
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Jitter-Robust LQG Control and Real-Time Scheduling Co-Design

Xu, Yang; Cervin, Anton; Årzén, Karl-Erik

Published in:
Proceedings of the American Control Conference

DOI:
10.23919/ACC.2018.8430953

2018

Document Version:
Peer reviewed version (aka post-print)

Link to publication

Citation for published version (APA):
Xu, Y., Cervin, A., & Årzén, K.-E. (2018). Jitter-Robust LQG Control and Real-Time Scheduling Co-Design. In
Proceedings of the American Control Conference (Vol. 2018-June, pp. 3189-3196). Article 8430953 IEEE -
Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.23919/ACC.2018.8430953

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.23919/ACC.2018.8430953
https://portal.research.lu.se/en/publications/4be3c771-04be-47a6-a8a8-b32e65d86ab8
https://doi.org/10.23919/ACC.2018.8430953


Jitter-Robust LQG Control and Real-Time Scheduling Co-Design*

Yang Xu, Anton Cervin and Karl-Erik Årzén

Abstract— In real-time control systems, varying task response
times may lead to delays and jitter in the delays in the feedback
control loops, which adversely affects both performance and
robustness. Standard LQG control design does not give any
guarantees on robustness, while robust control design methods
often do not handle controller timing uncertainty. We propose
a sampled-data controller synthesis method that minimizes an
LQG cost function subject to a jitter margin constraint. By
robustifying the LQG controller we are able to retain good
stability margins under delay and jitter, while typically paying
a small price in terms of nominal performance. We also present
a co-design procedure that assigns optimal priorities and sam-
pling periods to a set of controllers based on their performance
characteristics and jitter sensitivity. The procedure is evaluated
on randomized plant sets, showing an improvement over state-
of-the-art methods.

I. INTRODUCTION

A. Motivation

We explore the problem of scheduling and control co-

design in real-time systems. In a real-time control system,

for cost-saving reasons, multiple controllers are commonly

implemented on a single CPU. In order to have good

performance in a digital control systems, the sampling period

should be sufficiently short. Although a short sampling

period improves the performance of the current task, it

requires more CPU resources, and hence potentially degrades

the performance of the other tasks. It means that not only

the controller, but also the scheduling, affect the closed-loop

control performance.

Among many synthesis methods, linear-quadratic-

Gaussian (LQG) control is a fundamental optimal control

method that combines a Kalman filter with a linear-

quadratic feedback regulator. The performance metric in

LQG is defined as an average quadratic running cost. It is

well known that good LQG performance does not mean that

the system is robust [1]. While there are several methods

proposed to improve the robustness of LQG (e.g., [2], [3]),

very few have focused on uncertainties related to controller

timing [4]. This is the reason for exploring LQG control

synthesis with a jitter robustness constraint.

In this paper, we present an approach to jitter-robust

LQG control synthesis together with priority assignment

and period selection methods for the real-time system. The

contributions in this paper are:

• We propose a convex optimization-based sampled-data

LQG control design method with a jitter robustness
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constraint. The constraint guarantees that the closed-

loop system has a specified jitter margin [5], [6].

• We propose a new rule of thumb for initial sampling

period selection based on the jitter margin.

• We give a co-design method to assign priorities and

sampling periods to obtain optimal robust LQG perfor-

mance for a set of controllers that share a single CPU.

B. Related Work

A real-time task period selection problem to optimize

a system-wide control performance measure under fixed-

priority scheduling was initially raised and solved in [7]. The

authors assumed, however, that the control performance only

depends on the sampling period. [8] analyzed how the LQG

cost depends on the sampling period and proposed an on-line

adjustment algorithm. In [9], the period assignment problem

was solved assuming that the control delay is constant using

a formula for the approximate response time. In reality, the

response time in the real-time system is not constant, so in

the optimization procedure in [10], the delay distribution was

used to design stochastic LQG controllers and assign periods

to all tasks. The priority assignment problem for multiple

(control) tasks has been studied in [11].

