
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Robotic Work-Space Sensing and Control

Linderoth, Magnus

2011

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Linderoth, M. (2011). Robotic Work-Space Sensing and Control. [Licentiate Thesis, Department of Automatic
Control]. Department of Automatic Control, Lund Institute of Technology, Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/9901d3d3-1156-4dac-bab8-de4d0b06100d

Robotic Work-Space Sensing
and Control

Magnus Linderoth

Department of Automatic Control

Lund University

Lund, June 2011

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

ISSN 0280–5316
ISRN LUTFD2/TFRT--3251--SE

c© 2011 by Magnus Linderoth. All rights reserved.
Printed in Sweden,
Lund University, Lund 2011

Abstract

Industrial robots are traditionally programmed using only the internal
joint position sensors, in a sense leaving the robot blind and numb.
Using external sensors, such as cameras and force sensors, allows the
robot to detect the existence and position of objects in an unstructured
environment, and to handle contact situations not possible using only
position control.
This thesis presents work on how external sensors can be used

in robot control. A vision-based robotic ball-catcher was implemented,
showing how high-speed computer vision can be used for robot control
with hard time constraints. Special attention is payed to tracking of a
flying ball with an arbitrary number of cameras, how to initialize the
tracker when no information about the initial state is available, and
how to dynamically update the robot trajectory when the end point of
the trajectory is modified due to new measurements. In another appli-
cation example, force control was used to perform robotic assembly. It
is shown how force sensing can be used to handle uncertain positions
of objects in the workspace and detect different contact situations.

3

Acknowledgments

First of all I would like to thank my supervisors Rolf Johansson and
Anders Robertsson, who introduced me to the field of robotics. They
complement each other well and have given me important support and
guidance in the different aspects of my development as a researcher.
I also want to thank Klas Nilsson, who in practice has acted as an
extra supervisor. Much of my work has been done in close cooperation
with Andreas Stolt, who has been a very good work partner. Coming
up with solutions to problems and implementing them always works
smoothly with Andreas. I also want to thank the rest of my colleagues
in the ROSETTA project for many fruitful discussions and feed-back
on my work.
I want to thank all my colleagues at the Department of Automatic

Control for making it such a nice environment to work in. The coffee
breaks and lunches often offer interesting discussions on all imaginable
topics. Some people are particularly important for making the work run
smoothly. Anders Blomdell, with his vast programming experience, is
the living book of answers when I have programming problems, and
the robots in the lab could not run without him. Leif has given me
important help when typesetting this document in LATEX and getting
the computers to work the way I want them to. Eva Schildt, Eva Westin,
Ingrid Nilsson and Britt-Marie Mårtensson have helped me handle all
administrative matters
Special thanks go to Kristian Soltész, who (unintentionally) had

the biggest impact on me when I decided to do a PhD. He is a good
friend and colleague, inspiring me in my research, and he has a never

5

Acknowledgments

ending supply of interesting, challenging problems for me to try to
solve.
The research leading to these results has received funding from the

European Community’s Seventh Framework Programme FP7/2007-
2013 – Challenge 2 – Cognitive Systems, Interaction, Robotics – under
grant agreement No 230902 - ROSETTA. This document reflects only
the author’s views and the European Community is not liable for any
use that may be made of the information contained herein.

6

Contents

1. Introduction . 11
1.1 Motivation and Background 11
1.2 Publications . 12
1.3 Contributions . 13
1.4 Thesis Outline . 13

2. Hardware and Interfaces 15
2.1 Robots . 15
2.2 Force/torque sensing 15
2.3 Robot Controller Interface 17

Part I. Ball-Catching Robot 19

3. Ball-Catching Robot . 21
3.1 Introduction . 21
3.2 Robot . 21
3.3 Cameras . 22
3.4 Camera Positioning 23
3.5 Image Analysis . 24
3.6 Modeling of the Ball 24

4. Initialization of the Kalman Filter without Assump-

tions on the Initial State 26
4.1 Introduction . 26
4.2 Preliminaries . 28
4.3 Optimal Solution of a Linear System of Equations with

Noise . 29

7

Contents

4.4 Filter Initialization . 31
4.5 Simulation . 36
4.6 Discussion . 42
4.7 Conclusions . 44

5. Object Tracking with Measurements from Single or

Multiple Cameras . 45
5.1 Introduction . 45
5.2 Problem Formulation 46
5.3 Methods . 47
5.4 Transforming Image Data for the Kalman Filter . . 48
5.5 Detection of False Positives 52
5.6 Results . 53
5.7 Discussion . 58
5.8 Conclusions . 58

6. Robot Trajectory Generation with Uncertain Target

Point . 60
6.1 Introduction . 60
6.2 Problem Formulation 61
6.3 Method . 61
6.4 Experimental Results 71
6.5 Discussion . 73

Part II. Robotic Assembly . 79

7. Introduction . 81

8. Control Framework . 82
8.1 Task Specification . 82
8.2 Control Strategies . 86
8.3 Software . 86

9. Snap Fit Assembly of Emergency Stop Switch 88
9.1 Introduction . 88
9.2 Task Description . 88
9.3 Learning . 93
9.4 Transient Detection 93
9.5 Cooperating Robots 98

