
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Introducing Service-level Awareness in the Cloud

Klein, Cristian; Maggio, Martina; Årzén, Karl-Erik; Hernández-Rodriguez, Francisco

2013

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Klein, C., Maggio, M., Årzén, K.-E., & Hernández-Rodriguez, F. (2013). Introducing Service-level Awareness in
the Cloud. (Technical Reports TFRT-7641). Department of Automatic Control, Lund Institute of Technology,
Lund University.

Total number of authors:
4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/66238ad1-8bff-49a4-8ee1-3c4440995cbd

ISSN 0280-5316
ISRN LUTFD2/TFRT--7641--SE

 Introducing Service-level
Awareness in the Cloud

Cristian Klein
Martina Maggio
Karl-Erik Årzén

Francisco Hernández-Rodriguez

Lund University
Department of Automatic Control

July 2013

Lund University
Department of Automatic Control
Box 118
SE-221 00 Lund Sweden

Document name
TECHNICAL REPORT
Date of issue
July 2013
Document Number
ISRN LUTFD2/TFRT--7641--SE

Author (s)

Cristian Klein
Martina Maggio
Karl-Erik Årzén
Francisco Hernández-Rodriguez

Supervisor

Sponsor ing organization

Ti tle and subti t le
Introducing Service-level Awareness in the Cloud

Abstract
Resource allocation in clouds is mostly done assuming hard requirements, applications either receive the requested re-
sources or fail. Given the dynamic nature of workloads, guaranteeing on-demand allocations requires large spare ca-
pacity. Hence, one cannot have a system that is both reliable and efficient.

To solve this issue, we introduce Service Level (SL) awareness in clouds, assuming applications contain some optional
code that can be dynamically deactivated as needed. First, we design a model for such applications and synthesize a
controller to decide when to execute the optional code and when to skip it. Then, we propose a Resource Manager (RM)
that allocates resources to multiple SL aware applications in a fair manner. We theoretically prove properties of the
overall system using control and game theory.

To show the practical applicability, we implemented SL aware versions of RUBiS and RUBBoS with less than 170
lines of code. Experiments show that SL awareness may enable a factor 8 improvement in withstanding flash-crowds
or failures. SL awareness opens up more flexibility in cloud resource management, which is why we encourage further
research by publishing all source code.

Keywords
Resource allocation, Service Level

Classi fication system and/ or index terms (i f any)

Supplementary bibl iographical information

ISSN and key ti t le
0280-5316

ISBN

Language
English

Number of pages
1-14

Recipient’s notes

Secur i ty classi fication

ht tp://www.control.l th.se/publ icat ions/

Introducing Service-level Awareness in the Cloud

Cristian Klein1, Martina Maggio2, Karl-Erik Årzén2, Francisco Hernández-Rodriguez1

1 Umeå University, Sweden, 2 Lund University, Sweden
cristian.klein@cs.umu.se, martina.maggio@control.lth.se,

karlerik@control.lth.se, francisco@cs.umu.se

ABSTRACT
Resource allocation in clouds is mostly done assuming hard
requirements, applications either receive the requested re-
sources or fail. Given the dynamic nature of workloads,
guaranteeing on-demand allocations requires large spare ca-
pacity. Hence, one cannot have a system that is both reliable
and efficient.

To solve this issue, we introduce Service Level (SL)
awareness in clouds, assuming applications contain some
optional code that can be dynamically deactivated as needed.
First, we design a model for such applications and synthe-
size a controller to decide when to execute the optional code
and when to skip it. Then, we propose a Resource Man-
ager (RM) that allocates resources to multiple SL aware ap-
plications in a fair manner. We theoretically prove properties
of the overall system using control and game theory.

To show the practical applicability, we implemented SL
aware versions of RUBiS and RUBBoS with less than 170
lines of code. Experiments show that SL awareness may
enable a factor 8 improvement in withstanding flash-crowds
or failures. SL awareness opens up more flexibility in cloud
resource management, which is why we encourage further
research by publishing all source code.

Categories and Subject Descriptors
D.4.8 [Operating Systems]: Performance—Measure-
ments; Modeling and prediction

General Terms
Design, Management, Service Level, Performance

Keywords
Resource allocation, Service Level

1. INTRODUCTION
Cloud computing radically changed the management

of data-centers [7]. In the past, machines used to have
one specific purpose. The need for a new functionality,
such as a new web application, implied the purchase of
a new Physical Machine (PM). This tendency resulted
in poor resource utilization and energy waste. This
issue was further aggravated by the growing number

of cores per PM, driven by the end of frequency scal-
ing, which increased the amount of unused hardware
per node. However, thanks to the advances in cloud
computing technologies, applications are now wrapped
inside Virtual Machines (VMs) and consolidated onto
fewer PMs [33].
As a result, resource management becomes a key is-

sue. Specifically, it is crucial to decide how the available
capacity is distributed among applications to ensure
that on-demand resource requests are satisfied with the
minimum amount of hardware. In this area, there has
been a tremendous amount of work, mostly assuming
that application resource requirements are “hard”, i.e.,
the application is either given the needed amount of re-
sources or fails. Combined with the fact that most cloud
applications have dynamic resource requirements [39],
this imposes a fundamental limitation to cloud com-
puting, which decrease its flexibility: To guarantee
on-demand resource allocations, the data-center needs
large spare capacity, leading to inefficient resource uti-
lization.
In order to increase the flexibility of resource man-

agement, we propose introducing Service Level (SL)
awareness in clouds. SL aware applications are charac-
terized by a dynamic parameter, the service level, that
monotonically affects both the end-user experience, as
well as the computing capacity required by the applica-
tion. For example, online shops usually offer end-users
recommendations of similar products they might be in-
terested in. No doubt, recommender systems greatly
increase the user experience. However, due to their so-
phistication, they are highly demanding on computing
resources [28]. By selectively activating or deactivating
the corresponding code, resource consumption can be
controlled at the expense of end-user experience.
SL awareness opens up the possibility to deal pre-

dictably and efficiently with unexpected events. Un-
expected peaks — also called flash crowds — may in-
crease the volume of requests by up to 5 times [5]. Sim-
ilarly, unexpected failures reduce the capacity of the
data center until they are repaired. Also, unexpected
performance degradations may arise due to interference
among co-located applications [33]. These phenomena

1

are well-known and software is readily written to cope
with them, using techniques such as replication and dy-
namic load balancing, as long as resource provisioning
is sufficient [3, 24]. However, given the short duration of
such unexpected events, it is often economically unfea-
sible to provision enough capacity for them. On the
contrary, using SL awareness, the infrastructure can
simply ask applications to temporarily reduce their re-
quirements. Consequently, end-user experience is re-
duced, since the optional code is not executed. How-
ever, providing the user with partial content is better
than having an unresponsive web application.
SL awareness can be an alternative or a complement

to other techniques. For example, out-scaling is often
proposed as a solution to temporary lack of capacity [18]
— requesting VMs from a public cloud provider, such
as Amazon EC2 or Rackspace, effectively creating a hy-
brid cloud. SL awareness can be an initial, temporary
solution, during the time interval when out-scaling is
set up, or an alternative, whenever out-scaling is not an
option such as budget constraints or privacy concerns.
In fact, with out-scaling, besides the cost for renting
the VMs, the owner would also have to pay the cost
of transferring her data onto the public cloud and back
into the data-center after the unexpected condition ex-
pired. Also, the owner may deal with sensitive data,
such as company know-how, credit card transactions,
user profiles, that are not transferable outside the pri-
vate data-center. Finally, cloud providers themselves
have limited capacity and even Amazon EC2 — one
of the largest computing inventories — can run out of
capacity [13].

Contributions.
In this article we build the necessary infrastructure

and software to support SL aware cloud applications.
We discuss a model that captures the behavior of a
typical Internet-facing SL aware application. In this
model, we define the application behavior and the infor-
mation that it should sense to perform informed choices
on how to change its SL. Subsequently, we propose a
Resource Manager (RM) that coordinates the resource
allocation among applications competing for the same
resources. The highlight of our contribution is that the
design is backed up by theoretical results both from
game and control-theory. Thus, our system provides
specific guarantees on desirable properties such as con-
vergence and fairness among the applications, which
translates to withstanding unexpected capacity short-
ages predictably.
We focus on the resources of a single PM, leaving

multiple-PM extensions for future work. Our paper of-
fers the following contributions:

• it proposes a model for SL aware cloud applica-
tions which is applicable to any application with
optional computations;

• it synthesizes a controller for such applications,
which adapts the SL to the load and available ca-
pacity;

• it implements a game-theoretical resource man-
ager that balances resource allocations fairly
among independent, competing applications;

• it extends two well-known cloud benchmark appli-
cations, RUBiS [40] and RUBBoS [6], with an SL
aware recommender systems;

• it evaluates the resulting framework showing peak
load handling and resource distribution among the
SL aware applications.