The stochastic LQG control with known delay probability

distribution was originally solved in [12]. In [13], the periods

were perturbed to achieve finite hyperperiod and a periodic

LQG control design method that involved the solution of

the periodic Riccati equation was proposed. Control system

stability under in the presence of real-time system induced

jitter was discussed in [14] and [15]. In [14], an integrated

design optimization method was proposed for real-time con-

trol systems with requirements on robustness and optimized

LQG control performance. The jitter margin was used to

measure the worst-case control performance. A standard

LQG controller was used and the jitter margin constraint was

satisfied by designing the scheduling parameters, In the work

in this paper, instead, the design of the jitter-robust LQG

controller takes the jitter margin constraint into account, and

then the scheduling is optimized.

Mixed H2/H∞ control design can be used to achieve

robust LQG-like control, e.g., [16], [17], but the feedback

system is assumed to be linear and time-invariant, i.e., there

is no specific analysis for timing uncertainty. H2 optimal

control design with an H∞ constraint can be reformulated

to a convex optimization problem through the Youla parame-

terization [18]. Using this parameterization, both the H2 cost

and the H∞ constraint are convex.



C. Outline of This Paper

In Section II, we give the real-time system model and

control system model, including the performance metric we

use. In Section III, a new rule of thumb for initial sampling

period assignment is proposed. The robust LQG control

design problem and its solution are described in Section IV.

In Section V, we give a jitter-aware priority and period

assignment co-design method to optimize the overall system

performance. In Section VI, an example is presented to show

the entire procedure of scheduling and control co-design. In

the same section, the method is evaluated on randomized

plant sets, showing an improvement over state-of-the-art

methods. Conclusions are given in Section VII.

II. SYSTEM MODEL

A. Real-Time System Model

A real-time system of n tasks running on a single CPU is

defined by the following parameters for each task τi:

• The period, Ti, is the constant time between two con-

secutive releases of the task.

• The execution time, Ei, is the time that the CPU needs

to run the task. Since the code for the LQG control

algorithm is normally quite limited in size without

branches and with small memory usage, here it is

assumed that the execution time is constant.

• The utilization, Ui, is defined as the fraction of the CPU

used by the task; Ui = Ei/Ti.

• The worst-case and best-case response times, Rw
i and

Rb
i , are the maximum and minimum times, respectively,

between the task release and task finishing times.

• The output jitter, Ji, is the difference between the worst-

case and best-case response times; Ji = Rw
i −Rb

i .

Throughout this paper, preemptive fixed-priority scheduling

is used. Unless otherwise stated, we assume that task τi has

higher priority than τj if i < j.

B. Control System Model

Each task τi is controlling a continuous linear time-

invariant single-input–single-output plant i with state-space

realization (for ease of notation we drop the plant index i)

ẋ(t) = Ax(t) +Bu(t) + v1(t),

y(t) = Cx(t) + v2(t),

where v1 and v2 are uncorrelated white noise processes

with intensities R1 and R2. A time-invariant LQG controller

should be designed to minimize the quadratic cost function

V = E z2 = E
(

xTQ1x+Q2u
2
)

, (1)

where Q1 and Q2 are weighting matrices.

The sampling period of the controller is h = Ti. The

sampling is performed at the task release time, e.g., using

external hardware. Hence, there is no sampling (or input)

jitter. The actuation is performed when the task finishes.

Hence, the actuation (or output) is subject to a time-varying

delay δ(t), Ei ≤ δ(t) ≤ Ei+Ji, due to the task output jitter.

The control loop is shown in Fig. 1. For a given constant

P (s)

K(z)

w z

u y

Sh

Hh

δ(·)

Fig. 1. Control loop with continuous plant P (s), discrete LQG controller
K(z), periodic sampler Sh and hold Hh, and time-varying delay δ.
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Fig. 2. The continuous-time jitter margin Jc
m is given by the intersection

of the closed-loop transfer function |T (iω)| and the line 1/(Jc
mω). For a

typical robust design, the 3 dB bandwidth ωb is close to 1/Jc
m.

delay or known delay distribution (assuming independent

delays between periods), the LQG controller and its cost

(1) can be designed and evaluated using, e.g., the Jitterbug

toolbox [19].