10. Dual Robot Lead-Through 100
10.1 Introduction . 100
10.2 System Structure . 101

8

10.3 Experimental Results 103

11. Conclusions . 105

A. Bibliography . 106

9

1

Introduction

1.1 Motivation and Background

The traditional way of programming industrial robots is based on po-
sition control and the trajectories are tracked using the internal po-
sition sensors. This kind of programming is widely used in industry
and has become indispensable in many kinds of manufacturing. The
robots are fast and have good repetitional accuracy, outperforming hu-
mans in many applications. These systems, however, only work in very
structured environments.
Currently, there is a trend to extend robotic operation to task ex-

ecution in time-varying dynamic, non-deterministic, real-life environ-
ments. Such robotics systems must be capable of responding in a timely
and sensible manner and with a suitable degree of autonomy to uncer-
tain, incomplete knowledge, and to situations not anticipated at design
time. In addition to work-space sensing supported by suitable robotic
software architectures, there is a need for extraction of real-time sen-
sor information at various abstraction levels for feedback control of
actuator control, motion control, trajectory control, force control, task-
execution control, and supervisory control. To the purpose of effective
and efficient task execution, it is necessary to include feedback control
ranging from fast force feedback to reactive event-oriented feedback
based on cognitive interpretation of sensor data. In this context, a
whole range of new control challenges appear with a potential to re-

11

Chapter 1. Introduction

shape the current dominance of fixture-based position-controlled in-
dustrial robotics.
In this thesis, the research field of robotic task execution based

on sensing and control is studied. Particular attention is given to two
challenging application cases, i.e., a ball-catching industrial robot, and
force-controlled assembly. Both cases require high-rate feedback from
senors external to the robot.
Several skills are required for catching a ball. The ball has to be

detected and its position must be estimated and extrapolated to the
future. In order to catch as many balls as possible, the robot has to start
moving as soon as an estimate of the catching position is available, and
then the trajectory must be modified while moving, as the catching
position is modified due to new measurements. All of these actions
have to be performed under hard time constraints so that the robot
reaches the catching position before the ball reaches the robot.
Using force sensing in assembly provides important advantages

over position based control. The ability to sense and act upon different
contact situations makes it possible to handle, e.g., uncertain positions
or shapes of objects, which mimics the capability of humans to per-
form very complex assembly operations in spite of our poor position
accuracy.

1.2 Publications

The thesis is based on the following publications.

Linderoth, M., A. Robertsson, K. Åström, and R. Johansson (2009):
“Vision based tracker for dart-catching robot” In Preprints 9th IFAC
International Symposium on Robot Control (SYROCO’09). Gifu,
Japan, pp. 883–888.

Linderoth, M., A. Robertsson, K. Åström, and R. Johansson (2010):
“Object tracking with measurements from single or multiple cam-
eras” In Proc. 2010 IEEE International Conference on Robotics and
Automation (ICRA2010). Anchorage, AK, pp. 4525–4530.

Linderoth, M., K. Soltesz, A. Robertsson, and R. Johansson (2011):
“Initialization of the Kalman filter without assumptions on the

12

1.3 Contributions

initial state” In Proc. 2011 IEEE International Conference on
Robotics and Automation (ICRA2011). Shanghai, China, pp. 4992–
4997.

Stolt, A., M. Linderoth, A. Robertsson, and R. Johansson (2011): “Force
Controlled Assembly of Emergency Stop Button” In Proc. 2011 IEEE
International Conference on Robotics and Automation (ICRA2011).
Shanghai, China, pp. 3751–3756.

Other Publications

Stolt, A., M. Linderoth, A. Robertsson, M. Jonsson, and T. Murray
(2011): “Force Controlled Assembly of Flexible Aircraft Structure”
In Proc. 2011 IEEE International Conference on Robotics and
Automation (ICRA2011). Shanghai, China, pp. 6027–6032.

1.3 Contributions

The thesis contains the following contributions

• a method for initializing the Kalman filter when no a priori in-
formation about the initial state is available;

• a method for tracking objects using single or multiple cameras;

• a method for generating robot trajectories when the target point
is getting updated during the execution of the trajectory;

• a framework for performing force-controlled robotic assembly.

1.4 Thesis Outline

Chapter 2 describes hardware and interfaces used for robot control.
Part I, including Chapters 3–6, presents work done in the context of a
robotic ball-catcher. Part II, including Chapters 7–10, describes work
done in the context of force-controlled robotic assembly. Finally, con-
clusions are given in Chapter 11.
Part I starts with Chapter 3, introducing the ball-catching prob-

lem and describing the physical setup. Chapter 4 presents a way of

13

Chapter 1. Introduction

initializing the Kalman filter. In Chapter 5 visual tracking of a flying
ball is described. Chapter 6 presents a method for generating robot
trajectories when the target point is updated during the execution.
Part II starts with Chapter 7, introducing the topic of force-con-

trolled assembly. Chapter 8 presents the framework used to describe
the assembly operations. Chapter 9 presents work done on a snap fit
assembly application. In Chapter 10 lead-through control of two virtu-
ally connected robots is described.

14

2

Hardware and Interfaces

All the experiments described in this thesis were performed in the
Robotics Lab of the Department of Automatic Control at LTH, Lund
University. The following sections give a short overview of equipment,
computer architecture and interfaces used.

2.1 Robots

Two kinds of robots were used for the experiments described in this
thesis, an IRB140 and an IRB2400-16, both produced by ABB [ABB
Robots, 2011]. The IRB2400-16 was controlled by an S4Cplus controller
cabinet and the IRB140 by a controller of the newer IRC5 type. The
IRB140, shown in Fig. 2.1, has a maximum payload of 6 [kg], reach of
810 [mm] and position repeatability of ±0.03 [mm]. The IRB2400-16,
shown in Fig. 2.2, has a maximum payload of 20 [kg], reach of 1550
[mm] and position repeatability of ±0.06 [mm].

