notes: Top two panels: Density plots of age measured as the distance in months to reform in their
municipality (the first cohorts to be impacted are at zero). The bottom two panels: Placebo tests of reform
status on father’s years of education - plotted as mean father’s years of schooling in monthly bins of months
to reform.
Source: SIP. Own calculations.

plotting the population density by age relative to the first cohort in the municipality impacted

by the reform (top two panels). We observe no obvious jump at the cut-off point and therefore

no clear changes in the fertility timing decisions around the reform. We also present scatter

plots of father’s education by age relative to the first reform birth cohort and again see no

clear jump in father’s years of schooling at the cut-off. In addition we perform a batch of

balancing tests of predetermined characteristics and reform assignment in order to assess our

exclusion restriction in table 4. The results show that when we control only for birth cohort

fixed effects (columns 1 and 4) our predetermined characteristics are predicted by reform

status. The correlations also go the way we might expect: the reforms were introduced earlier

in areas where parents were more educated and had better jobs. The inclusion of municipality

fixed effects and municipality specific time trends and hence our DiD strategy (see columns 2

and 5) reduces the size of the coefficients bringing them down to zero. Similarly in columns
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(3) and (6) using RD to identify the impact of the reforms we find the size of the coefficients

tends towards zero and they are insignificant. Whilst this evidence is just indicative that

our reforms are not correlated with our error terms, they provide certain credibility to our

strategies. In sum, we have shown that our assignment method works well and that with the

application of our DiD and RD strategies we have provided support to our claim that reform

exposure is as good as random.

Table 4: Diagnostics: Balancing test for differences in predetermined characteristics by reform
status

(1) (2) (3) (4) (5) (6)

8 year reform 9 year reform
OLS DiD RDD OLS DiD RDD

Panel A: Mother

Years of Education 0.095∗ -0.009 -0.009 0.074∗∗ -0.002 0.005
(0.039) (0.007) (0.009) (0.026) (0.004) (0.006)

Blue collar worker 0.033∗∗∗ 0.002 0.001 0.002 -0.001 -0.000
(0.007) (0.002) (0.003) (0.005) (0.001) (0.002)

White collar worker 0.032∗∗∗ 0.004 -0.002 0.019∗∗ 0.000 -0.000
(0.008) (0.002) (0.002) (0.006) (0.001) (0.001)

No occupation -0.068∗∗∗ -0.006∗ 0.002 -0.021∗ 0.000 -0.001
(0.012) (0.002) (0.003) (0.009) (0.002) (0.002)

Panel B: Father

Years of Education 0.118 -0.005 -0.011 0.128∗∗∗ 0.005 0.005
(0.065) (0.011) (0.014) (0.038) (0.007) (0.009)

Blue collar worker 0.043∗∗∗ -0.001 0.004 0.010 -0.000 -0.004
(0.012) (0.003) (0.004) (0.008) (0.002) (0.002)

White collar worker 0.060∗∗∗ -0.001 0.000 0.032∗∗ 0.002 0.005∗

(0.017) (0.003) (0.003) (0.012) (0.002) (0.002)
No occupation -0.004∗ 0.001 0.002 0.001 0.000 -0.000

(0.002) (0.001) (0.002) (0.002) (0.001) (0.001)

Notes: This table shows impact of reform status on various predetermined characteristics. Columns (1) and
(4) are simple associations controlling for year of birth. Columns (2) and (5) are estimates from a DiD
regression. Columns (3) and (6) are estimates from a RD design regression using a 2nd polynomial in age
from reform estimated either side of the cut-off, and dummies for month of birth and gender. All estimates
use a bandwidth of up to 10 years and robust standard errors clustered at the municipality level (age on
months level for RD) and these are shown in parentheses. Testing the null of the coefficient: ∗ p < 0.1, ∗∗

p < 0.05, ∗∗∗ p < 0.01
Source: SIP. Own calculations.

5 Results

5.1 Mortality

5.1.1 All cause mortality by 2013

In this section we analyse the impact of the school reforms on mortality risk by 2013 (dying

by age 75). In figure 5 we show the risk of dying by 2013 and we observe no impact of the
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Fig. 5: Impact of the reforms on mortality by 2013
Notes: These figures plot the relationship between time to reform and mortality. The top two figures are raw
data scatter plots. The bottom two figures are event study figures of coefficients from DiD regression. See
notes for figure 3.
Source: SIP. Own calculations.

reforms on overall mortality in the raw data or in the event study figures.

In table 5 we present the LPM regression results for mortality. In column (1) we present

the linear association of years of education with mortality probability controlling for year of

birth only. This is estimated only for those not treated and with pre or post reform minimum

years of schooling. This is to give an idea as to the strength of the education gradient in health

for the sub-populations impacted by the reforms. The estimates confirm the finding in the

wider literature that education is positively (negatively) associated with health (mortality).

Columns (2) and (3) present our Reduced Form (RF) and 2SLS (IV) results respectively

using our DiD identification strategy. Columns (4) and (5) present our RF and IV RD based

results respectively.
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Table 5: Regression results: OLS estimates and reform effects on overall mortality.
OLS RF-DiD IV-DiD RF-RD IV-RD
(1) (2) (3) (4) (5)

PANEL A: Females and Males

8 Year Reform Impact -0.0167∗∗∗ -0.0003 -0.0011 0.0027 0.0119
(0.0013) (0.0022) (0.0082) (0.0025) (0.0112)

9 Year Reform Impact -0.0100∗∗∗ -0.0003 -0.0005 -0.0016 -0.0041
(0.0006) (0.0011) (0.0021) (0.0014) (0.0034)

PANEL B: Females

8 Year Reform Impact -0.0163∗∗∗ 0.0024 0.0106 0.0029 0.0139
(0.0017) (0.0029) (0.0131) (0.0033) (0.0161)

9 Year Reform Impact -0.0099∗∗∗ 0.0001 0.0002 -0.0022 -0.0064
(0.0007) (0.0014) (0.0028) (0.0017) (0.0048)

PANEL C: Males

8 Year Reform Impact -0.0096∗∗∗ -0.0028 -0.0088 0.0026 0.0104
(0.0019) (0.0031) (0.0097) (0.0039) (0.0159)

9 Year Reform Impact -0.0063∗∗∗ -0.0009 -0.0016 -0.0010 -0.0022
(0.0008) (0.0017) (0.0031) (0.0018) (0.0042)

Notes: This table presents the OLS, reduced form and 2SLS regression estimates on mortality. Mortality is
modelled using an LPM of death by 2013. Sample sizes/No. of deaths: Panel A, 8 year reform
(534,403/71,640); Panel A, 9 year reform (1,247,808/120,382); Panel B 8 year (264,237/28,613); Panel B 9
year (613,317/47,531); Panel C 8 year (270,166/43,723); Panel C 9 year (634,491/72,851). Each coefficient
estimate is from a separate regression. Column (1) is the association of years of education with mortality
controlling for year of birth and the sample is limited to those not treated and with pre or post reform
minimum years of schooling. Columns (2) and (3) are reduced form and 2SLS regression estimates using our
DiD specification which includes birth cohort and municipality fixed effects, municipality level time trends
and a bandwidth of up to 10 years. Columns (4) and (5) are reduced form and 2SLS regression estimates
using regression discontinuity and have separate second polynomials in the running variable either side of the
cut-off and a full set of dummy variables for month of birth, control for gender and bandwidth of up to 10
years. Robust standard errors clustered by municipality level (for DiD) and by the running variable (for RD)
in parentheses. Testing the null of the coefficient: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
Source: SIP. Own calculations.

In Panel A of table 5 the results are for all individuals. The reduced form estimates for the

8 year reform are -0.03 percentage points using DiD and 0.27 percentage points using RD and

are much smaller than the OLS correlations. The standard errors rule out even moderately

large sized effects. The IV estimates for the 8 year reform are -0.11 percentage points using

DiD and 1.2 percentage points using RD (relative impacts of -0.8% and 8.9% respectively)

with corresponding 95 percent confidence interval for DiD of -1.5 to 1.4 percentage points

and using RD of -1 to 3.3 percentage points. The OLS estimate of column (1) is both larger

and more negative than both IV point estimates and lies outside both the DiD and RD 95%

confidence intervals. Testing for endogeneity of years of schooling in the OLS estimates, we

reject the OLS estimates based on the RD IV results but not using the DiD results.18 The

9 year reform reduced form impacts are similar in magnitude to those found for the 8 year
18The test used is a test based on difference-in-Sargan statistics (C-statistic).
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reform but the standard errors are half the size compared to those from the 8 year reform

regressions. As noted in section 4.1 there are strong arguments for not using the 9 year reform

as an IV, but if we do we reject the OLS estimates using DiD but not RD.

In panels B and C of table 5 we split the results by gender as there are both biological and

social differences between the genders that could potentially lead to different health responses

to the reforms. The OLS correlations are stronger for females than for males but in general,

we find no clear gender specific differences in our reduced form estimates or our causal IV

estimates.

5.1.2 All cause mortality sensitivity analysis

In table 6 we present alternative estimates to the LPM results of table 5, this time based on

Cox regression, modelling the proportional hazard function of the probability of dying in the

next period. In column (1) of table 7 we confirm the LPM findings of table 5, that there is

a significant positive association between education and health and that this is stronger for

females. The reduced form estimates using Cox proportional hazard regression for all cause

mortality (columns 2 to 5) mirror the LPM findings; we find no significant impact of either

reform on mortality, that the impacts are very close to zero and there are no discernible

differences in response to the reforms between the genders.

In the appendix, tables B.4 and B.5, we present sensitivity analysis that assesses the

robustness of the results to choice of bandwidth and removal of trends in the LPM and the

Cox DiD analysis and find the conclusions are unaffected by these modelling choices. In

our analysis of the impact of the reforms on education in section 4.2 we found there to be

measurement error in our reform assignment and a positive jump in years of schooling for

individuals one year too old and that this was much larger for the 9 year reform. This lead

to a large discrepancy between the RD estimates and the DiD estimates, but including a

doughnut in our regressions (removing the t-1 cohort) removed the difference between the

RD and DiD estimates. Our LPM and Cox DiD and RD estimates are in absolute terms very

close to one another. However we test if controlling for the t-1 cohort affects our conclusions

in column (8) of tables B.4 and B.5 in the appendix and the conclusions remain the same

for the 8 year reform and for the 9 year reform using DiD. Using RD we find that our LPM

results show a mortality reducing effect, however not for the Cox regression results suggesting
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this is not robust to modelling strategy. We conclude that we find no evidence of a causal

effect of years of schooling on mortality and that this general result is robust to modelling

choices, type of school reform and identification strategy.

Table 6: Cox proportional hazard estimates of survival till 2013
8 year reform 9 year reform

COX-PH COX-DiD COX-RD COX-DiD COX-RD
(1) (2) (3) (4) (5)

Females and Males
Reform Impact 0.9150∗∗∗ 0.9905 1.0136 0.9888 0.9925

(0.0059) (0.0169) (0.0190) (0.0130) (0.0160)
N 138,460 534,403 534,403 1,247,808 1,247,808
No. Deaths 30,633 71,640 71,640 120,382 120,382

Females
Reform Impact 0.9013∗∗∗ 1.0112 1.0285 0.9970 0.9828

(0.0094) (0.0296) (0.0319) (0.0206) (0.0254)
N 67,737 264,237 264,237 613,317 613,317
No. Deaths 12,105 28,613 28,613 47,531 47,531

Males
Reform Impact 0.9561∗∗∗ 0.9790 1.0039 0.9821 0.9989

(0.0080) (0.0196) (0.0264) (0.0167) (0.0176)
N 70,723 270,166 270,166 634,491 634,491
No. Deaths 18,528 43,027 43,027 72,851 72,851

Notes: This table presents the impact of the compulsory school reforms on cause specific mortality. Each
coefficient estimate is from a separate regression. Column (1) is from a Cox proportional hazard regression of
the impact of years of schooling for those not treated and with pre or post reform minimum years of schooling.
Columns (2) and (4) are regression results from out DiD specification which includes birth cohort fixed effects,
municipalities that reformed in the same year level time trends stratified by municipality and a bandwidth of
up to 10 years. Columns (3) and (5) are RD estimates and have separate second polynomials in the running
variable either side of the cut-off and a full set of dummy variables for month of birth and gender and a
bandwidth of up to 10 years. Robust standard errors clustered by municipality level (for DiD) and by the
running variable (for RD) in parentheses. Testing the null of the coefficient: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗

p < 0.01
Source: SIP. Own calculations.

5.1.3 Cause specific mortality by 2013

To test whether the reforms had competing impacts by cause of death that potentially offset

each other or whether diseases more amenable to health related behaviours, specifically cancer,

circulatory diseases and external causes show a response to the reforms we consider some

leading causes of mortality by 2013. Figure 6 presents the raw data for the average within

municipality relationship between birth cohort and cause specific mortality and there are no

discernible jumps at the reform cut-offs.

In table 7 we present the Cox independent competing risks regression estimates for leading

causes of mortality. The RF Cox estimates presented in columns (2-5) are all smaller than

those found in column (1). For both the 8 year and 9 year reforms we find no cause specific
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impacts. The potential exception is the impact of the 9 year reform on deaths due to other

causes. However, we only find a significant positive impact using DiD and a negative but

insignificant impact using RD. It is therefore not robust to identification strategy.

Table 7: Cox proportional hazard independent competing risk results: Impact of the reforms
on causes of mortality

8 year reform 9 year reform

COX-PH COX-DiD COX-RD COX-DiD COX-RD
(1) (2) (3) (4) (5)

Cancer
Reform Impact 0.9526∗∗∗ 1.0221 1.0167 1.0232 0.9851

(0.0103) (0.0291) (0.0280) (0.0215) (0.0289)
No. Deaths 11,831 28,255 28,255 45,079 45,079

Circulatory disease
Reform Impact 0.8659∗∗∗ 0.9603 0.9776 1.0077 0.9747

(0.0109) (0.0334) (0.0395) (0.0298) (0.0403)
No. Deaths 8,091 16,792 16,792 26,086 26,086

External causes
Reform Impact 0.9199∗∗∗ 0.9578 0.9403 0.9483 0.9917

(0.0258) (0.0535) (0.0690) (0.0336) (0.0464)
No. Deaths 1,527 5,650 5,650 13,834 13,834

All other causes
Reform Impact 0.9101∗∗∗ 0.9772 1.0449 0.9399∗∗∗ 1.0270

(0.0108) (0.0291) (0.0354) (0.0218) (0.0307)
No. Deaths 9,184 20,943 20,943 35,383 35,383

N 138,460 534,403 534,403 1,247,808 1,247,808

Notes: See notes for table 6
Source: SIP. Own calculations.
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Fig. 6: Impact of the reforms on cause specific mortality by 2013
Notes: Scatter plots of cause specific mortality rate by age in months measured as the age difference of each
individual from the first birth cohort in their municipality to be impacted by the reform (the first cohorts to
be impacted are at zero).
Source: SIP. Own calculations. 28



5.2 Hospital admissions

5.2.1 All cause days admitted to hospital
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Fig. 7: Impact of the reforms on days admitted to hospital by 2012
Notes: This figure plots the relationship between birth cohort and first cohort impacted by the reform and
days admitted to inpatient care (a stay over-night). See notes for figure 5.
Source: SIP. Own calculations.

In this section we assess the impact of the school reforms on a potentially more sensitive

measure: inpatient hospital admissions. Specifically, days admitted to inpatient hospital care

and cause specific inpatient hospital admissions are considered. In the previous section we

found no impact on overall mortality over the observation period. This means we can assess

other health measures without concern for mortality impacts affecting our results. Figure 7

presents the relationship between age relative to the first reform cohort and days admitted to

hospital. We find no visually discernible impact of the reforms on days admitted to hospital

at the reform cut-offs (0 represents the first cohorts in the municipality impacted by the

reforms).

In table 8 we present the regression results for days in hospital for both reforms. Column

(1) of table 8 shows the simple association of years of education for those not treated and with

pre or post reform minimum years of schooling. There is a substantial and highly significant

negative relationship between years of schooling and days admitted to hospital. The OLS

results suggest that for an additional year of schooling, individuals will have about 1.5 fewer

days at hospital, or a 6 to 7% reduction. The 8 year reform reduced form point estimates
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using both DiD and RD are found in columns(2) and (4) and are equal to 0.27 and 0.85

days for DiD and RD respectively (relative impacts of 1.1% and 3.4% respectively) and are

insignificant, small and positive. The 8 year reform IV point estimates are 1 and 3.7 days for

DiD and RD respectively and also insignificant (increases of 4.1% and 14.9% respectively).

The reduced form point estimates for the 9 year reform are -0.07 and 0.2 days for DiD and

RD respectively and insignificant. The corresponding IV estimates report increases of -0.6%

and 2.4% and are substantially smaller than the OLS correlations. Although both our 8 year

and 9 year reform based IV estimates are quite different to the OLS estimates, we are unable

to reject the OLS estimates.

5.2.2 Cause specific hospital admissions

Hospital admissions can occur for a variety of reasons and differences in education levels

may push the quantity of medical care use in different directions. For example particular

admissions due to health shocks are potentially more likely amongst those who have invested

less in their health which may be a function of having received less education. On the other

hand admissions that are in themselves health investments such as screening and examinations

or preventative care or early detection may be a function of having received more education.

To assess if there are counteracting effects of education we consider three leading reasons for

hospital admission: cancer, circulatory diseases and external causes. In figure 8 we present

the raw data as scatter plots of the probability of admission due to specific causes by age

relative to the first cohort impacted by the reform in each municipality. Eyeballing the data,

there are no obvious jumps at the reform implementation cut-offs in the hospitalisation rates

by cause.

In table 8 column (1) we see that the association of years of education is negative and

significant for circulatory diseases, external causes and all other causes but not for cancer. We

test for jumps using RD in table 8 alongside DiD regression and our reduced form estimates

(columns (2) and (4)). The results using the 8 year reform find no significant impact of the

reform on the probability of inpatient care due to the specific causes we consider except for

external causes, where using RD our IV estimate of -1.6 percentage points is nearly four times

as large as our OLS estimate and twice as large as our DiD IV estimate. The results using

the 9 year reform find evidence of an impact of the reform on the probability of inpatient
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Fig. 8: Impact of the reforms on probability of hospital admission by cause by 2012
Notes: Scatter plots of the probability of hospital admission by age in months measured as the age difference
of each individual from the first birth cohort in their municipality to be impacted by the reform (the first
cohorts to be impacted are at zero).
Source: SIP. Own calculations.

care, through a reduction in other causes related admissions of -1.5 percentage points using

our IV estimate. We should note that we make no adjustment for multiple hypothesis testing

here and any attempt to do so would remove any significance we have found here. In general

we do not find convincing evidence of an impact of education on cause specific inpatient care
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that is robust to identification strategy.

5.2.3 Sensitivity analysis of impact on hospital admissions

In the appendix table B.6, we test the sensitivity of these results to bandwidth choice and

inclusion and removal of linear trends in the DiD regression specification. In table B.6 we

estimate the reduced form results for days of inpatient care of table 8 varying the bandwidth

between 2 to up to 12 years (see columns (1) - (7) in table B.6). Compared to the results for

mortality and years of education, the inpatient days results are more sensitive to bandwidth

choice but the choice of a 10 year bandwidth does not impact the conclusions. The exclusion of

municipality specific linear trends in our DiD analysis makes little difference to the estimates.

Inclusion of a dummy for the t-1 cohort increases the coefficient size across all model types

and both reforms, but also the standard errors. In summary we conclude that there is no

evidence of an impact of either reform on hospital admissions.
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Table 8: Linear regression results: Impact of the reforms on inpatient hospital admissions
Mean OLS RF-DiD IV-DiD RF-RD IV-RD
(1) (2) (3) (4) (5) (6)

Panel A: 8 Year Reform

Days at hospital 24.71 -1.4768∗∗∗ 0.2745 1.0083 0.8469 3.6832
(0.3283) (0.4855) (1.7969) (0.7659) (3.3420)

Probability of hospital admission due to:
Cancer 0.08 -0.0008 0.0004 0.0014 0.0003 0.0014

(0.0010) (0.0017) (0.0064) (0.0017) (0.0074)
Circulatory diseases 0.11 -0.0101∗∗∗ 0.0022 0.0082 0.0024 0.0106

(0.0012) (0.0017) (0.0064) (0.0024) (0.0107)
External causes 0.10 -0.0045∗∗∗ -0.0023 -0.0085 -0.0036∗∗ -0.0158∗∗

(0.0010) (0.0019) (0.0071) (0.0018) (0.0078)
Any other cause 0.29 -0.0128∗∗∗ -0.0034 -0.0125 -0.0028 -0.0121

(0.0015) (0.0026) (0.0095) (0.0035) (0.0151)

N 138,460 534,403 534,403 534,403 534,403

Panel B: 9 Year Reform

Days at hospital 22.17 -1.6405∗∗∗ -0.0707 -0.1354 0.2070 0.5287
(0.1684) (0.4180) (0.7986) (0.4980) (1.2650)

Probability of hospital admission due to:
Cancer 0.07 0.0005 -0.0004 -0.0007 -0.0009 -0.0024

(0.0004) (0.0009) (0.0018) (0.0011) (0.0029)
Circulatory diseases 0.09 -0.0089∗∗∗ 0.0017∗ 0.0033∗ 0.0006 0.0015

(0.0005) (0.0010) (0.0020) (0.0014) (0.0035)
External causes 0.10 -0.0051∗∗∗ 0.0005 0.0009 -0.0001 -0.0002

(0.0005) (0.0012) (0.0023) (0.0016) (0.0040)
Any other cause 0.29 -0.0110∗∗∗ -0.0010 -0.0019 -0.0061∗∗ -0.0156∗∗∗

(0.0007) (0.0017) (0.0033) (0.0024) (0.0060)

N 397,961 1,247,808 1,247,808 1,247,808 1,247,808

Notes: This table presents the impact of the compulsory school reforms on inpatient hospital admissions. All
coefficients are from separate regressions. See notes for table 5.

5.3 Health and health related behaviours

In this section we consider the impact of schooling on health outcomes and health related

behaviours. These health measures are arguably more sensitive to the potential mechanisms

in which education may influence health compared to mortality and hospital visits. So whilst

mortality and hospital visits are outcomes that are objectively measured and available for the

whole population, they require major health events to occur making them relatively insensitive

measures of the impact of education on health. Even though we have found no impact on

mortality or hospitalisations up to the age of 75, it is still possible that we may see an impact

in more sensitive measures such as health behaviours or in self-reported measures of current

health.

In table 9 we present the regression estimates of the school reforms on various self-reported

33



health outcomes and health related behaviours using our survey data. Column (1) shows the

simple OLS correlation estimates of years of education on health for those untreated and with

years of education equal to or one more year than the legal minimum. Education is found

to be associated with lower probability of having fair or bad health and a lower probability

of being obese for our population. The cohorts we use in this analysis therefore exhibit the

same positive education gradient in self-reported health and health related behaviours that is

observed for mortality and hospital admissions in this paper and that has also been observed

more widely in the literature.

The reduced form estimates are found in columns (2) and (4) of table 9. These are

modelled in the same way as for mortality and hospital admissions with the addition of

dummies for survey year but the removal of municipality specific trends. Even though we

observe a strong and significant effect of both reforms on years of education we find significant

impacts of neither the 8 year reform nor the 9 year reform on health or health behaviours.

Focussing on the health variables where there is a significant correlation observed in

column (1) between education and health (fair or bad health and obesity), we find that the

8 year reform based IV results show quite large relative drops and in the same direction as

the OLS estimates. Our DiD and RD based IV results for fair and bad health report relative

drops of -30% and -13% respectively and are large in comparison to the OLS results of a

relative effect of -6%. For obesity our DiD and RD based IV results find relative impacts of

-47% and -6% respectively. However, our estimates are not precisely estimated and this is

with over 30 years of survey data.19

The reduced form estimates for the 9 year reform using both DiD and RD on fair or bad

health imply small positive effects of the reform which is in contrast to the OLS regression

estimates. Incidentally, our results indicate that the findings of Spasojevic (2010) who finds a

causal impact of the 9 year reform on self-reported health are not robust to model specification.

Whilst we are using a different dataset, we mirror her analysis on our dataset. In her paper

she only controls for cohort fixed effects (our column 1 results) and the results in column

(2) show that controlling for differences across municipalities which are also correlated to

background characteristics (see table 4) explain away her findings.

We test the sensitivity of these results to using a smaller bandwidth, found in the appendix,
19The 8 year reform is a strong instrument using RD but not quite so strong using DiD. See table B.2 in

the appendix.
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table B.7, and the results show our conclusions remain the same. We find no clear impact of

the reforms on measures of self-reported health or health behaviours.

Table 9: Education effects on self-reported health and health behaviours
OLS RF-DiD IV-DiD RF-RD IV-RD
(1) (2) (3) (4) (5)

Panel A: 8 Year Reform

Fair or bad health -0.019∗ -0.021 -0.063 -0.017 -0.028
(0.010) (0.018) (0.056) (0.027) (0.043)

N 2,691 8,181 8,181 8,181 8,181
Mean 0.31 0.21 0.21 0.21 0.21

Smoke daily -0.008 0.001 0.004 -0.004 -0.006
(0.009) (0.021) (0.061) (0.026) (0.041)

N 2,661 8,138 8,138 8,138 8,138
Mean 0.24 0.26 0.26 0.26 0.26

Obese -0.029∗∗∗ -0.022 -0.052 -0.005 -0.007
(0.009) (0.019) (0.048) (0.030) (0.035)

N 1,683 4,996 4,993 4,996 4,996
Mean 0.15 0.11 0.11 0.11 0.11

Anxiety, concern etc. -0.004 -0.007 -0.018 -0.029 -0.033
(0.011) (0.022) (0.055) (0.032) (0.037)

N 1,776 5,388 5,385 5,388 5,388
Mean 0.17 0.15 0.15 0.15 0.15

Panel B: 9 Year Reform

Fair or bad health -0.018∗∗∗ 0.005 0.010 0.004 0.012
(0.004) (0.011) (0.021) (0.016) (0.045)

N 12,866 19,124 19,122 19,124 19,124
Mean 0.28 0.19 0.19 0.19 0.19

Smoke daily -0.007∗ -0.011 -0.021 -0.012 -0.032
(0.004) (0.014) (0.025) (0.016) (0.045)

N 12,741 19,033 19,030 19,033 19,033
Mean 0.27 0.26 0.26 0.26 0.26

Obese -0.010∗∗∗ 0.001 0.002 0.013 0.036
(0.003) (0.011) (0.020) (0.012) (0.033)

N 7,935 11,514 11,496 11,514 11,514
Mean 0.13 0.09 0.09 0.09 0.09

Anxiety, concern etc -0.001 -0.015 -0.026 0.009 0.026
(0.004) (0.014) (0.023) (0.018) (0.054)

N 8,468 12,487 12,472 12,487 12,487
Mean 0.16 0.15 0.15 0.15 0.15

Notes: This table presents the impact of compulsory school reforms on self-reported health and health
behaviours. See notes for table 5. Note that a full set of dummy variables for survey year are included in all
regressions and DiD regressions are modelled without municipality trends.
Source: ULF-Survey. Own calculations.
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6 Discussion

Our findings show that across two major school reforms that led to clear and substantial

increases in years of education we observe only small and generally insignificant changes in

mortality and other measures of health. Our IV point estimates for the 8 year reform find that

an additional year of education yields a -0.01 and 1.2 percentage point change in mortality

using DiD and RD respectively and the lower bound of our confidence intervals allows for a

1.7 percentage point reduction in mortality.

The research that most closely aligns to that of ours is that of Lleras-Muney (2005),

Mazumder (2008) and Clark and Royer (2013). Our IV estimates are much smaller than

those of Lleras-Muney (2005) and are more in line with the findings of Clark and Royer (2013)

for Britain, and Mazumder (2008) for the USA. The findings of Clark and Royer (2013) are

potentially the most convincing evidence gathered so far. However, there are concerns that the

results of Clark and Royer (2013) are based upon two reforms in Britain that impacted very

different cohorts (1947 and 1972) and both reforms were implemented overnight nationwide.

The cohorts are likely to have been very different, both in terms of their own characteristics

but also in terms of the health and labour market structures they were exposed to and

there may have been large general equilibrium effects of a nationwide roll out of increased

compulsory schooling that potentially reduce the earnings effect of these reforms. Our results

from Sweden are based on two reforms, different in design, that were rolled out over time

and with overlapping cohorts and evaluated using two different identification strategies and

we still find only small or zero impacts on health. Our findings together with those of Clark

and Royer (2013) suggest that the timing of the reforms and the nature of their roll out has

little bearing on the results. Our own findings are also consistent across the two reforms and

suggest it is not specific features of the Swedish compulsory school setting that explain the

Swedish results because the two reforms were in fact quite different.

Whilst our findings for the 9 year reform are similar to those of Meghir et al. (2017), who

also study the impact of the 9 year reform on mortality in Sweden, our results add a large

sense of robustness to their findings. We have shown that previous estimates of the impact

of schooling have been downward biased because of the measure of years of education used

and in fact the 9 year comprehensive school reform had a much greater effect on years of

education than previous estimates suggest. We have also extended the analysis of the 9 year
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reform to include self-reported measures of health and health related behaviours. The final

and leading contribution of our paper is that we introduce another school reform that allows

us to instrument the effect of education on health. The 9 year reform has been argued to not

be a pure years of schooling reform (Meghir and Palme, 2005) and therefore analysis using

the 9 year reform has to be kept to considering the reduced form impacts. This is not to say

that analysis of the 9 year reform is not of interest, it is just that the theories that we are

testing often relate to years of education (Grossman, 2015).

The results of this paper and of Meghir et al. (2017) stand in contrast with previous

Swedish research of Lager and Torssander (2012) and Spasojevic (2010) who find small health

improving impacts of the 9 year reform. In the appendix C we have attempted to replicate

the results from Lager and Torssander (2012) who found a small but significant reduction in

mortality due to the 9 year reform. Unfortunately we are unable to replicate their results

exactly, but the analysis highlights how our conclusion is robust to their reform assignment

and a different observation sample. We have also shown that we can repeat the significant

finding of a causal impact of the 9 year reform on self-reported health outcomes of Spasojevic

(2010) using a different and larger dataset. However, this result is not robust to a DiD or RD

identification strategy.

The nature of our study is that we have been able to pin down quite a few variables

that potentially explain the differences in impacts of compulsory school reforms found in

the literature. We start with two reforms that both have a substantial impact on years of

schooling. The reforms themselves were also different to each other and were rolled out in

a way that concerns about resource shocks such as lack of teachers and schools and even

general equilibrium effects that may be the case with the reforms in Britain, for example, do

not apply in the same way to the Swedish reforms. That both reforms were rolled out during

similar time periods further implies that the cohorts exposed to the two reforms later acted

under the same welfare and labour market institutions. The clean comparisons of the two

reforms further strengthen the internal validity of our findings. We have used a large dataset

that includes a whole range of health outcomes. Different econometric methods have been

used to estimate the impact on mortality. Two identification strategies have been used to

assess the sensitivity of estimating across different sub-groups and under different identifying

assumptions. Our finding of no or small mortality impacts of education are robust to modelling
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strategy, both LPM and Cox proportional hazard regression, identification strategy, either

DiD or RD design, and school reform type.

The results presented here have strong internal validity. But how relevant are the findings

outside of Sweden? Like the National Health Service (NHS) in Britain, the Swedish health

care system has universal coverage and is publicly provided with access at the point of need

paid for through taxation. Whilst universal provision removes the direct role of financial

resources in determining health care quality, a channel which improved education could

influence, there is still plenty of scope for the more educated to achieve better health. Any

publicly provided health care system has to prioritise resources and more educated individuals

are potentially more likely to be able to manipulate the system to their advantage, either

through knowing how the system works, being more aware of the services that are available or

through the ability to convince doctors of the need for treatment. Medical services also only in

part determine health outcomes. Health behaviours and investments are also very important

in determining health outcomes and these are also potentially impacted by education through

better understanding and knowledge. Financial resources may also play a role in determining

our health behaviours and health investments. To understand how education may impact

health we need to understand which of these potential channels are channels that matter and

this means the results of this paper, due to their high internal validity, are of importance.