As first shown in [1], an LQG controller has no guaranteed

robustness. In order to gain robustness of the real-time

control system, we would like to design a controller that

has a specified jitter margin Jm [5], [6]. This means that the

closed-loop system should be stable for any time-varying

delays δ ∈ [Ei, Ei + Jm]. Naturally, we will require that

Jm > Ji. For a continuous-time control system, the sufficient

condition for stability of the closed-loop system is

|T (iω)| =
∣

∣

∣

∣

P (iω)K(iω)

1 + P (iω)K(iω)

∣

∣

∣

∣

<
1

Jmω
, ∀ω, (2)

where P (s) is the plant and K(s) is the controller [5]. In

a Bode plot, this corresponds to the magnitude curve of

the complementary sensitivity function T (s) lying below

a line with slope −1 and gain 1/Jc
m (see Fig. 2). For a

sampled-data system, the stability criterion is slightly more

complicated (see Section IV below).

C. Co-Design Problem

The goal of the control and scheduling co-design is to

optimize the overall control performance, subject to the real-



time system utilization constraint. This can be expressed as

minimize V =
∑

i

Vi, s.t.
∑

i

Ui ≤ 1, (3)

where the cost Vi for each controller is defined in (1).

Moreover, we would like to give guarantees on the robustness

for each control loop. The parameters that we can optimize

over are the task priorities, the sampling periods, and the

controllers themselves.

In order to achieve a small LQG cost and good robustness,

the sampling period and the jitter should be small, but this

requirement cannot be satisfied simultaneously for every task

due to the fixed-priority scheduling algorithm used. This

makes the co-design problem nontrivial.

III. INITIAL SAMPLING PERIOD SELECTION

Sampling period selection is typically done based on the

properties of the closed-loop system. The rate should be

fast enough, so that disturbance rejection and robustness are

not affected too much by the sampling and hold operations,

while slow enough to avoid numerical problems and allow

implementation in resource-constrained systems.

There are several rules of thumb that relate the sampling

rate with the speed of the closed-loop system. Franklin

et al. recommend sampling about 10–40 times faster than

the bandwidth [20]. Åström and Wittermark recommend

4 to 10 samples per rise-time of the closed-loop system

[21]. These recommendations (and other similar ones [22])

roughly translate into the relation

0.15 ≤ ωbh ≤ 0.6, (4)

where ωb is the 3 dB closed-loop bandwidth and h is the

sampling interval.

Basing the sampling period selection on a single point

ωb of the closed-loop frequency response however makes

this rule of thumb sensitive to degenerate cases. As an

alternative, we propose a new rule of thumb that is based on

the continuous-time jitter margin Jc
m of the control system:

0.15 ≤ h/Jc
m ≤ 0.6. (5)

For a typical, robust closed-loop system with a maximum

complementary sensitivity of 3 dB, we have ωb ≈ 1/Jc
m,

and the new rule produces similar sampling intervals as the

old rule (4). This nominal case is illustrated in Fig. 2.

For degenerate cases, however, the new rule will typically

recommend shorter sampling intervals than the old rule.

Three such cases are illustrated in Fig. 3. For closed-loop

system T1, the maximum complementary sensitivity is close

to 15 dB, which implies that the system is not robust. For

system T2, the 3 dB bandwidth is quite low, while |T (iω)|
does not roll off until much later. For system T3 the closed-

loop gain is low throughout and the bandwidth is not well-

defined. As seen in the figure, all of these systems actually

have the same jitter margin, and the new rule will hence

recommend the same sampling interval for all of them.

The new rule aims for a sampled closed loop that should

be robust towards delay and jitter amounting to more than
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Fig. 3. In degenerate cases, the 3 dB bandwidth ωb may be significantly
smaller than 1/Jc

m (systems T1, T2) or even undefined (system T3).
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Fig. 4. Transformation of control loop with time-varying output delay. The
jitter is represented by the uncertainty ∆.

one and a half sampling interval in total. This aligns with

the worst-case situation in typical multirate applications: the

sample-and-hold operation can be approximated by a delay

of h/2, and the output jitter is typically upper bounded by

h. Using the rule does not give any hard stability guarantees,

however, since the exact performance degradation due to

sampling cannot be captured using simple expressions. Once

a discrete-time controller has been designed, its jitter margin

should be verified using the sampled-data analysis in [5].