2.2 Force/torque sensing

Each robot was equipped with a wrist-mounted JR3 100M40A force/
torque sensor [JR3, 2011], which can be seen as a blue cylinder attached
to the robot flange in Fig. 2.1 and 2.2. It can measure 3D forces up to
400 [N] and 3D torques up to 40 [Nm] with a data rate of 8 [kHz].

15

Chapter 2. Hardware and Interfaces

Figure 2.1 The IRB140 robot from ABB equipped with a JR3 force/torque
sensor.

Figure 2.2 The IRB2400-16 robot from ABB equipped with a JR3 force/torque
sensor.

16

2.3 Robot Controller Interface

2.3 Robot Controller Interface

The robots were controlled using the Extctrl interface [Blomdell et al.,
2005; Blomdell et al., 2010]. It connects to the low-level axis controllers
of the robot with a sample rate of 250 [Hz], and lets the higher level
functionality be executed in an external controller. For each joint the
external controller can set the reference position, and provide feed-
forward data for the velocity and motor torque. Measured positions etc.
are sent back from the robot control cabinet to the external controller.
The data is transferred using the LabComm protocol [LabComm,

2011], which allows the specification of data types that should be sent
over a socket. The communication overhead has been kept to a min-
imum and the protocol is appropriate for sending samples of process
data in real-time.

17

Part I

Ball-Catching Robot

3

Ball-Catching Robot

3.1 Introduction

The following chapters describe how high-speed computer vision can be
used in a motion control application. The problem considered is a ball-
catching robot. A sketch describing the problem can be seen in Fig. 3.1.
A box with a hole was mounted on a robot and when a ball was thrown
toward the box, the robot should move the box so the ball always hit
the hole. The detection of the ball was performed with cameras that
provided data to the estimation of the position and future trajectory
of the ball. In turn, this information was used to move the box to the
correct position.
Ball-catching robots have been described in [Frese et al., 2001] and

[Bäuml et al., 2011]. The ball-catching application is closely related
to the table tennis playing robot, which has been treated in numerous
works, e.g. [Matsushima et al., 2003], which used an adaptive black-box
model for prediction.

3.2 Robot

The robot used for the ball-catcher was an ABB IRB140. For more
details, see Sec. 2.1.

21

Chapter 3. Ball-Catching Robot

−0.5

0

0.5

1

−0.5

0

0.5

−0.4

−0.2

0

0.2

0.4

Camera

X

z (m)

Y

Z

Camera

Ball

x (m)

y
 (

m
)

Figure 3.1 Ball-catching robot.

3.3 Cameras

To the purpose of stereo vision, two cameras were located in the robot
workspace, one on each side of the robot. The application required good
real-time camera performance and for this two Basler A602fc [Basler,
2011] with an IEEE1394 serial interface (also known as FireWire or
i.LINK) were used. They could supply color images at resolutions up
to 656 $ 490 pixels with a maximum frame rate of 100 [fps] at full
resolution. When two cameras were connected to the same FireWire
card, the frame rate was limited to 50 [fps], which was the frame rate
used for the ball-catcher.

22

3.4 Camera Positioning

0

0.5

1

1.5

2

2.5

3

−1.5−1−0.500.511.5

Z

Dart

Z

FWA

x (m)

Y

Z

Main Frame
X

FWB

z
 (

m
)

Figure 3.2 Top view of the setup illustrating the stereo coverage. The cones
show the field of view for the respective cameras.

3.4 Camera Positioning

Many different ways of positioning the cameras were possible. The
positions chosen were on each side of the robot, pointing toward the
thrower, illustrated in Fig. 3.2. This positioning allowed the cameras
to see the ball at a big distance if the thrower was straight in front
of the robot. The ball-catcher application had a higher requirement on
the accuracy of the estimated ball trajectory when the ball was close to
the robot, which was fulfilled by the chosen camera positioning, since
the ball was close to the cameras and observed from favorable angles
when it was close to the robot.

23

Chapter 3. Ball-Catching Robot

3.5 Image Analysis

The algorithms used to find the ball in the images were implemented
in C and run on a desktop PC. Processing of an image pair took ap-
proximately 6 [ms]. For more details, see [Linderoth, 2008].

3.6 Modeling of the Ball

The thrown ball was modeled as a point mass flying in a gravity field
with negligible air drag. Using the coordinate system in Fig. 3.1, the
dynamics were described by

m

ẍb

ÿb

z̈b

 =

0

−m�
0

 (3.1)

where m is the mass of the ball and � is the earth gravity acceleration
constant. Introducing the state vector

x =
[

xb yb zb ẋb ẏb żb

]T

(3.2)

equation (3.1) is equivalent to

ẋ(t) =

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

x(t) +

0

0

0

0

−�
0

(3.3)

Discretizing (3.3) and introducing noise, results in a state space model
on the form

x(k+ 1) = Φ(k)x(k) + Γ(k)u(k) + v(k)
y(k) = C(k)x(k) + e(k) (3.4)

24

3.6 Modeling of the Ball

where x is the state, u is the input and y is the measurement. The
disturbances v and e are assumed to be white noise processes with
zero mean values, E[v(k)vT (k)] = Rv(k) 4 0, E[e(k)eT (k)] = Re(k) ≻ 0,
and E[v(k)eT (k)] = 0. Further,

Φ(k) =

1 0 0 h 0 0

0 1 0 0 h 0

0 0 1 0 0 h

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

,∀k (3.5)

Γ(k) =

0

h2/2
0

0

h

0

,∀k (3.6)

u(k) = −�, ∀k (3.7)

where h is the sampling period. The matrix C will vary depending on
the measurement method.
When analyzing measured position data from thrown balls, it could

be seen that there was a noticable air drag. The ball-catcher still
worked well, and hence the drag was never modeled.