The reform cohorts we have considered in this paper were born across the span 1938-1954.

Like Clark and Royer (2013) who considered the school reform of 1947, some of these cohorts

were impacted by the Second World War (WWII). Children in Britain during the war were

moved out of the big cities and lived with members of the extended family or even volunteers

in the countryside. Sweden was neutral during WWII and was much less affected in general

and there were no specific policies to move children out of the large cities.20 So whilst WWII

was an unusual time, it is unlikely to have impacted the external validity of the results drawn

here because life for children in Sweden during the war was largely unaffected.

We argue therefore that our results are not specific to the cohorts we consider. The

results also help us understand which economic channels, if any, education has an impact

on health. Our result, that we are not able to identify an effect of education on mortality,
20During WWII it was possible for schools to cancel classes in case of a threat. However, any time lost had

to be caught up later on. Also if a teacher was called for military service a substitute teacher had to be called
in. Historical sources suggest no educational disruptions in Sweden during the period of WWII (see Bhalotra
et al. (2016)).
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hospital admissions or self-reported health, results that are internally very robust, is therefore

an important finding and of relevance beyond Sweden.

7 Conclusion

The literature documenting the education gradient in health is vast yet the causal effect

literature using compulsory school reforms as instruments for education has produced results

that have been difficult to summarise. In this paper we have been able to pin down many of

the potential explanations for differences in results across studies and have shown using a

large dataset with a long follow-up period that the causal impact of education on mortality is

small. This is also true for hospital admissions and other health measures. For mortality we

can rule out impacts of years of education larger than -1.7 percentage points. These results

hold across econometric technique and identification strategy. We argue that the conclusions

we draw from the results of this paper are not specific to the Swedish context, rather they

have a more general relevance.

Compulsory school reforms have provided a powerful way to assess the causal impact

of education on health. They often impact a large population and can provide exogenous

variation in years of schooling under certain parametric assumptions. They also impact a

sub-population that is often a public health policy focus: the lowly educated who live short

lives and have poorer health outcomes generally. However, the mounting evidence suggests

compulsory schooling laws as policy levers for public health improvements may not be very

effective. It is important to note that we do not conclude that education has no impact

on health outcomes. Evidence has been found that compulsory schooling reforms can have

an impact on health across generations (Lundborg et al., 2014). There is also hope found

further up the education ladder, where evidence using the Vietnam draft as an instrument

to incentivise college attendance in the USA (Buckles et al., 2016; Grimard and Parent,

2007; De Walque, 2007) has found a mortality reducing impact and an improvement in

health related behaviours. Experience from the compulsory schooling literature suggests the

results from the Vietnam draft induced college attendance need to be replicated for other

populations, health outcomes and identification strategies before any firm conclusions can be

drawn however.
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Appendix A - Background to the Swedish school reforms

In this appendix we provide some background information on the Swedish school system, the
two school reforms and their interrelation used in this paper.

A.1 The Swedish School System

Long before compulsory schooling was introduced by law on a nationwide level in Sweden, a
large fraction of the population had basic reading and writing capabilities, and a notable share
of all parishes had introduced some kind of primary school on a voluntary basis (Lindmark,
2015). Regulations announced in the mid to late 19th century came to imply both the right to
cost-free primary schooling and an obligation to take part in the schooling offered (Fredriksson,
1971). Specifically the 1882 legal statue of Folkskolan stated that every parish had to offer
primary schooling by an approved teacher, that school attendance was compulsory for all
children, and that children should start primary school the year they turn seven years old
(Edgren, 2011).

The country was divided into school districts (generally corresponding to a parish, and
later a municipality) and the local school board was responsible for the organization of
elementary education. To overcome differences in content and format across school districts,
a national central education plan was introduced in 1919 (Paulsson, 1946). These guidelines
were published by the Ministry of Ecclesiastical Affairs and included time tables and syllabuses
for compulsory schooling. The ministry also appointed school inspectors responsible for yearly
evaluations of a number of school districts (Fredriksson, 1971). Completion rates were high
and more than 90 per cent of all pupils finished compulsory schooling with full curriculum
(Fredriksson, 1950).

In the 1920s elementary schooling in Sweden was compulsory for six years, but the central
education plan provided curricula also for seven years of schooling and in 1920 a clause
was introduced in the primary school code (paragraph 47 mom. 4) that stated a seventh
school year could be made compulsory in a school district (Fredriksson, 1950). At the time
Sweden applied a tracking system, where good performing students (defined by an assessment)
could select to switch to an academic educational track and study at a four or three year
long junior secondary school (Realskola) after the fourth or the sixth year of elementary
education, respectively. The alternative was to continue and finish basic compulsory schooling.
Attending junior secondary school allowed students to continue to higher secondary school
(Gymnasium) which was a prerequisite for University. During the first half of the twentieth
century, the Swedish school system was highly selective and the vast majority of people only
completed compulsory education Björklund et al. (2004).21

In 1936 the national Government decided that a seventh year of schooling should be
compulsory. The law came into force on July 1, and the decision to extend compulsory
schooling by an extra year was taken by the school board of the school district. It was
stipulated that seven years of schooling had to be implemented across the whole country over
a twelve-year period, before 1949 (Fischer et al., 2013). The reform was seen as a new epoch,
especially among teachers, because previously Folkskola had remained the same since 1882,

21See e.g.Centralbyrån (1977) for yearly numbers of students matriculating to lower and higher secondary
schooling. For the cohorts of interest in this study matriculation to lower secondary schooling increased over
time (16 percent of cohort 1938 and 30 percent of cohort 1951).



offering six years of compulsory education (Folkskollärarförbund, 1949).22 With the bill of
1936, school districts were also allowed to introduce an eight year of compulsory schooling,
but for this they needed to send in a formal application and to be given the king’s consent.

A.2 The 8 Year Reform

With the start of the World War II, the Swedish political debate came to place a large focus
on how to best foster democratic members of society. More education was seen as one of the
main components for fulfilling this goal (Edgren, 2011). Thus, despite the on-going national
implementation of the seventh year of compulsory schooling, a reform work was initiated and
assigned to a new expert commission (Skolutredningen later replaced by Skolkommissionen)
in 1940. This was the first governmental commission with a real mission to investigate
primary and secondary education together, and with an aim to replace the tracking system
with a unified comprehensive school system tying compulsory schooling closer to secondary
education.23

Between 1940-1948 the commission continuously released reports evaluating the current
school system and developing proposals and guiding principles for the future compulsory
school (Marklund, 1982). Although the main focus of the commission’s work was to postpone
tracking decisions to higher grades, and by that improve equality of opportunity, and despite
the on-going implementation of the seven-year compulsory schooling, there were also continued
efforts to further extend compulsory schooling within the old system. The commission’s work
discussed an eight year extension of Folkskola, and in 1945 the Minister of Ecclesiastical
Affairs proposed a bill introducing compulsory eight year schooling (without changing tracking
options), but no action was taken by the Government (Fredriksson, 1971).

As stated above one of the main arguments for extending compulsory education was
democratic fostering. This motive was not new. The 7 year reform was also motivated by
fostering democracy including universal suffrage which was argued to place great demands on
members of society, wherefore a solid education is necessary (Ecklesiastikdepartementet, 1935).
The on-going war made this argument even more important in the debate. Specifically an
eight-year extension was believed to improve student performance with respect to elementary
skills in reading, writing and math, but also other subjects. An extension would also allow
for the introduction of foreign languages (English) as a subject. In addition to theoretical
arguments an extension was further justified by social and ethical arguments and that an
eight-year could fill a supportive and nurturing role for young people that have not established
on the labour market (SOU, 1945).

A second argument for extending compulsory education was induced by international
benchmarking -- that Sweden was lagging behind (Waldow, 2013). Compared to other
countries few students matriculated to higher levels of education, and the time spent in
compulsory education was still quite modest. For example, compulsory education in the US
endured at least until age 16, in Germany there were Volkschule or Hapuptschule until the
age of 15 and in the UK students generally had nine years of compulsory schooling in the late
1930s.

22For a detailed review of the background and the implementation of the seventh compulsory year, see
Fischer et al. (2013).

23Since the 1890’s there had been a quite heated debate about the rational of the the so-called parallel
system where student took different tracks. The main argument in the debate for that all students should
have to complete the very same basic education before continuing to secondary schooling, was that it created
inequalities (Morawski, 2010).
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A third argument for extending compulsory schooling was the increasing specialization of
the labour market and the increased complexity of society and societal life, implying a need
to significantly increase educational goals of Folkskolan. Finally, the economic and societal
duality that existed between urban and rural areas was brought forward to motivate a general
8 year reform or a compulsory school reform. Specifically with respect to education, the rural
areas of the country was falling behind, e.g. smaller shares of students matriculating to junior
secondary education in rural compared to urban areas (Centralbyrån, 1977). With a general
implementation of the 8 year reform such differences could decrease.

The main arguments of the proponents of the 8 year reform to why the realization of an
eight-year extension was seen as preferred compared to a comprehensive school reform was
that there was (i) no large demand from students nor from the parties of the labour market
for a 9 year comprehensive reform, and that (ii) the supply of teachers was too limited for a
comprehensive reform, but also that the teachers generally had too limited education (SOU,
1945).

Likely spurred by the political debate some municipalities applied and got consent from
the king and took the opportunity to implement a mandatory eight-year of Folkskola (Folk-
skollärarförbund, 1943).24 The first two municipalities to implement an eight mandatory year
were Kävlinge and Mariestad in the school year of 1941/42. The number of municipalities
offering an eighth year gradually increases in the next-coming decade: In 1946/47 there were
33 and in 1958/59 207 municipalities, respectively. A characteristic of the municipalities
introducing a mandatory eight-year in this time period is that they were urban and most
of the larger cities of Sweden were early birds in this development. Consequently a quite
large share of all students in the country had eight years of compulsory schooling: in the
school year 1948/49 this was 16 per cent and in the school year 1951/52 this was 25 per cent
(Folkskollärarförbund, 1952)

All municipalities introducing the eighth year followed the main form curriculum requiring
full time reading and a teacher with an appropriate teacher degree.25 Normative and binding
curricula regarding the eight-year were missing in the early period, but the curriculum and
hourly plan presented in the proposal of Skolutredningen in 1946 generally became the norm
for the school districts that implemented an eight-year of Folkskola. The mandatory subjects
in the eight grade were the same as in seventh grade, but local preferences could to some
extent be met (Fredriksson, 1971).

A.3 The 9 Year Reform

In 1948, the expert commission proposed to replace the compulsory primary and the junior
secondary school with a nine-year compulsory comprehensive school. The expert commission
however wanted to evaluate the new school form before introducing it to all schools across
the country. The reform was therefore introduced during an assessment period where the 9
year comprehensive school was introduced in different locations at different points in time.

24Only in a few cases a municipality did not get the permission to implement the extension. The reason
was that the district asked to do an isolated change and only introduce the change in a separate school in a
municipality (Fredriksson, 1971).

25The alternative to the main form were exception forms, characterised by half time reading or that the
teacher did not have an appropriate teachers degree. In the early 1940’s more than 90 percent of all pupils in
Sweden went to a school that were assigned to the main forms (Fredriksson, 1950).
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Starting from 1949/1950 the 9 year reform was rolled out at the municipality level.26 For
the first year of the roll-out of the reform 14 municipalities are selected to participate in
the assessment. 27 The evaluation period was not run as a random experiment, but the
National School Board chose the areas from a group of applicants to form a representative set
based on observable municipality characteristics. Municipalities participating in the early
assessment period were compensated with earmarked money from the central government for
the increased costs following the expansion of mandatory education (Holmlund, 2008). After
the assessment period, the national parliament decides to permanently introduce the 9 year
reform to all schools the country in 1962. Seven years later, by 1969, all municipalities were
obliged to have the new comprehensive school running (Marklund, 1982) and Folkskolan was
fully disconuated.

The reform reshaped the entire school system and compared to the old tracking system
students were kept in the same school type for nine years. Besides extending compulsory
education from seven or eight to nine years and postponing tracking, the educational reform
also came with a change in the national curriculum implying English and civics became a
compulsory subject, but there were no major changes to the total number of hours or the
distribution of hours taught in different subjects (Richardson, 1992).

The educational reform was also pedagogical. The commission proposal of of 1948 was very
clear on that the traditional school and its working methods were obsolete. Specifically whole-
group teaching and questions-response methods should be replaced by more individualized
and activating elements, pandering students drive and independence (Marklund, 1982).28

Based on the principles of the final report of Skolkommissionen a new educational plan
for schools to follow is released 1962 (Lgr 62). The pedagogical key concepts of the plan are
individualization and activity learning (Larsson, 2011). The pedagogical fundament on the
special position of the individual and that the school should foster independent individuals
did not meet any major objections (Marklund, 1989). However the first reform municipalities
experienced difficulties in getting accurate work material and text books (Marklund, 1982).

A.4 Comparing the Two reforms

Based on the above it is evident that Sweden experienced a continuous roll-out of extending
the compulsory amount of schooling from 6 to 9 years over a period of 40 years, and that
the 8 year reform and the 9 year reform were implemented across overlapping cohorts. On
average the 8 year and the 9 year reform was 7 years apart in a municipality.

Both reforms introduced change in the extent of compulsory schooling. As regards the
exact definition of treatment it however seems that the two reforms differ somewhat. Treated

26The comprehensive school system is introduced throughout the whole municipality, or in certain schools
within a municipality. At the time there were 1037 municipalities in Sweden.

27Municipalities had to show interest in the reform and also report on various issues, such as e.g. population
growth, local demand for education, tax revenues and school situation, and all municipalities that took part in
the first year of assessment were required to have eight year comprehensive schooling. The 14 first-movers
were selected out of 144 municipalities.

28The emphasis on the importance of the need of new working methods can also be assigned to the aim
that education should foster democratic societal members. As discussed by Richardson (1978) there is also a
change regarding the view of the individual in the late 1940’s. The development of the individual now matters
more than the societal development. An essential feature of the report by the commission is that that the
school should be more pupil centred and less subject-matter oriented. Another novel perspective is the view
that parents, not the school, are responsible for the pupil.
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students of the 8 year reform faced no significant school system changes, nor any changes in
working methods in class. Thus, any effects from the 8 year reform should mainly be driven
by changes in the amount of time spent in education.29 With the abolishment of the tracking
system the 9 year reform implied a fundamental change of the complete school system and
the reform also came with a new curriculum program and methods. Any effects from the
9 year reform can thus be driven by changes in the amount of time spent in education, by
that the new system kept students together in the same school until the ninth grade, and/or
changes in curricula, working methods and pedagogics.

As discussed above schools and teachers initially faced some problems in that they lacked
appropriate teaching materials corresponding to the new curricula and teaching methods of
the comprehensive school. According to Marklund (1982) teachers degrees of freedom with
respect to novel and open-ended activities were also limited by that students and parents
that wanted Realskola but instead had to undergo compulsory schooling in the comprehensive
system, translated their ambitions and goals for the former school type to the latter. Together
this suggest that the first part of the 9 year reform likely was more similar to the 8 year
reform. Also the first period of the 9 year reform was more similar to the previous school
system in the sense that most schools still streamed students into different classes according
to their choices regarding languages or vocational training and harder and easier courses in
some subjects (Marklund, 1982).

The two reforms were gradually implemented across municipalities. The timing of
implementation in individual municipality was based on a mixture of local and national
decisions. As regards the wider institutional context, we are unaware of any reforms that
might have coincided with the 8 year or the 9 year school reform at the local level. During
the assessment period of the 9 year reform it was only municipalities that showed interest in
the reform that could be selected implying reform implementation was not random. Previous
studies suggest that 9 year reform was implemented earlier in municipalities with higher
incomes and with higher average education, see e.g. Lundborg et al. (2014). Regarding the 8
year reform the early-birds tended to be more urban and most of the larger cities implemented
a mandatory eight year. Smaller municipalities followed and in the end more than half of all
municipalities had introduced a mandatory 8th grade before implementing the comprehensive
9 year school reform.

A.5 Reform data and Validation

The reform data for the 9 year reform was generously shared by Helena Holmlund and we
rely on a dataset as used in Hjalmarsson et al. (2015), of which an earlier version is described
in detail in Holmlund (2008). The dataset encompasses information on the year a specific
school district introduced the new comprehensive school.

While the 9 year reform has previously been used in several economic applications, this
paper is the first to use the 8 year reform and the reform data on the timing of the year of
introduction of the eight year in each municipality was purposively collected from archives
and digitized by the authors. Various official sources provide aggregate information on the
development of the implementation on the 8 year reform. To check the accuracy of the
gathered reform data we perform checks to confirm that the collected information conform with
aggregate official statistics. For example, information on the share of school districts in the

29See e.g. discussion by Orring et al. (1962) on that all earlier reforms than the 9 year reform more or less
left the fundamental work of schools unaffected.
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country that had eight years of compulsory schooling in certain years from Skolöverstyrelsen
(1955) and from Centralbyrån (1977), respectively, suggest our data conform with aggregate
statistics.

The decision to introduce eight years of compulsory schooling was made on the municipal
level, and the assumption is that schools within the same district implemented the reform in
the same year. Theoretically there could however be discrepancies between schools within
municipalities. We believe the assumption is valid since official sources state that the change
generally applied to a whole district (see e.g. Fredriksson (1971) and Skolöverstyrelsen
(1955)). Moreover, aggregate figures on the share of all students taking on the extra year of
compulsory education in certain years (Centralbyrån, 1977) suggest that there should be no
major deviations from this rule.
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Appendix B Online tables and figures

Table B.1: ICD codes used to define causes of death and hospitalisation
Diagnosis ICD 10 code ICD 9 code ICD 8 code ICD 7 code

Cancer C00-D48 140-239 140-239 140-239
Circulatory disease I 390-459 390-458 400-468
External causes S,T,V,W,X,Y 800-999,E800-999 800-999,E800-999 800-999,E800-999
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Fig. B.1: Correlation between place of birth and place of residence over time
Notes: Scatter plots of correlation between place of birth and place of residence as recorded in the 1960 census
over time. The vertical line at 1947 indicates when place of birth was changed from being recorded as
municipality of the hospital to being recorded as place of residence of the mother.
Source: SIP. Own calculations.
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Fig. B.2: Impact of the reforms on leaving school with 7 years of old primary school
Notes: Top two panels: Scatter plots of proportion with 7 years of old primary schooling by age in months
measured as months to reform implementation in their municipality where the first cohort impacted is at zero.
The bottom two panels: plot regression coefficients of an individual’s birth year relative to the first reform
cohort in their municipality on proportion with 7 years of old primary schooling (spikes represent the 95%
confidence interval for each coefficient estimate). Municipality and birth year fixed effects and municipality
level time trends are controlled for, a bandwidth of 10 years is used and clustered standard errors are
estimated at the municipality level. Category 4 is four or more years after the first reform cohort. The
reference category is "two years before the first reform cohort" (t-2).
Source: SIP. Own calculations.

Table B.2: Compulsory schooling reforms’ impact on education (ULF survey)
(1) (2)

8 year reform 9 year reform

Difference in Difference 0.333∗∗∗ 0.530∗∗∗

(0.124) (0.074)
F-stat 7.20 50.90
N 8,200 19,153

Regression Discontinuity 0.627∗∗∗ 0.355∗∗∗

(0.160) (0.105)
F-stat 15.45 11.56
N 8,200 19,153

Notes: This table shows the impact of the 8 year and 9 year school reforms on years of education. Each
coefficient is from a separate regression by reform, method and group. The DiD specification includes birth
cohort, survey year and municipality fixed effects and an observation window of up to 10 years before and
after the first cohort impacted by the reform. Regression discontinuity estimates have separate second
polynomials in the running variable either side of the cut-off and a full set of dummy variables for month of
birth, survey year and gender. Robust standard errors clustered by municipality level (for DiD) and by the
running variable (for RD) are in parentheses. Testing the null of the coefficient: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗

p < 0.01
Source: ULF-Survey. Own calculations.
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Fig. B.3: Impact of the reforms on leaving school with 8 years of old primary school
Notes: Top two panels: Scatter plots of proportion with 8 years of old primary schooling by age in months
measured as months to reform implementation in their municipality where the first cohort impacted is at zero.
The bottom two panels: plot regression coefficients of an individual’s birth year relative to the first reform
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Source: SIP. Own calculations.
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years of comprehensive school
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Source: SIP. Own calculations.
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Table B.7: Sensitivity analysis: Education effects on self-reported health and health behaviours
for different bandwidth choice (5 year bandwidth)

OLS RF-DiD IV-DiD RF-RD IV-RD
(1) (2) (3) (4) (5)

Panel A: 8 Year Reform

Fair or bad health -0.028∗∗ -0.017 -0.049 0.002 0.003
(0.013) (0.022) (0.063) (0.039) (0.047)

N 2,857 5,047 5,045 5,047 5,047
Mean 0.31 0.22 0.22 0.22 0.22

Smoke daily -0.012 0.006 0.017 -0.051 -0.060
(0.010) (0.023) (0.061) (0.031) (0.037)

N 2,827 5,024 5,022 5,024 5,024
Mean 0.25 0.26 0.26 0.26 0.26

Obese -0.025∗∗∗ -0.011 -0.027 0.013 0.012
(0.009) (0.023) (0.058) (0.038) (0.034)

N 1,799 3,092 3,070 3,092 3,092
Mean 0.14 0.11 0.11 0.11 0.11

Anxiety, concern etc -0.004 -0.008 -0.021 -0.029 -0.025
(0.010) (0.028) (0.067) (0.036) (0.033)

N 1,894 3,322 3,307 3,322 3,322
Mean 0.17 0.15 0.15 0.15 0.15

Panel B: 9 Year Reform

Fair or bad health -0.020∗∗∗ 0.006 0.011 -0.021 -0.079
(0.004) (0.014) (0.027) (0.016) (0.074)

N 13,868 13,049 13,036 13,049 13,049
Mean 0.27 0.18 0.18 0.18 0.18

Smoke daily -0.005 -0.025 -0.047 0.003 0.012
(0.004) (0.018) (0.034) (0.022) (0.079)

N 13,731 12,988 12,975 12,988 12,988
Mean 0.27 0.28 0.28 0.28 0.28

Obese -0.010∗∗∗ 0.006 0.014 0.014 0.071
(0.003) (0.015) (0.033) (0.017) (0.090)

N 8,553 7,697 7,639 7,697 7,697
Mean 0.13 0.09 0.09 0.09 0.09

Anxiety, concern etc -0.001 -0.006 -0.013 0.010 0.044
(0.003) (0.017) (0.036) (0.021) (0.095)

N 9,126 8,417 8,363 8,417 8,417
Mean 0.16 0.15 0.15 0.15 0.15

Notes: This table presents the impact of compulsory school reforms on self-reported health and health
behaviours. A 5 year bandwidth is used in DiD and RD regressions instead of 10 years as used in 9 to assess
sensitivity to bandwidth choice. See notes for table 5.
Source: ULF-Survey. Own calculations.
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Appendix C Reconciliation with Lager and Torssander (2012)

Our results differ to those of Lager and Torssander (2012) who also look at the impact of the 9
year reform on mortality in Sweden. They found a small and statistically significant mortality
reducing effect of the 9 year comprehensive school reform for the population aged 40 plus.
There are two obvious differences between our paper and theirs. In their paper they make
some adjustments to reform assignment based on the observation that a large proportion of
individuals in certain municipalities had the minimum years of schooling one or two years
before the reform was officially implemented and adjust the reform assignment accordingly.
The other major difference is that they have data only up to 2007 and make some slightly
different sample restrictions. In table C.1 rows 1 to 4 we move slowly between our main
results towards their specification, reform assignment and sample selection. Column (1) is for
the sample aged 40 plus and column (2) is for all ages. In row 2 we, like them, model the
hazard without trends. This has next to no impact on the coefficients or the standard errors.
In row 3 we use their reform assignment code that they kindly shared with us. This increases
the impact slightly. In row 4 we attempt to replicate the sample restrictions of Lager and
Torssander (2012) (cohorts born between 1943-1955, observed in 1960 and 1965 censuses,
followed up to 2007, not emigrated). The results are essentially the same as for row 3 but the
standard errors have increased. Column 5 are the actual results from Lager and Torssander
(2012) where they find a small but significant reduction in mortality due to the school reform.
Their result is not substantially different from our row 4 replication, but we are unable to
repeat their significant finding exactly or their sample size. What we can conclude is that
the results of this current paper are robust to reform assignment methodology and sample
selection and suggest that the impact of education on health is really quite small.
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Table C.1: Replication of Lager and Torssander (2012): Cox proportional hazard estimates
9 Year Reform

From aged 40 All ages
(1) (2)

Row 1: own sample, own reform assignment, trends
9 year reform 0.9826 0.9888

(0.0132) (0.0130)
Row 2: As per Row 1, no trends
9 year reform 0.9862 0.9922

(0.0134) (0.0130)
Row 3: As per Row 2, LT (2012) reform assignment
9 year reform 0.9794 0.9859

(0.0136) (0.0133)
N 1,242,843 1,247,808
No. Deaths 115,417 120,382

Row 4: As per Row 3, LT (2012) sample restrictions
9 year reform 0.9769 0.9896

(0.0194) (0.0160)
N 1,280,550 1,304,807
No. Deaths 73,909 98,166

Row 5: Results from LT (2012)
9 year reform 0.96 0.98

[0.93-0.99] [0.95-1.01]
N 1,200,519 1,247,867
No. Deaths 65,329 92,351

Notes: This table presents the impact of the 9 year compulsory school reform on mortality. See text for
details. Robust standard errors clustered by municipality level in parentheses. Testing the null of the
coefficient: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. 95% confidence intervals in brackets.
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Paper III





Could easier access to university improve health and reduce health

inequalities?

Gawain Heckley, Martin Nordin and Ulf-G Gerdtham∗†

Abstract

This paper estimates the impact of university education on medical care use and its income
related inequality. We do this by exploiting an arbitrary university eligibility rule in Sweden
combined with regression discontinuity design for the years 2003-2013 for students who graduated
2003-2005. We find a clear jump in university attendance due to university eligibility. This jump
coincides with a positive jump in prescriptions for contraceptives for females but also a positive
jump in mental health related hospital admissions for males. Analysis of the inequality impact of
tertiary eligibility finds no clear impact on medical care use by socioeconomic status of the parents.
The results imply that easing access to university for the lower ability student will lead to an
increase in contraceptive use without increasing its socioeconomic related inequality. At the same
time, the results highlight that universities may need to do more to take care of the mental health
of their least able students.
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1 Introduction

The relationship between education and health is of fundamental interest and has consequently

received a great deal of empirical attention. This literature finds its theoretical origins in the

demand for health model of Grossman (1972) and more recently Grossman (2000). These models

include health as part of an individual’s human capital and they emphasise that health capital is

not only determined by medical care but also potentially other factors such as knowledge capital,

commonly proxied by years of education. The education gradient in health is observed in nearly

every country (Mackenbach et al., 2003; Van Doorslaer and Koolman, 2004) and has prompted

some to focus on education as a means of raising health levels and reducing socioeconomic related

disparities in health (Marmot, 2005; Marmot et al., 2010, 2012).

In this paper we investigate whether access to university education for the student at the

margin of university eligibility (and therefore of relatively low ability) shows improved health. For

this group we observe a significant association between university attendance and frequency of

hospital admissions and the number of prescriptions prescribed. The concern with any association

of education and health is that the relationship may be due to reverse causality. In human capital

models, our initial endowment of human capital affects our ability to invest further in our human

capital, which means those with poor health and therefore low levels of health capital are less able to

invest in their knowledge capital. As a consequence, the associations noted widely in the literature

may just be due to health’s impact on education. There may also be a third hard to observe variable

that explains both our knowledge capital and our health capital. This could be some form of innate

ability as suggested by ? or time preferences as suggested by Fuchs (1982) where those who prefer

today much more than tomorrow are more likely to consume their human capital early.

A review of the recent empirical research investigating the causal link between education and

health by Grossman (2015) finds that there is either a positive impact or a zero or very small

impact. This is illustrated if we consider the recent quasi-experimental evidence that uses changes

to the compulsory education system as instruments. Research in the US (Lleras-Muney, 2005),

in Germany (Kemptner et al., 2011; Jürges et al., 2011), in Italy (Atella and Kopinska, 2014), in

the Netherlands (Van Kippersluis et al., 2011) and in France (Etilé and Jones, 2011) has found

a positive impact on health. Other studies of education system changes in Britain (Clark and

Royer, 2013; Braakmann, 2011), in France (Albouy and Lequien, 2009), in Germany (Pischke and

Von Wachter, 2008), in Sweden (Lager and Torssander, 2012; Meghir et al., 2012) and in Denmark

(Arendt, 2008) have found a small or no effect on health. Both Cutler and Lleras-Muney (2012)

and ? have suggested that the margin being estimated is very important for the interpretation of

the results and is possibly the leading explanation for the large variation in results.
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The impact of university education on health is one margin that has received relatively little

empirical attention yet is of great potential interest. Cunha et al. (2010) have shown that there

are potential complementarities between early and late life interventions. It is therefore useful to

consider whether university education for low ability students can be effective in improving health

outcomes. The evidence that does exist uses the Vietnam draft as a quasi-experiment and finds that

university education reduces smoking initiation and increases cessation (De Walque, 2007; Grimard

and Parent, 2007). It has also been found to lead to a reduction in mortality (Buckles et al., 2016).

In this paper we present new findings of the impact of university education by exploiting

quasi-experimental variation caused by an arbitrary rule in Sweden that states that students must

have a pass mark for at least 90% of their courses that make up a program in order to go on

to university. This rule leads to a large jump in the proportion of students who go on to study

at university of 8 to 9 percentage points (pp) for females and 2pp to 4pp for males. It is this

arbitrary rule that allows us to identify the impact of university eligibility on various medical care

use outcomes using Regression Discontinuity (RD) design. The marginal group affected by the

eligibility rule are individuals who are towards the lower end of the education distribution (46th

percentile and 42nd percentile for males and females respectively, who were enrolled on the academic

stream at upper secondary school). The margin we estimate is therefore of particular policy interest

because it captures the potential egalitarian impact of increasing access to higher education for

lower ability individuals and or individuals from lower ranking socioeconomic groups.

Our results consider individuals who graduated from upper secondary school between 2003

and 2005. The data we use is based on population based administrative records of inpatient and

outpatient hospital admissions (2003-2013) and prescriptions (2005-2013) linked using a personal

identifier to education records. The results show that university eligibility leads to a significant and

substantial jump in university attendance. Previous research using the same eligibility rule (Nordin

et al., 2017) has found that the impact of university eligibility on years of education is in the region

of 0.2 to 0.3 years which is similar in scale to those found for a Swedish compulsory school reform

(Hjalmarsson et al., 2015). We find that this jump in university eligibility leads to no clear overall

impact on hospital admissions or prescriptions. However, when we consider specific cause of hospital

admission and prescription receipt we find a positive jump in the probability of prescription receipt

for contraceptives for females. For males we find an increase in hospital admissions for mental

disorders and a reduction in prescriptions for pain relief related medicines.

We also consider the impact of university eligibility on socioeconomic related health inequality.

This analysis is complementary to our analysis of the mean using OLS. There could quite plausibly

be mean preserving effects on health that are correlated with socioeconomic status or even impacts

just on socioeconomic status that change the covariance of health and socioeconomic status. This
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analysis is a key contribution of the paper. Socioeconomic inequality in health has received a great

deal of public health and political interest as witnessed by the large amount of work done by various

health inequality commissions (Marmot, 2005; Marmot et al., 2010, 2012). The work of these

commissions and by others (e.g., Kunst et al. (2005); Shkolnikov et al. (2011); Mackenbach et al.

(2015); Hu et al. (2016)) has shown that socioeconomic related health inequalities are observed in

almost every country and that not only have they persisted over time but they have even increased

across most western countries.