IV. JITTER-ROBUST LQG CONTROL SYNTHESIS

A. Robust LQG Problem Formulation

In order to design a LQG controller with guaranteed

jitter robustness, we use the stability criterion in [5] as the

constraint. As shown in [5] the sampled-data control loop

with output jitter in Fig. 1 can be transformed into the block

diagram in Fig. 4. The time-varying operator ∆ represents

the uncertainty due to jitter and has the worst-case gain

‖∆‖ =
√

(2⌊N⌋+ 1)N − ⌊N⌋2 − ⌊N⌋,

where N = Ji/h.

Referring to Fig. 4, the jitter-robust control design problem

can now be stated as the optimization problem

min
K(z)

‖Gzw‖22 , s.t. ‖Gde‖∞ < b, (6)



where

b =
1

√

(2⌊Nm⌋+ 1)Nm − ⌊Nm⌋2 − ⌊Nm⌋
,

Nm = Jreq

m /h,

and where Jreq

m is the required jitter margin. The objective

function in the optimization problem, namely the square of

the H2 norm of Gzw, is equal to the LQG cost (1).

Since both the criterion and the constraint in (6) are

nonconvex, it is hard to solve the problem directly. Therefore,

we reformulate it as a convex optimization problem below.

B. Youla Parameterization and Convex Optimization

Using the Youla parameterization [18], the optimization

problem (6) can be reformulated as

min
Θ

∫ 2π

−2π

∣

∣Pzw(e
iω)− Pzu(e

iω)Θ(eiω)Pyw(e
iω)

∣

∣

2
dω

s.t.

∥

∥

∥

∥

eiω − 1

eiω
Pyu

(

eiω
)

Θ
(

eiω
)

∥

∥

∥

∥

∞

< b,

(7)

where the arbitrary stable finite order LTI Θ is defined as

Θ(eiω) =
K(eiω)

1 + Pyu(eiω)K(eiω)
.

For the sampled plant Pd(z) with noise covariance matri-

ces R1d and R2d, and weighting matrices Q1d and Q2d, the

transfer function matrix used in the optimization (7) is
[

Pzw(z) Pyw(z)
Pzu(z) Pyu(z)

]

=





√
Q1dPd(z)

√
R1d 0

√
Q1dPd(z)

0 0
√
Q2

Pd(z)
√
R1d

√
R2d Pd(z)



 .

(8)

The optimization problem can be solved numerically us-

ing, e.g., the CVX toolbox [23]. Here we choose a pulse

response representation of the Youla parameter,

Θ(z) =
n−1
∑

i=0

θi
zk

,

with {θi} being the set of scalar optimization variables.

The magnitude constraint is checked over a dense grid of

frequency points. Once the problem is solved for Θ(z), the

corresponding controller can be calculated by

K(z) =
Θ(z)

1−Θ(z)Pyu(z)
.

C. Example

Consider control of an inverted pendulum with realization

A =

[

−1 1
0 1

]

, B =

[

0
1

]

, C =
[

1 0
]

.

The continuous-time cost and noise matrices are

Q1 =

[

100 0
0 0

]

, Q2 = 1, R1 =

[

0 0
0 100

]

, R2 = 1.

A standard LQG design gives the continuous-time jitter

margin Jc
m = 0.195. The recommended sampling period
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Fig. 5. Comparison of design methods for the inverted pedulum: average-
case normalized performance (top) and remaining jitter margin (bottom) vs
amount of jitter in the control loop.

range is hence 0.03 < h < 0.12, and we choose h = 0.1. The

minimum delay is assumed to be zero, and the output delay

is assumed to be independent between periods and uniformly

distributed between 0 and J . For zero delay and jitter, the

sampled-data jitter margin is J0
m = 0.190.

For different values of the jitter, 0 ≤ J ≤ h, three different

designs are compared:

• Plain LQG design, assuming zero delay and jitter.

• Stochastic LQG design, with perfect knowledge of

the delay distribution. This is the optimal design with

regards to the LQG cost.

• Jitter-robust LQG design, with the constraint of keeping

the remaining jitter margin at the original value J0
m.