The results show that SL awareness can allow appli-
cations to support 8 times more users or run on 8
times less resources than their SL unaware counterpart.
Hence, our proposition enables cloud infrastructures to
predictably deal with unexpected peaks or unexpected
failures, without requiring spare capacity. Moreover, to
foster further research on SL awareness in cloud com-
puting, but also to make our results reproducible, we
have made all source code publicly available1.
The rest of this article is structured as follows. Sec-

tion 2 positions our work with respect to the state of
the art. Section 3 describes the theoretical foundations,
which serve as a basis for the implementation presented
in Section 4. We evaluate the resulting system in Sec-
tion 5. Section 6 concludes the paper.

2. RELATED WORK
Managing resources in clouds is a challenging task.

The state of the art can be categorized along two dif-
ferent dimensions.

Analytic vs. Experimental models.
Resource management systems rely either on analyt-

ical models [4, 11, 45, 54, 55, 57] or on running ac-
tual experiments and building empirical traffic profiles
and signatures [21, 38, 46, 50, 51]. Our system uses an
analytical model to infer performance from measure-
ments taken from the actual system. Zheng et al. [56]
argue that running actual experiments is cheaper than
building accurate models to validate resource allocation
strategies. We build on this assumption, validating our
technique on a small scale experimental testbed with a
similar attitude.

Application vs. Infrastructure centric.
Resource management schemes are either applica-

tion or infrastructure-centric. Performing application-
centric resource allocation [8, 10, 23, 38, 42, 52] means
deciding the right amount of resources to allocate avoid-
ing under- or over-provisioning. However, applications
are not cooperative and cannot reduce their require-
ments if resources are congested. In this way, the lim-
1https://github.com/cristiklein/cloudish

2

https://github.com/cristiklein/cloudish

itations of the underlying infrastructure are neglected,
taking only the application’s point-of-view. For exam-
ple, the resulting resource allocation for a web applica-
tion only depends on the incoming end-user requests.
Application-centric allocation can be combined with

game theory. For example, Ardagna et al. [1] studies
resource allocation in which users bid for resources and
the provider sets the price to maximize his revenue. A
solution which converges to a Nash equilibrium is pro-
posed. Sharma et al. [41] proposes Kingfisher, a sys-
tem that tries to minimize the cloud tenant’s deploy-
ment cost while reacting to workload changes. King-
fisher takes into account the cost of each VM instance,
the possibility of horizontal and vertical scaling and the
transition time between configurations. However, none
of these works take into account the capacity limitations
of the cloud provider and do not deal with overload.
Although some works deal with performance differen-

tiation for multiple classes of clients [36], to our knowl-
edge, the only cloud application that comes close to
being SL aware is Harmony [12]. Harmony adjust the
consistency-level of a distributed database as a func-
tion of the incoming end-user requests, so as to mini-
mize resource consumption. This is a specific example
of SL awareness in cloud applications, and the adapta-
tion strategy is not reflected in the resource allocation.
Also, in this case, the motivation to introduce the adap-
tation mechanism lies in limiting the amount of money
that the user is charged for. Our work is motivated by
helping the infrastructure deal with overload conditions.

Infrastructure-centric resource allocation strategies
like [16, 22, 35, 43] mostly regard applications as non-
cooperative “black-boxes”, with hard resource require-
ments. Among the different contributions to the area,
we most closely relate to those dealing with over-
subscription (also called over-booking) [49]. In [26], ap-
plication requirements are modeled as random variables
and statistical analysis is applied to avoid data-center
overload. In [20] the approach is extended with correla-
tion coefficients between the requirements and portfolio
theory is used to increase over-subscription, while con-
trolling the overload risk. However, in both of these
works no remedy is given to overload conditions, be-
sides having to pay a penalty to the user. A possible
solution is presented in [53] by allowing the provider to
suspend the least “important” VMs. However, this so-
lution may be unacceptable when the VMs are hosting
interactive, Internet-facing applications.
To guarantee the satisfaction of on-demand requests,

large spare capacity is necessary. As a solution to this
waste, high-priority and low-priority workloads can be
combined [34]. However, such an approach only works
if the latter have no quality of service requirements.
Otherwise, the infrastructure would again have to have
spare capacity.

..

Physical Machine 1

.
Physical Machine 3

.

Resource Manager

.

Virtual Machine 1

.

Virtual Machine 3

.
10% capacity

.

Rack n

.

. . .

.
Rack 1

Figure 1: The framework actors. The figure shows an en-
tire datacenter, where rack of machines are represented as
stacked planes.

Adapting batch workloads to resource availability has
been studied in HPC infrastructures, such as supercom-
puters. Moldable or malleable applications [17] can be
directed to trade resources for execution time, for ex-
ample, an application may run on 4 cores for 1 hour
or 2 cores for 2 hours. This additional flexibility in
resource management has been shown to bring signif-
icant gains [25, 27, 44, 47]. However, the amount of
computations essentially remains the same. Unfortu-
nately, theses approaches are designed for allocations
whose start-time can arbitrarily be delayed. Therefore,
clouds, characterized by on-demand resource allocation,
cannot readily take advantage of them.

Summary.
To the best of our knowledge, this is the first work

that deals with SL aware cloud applications, integrat-
ing them with resource allocation. Existing papers ei-
ther do not study how such applications change their
SL and interact with the infrastructure or how the in-
frastructure coordinates multiple such applications.

3. THEORETICAL FRAMEWORK
This section presents the theoretical framework of our

contributions and describes both application behavior
and resource allocation among applications. We borrow
the general idea from a framework proposed recently
in the domain of embedded computing systems [32]
extending the framework to handle the complexity of
cloud computing infrastructures. We employ terminol-
ogy and notations used in control theory [30].
Let us start by giving a high-level view of a data-

center and where our proposal fits in. As illustrated in
Fig. 1, a data center houses multiple racks, each repre-
sented by a plane. Each rack contains a variable number
of Physical Machines (PMs), each represented by a row
of the plane. Each PM is divided into squares, repre-
senting slots of capacity which can be allocated to one or
more cloud applications. For easier control over alloca-
tions and better isolation, each application is sandboxed
in its own Virtual Machine (VM), therefore, from now
on, we use the terms application and VM interchangi-

3

bly. A Resource Manager (RM) runs alongside VMs
in each PM to decide capacity allocation. Each appli-
cation runs at a different Service Level (SL), which
monotonically affects both the quality of the computa-
tion and the capacity that it requires.
We shall now focus on a single PM and describe the

applications’ behavior and the RM. Then, we discuss
the formal guarantees obtained with our methodology.

3.1 Applications
We assume that every application i is composed of

some time sensitive portions of code, called jobs, which
have to be executed before a deadline expires. For ex-
ample, for a web application a job represents a client
request, that has to be executed in a timely manner.
Each job can contain some optional computations. Be-
ing able to run optional computations is desirable, as
they would improve end-user experience. However, de-
activating them is preferred to missing a deadline. The
number of times that these optional computations are
executed between time k and k+1 (and thus the capac-
ity required by the application) is proportional to the
SL of the application sk

i .
Every application is requested to regularly update

the RM about their performance. More precisely, a
matching value should be computed that respects the
following properties. First, the matching value should
be close to zero when the assigned resources are per-
fectly matched with the current SL of the application.
Second, if the matching value is positive, the resources
assigned to the application are abundant and the ap-
plication can compute at a higher SL, or the amount
of assigned resources can be reduced. Third, and dual,
if the matching value is negative, either more resources
have to be provided or the application should reduce its
SL to avoid missing deadlines.
For the application model described above, we chose

to compute our matching value as follows. First, a per-
job matching value f k

j,i is computed for each job j as

f k
j,i = 1−

tk
j,i

t̄ j,i
(1)

where t̄ j,i is the desired deadline and tk
j,i is the measured

completion time. Next, the per-job matching values f k
j,i

are averaged to obtain the application’s matching value
f k
i , which is communicated to the RM. This is the only
value that the application has to communicate to the
RM. It is easy to prove that our choice respects the
properties described above.
Our framework can exploit the adaptivity of appli-

cations that change their SL to offer an overall better
performance. Each adaptive application i may change
the SL it runs at, as a function gi of the current perfor-

mance, called the update rule

sk+1
i = gi(sk

i , f k
i) (2)