The question we specifically address is: can we use access to university education as a policy

lever to reduce the observed concentration of hospital care use or prescriptions amongst young

adults from poorer or richer families? To this end we employ the novel decomposition technique

of Heckley et al. (2016) and we find that university eligibility overall has no clear impact on the

concentration of hospital admissions and prescriptions in young adults from either poorer or richer

family backgrounds. Inequality increasing impacts are found for medical examinations at hospital

amongst females but the effects are offset by males. Additionally, even though a clear impact was

found for mean contraceptive prescription receipt, this jump did not coincide with a change in

parental income related inequality of prescriptions for contraceptives.

Overall our findings suggest that increasing access to university should increase female contra-

ceptive use and not have a detrimental impact on socioeconomic related health inequality. However,

the increase observed in mental health hospital admissions for males just crossing the eligibility

threshold suggests universities should do more to help their least able students with the pressures

of university life.

The rest of the paper is structured as follows. In section 2 we introduce the Swedish education

system and the eligibility rule we consider. In section 3 we introduce our measures of socioeconomic

inequality. In section 4 we introduce the data material we use for the analysis and in section 5 we

explain our empirical approach and test the identifying assumptions we make. Section 6 presents

the results for medical care use and section 7 concludes.

2 The Swedish education system

In this section we briefly outline the Swedish educational system and the eligibility rule for university

that we use to identify the impact of eligibility on medical care use.1 In Sweden in order to be able

to attend university a student needs to achieve eligibility through passing at least 90% of a full

program at upper secondary school. This can also be achieved by completing complementary adult

1The system we describe here was in place between the years 1997 to 2010. During this period the system was slightly
tweaked in 2003
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studies after upper secondary school but the cut-off we consider is university eligibility as achieved

at graduation from upper secondary school. We choose to use university eligibility defined at end of

upper secondary school because it is a well-defined and hard to manipulate rule that leads to a jump

in university attendance, as we shall show later. In general, upper secondary school is for three

years and students start upper secondary school aged 16 and graduate at age 19.2 There are two

streams at upper secondary school: the academic stream with the explicit aim of going to university

after graduating from upper secondary school and the vocational stream with an explicit focus of

getting a job once graduated. In this paper we focus on students graduating from the academic

stream because this is where the university eligibility threshold has largest bite (Nordin et al., 2017).

Students can choose their preferred stream. A full program consists of 2500 course credits for both

types of tracks.3 To receive a diploma of eligibility for university a student needs to pass at least

90 percent of full program i.e. receive 2250 credits. A program is a sum of courses and courses can

give either 50, 100, 150, 200 or 250 course credits (with some exceptions for even larger courses).

The courses that make up a program are graded on four levels: fail, pass, pass with distinction and

pass with special distinction. To receive the course credits, the student has to at least pass the

course but the credits received are not impacted by how well one passes. We choose to investigate

the period starting in 2003 because the diploma of eligibility for university is much more clearly

defined compared to previous years.

In figure 1 we show the impact of barely passing the cut-off point on the probability of enrolling

in university for cohorts graduating between 2003 to 2005. The raw data is graphed as scatter

plots of the proportion who attended a first term course of university by the number of achieved

credits at upper secondary school in bins of 2pp of a full program wide. The vertical dashed line

represents the cut-off of university eligibility (2250=2500*0.9). Figure 1 is for men and women

studying the academic track. In both figures, the probability of enrolling in university increases

with the percentage completed of a full program and follows a smooth function. At the university

eligibility cut-off, however, there is a positive jump in the probability of enrolling in university.

From just eyeballing the data it can be seen that the probability of enrolling in university is around

10pp higher for females and there is potentially a small jump for males passing the marginal course

on the academic track. Nordin et al. (2017) show that the jump for those on the vocational track

is much smaller and is why we choose to focus on the academic track students. Note that the

2The large majority of students who complete their compulsory schooling choose to continue their studies at upper
secondary school with only 1.7% of students choosing not to continue with their studies. Whilst all students are able to
continue their studies at upper secondary school, there is an eligibility requirement. Those students who do not pass
this eligibility requirement enter what is called an individual program with the aim to transfer to the standard upper
secondary school program at some point.

3Whilst a large proportion of students went on to study at upper secondary school a large proportion end up dropping
out: for the period under consideration in this paper the drop out rate is about 25%.
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Fig. 1: Impact of university eligibility on university attendance by gender

Notes: This figure plots a scatter of the share who attended a first term of university against percentage completed of a
full program with a bin width of 2pp of a full program (the size of the smallest course) in each bin for those graduating
upper secondary school between the years 2003 and 2005. The cut-off for university is marked by the dashed vertical line
at 90pp credits.

cut-off and forcing variable are defined at a point in time, graduation from upper secondary school.

Even though students can achieve university eligibility after completing upper secondary school

by complementing their studies to achieve university eligibility we still observe a jump using our

definition of the cut-off. That is, students who fail to achieve university eligibility at completion of

upper secondary school are less likely to go to university even though they could later on achieve

eligibility by complementing their grades.

Students coming in to the final term of their upper secondary school program often have seven

to eight courses of varying credit size to complete, the smallest worth just 2pp of a full program.

A key identifying assumption for regression discontinuity of the eligibility threshold is that those

at the margin of university eligibility will not have precise control over whether they cross the

threshold. Given the typical course size is 4pp of a full program and that students often require

about 32% of course credits in their final term in order to finish, a bandwidth of 4pp represents

the impact on eligibility of just one course out of eight in the final term. Precise manipulation

of the threshold would require the more motivated students to understand in advance how many

courses they need to pass, and which particular courses they need to focus on in order to just cross

the eligibility threshold, which appears quite a high stakes gamble. It would seem unlikely that

students are willing to stake eligibility for university by focussing on just one or even two courses.

The teachers grade the courses themselves and may also be aware that a particular student is near

the eligibility threshold and mark up the grades for the marginal student so they achieve eligibility.

This may happen, but for teachers to be able to manipulate the threshold exactly they need to

know what the student is likely to achieve in the other seven or so courses they are enrolled in and
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collude with the other teachers so that the marginal student crosses the threshold exactly but no

more. This form of manipulation by the teachers then has to have a link between the students

and the outcomes we consider, perhaps a preference towards the students with higher ability. The

information requirements seem very onerous for this degree of collusion to happen so precisely. It is

this lack of precise control that allows us to identify the impact of university eligibility on health

and education outcomes.

3 Measuring health inequality

An explicit aim of this paper is to study the impact of university eligibility on medical care use

inequality, specifically socioeconomic related medical care use inequality. It is our view that it is

important that our inequality analysis yields results based on the full distribution of socioeconomic

status and that they are comparable with future work.4 Specifically, we want to know how university

eligibility increases or decreases the concentration of health amongst the richest/poorest individuals.

To this end, we use the health Concentration Index (CI) as our measure of socioeconomic health

inequality, a measure popular in health economics. The health CI captures the degree to which

health is concentrated in higher or lower ranking socioeconomic groups (Fleurbaey et al., 2011). The

health CI considers two variables: a health variable and a socioeconomic ranking variable and yields

an index that can vary continuously between minus 1 and plus 1. A CI value of minus 1 would

relate to a situation where all hospital admissions are concentrated in the lowest income individual,

0 would be where hospital admissions are equally distributed across the income distribution, and 1

would be where all hospital admissions are concentrated in the highest income individual. That is

negative values infer a pro-poor concentration of health, positive a pro-rich concentration.

More formally, health is represented by the random variable H with corresponding mean, µH ,

and socioeconomic status is represented by the random variable Y . Socioeconomic fractional rank

is given by the Cumulative Distribution Function of Y , FY . There are many ways to formulate the

health CI: one of them is as a weighted covariance between H and FY yielding:

vCI =
2

µH
COV (H,FY ); (1)

Erreygers and Van Ourti (2011) argue that use of the health CI is appropriate if the health variable

is of ratio scale, which means it does not have a finite upper bound. For health variables not of

ratio scale, such as binary variables, a modified version is preferred. We are interested in relative

4This is in principle the same argument that has been made for using the CI to compare across countries and over
time (see for e.g. Wagstaff et al. (1991)) - it produces a standardised measure. In this sense, our estimated impacts will
also be comparable across future studies who look at education’s impact on CI.
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inequality (a proportional change in everyone’s health does not impact the index) and therefore

follow Kjellsson et al. (2015) and consider two variants of the health CI, the attainment relative

concentration index (ARCI) and the short-fall relative concentration index (SRCI):

vARCI =
2

µh − aH
COV (H,FY ); (2)

vSRCI =
2

bh − µH
COV (H,FY ); (3)

where aH is the lower bound of H and bH is the upper bound of H.5 The ARCI and SRCI

are relative measures of socioeconomic related health inequality that yield different measures of

inequality depending on whether we measure health in terms of attainments (from the lower bound)

or in terms of short-falls (from the upper bound). Which one is preferred is up to the individual

reader and therefore we present both.

We can capture the impact of university eligibility on the CI using the approach of Heckley

et al. (2016). The results will tell us to what extent university eligibility increases or decreases the

concentration of health amongst the richest/poorest individuals. This approach means we capture

the inequality aspects of university eligibility on a measure that is comparable with future studies

and considers the whole socioeconomic distribution (rather than say just comparing the lowest

socioeconomic status group vs the highest).

5As Kjellsson and Gerdtham (2013) note, the choice of socioeconomic health inequality index involves an array of
value judgements. We have chosen to consider relative concentration of health inequality. We could also have considered
absolute health inequality, but choose to limit our interest to relative changes.
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4 Data

Table 1: Descriptive statistics
Female Male

Outcomes
University attendance 0.580 0.521

(0.004) (0.004)
Frequency of hospital admissions 10.438 5.407

(0.118) (0.072)
Probability of being admitted to hospital due to:

External causes 0.280 0.409
(0.004) (0.004)

Mental disorder 0.327 0.111
(0.004) (0.003)

Examinations 0.515 0.274
(0.004) (0.004)

All other causes 0.915 0.754
(0.002) (0.003)

Frequency of prescriptions 35.232 13.473
(0.451) (0.255)

Probability of receiving a prescription for:
Contraceptives 0.848 0.000

(0.003) (0.000)
Psycholeptics 0.298 0.159

(0.004) (0.003)
Painkillers 0.349 0.234

(0.004) (0.003)
All other causes 0.966 0.873

(0.002) (0.003)
Years of education 13.46 13.22

(0.01) (0.01)
Compulsory school grades 216.18 207.40

(0.35) (0.28)
Father’s education 10.28 10.91

(0.04) (0.03)
Mother’s education 10.51 11.07

(0.04) (0.03)
Father’s income 1333 1439

(6.97) (9.14)
Mother’s income 781 827

(3.84) (3.70)
Observations 12652 15686

Notes: This table shows descriptive statistics for those graduating from upper secondary school between the years 2003
and 2005 and who have completed between 82% and 98% of a full program (a bandwidth of 8pp either side of the
university eligibility threshold of 90%). Standard errors are shown in parenthesis

We use administrative register data on all students who graduated from upper secondary school

between the years 2003 and 2005 and had previously graduated from Swedish compulsory school.6

We combine education register data on final grades from compulsory school, grades from upper

6We need information on prior grades as a check and these are only available for those who attended the Swedish
school system prior to starting upper secondary school. We also do not want to include individuals who have immigrated
to Sweden during secondary school age. We consider the years 2003 onwards because in the years prior to 2003 it was
much easier to re-take courses over the summer after graduating (from 2003 onwards, this is much less common) and as a
consequence it is much harder to define whether a student achieved university education eligibility at graduation - our
cut-off. We view measurement error and the potential for manipulation of the cut-off to be a significant threat to our
identification strategy before the 2003 graduation year.
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secondary school and data on higher education attendance and outcomes. This is then matched

with administrative register data on labour market outcomes from the Longitudinal Integration

Database for Health Insurance and Labour Market Studies (LISA) from Statistics Sweden (SCB) and

administrative register data on hospital admissions and prescriptions is from the patient register and

prescriptions register, respectively, both provided by the Swedish Board of Health (Socialstyrelsen).

We also use the Multi-generational Register from Statistics Sweden that links the individuals to

their parents who themselves are linked to their labour market and health outcomes. The population

and housing censuses from years 1985 and 1990 provide us with parental education and income

during the early childhood of the students we are following.

Our sample starts off with 128,751 students who graduated from upper secondary school between

the years 2003 and 2005 and had previously graduated from Swedish compulsory school. We remove

pupils who finish more than one year later (1.3 percent) or more than one year in advance (only 12

observations).7 Keeping students who finish at age 18 or 20 has no impact on the results in this

study.

Table 1 reports descriptive statistics for the sample analysed in this paper. Here we report the

statistics for those with percentage of a completed program that lies within 8pp above or below the

university eligibility cut-off. We split the sample by gender because there are important differences

in education patterns and labour market and health decisions between genders. This leads to sample

sizes of roughly 12,000 to 15,000 by gender very near to the cut-off.

Our medical care use variables are hospital admissions and prescriptions. Both the total number

of hospital admissions and the total number of prescriptions since graduating and up to 2013 (our

last period of observation) are considered. We also consider the probability of admission and the

probability of prescription receipt by 2013 by the most common causes amongst young adults (aged

20 - 30). We consider causes of hospital admissions and prescriptions because they can be both as a

consequence of a change in health status and due to investment decisions to raise current or future

health levels and these two behaviours are potentially counterbalancing. We therefore consider

hospital admissions and prescriptions by diagnosis (International Classification of Diseases (ICD10

codes) and drug type (Anatomical Therapeutic Chemical (ATC) Classification System codes).

Under preventative health actions we consider hospital admissions due to examinations (ICD10

code Z0-Z39) and prescriptions for contraceptives (ATC code female only). Under health conse-

quences we have hospital admissions due to external causes (ICD10 codes S,T or if coded as external

7We exclude those on the individual program as they cannot gain university eligibility. Most students start upper
secondary school aged 16 and graduate at age 19. It is not uncommon for students to finish upper secondary school at
an older age (12.0 percent) than the typical graduation age of 19. A small share finish at a younger age (2.8 percent).
There are many common and valid reasons for graduating older than 19 years of age: retaking courses, study breaks,
changing programs or studying abroad. Students who graduate before the age of 19 have typically also started compulsory
schooling before the mandatory starting age.
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and M or main diagnosis missing), mental disorders (ICD10 code F, Z55, Z56, Z59, Z60, Z64, Z65,

Z70-Z73) and for prescriptions we have psycholeptics (ATC codes N5, N6) that treat depression,

anxiety and sleep disorders amongst others, and painkillers (ATC code N2).8 Finally we consider

university attendance in the first term, defined as a binary variable where unitary corresponds to

attendance, zero otherwise.

The inequality outcomes we consider are the CI of frequency of hospital admissions (sum of

admissions from graduation up to 2013) and the CI of frequency of prescriptions (again, the sum of

prescriptions from graduation up to 2013). To measure the CI we need to rank individuals by their

socioeconomic status and we choose a measure of family income as the measure of socioeconomic

status for these young adults. In this way we capture a degree of intergenerational persistence. We

calculate family income as the average of the income of the mother and father as reported in the

1985 and 1990 censuses. We take an average over years to remove temporal changes in income and

get nearer to a measure of lifetime income of the parents. We use years 1985 and 1990 as these

were defined during the childhood of the individuals we consider and therefore predetermined.

Background characteristics highly correlated with our health outcomes are used and include

parental education in 1990 defined as years of education, age at migration and year of graduation

from upper secondary school.9 Dummies are defined for first-generation immigrant and second-

generation immigrant and are region of origin specific.10 We also define a dummy for whether the

parents are of mixed origin or not and whether only one parent is an immigrant.

5 Method

5.1 Identifying the impact of university education eligibility

To estimate the effects of university eligibility on our health outcomes we use an RD design as our

identification strategy. As shown in figure 1, the proportion going on to university is a smooth

and increasing function of the percentage completed of a full program at upper secondary school.

However, there is also a discontinuity caused by an arbitrarily chosen rule, the university eligibility

threshold at 90% of a full program. We use individuals very close and either side of this cut-off that

are just 1 or 2 completed courses apart on the assumption that they are likely to be very similar in

all observable and unobservable ways except that those who are above the threshold have access to

university education, and those below do not. This allows us to then assess the impact of university

8There are strong overlaps between the causes of hospital admissions and the causes for prescriptions. Painkillers are
potentially linked to external causes related hospital admissions through the treatment of injuries requiring ongoing pain
relief. Mental disorders related hospital admissions are likely to be linked in some way to psycholeptics.

9Where education information is not available, dummy variables are included indicating missing education information.
10Nordic countries, EU28, Non-EU28 countries and Russia, North America and Oceania, Africa, Asia and South

America.
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eligibility on educational and health outcomes. The general formulation for the regression equations

we estimate is the following:

yi = α+ βEligiblei + f(%fullprogrami) + εi; (4)

In this model yi represents the various health outcomes we consider for individual i, Eligible is a

binary treatment indicator variable equal to unity for those who have passed 90% or more of a

full program and therefore eligible for university, zero otherwise and %fullprogram is measured

in terms of distance from the eligibility threshold in percentage points of a full program. The

functional form for the forcing variable, f(%fullprogram), is a local low ordered polynomial of

%fullprogrami and an interaction of Eligibilityi ∗ f(%fullprogrami) so that we have different

trends either side of the cut-off. We follow the standard practice and add increasingly higher order

polynomials until they become insignificant but also taking special care not to have too high a

polynomial as argued by Gelman and Imbens (2017) and find a single polynomial is sufficient. The

coefficient β is the discontinuous effect of university eligibility on the outcome variable assuming

that our functional form absorbs any potential relationship between %fullprogrami and εi.

The estimated impact of university eligibility on university attendance will be an Intention

To Treat (ITT) parameter. Not all students who gain university eligibility having just graduated

from upper secondary school go on to higher education. Some who do not gain eligibility go on to

study at adult college and gain eligibility later. Eligibility at the end of upper secondary school

therefore only impacts the probability of university attendance, it does not determine it. There is

also potentially a pay-off to university eligibility without even going on to higher education. It may

raise the esteem of the individual and it may be seen as a valid cut-off for employers to consider

given its importance to universities. Our analysis therefore focusses on the reduced form impact of

university eligibility on health outcomes.

We vary the bandwidth size between 4pp, 8pp and 16/8pp of a full program. This allows us to

assess the sensitivity of the results to bandwidth choice.11 Due to the fact that we have a large

sample size so close to the cut-off, we are able to have small bandwidths. The inclusion of linear

trends either side of the cut-off means we are in effect modelling a Local Linear Regression (LLR)

with a rectangular kernel, the recommended approach of Imbens and Lemieux (2008).

When estimated equation 4, in some specifications we will add pre-determined characteristics.

There are two reasons for this. First, as we expand the bandwidth we are including more observations

11We model bandwidth by running our linear regressions on the sample within the bandwidth. The discrete nature of
the credit score means we are unable to non-parametrically choose the optimal bandwidth as recommended in general by
Imbens and Lemieux (2008). 4pp is the smallest course size so makes a natural minimum bandwidth. 8pp is the largest
bandwidth on the left hand side because any larger and we would have to model 100% of a completed program which is a
very large jump.
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that are not close to the cut-off and the inclusion of covariates may eliminate some bias that results

from the inclusion of these observations (Imbens and Lemieux, 2008). Second, it provides an

additional test of our identifying assumption that the error term is a smooth function crossing over

the eligibility threshold.

5.2 The impact of university eligibility on university attendance

In this section we present the estimates of the effect of university eligibility on university attendance

and the results of various diagnostic tests. In figure 1 we saw that there is a jump in the proportion

who attend university at the university eligibility cut-off for females. The RD results are shown in

table 2. Model (1) is a simple OLS of credit score on university attendance using only those within

8pp of the university eligibility threshold. It shows a strong positive correlation between university

eligibility and university attendance. Model (2) shows our RD results using a bandwidth of 4pp

and confirms there is a positive jump in the proportion attending university, 8pp for females and

2pp for males. Model (3) is as per (2) but with double the bandwidth of 8pp. Model (4) is as per

(3) but with double the left-hand side bandwidth of 16pp. Models (5 & 6) are as per models (3 & 4)

but with the addition of predetermined covariates.12 The results for females across models (2-4) are

stable to the choice of bandwidth and suggest university eligibility leads to a jump in university

attendance in the range of 8pp to 10pp. The impact is much smaller for males in the range 2pp to

4pp.

Table 2: Impact of university eligibility on university 1st term attendance

(1) (2) (3) (4) (5) (6)
Bandwidth 8pp 4pp 8pp 16pp/8pp 8pp 16pp/8pp

Female
Tertiary Eligibility 0.218∗∗∗ 0.0830∗∗∗ 0.0953∗∗∗ 0.0772∗∗∗ 0.0917∗∗∗ 0.0668∗∗∗

(0.0289) (0.00494) (0.0119) (0.0130) (0.0131) (0.0127)
N 12652 4730 12652 13523 12652 13523
Male
Tertiary Eligibility 0.188∗∗∗ 0.0175∗∗∗ 0.0285∗∗∗ 0.0415∗∗∗ 0.0293∗∗∗ 0.0429∗∗∗

(0.0318) (0.00361) (0.00562) (0.00849) (0.00646) (0.00816)
N 15686 6644 15686 17148 15686 17148

Polynomial 0 1 1 1 1 1
Covariates N N N N Y Y

Notes: This table shows the regression discontinuity estimates of the impact of university eligibility on first term
university attendance for those graduating between years 2003 and 2005. Each estimate is from a separate regression.
See text for details for each model (1-6). Robust standard errors clustered at number of credits achieved are shown in
parenthesis. Testing the null of the coefficient: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

The final analysis of this section considers the credit score distribution of the covariates as a

12Upper secondary graduation year, compulsory school grades, mother’s and father’s education and income plus
dummies for missing education and income, dummies for world region of origin for first generation migrants and dummies
for origin of parents for second generation migrants, age of migration and a dummy for whether one parent is a migrant.
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test of our identifying assumption. The key identifying assumption is that the students and or their

teachers are not able to manipulate the final credit scores in a systematic way that is linked to other

important characteristics that determine health and medical care use. Our first diagnostic test of

manipulation is that we include covariates in the regression estimates in models (5 & 6) in Table 2

and the impact of the inclusion of these covariates is very small. The inclusion of the covariates

(models 5 & 6) leads to a small reduction in the estimated impacts for females and a small increase

for males compared to estimates from models (3 & 4). The fact that we find a small impact of these

covariates suggests that unobserved characteristics are in fact a smooth function over the cut-off.

Figure 2 presents four visual tests of cut-off manipulation. The top panel of figure 2 is a

histogram of the population density by credit score plotted with bins of 4pp as suggested by Lee

and Lemieux (2010) as a test of manipulation in the spirit of McCrary (2008). If there is a jump in

the population just above the cut-off this is a sign of individuals manipulating their position around

the threshold violating our identification assumption. The discrete nature of our data means this

test is not ideally suited to our data but we observe no obvious jump in the density at the university

eligibility cut-off. The second panel of figure 2 shows the final grade plotted against credit score.

The third panel shows compulsory grades plotted against credit score. The final (fourth) panel

shows the number of failed courses by final achieved credit score. These are all visual tests of

whether individuals are trying to manipulate whether they cross the university eligibility threshold.

For upper secondary grades we would expect if manipulation were occurring to see a jump in overall

grade just above the threshold because of students trying harder in a number of courses to ensure

they do not fall the wrongside of the threshold. For compulsory school grades we would expect

the more able students to find it easier to manipulate the threshold and therefore observe a jump

in compulsory school grades at the threshold. Finally, we consider the number of failed courses.

Students can take more courses than needed for a full program and we therefore could expect to

see a jump in the number of failed courses at the threshold as a consequence of students trying to

maximise their chances of crossing the threshold. We observe no clear jumps in any of our visual

diagnostic tests for females or males.

In table 3 we present results from a batch of balancing tests using RD that assess whether the

covariates and our diagnostic test variables are equally distributed either side of the cut-off. Models

(1) and (4) are OLS of the simple association of university eligibility and the covariate and show

that university eligibility is highly correlated with all our diagnostic test variables and covariates.

However, using our RD specification to isolate the impact of university eligibility in models (2-3

& 5-6) the coefficients all substantially reduce towards zero and nearly always lose statistical

significance. We find evidence of a small jump in compulsory school grades at the cut-off using our

largest bandwidth but not the smaller bandwidth. Whilst the jump is statistically significant it is
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Fig. 2: Diagnostic tests

Notes: These figures plot various diagnostic tests using percentage of a completed program as the running variable shown
in bins of 2pp of a program. For panels 2-4 we present the mean for each bin. The dashed vertical line is the 90% cut-off
for university eligibility. See text for further details.

rather small in relative terms and represents a jump of less than 1pp (320 credits is the maximum).

Our RD results also show mother’s and father’s education to jump significantly for males but this

time for the smaller bandwidth but not the larger bandwidth. The sign has reversed compared to

the naive OLS estimates of model (4). This suggests the data is very sensitive to how it is modelled
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for this particular variable making conclusions difficult beyond that overall the potential differences

appear small and possibly insignificant. Note also we have not made any adjustment for multiple

hypothesis testing here which would pull down the significance levels reported here.

In sum, the fact that our estimates of the impact of university eligibility on university attendance

are stable across different model specifications and also with and without the inclusion of covariates

suggests that both our observed covariates and the covariates we do not observe are a smooth

function across the cut-off and that the jumps we observe are due to the policy effect. Our diagnostic

tests add further evidence that we find no compelling evidence of manipulation. Altogether, this

suggests that the jumps we observe in university attendance are primarily driven by the arbitrary

rule and not by unobserved factors resident in the error term.

Table 3: RDD based diagnostic tests
(1) (2) (3) (4) (5) (6)

Bandwidth 8pp 8pp 16pp/8pp 8pp 8pp 16pp/8pp

Female Male

Upper secondary school grades
Tertiary Eligibility 2.038∗∗∗ 0.0723 0.158∗ 1.722∗∗∗ 0.0141 0.0677

(0.397) (0.0991) (0.0820) (0.357) (0.0503) (0.0532)
Failed Upper secondary school course credits
Tertiary Eligibility -191.5∗∗∗ -5.541 -6.094 -192.2∗∗∗ 3.793 1.980

(34.34) (3.935) (3.847) (37.32) (3.978) (3.014)
Compulsory school grades
Tertiary Eligibility 16.81∗∗∗ 0.503 2.589∗∗ 12.98∗∗∗ 1.680 1.805∗∗

(3.498) (1.089) (1.176) (2.744) (1.013) (0.803)
Mother’s education
Tertiary Eligibility 0.625∗∗∗ -0.116∗ 0.0321 0.582∗∗∗ -0.277∗∗ -0.0651

(0.154) (0.0647) (0.0948) (0.181) (0.124) (0.132)
Father’s education
Tertiary Eligibility 0.564∗∗∗ -0.166 0.0254 0.495∗∗∗ -0.275∗∗ -0.108

(0.174) (0.203) (0.144) (0.170) (0.136) (0.157)
Father’s income
Tertiary Eligibility 111.5∗∗∗ -8.198 19.57 88.89∗∗∗ -1.721 -15.84

(25.87) (14.72) (22.23) (25.77) (20.35) (16.26)
Mother’s income
Tertiary Eligibility 50.77∗∗∗ -20.61∗ 4.395 46.26∗∗∗ -9.585 -0.492

(13.81) (11.37) (15.93) (12.69) (9.977) (7.148)

N 12652 12652 13523 15686 15686 17148
Polynomial 0 1 1 0 1 1

Notes: This table shows the regression discontinuity estimates of the impact of university eligibility on a batch of
diagnostic variables and pre-determined characteristics for those graduating between years 2003 and 2005 and who were
enrolled on the academic stream. Each estimate is from a separate regression. Models (1) and (4) are simple OLS
associations of university eligibility and the variable being tested using a bandwidth of 8pp. Models (2) and (5) use a
linear trend in course credits either side of the cut-off and bandwidth of 8pp of a full program either side of the cut-off.
Models (3) and (6) are as models (2) and (5) but with a bandwidth of 16pp before the cut-off and 8pp after. Robust
standard errors clustered at number of credits achieved are shown in parenthesis. Testing the null of the coefficient: ∗

p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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5.3 Estimating the distributional impact of university education

To determine whether university eligibility increases the concentration of medical care use amongst

the rich or poor we combine the concept of Recentered Influence Function (RIF) regression with

RD. RIF regression allows any statistic to be linked to individual characteristics. We use the results

of Firpo et al. (2009) and Heckley et al. (2016) in order to estimate the marginal effect of university

eligibility on the CI, ARCI and SRCI.

We shall use linear RIF regression of the CI, which is very similar in approach to standard OLS

regression. In an OLS regression we have a vector of health outcomes on the left hand side as

the dependent variable and explanatory variables on the right hand side. RIF regression swaps

out the vector of health outcomes and replaces these with a vector of influences on a statistic, in

our case the CI. The mean of the vector of RIFs of the CI is the CI, which means under a linear

setting and by the Law of Iterated Expectations (LIE) we can link each individuals characteristics

to the CI using regression e.g. using OLS. The coefficients from our regression are the marginal

effects. The difference between OLS of the mean and OLS of a RIF is that RIF-OLS only has a

marginal interpretation - that is, we cannot calculate contributions and they are local estimates.

The complication with CI marginal effects interpretation is that inequality can be concentrated

amongst the rich (positive CI) or the poor (negative CI) and therefore the interpretation of the

signs of the coefficients and whether the covariate is inequality increasing or decreasing depends on

the value of the CI.

More precisely, we write the RIF of a statistic as RIF(v), where v represents any summary

statistic of a distribution (e.g. in our case, the mean, CI, ARCI or SRCI). Firpo et al. (2009) show

that the LIE can be applied to a RIF and therefore individual characteristics can be linked to the

statistic of interest. This is RIF regression and it requires estimating the following:

E[RIF (v)|X = x] = E[λ(X, ε)|X = x] (5)

The choice of regression method depends on the form we want to assume for λ(X, ε) and in principle

this choice is limitless. RD design lends itself very well to RIF regression because RD can essentially

be thought of as a non-parametric method under certain conditions and therefore the parametrisation

of the function λ(X, ε) is uncontroversial. In our analysis we are using a small bandwidth with

linear regression either side of the cut-off, which is the equivalent to running the non-parametric

regression technique of local linear regression with a rectangular kernel. To be precise, the RIF RD
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regression we estimate is the following linear regression:

RIF (v)i = α+ βEligiblei + f(%fullprogrami) + εi (6)

The parameter β from equation 6 will be the marginal effect of university eligibility on the CI,

ARCI and SRCI. The functional form for the forcing variable, f(%fullprogrami) will be as for

equation 4.

6 Results

6.1 The impact of university eligibility on hospital admissions and

prescriptions

In this section we present the estimates of the effect of university eligibility on hospital admissions

and prescriptions during early adulthood (aged between 20 and 30). Figure 3 depicts completed credit

profile of mean frequency of hospital admissions and prescriptions for the years since graduation

up to 2013, split by gender. The data indicate no clear jumps in either hospital admissions or

prescriptions at the 90% threshold.

This is confirmed in tables 4 and 5. All regression results from here on in will use regression

models (1), (3), (4) and (6) from table 2. Model (1) in tables 4 and 5 is the simple association of

university attendance without modelling the credit score and a bandwidth of 8pp. Model (2) is as

per model (1) but now includes a linear trend estimated either side of the cut-off. Models (3) and

(4) are as per model (2) but add a larger bandwidth to the left hand side.13 Model (4) also includes

covariates strongly associated with the outcome variable.

In model (1) of table 4 we can see that there is a significant negative association between

university attendance and frequency of hospital admissions for females but not for males. The RD

results for hospital admissions in table 4, however, show a positive jump in the frequency of hospital

admissions for females according to model (2) of about 0.7 but this becomes insignificant and much

smaller when increasing the bandwidth as modelled in models (3) and (4), although it remains

positive. For males however the results are very sensitive to modelling choice and insignificant.

Overall this suggests that university eligibility does not lead to a decrease in hospital admissions

which is implied by the naive associations of model (1).

Turning to prescription receipt, we see in table 5 that the naive OLS regressions of university

attendance and frequency of prescription receipt show no significant association for males or females.