This is achieved by setting Jreq

m = J0
m + J .

The expected LQG cost under uniform jitter is calculated

using Jitterbug [19] and the remaining jitter margin is

calculated using [5]. The results, normalized to 1 for the

case of zero jitter, are given in Fig. 5. It is seen that

the stochastic LQG performs best in terms of average-case

performance (it should since it is an optimal design), while

its jitter margin degrades as the jitter increases. The situation

is worse for the plain LQG controller, which suffers from

both performance deterioration and decreasing jitter margin.

The jitter-robust LQG is able to keep the jitter margin at

its original value (0.190) while paying only a small price in

terms of performance degradation.

V. REAL-TIME SYSTEM SCHEDULING

CO-DESIGN

We now turn to the problem of implementing several

digital controllers on the same CPU. Using the procedure



described above, we can design a robust controller with a

specified jitter margin for a given sampling period, but it

remains to optimize the combined performance of a set of

controllers by assigning suitable periods and priorities.

A. Affine Cost Function Approximation

We begin by characterizing the jitter-robust LQG cost Vi

as a function of the sampling period and the jitter. We first

calculate the initial sampled-data jitter margin J0
m,i assuming

a constant delay Ei and zero jitter. For a pair (hi, Ji) we

then design a jitter-robust LQG controller as described in

Section IV with the required jitter margin Jreq

m,i = J0
m,i +Ji.

Solving the convex optimization problem (7) for a given

period hi and jitter Ji, we obtain one data point of the

cost function Vi = fi(hi, Ji). We store the result of each

evaluation as a data point pj = (T, J, V ) j ∈ [1, 2, ...,m],
with m being the number of points.

In order to facilitate an analytical solution for the optimal

periods below, we approximate the cost Vi as an affine

function of sampling period Ti and jitter Ji, namely,

Vi = aihi + biJi + ci. (9)

We want the square sum of the orthogonal distances between

the affine approximation and the points as small as possible.

Let c be a point on the plane, and n be a unit normal vector

to the plane. The optimization problem is

min
c,n

m
∑

j=1

(

(pj − c)
T
n
)2

, s.t. ‖n‖ = 1.

This plane fitting problem can be efficiently solved by

the singular value decomposition (SVD) method [24]. The

optimization solution contains two parts, c and n. The point

on the plane c can be calculated by c = 1/m
∑m

j=1 pj . Let

A = [p1 − c, p2 − c, ..., pm − c]. The unit normal vector n is

the last column of U , where A = USV T . Having obtained

c and n, the equation of the plane is
(

(

hi Ji Vi

)T − c
)T

n = 0,

from which we obtain the coefficients in (9).

B. Period Assignment

For a given task priority ordering, we now derive a solution

to the optimal period assignment problem. To facilitate

an analytical solution, we use simple bounds on the best-

case and worst-case response times and conservatively over-

estimate the jitter.

The best-case response time of task i is trivially lower

bounded by Rb
i ≥ Ei. For the worst-case response time, we

use the simplistic upper bound (see [25])

Rw
i ≤

∑i

j=1 Ej

1−∑i−1
j=1

Ej

Tj

, (10)

where j < i indicates that task j has higher priority than

task i. It then follows that the jitter is upper bounded by

Ji = Rw
i −Rb

i ≤
∑i

j=1 Ej

1−∑i−1
j=1

Ej

Tj

− Ei (11)

In order to obtain a solution that is guaranteed not to violate

the jitter margin requirement for any controller, we assume

that the upper bound in (11) can actually be reached during

execution. Using the upper bound for the value of Ji and the

relation Ui = Ei/hi, the cost function (9) for task i can be

restated as

Vi =
aiEi

Ui

+
bi
∑i

j=1 Ej

1−∑i−1
j=1 Uj

− biEi + ci

The period assignment problem (3) can now be expressed in

terms of task utilizations as

min
{Ui}

∑

i

Vi, s.t.
∑

i

Ui ≤ 1. (12)

A similar optimization problem of this form was solved in

[9] and we reuse that solution here. Let

αi = aiEi, βi = bi

i
∑

j=1

Ej ,

and recursively define µk and λk as

µk =
√
αk, 1, 2, · · · , n− 1

λn−1 =
√

αn + βn

λk−1 =

√

βk + (λk + µk)
2
, k = 2, 3, · · · , n− 1.