that can be different for each application. Both the
SL sk

i and the update rule gi are private to the appli-
cation, i.e., the RM is not informed about them. This
assumption allows the RM to run in linear time with re-
spect to the number of applications, resulting in a lower
overhead compared to a complex optimization approach
where the RM also selects the SLs of the applications.
Moreover, this allows applications to customize their
definition of the SLs and their update rule. Note that,
our framework allows application to be non-cooperative,
i.e, SL-unaware, as most existing applications are. For
these applications, if no value is communicated, the RM
simply assumes the matching value is zero.
To clarify the concepts just introduced, we sketch an

e-commerce website as an example of an SL-aware ap-
plication. In the e-commerce website, we consider the
visualization of a page containing one specific product
as one job. The optional code of such a job consists
in retrieving recommendations of similar products. For
each request, besides retrieving the product informa-
tion, the application runs the recommender system with
a probability sk

i . Increasing sk
i increases the number of

times recommendations are displayed, thus increasing
end-user experience, but also the capacity requirements
of the application. In the end, the capacity require-
ments will be roughly proportional to sk

i .
One of the main differences between this work and

similar research in the context of embedded systems [9]
is that we do not assume anything about the appli-
cation’s behavior, thus, the RM does not have access
to the SL update rules. In fact, our framework is com-
pletely general with respect to the choice of the function
gi in Eq. (2). However, for completeness, we propose a
couple of examples of how an SL controller can be de-
signed and which guarantees it may offer.

Controller design for average response time.
The first alternative that we present is a controller

whose purpose is to maintain the average response time
of the requests around a specific setpoint value. Using
a very primitive, but useful model, we assume that the
average response time for application i, measured at
regular time intervals, follows the equation

tk+1
i = αk

i · sk
i +δ tk

i (3)

i.e., the average response time tk+1
i of all the jobs that

are executed between time instant k and time instant
k + 1 depends on a time varying unknown parameter
αk

i and can have some disturbance δ tk
i that is a priori

unmeasurable. αk
i takes into account how the service

level selection affects the response time, while δ tk
i is an

additive correction term that models variations that do

4

not depend on our service level choice — for example,
variation in retrieval time of data due to cache hit or
miss. Our controller design should aim for canceling the
disturbance δ tk

i and selecting the value of sk
i so that our

average response time is equal to our setpoint value.
As a first step towards the design, we assume that we

know αk
i and its value is constant and equal to α. We

would later be able to substitute an estimation of its
current value in the controller equation, to make sure
that the behavior of the closed loop system is the desired
one. The Z-transform of the plant, i.e., the system that
we want to control, before the feedback loop is closed,
described by Eq. (3) is

z ·T (z) = α ·S(z)+∆T (z) (4)

where z is the unit delay operator, T (z) is the Z-
transform of the time series tk

i , S(z) relates to sk
i and

∆T (z) transforms δ tk
i . We cannot control the distur-

bance ∆T (z), therefore, we are only interested in the
transfer function from the input (the SL) to the output
(the measured average response time), which is

P(z) =
T (z)
S(z)

=
α
z
. (5)

Every closed loop system composed by one controller
and a plant has the generic transfer function

G(z) =
C(z) ·P(z)

1+C(z) ·P(z)
=

Y (z)
R(z)

(6)

where C(z) is the transfer function from the error, i.e.,
the difference between the setpoint and the measured
value, to the control signal, in this case, the SL to be
applied in the next time interval. P(z) is the plant trans-
fer function [30] — in our case Eq. (5). Y (z) and R(z)
are respectively the output and the input of the closed
loop system, in our case the measured and the desired
average response time. The function G(z) represents
the response of the controlled system with the feedback
loop closed.
The next step in controller design consists in deriving

an equation for C(z). One possible strategy is to choose
C(z) so that some properties on G(z), the response of
the controlled system, are satisfied — in control terms,
to select the “shape” of the response. For example, we
want the steady state gain of G(z) in Eq. (6) to be one,
since we want the setpoint to be equal to the output.
Also, we want to introduce a stable pole in the closed
loop system, to control the speed of the response — in
order for the system to be stable the pole should lay
within the unit circle, in order to also avoid oscillations
its value should be between zero and one. Assuming
that we want to introduce the stable pole in p1, our
desired closed loop transfer function looks like

G(z) =
C(z) ·P(z)

1+C(z) ·P(z)
=

1− p1

z− p1
(7)

and substituting the plant transfer function of Eq. (5)
into Eq. (7) we can derive the expression C(z) = 1−p1

α(z−1)
for the controller. By applying the inverse Z transform
on the expression of C(z), we obtain

sk+1
i = sk

i +
1− p1

α
· ek+1

i (8)

where ek+1
i is the difference measured at time k+1 be-

tween the setpoint for the response time and its mea-
sured value. This equation can be used to implement a
controller that selects the SL.
The pole p1 can be used to choose between stability

and reactivity. The closer p1 is to one, the slower the
system responds, but the better it rejects measurement
noise or other disturbances. Effectively, the controller
will only make small SL corrections at every iteration.
In contrast, values of p1 close to zero will make the
system respond quickly, but also be more sensitive to
disturbances, making large SL corrections, that risk be-
ing based on transient disturbances instead of long-term
trends. Some values for p1 can be suggested, depending
on the reliability of the measurements and the variabil-
ity of the incoming requests. However, selecting a value
for p1 should either be done by the controller developer
or the application operator, based on empirical testing,
so as to fulfill her specific needs.
Now, the only open issue is to provide an estimation

of αk
i . We can use many methods to estimate it online,

while executing. The most simple is to take past mea-
surements and compute the average response time tk+1

i ,
pretend the disturbance δ tk

i is negligible and compute
αk

i based on Eq. (3). Once a first estimation is avail-
able, it is also possible to assign a weight to new data
points and choose

αk+1
i = (1−µ) ·αk

i +µ ·
tk+1
i

sk
i

(9)

where µ is a discount factor that defines how trustwor-
thy the new observations are.

Controller design for maximum response time.
Controlling maximum response time, instead of aver-

age, has become the focus of recent research [15]. Our
controller can easily be adapted to this purpose, by us-
ing ek+1

i = l̄i,max − lk
i,max in Eq. (8), where l̄i,max is the

desired maximum response time and lk
i,max is the max-

imum response time measured from time instant k to
k+1. In what follows, we shall use this controller.

3.2 Resource manager
The role of the resource manager is to select the ca-

pacity of the PM that each application is allowed to
use. In many works cited in Section 2, cloud resource
allocation is done based on monitored resource usage.
However, this approach cannot be used to support SL-

5

aware applications. For example, when an application’s
CPU usage is low, without additional information, the
RM cannot distinguish whether the application is abun-
dantly provisioned and runs at maximum SL, or insuf-
ficiently provisioned but runs at low SL to compensate.
Therefore, in our case, the RM does not directly moni-
tor the resource usage by the applications but uses infor-
mation on the applications’ performance that are con-
veyed through the matching value defined in Eq. (1)2

without needing to know the SLs of the applications.
Let us now describe the RM’s behavior. We denote

with ck
i ∈ [0,1] the capacity assigned at time k to the i-th

application relative to the total capacity C of the PM3.
The RM enforces that the total allocated capacity does
not exceed the available one:

∑
i

ck
i ≤ 1 (10)

At initialization, the RM sets the capacities to c0
i = 1/n

where n is the number of applications. Subsequently,
at each time step k, it first retrieves measurements for
all the matching values f k

i — as the averaged values of
Eq. (1) — then updates each capacity according to

ck+1
i = ck

i − εrm(f k
i − ck

i ·∑
i

f k
i) (11)

where εrm is a constant that determines the step-size of
the RM. The sum of the capacities remains equal to
one, therefore continuing to enforce the total capacity
constraint. Since the matching values of the applica-
tions are closer to zero when the resources they receive
match their SLs, the new allocation favors the appli-
cations that are more distant from their target perfor-
mance values — whose matching values are more nega-
tive. The new resource allocation reflects the relative
distance between the applications’ performance. Fi-
nally, the computed relative capacities ck

i are multiplied
by the total capacityC, to obtain the absolute valuesCk

i .
The RM itself needs to make sure that it gets enough
resources to function correctly, either by reserving some
capacity for itself, or by running with a higher priority
than the applications.

As can be observed in Eq. (11), the RM’s complexity
is linear with respect to the number of applications,
which allows its implementation to have low overhead.

3.3 Convergence analysis
In this section we briefly summarize the relevant con-

tributions in terms of convergence analysis. It can be
shown that the RM allocations converge to a station-
2As long as the used matching value respects the three prop-
erties defined when we introduced Eq. (1), its formulation
can be changed.
3We use the same time index k to express the applications’
and the RM’s update rules. However, the update periods of
each application and of the RM are completely independent.