13We cannot have a larger bandwidth on the right hand side because we would then have to model the huge jump at
100% of a completed course.
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Fig. 3: Impact of university eligibility on the frequency of hospital admissions and prescriptions

Notes: These figures plot a scatter of the mean of hospital admission frequency and prescription frequency since
graduation up to 2013 against percentage completed of a full program with a bin width of 2pp of a full course in each bin
for those graduating upper secondary school between the years 2003 and 2005 (academic stream). See notes for figure 1.

The RD results in table 5 are substantial in size relative to the OLS estimates of model (1) but are

not at all stable to model specification and in the main not significant. As can be seen from the

raw data in figure 3 there is no clear trend between frequency of prescriptions and credit score and

therefore the results are sensitive to the noise in the data.
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Fig. 4: Impact of university eligibility on the probability of hospital admission by diagnosis

Notes: This figure plots a scatter of average frequency of hospital admissions since graduation and up to 2013 by
diagnosis against percentage completed of a full program with a bin width of 2pp of a full course in each bin for those
graduating upper secondary school between the years 2003 and 2005 (academic stream). See notes for figure 1.
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Table 4: Impact of university eligibility on hospital admissions, by diagnosis
(1) (2) (3) (4)

Bandwidth 8pp 8pp 16/8pp 16/8pp

Females
Number of admissions (mean: 10.44) -0.831∗∗∗ 0.738∗∗∗ 0.120 0.209

(0.163) (0.159) (0.267) (0.281)
Probability of hospital admission due to:
External causes (mean: 0.28) -0.021∗∗∗ -0.008 -0.001 0.001

(0.008) (0.013) (0.012) (0.011)
Mental disorder (mean: 0.33) -0.010 -0.001 -0.007 -0.006

(0.009) (0.005) (0.005) (0.005)
Examinations (mean: 0.51) -0.028∗∗∗ 0.030∗∗∗ 0.001 0.006

(0.007) (0.004) (0.012) (0.012)
All other causes (mean: 0.92) -0.016∗∗∗ 0.003 -0.006 -0.004

(0.003) (0.004) (0.006) (0.007)
N 12652.000 12652.000 13523.000 13523.000

Males
Number of admissions (mean: 5.41) -0.119 -0.239 0.188 0.185

(0.168) (0.276) (0.286) (0.294)
Probability of hospital admission due to:
External causes (mean: 0.41) -0.092∗∗∗ -0.008 -0.004 -0.004

(0.006) (0.009) (0.010) (0.010)
Mental disorder (mean: 0.11) 0.012∗∗ 0.018∗ 0.017∗∗∗ 0.018∗∗∗

(0.006) (0.010) (0.005) (0.005)
Examinations (mean: 0.27) 0.004 0.002 0.010 0.011

(0.007) (0.007) (0.008) (0.008)
All other causes (mean: 0.75) -0.017∗∗∗ 0.005 -0.004 -0.004

(0.006) (0.008) (0.009) (0.008)
N 15686.000 15686.000 17148.000 17148.000

Polynomial 0 1 1 1
Covariates N N N Y

Notes: This table shows the regression discontinuity estimates of the impact of university eligibility on hospital
admissions by diagnosis since graduation and up to 2013 for those graduating between years 2003 and 2005, academic
stream only. Each coefficient is from a separate regression. Model (1) is a simple correlation of university attendance and
health. Models (2) and (3) use a linear trend in credits either side of the cut-off but different bandwidths. Model (4) is as
model (3) and also includes covariates as outlined in table 2. Robust standard errors clustered at number of credits
achieved are shown in parenthesis. Testing the null of the coefficient: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

In figure 4 we present the credit score distribution of the probability of hospital admission by

leading cause. In general there appears to be a downward trend in our causes of hospital admission

with credit score and no clear jumps are observed for the causes we consider. The potential exception

is mental disorders for males that appears to show a positive jump in cases for those reaching

university eligibility, but the data appears quite noisy. In table 4 column (1) we present simple

correlations of university attendance and hospital admissions by cause and in general the coefficients

are negative and significant, confirming the widely documented education gradient in health and

health care. The RD estimates for the probability of hospital admission by cause are found in

table 4 models (2) to (4). We find that the jump in mental disorders for males is robust to model

specification and lies in the range of 1.7pp to 1.8pp. These suggest a relatively large impact of

university eligibility on mental disorder related admissions of about 10% (proportion who have a
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Fig. 5: Impact of university eligibility on the probability of prescription by cause

Notes: These figures plot a scatter of percentage completed of a full program with a bin width of 2pp against the
probability of receiving a prescription since graduation and up to 2013 by main cause 2010-2013 in each bin for those
graduating upper secondary school between the years 2003 and 2005. See notes for figure 1
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mental disorder related admission is 11% for this group). No other results are robust to model

choice.

Table 5: Impact of university eligibility on prescription receipt, by diagnosis
(1) (2) (3) (4)

Bandwidth 8pp 8pp 16/8pp 16/8pp

Females
Frequency of prescriptions (mean: 35.23) 0.200 2.000 -1.508 -1.299

(0.901) (1.579) (1.771) (1.913)
Probability of prescription due to:
Psycholeptics (mean: 0.3) 0.012∗ 0.018 0.001 0.001

(0.006) (0.017) (0.018) (0.020)
Painkillers (mean: 0.35) -0.047∗∗∗ 0.032∗∗∗ 0.019∗ 0.020∗∗

(0.002) (0.007) (0.010) (0.009)
Other (mean: 0.97) -0.001 0.001 0.005 0.006∗

(0.004) (0.004) (0.003) (0.003)
Contraceptives (mean: 0.85) -0.023∗∗∗ 0.019∗∗ 0.018∗∗ 0.021∗∗

(0.005) (0.008) (0.007) (0.009)
N 12652 12652 13523 13523

Males
Frequency of prescriptions (mean: 13.47) 0.763 -2.518∗∗∗ -0.791 -0.814

(0.485) (0.495) (0.614) (0.601)
Probability of prescription due to:
Psycholeptics (mean: 0.16) 0.029∗∗∗ 0.003 0.026∗∗∗ 0.027∗∗∗

(0.005) (0.012) (0.008) (0.008)
Painkillers (mean: 0.23) -0.044∗∗∗ -0.021∗∗ -0.019∗∗ -0.019∗

(0.006) (0.009) (0.009) (0.010)
Other (mean: 0.87) -0.021∗∗∗ -0.008 -0.011∗∗ -0.011∗∗

(0.005) (0.006) (0.005) (0.005)
N 15686 15686 17148 17148

Polynomial 0 1 1 1
Covariates N N N Y

Notes: This table shows the regression discontinuity estimates of the impact of university eligibility on frequency of
prescriptions and probability of prescriptions since graduation and up to 2013 by category for those graduating between
years 2003 and 2005, academic stream only. Each coefficient is from a separate regression. Model (1) is a simple
correlation of university attendance and health. Models (2) and (3) use a linear trend in credits either side of the cut-off
but different bandwidths. Model (4) is as model (3) and also includes covariates as outlined in table 2. Robust standard
errors clustered at number of credits achieved are shown in parenthesis. Testing the null of the coefficient: ∗ p < 0.1, ∗∗

p < 0.05, ∗∗∗ p < 0.01

We turn now to the specific causes for prescription receipt. We now consider prescriptions that

are both preventative related (contraceptives (women only)) but also health outcome related in

nature (psycholeptics, painkillers). We depict the credit score profile of prescriptions by cause

and split by gender in figure 5. In the figure we see that females observe a clear positive jump

in contraceptives and that males observe a drop in painkillers. In table 5, model (1) shows the

association of university attendance with the probability of cause specific prescription receipt and

we find there is in general a significant negative association between university attendance and

prescription receipt. The RD results in table 5 models (2) to (4) for cause specific prescription

receipt confirm that women who pass the eligibility threshold see an increase in contraceptive related

prescriptions in the range 1.8pp to 2.1pp and that males see a drop in probability of receiving

23



painkiller related prescriptions in the range of -1.9pp to -2.1pp. The results are stable across

modelling strategies (2 to 4) and statistically significant suggesting that these results are robust

to specification. Less stable results are also found for female painkiller prescription receipt where

university eligibility is estimated to increase the probability of prescription receipt rather than

reduce it as found for the OLS results.

In summary, we find that a large jump in university attendance due to university eligibility

amongst females also coincides with no clear impact on hospital admissions but a clear positive

impact on the proportion receiving a prescription for contraceptives. For males we find a jump in

university attendance due to university eligibility but this is smaller than found for females and may

also coincide with both an increase in hospital admissions due to mental disorders and a reduction

in prescriptions for pain related medication.

6.2 The impact of university eligibility on health inequality

The analysis of the previous section focussed on the mean of our medical care use outcome variables.

In this section we present the impact of university eligibility on the CI of parental income related

medical care use inequality. We calculate the level of inequality for the whole population of students

graduating upper secondary school between 2003 and 2005. The CI for parental income related

frequency of hospital admission inequality is -0.012 and the CI for frequency of prescriptions is

0.021 (results shown in tables 6 and 7). That is, hospital admissions are concentrated more amongst

young adults from poorer backgrounds. The opposite is the case for frequency of prescriptions. We

link course credits and university eligibility to the CI using RIF regression and present the marginal

effects in figure 6. There are no obvious trends in percentage completed of a full program and

income related concentration of medical care use. There are also no clear jumps in income related

hospital admission inequality or income related prescription inequality at the university eligibility

threshold.

Model (1) of tables 6 and 7 presents the association of university attendance and parental

income related medical care use inequality. These associations give us an idea as to how university

attendance is linked to an increased or decreased concentration of medical care use amongst young

adults with poor or rich backgrounds. The slight complication with interpretation of the coefficients

in tables 6 and 7 is that a negative coefficient is only inequality reducing if the CI is positive. If the

CI is negative then a negative coefficient implies a worsening of inequality, and vice versa. We see

from model (1) in table 6 that university attendance is associated with a reduction in the CI for

females and an increase for males but these associations are not particularly significant. For the

CI of prescription frequency we find university attendance to increase inequality for females but
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Fig. 6: Impact of university eligibility on income inequality of the probability of a hospital admission
and a prescription

Notes: These figures plot a scatter of the mean frequency of hospital admissions and prescriptions (years 2010-2013) and
mean (recentered) influence on the CI of hospital admissions and prescriptions against percentage completed of a full
program using a bin width of 2pp of a full course for those graduating upper secondary school between the years 2003
and 2005 (academic stream). See notes for figure 1.

reduce it for males, but again these associations are not significant. The RD estimates found in

tables 6 and 7 of the impact of university eligibility on the CI confirm our observations from 6 that

university eligibility leads to no clear impact on parental income related medical care use inequality.

In tables 6 and 7 we also present RD results by cause of hospital admission and cause of

prescription (supporting figures are found in the appendix, A.1 and A.3). For the probability of a

hospital admission we use the ARCI as our measure of relative inequality because we are interested

in relative inequality but now need to account for the bounded nature of our binary health variable.

We assess the sensitivity of our results to this choice of measure by also looking at the SRCI in the

appendix. Just as frequency of hospital admissions inequality was found to be concentrated amongst

the poor, so are the probabilities of admission due to various causes also concentrated amongst

the poor. Model (1) of table 6 presents the naive associations between university attendance and

ARCI and suggests the university attendance is inequality reducing for females and increasing for

males, with the exception of the ARCI of external cause related and examination related hospital

admissions for males. However, these associations are only statistically significant for the ARCI of

examination related and mental disorder related hospital admissions for females. Examining the
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raw data in A.1 there appear to be small jumps for hospital admissions due to examinations. The

RD results are shown in columns (2-4) in table 6 and confirm that there are jumps in the ARCI of

hospital admissions for females due to examinations in the range of -0.023 to -0.033. Because the

ARCI is negative (-0.013), university eligibility therefore increases the concentration of examinations

amongst poor young adult females. There are also jumps in the ARCI of hospital admissions for

males due to examinations in the range of 0.033 to 0.046. This suggests that university eligibility

reduces the concentration of examinations amongst poor young adult males. No other stable and

significant results are found for ARCI of hospital admissions.

We now turn to the particular causes of the ARCI of parental income related prescription receipt

inequality. The CI of frequency of prescriptions finds a pro-rich concentration of prescriptions

for young adults in Sweden. The pro-rich concentration is driven by contraceptives and all other

causes of prescriptions whereas prescriptions for psycholeptics and painkillers are found to be

more concentrated amongst the poor. In table 7 model (1) shows the association of university

attendance with ARCI of cause specific prescriptions and only the ARCI for contraceptives finds a

significant association (an inequality increasing association). In the appendix, figure A.3 depicts the

relationship between percentage of a completed course and average effect on ARCI of prescriptions

by cause. No clear trends between percentage of a completed course and the marginal impact on

ARCI are observed for any cause specific prescription probability with the potential exception of

contraceptives that show an increasing trend. At the 90% threshold no clear jumps are observed

for females but potentially a negative jump for males for ARCI of prescriptions for other causes.

This is largely confirmed in 7 models (2) to (4). Females observe no jumps at the 90% threshold

that are stable to modelling specification or significant. In general this is also true for men with

the exception for any other cause that sees an inequality reducing jump at the threshold that is

relatively large compared to the level of ARCI and is stable to modelling specification.

Sensitivity analysis of our choice of ARCI over SRCI is found in the appendix (A.1 and A.2 and

figures A.2 and A.4). The conclusions are not affected by our choice of ARCI over SRCI. To sum

up, we find that there is a parental income concentration of medical care use. Hospital admissions

are concentrated amongst the poor and prescriptions are more concentrated amongst the rich with

the exception of psycholeptics and painkiller related prescriptions. University eligibility is found to

increase hospital admission inequality through females yet reduce it through males and also reduce

prescriptions for other causes inequality through males.

26



Table 6: Impact of university eligibility on parental income related hospital admissions, by diagnosis
(1) (2) (3) (4)

Bandwidth 8pp 8pp 16/8pp 16/8pp

Females
Frequency of hospital admissions (CI=-0.012) 0.037∗ -0.046 -0.033 -0.042

(0.022) (0.057) (0.049) (0.043)
Probability of admission due to:
Mental disorders (ARCI=-0.033) 0.065∗∗∗ -0.088 -0.024 -0.037

(0.021) (0.058) (0.060) (0.046)
External causes (ARCI=-0.005) 0.002 -0.021 -0.017 -0.018

(0.019) (0.013) (0.017) (0.015)
Examinations (ARCI=-0.013) 0.040∗∗ -0.023∗∗∗ -0.027∗∗∗ -0.033∗∗∗

(0.020) (0.006) (0.010) (0.009)
All other causes (ARCI=-0.001) 0.007∗ -0.012∗∗ 0.004 0.002

(0.004) (0.004) (0.007) (0.006)
N 12652.000 12652.000 13523.000 13523.000

Males
Frequency of hospital admissions (CI=-0.012) -0.005 -0.009 -0.049 -0.050∗

(0.014) (0.025) (0.030) (0.028)
Probability of admission due to:
Mental disorders (ARCI=-0.033) -0.017 0.046∗ 0.007 0.002

(0.017) (0.025) (0.036) (0.033)
External causes (ARCI=-0.005) 0.012 -0.013 -0.021 -0.019

(0.020) (0.011) (0.013) (0.016)
Examinations (ARCI=-0.013) 0.001 0.046∗∗∗ 0.034∗∗ 0.033∗∗

(0.010) (0.014) (0.017) (0.015)
All other causes (ARCI=-0.001) -0.003 0.003 -0.006 -0.006

(0.008) (0.009) (0.009) (0.008)
N 15686.000 15686.000 17148.000 17148.000

Polynomial 0 1 1 1
Covariates N N N Y

Notes: This table shows the regression discontinuity estimates of the impact of university eligibility on concentration
index of hospital admission frequency and the attainment relative concentration index of hospital admission probability
by diagnosis since graduation and up to 2013 for those graduating between years 2003 and 2005, academic stream only.
Each coefficient is from a separate regression and captures the marginal effect on the inequality index. Model (1) is a
simple correlation of university attendance and health inequality. Models (2) and (3) use a linear trend in credits either
side of the cut-off but different bandwidths. Model (4) is as model (3) and also includes covariates as outlined in table 2.
For simplicity of application we use empirical standard errors that do not account for the fact that the RIF is an
estimated function. Robust standard errors clustered at number of credits achieved are shown in parenthesis. Testing the
null of the coefficient: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 7: Impact of university eligibility on parental income related prescription receipt admissions
(1) (2) (3) (4)

Bandwidth 8pp 8pp 16/8pp 16/8pp

Females
Frequency of prescriptions (CI=0.021) 0.028 -0.047 -0.009 -0.024

(0.023) (0.044) (0.047) (0.039)
Probability of prescription due to:
Psycholeptics (ARCI=-0.001) 0.026 -0.064∗∗∗ 0.008 -0.008

(0.016) (0.017) (0.038) (0.035)
Painkillers (ARCI=-0.017) 0.025 -0.034∗∗ 0.003 -0.001

(0.019) (0.016) (0.022) (0.018)
Other (ARCI=0.003) -0.002 -0.000 -0.001 -0.001

(0.002) (0.005) (0.004) (0.004)
Contraceptives (ARCI=0.013) 0.055∗∗∗ 0.011 0.030 0.007

(0.008) (0.026) (0.025) (0.013)
N 12652.000 12652.000 13523.000 13523.000

Males
Frequency of prescriptions (CI=0.021) -0.018∗ 0.025 0.009 0.006

(0.010) (0.030) (0.031) (0.027)
Probability of prescription due to:
Psycholeptics (ARCI=-0.001) 0.007 0.074∗∗∗ 0.012 0.011

(0.012) (0.021) (0.033) (0.033)
Painkillers (ARCI=-0.017) -0.020 -0.025 -0.065∗∗ -0.065∗∗

(0.015) (0.029) (0.032) (0.032)
Other (ARCI=0.003) -0.002 -0.008∗∗∗ -0.013∗∗∗ -0.013∗∗∗

(0.003) (0.003) (0.003) (0.004)
N 15686.000 15686.000 17148.000 17148.000

Polynomial 0 1 1 1
Covariates N N N Y

Notes: This table shows the regression discontinuity estimates of the impact of university eligibility on concentration
index of prescription frequency and the attainment relative concentration index of prescription probability by diagnosis
since graduation and up to 2013 for those graduating between years 2003 and 2005, academic stream only. Each
coefficient is from a separate regression and captures the marginal effect on the inequality index. Model (1) is a simple
correlation of university attendance and health inequality. Models (2) and (3) use a linear trend in credits either side of
the cut-off but different bandwidths. Model (4) is as model (3) and also includes covariates as outlined in table 2. For
simplicity of application we use empirical standard errors that do not account for the fact that the RIF is an estimated
function. Robust standard errors clustered at number of credits achieved are shown in parenthesis. Testing the null of
the coefficient: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

7 Discussion

In this paper we have shown that university eligibility leads to a sharp positive discontinuity

in the proportion attending university. Previous analysis using the same eligibility rule (Nordin

et al., 2017) has shown that this jump in university eligibility leads to coinciding jumps in years

of schooling of about 0.3 years for female and 0.2 for males and an increase in the probability of

achieving 15 years of schooling (equivalent to a bachelor’s degree) of about 10pp for females and

3pp for males. We find that this discontinuous jump in university level educational attainment

for females coincides with no clear impact on hospital admissions but a clear positive impact on

the proportion receiving a prescription for contraceptives of about 1.8pp. For males the jump in

university attendance due to university eligibility is smaller than found for females and we find a
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possible increase in hospital admissions due to mental disorders of about 1.7pp and a reduction in

prescriptions for pain related medication of about 1.9pp.

We have also considered the impact of university eligibility on socioeconomic inequality in

health, specifically how university eligibility has impacted the CI of family income related health

inequality. No overall impact is found on the concentration of hospital admissions or prescriptions

with family income, but specific impacts were found for hospital admissions for examinations

(inequality increasing for females, decreasing for males) and for prescriptions for any other reason

(inequality decreasing for males only).

Our results assessing the level of health appear to fit alongside those of De Walque (2007) and

Grimard and Parent (2007) who find a protective impact of education on health (reduces smoking

initiation and increases likelihood of cessation), and Buckles et al. (2016) who find a negative impact

on mortality, all using the Vietnam draft as an Instrumental Variable for university attendance.

The jump we find in contraceptive prescriptions for females can be interpreted as a jump in health

investments. This fits with the evidence showing college graduates choosing to smoke less. The

jump also could be linked to a preference to delay child birth. The impacts found for males are

harder to interpret because they could be either due to impacts of health on medical care use e.g.

university has increased stress and anxiety so they are more likely to visit hospital, or that they are

now more aware of their condition and get themselves seen to. A similar argument can be made for

the results for pain-killers.

Our results looking at the socioeconomic inequality aspects of university eligibility have not

yielded any clear impacts. There appear to be competing effects of university eligibility on

examination related hospital admission inequality where females see an increase in inequality but

males a decrease. We do not find a strong impact on contraceptive prescription inequality which

suggests that increasing access to university education is unlikely to worsen contraceptive use related

inequality.

The results presented in this paper are based on RD design that has a very high level of internal

validity. But are the results specific to Sweden? The Swedish welfare state and health care system

is very comprehensive and is similar in its coverage and provision to that of the National Health

Service (NHS) in Britain. Both systems offer universal coverage and use doctors as gatekeepers to

the medical system that should in theory minimise shopping for best treatments. A small difference

between the NHS in Britain and Sweden’s health care system is that in Sweden patients are required

to pay a small out of pocket payment to visit a doctor or use any hospital service. There is therefore

a financial element to the participation decision. But this is small, about 150 SEK (roughly $18 in

2018 prices) depending on where one lives in Sweden. This means that one potential channel for

education to impact health, via financial resources, is more limited in Sweden. However, we would
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expect changes in health related behaviours to be related to education and these will independently

impact the demand for health care. Financial resources can also impact health via other channels

than medical care, through improved access to better diet, resources for increased activity and so

on. It is important to understand all the channels by which education may affect health.

The period in which we consider the impacts on health are fairly short after the intervention, up

to 8 - 10 years after graduating from upper secondary school. Early adulthood health outcomes are

of interest as they allow us to understand the mechanisms by which potential changes to education

could impact health immediately and later on in life. The objective health outcomes we consider,

hospital admissions and prescriptions, represent health processes, behaviours and investments. The

human capital models that predict the importance of education in determining our health capital

do not state the timescale over which these investments might take place. It is therefore of interest

to know if and how and when we see a difference in an individual’s health capital investments.

A particular limitation of the data we have used is that we do not consider the impact of

university eligibility on primary care use. This is because there is no national dataset that captures

primary care use. Primary care use is likely to be relevant for young adults and their health

investments. The impacts found for prescriptions are quite likely to be reflected in the primary care

use data as the majority of prescriptions are made by the local GP and not doctors at hospitals.

However, this type of analysis will remain difficult until someone manages to corral all 21 health

regions in Sweden to join up and create a unified administrative system.

We conclude that university education for low ability students leads to an increase in contracep-

tive use amongst females. We also find that the changes in the levels of medical care use do not

impact family income related medical care use and that overall any potential increases in ease of

access to university are unlikely to impact overall income related medical care use amongst young

adults. The results suggest caution, however, as we also find indications that male mental health

issues jump for those achieving university eligibility and this suggests that universities need to take

particular care of the mental health of their least able students.
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A The impact of university eligibility on hospital
admissions and prescription rates, detailed sub-group

analysis
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Fig. A.1: Impact of university eligibility on the attainment relative concentration index of income
related inequality of hospital admission by diagnosis

Notes: These figures plot a scatter of the recentered influence function of attainment relative concentration index income
related inequality of frequency of hospital admissions against the final achieved course credits with a bin width of 2pp of
a full course in each bin for those graduating from upper secondary school between the years 2003 and 2005 (academic
stream). See notes for figure 1.
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Fig. A.2: Impact of university eligibility on the short-fall relative concentration index of income related
inequality of hospital admission by diagnosis

Notes: These figures plot a scatter of the recentered influence function of short-fall relative concentration index income
related inequality of frequency of hospital admissions against the final achieved course credits with a bin width of 2pp of
a full course in each bin for those graduating upper from secondary school between the years 2003 and 2005 (academic
stream). See notes for figure 1.
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Table A.1: Impact of university eligibility on short-fall relative concentration index of parental income
related hospital admission probability by cause

(1) (2) (3) (4)
Bandwidth 8pp 8pp 16/8pp 16/8pp

Females
Examinations (SRCI=-0.008) 0.026∗∗ -0.016∗∗∗ -0.017∗∗∗ -0.021∗∗∗

(0.012) (0.004) (0.006) (0.006)
Mental disorders (SRCI=-0.007) 0.015∗∗∗ -0.019 -0.005 -0.008

(0.005) (0.013) (0.013) (0.010)
External causes (SRCI=-0.002) 0.001 -0.011 -0.008 -0.009

(0.010) (0.007) (0.009) (0.008)
All other causes (SRCI=-0.003) 0.036∗ -0.054∗∗ 0.019 0.010

(0.018) (0.020) (0.035) (0.028)
N 12652.000 12652.000 13523.000 13523.000

Males
Examinations (SRCI=-0.008) 0.000 0.029∗∗∗ 0.021∗ 0.020∗∗

(0.007) (0.009) (0.011) (0.010)
Mental disorders (SRCI=-0.007) -0.004 0.009∗ 0.001 -0.000

(0.004) (0.005) (0.008) (0.007)
External causes (SRCI=-0.002) 0.007 -0.006 -0.011 -0.010

(0.010) (0.006) (0.007) (0.008)
All other causes (SRCI=-0.003) -0.013 0.013 -0.027 -0.029

(0.036) (0.042) (0.043) (0.039)
N 15686.000 15686.000 17148.000 17148.000

Polynomial 0 1 1 1
Covariates N N N Y

Notes: This table shows the regression discontinuity estimates of the impact of university eligibility on concentration
index of prescription frequency and the attainment relative concentration index of prescription probability by diagnosis
since graduation and up to 2013 for those graduating between years 2003 and 2005, academic stream only. Each
coefficient is from a separate regression and captures the marginal effect on the inequality index. Model (1) is a simple
correlation of university attendance and health inequality. Models (2) and (3) use a linear trend in credits either side of
the cut-off but different bandwidths. Model (4) is as model (3) and also includes covariates as outlined in table 2. Robust
standard errors clustered at number of credits achieved are shown in parenthesis. Testing the null of the coefficient: ∗

p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Fig. A.3: Impact of university eligibility on the attainment relative concentration index of income
inequality of prescription receipt by cause

Notes: These figures plot a scatter of the recentered influence function of attainment relative concentration index income
related inequality of frequency of prescriptions against the final achieved course credits with a bin width of 2pp of a full
course in each bin for those graduating upper from secondary school between the years 2003 and 2005 (academic stream).
See notes for figure 1.
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Fig. A.4: Impact of university eligibility on the short-fall relative concentration index of income
inequality of prescription receipt by cause

Notes: These figures plot a scatter of the recentered influence function of short-fall relative concentration index income
related inequality of frequency of prescriptions against the final achieved course credits with a bin width of 2pp of a full
course in each bin for those graduating from upper secondary school between the years 2003 and 2005 (academic stream).
See notes for figure 1.
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Table A.2: Impact of university eligibility on short-fall relative concentration index if parental income
related prescription probability by cause

(1) (2) (3) (4)
Bandwidth 8pp 8pp 16/8pp 16/8pp

Females
Contraceptives (SRCI=0.01) 0.041∗∗∗ 0.010 0.024 0.006

(0.006) (0.020) (0.019) (0.010)
Psycholeptics (SRCI=-0.000) 0.006 -0.016∗∗∗ 0.002 -0.002

(0.004) (0.004) (0.009) (0.009)
Painkillers (SRCI=-0.007) 0.011 -0.014∗∗ 0.001 -0.001

(0.007) (0.006) (0.008) (0.007)
Other (SRCI=0.034) -0.022 -0.006 -0.007 -0.016

(0.019) (0.062) (0.046) (0.047)
N 12652.000 12652.000 13523.000 13523.000

Males
Psycholeptics (SRCI=-0.000) 0.002 0.018∗∗∗ 0.003 0.003

(0.003) (0.005) (0.008) (0.008)
Painkillers (SRCI=-0.007) -0.006 -0.009 -0.024∗ -0.024∗

(0.006) (0.011) (0.012) (0.012)
Other (SRCI=0.034) -0.029 -0.103∗∗∗ -0.161∗∗∗ -0.162∗∗∗

(0.031) (0.035) (0.042) (0.044)
N 15686.000 15686.000 17148.000 17148.000

Polynomial 0 1 1 1
Covariates N N N Y

Notes: This table shows the regression discontinuity estimates of the impact of university eligibility on concentration
index of prescription frequency and the attainment relative concentration index of prescription probability by diagnosis
since graduation and up to 2013 for those graduating between years 2003 and 2005, academic stream only. Each
coefficient is from a separate regression and captures the marginal effect on the inequality index. Model (1) is a simple
correlation of university attendance and health inequality. Models (2) and (3) use a linear trend in credits either side of
the cut-off but different bandwidths. Model (4) is as model (3) and also includes covariates as outlined in table 2. Robust
standard errors clustered at number of credits achieved are shown in parenthesis. Testing the null of the coefficient: ∗

p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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1 Introduction

Worldwide, a common alcohol consumption control policy aimed at young adults is a Minimum

Legal Drinking Age (MLDA). Even though MLDAs are widespread and long established policies,

the impact of MLDAs on alcohol consumption, health and crime remains a much discussed issue.

For example, in the United States there has recently been a high profile debate regarding lowering

the MLDA from 21 to 18 years because some believe the current MLDA of 21 years is actually more

harmful to health than an MLDA of 18 years (Carpenter and Dobkin, 2011). In Australia there has

recently been a debate calling for a rise in the MLDA of 18 to 21 (Toumbourou et al., 2014; Lindo

and Siminski, 2014). In India it is currently up to each province to decide the MLDA but there is

discussion as to whether the federal government should set an India wide MLDA (ADD, 2015) and

more widely there are still 18 countries (mainly low income countries) that have no MLDA at all

(WHO, 2014).

Many countries have an MLDA in order to protect young adults in their transition to adulthood

because alcohol is a poison with a range of negative biological and behavioural consequences, where

heavy drinking is noted to immediately and negatively impair vision, balance and judgement. Heavy

drinking is highly prevalent among young adults where, according to the data in this current study,

over half of all Swedes aged 18-21 report heavy drinking at least once a week and this is similar in

other countries, notably the United States (Carpenter and Dobkin, 2009). Among young adults,

alcohol related causes of death that are often associated with heavy drinking are homicides, motor

vehicle related accidents, falls and alcohol and narcotics specific related deaths (Miller et al., 2007).

It has therefore been deemed important that we provide young adults with the best conditions to

allow them to make the transition to unrestricted alcohol access in a safe manner. MLDAs have

been part of a policy mix to help reduce the harmful consequences of alcohol by delaying legal

access to alcohol until young adults are mature enough to understand the negative consequences of

heavy consumption.

The hope is that the way an MLDA has been designed minimises the widely documented costs

that can come with increased access to alcohol. Yet, as Carpenter and Dobkin (2011) note, we do

not have the evidence required to define the optimal policy design for an MLDA. Whilst a later

MLDA restricts access to young adults there is potentially a downside in that under-age drinking in

uncontrolled environments is in effect encouraged and this in turn leads to reckless drinking (this is

the concern in the United States). However, if an MLDA is introduced too early then young adults

may not be mature enough to make more informed decisions in light of the negative consequences of

alcohol consumption, which in turn may lead to excessive drinking. Instead of the evidence we need

to balance this trade-off, we have to rely on evidence of the local effects of the existing MLDAs

2



on alcohol consumption and health. Even within this limited sphere the existing evidence is fairly

limited and focuses on one form of MLDA - a complete ban on the purchasing of alcohol on or off

premises. Primarily this evidence comes from the United States and concerns a single MLDA at

age 21 years.