The optimal utilizations of each task are then given by

U1 =
µ1

λ1 + µ1

Uk = U1
µk

µ1

k−1
∏

j=1

λj

λj+1 + µj+1
, k = 2, 3, · · · , n.

Finally, the optimal periods are recovered as hi = Ei/Ui.

The solution always achieves full utilization (
∑

i Ui = 1).

For details, see [9].

C. Priority Assignment

As discussed in [11], optimal priority assignment in real-

time control systems is in general a combinatorial problem

with exponential complexity in terms of the number of tasks.

Assigning correct priorities is however crucial, since the

amount of jitter (and hence also the performance degrada-

tion) depends heavily on the task priority (cf. Eq. (11)).

In this paper, we have used the following two methods to

assign priorities to a set of controller tasks:

• Global solution. Using exhaustive search, we solve the

optimal period assignment problem for all permutations

of the task priorities and select the priority ordering that

gives the smallest cost. Due to complexity, this method

can only be used for small task sets in practice.

• Heuristic solution. We propose to order the tasks by

the value of Ei/
√
bi in ascending order. The idea is to

give high priority to tasks with short execution times

and high jitter sensitivity. This method can be used for

arbitrarily large task sets and only requires the period

assignment problem to be solved once.



VI. EVALUATION

This section illustrates the jitter-robust LQG control and

scheduling co-design procedure in a simple example and

in a larger evaluation using randomly generated plants. In

summary, the different steps of the co-design method are:

1) Initial sampling period selection. Using (5), initial sam-

pling periods are calculated based on the continuous-

time jitter margins. With these periods, the sampled-

data closed-loop systems will have some basic robust-

ness against scheduling-induced delay and jitter.

2) Characterization of the LQG cost. Designing a jitter-

robust LQG controller and evaluating the resulting cost

for a number of different values of the period and jitter,

we obtain an affine cost function for each control loop.

3) Priority assignment and sampling period selection.

A heuristic method and a global search method are

used for the task priority ordering. For each priority

assignment, optimal periods are calculated based on

the affine cost functions. If any period is outside of

the given range, it is clamped at the limit of the range.

A. A Simple Example

The simple example consists of three tasks sharing one

CPU. Each task implements an LQG controller that controls

one of the following open-loop unstable plants:

P1(s) =
1

(s− 0.71)(s− 0.40)
,

P2(s) =
1

(s− 0.21)(s+ 0.08)
,

P3(s) =
1

(s− 0.95)(s+ 0.76)
.

(13)

For the LQG design, the three plants are realized in control-

lable canonical form. The cost weighting matrices and noise

covariance matrices are chosen as as

Q1,i =

[

0 0
0 αi

]

, Q2,i = 1,

R1,i =

[

βi 0
0 0

]

, R2,i = 0.01,

(14)

where α1 = 1.89, α2 = 72.38, α3 = 102.66, β1 = 14.48,

β2 = 1818.80, β3 = 17.86.

For the given parameters, a standard continuous-time

LQG controller Ki(s) for each plant is designed, and the

continuous-time jitter margin Jc
m,i is calculated. Initial sam-

pling periods are then chosen as

h0
i = 0.3Jc

m,i, (15)

i.e., the recommendation (5) is fulfilled. The initial utiliza-

tions U0
i are randomized using the UUniFast algorithm [26].

The execution times are then given by Ei = U0
i h

0
i . The

initial jitter margin J0
m,i is calculated using the initial period

h0
i and with Ei as the best-case response time. The initial

periods, utilizations, execution times, and jitter margins are

summarized in Table I.