25

4

Initialization of the Kalman

Filter without Assumptions

on the Initial State

4.1 Introduction

When performing state estimation on dynamical systems, the Kalman
filter [Kalman, 1960] is a very commonly used tool. Just as for other
recursive algorithms, initialization is a necessary computational step
and such initialization may be accomplished in a variety of different
approaches, e.g., probabilistic (Gaussian, Bayesian [Bayes, 1763]), geo-
metric and information-theoretical approaches. In the original formu-
lation of the Kalman filter, it was assumed that the initial value of
the state had a known mean value and variance. If no such data are
available, the estimate will have a transient in the initial phase of
the filtering. If it is possible to start the estimation well before the
estimate is to be used, this causes no problem, since the estimate will
have time to converge. The transient can also be reduced by letting the
initial covariance matrix of the estimate have very large eigenvalues.
However, if the estimate is needed as soon as possible after the

start of the estimation, it is desirable that not even the first estimates
are affected by the guess of the initial state. One such example is a

26

4.1 Introduction

Figure 4.1 Picture of a ball-catching robot.

ball-catching robot, which has been treated in, e.g., [Frese et al., 2001],
[Linderoth et al., 2009], [Linderoth et al., 2010] and [Bäuml et al., 2011].
A photo of such a setup is shown in Fig. 4.1. When a ball is thrown
toward the robot, the box is moved to make the ball hit the hole. High-
speed cameras provide information about the position of the ball, and a
Kalman filter is used to estimate the position of the ball and predict its
future trajectory. Only a limited number of measurements are available
during the flight of the ball and due to the limited acceleration of the
robot, it has to start moving as soon as the catching position can be
estimated. Thus, it is essential to have a good estimate from the very
start of the measurement series so the robot can get to its target in
time.
Widely used algorithms are based on the extended Kalman filter

(EKF), whose application to SLAM (Simultaneous localization and
mapping) problems was developed in a series of seminal papers [Smith
and Cheeseman, 1986; Moutarlier and Chatila, 1990; Smith et al.,
1990]. The EKF calculates a Gaussian posterior over the locations
of environmental features and the robot itself. Information-oriented
Kalman-type filters were proposed for feature-based SLAM [Walter
et al., 2007; Thrun et al., 2004] and for maneuvering target tracking
[Farooq and Bruder, 1990] with attention to approximation and com-
putational speed.
Robot vision is commonly used for vision-based tracking in robotic

applications. An introduction to available algorithms is given in [Ma
et al., 2003].

27

Chapter 4. Initialization of the Kalman Filter

Many specialized approaches for making an informed initialization
of the Kalman filter have been proposed for specific problems and can
be found in, e.g., [Einhorn et al., 2007], [Hyland, 2002] and [Weiner,
1981]. A more general way of initializing a system on the linear state-
space form (4.1) can be done by using information filter theory, but
then with additional requirements, e.g., that Φ is non-singular or that
(4.1) is controllable [Kailath et al., 2000].
This thesis presents a method to initialize the Kalman filter with-

out making any assumptions on the initial value, only assuming that
the system is on the linear state-space form (4.1). This is done by
transforming the state estimate x̂ into a space with a basis separating
directions of infinite variance from those with finite variance. A differ-
ent approach for solving the same problem is presented in [Hagander,
1973].

4.2 Preliminaries

State Space Description

The problem considered relates to discrete-time time-varying linear
systems on the form

x(k+ 1) = Φ(k)x(k) + Γ(k)u(k) + v(k)
y(k) = C(k)x(k) + e(k) (4.1)

where x is the state, u is the input and y is the measurement. The
disturbances v and e are assumed to be white-noise processes with
zero mean values, E[v(k)vT (k)] = Rv(k) 4 0, E[e(k)eT (k)] = Re(k) ≻ 0,
and E[v(k)eT (k)] = 0.

The Kalman Filter

The Kalman filter can be used to estimate the state of (4.1) recursively
as described by (4.2), x̂(lpk) denoting the estimate of x(l) based on
measurements up to sample k and P(lpk) being the covariance matrix

28

4.3 Optimal Solution of a Linear System of Equations with Noise

of x̂(lpk).

x̂(kpk) = x̂(kpk− 1)+
+ K (k) (y(k) − C(k)x̂(kpk− 1))

K (k) = P(kpk− 1)CT(k)⋅

⋅
(
C(k)P(kpk− 1)CT(k) + Re(k)

)−1

P(kpk) = P(kpk− 1) − K (k)C(k)P(kpk− 1)
x̂(k+ 1pk) = Φ(k)x̂(kpk) + Γ(k)u(k)
P(k+ 1pk) = Φ(k)P(kpk)ΦT (k) + Rv(k)

(4.2)

Singular Value Decomposition

Consider a matrix A ∈ R
m$n with rank(A) = r. Using singular value

decomposition (SVD) it can be factorized as

A = UΣVT (4.3)

where U ∈ R
m$r satisfies UTU = I, V ∈ R

n$r satisfies VTV = I and
Σ = diag(σ 1,σ 2, . . . ,σ r) with σ 1 ≥ σ 2 ≥ . . . ≥ σ r > 0

4.3 Optimal Solution of a Linear System of Equations
with Noise

This section describes methods for solving linear systems of equations,
which will be used later.

Over-determined System

Consider a system of linear equations with disturbances:

z = Gx +w (4.4)

where z ∈ R
m and G ∈ R

m$n are known and w ∈ R
m is a disturbance

with E[w] = 0 and E[wwT] = Rw ≻ 0.
Assume that rank(G) = n < m, i.e., the system is over-determined.