In this paper we add to the literature on the impacts of an MLDA on alcohol and health by

examining the impact of Sweden’s two-part MLDA of 18 years for on-licence purchasing of alcohol

(consumption of alcohol at restaurants, bars and clubs) and 20 years for off-licence purchasing of

alcohol using regression discontinuity design (RDD). This policy is fairly unique internationally and

has not been assessed previously. Its assessment allows us to examine the potential differing effects

of a two-part MLDA on alcohol consumption patterns and health and compare these effects to

those documented for single MLDAs in the literature. The evidence we present here will therefore

contribute to the evidence base as to what form an optimal MLDA policy should look like. An

additional contribution of this paper is that we establish for young adults the causal effect of alcohol

on mortality and hospital admissions. Alcohol consumption is determined by so many hard to observe

factors that also potentially determine health outcomes and this means that any strategy relying

on controlling for observables will almost certainly be biased. Variation in alcohol consumption

that is exogenous is also hard to find because it is unethical to run randomised experiments that

involve determining an individual’s alcohol consumption. Using our identification strategy of RDD

however, we are able to identify the causal effect of alcohol on health under plausible and testable

assumptions. Evidence of the causal relationship between alcohol consumption and health outcomes

is relevant for the development of public health policy.

Sweden’s two-part MLDA was introduced in 1917 when it became illegal to sell alcohol on-

premise to under-18s and to sell off-premise to under-21s, which was reduced to under-20s in 1969

and so it has remained up until today (Johansson, 2008). The design of the Swedish MLDA allows

legal access to alcohol for 18-19 year olds but under the supervision of the licencee. This should

minimise the health risks compared to what may have occurred if 18-19 year olds were not in a

controlled environment and able to drink as much as they pleased. Indeed, it is the duty of the

licencee to not sell alcohol to an individual who is deemed to be "noticeably under the influence of

alcohol" (SFS, 2010). At age 18, in addition to legal availability of on-licence drinking it is also

legal to purchase low alcohol content beer (max 3.5% volume) from general stores. Sweden has a

state-run off-licence (Systembolaget) and this is the only outlet where one can buy alcohol over

3.5% in volume.1 The state-owned monopoly off-licence has restricted hours and has a specific duty

to encourage a controlled and healthy attitude to alcohol. The two year age gap between the two

MLDAs was chosen in order to reduce the potential peer effect of elders purchasing alcohol for

1This is not to say that home brew and illegal purchasing of alcohol is not prevalant
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minors (Johansson, 2008). In sum, at age 18 there are three restrictions in play that are removed at

age 20: alcohol is not as readily available, is only legally available under supervision of a licencee

and at a substantially higher price than at the off-licence.

We assess the impact of Sweden’s MLDA on alcohol consumption using the Monitor Project

survey of alcohol consumption patterns covering the years 2001-2011. Impacts on health are assessed

using individual administrative data from the Ministry for Health that records the causes of death

and hospital admission and exact age at death/admission for the years 1969-2015 (2001-2015 for

outpatient data). The results show very different impacts at age 18 and at age 20. We find that

on-licence availability at age 18 leads to a 6% increase in participation and the proportion heavy

drinking and an 8% increase in those drinking more than the recommended weekly amount (risky

drinking) compared to those who haven’t quite turned 18 years of age. The largest impacts were

found for the number of days drinking, lying in the range of between 16% - 22% depending on alcohol

type. For those who had just turned 20 years of age we find a substitution away from home brew

and illegally purchased alcohol but no overall impact on quantity, frequency or intensity. The jump

at 18 in alcohol consumption coincides with a jump in hospital admissions due to external causes,

largely driven by alcohol and homicide causes. At age 20, even though we find no clear jump in

alcohol consumption we find a small negative fall in mortality, driven by a 14% fall in suicides and an

increase in hospital admissions due to external causes driven by increases in self-harm and homicide

related hospital admissions. The changes in alcohol consumption at 18 are less than observed for

the United States at age 21 and for Australia at age 18 suggesting that the two-part MLDA does

help control the behaviour of young adults when making the transition to an unrestricted alcohol

regime. The impact of the two-part MLDA on health outcomes suggests that this more controlled

transition to an unrestricted alcohol regime has helped avoid the increases in mortality observed in

other countries although costs remain in terms of impact on medical care services.

Beyond considering a novel alcohol control policy, this paper contributes to the literature

interested in the impacts of MLDA on alcohol consumption and alcohol’s impact on health in several

ways. First, our results present the impact of an MLDA in a new environment and therefore, in

part, add to the robustness of previous findings. Second, compared to previous studies we make use

of unusually detailed data on alcohol consumption patterns that allows analysis split by alcohol

type. We are therefore able to give a more detailed picture as to the impact of the policy on alcohol

consumption patterns. Third, we are able to split the results for alcohol consumption and health

outcomes by gender, which has not been done previously regarding the effects of the MLDA. There

are important consumption and biological differences between the genders and therefore any response

to the MLDA in alcohol consumption and its impact on health may differ by gender. Fourth, our

health outcome data is based on individual level registry data and therefore has correspondingly
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low measurement error. We have combined this data with information on exact date of birth to be

able to identify a discontinuity with high potential precision.

The rest of the paper is organised as follows: Section 2 reviews the relevant literature. Section 3

describes the data in detail before Section 4 sets out the empirical strategy. Section 5 presents the

results on alcohol consumption patterns and health outcomes including various sensitivity checks.

Section 6 summarises and concludes the paper.

2 Literature review

As Wagenaar and Toomey (2002) note in their review of the impact of MLDAs on alcohol consump-

tion and traffic accidents, the MLDA is the most well-studied alcohol policy in the United States

of America. The authors review the literature from 1970 - 2000 and find the evidence points to

a reduction in alcohol consumption and traffic related accidents. Of the more robust statistical

approaches reviewed, these largely relied on variation in the MLDA between states. In the 1970s

and 1980s various states experimented with lowering the MLDA from 21 to anything as low as 18.

Various studies used this natural experiment to assess the impact of MLDA on alcohol consumption

and its impact on mortality. However, as Carpenter and Dobkin (2009) note, there remains a

concern that unobserved heterogeneity remains and therefore the estimates are biased. It is possible

that state level preferences influenced the decision to lower the MLDA and that these preferences

are also linked to attitudes towards low age alcohol consumption and the risks of drink driving.

The more recent literature on the impact of MLDAs on alcohol consumption and the causal

effect on health has largely relied on the quasi-experimental statistical technique of RDD. This

non-parametric technique provides a local treatment effect and is deemed to have very high internal

validity and as a consequence has received a great deal of attention in the economics literature

in terms of refinement in its application (Hahn et al., 2001; Imbens and Lemieux, 2008; Lee and

Lemieux, 2010; Imbens and Kalyanaraman, 2011). In a reduced form set-up sharp RDD yields

the local impact of the rule change on the outcome of interest. If one is willing to stipulate a

structural relationship between two variables then RDD can also be used as an instrument in a Wald

type estimator set-up as used by Carpenter and Dobkin (2009). In fact, as utilized by Carpenter

and Dobkin (2009), the reduced form estimates and the first stage estimates can come from two

entirely different datasets making causal inference a more tractable proposition from an empirical

perspective. The empirical conditions of the MLDA lend themselves to RDD and recent research

into the impact of MLDAs on various health outcomes has yielded some convincing results.

In the United States the MLDA of 21 years of age has been found to lead to an increase in the

number of drinking days by 21% for those turning 21 and that this increased alcohol consumption
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causes an increase in the mortality rate of 9% (Carpenter and Dobkin, 2009). The authors have

detailed information on the causes of death and find that road accident related deaths increase at

the cut-off as well as external causes due to alcohol and suicide. Unfortunately the data on alcohol

consumption patterns was not ideally suited to the RDD set-up as the questions related to how

individuals had drunk in the last 12 months. The fact that the authors find a positive effect implies

that the effect would have been larger if data with a greater level of precision had been available.

Indeed Yörük and Yörük (2011) use better suited alcohol data combined with RDD, that asks

about alcohol consumed in the last month since interview, and find a much larger impact on the

number of days drinking alcohol of about 27% for those turning 21. This suggests that the causal

estimates of Carpenter and Dobkin (2009) are overstated because a larger first stage estimate will

reduce the final Wald type causal estimate. The impact of the United States MLDA at age 21 on

additional health related outcomes other than mortality is considered by Yörük and Yörük (2011,

2013, 2012, 2015) who consider smoking and marijuana use, psychological wellbeing and risky sexual

behaviour respectively. Beyond the significant discrete increase in alcohol consumption associated

with the MLDA of 21, they find no discernible spill over effects of the discrete increase in alcohol

consumption on smoking, marijuana use, psychological well being or risky sexual behaviour. Other

evidence from the United States finds that the MLDA at age 21 reduces hard drug use (Deza, 2015).

Whilst the majority of evidence is from the United States there is also evidence from other

countries. This is important as it helps us understand to what extent institutional and cultural

differences impact on the effect of an MLDA and also how different ages at which an MLDA is

imposed matters. Evidence from Canada using RDD has found the MLDA of 19 (except in Alberta,

Manitoba and Quebec where it is 18) results in a discrete jump in mortality just after the MLDA

age of about 14% which is in line with the evidence from the United States (Callaghan et al., 2014).

In another paper Callaghan et al. (2013) also look at inpatient hospitalisations in Canada and find

that hospital admissions jump at the MLDA. Evidence from Australia (Lindo et al., 2016) has found

that the MLDA at 18 does not lead to a large increase in motor vehicle related accidents unlike in

the United States at age 21 despite observing a near doubling in reported days drinking for those

just turning 18 and increased hospitalisations due to alcohol and homicides. The authors claim this

is due to a large and focussed campaign aimed at reducing drink driving. The evidence suggests

that the existence of an MLDA does delay the negative health impacts of alcohol consumption by

delaying the alcohol consumption levels that are associated with unrestricted alcohol access and

that this impact is observed for different ages of MLDA implementation. The evidence also suggests

that the institutional setting is important in determining how the MLDA impacts health outcomes.
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3 Data

3.1 Alcohol data

To quantify the effect of the MLDA on alcohol consumption patterns we use survey data collected as

part of the Monitor project on drugs and alcohol (SoRAD, 2015). This is a repeated cross-sectional

survey performed by monthly telephone interviews of roughly 1,500 individuals per month.2 The

data covers the period 2001-2011, individuals are aged between 16 and 82 years of age and the

data includes detailed questions regarding an individual’s drinking patterns. The forcing variable

in our analysis is age and for the Monitor project data we have year and month of birth and

year and month of interview through which we create age to the nearest month at the time of

interview.3 The outcomes we consider are whether an individual drank or not and various patterns

of consumption: heavy drinker; risky drinker; quantity of pure alcohol; drank unregulated alcohol;

and frequency (days drinking) and intensity (number of drinks) of drinking occasions, all of which

cover the last 30 days since interview.4 The definition of heavy drinker is the same for men and

women, which is a weakness of the variable as it is well known that women have a lower tolerance

threshold which is why we also consider another definition - risky drinker which accounts for this

alcohol tolerance difference. Whilst the risky drinker variable can be considered better than the

heavy drinker variable in that it accounts for gender differences, they are still quite distinct in what

they capture. Simply, a risky drinker may not be a heavy drinker and vice versa, which is why

we consider both variables. Frequency is defined as the number of drinking days in the past 30

days and intensity is defined as the average amount consumed per drinking occasion in the past

30 days.5 The alcohol outcome variables are described in table 1. Background variables strongly

2Interviewees are chosen at random by their telephone number and then the individual who most recently had their
birthday is asked to respond to the questionnaire.

3Whilst it would be desirable to have exact age at interview it is not clear in our case if this would reduce measurement
error due to the retrospective nature of the alcohol questions. The nature of questions regarding alcohol consumption is
that they have a recall period. The relevant recall period for the analysis of the MLDA should arguably tie in with the
level of detail thought to be required for the forcing variable in the RDD analysis. In the case of the Monitor project data
the alcohol questions cover the period of the last 30 days before interview. 30 days was chosen by the project as it gives a
good picture of each individual’s drinking patterns that are heavily influenced by the day of the week and time from
pay day which would be lost if questions related to yesterday or the previous seven days (Ramstedt et al., 2009). As a
consequence of the recall period, exact date of birth would not lead to a particular improvement in the accuracy of our
estimates of the MLDA on alcohol consumption.

4A drinker is defined as someone who had an alcoholic drink in the last 30 days before interview. A heavy drinker,
as defined by the Monitor project study, is someone who in the last 30 days has had one or more episodes where the
quantity of alcohol drunk was at least: 1 bottle of wine (75cl), 5 shots of spirit (25cl), 4 cans of strong beer/cider (>3.5%)
or 6 cans of low alcohol content beer (3.5%). A risky drinker is defined as someone who on average in the past 30 days
drank more than the weekly-recommended limit of 21 cl (14 cl) of pure alcohol if male (female). Quantities of alcohol
have been converted into centilitres of pure alcohol to allow easier comparability across alcohol types by multiplying in
litre terms: low alcohol content beer by 3.5%, beer and cider by 4.62%, wine by 12.8% and spirits by 38% (Standard
measures are provided by CAN (2015) and converted to % volume measures (1 cl pure alcohol is 7.8 grams of alcohol).
Unregulated alcohol is defined as illegally smuggled alcohol or homebrew.

5There are more observations for the heavy and risky drinker variables than for the frequency and intensity variables
because heavy and risky are combined over the alcohol types, whereas frequency and intensity are alcohol type specific.
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associated with alcohol consumption patterns are included in some of the regressions and include

gender, employment status (employed, unemployed or inactive) and county of residence.

Table 1: Alcohol consumption sample sizes near the cut-offs

variable Definition (in last 30 days) Mean N Mean N
(16 - 19) (18 - 21)

Drinker 1 = Drank alcohol 0.68 9160 0.83 8970
Heavy Drinker 1 = Drank heavily 0.36 7602 0.51 7033
Risky Drinker 1 = Drank more than recommended level 0.64 9160 0.80 8970
Quantity Quantity of pure alcohol consumed 34.32 9160 50.86 8970
Unregulated 1 = Drank smuggled alcohol or home-brew 0.17 9160 0.16 8970
Frequency No. of days drinking 9.50 6086 10.49 7292
Freq Beer No. of days drinking beer 3.63 3514 4.41 4582
Freq Low Alc. Beer No. of days drinking low alc. beer 3.35 2136 3.84 2244
Freq Wine No. of days drinking wine 2.66 2358 3.12 3556
Freq Cider No. of days drinking beer 2.58 2134 2.77 2575
Freq Spirit No. of days drinking spirits 2.76 3236 2.97 4331
Freq Heavy drinking No. of days heavy drinking 3.64 2703 4.01 3562
Intensity Beer Average cl pure alcohol/occasion 8.69 3514 8.94 4582
Intensity Low Alc. Beer Average cl pure alcohol/occasion 4.89 2136 4.35 2244
Intensity Wine Average cl pure alcohol/occasion 4.61 2358 5.00 3556
Intensity Cider Average cl pure alcohol/occasion 5.29 2134 5.33 2575
Intensity Spirits Average cl pure alcohol/occasion 7.14 3236 6.57 4331

Notes: All alcohol variables correspond to the previous 30 days before date of interview. Sample sizes are calculated for
two years either side of the cut-offs and give a representation of the sample size used in the analysis.
Source: Monitor Project Survey Data. Own calculations.

A concern for the question at hand is the potential for discontinuities in unobservables at

the cut-off, and in particular under-reporting of alcohol participation/consumption due to social

desirability bias. The concern is that those who are under 18 may report lower levels of consumption

or non-participation than actually occurred due to its illegality and this behaviour may abruptly

change after turning 18 (this should not really be an issue for the 20 years of age cut-off given it is

acceptable to drink in pubs and bars already just not purchase from the off-licence). If this does

occur the results would be biased. There are a few reasons as to why we think this is not the case

in this instance. First, previous research considering the impact of MLDA in the United States

provides convincing evidence that this is not a problem (Carpenter and Dobkin, 2009). Second, we

observe a jump in health outcomes suggesting that the discrete jump in alcohol consumption we

observe is real and not due to desirability bias.

3.2 Health data

To quantify the impact of the MLDA on various health measures we use two population based

administrative register data sources from Sweden. Information on mortality is provided by the

Swedish cause of death administration dataset. This dataset captures the universe of deaths for

the years from 1969-2015 and includes information on cause of death and exact age at death
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(Socialstyrelsen, 2015a). We use an extract that is for all individuals aged 12-26 years of age. There

may also be an impact on hospital use due to an increase in alcohol consumption possibly directly

due to poisoning or indirectly due to violence and accidents. We therefore use population based

inpatient and hospital based outpatient administrative data that includes information on cause

of visit and exact age at hospital visit (Socialstyrelsen, 2015b). This dataset also captures the

universe of hospital admissions for individuals admitted between 12 and 26 years of age for the

years from 1969-2015 for inpatient care and for the years 2001-2015 for outpatient care.6 The

patient data includes information on cause of hospitalisation and exact age at registration at the

hospital and also exact age at discharge. Causes of death and hospitalisation are outlined in table

A.1 in appendix A and are causes that are commonly linked to alcohol use for young adults - that

is external causes and specific sub-set of external causes (motor vehicle related accidents, homicides,

suicides, alcohol related causes and narcotics related causes). Internal causes are defined as all other

causes not defined as due to external causes. We view internal causes as causes not immediately

impacted by alcohol consumption. We define someone as having a particular cause if any of the

recorded diagnoses mention the particular cause of interest, that is we do not just use main diagnosis.

Background variables strongly associated with alcohol consumption, gender, whether foreign born

and county of residence, are included in some regressions. Controls are also included for birthday

and day after birthday and for counties that simultaneously introduce out of pocket (OOP) medical

care costs alongside changes in MLDA.7 Indicative sample sizes are shown in table 2.

6Inpatient care is for visits of 24 hours or more and outpatient care includes emergency room visits and visits to a
specialist at a hospital

7At age 18 the counties of Stockholm and Gotland introduce small OOP costs and Skåne does so from 2012. All other
counties introduce a small OOP cost at age 20 except those that did so at 18 and Sörmland, Jönköping, Kronoberg and
Västmanland who start OOP the calendar year a person turns 20. In 2017 these OOP costs were about 150sek, which
equated to about 18 dollars

9



Table 2: Health outcomes descriptive statistics

variable N (16 - 19) N (18 - 21)
Deaths:
Any cause 9,407 11,765
Internal causes 2,727 2,972
External causes: 6,680 8,793

Alcohol related 181 308
Motor vehicle related accident 3,194 3,712
Suicide 1,578 2,465
Homicide 200 281
Narcotics related 139 352
Other external cause 1,388 1,675

Hospital visits:
Any hospital visit 6,950,229 7,157,609
Internal causes 4,946,119 5,114,487
External causes: 1,198,843 1,229,338

Alcohol related 62,109 71,319
Motor vehicle related accident 112,455 111,074
Self-harm 43,084 47,732
Homicide 51,393 61,705
Narcotics related 47,838 79,366
Other external cause 881,964 858,142

Notes: Sample sizes are calculated for 2 years either side of the cut-offs and give a representation of the sample size used
in the analysis.
Source: Death and Patient administrative data. Own calculations.

4 Empirical strategy

In order to estimate the impact of Sweden’s two-part MLDA on alcohol consumption and on health

we use RDD as our identification strategy. Figure 1 depicts the age profile of four different binary

measures of participation: drank in the last 30 days, drank heavily in the last 30 days, drank a

risky amount in the last 30 days and drank unregulated alcohol in the last 30 days. In addition

figure 1 also depicts the age profile of total alcohol consumed in the last 30 days and the frequency

of drinking occasions (given participation). The raw data is graphed as scatter plots of the mean by

age measured in months. The MLDA cut-offs at 18 years and 20 years are indicated by the dashed

vertical lines. As can be seen in the figure, alcohol consumption has a strong age profile that is a

smooth profile increasing during the late teen years and then tailing off somewhat during the early

20s. However, there is an arbitrary chosen rule, the Swedish MLDA that leads to potential jumps

in behaviour because of legalised access and a jump in ease of access to alcohol consumption at ages

18 and 20 and as a result there may also be a jump in alcohol related health outcomes at these

cut-offs. In figure 1 we observe a clear jump in participation, risky drinking and in total quantity

consumed at age 18 years but no positive jumps at age 20.

RDD allows us to test whether these jumps are statistically significant or just part of the age

profile of alcohol consumption. The general formulation for the regression equation we estimate is

the following:
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Fig. 1: Drinking behaviours by age
Notes: This figure plots the scatter points of mean drinking behaviour by monthly age blocks.
Source: Monitor Project Survey Data. Own calculations.

yi = α+ βMLDA18i + f(agei) + εi; (1)

yi = α+ βMLDA20i + f(agei) + εi; (2)

In this model yi represents the various alcohol consumption patterns or health outcomes we consider

for individual i, MLDA is a binary variable equal to unity for ages above the MLDA threshold

(which is either 18 or 20 depending on which threshold we are investigating) and age is measured

in months from the MLDA threshold using the alcohol data and days from the MLDA threshold

using the data on health outcomes. The identification strategy we use here is a functional form for

age, f(.) that eliminates the potential endogenous relationship between age and the error term, ε.
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The key identifying assumption is that near the MLDA threshold the relationship between age and

the error term is a smooth function with no jumps or spikes as we cross the threshold but there is

a discontinuity for the outcome variable. We follow Imbens and Lemieux (2008) and use a Local

Linear Regression (LLR) in place of f(.). The functional form for the forcing variable (agei) then

becomes a smoothed linear function and we choose to estimate this separately either side of the

cut-off. The coefficient β is the discontinuous effect of the MLDA on the outcome variable assuming

that our functional form absorbs any potential relationship between agei and εi. LLR is preferred

to parametric polynomial regression because it puts greater effort into estimating the curve near the

cut-off whereas polynomial regressions focus on the sample population, which is not the focus of our

analysis. Following Imbens and Lemieux (2008) we use a rectangular kernel and estimate on the

entire sample, but use a bandwidth as determined by the optimal bandwidth algorithm of Imbens

and Kalyanaraman (2011) (IK from here on in) which calculates the optimal bandwidth for each

LLR equation.8 It is preferred because it optimises the trade-off between accuracy and efficiency.

In addition to the IK bandwidth estimates we present the estimates from a LLR using a bandwidth

of half and double the IK optimal bandwidth size. Varying the bandwidth allows us to assess how

sensitive the results are to bandwidth choice and therefore give a sense of the robustness of the

results to model specification. Presenting alternative bandwidth choices also highlights immediately

the accuracy efficiency trade-off of the bandwidth selection. We choose to use bandwidths that are

the same size either side of the cut-off.

Equations (1) and (2) applied to health outcomes are reduced form regression equations and

applied to alcohol consumption are first stage regression equations that capture the intention to

treat (ITT) impact of the MLDA. It is also possible to use these estimates as part of an instrumental

variables strategy assessing the causal effect of alcohol consumption on health. This is performed

by dividing the estimate of discontinuity in health by the estimate of the discontinuity in alcohol

yielding a Wald type IV estimator.

As mentioned above, our identification strategy builds upon the assumption that any jumps

observed in our outcome variables at the cut-offs are purely due to the rule changes, once we have

fully controlled for the smooth relationship between age and the outcome variable. There are,

however, potential confounders with our MLDA cut-offs. For alcohol consumption and the MLDA

at 18, a potential confounder is the minimum legal age for purchasing of tobacco which is also

legalised at 18.9 We can expect a jump in tobacco use due to this policy and this may independently

impact on an individual’s drinking behaviour through peer effects or potential complementary effects

between alcohol and tobacco consumption. However, we find no jump in smoking as shown in figure

8The LLR are estimated over the full sample, the use of LLR ensures the estimates are local to the discontinuity.
9Individuals also have the right to vote and generally are deemed to have become an adult at age 18 but it is hard to

imagine that these factors impact alcohol consumption nor the health outcomes under consideration.
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B.1 or in table B.1 found in appendix B.

Another potential confounder with the MLDA at 18, specifically related to accidents, is that it

is possible to gain a driving licence once turned 18 years of age (it is legal to drive under supervision

from the age of 16). Alcohol consumption is known to increase motor vehicle related accidents in

the United States which suggests this is an important confounder. We deal with this by looking at

accidents by cause separating out motor vehicle related accidents. A potential confounder with

hospital visits is a small (roughly 18 U.S. Dollars in 2017 prices) OOP payment required by the

local health service. In our analysis we test if confounding is an issue by considering the regions

who do not introduce an OOP cost on the birthday coinciding with MLDA as a sensitivity.

Beyond the potential problem of confounding it is of concern in RDD that individuals may

be able to manipulate which side of the cut-off they are on. In the Monitor data this would

require individuals to misreport their age discontinuously either side of the MLDA cut-offs. The

incentives to manipulate the cut-off are not clear in this instance. We view it as highly unlikely that

manipulation occurs as the age of the person is asked before any other question on the questionnaire.

Due to the sampling methodology we are unable to test for manipulation of the forcing variable as

suggested by McCrary (2008). However we illustrate the consequence of the sampling methodology

in appendix C figure C.1 by way of a histogram of age just to show that this type of manipulation

test isn’t possible due to the sampling frame of the survey (there is a greater representation of

those who have recently had a birthday reflecting the greater probability of being chosen due to the

sampling frame). For the registry data or survey data on health outcomes that we discuss below,

manipulating the cut-off is not an issue as these record the birth date from the individual’s Swedish

personal identification number, which is an official record, of which the first eight digits are the

individual’s birth date.

Lastly, we consider the age distribution of the covariates in the Monitor data as a diagnostic test

of confoundedness. If there are jumps in the covariates at the 18 years of age and 20 years of age

cut-offs this would indicate that there are other factors occurring at the same time confounding the

results. In figure 2 we present the raw data for gender, unemployed and employed. LLR estimates

are found in appendix C table C.1. It appears concerning that a significant at the 5% level negative

jump in the proportion employed is observed at the 18 years of age cut-off, but when eyeballing the

data it is there is no negative jump at the cut-off. What we do observe in the raw data in figure

2 is a large change in the slope at both cut-offs. A large bandwidth will more likely under these

conditions mistake a large change in slope for a discontinuity at the cut-off and this appears to be

what is happening here. Taken together the evidence suggest that there is a discontinuity in the

trend of our background covariates but not a jump and that the covariates are smooth functions

across both cut-offs.
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Fig. 2: Diagnostic tests: Covariates by age
Notes: This figure plots the scatter points of the mean of the covariate by monthly age blocks. The MLDA cut-offs at 18
years and 20 years are indicated by the dashed vertical lines. Male is 1 if male, 0 otherwise. Employed is 1 if employed, 0
otherwise. Unemployed is 1 if unemployed, 0 otherwise.
Source: Monitor Project Survey Data. Own calculations.

5 Results

5.1 Alcohol consumption

This section presents the estimates of the effect of Sweden’s MLDA at both 18 years of age and 20

years of age on alcohol participation and patterns of consumption. As we have already seen in figure

1, there is a jump in participation, risky drinking and quantity consumed at 18 years of age and a

drop in the proportion drinking unregulated alcohol at age 20. The effects of the MLDA on alcohol

consumption estimated by LLR are shown in table 3. Model (1) uses the optimal IK bandwidth with

a rectangular kernel and confirms there is a positive jump in participation (6 percentage points),

risky drinking (8 percentage points) and quantity consumed (11.6 grams of pure alcohol) at age 18,

all significant at the 1 percent level. The LLR results for model (1) also find a significant jump in

the proportion who had a heavy drinking episode at 18 (6 percentage points) and a reduction in the
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proportion who drank unregulated alcohol at age 20 (5 percentage points). Models (2) and (3) halve

and double the size of the bandwidth used in model (1) respectively in order to test the sensitivity of

the estimates to bandwidth choice. The impacts observed for participation, risky drinking, quantity

and unregulated alcohol appear robust to bandwidth choice. Having had a heavy drinking episode

appears much more sensitive to choice of bandwidth and this fits with what we observe in the raw

data in figure 1 where it is not clear there is a jump in the proportion who participated in heavy

drinking.
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Fig. 3: Drinking frequency by age
Notes:. The scatter points are monthly age blocks representing the proportion reporting the drinking behaviour.
Source: Monitor Project Survey Data 2001-2011 (heavy drinking frequency is asked from 2003 onwards). Own
calculations.

In figure 3 we show the relationship between frequency of alcohol consumption and age for

those who participate in drinking (we ignore those whose frequency is zero and therefore remove

the participation effect). Figure 3 shows potential jumps in frequency of wine, cider and spirits

and frequency of heavy drinking at the 18 years of age cut-off and a negative jump in frequency

of low alcohol beer drinking occasions at the 20 years of age cut-off. In table 4 the LLR results
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Table 3: LLR regression estimates of MLDA impact on alcohol participation
(1) (2) (3) (4)

Drank alcohol in last 30 days
MLDA 18 0.0645∗∗∗ 0.0854∗∗ 0.0599∗∗∗ 0.0569∗∗

(0.0234) (0.0370) (0.0184) (0.0236)
Bandwidth 1.596 0.798 3.192 1.596
MLDA 20 0.0179 0.0219 0.00103 0.0116

(0.0253) (0.0414) (0.0165) (0.0247)
Bandwidth 1.104 0.552 2.208 1.104
Drank more than recommended weekly amount in last 30 days
MLDA 18 0.0677∗∗∗ 0.0760∗∗ 0.0629∗∗∗ 0.0594∗∗

(0.0251) (0.0380) (0.0190) (0.0252)
Bandwidth 1.505 0.753 3.011 1.505
MLDA 20 0.0295 0.0487 0.0128 0.0256

(0.0292) (0.0495) (0.0182) (0.0283)
Bandwidth 0.985 0.493 1.971 0.985
Had a heavy drinking episode in last 30 days
MLDA 18 0.0649∗∗ 0.0224 0.0640∗∗∗ 0.0568∗

(0.0295) (0.0471) (0.0210) (0.0291)
Bandwidth 1.488 0.744 2.977 1.488
MLDA 20 0.0348 0.0290 -0.0133 0.0628∗

(0.0354) (0.0555) (0.0229) (0.0357)
Bandwidth 1.258 0.629 2.515 1.258
Quantity of pure alcohol consumed in last 30 days
MLDA 18 12.09∗∗∗ 11.81∗∗∗ 15.44∗∗∗ 11.23∗∗∗

(3.047) (4.329) (2.578) (2.839)
Bandwidth 2.579 1.289 5.158 2.579
MLDA 20 -4.130 6.234 -6.236∗∗ -4.135

(3.493) (5.628) (2.525) (3.401)
Bandwidth 2.625 1.313 5.250 2.625
Drank unregulated alcohol in last 30 days
MLDA 18 -0.00387 -0.00529 -0.0142 -0.00154

(0.0197) (0.0315) (0.0152) (0.0191)
Bandwidth 1.612 0.806 3.224 1.612
MLDA 20 -0.0466∗∗ -0.0924∗∗ -0.0493∗∗∗ -0.0401∗

(0.0237) (0.0381) (0.0148) (0.0238)
Bandwidth 1.301 0.650 2.602 1.301
Frequency of drinking occasions in last 30 days
MLDA 18 1.085 2.805∗∗ 0.364 1.565∗∗

(0.745) (1.107) (0.538) (0.769)
Bandwidth 1.371 0.685 2.741 1.371
MLDA 20 -0.223 -0.678 1.002∗∗∗ -0.0886

(0.532) (0.850) (0.377) (0.540)
Bandwidth 1.920 0.960 3.841 1.920
IK optimal bandwidth X 0.5x 2x X
Covariates X

Notes: This table shows the impact of the MLDA at 18 and 20 years on alcohol consumption patterns from a LLR model
using age in years and months as the running variable and bandwidth chosen as per the IK optimal bandwidth selection.
All coefficients are from separate regressions. Columns 1 and 4 use the IK optimal bandwidth. Columns 2 and 3 use a
bandwidth half and double the size of the IK optimal bandwidth. Column 4 includes covariates. Covariates include
gender, economic status and county of residence. Standard errors are shown in parenthesis and are clustered at the age in
years and months level. Testing the null of the coefficient: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
Source: Monitor Project Survey Data. Own calculations.
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using the optimal IK bandwidth (model 1) find that for 18 year olds there is a jump in frequency

for all alcohol types and for heavy drinking but this is only statistically significant for beer, cider,

spirits and heavy drinking episodes. The jump for frequency of beer consumption is 0.5 days/month,

0.6 days/ month for cider consumption, 0.5 days/month for frequency of spirits consumption, 0.6

days/month for frequency of heavy drinking episodes. Varying the bandwidth (models 2 and 3) does

not lead to large changes in estimated impact of the MLDA on frequency of beer, cider and spirits

consumption and heavy drinking for 18 year olds suggesting these are robust estimates. Overall the

results suggest that frequency of beer, cider and spirits increased by about 0.4-0.6 occasions and

heavy drinking episodes increased by about 0.6-1 occasions for 18 year olds. For 20 year olds, no

significant jumps are observed except for frequency of cider consumption which jumps by about 0.6

occasions, but this is not robust to bandwidth selection. The coefficient estimate for frequency of

low alcohol beer consumption at age 20 is fairly robust to bandwidth selection but is not precisely

estimated.