......RM.. app1. app2.

LC1

.

LC2

.

UDP

.

file

.

UDP

.

file

.

clients

.

clients

.

VMGuest1

.

VMGuest2

.

VMDom0

.

UDP

.

Hypervisor

.

PM

.

Figure 2: Architecture of a single Physical Machine (PM).

ary point, that is characterized by the following prop-
erty: Applications are either performing sufficiently
well, which means that their matching values are close
to zero, or are poorly performing but already operate at
minimum service level. This means that if a stationary
point where all the matching values of the running ap-
plications are driven to zero exists, this point is reached.
Moreover, the RM ensures fairness among applica-

tions. Whenever the applications have similar definition
for their matching values, the framework theoretically
guarantees that, in case of overload, the resources as-
signed to the applications converge to equal values. In
other words, applications contribute equally to dealing
with the overload.
For the complete formal analysis of the framework,

we refer the reader to the proofs in [9, Section IV].

4. IMPLEMENTATION
In this section, we show how we implemented our

framework building a working prototype. We first de-
scribe the general architecture and then move to the
introduction of SL awareness in two popular cloud ap-
plications: RUBiS [40] and RUBBoS [6].

4.1 Architecture
Figure 2 presents an overview of the architecture of

our framework. As anticipated, we focus on managing
a single PM and its applications. This PM is equipped
with a hypervisor that is capable of setting hard limits
on the resource consumption of all the VMs hosted in-
side the PM. A privileged VM, called Dom0 runs with
high-priority and executes the RM. Alongside this VM,
n unprivileged ones run simultaneously and are iden-
tified by Guesti where i is a number between 1 and n.
Dom0 collects performance data from the applications,
i.e., the matching value described in Eq. (1), computes
the new resource distribution according to Eq. (11) and
sets the hard limits for the running applications through
a hypervisor-specific interface, such as the one provided
by libvirt [31].
In our current implementation, we focus on sharing

processing resources. Therefore, we use the Xen hyper-

6

visor [2] as it offers a versatile interface for controlling
such allocations. At a course level, Xen supports dy-
namically changing the number of virtual cores of a VM
and their mapping on physical cores. At a fine level, the
credit scheduler can be employed [29] to set a limit for
the percentage CPU time, through the cap attribute.
For example, to allocate 4 and a “half” cores to a VM,
i.e., let the VM receive computing power somewhere
between having exclusive access to 4 physical cores and
5 physical cores of the PM, the RM instructs Xen to
change the number of virtual cores to 5, the rounded
up value, and set cap to 450. Initial testing with a web
application and a compute intensive application showed
that this method offers good performance proportional-
ity, i.e., the number of requests per second or the num-
ber of floating-point operations per second, respectively,
are roughly proportional to the allocated CPU resources
of the VM. In what follows, we shall only report the
cap implying that the number of virtual cores has been
adjusted accordingly. Although, we focus on processing
resources, our implementation can easily be extended
to control other virtual resources, such as network and
disk bandwidth, being limited only by the capabilities
of the hypervisor.
Each Guesti VM hosts a complete Internet applica-

tion. We do this simplification to make sure that the
performance of an application only depends on the re-
sources allocated to its VM. For example, all tiers of
an n-tier application have to be contained inside a sin-
gle VM. Allocating resources to multiple, performance-
interdependent VMs is left as future work. Besides
the application itself, each VM hosts an application-
specific Local Controller (LC), whose purpose is to
monitor the performance of the application, control its
SL and communicate to the RM the matching value
of the application. We wanted our implementation to
be minimally intrusive, therefore, we use UDP sockets
to communicate between the LC and the RM. Alter-
natively, an efficient shared-memory mechanism can be
set up, requiring “punching” a hole through the virtual-
ization layer. The communication between the LC and
the hosted application is not constrained in any way by
our RM implementation.
Regarding the RM’s algorithm, it follows the spec-

ification in Section 3.2, with two minor adjustments
that improve stability: matching values are saturated
between [−1,+1] and allocations are unchanged if all
matching values are positive. These modifications pre-
serve the theoretical results related to convergence and
fairness.

4.2 Applications
We now move to the description of how individual

applications can take advantage of our framework. We
start by showing the ease of complying with the frame-

1 SELECT
2 bids2.item_id AS id,
3 COUNT(bids2.item_id) AS popularity
4 FROM
5 bids
6 LEFT JOIN bids AS bids2 ON (user_id)
7 WHERE
8 bids.item_id = :current_item_id AND
9 bids2.item_id != :current_item_id

10 GROUP BY bids2.item_id
11 ORDER BY popularity DESC
12 LIMIT 5;

Listing 1: SQL statement for the recommender system.
work rules by taking two widely used examples of cloud
benchmark applications — RUBiS [40] and RUBBoS [6]
— and making them SL aware.

RUBiS [40] is an extensively used benchmark that
implements an auction website, similar to eBay. It
has been widely used to evaluate resource allocation
schemes, see for example [11, 23, 43, 45, 46, 50, 56].
We built a service-level aware RUBiS version, ex-

tending the PHP implementation and in particular the
ViewItem.php page. Our extension features a simple
recommender system: When the application receives a
request for an item j, if the recommender system is ac-
tive, it retrieves the set of users U j that bid on the same
item in the past. Then, the recommender system com-
poses the set of recommended items R j, retrieving other
items that the users in U j have bid on. The items in R j
are ordered by popularity, i.e., the number of bids on
them, and the top 5 are returned. The corresponding
SQL statement can be found in Listing 1. It is out-
side the scope of this article to propose a sophisticated
recommender system. The described recommender sim-
ply serves as a reasonable example of an optional code
that a cloud application may enable or disable at run-
time. Clearly, such a recommender system adds a great
value to the user experience. However, it is also resource
hungry. Initial testing revealed that 20 times fewer con-
current users can be served when the recommender is
enabled.
The presence of the potentially invoked recommender

systems allows us to make the auction website SL aware.
We define sk

RUBiS as the SL of the RUBiS application at
time k. This value is comprised in the interval [0,1] and
represents the per-request probability that the recom-
mender system is executed between time instant k and
k+1. As a consequence, the higher the SL, the higher
the resource consumption, but also the better the user
experience, which is a necessary feature to support SL
aware applications using our framework. Having an SL
of 0 means that no user will see recommendations, while
a value of 1 means that all the users will receive recom-
mendations. When serving a request arrived between
time k and k+ 1, the PHP script reads the current SL
sk

RUBiS from a file and generates a random number in

7

r ∈ [0,1]: If r < sk
RUBiS, recommendations are displayed,

otherwise the recommender system is not executed.
To make this application useful to the user, we need

to control the user-perceived latency [48]. To this end,
the beginning and the end time of each “view item”
request are recorded and, by subtracting the two, the
response time can be measured. While this quantity is
slightly different than the user-perceived latency — due
to network latencies, queuing at the web server, con-
text switches and other external factors — it should be
reasonably close, assuming the application is not over-
loaded. Ensuring the absence of overload conditions
depends on how the feedback loop between the mea-
sured latency and the SL is closed, which is the role of
the Local Controller (LC).
The aim of the LC is to set the SL so as to keep

the maximum user-perceived latency lmax smaller than
a given amount l̄max. A study on web-user tolera-
ble waiting-time suggest using l̄max between 2 and 4
seconds [37]. The LC controller receives all the mea-
sured latencies from the PHP script through a local
UDP socket and selects the new SL based on Eq. (8),
with ek+1

i = l̄max − lmax. It then atomically writes the
new SL in a file using the rename system call. The
communication protocol is sufficiently efficient for our
needs (the small file is served from cache) and has been
chosen to avoid intrusive modifications to the RUBiS
code. Indeed, our modifications to the original appli-
cation, which include the recommender system and the
controller, are limited to 170 logical SLOC.
It is important to note that the recommender system

introduces a large variability in the perceived latency.
If a product is unpopular, our recommender returns re-
sults in approximately 1ms on a testing system. On
the contrary, producing a recommendation for a pop-
ular item might take 80ms. We decided to keep this
behavior, instead of limiting the problem, to increase
the difficulties (i.e., the disturbances) that the LC has
to face and to stress test our system. As a consequence,
given constant incoming load and resources, there is no
value for sk

RUBiS which maximizes the number of dis-
played recommendations, while guaranteeing that all
latencies are below the set limit. Therefore, a website
administrator must choose between a more conservative
controller, that prefers keeping latencies low, or a more
aggressive one, that prefers serving more users with rec-
ommendations, but risks a few high latencies. Choosing
an optimal trade-off would require user-behavior studies
that model revenue as a function of latency and recom-
mendations and is out-of-scope. Instead, we show in
the evaluation the behavior of two different controllers,
a more conservative and a more aggressive one.