To obtain cost function approximations, for each task τi we

choose the sampling period hi from 7 evenly spaced points

TABLE I

INITIAL PARAMETERS IN THE SIMPLE EXAMPLE

h0

i U0

i Ei J0

m,i

i = 1 0.074 0.35 0.026 0.24
i = 2 0.082 0.18 0.015 0.27
i = 3 0.048 0.47 0.022 0.16
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Fig. 6. Cost functions Vi = fi(hi, Ji) for three example plants. It is seen
that each Vi can be quite well approximated by an affine function.

between 0.5h0
i and 2h0

i and choose the jitter Ji from 9 evenly

spaced points between 0 and 2h0
i . For each pair (hi, Ji) that

satisfies Rb
i + Ji ≤ hi, we design a robust LQG controller

with the required jitter margin Jreq

m = J0
m,i + Ji. The

corresponding LQG cost is evaluated in Jitterbug, assuming a

uniform response time distribution, unif
(

Rb
i , R

b
i + Ji

)

. The

resulting costs functions Vi(hi, Ji) for P1(s), P2(s), P3(s)
are plotted in Fig. 6, showing that affine approximations are

reasonable. Using the SVD plane fitting method, the affine

LQG cost functions are

V1(h1, J1) = (0.01h1 + 0.06J1 + 0.03)× 103,

V2(h2, J2) = (0.57h2 + 1.16J2 + 0.51)× 103,

V3(h3, J3) = (0.12h3 + 0.80J3 + 0.26)× 103.

(16)

As can be seen from the coefficients, the cost is more

sensitive to the size of the jitter than to the value of the

sampling period.

In order to optimize the overall cost, priorities and periods

need to be assigned. We first enumerate all the permutations

of priority assignment and calculate the corresponding cost
∑3

i=1 V
0
i using the initial periods h0

i . The results are shown

in the first two columns of Table II, where the first column

lists the tasks in descending priority order.

Next, for each priority assignment, the periods are opti-

mized using the method in Section V-B. Any period that

falls outside the range
(

0.15J0
i,m, 0.6J0

i,m

)

is clamped at the

limit, and then the optimization for the remaining periods is

repeated. The optimal sampling periods h∗
1, h∗

2, h∗
3 and the

corresponding total cost
∑3

i=1 V
∗
i are shown in the four last

columns of Table II.

In all six cases, the overall cost using optimal periods is



TABLE II

ENUMERATION OF ALL POSSIBLE PRIORITY ORDERINGS

3∑

i=1

V 0

i h∗

1
h∗

2
h∗

3

3∑

i=1

V ∗

i

τ1, τ2, τ3 1000.8 0.15 0.06 0.04 951.3
τ1, τ3, τ2 1285.1 0.15 0.04 0.10 973.9
τ2, τ1, τ3 945.7 0.15 0.08 0.04 914.0
τ2, τ3, τ1 881.0 0.07 0.05 0.07 870.4
τ3, τ1, τ2 1246.8 0.15 0.04 0.10 946.9
τ3, τ2, τ1 926.1 0.06 0.04 0.10 883.0

smaller than the cost using the initial periods. The global

optimal solution to the priority and period assignment prob-

lem is found when the priority ordering is τ2, τ3, τ1, which

gives the optimal total cost
∑3

i=1 V
∗
i = 870.4. This can be

compared to the initial priority ordering τ3, τ1, τ2 with initial

periods, which has the total cost
∑3

i=1 V
0
i = 1246.8.

Applying the heuristic priority assignment method, the

tasks are sorted by Ei/
√
bi in ascending order. In this case

this results in the same priority order as the one obtained

with the global search method.

B. Randomly Generated Examples

To further investigate the performance of the co-design

method, 10 sets of 3 plants are randomly generated from the

following three plant families:

• Family I: All plants have two stable poles and are drawn

from Pa(s) and Pb(s) with equal probability, where

Pa(s) =
1

(s+ a1)(s+ a2)
, Pb(s) =

1

s2 + 2ζωs+ ω2
,

with a1, a2, ζ ∈ unif(0, 1), ω ∈ unif(0, 1).
• Family II: All plants have two stable or unstable poles,

with each plant drawn from Pc(s) and Pd(s) with equal

probability, where

Pc(s) =
1

(s+ a1)(s+ a2)
, Pd(s) =

1

s2 + 2ζωs+ ω2
,

with a1, a2, ζ ∈ unif(−1, 1), ω ∈ unif(0, 1).
• Family III: All plants have three stable or unstable poles,

with each plant drawn where Pe(s) and Pf (s) with

equal probability from

Pe(s) =
1

(s+ a1)(s+ a2)(s+ a3)
,

Pf (s) =
1

(s2 + 2ζωs+ ω2)(s+ a4)
,

with a1, a2, a3, a4, ζ ∈ unif(−1, 1), ω ∈ unif(0, 1).