Let x̂ denote the minimum variance unbiased estimate of x, which

29

Chapter 4. Initialization of the Kalman Filter

can be obtained from the Gauss-Markov theorem [Kailath et al., 2000],
with the solution

x̂ = (GTR−1w G)−1GTR−1w z (4.5)

Rx = E
[
(x̂ − x)(x̂ − x)T

]
= (GTR−1w G)−1 (4.6)

Under-determined System

Again consider the system (4.4), but now assume that rank(G) = r <
n, i.e., the system of equations is under-determined. Still, x can be
partly determined. By singular value decomposition G can be factor-
ized as

G = UΣVT (4.7)

It is possible, as a part of the SVD algorithm, to construct

S =
[

S f Si

]

∈ R
n$n (4.8)

such that S f = V and STS = I. Define x f ∈ R
r and xi ∈ R

n−r as the
unique solution to

x = S
[

x f

xi

]

= S f x f + Sixi (4.9)

Note that x f is a parametrization of the part of x that can be estimated
by (4.4), and xi is a parametrization of the null space of G. Inserting
(4.9) into (4.4) and noting that VT [S f Si] = [I 0] one obtains

z = Gx +w
= UΣVT (S f x f + Sixi) +w
= UΣx f +w

(4.10)

Since UΣ has full rank, one can solve (4.10) for x̂ f , using the method
described in the previous subsection.

30

4.4 Filter Initialization

4.4 Filter Initialization

State Partitioning

During the initialization of the Kalman filter there may be times when
the variance of the state estimate is finite in some directions of the
state space and infinite in other directions. To handle this situation
the state can by a linear transformation be reoriented to a space where
the directions with infinite variance are orthogonal to as many base
vectors as possible. Let the state x̄ in this alternative space be defined
by

T x̄ = x (4.11)
where T ∈ R

n$n and TTT = I. Let ˆ̄x denote the estimate of x̄, and
denote the estimation error by

˜̄x = x̄ − ˆ̄x (4.12)

Throughout the chapter it is assumed that the estimates are designed
to be unbiased, i.e., so that E [˜̄x] = 0. The state can be partitioned as

x̄ =
[

x̄ f

x̄i

]

(4.13)

such that the covariance-matrix of ˆ̄x f is finite and the variance of ˆ̄xi
is infinite in all directions. Define n f and ni such that n f + ni = n,
and x̄ f ∈ R

n f , x̄i ∈ R
ni . Similarly, the transformation matrix T can be

partitioned as

T =
[

T f Ti

]

, T f ∈ R
n$n f , Ti ∈ R

n$ni (4.14)

Since T is orthonormal we have

T−1 =
[

Tf Ti

]−1
=

[

T f Ti

]T

=
[

TTf

TTi

]

(4.15)

Note for future reference that
[

x̄ f

x̄i

]

=
[

TTf

TTi

]

x (4.16)

31

Chapter 4. Initialization of the Kalman Filter

and
x = T f x̄ f + Ti x̄i (4.17)

which shows that T f spans the directions in which x̂ has finite variance
and Ti spans the directions in which x̂ has infinite variance.
Let P̄ f denote the covariance matrix of ˆ̄x f :

P̄ f = E
[
(ˆ̄x f − x̄ f)(ˆ̄x f − x̄ f)T

]
(4.18)

In the remainder of the chapter all quantities may be appended
with time indices so that, e.g., ˆ̄x f (lpk) is the estimate of x̄ f (l) based on
measurements up to sample k, and x̂(lpk) = T(lpk) ˆ̄x(lpk). Note, how-
ever, the slightly different case x(l) = T(lpk)x̄(lpk). The actual state x
has only a single time index, since the second time index is meaningful
only for estimates. Still x̄ has two time indices to indicate which T was
used for the transformation.
To conclude, all the knowledge about x̂(lpk) can be fully specified

by T(lpk), ˆ̄x f (lpk) and P̄ f (lpk).

Time Step

Assume that T(kpk), ˆ̄x f (kpk) and P̄ f (kpk) are known. The state model
(4.1) gives the time update

x(k+ 1) = Φ(k)x(k) + Γ(k)u(k) + v(k). (4.19)

The purpose of the time step is to calculate T(k+1pk), ˆ̄x f (k+1pk) and
P̄ f (k+ 1pk).
Choose T(k+ 1pk) such that

TTf (k+ 1pk)Φ(k)Ti(kpk) = 0 (4.20)

n f (k+ 1pk) = n− rank (Φ(k)Ti(kpk)) (4.21)
TT (k+ 1pk)T(k+ 1pk) = I (4.22)

This can be interpreted as finding a T(k+1pk) such that it is orthonor-
mal and its n f (k + 1pk) leftmost columns span the left null space of
Φ(k)Ti(kpk), which can be done, e.g., by means of SVD. Note that

n f (k+ 1pk) ≥ n f (kpk) (4.23)

32

4.4 Filter Initialization

where strict inequality holds if and only if Φ(k) is singular and its null
space satisfies N (Φ(k)) ∩R(Ti(kpk)) ,= ∅.
Premultiplying (4.19) with TTf (k+ 1pk) gives

x̄ f (k+ 1pk)

= TTf (k+ 1pk)Φ(k)x(k)
+ TTf (k+ 1pk)Γ(k)u(k)
+ TTf (k+ 1pk)v(k)

= TTf (k+ 1pk)Φ(k) (T f (kpk)x̄ f (kpk) + Ti(kpk)x̄i(kpk))
+ TTf (k+ 1pk)Γ(k)u(k)
+ TTf (k+ 1pk)v(k)

= TTf (k+ 1pk)Φ(k)T f (kpk)x̄ f (kpk)
+ TTf (k+ 1pk)Γ(k)u(k)
+ TTf (k+ 1pk)v(k)