In appendix D we investigate the relationship between age and alcohol consumption intensity.

Eye balling the data in figure D.1 there appears to be little impact of the MLDA on intensity of

consumption. The LLR results confirm this. Interestingly the MLDA appears to reduce intensity of

consumption for all alcohol types but the only significant and robust results are found for beer and

spirits consumption at 18 years (a reduction in the range of 0.8 to 1.7 grams of pure alcohol where

14 grams is equivalent to a "standard drink"). 20 year olds appear to switch away from low alcohol

beer which would go hand in hand with now being able to shop at the off-licence. Together with

the evidence on frequency of drinking episodes the results suggest that the increased ease of access

to alcohol at age 18 does not change how individuals drink, rather it increases how often they drink

and if anything intensity appears to fall after gaining easier access to alcohol but this fall is not

economically meaningful.

The estimated impacts of the MLDA on frequency and intensity are affected by the fact that we

only consider the sub-sample that drink and this sub-sample changes discontinuously at the cut-off.

The estimates are therefore a combination of a change in the population that drink (population

effect) and a change in the overall pattern of how people drink (distribution effect). We assess if

there is a distribution effect for frequency and intensity in appendix E by plotting the distribution

densities of frequency and intensity for ages 17 and 18, and 19 and 20. Whilst this analysis is not

causal it indicates that there is a shift towards more frequent alcohol consumption for 18 year olds

but not so much for 20 year olds. For intensity there appears to be a reduction in spirits intensity

for both 18 and 20 year olds. Together this suggests that on top of greater participation after

turning 18 individuals also drink more often and drink heavily more often but in proportion to how

they drank before and potentially even in a more controlled manner. This is similar to the findings
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Table 4: LLR regression estimates of MLDA impact on alcohol frequency
(1) (2) (3) (4)

Frequency of beer consumption in last 30 days
MLDA 18 0.520∗ 0.429 0.638∗∗∗ 0.557∗∗

(0.282) (0.425) (0.232) (0.278)
Bandwidth 1.713 0.857 3.426 1.713
MLDA 20 0.0347 0.424 0.0632 -0.0272

(0.205) (0.304) (0.165) (0.205)
Bandwidth 3.082 1.541 6.165 3.082
Frequency of low alcohol beer consumption in last 30 days
MLDA 18 0.146 0.0810 0.432 -0.119

(0.303) (0.341) (0.284) (0.300)
Bandwidth 3.763 1.881 7.525 3.763
MLDA 20 -0.115 -0.250 -0.173 -0.140

(0.301) (0.460) (0.235) (0.294)
Bandwidth 3.235 1.617 6.470 3.235
Frequency of wine consumption in last 30 days
MLDA 18 0.172 0.358 0.510∗∗ 0.242

(0.227) (0.315) (0.207) (0.239)
Bandwidth 2.259 1.129 4.518 2.259
MLDA 20 -0.151 -0.0533 -0.190 -0.332∗

(0.191) (0.287) (0.152) (0.188)
Bandwidth 3.171 1.585 6.342 3.171
Frequency of cider consumption in last 30 days
MLDA 18 0.596∗∗∗ 0.500 0.571∗∗∗ 0.512∗∗

(0.228) (0.357) (0.201) (0.217)
Bandwidth 2.043 1.021 4.086 2.043
MLDA 20 0.587∗∗ 0.794∗∗ 0.00193 0.548∗∗

(0.268) (0.392) (0.184) (0.264)
Bandwidth 1.895 0.948 3.790 1.895
Frequency of spirits consumption in last 30 days
MLDA 18 0.481∗∗ 0.395 0.518∗∗ 0.437∗

(0.244) (0.378) (0.212) (0.238)
Bandwidth 1.882 0.941 3.764 1.882
MLDA 20 -0.163 0.137 -0.193 -0.211

(0.175) (0.294) (0.141) (0.176)
Bandwidth 2.991 1.495 5.982 2.991
Frequency of heavy drinking episodes in last 30 days
MLDA 18 0.599∗∗ 0.672∗ 0.835∗∗∗ 0.606∗∗

(0.285) (0.369) (0.262) (0.286)
Bandwidth 2.719 1.359 5.438 2.719
MLDA 20 0.0517 0.584 0.0752 -0.0702

(0.252) (0.375) (0.190) (0.249)
Bandwidth 2.706 1.353 5.412 2.706
IK optimal bandwidth X 0.5x 2x X
Covariates X

Notes: This table shows the impact of the MLDA at 18 and 20 years on alcohol consumption patterns from a LLR model
using age in years and months as the running variable and bandwidth chosen as per the IK optimal bandwidth selection.
See notes for table 3. Standard errors are shown in parenthesis and are clustered at the age in years and months level.
Testing the null of the coefficient: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
Source: Monitor Project Survey Data. Own calculations.
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in Carpenter and Dobkin (2009) and Yörük and Yörük (2012) for the United States MLDA at age

21.

In appendix F we present the results for alcohol consumption by gender. The estimates reveal

that the participation impacts at 18 years of age are larger for males than for females where 8% more

males drank after the cut-off vs 3% more for females, 10% more males consumed a risky amount

of alcohol vs no impact for females and 8% more males participated in heavy drinking vs 5% for

females. Similarly, males also saw the largest increase in quantity of alcohol consumed of 12g vs 8g

for women. The increases in frequency at age 18 of beer, cider, spirits and heavy drinking observed

in table 4 appear to be driven by a mix of both men or women depending on the alcohol type: both

men and women see an increase in frequency of beer consumption, cider’s increase appears to be

driven by men, spirit’s increase appears to be driven by women and heavy drinking appears to be

driven by men. The drop in intensity of spirits consumption at age 18 is driven by both men and

women but the effect is much larger for women.

Turning to the other covariates, we can see that including covariates in our LLR estimates

(comparing model (1) to model (4) in tables 3, 4, D.1) has negligible effect on the estimates. This

suggests that these covariates are a smooth function of age over the cut-offs of 18 and 20 years. As

a further sensitivity test we also consider in appendix G the potential birthday effect. The concern

is that the impacts we observe are not persistent jumps but just the very short-term impact of

birthday celebrations. Comparing results that include the birthday month and exclude the birthday

month finds no major difference, if anything the impacts are larger for those excluding the birthday

month, suggesting that our results are not just birthday effects. Together with the diagnostics tests

of section 4 this suggests that the covariates that we are unable to observe are also smooth across

the cut-off and that the jumps we observe are due to the policy effects alone and not a discontinuity

in some third unobserved factor.

In sum the MLDA at 18 that legalised on-premise alcohol consumption sees a jump in participation

generally of 6%, participation in heavy drinking of 6%, proportion drinking a risky amount of

8% and a jump in quantity of alcohol consumed of about 12g of pure alcohol or near enough to

a standard drink of 14g (a roughly 30% increase). These impacts are stronger for men than for

women. Frequency of consumption also jumps for some alcohol types: beer, cider, spirits and also

for heavy drinking episodes at age 18 all driven by men except for the jump in spirits frequency.

Intensity of consumption episodes is unchanged at the MLDA at 18 except for spirits which drops

and this is driven by women. The quantity impact observed therefore appears to be due to how

often individuals choose to drink rather than in the way they drink. The MLDA at 20 has a

negligible impact on alcohol consumption participation and on patterns of consumption with the

notable exception of an increase in frequency of cider consumption. Unregulated alcohol is drunk
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less often at the MLDA at 20 years of age implying a substitution away from these sources given no

impacts are observed for quantity or participation at age 20.

5.2 Mortality

In this section we present the estimates of the effect of the MLDA on cause specific mortality. In

figure 4 we plot the raw data for all deaths by age in Sweden for the years 1969-2015 and also split

by external and internal causes.10 The first thing to note is that even with a long time-span of 44

years of data, Sweden has not experienced a huge number of fatalities for this age range. It can be

seen that there is an increasing death count with age and that the death count increases markedly

after the age of 18. The age profile then appears to flatten out after the up-swing between 18 and

19 years. This pattern appears to be entirely driven by deaths due to external causes.
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Fig. 4: Mortality by age
Notes: The scatter points are monthly age blocks of the mortality count for the years 1969-2015. External deaths are
those defined as due to external causes plus alcohol and narcotics related causes. Internal causes are all remaining deaths
not defined as due to external causes. The MLDA cut-offs at 18 years and 20 years are indicated by the dashed vertical
lines.
Source: Death administrative data. Own calculations.

Regression analysis is of the log of the death count for each exact age at death measured in

years and days for the period 1969-2015. The model is estimated over the age span 12-26 years

of age inclusive. The coefficient estimates are interpreted as the percentage impact on the death

count of the MLDA, so long as the effects are not too large. Models (1) through (4) are the same as

the models used for the alcohol outcomes. The findings observed in the raw data in figure 4 are

confirmed in table 5. Using the results from models (1-3) we find a jump in all cause mortality in

the range of 5%-12% which is quite sensitive to bandwidth choice. We also find a jump for external

causes in the range of 3% - 15% which is even more sensitive to bandwidth choice. For deaths due

10note: internal causes = all causes - external causes.
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to internal causes there is no clear jump. The regression results appear to be picking up the marked

increase in mortality after turning 18 but it is not clear that this is a jump and therefore a direct

result of the MLDA.

Table 5: LLR regression estimates of MLDA impact on log mortality
(1) (2) (3) (4)

Any cause

MLDA 18 0.119∗∗ 0.0522 0.106∗∗∗ 0.102∗∗

(0.0478) (0.0727) (0.0349) (0.0449)

Bandwidth 1.040 0.520 2.080 1.040

MLDA 20 0.0226 0.0110 -0.0123 0.00637

(0.0487) (0.0665) (0.0345) (0.0450)

Bandwidth 0.968 0.484 1.935 0.968

External Causes

MLDA 18 0.0929 0.0262 0.146∗∗∗ 0.0695

(0.0680) (0.0949) (0.0497) (0.0659)

Bandwidth 0.853 0.427 1.707 0.853

MLDA 20 0.00462 -0.00710 -0.0169 -0.0169

(0.0606) (0.0825) (0.0430) (0.0564)

Bandwidth 0.900 0.450 1.800 0.900

Internal causes

MLDA 18 0.0699 0.129 -0.0124 0.0596

(0.0883) (0.133) (0.0621) (0.0884)

Bandwidth 1.024 0.512 2.049 1.024

MLDA 20 -0.0102 0.0219 -0.0173 -0.00432

(0.0672) (0.0910) (0.0493) (0.0675)

Bandwidth 1.567 0.784 3.134 1.567

IK optimal bandwidth X 0.5x 2x X

Covariates X

Notes: This table shows the impact of the MLDA for various causes of death. See notes for table 3. The dependent
variable is the log of the death count that occurred at age x measured in years and days and bandwidth is measured in
years and days. We add 0.5 to the count before taking logs to deal with zeros. Covariates include gender, county,
whether foreign born and dummies for birthday at 18 and 20 and the day after birthday at 18 and 20 and for whether
county started charging out of pocket payments at 18th or 20th birthday. Standard errors clustered by age at death
measured in days are shown in parenthesis. Testing the null of the coefficient: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
Source: Death administrative data. Own calculations.

Figure 5 presents the raw data for alcohol related causes of mortality common amongst young

adults where we would expect to be able to find an impact of the MLDA immediately at the cut-offs.

The data shows a marked increase in motor vehicle related accidents at age 18. There is also a

negative jump in deaths due to suicide at age 20. No clear jumps are observable from the raw data

for homicides, alcohol and narcotics related deaths or other external causes. We test for jumps

at the MLDA using LLR and the results are presented in table 6. We find a positive jump in

motor vehicle related accidents at age 18 of between 10% and 36% and a drop in suicides at age
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Fig. 5: Mortality due to external causes by age
Notes: The scatter points are monthly age blocks of the mortality count for the years 1969-2015. The causes are defined
so they are non-overlapping using the following hierarchy: homicide, suicide, MVA, alcohol related, narcotics related,
external other.
Source: Death administrative data. Own calculations.

20 of between -14% and -22% confirming what is shown in the raw data. We also find a small

but statistically significant drop in alcohol related deaths at age 18 of between -8% and -12% (a

drop of about 10 deaths over 44 years in absolute terms). In appendix H we present the results

split by gender. The results in tables H.1 and H.2 show that it is males that are driving the drop

in suicides at 20 years of age and the increase in motor vehicle related accidents at age 18. The

reduction in alcohol related deaths at age 18 also appears to be driven by males but the estimates

are very imprecise. In model (4) of tables 5 and 6 we include covariates for birthday and day after

birthday to account for any birthday party effects. We also include dummy variables for counties

who introduce OOP costs for medical care at the 18th or 20th birthday alongside controls for gender

and whether foreign born. The inclusion of these covariates gives us very similar estimates.

In sum, we find evidence of a large relative jump in mortality at age 18, which is of similar size

to that found for the United States (Carpenter and Dobkin, 2009). The impacts however are driven
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entirely by motor vehicle related accidents and not by deaths due to any other alcohol related

causes, whereas in the United States impacts were found for a number of alcohol related causes.

Due to car driver licensing also beginning at age 18 we cannot disentangle if this jump in motor

vehicle accidents is due entirely to the licensing regime or in some part due to alcohol. The fact

that deaths specifically due to alcohol fall at age 18 suggests it is the licensing regime and not the

MLDA at 18 that is driving the increase in motor vehicle related deaths. We also find a negative

jump in suicides at age 20 when purchasing of off-licence alcohol is legalised. The relative impact

found for suicides is much larger than that for alcohol related deaths and is even greater in absolute

terms as there are that many more deaths due to suicide at age 20 than there are deaths due to

alcohol related causes at age 18. These effects are all driven by males.
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Table 6: LLR regression estimates of MLDA impact on external causes of log mortality
(1) (2) (3) (4)

Motor vehicle related accidents
MLDA 18 0.239∗∗∗ 0.101 0.358∗∗∗ 0.215∗∗∗

(0.0847) (0.119) (0.0613) (0.0818)
Bandwidth 1.000 0.500 2.001 1.000
MLDA 20 0.0759 -0.0832 0.0326 0.0469

(0.0869) (0.116) (0.0621) (0.0834)
Bandwidth 0.893 0.447 1.786 0.893
Suicide
MLDA 18 0.00198 -0.0642 0.0461 0.0139

(0.0861) (0.126) (0.0599) (0.0881)
Bandwidth 1.098 0.549 2.196 1.098
MLDA 20 -0.216∗∗∗ -0.149 -0.140∗∗ -0.191∗∗

(0.0833) (0.116) (0.0601) (0.0821)
Bandwidth 1.038 0.519 2.076 1.038
Homicide
MLDA 18 -0.00313 -0.0420 -0.00666 -0.00500

(0.0451) (0.0633) (0.0308) (0.0451)
Bandwidth 1.054 0.527 2.107 1.054
MLDA 20 0.0494 0.0383 0.0163 0.0422

(0.0446) (0.0615) (0.0319) (0.0450)
Bandwidth 1.322 0.661 2.644 1.322
Alcohol related
MLDA 18 -0.0817∗ -0.125∗∗ -0.0796∗∗ -0.0835∗

(0.0458) (0.0627) (0.0342) (0.0467)
Bandwidth 0.902 0.451 1.804 0.902
MLDA 20 0.00265 0.0248 0.0245 -0.00288

(0.0528) (0.0742) (0.0369) (0.0535)
Bandwidth 1.251 0.625 2.501 1.251
Narcotics related
MLDA 18 0.0384 -0.0294 -0.00281 0.0372

(0.0434) (0.0697) (0.0306) (0.0440)
Bandwidth 0.910 0.455 1.820 0.910
MLDA 20 -0.0234 -0.0268 0.000495 -0.0161

(0.0500) (0.0668) (0.0357) (0.0509)
Bandwidth 1.382 0.691 2.764 1.382
Other external causes
MLDA 18 -0.0419 0.0363 0.00540 -0.0402

(0.0701) (0.0967) (0.0494) (0.0695)
Bandwidth 1.642 0.821 3.284 1.642
MLDA 20 0.130 0.336∗∗ 0.113 0.0971

(0.101) (0.149) (0.0706) (0.100)
Bandwidth 0.771 0.385 1.542 0.771
IK optimal bandwidth X 0.5x 2x X
Covariates X

Notes: This table shows the impact of the MLDA for various external causes of death. See notes for table 5.
Source: Death administrative data. Own calculations.

5.3 Hospital admissions

In this section we present the estimates of the effect of the MLDA on cause specific hospital

admissions. The structure and approach used in this section mirrors that of the mortality section.

In figure 6 we plot the raw data for all hospital admissions in Sweden for the years 1969-2015

for inpatient care combined with the years 2001-2015 for outpatient care split by external and
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internal causes (note that hospitalisations due to external causes are now the least common cause

and therefore graphed on their own - right-hand side panel). The first thing to note is that the

age profile of hospital admissions has a different age profile to that of mortality. Like mortality it

increases from age 16 up to age 18, but where mortality increases after age 18 and then plateaus

out after age 20, hospitalisations show a drop after age 18, plateau until age 20 after which they

start to increase again. Another important difference is that internal causes are a more frequent

reason for hospital admissions whereas external causes are more frequent reasons for mortality. As

a consequence the age profile described for hospitalisations is driven by the age profile of internal

causes - causes that are not directly attributable to alcohol. Hospital admissions due to external

causes (right hand pane of figure 6) are much less frequent than internal cause related admissions

and observe a large increase after the age of 18 before tailing off after age 20, mirroring much

more closely the patterns observed for alcohol participation, quantity and frequency of alcohol

consumption and mortality due to external causes.
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Fig. 6: Hospital admissions by age
Notes: The scatter points are monthly age blocks of count of hospital admissions for the years 1969-2015. Internal causes
and external causes do not sum to any cause due to missing information on diagnosis. The MLDA cut-offs at 18 years
and 20 years are indicated by the dashed vertical lines.
Source: Patient administrative data. Own calculations.

In table 7 we present regression analysis of the log of the count of hospital admissions for each

exact age at death measured in years and days. Similarly to mortality, the model is estimated over

the age span 12-26 years of age and the coefficient estimates are of the impact of the MLDA and are

interpreted as the percentage impact on hospital admissions, so long as the effects are not too large.

Models (1) through (4) in table 7 are the same as the models used for the alcohol and mortality

outcomes. In table 7 we find a robust and significant drop in overall hospital admissions at age 18

according to models (1-3) of between -4% to -5%, depending on model specification. This drop is

driven by hospital admissions due to internal causes at age 18, causes not attributable to alcohol
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Table 7: LLR regression estimates of MLDA impact on the log of hospital visits
(1) (2) (3) (4)

Any cause

MLDA 18 -0.0540∗∗∗ -0.0446∗∗ -0.0541∗∗∗ -0.0492∗∗∗

(0.0131) (0.0226) (0.00773) (0.0126)

Bandwidth 0.217 0.108 0.433 0.217

MLDA 20 -0.0142 -0.00255 -0.00953 -0.00249

(0.0266) (0.0445) (0.0153) (0.0128)

Bandwidth 0.0664 0.0332 0.133 0.0664

External Causes

MLDA 18 0.0722∗∗ 0.110∗∗ 0.0487∗∗ 0.0552∗

(0.0282) (0.0432) (0.0200) (0.0314)

Bandwidth 0.0611 0.0305 0.122 0.0611

MLDA 20 0.0876∗∗ 0.140∗∗ 0.0487∗∗ 0.0545∗

(0.0404) (0.0659) (0.0248) (0.0286)

Bandwidth 0.0540 0.0270 0.108 0.0540

Internal causes

MLDA 18 -0.0647 -0.0635 -0.0651∗∗∗ -0.0354

(0.0399) (0.0688) (0.0233) (0.0372)

Bandwidth 0.0701 0.0351 0.140 0.0701

MLDA 20 -0.0223 -0.0271 -0.0180 0.000980

(0.0296) (0.0484) (0.0172) (0.0137)

Bandwidth 0.0730 0.0365 0.146 0.0730

IK optimal bandwidth X 0.5x 2x X

Covariates X

Notes: This table shows the impact of the MLDA on hospital admissions. See notes for table 3. The dependent variable
is the log of the count of hospital admissions that occurred at age x measured in years and days and bandwidth is
measured in years and days. We add 0.5 to the count before taking logs to deal with zeros. Not all admissions have a
recorded cause and therefore external and internal causes do not sum to the total. Covariates include gender, county,
whether foreign born and dummies for birthday at 18 and 20 and the day after birthday at 18 and 20 and for whether
county started charging out of pocket payments at 18th or 20th birthday. Standard errors clustered by age at admission
measured in days are shown in parenthesis. Testing the null of the coefficient: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
Source: Patient administrative data. Own calculations.

of which we a see a drop of about -6%. The drop in internal cause related hospital admissions is

largely driven by the Swedish medical system’s treatment of patients in need of psychiatric care.11

Hospital admissions due to external causes and therefore attributable to alcohol see a jump at age

18 in the range of 5% - 11%. There is also an observed jump in hospital admissions due to external

causes at age 20 in the region of 5% - 14%.

11At age 18 individuals no longer receive psychiatric care at the children and young persons psychiatric wards at
hospitals. Instead provision of care moves to adult psychiatric care which is less generous, more patchily provided and
often is dealt with by the GP or external providers and therefore not captured in the hospital patient database. This
is therefore an independent event not related to MLDA impacts that does not impact our results on external causes.
Unfortunately our register data does not allow us to show this as we do not have detailed ICD code information. However,
in appendix I figure I.1 we present evidence using the household and living standards survey linked to patient register
data and show that the drop occurs for internal causes related to mental disorders. No other drops are observed for any
other internal cause.
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Fig. 7: Hospital admissions due to external causes by age
Notes: The scatter points are monthly age blocks of count of hospital visits for the years 1969-2015.
Source: Patient administrative data. Own calculations.

In figure 7 we present the raw data of the age profile of hospital admissions due to external

causes. Alcohol related causes of hospital admissions show a clear jump at age 18 and also the

clear impact of celebrating one’s own birthday at ages 18 and 20. This highlights that there is an

immediate birthday impact on hospitalisations that is not a long-term impact. Other jumps we

can see in the raw data occur for homicides at age 18 and suicides at age 20. There is also a clear

birthday effect at age 20 for homicides. We test for jumps at the MLDA on specific external causes

of hospital admission in table 8. Robust and statistically significant results across models (1-3) are

found at age 18 years for alcohol related admissions in the range of 29% - 68% and homicide related

admissions in the range of 12% - 49% and at age 20 years for self-inflicted harm in the range of 15%

- 33%. Smaller impacts are also observed at age 20 for homicides in the range of 23% - 29% and

alcohol related causes in the range of 14% - 38%.

Clear birthday effects are seen in the raw data for hospital admissions and we control for these in

model (4) using a dummy for birthday and a dummy for the day after. We also control for counties
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that have OOP payments that start at either 18 or 20 years of age, gender and whether foreign

born. The impact of the covariates on overall admissions is negligible but has a larger impact on

external causes. The largest impact of including covariates is on alcohol related external causes

and highlights the importance of removing the birthday impact in order to get a handle on the

more long lasting impact of the MLDA on morbidity. For alcohol related admissions the impact

of the MLDA at age 18 drops from 45% to 26% when controlling for covariates. The impact of

the MLDA on homicide related admissions at age 18 falls from 33% to 25% and at age 20 falls

from 29% to 18% when controlling for covariates. Self-inflicted harm related admissions see a fall in

MLDA impact at age 20 from 24% to 22% when controlling for covariates.

In appendix J we present the raw data (figures J.1, J.3, J.2, J.4) for counties that do not

implement changes in OOP costs at the same time as the MLDA in order to assess whether changes

in OOP costs specifically are impacting our results. The jumps in figures J.1, J.3, J.2 and J.4 are

very similar to the the jumps found in figures 6 and 7. We test the impact of OOP costs in tables

J.1 and J.2 where estimates are calculated for counties that do not implement changes in OOP costs

at the same time as the MLDA. The sample sizes for the counties that do not implement an OOP

cost change simultaneously with the MLDA 20 is quite small and therefore the standard errors are

very large for these estimates. For the MLDA at 18 however we can conclude that the estimates

are not impacted by any changes in OOP cost at 18 and that the impact of the covariates shown in

Model (4) in tables 7 and 8 is driven by the birthday dummies and not other simultaneous rule

changes.
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Table 8: LLR regression estimates of MLDA impact on the log of hospital visits due to external causes
(1) (2) (3) (4)

Motor vehicle related accidents
MLDA 18 0.00731 -0.143 0.0237 0.0956

(0.0849) (0.113) (0.0695) (0.114)
Bandwidth 0.0433 0.0217 0.0866 0.0433
MLDA 20 0.0777 0.0131 0.0810∗∗ 0.114∗

(0.0539) (0.0779) (0.0410) (0.0624)
Bandwidth 0.0652 0.0326 0.130 0.0652
Self-inflicted harm
MLDA 18 0.0292 0.143 -0.0409 0.0126

(0.107) (0.154) (0.0755) (0.117)
Bandwidth 0.0907 0.0453 0.181 0.0907
MLDA 20 0.235∗∗ 0.331∗∗∗ 0.148∗∗ 0.217∗∗

(0.0916) (0.111) (0.0658) (0.102)
Bandwidth 0.0825 0.0413 0.165 0.0825
Homicide
MLDA 18 0.333∗∗∗ 0.485∗∗∗ 0.122 0.245∗∗

(0.0953) (0.119) (0.0744) (0.105)
Bandwidth 0.0817 0.0409 0.163 0.0817
MLDA 20 0.286∗∗ 0.267 0.229∗∗ 0.180

(0.130) (0.164) (0.0900) (0.125)
Bandwidth 0.0553 0.0276 0.111 0.0553
Alcohol related
MLDA 18 0.445∗∗∗ 0.676∗∗∗ 0.288∗∗∗ 0.254∗∗

(0.122) (0.162) (0.0841) (0.101)
Bandwidth 0.0932 0.0466 0.186 0.0932
MLDA 20 0.188∗ 0.378∗∗∗ 0.140∗∗ 0.0999

(0.101) (0.143) (0.0675) (0.0877)
Bandwidth 0.0915 0.0458 0.183 0.0915
Narcotics related
MLDA 18 -0.135 -0.0869 -0.185∗∗∗ -0.113

(0.101) (0.152) (0.0640) (0.0960)
Bandwidth 0.118 0.0591 0.236 0.118
MLDA 20 0.0555 0.262∗ 0.134∗∗ 0.0394

(0.0962) (0.142) (0.0622) (0.0910)
Bandwidth 0.0537 0.0269 0.107 0.0537
Other external causes
MLDA 18 0.0102 0.0216 0.0208 0.0108

(0.0347) (0.0523) (0.0221) (0.0350)
Bandwidth 0.0578 0.0289 0.116 0.0578
MLDA 20 0.00525 0.0282 0.0110 -0.0107

(0.0208) (0.0332) (0.0132) (0.0172)
Bandwidth 0.121 0.0603 0.241 0.121
IK optimal bandwidth X 0.5x 2x X
Covariates X

Notes: This table shows the impact of the MLDA on the count of hospitalisations by various causes. See notes for table
7. Standard errors clustered by age at admission measured in days are shown in parenthesis. Testing the null of the
coefficient: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
Source: Patient administrative data. Own calculations.

6 Discussion

We have considered the impact of a unique alcohol control policy - Sweden’s two-part MLDA. The

results have found that the first part of the MLDA at age 18 when alcohol consumption is legalised

on premise leads to a 6% jump in participation, a 6% jump in heavy drinking participation and
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an 8% jump in risky drinking among those who have just turned 18 years compared to those who

are not quite 18 years old. We also find a jump in the number of days reported when beer, cider,

spirits and heavy drinking occurred by those who have just turned 18 of the order of between 16%

and 22% and that by and large these impacts are driven by males. The impact on intensity was

negative but small and insignificant. The impact of the second part of the MLDA that legalised

purchase of alcohol off-premise at age 20 was negligible on participation, frequency and intensity

and primarily led to a substitution away from low alcohol beer available at all shops and home brew

and illegally imported alcohol.

The impacts on the pattern of alcohol consumption of the MLDA at age 18 are similar in pattern

but smaller in scale compared to the findings of Carpenter and Dobkin (2009) who find that the

United States’ MLDA at age 21 leads to a 21% increase in the number of drinking days and 7%

increase in the number who drank in the last 12 months but not an increase in first-time use of

alcohol. Similarly to Carpenter and Dobkin (2009) we also find in general no impact on intensity

for those who just turned 18 with the exception of a small negative impact on beer and spirits

intensity suggesting a slight moderation in drinking behaviour. The fact that Sweden’s two-part

MLDA influences similar alcohol drinking patterns but by lesser degree compared to the United

States is suggestive evidence that Sweden’s two-part MLDA leads to a greater level of control in

drinking relative to a single MLDA at age 18.

But what is the total effect of the MLDA on health? The answer to this is complicated by two

factors. First, young adults can also apply for a driving licence after turning 18 and that motor

vehicle related accidents may jump at 18 as a consequence of this policy in combination with the

MLDA at 18. Second, we have shown there is also a discontinuity in hospital admissions due to

internal causes at age 18, which is due to an administrative issue to do with how mental health

patients are treated before and after turning 18. We argue that internal causes are causes not

impacted by the MLDA for the age groups we consider, so in order to summarise we focus on

external causes. In table 9 we present the results for mortality and hospital admissions due to

external causes excluding motor vehicle related accidents. The results suggest a negative impact of

the MLDA at 18 on mortality of between -3% and -10% but these are imprecisely estimated. For

hospital admissions the results suggest a positive jump at 18 of between 6% and 14% but the results

are not significant when controlling for birthday and other covariate effects. These results present a

potentially downward biased estimate of the total impact at 18 of the MLDA on health because we

are missing the impact of the MLDA that goes through motor vehicle related accidents not due to

the licensing laws. However, we found no statistically significant impact of the MLDA at 18 on

hospital admissions due to motor vehicle related accidents which suggests the summary results for

hospital admissions presented in table 9 are in fact not downward biased. For mortality we found
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a statistically significant positive impact of the MLDA at 18 on motor vehicle related accidents.

However, the mortality results rely on a much smaller sample with a much larger corresponding

bandwidth compared to the hospital admission results. The raw mortality data shown in figure 5

combined with the hospital admissions results suggest that the positive LLR result shown in table 6

for motor vehicle related accidents is rather just a trend break. We also found no positive jump in

alcohol related deaths after turning 18 which would suggest it is the driving licence regime that is

driving the increase in motor vehicle related deaths and not the MLDA at 18. Together, this would

suggest that the results for mortality in table 9 are also a fair representation of the true impact of

the MLDA on overall mortality. The overall impact at age 20 is an insignificant jump in mortality

due to external causes of between -0.7% and 0.5% and a significant jump in hospital admissions due

to external causes of between 5% and 14%.