RUBBoS [6] is a bulleting-board prototype website
modeled after Slashdot and has been used as a bench-
mark in cloud computing research [14].

Introducing SL awareness in RUBBoS can be done
with a similar strategy as used for RUBiS, focusing on
the “view story” page. However, RUBBoS offers even
more flexibility. As a first step, we added a recom-
mender system, that suggests other stories that might
be related or interesting for the reader, based on com-
mon commentators. As a second step, comments can
be disabled. While the comments section is an essential
part of such a website, users are better served without
it than not at all in case of data-center overload.
In our SL enabled RUBBoS application, a story can

be served in three different modes. The lightest version
serves neither comments nor recommendations. On the
contrary, whenever comments are enabled, the website
can retrieve a story with or without recommendations.
Again, we want enabling SL awareness to be as

non-intrusive as possible. Therefore, we use a simi-
lar approach to the one adopted for RUBiS and define
sk

RUBBoS ∈ [0,1] as the SL of the RUBBoS application
at time k. This value represents two different prob-
abilities. First, it stands for the probability that the
comments are added between time instant k and time
instant k+1. Second, if the story is presented with com-
ments, the same value represent the probability that the
recommender system is executed, i.e., the unconditional
probability is

(
sk

RUBBoS

)2. Similarly to RUBiS, we can
readily use the same LC which maintains maximum la-
tency below a set value.
To sum up, based on the experience acquired with two

widely used prototype applications, we believe that en-
abling SL-awareness in production software should not
be too difficult, once the optional parts have been iden-
tified. Indeed, for both RUBiS and RUBBoS, this can
be achieved with 170 logical SLOC. The benefits of do-
ing these changes are highlighted in the next section.

5. EVALUATION
In this section, we test two different aspects of our

implementation, backing up the theoretical results of
Section 3. Here, we describe our experimental setup.
We continue discussing the behavior of the LC in Sec-
tion 5.1 and of the RM in Section 5.2.

Experimental Setup.
Our testbed is a single PM equipped with two AMD

Opteron™ 6272 processors4 and 56GB of memory,
which hosts several VMs. We used Xen 4.1.2 as a hy-
pervisor and Ubuntu 12.04.2 LTS 64-bits with Linux
kernel version 3.2.0, both for the privileged Dom0 and
the unprivileged DomU VMs. Every unprivileged VM is
configured with 4GB of memory and a variable number
of virtual CPUs. The number of virtual CPUs is deter-
mined as a function of the cap parameter, as described
in Section 4.1 — a cap of 400 means that the VM has ex-
42100MHz, 16 cores per processor, no hyper-threading

8

clusive access to 4 cores of the PM, while with cap = 50
the VM has access to a single core of the PM, but only
for half of the time. We deployed our SL-aware versions
of RUBiS and RUBBoS, each inside a single VM, and
the RM inside Dom0. Each application’s VM contains
the LC for that application and all tiers belonging to it
— Apache web server, PHP interpreter, MySQL server.
To simulate the users’ behavior, we have found the

clients provided by RUBiS and RUBBoS insufficient for
our needs. Specifically, they do not allow to change the
number of concurrent users and their behavior at run-
time. Moreover, they report statistics for the whole
experiment and not as time series, therefore, we could
not observe transient phases. Last, these tools cannot
measure the number of requests that have been served
with recommendations or comments, which represents
the service levels as perceived by the users.
For these reasons, we developed a custom tool,

httpmon, to simulate web users. Its behavior is simi-
lar both to the tools provided with RUBiS and RUB-
BoS, and to the TPC-W benchmark specification [19].
Specifically, it allows to dynamically select a think-
time and a number of users and maintains a number
of client threads equal to the number of users. Each
client thread runs an infinite loop, which waits for a
random time and then issues a request for an item or a
story. The random waiting time is chosen from an ex-
ponential distribution, whose rate is given by the think-
time parameter. A master thread collects information
from the client threads and prints statistics for the last
second of execution. Specifically, it records the maxi-
mum perceived latency — which is the time elapsed
from sending the first byte of the HTTP request to re-
ceiving the last byte of the HTTP response — and the
perceived SL — the ratio of requests that have been
served executing the optional code for recommendations
or comments. Note that, this may be different from the
target SL, which is the output of the local controller.
Since we are interested in studying how well the

framework controls CPU resources, we made sure that
network or disk did not influence our results. There-
fore, we ran our workload generator inside Dom0 on a
dedicated core. Furthermore, we disabled logging and
made sure that each VM had enough memory to keep
the whole database in-memory. Indeed, disk activity
measured during the experiments was negligible.

5.1 Local Controller
This section is dedicated to the test of the LC. We

report three different experiments, in each of them we
focus on a different time-varying aspect. First, we vary
the resources that the application can use — its cap.
Second, we vary the application load — the number of
connected users. As a third experiment, we vary both
these quantities together to simulate the real execution

environment. Since previous research suggests that un-
expected peaks vary considerably in nature [5], we man-
ually chose values for load and resources that exposed
the application to extreme conditions.
The following figures are structured as follows. The

x-axis represents the time elapsed since the beginning
of the experiment, its numerical value being shown on
the bottom. Every experiment consists of 5 intervals,
each of them lasting 100 seconds. The experimental pa-
rameter that is changed for every interval and its value
are reported on the top x-axis. Each figure shows three
different metrics. First, the maximum perceived latency
t j,app is shown in continuous blue lines and its y-axis is
depicted on the left side of the plot. Second, the right y-
axis hosts two different curves for the SL. The first one,
s j,app, is the target SL set by the controller and is shown
in dotted red lines. The second one, s∗j,app, depicted in
dashed black lines, is the perceived SL or the average
ratio of pages served with optional content. To improve
the readability of the graphs, the values are aggregated
over a 10 seconds interval, using the maximum for the
latency and the average for the SLs.
Each figure represents a single experiment. We re-

frained from applying statistics over several experi-
ments with the same parameters, as they would hide
some interesting features, such as oscillations and tran-
sient behaviors. Ideally, the controller should maximize
the target SL while keeping the latency below the toler-
able waiting time of 2seconds as recommended in [37].
Also, the user SL should closely follow the target one.

Constant Load and Variable Resources.
In this set of experiments, we keep the load constant

— 100 concurrent users with a think-time of 3seconds
— and vary the cap of our SL-aware version of RU-
BiS. In a real environment, this situation arises when
the capacity of a PM is saturated, before load is redis-
tributed. In fact, when multiple VMs share the same
machine, performance interference may occur [38]. Also,
CPU throttling due to cooling failures or VM migration
due to failures of a different PM may cause similar VM
capacity reductions.
The LC was configured with a control period of

1second to allow a quick reaction, a target latency of
1second to allow a safety distance to the tolerable wait-
ing time, a discount factor µ = 1 and a sliding measure
window of 5seconds. This means that the controller’s
input is the error between the desired value of 1second
and the maximum latency measured within the appli-
cation itself over the last 5seconds. First, we test the
behavior of the system when no LC is present, with a
constant service level of 0.5. This means that the ap-
plication is SL-unaware and serves a request with rec-
ommendations only half of the time. We chose to have
a fixed value of 0.5 for the SL because that value was
optimal in the initial conditions, allowing us to demon-

9

.....
0
.

100
.

200
.

300
.

400
.

500
.0 .

1
.

2

.

3

.

*4

.

time [s]

.re
sp

on
se

ti
m

e
[s]

.

. ..t j,RUBiS

....

400

.

200

.

50

.

300

.

100

..
0.2

.

0.4

.

0.6

.

0.8

.

1**

.

cap

.

. ..s j,RUBiS

. ..s∗j,RUBiS

(a) Without the LC.

.....
0
.

100
.

200
.

300
.

400
.

500
.0 .

1
.

2

.

3

.

*4

.

time [s]

.

. ..t j,RUBiS

....

400

.

200

.

50

.

300

.

100

..
0.2

.

0.4

.

0.6

.

0.8

.

1**

.

cap

.

. ..s j,RUBiS

. ..s∗j,RUBiS

(b) p1 = 0.5.

.....
0
.

100
.

200
.

300
.

400
.

500
.0 .

1
.

2

.

3

.

*4

.

time [s]

.

. ..t j,RUBiS

....

400

.

200

.

50

.

300

.