(4.24)

where the second and third equalities result from (4.17) and (4.20)
respectively. Here the advantage of choosing T(k + 1pk) according to
(4.20) becomes clear. Because of this choice x̄ f (k + 1) is independent
of x̄i(k) and only depends on quantities with finite variance. Condition
(4.21) guarantees that T f (k+ 1) has the highest possible rank.
Motivated by (4.24), let the update of the state estimate be defined

by
ˆ̄x f (k+ 1pk) = TTf (k+ 1pk)Φ(k)T f (kpk) ˆ̄x f (kpk)

+ TTf (k+ 1pk)Γ(k)u(k)
(4.25)

The estimation error is then given by

˜̄x f (k+ 1pk) = x̄ f (k+ 1pk) − ˆ̄x f (k+ 1pk)
= TTf (k+ 1pk)Φ(k)T f (kpk) ˜̄x f (kpk)
+ TTf (k+ 1pk)v(k)

(4.26)

It is easily verified that E [˜̄x f (k+ 1pk)] = 0 as required. The variance

33

Chapter 4. Initialization of the Kalman Filter

of the estimate becomes

P̄ f (k+ 1pk) =E
[
˜̄x f (k+ 1pk) ˜̄xTf (k+ 1pk)

]

= QP̄ f (kpk)QT

+ TTf (k+ 1pk)Rv(k)T f (k+ 1pk),

Q = TTf (k+ 1pk)Φ(k)T f (kpk)

(4.27)

Correction Step

Assume that T(kpk − 1), ˆ̄x f (kpk − 1) and P̄ f (kpk − 1) are known. The
state model (4.1) gives the measurement

y(k) = C(k)x(k) + e(k) (4.28)

The purpose of the correction step is to calculate T(kpk), ˆ̄x f (kpk) and
P̄ f (kpk).
Combining (4.12) and (4.16) gives

ˆ̄x f (kpk− 1) = x̄ f (k) − ˜̄x f (kpk− 1)
= TTf (kpk− 1)x(k) − ˜̄x f (kpk− 1)

(4.29)

Equations (4.28) and (4.29) can be formulated as a single linear system
of equations:

[

y(k)
ˆ̄x f (kpk− 1)

]

︸ ︷︷ ︸

z

=
[

C(k)
TTf (kpk− 1)

]

︸ ︷︷ ︸

G

x(k) +
[

e(k)
− ˜̄x f (kpk− 1)

]

︸ ︷︷ ︸

w

(4.30)

which can be solved by the method described in Sec. 4.3 with

Rw =
[

Re(k) 0

0 P̄ f (kpk− 1)

]

(4.31)

34

4.4 Filter Initialization

The solution is given by

T(kpk) = S (4.32)
ˆ̄x f (kpk) = (ΣUTR−1w UΣ)−1ΣUTR−1w z (4.33)
P̄ f (kpk) = (ΣUTR−1w UΣ)−1 (4.34)
n f (kpk) = rank(Σ) = rank(G) (4.35)

where U , Σ and S are defined in (4.7) and (4.8).
From the definition of G in (4.30) it can be seen that

rank(G) ≥ rank (Tf (kpk− 1)) (4.36)

The orthonormality of T(kpk− 1) in combination with (4.14) gives

rank (T f (kpk− 1)) = n f (kpk− 1) (4.37)

Combining (4.35) - (4.37) results in

n f (kpk) ≥ n f (kpk− 1) (4.38)

where equality holds if and only if R(CT(k)) ⊆ R (T f (kpk− 1)). Equa-
tions (4.23) and (4.38) together show that n f never decreases and give
conditions for when n f increases.
If G has full rank the variance of x̂(kpk) will be finite in all direc-

tions and n f (kpk) = n.
Remark: For n f (kpk− 1) = n and Tf (kpk− 1) = I it can be shown

that the solution of (4.30) is equivalent to the correction step of the
ordinary Kalman filter (4.2).

How to start and when to stop

Assuming that nothing is known about x when the estimation starts
out (n f = 0), the first thing to do is to apply the correction step to the
first measurement. The lower blocks of the matrices z and G, and all
blocks except Re in Rw, will then be empty.
If the initial variance of x is infinite only in some directions (0 <

n f < n), the available information can be represented by a triple of
matrices, T , ˆ̄x f and P̄ f , and then plugged into the algorithm without
any modification.

35

Chapter 4. Initialization of the Kalman Filter

If the measurements provide enough information, the variance of
the estimate will be finite in all directions (ni = 0) after a number of
iterations of the filter. Then, it is no longer necessary to use the algo-
rithm described in this section and one can just as well use the stan-
dard Kalman filter (4.2), since the methods are equivalent for ni = 0.

4.5 Simulation

To illustrate the use of the filter, consider a ball flying in a gravity field
and with negligible air drag. The ball is tracked by a vision system,
where each camera can provide an estimate of the line that intersects
both the ball and the focal point of the camera, but no depth informa-
tion is available. The process model is given on state-space form (4.1)
with

Φ(k) =

1 0 0 h 0 0

0 1 0 0 h 0

0 0 1 0 0 h

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

,∀k (4.39)

Γ(k) =

0

0

h2/2
0

0

h

,∀k (4.40)

u(k) = −�, ∀k (4.41)
Rv(k) = 10−6 I6$6, ∀k (4.42)

where the state vector x = [xb yb zb ẋb ẏb żb]T consists of three
positions followed by three velocities. To make the example easy to
follow, use the time step h = 1 and the earth gravitation constant