For each Pi(s), the cost weighting matrices and noise

covariance matrices are randomly generated as

Q1 = 103pCTC, Q2 = 1,

R1 = 103qBBT , R2 = 0.01,
(17)

where B and C are state-space matrices of the plant Pi(s),
and p, q ∈ unif(0, 1). We then design a standard LQG con-

troller Ki(s) for each Pi(s) assuming a constant delay Ei.

The initial sampling period is chosen using (15). The initial
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Fig. 7. Ratio of Vpri/Vini for the randomly generated examples with
heuristic priority assignment.

utilization U0
i for each task is assigned by the UUniFast

method, and the execution times are given by Ei = h0
iU

0
i .

For the given execution time Ei and periods h0
i , and

with the initial priority assignment and using the affine cost

function approximations, we calculated the following four

overall costs for each set of randomly generated plants:

• Initial overall cost Vini. This cost is calculated for the

initial periods h0
i and with rate-monotonic (RM) priority

assignment. This is our baseline approach.

• Overall cost after re-assigning the priorities Vpri. This

cost is calculated for the initial periods h0
i with heuristic

priority assignment.

• Overall cost after re-assigning priorities and periods

Vheuristic. We re-assign the priorities with the heuristic

method and calculate the optimal period assignment and

then the overall cost is evaluated.

• Global optimal overall cost Vglobal. Here we calculate

the optimal periods for all the permutations of priority

assignments and find the minimal overall cost.

We compare the ratio of Vpri/Vini and the ratio of

Vheuristic/Vini and Vglobal/Vini in Fig. 7 and 8, respectively.

Fig. 7 shows the performance improvement by priority

assignment. In most cases, the overall cost is decreased using

the heuristic priority assignment, compared to the initial

RM priority assignment. Hence, RM priority assignment

which is often used in the real-time control community

is not necessarily the best. Here only the priorities were

re-assigned using the heuristic method (keeping the same

sampling periods), and it gives the lower overall cost.

Fig. 8 shows the performance improvement by period

assignment. In all cases, the overall cost is decreased using

optimal period assignment. It also shows that Vheuristic is very

close to Vglobal in most randomly generated sets of plants. The

results imply that the period assignment improves the overall

LQG performance, and the performance obtained using the

heuristic method gives almost as good results as a much more

expensive exhaustive enumeration.

In summary the results show that the heuristic solution
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Fig. 8. Ratio of Vheuristic/Vini and Vglobal/Vini for the randomly generated
examples with optimized periods.

to the priority assignment problem gives almost the same

result as the global solution, and both of them are better

than the initial priority assignment, which is the RM priority

assignment based on the initial sampling periods. In most

cases, the priority assignments by the global solution and

by the heuristic solution coincide, but the global solution

requires evaluating all the possible priority assignments,

which is unfeasible for large task sets. The overall LQG

performance can be further improved by using the proposed

period assignment method. In the evaluation the performance

improvement is visible by comparing Fig. 7 and Fig. 8.

The median cost reduction approximately doubles when the

period optimization is performed as well.

VII. CONCLUSIONS

In this paper, we proposed an LQG control synthesis

method with a robustness constraint, in the context of real-

time system scheduling and control co-design. The initial

sampling period assignment and the robustness constraint

are both based on the jitter margin of the control system.

The approximated affine cost function shows that the cost

is more sensitive to jitter than to the value of the sampling

periods. A priority and period assignment method is given

based on the affine cost functions. The evaluation shows that

both priority assignment and period assignment are important

in obtaining the overall best performance while retaining the

initial robustness of the control loops.

A topic for future work is to extend the co-design method

to the case of Earliest Deadline First (EDF) scheduling. In

this case the scheduling parameters to decide for each task

are the period and the deadline. In the real-time systems

community several results on deadline assignment for jitter

reduction are available, e.g., [27], that can be exploited.
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