100

..
0.2

.

0.4

.

0.6

.

0.8

.

1**

.

cap

. se
rv

ic
e

le
ve

l
[%

]

.

. ..s j,RUBiS

. ..s∗j,RUBiS

(c) p1 = 0.9.
Figure 3: Response time and probability of executing the recommender system varying the VM cap.

strate the importance of adaptation. We compare these
results to the case of an SL-aware application, when the
controller’s pole p1 is set to 0.5 and 0.9. We intend to
show the advantages that SL-awareness brings in com-
parison to lack thereof, and highlight trade-offs in the
controller’s parameter choice.
Figure 3 plots the results of our test. Figure 3a shows

the situation when no control is present. The system
performs quite well in the first interval, up to 100 sec-
onds, when resources are abundant as the cap is set
to 400. Indeed, the latency is below 2seconds and the
user perceived SL is closely following the target one of
0.5. However, during the next interval, when resources
are slightly insufficient as the cap is halved, the latency
starts increasing, because the application is unable to
serve requests fast enough and queues them. In the
next time interval, when even fewer resources are avail-
able, the system becomes unresponsive and some users
experience huge latencies, up to 10seconds5. The per-
ceived SL is very low, as requests that would potentially
receive recommendations are abandoned by the client
due to timeouts. When, in the next interval, more re-
sources are assigned to the web application as its cap is
increased to 300, the latency decreases and the queue is
drained. However, this process takes 60seconds, during
which the application seems unresponsive. In the last
interval, resources are insufficient and the application
becomes again unresponsive.
Figure 3b plots the results with the controller config-

ured with the pole p1 at 0.5. In contrast to the system
without control, the application is perceived as more
predictable from the user’s perspective. Effectively, it
managed to maintain the latency below 2seconds for
most of the time, despite a factor 8 reduction of re-
sources, from a cap of 400 to one of 50. This is due
to the target SL adjustment that follows the available
capacity. Furthermore, the perceived SL closely follows
the target one.

5We limit the plot to 4seconds to ease comparison with the
other scenarios.

We discuss here the few deviations from the desired
behavior, where the latency increases above the tolera-
ble waiting time. The highest deviations occur as a re-
sult of an overload condition, when the cap is reduced,
around time instant 100, 200 and 400. This is in accor-
dance with theory, since the controller needs some time
to measure the new latencies and correspondingly select
the new SL. Nevertheless, the system quickly recovers
from such conditions, in less than 20seconds. Around
time instant 50, 240 and 480, the controller seems to be
too aggressive. It tends to increase the SL quickly, vio-
lating therefore the 2seconds tolerable latency. Such an
aggressive controller is preferred when users are more
tolerant to latencies and maximizing SL is a priority.
Whenever users are less tolerant to sudden increases

in the latency, the proposed controller can be config-
ured to be more conservative. Figure 3c plots the re-
sults with the same controller configured with p1 = 0.9.
As predicted by theory, it reacts slower, with small ad-
justments at every iteration. Its output oscillates less
and it generally does a better job at keeping the latency
around the setpoint of 1second. By using this controller,
the likelihood of having latencies above the tolerable
waiting time is decreased. However, this configuration
also recovers slower from overload conditions. Com-
pared to the previous configuration, it required twice
as much time to react to the cap reduction at time
instant 200. Also, during recovery, the perceived SL
differs from the target one. This happens because the
responses arriving at the client have a high latency and
were actually started at a time when the target SL was
higher. Considering that the resources were reduced in-
stantaneously by a factor of 4, the slower recovery is
unlikely to be a problem in a production environment.
Summarizing, making an Internet-facing application

service-level aware may considerably improve its flexi-
bility with respect to resource allocation. Effectively,
the application behaves a lot more predictably and can
withstand reduction in resource allocation by a factor of
8, compared to the minimum amount of resources that
its SL-unaware counterpart would require.

10

.....
0
.

100
.

200
.

300
.

400
.

500
.0 .

1
.

2

.

3

.

*4

.

time [s]

.re
sp

on
se

ti
m

e
[s]

.

. ..t j,RUBiS

....

100

.

400

.

200

.

800

.

50

..
0.2

.

0.4

.

0.6

.

0.8

.

1**

.

users

.

. ..s j,RUBiS

. ..s∗j,RUBiS

(a) Without the LC.

.....
0
.

100
.

200
.

300
.

400
.

500
.0 .

1
.

2

.

3

.

*4

.

time [s]

.

. ..t j,RUBiS

....

100

.

400

.

200

.

800

.

50

..
0.2

.

0.4

.

0.6

.

0.8

.

1**

.

users

.

. ..s j,RUBiS

. ..s∗j,RUBiS

(b) p1 = 0.5.

.....
0
.

100
.

200
.

300
.

400
.

500
.0 .

1
.

2

.

3

.

*4

.

time [s]

.

. ..t j,RUBiS

....

100

.

400

.

200

.

800

.

50

..
0.2

.

0.4

.

0.6

.

0.8

.

1**

.

users

. se
rv

ic
e

le
ve

l
[%

]

.

. ..s j,RUBiS

. ..s∗j,RUBiS

(c) p1 = 0.9.
Figure 4: Response time and probability of executing the recommender system varying the number of users.

Constant Resources and Variable Load.
In this second set of experiments, we keep the re-

sources constant, setting the cap to 400, and vary the
number of users accessing our SL-aware RUBiS page6.
In a real data-center, this situation may happen due to
flash crowds — sudden increase in popularity when the
page is linked from another high-profile website. How-
ever, it can also be the result of load redistribution due
to a failing replica or denial-of-service attacks. The con-
troller is configured identically to the previous set of
experiments.
Let us now discuss the results. Figure 4a shows the

results without any control, when the system cannot
keep up with the load increase. Even after the num-
ber of users is significantly decreased, such as at 400
seconds, the application requires a significant time to
recover, up to 62seconds. In contrast, Figure 4b and
Figure 4c shows the results with the enabled LC. De-
spite an 8-fold increase in the number of users from 100
to 800, the application is more responsive, adjusting the
service level to adapt to the load increase. Regarding
the adaptation time, in the worst interval, when the
number of users was spontaneously increased by a fac-
tor of 4 at time 300, the controllers required respectively
22seconds and 66seconds when p1 = 0.5 and 0.9. As in
the previous experiment, the controller with a pole of
0.5 is more aggressive, quickly increasing the target SL
and risking latencies above the tolerable level. In con-
trast, setting the pole to 0.9 produces a more conserva-
tive controller, which does smaller SL adjustments. The
latency presents smaller oscillations and is less likely
to increase above the tolerable waiting time. In the
end, the proposed controller design enables a trade-off
between minimizing latency spikes and maximizing SL
through the choice of the pole, chosen depending on
how tolerant users are to latencies.
To sum up, SL-awareness increases the number of

6To simplify the discussion we change the number of users as
a single parameter, keeping the think-time constantly equal
to 3seconds. Equivalently, we could have kept the number
of users constant and varied the think-time.

.....
0
.

100
.

200
.

300
.

400
.

500
.0 .

1
.

2

.

3

.

*4

.

time [s]

.re
sp

on
se

ti
m

e
[s]

.

. ..t j,RUBBoS

....

400,100

.

800,100

.

800,200

.

200,200

.

200,50

..
0.2

.

0.4

.

0.6

.

0.8

.

1**

.

cap,users

. se
rv

ic
e

le
ve

l
[%

]

.

. ..s j,RUBBoS

. ..s∗j,RUBBoS

Figure 5: Controlling RUBBoS when both the cap and the
number of users vary, p1 = 0.9, setpoint 0.5 seconds.
users that an Internet-facing application can serve by a
factor of 8, when compared to the maximum number of
users served without SL-awareness.

Variable Load and Resources.
To reproduce a realistic setup, we studied how the LC

behaves when both the cap and the number of users
are varying. We present the results of an experiment
conducted with RUBBoS, incidentally showing also an-
other SL-aware application. The perceived SL repre-
sents the ratio of pages with comments activated7.
We select the pole to be 0.9. To further show the flex-

ibility of the controller design, we chose to reduce the
desired latency to 0.5seconds. The rationale behind this
choice is that this application serves a different purpose
compared to RUBiS. A RUBiS user often has a clear
purpose, such as buying an item through the auction
website. In contrast, a RUBBoS user might have no
clear purpose, like reading news. It is conjectured that
users are less tolerant to latencies if they are browsing
the web without a clear objective [19]. Hence, by direct-
ing the RUBBoS controller to keep latencies lower, we
potentially increase the duration that a user stays on
the website and, thus, the income of the website owner.
Figure 5 shows the results of the experiment. As can

7For increased readability of the figures, we do not plot the
ratio of pages with recommendations of similar stories.