36

4.5 Simulation

� = 10. Let the initial state of the system be x(0) = [1 2 3 0 1 4]T .
The trajectory of the ball is shown as a black curve in Fig. 4.2. The
positions of the ball at the measuring instants are marked with green
circles and the corresponding lines that are extracted from the images
are marked in red. One camera observes the ball at time steps 0 and
2, and a second camera observes the ball at time step 1. The simulated
measurements are given by

y(0) =
[

1

3

]

,C(0) =
[

1 0 0 0 0 0

0 0 1 0 0 0

]

(4.43)

y(1) =
[

3

2

]

,C(1) =
[

0 1 0 0 0 0

0 0 1 0 0 0

]

(4.44)

y(2) =
[

1

−1.9

]

,C(2) =
[

1 0 0 0 0 0

0 0.4 0.3 0 0 0

]

(4.45)

Re(0) = Re(1) = Re(2) = 10−4 I2$2 (4.46)

Performing the state estimation on the given data gives the follow-
ing results:

Tf (0p0) =

1 0

0 0

0 1

0 0

0 0

0 0

(4.47)

Ti(0p0) =

0 0 0 0

−1 0 0 0

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

(4.48)

37

Chapter 4. Initialization of the Kalman Filter

0
5

−6−4−2024
−10

−8

−6

−4

−2

0

2

4

x

y(2)

y(0)

y

y(1)

z

Figure 4.2 Simulated ball trajectory and measurements marked as green
balls.

ˆ̄x f (0p0) =
[

1

3

]

(4.49)

P̄ f (0p0) = 10−4
[

1 0

0 1

]

(4.50)

38

4.5 Simulation

T f (1p0) =

0.707 0

0 0

0 0.707

−0.707 0

0 0

0 −0.707

(4.51)

Ti(1p0) =

0 0.707 0 0

−0.707 0 0 0.707

0.5 0 0 0.5

0 0.707 0 0

0 0 1 0

0.5 0 0 0.5

(4.52)

ˆ̄x f (1p0) =
[

0.707

5.657

]

(4.53)

P̄ f (1p0) = 10−4
[

0.51 0

0 0.51

]

(4.54)

T f (1p1) =

0.707 0 0 0

0 1 0 0

0 0 1 0

−0.707 0 0 0

0 0 0 0

0 0 0 1

(4.55)

39

Chapter 4. Initialization of the Kalman Filter

Ti(1p1) =

0 −0.707
0 0

0 0

0 −0.707
1 0

0 0

(4.56)

ˆ̄x f (1p1) =

0.707

3

2

−6

(4.57)

P̄ f (1p1) = 10−4

0.51 0 0 0

0 1 0 0

0 0 1 1

0 0 1 2.02

(4.58)

T f (2p1) =

0.447 0 0 0

0 0.707 0 0

0 0 1 0

−0.894 0 0 0

0 −0.707 0 0

0 0 0 1

(4.59)

Ti(2p1) =

0 −0.894
0.707 0

0 0

0 −0.447
0.707 0

0 0

(4.60)

40

4.5 Simulation

ˆ̄x f (2p1) =

0.447

2.121

−9
−16

(4.61)

P̄ f (2p1) = 10−4

0.214 0 0 0

0 0.51 0 0

0 0 5.03 3.02

0 0 3.02 2.03

(4.62)

Tf (2p2) = I6$6 (4.63)

Ti(2p2) ∈ R
6$0 (4.64)

ˆ̄x f (2p2) =

1

2

−9
0

−1
−16

(4.65)

P̄ f (2p2)

=10−4

1 0 0 0.5 0 0

0 9.08 −3.77 0 9.08 −2.27
0 −3.77 5.03 0 −3.77 3.02

0.5 0 0 0.518 0 0

0 9.08 −3.77 0 10.1 −2.27
0 −2.27 3.02 0 −2.27 2.03

(4.66)

Most insight on the estimation progress is given by studying Tf .
The first measurement locates the ball on a line in the yb-direction,
which gives information about the position in the xb- and zb-directions.
This is reflected in the columns of T f (0p0). After the time step the
position is no longer known. Only linear combinations of the positions

41

Chapter 4. Initialization of the Kalman Filter

and velocities can be determined, as seen in T f (1p0). With the second
measurement yb and zb are given. Since it is the second measurement
in the z-direction, żb can be determined. Still, no information about ẏb
is available and hence yb is no longer known after the time step, as
indicated by Tf (2p1). The last measurement gives information in the
remaining directions with infinite variance, and thus Tf (2p2) spans
the entire R

n and an estimate x̂(2p2) = Tf (2p2) ˆ̄x(2p2) can finally be
calculated.

4.6 Discussion

Alternative frameworks to the one used in this thesis would be Bayes-
ian networks or conditional expectations [Pearl, 1985].
The reason for doing the partitioning suggested in this thesis, is

the difficulty of representing matrices with infinite singular values.
An alternative approach to this is used in information filters [Kailath
et al., 2000]. Instead of the covariance matrix P and the state esti-
mate x̂, the information matrix Y = P−1 and the information vector
ŷ = P−1 x̂ are used to represent the information about the system. If
no information about the state is available, then this circumstance is
conveniently represented by Y = 0. Measurement updates get a very
simple form with information filters. However, the time update is com-
plicated and does not work for a general system on the form (4.1), as
stated in the introduction.
The equations (4.20) - (4.22) and (4.30) do not in general have a

unique solution for T . In this thesis SVD based methods for solving the
equations are suggested, but other methods can be used. The transfor-
mation T can be replaced by any T ′ fulfilling (4.11) - (4.18) such that
R(Tf) = R(T ′f). Of course ˆ̄x f and P̄ f have to be modified accordingly.
In the example in Sec. 4.5 the T matrices were chosen to align the
base vectors of x̄ f with the base vectors of the original state space as
far as possible to improve human readability.
The presented initialization procedure is useful when very little is

known about the initial state. If a priori knowledge is available, this
should of course be used to improve the estimate.
The state x = x(k), and hence also x̄ f and x̄i, are assumed to have

exact and finite time-varying values, although not known exactly. More

42

4.6 Discussion

Figure 4.3 Example illustrating state partitioning. The position of the object
o along the line l is unknown, and a new coordinate system, where as many
basis vectors as possible are orthogonal to the line, is chosen.