Table 9: LLR regression estimates of MLDA impact on mortality and hospital admissions due to
external causes excluding motor vehicle accidents

(1) (2) (3) (4)
Deaths due to non-motor vehicle related external causes
MLDA 18 -0.0952 -0.0821 -0.0293 -0.0986

(0.0718) (0.101) (0.0515) (0.0726)
Bandwidth 1.312 0.656 2.624 1.312

Hospital admissions due to non-motor vehicle related external causes
MLDA 18 0.0828∗∗∗ 0.140∗∗∗ 0.0615∗∗∗ 0.0573

(0.0311) (0.0490) (0.0230) (0.0360)
Bandwidth 0.0507 0.0254 0.101 0.0507
IK optimal bandwidth X 0.5x 2x X
Covariates X

Notes: This table shows the impact of the MLDA on the count of hospitalisations by various causes. See notes for table
7. Standard errors clustered by age at admission measured in days are shown in parenthesis. Testing the null of the
coefficient: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
Source: Death and patient administrative data. Own calculations.

We summarise the overall impact on mortality of the increase in alcohol consumption at age 18

as small and insignificant. We observe no clear jump in alcohol consumption at age 20 and find no

positive jump in overall mortality either. Conversely, there appears to be a fall in suicides at age

20. The changes in alcohol behaviour at age 20 showed a shift away from home brew, smuggled

alcohol and low alcohol beer and there appears to be a moderation in intensity but these do not

seem to be enough to explain a drop in suicides. We find no impacts on deaths due to homicide,

drugs related causes or other external causes of mortality (accidents due to fire, falling or drowning).

We find a positive jump in hospital admissions due to external causes at both cut-offs of 18 and 20

but these are not very precisely estimated when aggregated. For specific causes, the results show

a 26% increase in alcohol related admissions and a 25% increase in homicide related admissions

after turning 18. We also find an 18% increase in homicide related admissions and a 22% jump in
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self-harm related admissions after turning 20. The jumps at 18 in hospital admissions coincide with

clear jumps in alcohol consumption, but the jumps at 20 are harder to explain using the available

data we have on consumption patterns.

We have found that Sweden’s two-part MLDA influences similar alcohol drinking patterns but

by a lesser degree compared to the United States. Evidence from the United States has found large

impacts on mortality due to the changes in alcohol at the MLDA of 21 years (Carpenter and Dobkin,

2009), but we find no corresponding positive jump at 18 or 20 in mortality (and this isn’t because

mortality is already very high beforehand). However, we find large relative jumps for hospital

admissions at 18. Impacts on hospital admissions have been found in Canada for the MLDA at 18

where alcohol related hospital admissions jumped 17% for those just turned 18 (Callaghan et al.,

2013). For Sweden we find a much larger relative impact of 26% (using our most conservative

estimate) for alcohol related hospital admissions. Perhaps Sweden’s health care system is also

helping protect Sweden’s young adults from the most extreme health impacts of increased alcohol

consumption?

To summarise, let us assume that the impacts on health at age 18 are driven by the number of

days of heavy drinking (increase of 16%). The results then imply an elasticity between heavy alcohol

consumption frequency and hospital admissions due to external causes of about 31% (0.05/0.16)

and that this impact would be predominantly driven by males. The results suggest that changes to

young adults alcohol consumption can have substantial impacts on the societal costs of alcohol by

reducing immediate hospital care costs. The second part of Sweden’s MLDA at 20 years of age has

had little impact on drinking behaviour beyond an apparent shift away from home brew and low

alcohol beer. The fact that we find no clear impact of the MLDA at 20 years of age is potentially

due to the fact it is quite easy to circumvent the restriction by asking friends who are old enough to

buy alcohol for you whereas at 18 you need to go to the pub yourself. This suggests the MLDA

at 20 has more of a progressive impact rather than an abrupt impact precisely after turning 20,

because the nearer to 20 you are the more likely you are to know someone who is already 20 and

therefore have progressively easier access to alcohol. This potentially explains away the insignificant

findings for alcohol consumption at age 20 but we are unable to provide an explanation for the

decrease in male suicides or the increase in hospitalisations at age 20 using the data we have at our

disposal. Perhaps further research can tease out what behaviour changes happen at age 20 that

lead to this reduction in mortality and increases in morbidity.

Young Swedes largely deal with the transition to easier access to alcohol during young adulthood

without the large negative repercussions that have been observed for the United States and Canada.

Young adulthood is too young to die and perhaps a two-part MLDA offers a promising alternative

approach to reduce the heightened mortality and morbidity that coincides with easier access to
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alcohol observed in other countries.
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A Variable definitions

Table A.1: ICD code definitions of causes of death/hospitalisation
Diagnosis ICD 10 code ICD 9 code ICD 8 code

External causes S,T,V,W,X,Y,E24.4 8,9,E8,E9 8,9,E8,E9
F10-F19 (excl .6, 291,292,303-305 291,292,304-305
F17.1,F17.2),F55 425F,571A-D,790D 571.0-.98
G31.2,G62.1,G72.1
G72.0,I42.6-7,
K29.2,K70,K85.2-3
K86.0,R78.0

Motor vehicle related * E810-E828 E810-E827
Suicide/Self-inflicted harm X60-X84,Y8 E950-E959 E950-E959
Homicide X85-Y09, Y87.1 E960-E969 E960-E969
Alcohol related E24.4,F10 291,303,305A 291,303,305.0

G31.2,G62.1,G72.1 357F,425F,535D 357.5,425.5,
I42.6,K29.2, 571A-D, 535.3,571.0-.3,
K70.0-K70.9,K85.2 E860,E980 E860,E980
K86.0,O35.4,P04.3
Q86.0,T51.0-T51.9
Y90.1-Y90.9,
Y91.1-Y91.9,Z50.2
Z71.4,Z72.1

Narcotics related F11-F16,F18,F19, 304A-X,305X 304.0-304.9
O35.5,P04.4,T40 965A,968E,969G, 305.2-305.7,
T43.6,Z50.3,Z71.5 969H 305.9,965.0,
Z72.2 968.5,969.6,

969.7

Other external causes = 1 if external cause but not sub-external cause above
Internal causes = 1 if not external cause

* ICD 10 codes for motor vehicle related accidents: V02-04, V09.2, V09.3, V12.3-V12.9, V13.3-V13.9, V14.3-V14.9,
V19.4-V19.6, V20.3-V20.9, V21.3-V21.9, V22.3-V22.9, V23.3-V23.9, V24.3-V24.9, V25.3-V25.9, V26.3-V26.9, V27.3-V27.9,
V28.3-V28.9, V29.4-V29.9, V30.4-V30.9, V31.4-V31.9, V32.4-V32.9, V33.4-V33.9, V34.4-V34.9, V35.4-V35.9, V36.4-V36.9,
V37.4- V37.9, V38.4-V38.9, V39.4-V39.9, V40.4-V40.9, V41.4-V41.9, V42.4-V42.9, V43.4-V43.9, V44.4-V44.9,
V45.4-V45.9, V46.4-V46.9, V47.4-V47.9, V48.4-V48.9, V49.4-V49.9, V50.4-V50.9, V51.4-V51.9, V52.4-V52.9, V53.4-V53.9,
V54.4- V54.9, V55.4-V55.9, V56.4-V56.9, V57.4-V57.9, V58.4-V58.9, V59.4-V59.9, V60.4-V60.9, V61.4-V61.9,
V62.4-V62.9, V63.4-V63.9, V64.4-V64.9, V65.4-V65.9, V66.4-V66.9, V67.4-V67.9, V68.4-V68.9, V69.4-V69.9, V70.4-V70.9,
V71.4- V71.9, V72.4-V72.9, V73.4-V73.9, V74.4-V74.9, V75.4-V75.9, V76.4-V76.9, V77.4-V77.9, V78.4-V78.9,
V79.4-V79.9, V80.3-V80.5, V81.1, V82.1, V83.0-V83.3, V84.0-V84.3, V85.0-V85.3, V86.0-V86.3, V87.0-V87.8, V89.2
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B Tobacco MLSA impact on smoking behaviour
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Fig. B.1: Tobacco consumption by age
Notes: This figure plots the scatter points of mean smoking behaviour by monthly age blocks. The MLDA cut-offs at 18
years and 20 years are indicated by the dashed vertical lines.
Source: Monitor project survey data. Own calculations.
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Table B.1: LLR regression estimates of MLSA impact on tobacco consumption
(1) (2) (3) (4)

Smoked in the last 30 days
MLDA 18 -0.0131 -0.0376 -0.0124 -0.00732

(0.0199) (0.0322) (0.0158) (0.0195)
Bandwidth 1.679 0.840 3.359 1.679
MLDA 20 -0.0121 -0.0467 0.0173 0.00613

(0.0296) (0.0488) (0.0192) (0.0286)
Bandwidth 1.106 0.553 2.211 1.106
Quantity smoked daily in last 30 days
MLDA 18 -0.596 -1.070 -0.978 -0.461

(0.942) (1.154) (0.884) (0.933)
Bandwidth 2.535 1.268 5.071 2.535
MLDA 20 -0.259 -0.120 0.116 0.0691

(0.767) (1.010) (0.668) (0.792)
Bandwidth 3.458 1.729 6.915 3.458
Quantity smoked weekly in the last 30 days
MLDA 18 2.089 5.026∗∗∗ -0.343 2.228

(2.065) (1.916) (1.531) (2.189)
Bandwidth 1.203 0.602 2.406 1.203
MLDA 20 -0.699 -3.202 -0.122 -1.386

(1.402) (2.359) (1.104) (1.390)
Bandwidth 2.949 1.474 5.898 2.949
IK optimal bandwidth X 0.5x 2x X
Covariates X

Notes: This table shows the impact of the MLDA at 18 and 20 years on smoking patterns from a LLR model using age in
months as the running variable and bandwidth chosen as per the IK optimal bandwidth selection. Daily is equal to one if
individual smoked daily in last 30 days, zero otherwise. Quantity smoked is equal quantity an individual smoked per day
in last 30 days. Weekly quantity is equal to the quantity an individual smoked per week in last 30 days. Each estimate is
from a separate regression. Columns 1 and 4 use the IK optimal bandwidth. Columns 2 and 3 use a bandwidth half and
double the size of the IK optimal bandwidth. Column 4 includes covariates. Covariates include gender, economic status
and county of residence. Standard errors are shown in parenthesis and are clustered at the age in years and months level.
Testing the null of the coefficient: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
Source: Monitor project survey data. Own calculations.

C Diagnostic tests
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Fig. C.1: Diagnostic test: manipulation of the cut-off
Notes: This figure plots the population density by monthly age blocks. The interview sampling frame asks who in the
household most recently had a birthday to answer the questionnaire, hence the decreasing density within each year.
Source: Monitor project survey data. Own calculations.

Table C.1: Diagnostic tests: LLR regression estimates for jump in covariates at the cut-off
(1) (2) (3) (4)

Proportion who are male
MLDA 18 -0.0188 -0.0424 -0.0218 -0.0232

(0.0264) (0.0400) (0.0200) (0.0185)
Bandwidth 1.512 0.756 3.025 6.050
MLDA 20 0.0155 -0.0187 -0.00996 -0.0135

(0.0281) (0.0440) (0.0182) (0.0140)
Bandwidth 1.443 0.721 2.886 5.771
Proportion employed
MLDA 18 -0.0253∗∗ -0.00377 -0.0159∗ 0.137∗∗∗

(0.0125) (0.0186) (0.00949) (0.00907)
Bandwidth 1.190 0.595 2.380 4.759
MLDA 20 -0.0761∗ 0.0483 -0.0927∗∗∗ 0.0519∗∗∗

(0.0402) (0.0642) (0.0252) (0.0165)
Bandwidth 0.868 0.434 1.736 3.472
Proportion unemployed
MLDA 18 -0.0124∗ 0.0113 0.0171∗∗∗ 0.0681∗∗∗

(0.00693) (0.00981) (0.00595) (0.00555)
Bandwidth 1.261 0.631 2.523 5.046
MLDA 20 0.00467 0.0208 -0.0407∗∗∗ -0.00178

(0.0250) (0.0401) (0.0153) (0.00975)
Bandwidth 0.999 0.500 1.998 3.997
IK optimal bandwidth X 0.5x 2x 4x
Covariates

Notes: This table shows the impact of the MLDA at 18 and 20 years on covariates from a LLR model using age in
months as the running variable and bandwidth chosen as per the IK optimal bandwidth selection. Male is 1 if male, 0
otherwise. Employed is 1 if employed, 0 otherwise. Unemployed is 1 if unemployed, 0 otherwise. Column 1 uses the IK
optimal bandwidth. Columns 2, 3, 4 use a bandwidth half, double and four times the size of the IK optimal bandwidth.
Standard errors are shown in parenthesis and are clustered at the age in years and months level. Testing the null of the
coefficient: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
Source: Monitor project survey data. Own calculations.
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D Alcohol intensity results
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Panel C: Wine quantity per occasion in last 30 days
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Panel D: Cider quantity per occasion in last 30 days
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Panel E: Spirits quantity per occasion in last 30 days

Fig. D.1: Average intensity per drinking occasion by age
Notes: Monitor project data sample 2001-2011. The scatter points are monthly age blocks representing the proportion
reporting the drinking behaviour. Regression lines are LLRs using a uniform kernel and 1 year bandwidth estimated
separately either side of the MLDA cut-offs at ages 18 and 20.
Source: Monitor project survey data. Own calculations.
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Table D.1: LLR regression estimates of MLDA impact on average intensity per drinking occasion
(1) (2) (3) (4)

Average intensity of beer consumption in last 30 days
MLDA 18 -0.869∗ -1.463∗∗ -0.800∗ -0.619

(0.464) (0.689) (0.433) (0.456)
Bandwidth 2.240 1.120 4.480 2.240
MLDA 20 -0.00306 0.229 -0.0406 0.0877

(0.319) (0.481) (0.262) (0.306)
Bandwidth 3.173 1.587 6.346 3.173
Average intensity of low alcohol beer consumption in last 30 days
MLDA 18 -0.593 -0.676 -0.817∗ -0.594

(0.477) (0.639) (0.461) (0.466)
Bandwidth 2.954 1.477 5.908 2.954
MLDA 20 -0.482∗ -0.659 -0.584∗∗ -0.179

(0.292) (0.421) (0.243) (0.306)
Bandwidth 3.298 1.649 6.595 3.298
Average intensity of wine consumption in last 30 days
MLDA 18 -0.0313 0.0897 0.283 -0.0939

(0.357) (0.402) (0.338) (0.371)
Bandwidth 2.938 1.469 5.876 2.938
MLDA 20 -0.303 -0.821 -0.00269 -0.232

(0.315) (0.556) (0.219) (0.316)
Bandwidth 2.130 1.065 4.261 2.130
Average intensity of cider consumption in last 30 days
MLDA 18 -0.728∗ -0.607 -0.865∗∗ -0.221

(0.417) (0.669) (0.379) (0.393)
Bandwidth 1.972 0.986 3.945 1.972
MLDA 20 0.448 0.115 0.107 0.524

(0.353) (0.559) (0.245) (0.362)
Bandwidth 2.312 1.156 4.625 2.312
Average intensity of spirits consumption in last 30 days
MLDA 18 -1.553∗∗∗ -1.136 -1.348∗∗∗ -1.117∗∗

(0.530) (0.810) (0.491) (0.535)
Bandwidth 2.005 1.003 4.011 2.005
MLDA 20 -0.614 -0.770 0.134 -0.360

(0.379) (0.590) (0.272) (0.370)
Bandwidth 2.099 1.049 4.198 2.099
IK optimal bandwidth X 0.5x 2x X
Covariates X

Notes: This table shows the impact of the MLDA at 18 and 20 years on alcohol consumption patterns from a LLR model
using age in months as the running variable and bandwidth chosen as per the IK optimal bandwidth selection. Each
estimate is from a separate regression. Columns 1 and 4 use the IK optimal bandwidth. Columns 2 and 3 use a
bandwidth half and double the size of the IK optimal bandwidth. Column 4 includes covariates. Covariates include
gender, economic status and county of residence. Standard errors are shown in parenthesis and are clustered at the age in
years and months level. Testing the null of the coefficient: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
Source: Monitor project survey data. Own calculations.

E Densities of frequency and intensity for ages 17, 18, 19
and 20 years
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Fig. E.1: Density plot of frequency of alcohol consumption 12 months before and after the MLDA
cut-offs (Beer, low alcohol beer and cider)

Notes: Histograms are of individuals 12 months of age either side of the cut-off. Bin widths are 1 day. X-axis is
frequency of drinking episodes in last 30 days.
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Fig. E.2: Density plot of frequency of alcohol consumption 12 months before and after the MLDA
cut-offs (wine, spirits and heavy drinking)

Notes: Histograms are of individuals 12 months of age either side of the cut-off. Bin widths are 1 day. X-axis is
frequency of drinking episodes in last 30 days.
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Fig. E.3: Density plot of intensity of alcohol consumption 12 months before and after the MLDA cut-off
(Beer, low alcohol beer and cider)
Notes: Histograms are of individuals 12 months of age either side of the cut-off. Bin widths are 2 grams of pure alcohol.

X-axis is frequency of drinking episodes in last 30 days.
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Fig. E.4: Density plot of intensity of alcohol consumption 12 months before and after the MLDA cut-off
(wine and spirits)
Notes: Histograms are of individuals 12 months of age either side of the cut-off. Bin widths are 2 grams of pure alcohol.

X-axis is frequency of drinking episodes in last 30 days.
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F MLDA impact on alcohol consumption, split by gender
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Table F.1: Alcohol participation LLR results by gender
Males Females

(1) (2) (3) (4) (5) (6)
Drank alcohol in last 30 days
MLDA 18 0.0601∗ 0.0484∗ 0.0690∗∗ 0.0310 0.0479∗ 0.0413

(0.0314) (0.0248) (0.0322) (0.0339) (0.0269) (0.0346)
Bandwidth 1.590 3.181 1.590 1.590 3.181 1.590
MLDA 20 0.0120 0.00603 0.0119 0.0283 -0.0205 0.0128

(0.0310) (0.0209) (0.0315) (0.0379) (0.0239) (0.0394)
Bandwidth 1.104 2.209 1.104 1.104 2.209 1.104
Had a heavy drinking episode in last 30 days
MLDA 18 0.0951∗∗ 0.0730∗∗ 0.119∗∗∗ -0.00824 0.0266 -0.0130

(0.0399) (0.0287) (0.0412) (0.0400) (0.0287) (0.0410)
Bandwidth 1.485 2.970 1.485 1.485 2.970 1.485
MLDA 20 0.111∗∗ 0.0246 0.123∗∗ -0.0241 -0.0460 -0.0000406

(0.0474) (0.0306) (0.0491) (0.0485) (0.0313) (0.0522)
Bandwidth 1.257 2.514 1.257 1.257 2.514 1.257
Drank more than recommended weekly amount in last 30 days
MLDA 18 0.0790∗∗ 0.0463∗ 0.0872∗∗ 0.0517 0.0589∗∗ 0.0466

(0.0352) (0.0256) (0.0362) (0.0379) (0.0277) (0.0387)
Bandwidth 1.498 2.997 1.498 1.498 2.997 1.498
MLDA 20 0.0113 0.0132 0.00495 0.0552 0.0139 0.0483

(0.0358) (0.0232) (0.0367) (0.0429) (0.0264) (0.0447)
Bandwidth 0.984 1.968 0.984 0.984 1.968 0.984
Quantity of pure alcohol consumed in last 30 days
MLDA 18 11.72∗∗∗ 18.26∗∗∗ 12.60∗∗∗ 7.843∗∗ 10.54∗∗∗ 8.337∗∗

(4.281) (3.867) (4.323) (3.537) (2.928) (3.506)
Bandwidth 2.586 5.172 2.586 2.586 5.172 2.586
MLDA 20 -8.359 -5.576 -9.084 -0.770 -6.524∗∗∗ 0.360

(5.663) (4.127) (5.767) (3.195) (2.461) (3.260)
Bandwidth 2.622 5.243 2.622 2.622 5.243 2.622
Drank unregulated alcohol in last 30 days
MLDA 18 -0.00639 -0.0117 0.00663 -0.0163 -0.0260 -0.0114

(0.0286) (0.0223) (0.0291) (0.0236) (0.0190) (0.0243)
Bandwidth 1.612 3.224 1.612 1.612 3.224 1.612
MLDA 20 -0.0527 -0.0717∗∗∗ -0.0413 -0.0356 -0.0227 -0.0370

(0.0360) (0.0228) (0.0369) (0.0274) (0.0166) (0.0290)
Bandwidth 1.298 2.597 1.298 1.298 2.597 1.298
Frequency of drinking occasions in last 30 days
MLDA 18 0.479 0.592 0.653 2.081∗ 0.174 2.634∗∗

(0.992) (0.724) (1.046) (1.080) (0.778) (1.143)
Bandwidth 1.376 2.752 1.376 1.376 2.752 1.376
MLDA 20 0.0516 1.329∗∗∗ 0.0395 -0.328 0.578 -0.297

(0.697) (0.503) (0.725) (0.757) (0.541) (0.812)
Bandwidth 1.921 3.842 1.921 1.921 3.842 1.921
Covariates X X
IK optimal bandwidth X 2x X X 2x X

Notes: This table shows the impact of the MLDA at 18 and 20 years on covariates from a LLR model using age in months
as the running variable and bandwidth chosen as per the IK optimal bandwidth selection. Columns 1,3,4 and 6 use the
IK optimal bandwidth. Columns 2 and 5 use double the size of the IK optimal bandwidth. Columns 3 and 6 include
covariates. Covariates include economic status and county of residence. Standard errors are shown in parenthesis and are
clustered at the age in years and months level. Testing the null of the coefficient: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
Source: Monitor project survey data. Own calculations.
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Table F.2: Alcohol frequency LLR results by gender
Males Females

(1) (2) (3) (4) (5) (6)
Frequency of beer consumption in last 30 days
MLDA 18 0.327 0.649∗∗ 0.493 0.745∗ 0.555 0.743

(0.339) (0.292) (0.348) (0.438) (0.342) (0.459)
Bandwidth 1.710 3.419 1.710 1.710 3.419 1.710
MLDA 20 0.166 0.167 0.119 0.00440 -0.172 -0.0456

(0.263) (0.211) (0.269) (0.289) (0.239) (0.303)
Bandwidth 3.077 6.154 3.077 3.077 6.154 3.077
Frequency of low alcohol beer consumption in last 30 days
MLDA 18 0.152 0.446 -0.0207 -0.0672 0.0553 -0.276

(0.385) (0.367) (0.387) (0.426) (0.407) (0.448)
Bandwidth 3.746 7.492 3.746 3.746 7.492 3.746
MLDA 20 -0.386 -0.319 -0.375 0.276 0.0824 0.354

(0.364) (0.295) (0.377) (0.414) (0.315) (0.455)
Bandwidth 3.241 6.482 3.241 3.241 6.482 3.241
Frequency of wine consumption in last 30 days
MLDA 18 -0.180 0.308 -0.141 0.483 0.599∗∗ 0.405

(0.314) (0.284) (0.345) (0.295) (0.271) (0.317)
Bandwidth 2.253 4.507 2.253 2.253 4.507 2.253
MLDA 20 0.0799 0.0985 -0.138 -0.396∗ -0.429∗∗ -0.445∗

(0.321) (0.250) (0.319) (0.222) (0.186) (0.231)
Bandwidth 3.172 6.345 3.172 3.172 6.345 3.172
Frequency of cider consumption in last 30 days
MLDA 18 0.808∗∗ 0.871∗∗∗ 0.639∗ 0.395 0.334 0.438

(0.362) (0.330) (0.372) (0.271) (0.248) (0.267)
Bandwidth 2.016 4.033 2.016 2.016 4.033 2.016
MLDA 20 0.205 0.0277 0.240 0.762∗∗∗ -0.0377 0.729∗∗∗

(0.475) (0.339) (0.499) (0.263) (0.189) (0.282)
Bandwidth 1.891 3.783 1.891 1.891 3.783 1.891
Frequency of spirits consumption in last 30 days
MLDA 18 0.301 0.498 0.254 0.614∗∗ 0.510∗∗ 0.682∗∗

(0.350) (0.327) (0.353) (0.305) (0.254) (0.304)
Bandwidth 1.871 3.742 1.871 1.871 3.742 1.871
MLDA 20 -0.155 -0.120 -0.210 -0.267 -0.349∗∗ -0.216

(0.251) (0.207) (0.258) (0.212) (0.172) (0.222)
Bandwidth 2.992 5.983 2.992 2.992 5.983 2.992
Frequency of heavy drinking episodes in last 30 days
MLDA 18 0.630∗ 1.011∗∗∗ 0.685∗ 0.384 0.393 0.495

(0.357) (0.330) (0.367) (0.436) (0.415) (0.444)
Bandwidth 2.861 5.722 2.861 2.861 5.722 2.861
MLDA 20 0.134 0.283 0.0811 -0.339 -0.358 -0.326

(0.338) (0.259) (0.348) (0.322) (0.253) (0.343)
Bandwidth 2.703 5.406 2.703 2.703 5.406 2.703
Covariates X X
IK optimal bandwidth X 2x X X 2x X

Notes: This table shows the impact of the MLDA at 18 and 20 years on frequency of alcohol consumption from a LLR
model using age in months as the running variable and bandwidth chosen as per the IK optimal bandwidth selection.
Columns 1,3,4 and 6 use the IK optimal bandwidth. Columns 2 and 5 use double the size of the IK optimal bandwidth.
Columns 3 and 6 include covariates. Covariates include economic status and county of residence. Standard errors are
shown in parenthesis and are clustered at the age in years and months level. Testing the null of the coefficient: ∗ p < 0.1,
∗∗ p < 0.05, ∗∗∗ p < 0.01.
Source: Monitor project survey data. Own calculations.
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Table F.3: Alcohol intensity LLR results by gender
Males Females

(1) (2) (3) (4) (5) (6)
Average intensity of beer consumption in last 30 days
MLDA 18 -0.784 -0.602 -0.582 -1.003∗ -0.912∗ -0.814

(0.586) (0.553) (0.610) (0.571) (0.538) (0.587)
Bandwidth 2.205 4.411 2.205 2.205 4.411 2.205
MLDA 20 -0.169 -0.0679 -0.104 0.0746 -0.214 0.467

(0.405) (0.335) (0.416) (0.398) (0.330) (0.391)
Bandwidth 3.183 6.366 3.183 3.183 6.366 3.183
Average intensity of low alcohol beer consumption in last 30 days
MLDA 18 -0.388 -0.633 -0.335 -1.187 -1.201 -1.362

(0.564) (0.546) (0.543) (0.829) (0.813) (0.894)
Bandwidth 3.042 6.083 3.042 3.042 6.083 3.042
MLDA 20 -0.531 -0.668∗∗ -0.340 -0.0547 -0.190 0.146

(0.395) (0.320) (0.413) (0.321) (0.298) (0.354)
Bandwidth 3.305 6.610 3.305 3.305 6.610 3.305
Average intensity of wine consumption in last 30 days
MLDA 18 -0.326 -0.298 -0.429 -0.0183 0.440 -0.0522

(0.670) (0.644) (0.725) (0.411) (0.390) (0.428)
Bandwidth 2.892 5.783 2.892 2.892 5.783 2.892
MLDA 20 -0.894 -0.665 -0.710 -0.0424 0.361 0.0325

(0.619) (0.407) (0.621) (0.314) (0.246) (0.336)
Bandwidth 2.132 4.265 2.132 2.132 4.265 2.132
Average intensity of cider consumption in last 30 days
MLDA 18 -0.570 -0.797 0.508 -0.693 -0.864∗∗ -0.633

(0.808) (0.745) (0.714) (0.436) (0.398) (0.455)
Bandwidth 1.952 3.904 1.952 1.952 3.904 1.952
MLDA 20 -0.0769 -0.00500 0.0613 0.739∗∗ 0.106 0.762∗

(0.647) (0.456) (0.667) (0.366) (0.259) (0.402)
Bandwidth 2.312 4.623 2.312 2.312 4.623 2.312
Average intensity of spirits consumption in last 30 days
MLDA 18 -1.316∗ -0.947 -1.123 -1.737∗∗ -1.658∗∗ -1.360∗

(0.724) (0.690) (0.752) (0.730) (0.680) (0.768)
Bandwidth 1.981 3.963 1.981 1.981 3.963 1.981
MLDA 20 -1.003∗ -0.0224 -0.810 -0.103 0.342 0.0827

(0.524) (0.394) (0.541) (0.434) (0.320) (0.459)
Bandwidth 2.099 4.198 2.099 2.099 4.198 2.099
Covariates X X
IK optimal bandwidth X 2x X X 2x X

Notes: This table shows the impact of the MLDA at 18 and 20 years on intensity of alcohol consumption from a LLR
model using age in months as the running variable and bandwidth chosen as per the IK optimal bandwidth selection.
Columns 1,3,4 and 6 use the IK optimal bandwidth. Columns 2 and 5 use double the size of the IK optimal bandwidth.
Columns 3 and 6 include covariates. Covariates include economic status and county of residence. Standard errors are
shown in parenthesis and are clustered at the age in years and months level. Testing the null of the coefficient: ∗ p < 0.1,
∗∗ p < 0.05, ∗∗∗ p < 0.01.
Source: Monitor project survey data. Own calculations.
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G Sensitivity analysis - Alcohol results with and without
birthday month

There is a potential cause for concern that the observed increase in alcohol participation and con-
sumption is purely a birthday party effect and not a structural jump. This affects the interpretation
of the results. We provide estimates including and excluding the first month after turning 18 and
turning 20 to assess the sensitivity of the results to the "birthday effect". This is a fairly crude
method as we would prefer to look at the birthday effect, but the data does not allow this. We find
no significant impact of removing the birthday month suggesting the main results are not birthday
effects but structural jumps in consumption patterns as a result of the MLDA.
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Table G.1: Alcohol participation LLR results with and without birthday month
Baseline No birthday month

(1) (2) (3) (4) (5) (6)
Drank alcohol in last 30 days
MLDA 18 0.0456∗∗ 0.0477∗∗∗ 0.0567∗∗ 0.0643∗∗∗ 0.0598∗∗∗ 0.0775∗∗∗

(0.0230) (0.0182) (0.0236) (0.0234) (0.0184) (0.0240)
Bandwidth 1.590 3.181 1.590 1.590 3.181 1.590
MLDA 20 0.0193 -0.00709 0.0116 0.0180 0.00101 0.00921

(0.0245) (0.0159) (0.0248) (0.0254) (0.0165) (0.0257)
Bandwidth 1.104 2.209 1.104 1.104 2.209 1.104
Had a heavy drinking episode in last 30 days
MLDA 18 0.0429 0.0488∗∗ 0.0566∗ 0.0647∗∗ 0.0639∗∗∗ 0.0793∗∗∗

(0.0285) (0.0205) (0.0291) (0.0295) (0.0210) (0.0301)
Bandwidth 1.485 2.970 1.485 1.485 2.970 1.485
MLDA 20 0.0476 -0.0113 0.0628∗ 0.0348 -0.0133 0.0501

(0.0342) (0.0222) (0.0357) (0.0354) (0.0229) (0.0369)
Bandwidth 1.257 2.514 1.257 1.257 2.514 1.257
Drank more than recommended weekly amount in last 30 days
MLDA 18 0.0650∗∗ 0.0514∗∗∗ 0.0690∗∗∗ 0.0796∗∗∗ 0.0614∗∗∗ 0.0857∗∗∗

(0.0258) (0.0188) (0.0265) (0.0263) (0.0190) (0.0270)
Bandwidth 1.498 2.997 1.498 1.498 2.997 1.498
MLDA 20 0.0330 0.0133 0.0258 0.0297 0.0129 0.0221

(0.0279) (0.0176) (0.0284) (0.0292) (0.0182) (0.0298)
Bandwidth 0.984 1.968 0.984 0.984 1.968 0.984
Quantity of pure alcohol consumed in last 30 days
MLDA 18 9.677∗∗∗ 14.31∗∗∗ 10.74∗∗∗ 11.61∗∗∗ 15.69∗∗∗ 12.46∗∗∗

(2.831) (2.487) (2.828) (3.029) (2.563) (3.023)
Bandwidth 2.586 5.172 2.586 2.586 5.172 2.586
MLDA 20 -4.748 -6.337∗∗ -4.134 -4.124 -6.390∗∗ -3.929