11

.....

50,10

.

50,100

.

50,200

.

10,200

.

100,10

.

usersRUBiS,RUBBoS

..

......

..

......

..

......

..........50 .
200

.

350

.

ca
p

.

. ..RUBiS . ..RUBBoS

..

........-1 ..
0
..

1

.m
at

ch
in

g
va

lu
e

..

........0 ..
0.5

..

1

.se
rv

ic
e

le
ve

l

..

..
0
.

200
.

400
.

600
.

800
.

1000
.0 ..

2
..

4

.

time [s]

.

m
ax

la
te

nc
y

Figure 6: Resource manager and two applications.

be observed, except for the fourth interval, the con-
troller successfully manages to keep the maximum la-
tency around 0.5seconds with very small oscillations.
In the fourth interval, the SL is kept as close as possi-
ble to zero to serve the maximum number of requests in
a reasonable time. In general, the SL is increased when
the conditions allow for better performance, for exam-
ple during the second and fifth interval, and decreased
when the capacity is insufficient or the load is too high,
during the remaining intervals.
These results show that the LC adapts the SL to the

available capacity and number of users as expected, and
keeps the perceived latencies close to the target value.

5.2 Resource Manager
In this section, we evaluate the behavior of the RM.

The platform is limited to 4 cores of the PM, on which
we deploy both the SL-aware RUBiS and RUBBoS.
Their caps are selected by the RM according to the
matching values they send. The two local controllers
are configured with the control period to 1second, a
pole at 0.9 and the setpoints 1second and 0.5seconds,
respectively. The RM’s control period is set to 5seconds
and εrm is 0.2. During the experiments, we vary the
number of users accessing the two services and observe
the behavior of the LCs and the RM.
Figure 6, displaying the results, is structured as fol-

lows. 4 metrics are plotted as a function of time for each
of the two applications: the cap chosen by the RM, the
matching value computed by the LC, the perceived SL
and the maximum latency. The vertical bars represent
time intervals during which the number of users is kept
constant, with values listed on top. At time instant 0,
the experiment starts in its default configuration: Each
application is allocated half of the platform and both

.....

50,10,10,10

.

50,100,10,10

.

50,100,50,10

.

50,100,50,100

.

10,100,50,100

.

users1,2,3,4

..

......

..

......

..

......

..........0 ..
200

..

400

.

ca
p

.

. ..RUBiS1 . ..RUBBoS2 . ..RUBiS3 . ..RUBBoS4

..

........-1 ..
0
..

1

.m
at

ch
in

g
va

lu
e

..

........0 .
0.5

.

1

.se
rv

ic
e

le
ve

l

..

..
0
.

200
.

400
.

600
.

800
.

1000
.0 ..

2
..

4

.

time [s]

.

m
ax

la
te

nc
y

Figure 7: Resource manager and four applications.

SLs are 0.5. Since the load on RUBBoS is low, its LC
increases the SL to maximum. Similarly, the RUBiS
LC will try to increase the SL, however, it has insuf-
ficient resources to do so immediately. The RM de-
tects this conditions, through the transmitted match-
ing value, and rebalances the platform, so as to reduce
RUBBoS’s cap and increase RUBiS’s cap. Thanks to
this, the system reaches a configuration in which both
applications may run at maximum SL. At time instant
200, we increase the number of RUBBoS users. Its LC
reacts to avoid overload and reduces the SL. Further-
more, the RM increases its cap and decreases RUBiS’s
cap, whose LC reduces the SL to deal with the new re-
source allocation. Thus, the system oscillates around
a stationary point, in which the performance require-
ments of both applications are satisfied. Indeed, both
RUBiS and RUBBoS users experience maximum laten-
cies around the configured setpoint of each application.
To test the fairness of the system, we conducted an

experiment with 4 SL-aware applications, 2 RUBiS and
2 RUBBoS VMs, and a platform consisting of 8 cores.
As can be seen in all intervals of Fig. 7, applications
that do not run at full SL are assigned equal caps, whose
value we call fair cap. In other words, despite targeting
different setpoints and executing different code, appli-
cations that reduce their SL to deal with the infras-
tructure’s overload contribute with an equal amount of
resources to overload reduction. This is easily observed
for application 1, 2, 3 and 4 in the 4th interval, whose
caps oscillate around 200 or applications 2, 3, 4 in the
5th interval, whose caps oscillate around 230.
Some applications may be able to run at full SL with

fewer resources than the fair cap. For these applica-
tions, their cap is reduced to the minimum value which
allows them to run at full SL. Thus, such applications

12

contribute with even more resources to overload reduc-
tion, without sacrificing their SL. For example, appli-
cation 1 in the 5th interval runs at full SL with a cap
around 98, which is smaller than the fair cap of 230.
To summarize, the RM behaves as predicted, man-

aging to balance the resources fairly among multiple
competing SL-aware applications.

6. CONCLUSION
In this paper, we introduced Service Level (SL)

awareness in cloud platforms. On the application-side,
we discussed a model for applications with optional
code, i.e., computations that can be activated or de-
activated per client request. We described our experi-
ence with two widely-used, prototype web applications,
RUBiS and RUBBoS, showing the applicability of our
approach to many Internet-facing applications. We syn-
thesized a controller to select the SL based on incoming
load and available capacity and proved its correctness
with control-theoretical tools. On the intrastructure-
side, we proposed a game-theoretic Resource Manager
(RM) to coordinate the demands of multiple applica-
tions in a predictable and fair way. We implemented the
framework and tested it with real-life experiments. The
results show that SL awareness can allow applications
to support 8 times more users or run on 8 times fewer
resources than their SL unaware counterpart. Hence,
our proposition enables cloud infrastructures to pre-
dictably deal with unexpected peaks or unexpected fail-
ures, without requiring spare capacity.
Future work include extending the contribution to

multiple machines and combining SL awareness with
other mechanism like migration and horizontal scaling.
We believe that SL awareness opens up a new level of
flexibility in cloud platforms, whose full potentials need
to be further studied.

Acknowledgment
This work was partially supported by the Swedish Re-
search Council (VR) under contract number C0590801
for the project Cloud Control and through the LCCC
Linnaeus Center. Also, we received partial support
from the EU project VISION Cloud under grant agree-
ment no. 257019, the Swedish Government’s strategic
effort eSSENCE and from the ELLIIT Excellence Cen-
ter.

References
[1] D. Ardagna et al. “A game theoretic formulation of

the service provisioning problem in cloud systems”. In:
WWW. 2011.

[2] P. Barham et al. “Xen and the art of virtualization”.
In: SOSP. 2003.

[3] L. A. Barroso et al. The Datacenter as a Computer:
An Introduction to the Design of Warehouse-Scale Ma-
chines. Morgan & Claypool, 2009.

[4] M. Bhadauria et al. “An approach to resource-aware
co-scheduling for CMPs”. In: ICS. 2010.

[5] P. Bodik et al. “Characterizing, modeling, and gener-
ating workload spikes for stateful services”. In: SOCC.
2010.

[6] Bulletin Board Benchmark. url: http://jmob.ow2.
org/rubbos.html.

[7] R. Buyya et al. “Cloud Computing and Emerging IT
Platforms: Vision, Hype, and Reality for Delivering
Computing as the 5th Utility”. In: Future Generation
Computer Systems 25.6 (2009).

[8] E. Caron et al. “Pattern Matching Based Forecast of
Non-periodic Repetitive Behavior for Cloud Clients”.
In: J. Grid Comput. 9.1 (2011), pp. 49–64.

[9] G. Chasparis et al. “Distributed Management of CPU
Resources for Time-Sensitive Applications”. In: ACC.
2013.

[10] L. Y. Chen et al. “Achieving application-centric per-
formance targets via consolidation on multicores:
myth or reality?” In: HPDC. 2012.

[11] Y. Chen et al. “SLA Decomposition: Translating Ser-
vice Level Objectives to System Level Thresholds”. In:
ICAC. 2007.

[12] H.-E. Chihoub et al. “Harmony: Towards Auto-
mated Self-Adaptive Consistency in Cloud Storage”.
In: CLUSTER. 2012.

[13] Compute Cycles. Lessons learned building a 4096-core
Cloud HPC Supercomputer. Mar. 2011. url: http :
//blog.cyclecomputing.com/2011/03/cyclecloud-
4096-core-cluster.html.