(3.368) (2.477) (3.400) (3.493) (2.537) (3.510)
Bandwidth 2.622 5.243 2.622 2.622 5.243 2.622
Drank unregulated alcohol in last 30 days
MLDA 18 -0.0137 -0.0209 -0.00178 -0.00407 -0.0143 0.00836

(0.0190) (0.0149) (0.0191) (0.0197) (0.0152) (0.0199)
Bandwidth 1.612 3.224 1.612 1.612 3.224 1.612
MLDA 20 -0.0419∗ -0.0479∗∗∗ -0.0400∗ -0.0465∗∗ -0.0492∗∗∗ -0.0434∗

(0.0231) (0.0144) (0.0238) (0.0237) (0.0148) (0.0244)
Bandwidth 1.298 2.597 1.298 1.298 2.597 1.298
Frequency of drinking occasions in last 30 days
MLDA 18 1.198 0.394 1.558∗∗ 1.078 0.301 1.448∗

(0.731) (0.530) (0.769) (0.745) (0.537) (0.783)
Bandwidth 1.376 2.752 1.376 1.376 2.752 1.376
MLDA 20 -0.135 0.975∗∗∗ -0.0890 -0.222 1.003∗∗∗ -0.186

(0.513) (0.369) (0.540) (0.533) (0.377) (0.561)
Bandwidth 1.921 3.842 1.921 1.921 3.842 1.921
Covariates X X
IK optimal bandwidth X 2x X X 2x X

Notes: This table shows the impact of the MLDA at 18 and 20 years on drinking patterns from a LLR model using age in
months as the running variable and bandwidth chosen as per the IK optimal bandwidth selection. Columns 1,3,4 and 6
use the IK optimal bandwidth. Columns 2 and 5 use double the size of the IK optimal bandwidth. Columns 3 and 6
include covariates. Covariates include economic status and county of residence. Standard errors are shown in parenthesis
and are clustered at the age in years and months level. Testing the null of the coefficient: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗

p < 0.01.
Source: Monitor project survey data. Own calculations.
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Table G.2: Alcohol frequency LLR results with and without birthday month
Baseline No birthday month

(1) (2) (3) (4) (5) (6)
Frequency of beer consumption in last 30 days
MLDA 18 0.449∗ 0.595∗∗∗ 0.559∗∗ 0.522∗ 0.639∗∗∗ 0.635∗∗

(0.271) (0.228) (0.278) (0.282) (0.232) (0.290)
Bandwidth 1.710 3.419 1.710 1.710 3.419 1.710
MLDA 20 0.139 0.0769 0.0757 0.140 0.0635 0.0579

(0.202) (0.163) (0.207) (0.207) (0.165) (0.211)
Bandwidth 3.077 6.154 3.077 3.077 6.154 3.077
Frequency of low alcohol beer consumption in last 30 days
MLDA 18 0.0718 0.327 -0.103 0.173 0.409 -0.0104

(0.295) (0.281) (0.299) (0.303) (0.285) (0.307)
Bandwidth 3.746 7.492 3.746 3.746 7.492 3.746
MLDA 20 -0.193 -0.189 -0.139 -0.114 -0.172 -0.0768

(0.287) (0.229) (0.294) (0.301) (0.235) (0.308)
Bandwidth 3.241 6.482 3.241 3.241 6.482 3.241
Frequency of wine consumption in last 30 days
MLDA 18 0.243 0.490∗∗ 0.241 0.171 0.509∗∗ 0.162

(0.225) (0.207) (0.239) (0.226) (0.207) (0.239)
Bandwidth 2.253 4.507 2.253 2.253 4.507 2.253
MLDA 20 -0.219 -0.228 -0.332∗ -0.150 -0.190 -0.280

(0.184) (0.150) (0.188) (0.191) (0.152) (0.195)
Bandwidth 3.172 6.345 3.172 3.172 6.345 3.172
Frequency of cider consumption in last 30 days
MLDA 18 0.553∗∗ 0.540∗∗∗ 0.513∗∗ 0.598∗∗∗ 0.558∗∗∗ 0.554∗∗

(0.218) (0.199) (0.217) (0.228) (0.202) (0.229)
Bandwidth 2.016 4.033 2.016 2.016 4.033 2.016
MLDA 20 0.528∗∗ -0.0194 0.549∗∗ 0.589∗∗ 0.00262 0.593∗∗

(0.248) (0.177) (0.264) (0.269) (0.184) (0.283)
Bandwidth 1.891 3.783 1.891 1.891 3.783 1.891
Frequency of spirits consumption in last 30 days
MLDA 18 0.437∗ 0.492∗∗ 0.437∗ 0.482∗∗ 0.523∗∗ 0.504∗∗

(0.236) (0.210) (0.238) (0.244) (0.213) (0.246)
Bandwidth 1.871 3.742 1.871 1.871 3.742 1.871
MLDA 20 -0.203 -0.210 -0.211 -0.162 -0.192 -0.172

(0.171) (0.139) (0.176) (0.175) (0.141) (0.180)
Bandwidth 2.992 5.983 2.992 2.992 5.983 2.992
Frequency of heavy drinking episodes in last 30 days
MLDA 18 0.530∗ 0.754∗∗∗ 0.582∗∗ 0.604∗∗ 0.815∗∗∗ 0.643∗∗

(0.277) (0.259) (0.285) (0.282) (0.261) (0.290)
Bandwidth 2.861 5.722 2.861 2.861 5.722 2.861
MLDA 20 -0.0338 0.0434 -0.0702 0.0520 0.0755 -0.0259

(0.242) (0.186) (0.249) (0.252) (0.190) (0.259)
Bandwidth 2.703 5.406 2.703 2.703 5.406 2.703
Covariates X X
IK optimal bandwidth X 2x X X 2x X

Notes: This table shows the impact of the MLDA at 18 and 20 years on frequency of alcohol consumption from a LLR
model using age in months as the running variable and bandwidth chosen as per the IK optimal bandwidth selection.
Columns 1,3,4 and 6 use the IK optimal bandwidth. Columns 2 and 5 use double the size of the IK optimal bandwidth.
Columns 3 and 6 include covariates. Covariates include economic status and county of residence. Standard errors are
shown in parenthesis and are clustered at the age in years and months level. Testing the null of the coefficient: ∗ p < 0.1,
∗∗ p < 0.05, ∗∗∗ p < 0.01.
Source: Monitor project survey data. Own calculations.
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Table G.3: Alcohol intensity LLR results with and without birthday month
Baseline No birthday month

(1) (2) (3) (4) (5) (6)
Average intensity of beer consumption in last 30 days
MLDA 18 -0.991∗∗ -0.844∗ -0.619 -0.869∗ -0.792∗ -0.495

(0.455) (0.431) (0.456) (0.464) (0.433) (0.466)
Bandwidth 2.205 4.411 2.205 2.205 4.411 2.205
MLDA 20 0.0232 -0.0236 0.0864 -0.00442 -0.0410 0.0188

(0.314) (0.260) (0.306) (0.320) (0.262) (0.312)
Bandwidth 3.183 6.366 3.183 3.183 6.366 3.183
Average intensity of low alcohol beer consumption in last 30 days
MLDA 18 -0.669 -0.823∗ -0.601 -0.596 -0.795∗ -0.548

(0.472) (0.458) (0.466) (0.476) (0.460) (0.471)
Bandwidth 3.042 6.083 3.042 3.042 6.083 3.042
MLDA 20 -0.430 -0.550∗∗ -0.179 -0.482∗ -0.584∗∗ -0.244

(0.294) (0.243) (0.306) (0.292) (0.243) (0.302)
Bandwidth 3.305 6.610 3.305 3.305 6.610 3.305
Average intensity of wine consumption in last 30 days
MLDA 18 -0.0856 0.225 -0.0827 -0.0281 0.272 -0.0404

(0.353) (0.336) (0.372) (0.358) (0.338) (0.376)
Bandwidth 2.892 5.783 2.892 2.892 5.783 2.892
MLDA 20 -0.362 -0.0163 -0.232 -0.303 -0.00339 -0.184

(0.299) (0.215) (0.316) (0.315) (0.219) (0.332)
Bandwidth 2.132 4.265 2.132 2.132 4.265 2.132
Average intensity of cider consumption in last 30 days
MLDA 18 -0.648 -0.831∗∗ -0.218 -0.726∗ -0.872∗∗ -0.316

(0.410) (0.377) (0.393) (0.417) (0.379) (0.402)
Bandwidth 1.952 3.904 1.952 1.952 3.904 1.952
MLDA 20 0.386 0.0461 0.525 0.449 0.107 0.535

(0.341) (0.241) (0.362) (0.353) (0.245) (0.373)
Bandwidth 2.312 4.623 2.312 2.312 4.623 2.312
Average intensity of spirits consumption in last 30 days
MLDA 18 -1.608∗∗∗ -1.364∗∗∗ -1.147∗∗ -1.598∗∗∗ -1.337∗∗∗ -1.101∗∗

(0.519) (0.488) (0.538) (0.530) (0.491) (0.548)
Bandwidth 1.981 3.963 1.981 1.981 3.963 1.981
MLDA 20 -0.620∗ 0.133 -0.361 -0.615 0.134 -0.322

(0.362) (0.267) (0.370) (0.378) (0.272) (0.386)
Bandwidth 2.099 4.198 2.099 2.099 4.198 2.099
Covariates X X
IK optimal bandwidth X 2x X X 2x X

Notes: This table shows the impact of the MLDA at 18 and 20 years on alcohol intensity of consumption patterns from a
LLR model using age in months as the running variable and bandwidth chosen as per the IK optimal bandwidth
selection. Columns 1,3,4 and 6 use the IK optimal bandwidth. Columns 2 and 5 use double the size of the IK optimal
bandwidth. Columns 3 and 6 include covariates. Covariates include economic status and county of residence. Standard
errors are shown in parenthesis and are clustered at the age in years and months level. Testing the null of the coefficient:
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
Source: Monitor project survey data. Own calculations.
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H Heterogeneity analysis - Mortality results by gender

Table H.1: LLR results of MLDA on mortality by gender
Males Females

(1) (2) (3) (4) (5) (6)

Any cause

MLDA 18 0.784∗∗ 0.667∗∗∗ 0.801∗∗ 0.0770 0.231 0.106

(0.317) (0.247) (0.322) (0.289) (0.212) (0.290)

Bandwidth 1.040 2.080 1.040 1.040 2.080 1.040

MLDA 20 0.0630 -0.125 0.0660 -0.00433 -0.0755 -0.0415

(0.430) (0.304) (0.434) (0.269) (0.205) (0.270)

Bandwidth 0.968 1.935 0.968 0.968 1.935 0.968

External Causes

MLDA 18 0.298 0.669∗∗∗ 0.294 0.126 0.274 0.171

(0.326) (0.244) (0.334) (0.284) (0.200) (0.279)

Bandwidth 0.853 1.707 0.853 0.853 1.707 0.853

MLDA 20 0.00820 -0.0166 -0.0121 0.0495 -0.188 -0.00169

(0.409) (0.287) (0.414) (0.286) (0.207) (0.281)

Bandwidth 0.900 1.800 0.900 0.900 1.800 0.900

Internal causes

MLDA 18 0.276 -0.0179 0.279 -0.141 -0.0381 -0.127

(0.208) (0.141) (0.207) (0.176) (0.134) (0.180)

Bandwidth 1.024 2.049 1.024 1.024 2.049 1.024

MLDA 20 -0.0665 -0.0337 -0.0419 0.0849 0.0486 0.0862

(0.159) (0.118) (0.162) (0.148) (0.109) (0.148)

Bandwidth 1.567 3.134 1.567 1.567 3.134 1.567

Covariates X X

IK optimal bandwidth X 2x X X 2x X

Notes: This table shows the impact of the MLDA for various causes of death, split by gender. The dependent variable is
the log of the death count that occurred at age x measured in years and days. We add 0.5 to the count before taking logs
to deal with zeros. All estimates are from separate regressions. Columns 1,3,4 and 6 use the IK optimal bandwidth.
Columns 2 and 5 use double the size of the IK optimal bandwidth. Columns 3 and 6 include covariates. Covariates
include county, whether foreign born and dummies for birthday at 18 and 20 and the day after birthday at 18 and 20 and
for whether county started charging out of pocket payments at 18th or 20th birthday. Standard errors clustered by age at
death measured in days are shown in parenthesis. Testing the null of the coefficient: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
Source: Death administrative data. Own calculations.
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Table H.2: LLR results of MLDA on external causes of mortality by gender
Males Females

(1) (2) (3) (4) (5) (6)
Motor vehicle related accidents
MLDA 18 0.698∗∗∗ 0.974∗∗∗ 0.686∗∗∗ 0.0954 0.233∗ 0.0962

(0.222) (0.171) (0.227) (0.169) (0.121) (0.166)
Bandwidth 1.000 2.001 1.000 1.000 2.001 1.000
MLDA 20 0.222 0.130 0.170 0.0240 -0.129 0.0537

(0.260) (0.182) (0.260) (0.185) (0.130) (0.188)
Bandwidth 0.893 1.786 0.893 0.893 1.786 0.893
Suicide
MLDA 18 -0.120 0.0352 -0.120 0.158 0.0920 0.209

(0.149) (0.109) (0.153) (0.133) (0.0914) (0.135)
Bandwidth 1.098 2.196 1.098 1.098 2.196 1.098
MLDA 20 -0.531∗∗∗ -0.320∗∗ -0.483∗∗∗ 0.0569 0.0202 0.0472

(0.180) (0.133) (0.181) (0.130) (0.101) (0.131)
Bandwidth 1.038 2.076 1.038 1.038 2.076 1.038
Homicide
MLDA 18 -0.0132 -0.0311 -0.00815 0.0451 0.0599 0.0326

(0.0575) (0.0379) (0.0581) (0.0546) (0.0406) (0.0562)
Bandwidth 1.054 2.107 1.054 1.054 2.107 1.054
MLDA 20 0.0611 0.0372 0.0592 0.0167 -0.0225 -0.00685

(0.0537) (0.0390) (0.0532) (0.0570) (0.0396) (0.0562)
Bandwidth 1.322 2.644 1.322 1.322 2.644 1.322
Alcohol related
MLDA 18 -0.0904∗ -0.0703 -0.0879 -0.0242 -0.0683 -0.0301

(0.0526) (0.0432) (0.0543) (0.0728) (0.0467) (0.0723)
Bandwidth 0.902 1.804 0.902 0.902 1.804 0.902
MLDA 20 -0.0124 0.0120 -0.0206 -0.0226 0.00279 -0.0234

(0.0686) (0.0479) (0.0695) (0.0460) (0.0346) (0.0473)
Bandwidth 1.251 2.501 1.251 1.251 2.501 1.251
Narcotics related
MLDA 18 0.0368 -0.0181 0.0351 0.00193 0.00382 0.00286

(0.0619) (0.0419) (0.0635) (0.0321) (0.0305) (0.0343)
Bandwidth 0.910 1.820 0.910 0.910 1.820 0.910
MLDA 20 -0.0162 0.0136 -0.00699 -0.0287 -0.0487 -0.0255

(0.0692) (0.0501) (0.0704) (0.0450) (0.0308) (0.0448)
Bandwidth 1.382 2.764 1.382 1.382 2.764 1.382
Other external causes
MLDA 18 -0.0815 -0.00260 -0.0660 -0.0388 -0.0340 -0.0483

(0.128) (0.0921) (0.129) (0.0879) (0.0633) (0.0876)
Bandwidth 1.642 3.284 1.642 1.642 3.284 1.642
MLDA 20 0.230 0.218 0.200 -0.0436 -0.0425 -0.0942

(0.207) (0.138) (0.210) (0.146) (0.0937) (0.140)
Bandwidth 0.771 1.542 0.771 0.771 1.542 0.771
Covariates X X
IK optimal bandwidth X 2x X X 2x X

Notes: This table shows the impact of the MLDA for various causes of death, split by gender. The dependent variable is
the log of the death count that occurred at age x measured in years and days. We add 0.5 to the count before taking logs
to deal with zeros. All estimates are from separate regressions. Columns 1,3,4 and 6 use the IK optimal bandwidth.
Columns 2 and 5 use double the size of the IK optimal bandwidth. Columns 3 and 6 include covariates. Covariates
include county, whether foreign born and dummies for birthday at 18 and 20 and the day after birthday at 18 and 20 and
for whether county started charging out of pocket payments at 18th or 20th birthday. Standard errors clustered by age at
death measured in days are shown in parenthesis. Testing the null of the coefficient: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
Source: Death administrative data. Own calculations.
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I Diagnostics - Hospital admissions due to mental disorders
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Fig. I.1: Age profile of hospital admissions due to mental disorders (Survey sample)
Notes: The scatter points are monthly age blocks of count of hospital admissions for mental disorders (ICD grouping F).
Source: Patient administrative data, merged to Swedish survey of household living standards (ULF). Own calculations.

J Sensitivity analysis - Hospital admissions
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Fig. J.1: The effects of MLDA on hospital admissions (excluding counties with OOP costs at 18th
birthday)
Notes: The scatter points are monthly age blocks of count of hospital admissions for the years 1969-2015.
Source: Patient administrative data. Own calculations.
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Fig. J.2: The effects of MLDA on hospital admissions due to external causes (excluding counties with
OOP costs at 18th birthday)
Notes: The scatter points are monthly age blocks of count of hospital admissions for the years 1969-2015.
Source: Patient administrative data. Own calculations.
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Fig. J.3: The effects of MLDA on hospital admissions (excluding counties with OOP costs at 20th
birthday)
Notes: The scatter points are monthly age blocks of count of hospital admissions for the years 1969-2015.
Source: Patient administrative data. Own calculations.
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Fig. J.4: The effects of MLDA on hospital admissions due to external causes (excluding counties with
OOP costs at 20th birthday)
Notes: The scatter points are monthly age blocks of count of hospital admissions for the years 1969-2015.
Source: Patient administrative data. Own calculations.
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Table J.1: LLR results of MLDA on hospital admissions, counties without OOP costs at MLDA
threshold

No OOP at 18 No OOP at 20

(1) (2) (3) (4) (5) (6)

Any cause

MLDA 18 -0.0355∗∗∗ -0.0395∗∗∗ -0.0309∗∗ -0.0272 -0.0431∗∗∗ -0.0291∗

(0.0129) (0.00777) (0.0121) (0.0171) (0.0116) (0.0171)

Bandwidth 0.217 0.433 0.217 0.217 0.433 0.217

MLDA 20 -0.0108 -0.00749 0.00139 0.0351 0.0233 0.0418∗

(0.0276) (0.0158) (0.0128) (0.0273) (0.0173) (0.0223)

Bandwidth 0.0664 0.133 0.0664 0.0664 0.133 0.0664

External Causes

MLDA 18 0.0702∗∗∗ 0.0536∗∗∗ 0.0640∗∗ 0.0768 0.0293 0.0291

(0.0268) (0.0191) (0.0277) (0.0631) (0.0433) (0.0595)

Bandwidth 0.0611 0.122 0.0611 0.0611 0.122 0.0611

MLDA 20 0.0885∗ 0.0513∗ 0.0491∗ 0.173∗∗ 0.118∗∗ 0.114

(0.0456) (0.0273) (0.0275) (0.0794) (0.0531) (0.0722)

Bandwidth 0.0540 0.108 0.0540 0.0540 0.108 0.0540

Internal causes

MLDA 18 -0.0374 -0.0396∗ -0.00909 -0.0318 -0.0379 -0.0129

(0.0386) (0.0227) (0.0350) (0.0375) (0.0246) (0.0376)

Bandwidth 0.0701 0.140 0.0701 0.0701 0.140 0.0701

MLDA 20 -0.0160 -0.0129 0.00722 -0.00947 0.00519 0.00823

(0.0299) (0.0174) (0.0137) (0.0269) (0.0187) (0.0279)

Bandwidth 0.0730 0.146 0.0730 0.0730 0.146 0.0730

Male X X X

IK optimal bandwidth X 2x X X 2x X

Notes: This table shows the impact of the MLDA for various causes of hospital admission, split by OOP cost regime.
The dependent variable is the log hospital admissions. We add 0.5 to the count before taking logs to deal with zeros. All
estimates are from separate regressions. Columns 1,3,4 and 6 use the IK optimal bandwidth. Columns 2 and 5 use double
the size of the IK optimal bandwidth. Columns 3 and 6 include covariates. Covariates include county, whether foreign
born and dummies for birthday at 18 and 20 and the day after birthday at 18 and 20 and for whether county started
charging out of pocket payments at 18th or 20th birthday. Standard errors clustered by age at death measured in days
are shown in parenthesis. Testing the null of the coefficient: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
Source: Patient administrative data. Own calculations.
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Table J.2: LLR results of MLDA on hospital admissions, specific causes, counties without OOP costs
at MLDA threshold

No OOP at 18 No OOP at 20

(1) (2) (3) (4) (5) (6)
Motor vehicle related accidents
MLDA 18 0.000893 0.0440 0.0892 -0.194 0.0712 -0.0711

(0.103) (0.0784) (0.135) (0.228) (0.194) (0.292)
Bandwidth 0.0433 0.0866 0.0433 0.0433 0.0866 0.0433
MLDA 20 0.0285 0.0547 0.0433 0.446∗∗ 0.193 0.404∗

(0.0652) (0.0478) (0.0778) (0.174) (0.129) (0.222)
Bandwidth 0.0652 0.130 0.0652 0.0652 0.130 0.0652
Self-inflicted harm
MLDA 18 0.0634 -0.0569 0.0168 0.103 -0.0992 -0.0278

(0.118) (0.0872) (0.133) (0.251) (0.199) (0.303)
Bandwidth 0.0907 0.181 0.0907 0.0907 0.181 0.0907
MLDA 20 0.255∗∗ 0.199∗∗∗ 0.216∗∗ -0.0661 0.175 0.0274

(0.101) (0.0722) (0.103) (0.269) (0.177) (0.289)
Bandwidth 0.0825 0.165 0.0825 0.0825 0.165 0.0825
Homicide
MLDA 18 0.204∗∗ 0.0382 0.139 0.203 -0.0451 0.257

(0.101) (0.0768) (0.118) (0.228) (0.185) (0.254)
Bandwidth 0.0817 0.163 0.0817 0.0817 0.163 0.0817
MLDA 20 0.317∗∗ 0.216∗∗ 0.176 0.243 0.0501 -0.00530

(0.141) (0.0938) (0.126) (0.218) (0.176) (0.193)
Bandwidth 0.0553 0.111 0.0553 0.0553 0.111 0.0553
Alcohol related
MLDA 18 0.468∗∗∗ 0.282∗∗∗ 0.283∗∗ 0.544∗ 0.329 0.243

(0.123) (0.0933) (0.120) (0.312) (0.221) (0.313)
Bandwidth 0.0932 0.186 0.0932 0.0932 0.186 0.0932
MLDA 20 0.125 0.136∗ 0.0297 0.0105 0.242 -0.251

(0.111) (0.0718) (0.0869) (0.301) (0.194) (0.370)
Bandwidth 0.0915 0.183 0.0915 0.0915 0.183 0.0915
Narcotics related
MLDA 18 -0.0822 -0.194∗∗ -0.108 0.266 0.249 0.185

(0.142) (0.0963) (0.163) (0.345) (0.242) (0.385)
Bandwidth 0.118 0.236 0.118 0.118 0.236 0.118
MLDA 20 0.0575 0.165∗ 0.0322 -0.0681 0.0331 -0.194

(0.128) (0.0875) (0.123) (0.353) (0.244) (0.350)
Bandwidth 0.0537 0.107 0.0537 0.0537 0.107 0.0537
Other external causes
MLDA 18 0.00804 0.0290 0.0144 0.0118 -0.00431 -0.0438

(0.0319) (0.0214) (0.0289) (0.0678) (0.0472) (0.0652)
Bandwidth 0.0578 0.116 0.0578 0.0578 0.116 0.0578
MLDA 20 0.00711 0.0237 -0.0101 0.0712 0.0276 0.0556

(0.0241) (0.0152) (0.0204) (0.0576) (0.0410) (0.0608)
Bandwidth 0.121 0.241 0.121 0.121 0.241 0.121
Covariates X X
IK optimal bandwidth X 2x X X 2x X

Notes: This table shows the impact of the MLDA for various causes of hospital admission, split by OOP cost regime.
The dependent variable is the log hospital admissions. We add 0.5 to the count before taking logs to deal with zeros. All
estimates are from separate regressions. Columns 1,3,4 and 6 use the IK optimal bandwidth. Columns 2 and 5 use double
the size of the IK optimal bandwidth. Columns 3 and 6 include covariates. Covariates include county, whether foreign
born and dummies for birthday at 18 and 20 and the day after birthday at 18 and 20 and for whether county started
charging out of pocket payments at 18th or 20th birthday. Standard errors clustered by age at death measured in days
are shown in parenthesis. Testing the null of the coefficient: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
Source: Patient administrative data. Own calculations.
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K Heterogeneity analysis - Hospital visits results by gender

Table K.1: LLR results of MLDA on hospital admissions by gender
Males Females

(1) (2) (3) (4) (5) (6)

Any cause

MLDA 18 -0.0471∗∗∗ -0.0493∗∗∗ -0.0467∗∗∗ -0.0593∗∗∗ -0.0577∗∗∗ -0.0511∗∗∗

(0.0123) (0.00762) (0.0122) (0.0155) (0.00916) (0.0147)

Bandwidth 0.217 0.433 0.217 0.217 0.433 0.217

MLDA 20 -0.000781 -0.000866 0.00542 -0.0239 -0.0156 -0.00810

(0.0223) (0.0138) (0.0153) (0.0318) (0.0184) (0.0166)

Bandwidth 0.0664 0.133 0.0664 0.0664 0.133 0.0664

External Causes

MLDA 18 0.0571∗∗ 0.0328 0.0418 0.0956∗∗ 0.0734∗∗ 0.0748∗

(0.0280) (0.0201) (0.0353) (0.0375) (0.0286) (0.0416)

Bandwidth 0.0611 0.122 0.0611 0.0611 0.122 0.0611

MLDA 20 0.0731∗ 0.0328 0.0424 0.114∗∗ 0.0765∗∗ 0.0753

(0.0429) (0.0276) (0.0323) (0.0499) (0.0335) (0.0472)

Bandwidth 0.0540 0.108 0.0540 0.0540 0.108 0.0540

Internal causes

MLDA 18 -0.0566 -0.0570∗∗ -0.0344 -0.0705∗ -0.0707∗∗∗ -0.0361

(0.0388) (0.0231) (0.0365) (0.0425) (0.0253) (0.0399)

Bandwidth 0.0701 0.140 0.0701 0.0701 0.140 0.0701

MLDA 20 -0.0105 -0.00790 0.0118 -0.0287 -0.0234 -0.00512

(0.0251) (0.0156) (0.0156) (0.0337) (0.0195) (0.0172)

Bandwidth 0.0730 0.146 0.0730 0.0730 0.146 0.0730

Covariates X X

IK optimal bandwidth X 2x X X 2x X

Notes: This table shows the impact of the MLDA for various causes of hospital admission, split by gender. The
dependent variable is the log hospital admissions. We add 0.5 to the count before taking logs to deal with zeros. All
estimates are from separate regressions. Columns 1,3,4 and 6 use the IK optimal bandwidth. Columns 2 and 5 use double
the size of the IK optimal bandwidth. Columns 3 and 6 include covariates. Covariates include county, whether foreign
born and dummies for birthday at 18 and 20 and the day after birthday at 18 and 20 and for whether county started
charging out of pocket payments at 18th or 20th birthday. Standard errors clustered by age at death measured in days
are shown in parenthesis. Testing the null of the coefficient: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
Source: Patient administrative data. Own calculations.
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Table K.2: LLR results of MLDA on hospital admissions, specific causes by gender
Males Females

(1) (2) (3) (4) (5) (6)
Motor vehicle related accidents
MLDA 18 0.0134 0.0243 0.0574 0.00381 0.0253 0.160

(0.105) (0.0824) (0.132) (0.153) (0.117) (0.236)
Bandwidth 0.0433 0.0866 0.0433 0.0433 0.0866 0.0433
MLDA 20 0.0780 0.0604 0.0498 0.0587 0.127 0.241∗∗

(0.0713) (0.0515) (0.0813) (0.111) (0.0817) (0.108)
Bandwidth 0.0652 0.130 0.0652 0.0652 0.130 0.0652
Self-inflicted harm
MLDA 18 0.570∗∗∗ 0.187 0.473∗ -0.151 -0.145∗ -0.126

(0.208) (0.166) (0.254) (0.118) (0.0814) (0.118)
Bandwidth 0.0907 0.181 0.0907 0.0907 0.181 0.0907
MLDA 20 -0.0272 -0.0540 -0.0436 0.324∗∗∗ 0.219∗∗∗ 0.303∗∗∗

(0.165) (0.124) (0.211) (0.106) (0.0756) (0.108)
Bandwidth 0.0825 0.165 0.0825 0.0825 0.165 0.0825
Homicide
MLDA 18 0.406∗∗∗ 0.162∗ 0.302∗∗ 0.106 -0.00854 0.0983

(0.130) (0.0949) (0.137) (0.145) (0.0991) (0.153)
Bandwidth 0.0817 0.163 0.0817 0.0817 0.163 0.0817
MLDA 20 0.332∗∗ 0.231∗∗ 0.282∗∗ 0.143 0.274∗ -0.129

(0.133) (0.0928) (0.136) (0.219) (0.157) (0.219)
Bandwidth 0.0553 0.111 0.0553 0.0553 0.111 0.0553
Alcohol related
MLDA 18 0.442∗∗∗ 0.283∗∗∗ 0.268∗ 0.470∗∗∗ 0.302∗∗∗ 0.265∗∗

(0.153) (0.100) (0.140) (0.138) (0.0980) (0.126)
Bandwidth 0.0932 0.186 0.0932 0.0932 0.186 0.0932
MLDA 20 0.153 0.156∗ 0.0584 0.214∗ 0.128 0.132

(0.121) (0.0870) (0.124) (0.118) (0.0781) (0.104)
Bandwidth 0.0915 0.183 0.0915 0.0915 0.183 0.0915
Narcotics related
MLDA 18 -0.0993 -0.214∗∗∗ -0.122 -0.241 -0.191∗ -0.103

(0.105) (0.0752) (0.118) (0.192) (0.114) (0.129)
Bandwidth 0.118 0.236 0.118 0.118 0.236 0.118
MLDA 20 -0.167 -0.00704 -0.190∗ 0.417∗∗∗ 0.358∗∗∗ 0.393∗∗

(0.111) (0.0774) (0.105) (0.127) (0.0958) (0.168)
Bandwidth 0.0537 0.107 0.0537 0.0537 0.107 0.0537
Other external causes
MLDA 18 -0.0193 -0.000975 -0.00923 0.0572 0.0553∗ 0.0416

(0.0363) (0.0237) (0.0436) (0.0427) (0.0306) (0.0449)
Bandwidth 0.0578 0.116 0.0578 0.0578 0.116 0.0578
MLDA 20 0.00934 0.0106 -0.00629 -0.00545 0.0110 -0.0220

(0.0250) (0.0166) (0.0227) (0.0338) (0.0226) (0.0338)
Bandwidth 0.121 0.241 0.121 0.121 0.241 0.121
Covariates X X
IK optimal bandwidth X 2x X X 2x X

Notes: This table shows the impact of the MLDA for various causes of hospital admission, split by gender. The
dependent variable is the log hospital admissions. We add 0.5 to the count before taking logs to deal with zeros. All
estimates are from separate regressions. Columns 1,3,4 and 6 use the IK optimal bandwidth. Columns 2 and 5 use double
the size of the IK optimal bandwidth. Columns 3 and 6 include covariates. Covariates include county, whether foreign
born and dummies for birthday at 18 and 20 and the day after birthday at 18 and 20 and for whether county started
charging out of pocket payments at 18th or 20th birthday. Standard errors clustered by age at death measured in days
are shown in parenthesis. Testing the null of the coefficient: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
Source: Patient administrative data. Own calculations.
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