[14] W. Dawoud et al. “Elastic Virtual Machine for Fine-
Grained Cloud Resource Provisioning”. In: Global
Trends in Computing and Communication Systems.
Vol. 269. Communications in Computer and Informa-
tion Science. Springer Berlin Heidelberg, 2012, pp. 11–
25.

[15] G. DeCandia et al. “Dynamo: amazon’s highly avail-
able key-value store”. In: SIGOPS Oper. Syst. Rev.
41.6 (2007), pp. 205–220.

[16] A. Fedorova et al. “Improving Performance Isolation
on Chip Multiprocessors via an Operating System
Scheduler”. In: PACT. 2007.

[17] D. G. Feitelson et al. “Toward Convergence in
Job Schedulers for Parallel Supercomputers”. In: Job
Scheduling Strategies for Parallel Processing. Springer-
Verlag, 1996, pp. 1–26.

[18] A. J. Ferrer et al. “OPTIMIS: A holistic approach
to cloud service provisioning”. In: Future Generation
Computer Systems 28.1 (2012), pp. 66–77.

[19] D. F. García et al. “TPC-W E-Commerce Benchmark
Evaluation”. In: Computer 36.2 (Feb. 2003), pp. 42–
48. issn: 0018-9162. doi: 10.1109/MC.2003.1178045.

[20] R. Ghosh et al. “Biting Off Safely More Than You
Can Chew: Predictive Analytics for Resource Over-
Commit in IaaS Cloud”. In: CLOUD. 2012.

[21] D. Gmach et al. “Selling T-shirts and Time Shares in
the Cloud”. In: CCGrid. 2012.

[22] I. Goiri et al. “Multifaceted resource management for
dealing with heterogeneous workloads in virtualized
data centers”. In: GRID. 2010.

[23] Z. Gong et al. “PRESS: PRedictive Elastic ReSource
Scaling for cloud systems”. In: CNSM. 2010.

[24] J. Hamilton. “On designing and deploying internet-
scale services”. In: Proceedings of the 21st conference
on Large Installation System Administration Confer-

13

http://jmob.ow2.org/rubbos.html
http://jmob.ow2.org/rubbos.html
http://blog.cyclecomputing.com/2011/03/cyclecloud-4096-core-cluster.html
http://blog.cyclecomputing.com/2011/03/cyclecloud-4096-core-cluster.html
http://blog.cyclecomputing.com/2011/03/cyclecloud-4096-core-cluster.html
http://dx.doi.org/10.1109/MC.2003.1178045

ence. LISA’07. USENIX Association, 2007, 18:1–18:12.
isbn: 978-1-59327-152-7.

[25] J. Hungershofer. “On the Combined Scheduling of
Malleable and Rigid Jobs”. In: SBAC-PAD ’04: Pro-
ceedings of the 16th Symposium on Computer Architec-
ture and High Performance Computing. Washington,
DC, USA: IEEE Computer Society, 2004, pp. 206–213.
isbn: 0-7695-2240-8. doi: 10.1109/sbac-pad.2004.
27.

[26] I. Hwang et al. “Portfolio Theory-Based Resource As-
signment in a Cloud Computing System”. In: CLOUD.
2012.

[27] C. Klein et al. “An RMS for Non-predictably Evolv-
ing Applications”. In: 2011 IEEE International Con-
ference on Cluster Computing (CLUSTER), Austin,
TX, USA, September 26-30, 2011. IEEE, 2011. isbn:
978-1-4577-1355-2. doi: 10.1109/CLUSTER.2011.56.

[28] J. A. Konstan et al. “Recommended to you”. In: IEEE
Spectum (Oct. 2012).

[29] M. Lee et al. “Supporting soft real-time tasks in the
Xen hypervisor”. In: VEE. 2010.

[30] W. Levine. The Control handbook. CRC Press, 1996.
[31] libvirt: The virtualization API. url: http://libvirt.

org/.
[32] M. Maggio et al. “A Game-Theoretic Resource Man-

ager for RT Applications”. In: ECRTS. 2013.
[33] J. Mars et al. “Bubble-Up: increasing utilization in

modern warehouse scale computers via sensible co-
locations”. In: MICRO. 2011.

[34] P. Marshall et al. “Improving Utilization of Infrastruc-
ture Clouds”. In: CCGrid. 2011.

[35] X. Meng et al. “Efficient resource provisioning in com-
pute clouds via VM multiplexing”. In: ICAC. 2010.

[36] A. Merchant et al. “Maestro: quality-of-service in large
disk arrays”. In: ICAC. 2011.

[37] F. F.-H. Nah. “A study on tolerable waiting time: how
long are Web users willing to wait?” In: Behaviour and
Information Technology 23.3 (2004), pp. 153–163.

[38] R. Nathuji et al. “Q-clouds: managing performance
interference effects for QoS-aware clouds”. In: EuroSys.
2010.

[39] C. Reiss et al. “Heterogeneity and Dynamicity of
Clouds at Scale: Google Trace Analysis”. In: SOCC.
2012.

[40] Rice University Bidding System. url: http://rubis.
ow2.org.

[41] U. Sharma et al. “A Cost-Aware Elasticity Provision-
ing System for the Cloud”. In: ICDCS. 2011.

[42] U. Sharma et al. “Provisioning multi-tier cloud appli-
cations using statistical bounds on sojourn time”. In:
ICAC. 2012.

[43] Z. Shen et al. “CloudScale: elastic resource scaling for
multi-tenant cloud systems”. In: SOCC. 2011.

[44] S. Srinivasan et al. “Effective Selection of Partition
Sizes for Moldable Scheduling of Parallel Jobs”. In:
Proceedings of the 9th International Conference on
High Performance Computing. HiPC ’02. Springer-
Verlag, 2002, pp. 174–183. isbn: 3-540-00303-7. doi:
10.1007/3-540-36265-7_17.

[45] C. Stewart et al. “Performance modeling and system
management for multi-component online services”. In:
NSDI. 2005.

[46] C. Stewart et al. “Exploiting nonstationarity for per-
formance prediction”. In: EuroSys. 2007.

[47] R. Sudarsan et al. “ReSHAPE: A Framework for Dy-
namic Resizing and Scheduling of Homogeneous Ap-

plications in a Parallel Environment”. In: Proceed-
ings of the 2007 International Conference on Parallel
Processing. ICPP ’07. IEEE Computer Society, 2007.
isbn: 0-7695-2933-X. doi: 10.1109/ICPP.2007.73.

[48] N. Tolia et al. “Quantifying Interactive User Experi-
ence on Thin Clients”. In: Computer 39.3 (Mar. 2006),
pp. 46–52.

[49] L. Tomas et al. “Improving Cloud Infrastructure Uti-
lization through Overbooking”. In: CAC. To appear.
2013.

[50] N. Vasić et al. “DejaVu: accelerating resource alloca-
tion in virtualized environments”. In: ASPLOS. 2012.

[51] A. Verma et al. “ARIA: automatic resource infer-
ence and allocation for MapReduce environments”. In:
ICAC. 2011.

[52] S. Vijayakumar et al. “Automated and dynamic appli-
cation accuracy management and resource provision-
ing in a cloud environment”. In: GRID. 2010.

[53] L. Wang et al. “Remediating Overload in Over-
Subscribed Computing Environments”. In: CLOUD.
2012.

[54] M. Woodside et al. “Service System Resource Man-
agement Based on a Tracked Layered Performance
Model”. In: ICAC. 2006.

[55] Q. Zhang et al. “A Regression-Based Analytic Model
for Dynamic Resource Provisioning of Multi-Tier Ap-
plications”. In: ICAC. 2007.

[56] W. Zheng et al. “JustRunIt: experiment-based man-
agement of virtualized data centers”. In: USENIX An-
nual Technical Conference. 2009.

[57] X. Zhu et al. “1000 Islands: Integrated Capacity and
Workload Management for the Next Generation Data
Center”. In: ICAC. 2008.

14

http://dx.doi.org/10.1109/sbac-pad.2004.27
http://dx.doi.org/10.1109/sbac-pad.2004.27
http://dx.doi.org/10.1109/CLUSTER.2011.56
http://libvirt.org/
http://libvirt.org/
http://rubis.ow2.org
http://rubis.ow2.org
http://dx.doi.org/10.1007/3-540-36265-7_17
http://dx.doi.org/10.1109/ICPP.2007.73

	Introduction
	Related Work
	Theoretical Framework
	Applications
	Resource manager
	Convergence analysis

	Implementation
	Architecture
	Applications

	Evaluation
	Local Controller
	Resource Manager

	Conclusion
	7641_titelsida.pdf
	Awareness in the Cloud

	7641_Docdata.pdf
	Lund University
	Department of Automatic Control
	Box 118