specifically it is assumed that no information at all is available about
x̄i, which is modeled as ˆ̄xi having infinite variance.
In general, it is not meaningful to give any numerical values of x̂

if n f < n. To see this recall (4.17). If a row in Ti has any non-zero
element, the corresponding element of x̂ is completely unknown. The
knowledge about x can, however be described by T , ˆ̄x f and P̄ f .
Even though it may not be possible to calculate any value of x̂ in

the original state space, the information in ˆ̄x f can still be useful. For
instance, it may be of interest to know the altitude of an aerial vehicle
before its longitude and latitude can be estimated.
As an example of state partitioning, consider the scenario in Fig.

4.3, where an object o is known to be near a given line l in 3D-space,
but nothing is known about its position along the line. Choose a coor-
dinate system such that its first two base vectors are orthogonal to l
and the third base vector is parallel to l. The position of o can then
be partly described by the first two components with a finite covari-
ance matrix, even though the variance in the direction of the third
component (parallel to l) is infinite.

43

Chapter 4. Initialization of the Kalman Filter

4.7 Conclusions

A new way of initializing the Kalman filter has been presented, making
it possible to calculate a state estimate that is not influenced by any
guess of the initial value of the state. Instead, the estimate can be
determined completely based on the first measurements.

44

5

Object Tracking with

Measurements from Single

or Multiple Cameras

5.1 Introduction

To be able to determine the position of a static object in 3D space by
means of computer vision, the object has to be seen by cameras from
at least two different view points, assuming that the size of the object
is not known. The same applies for measuring the position of a moving
object based on images captured at one single time instant. However,
if the cameras are not synchronized in time, or if a moving object is
not visible in all images, one can not rely on using matching pictures
for making accurate position estimates of dynamical objects.
This chapter describes a strategy to track an object with known

dynamical model, using a series of images where no pair has to be
captured simultaneously. It even allows tracking of a point object in
3D space using a single static camera, and provides a convenient way
of fusing data from multiple cameras.
The properties presented in the previous paragraph are very de-

sirable for a ball-catching robot. They allow any number of cameras
to be used, though at least two cameras are needed for good accuracy.

45

Chapter 5. Object Tracking

If the position of the ball can not be extracted from an image, due to
occlusions or failed image analysis, the data from the other images can
still be used to improve the estimate of the state of the ball.
An overview of tracking techniques is given in [Yilmaz et al., 2006].

In the literature there are numerous examples of how computer vision
and Kalman filtering can be used for robot control, e.g., [Olsson et al.,
2003], [Olsson et al., 2006] and [Marayong et al., 2008]. In [Jia et al.,
2005] dynamic objects are tracked from a mobile platform using an
extended Kalman filter and multiple interacting models. A method for
tracking rigid objects that were partly occluded by other objects was
suggested in [Sato et al., 2003]. A method for exploiting the epipolar
constraint between a pair of images is described in [Lamiroy et al.,
2000], to the purpose of visual servoing.
Tracking of flying balls, to the purpose of catching them with a

robot, was previously treated in [Birbach et al., 2008], [Birbach and
Frese, 2009], and [Birbach et al., 2011].

5.2 Problem Formulation

The goal is to track an object with a known process model. This is to be
done with images captured from different view points and where pos-
sibly no images are captured simultaneously. The object to be tracked
is described by the discrete-time state-space model

x(k+ 1) = Φ(k)x(k) + Γ(k)u(k) + v(k) (5.1)
where x is the state vector and u is a known input signal. Measure-
ments are assumed to be on the form

y(k) = C(k)x(k) + e(k) (5.2)
Note that the C-matrix is time dependent and will depend on the cam-
era parameters and the image coordinates at that particular time step.
The disturbances v and e are discrete-time white-noise processes with
zero mean value and covariances

E
[
v(i)vT(j)

]
= Rvδ i j

E
[
v(i)eT(j)

]
= Rveδ i j

E
[
e(i)eT(j)

]
= Reδ i j

(5.3)

46

5.3 Methods

5.3 Methods

State Estimation

A Kalman filter was used to estimate the state of the tracked object.
The update law can be described by (5.4) - (5.9). Here, for example,
x̂(k+1pk) denotes the estimate of x at sample k+1 based on measure-
ments up to sample k, and P(k+ 1pk) the covariance of that estimate.

x̂(kpk) = x̂(kpk− 1) + K f (y(k) − C(k)x̂(kpk− 1)) (5.4)
K f (k) = P(kpk− 1)CT (k) (5.5)

⋅
(
Re(k) + C(k)P(kpk− 1)CT (k)

)−1

P(kpk) = P(kpk− 1) − K f (k)C(k)P(kpk − 1) (5.6)
x̂(k+ 1pk) = Φ(k)x̂(kpk− 1) + Γ(k)u(k) (5.7)

+ K (k) (y(k) − C(k)x̂(kpk− 1))
K (k) =

(
Φ(k)P(kpk− 1)CT (k) + Rve(k)

)
(5.8)

⋅
(
Re(k) + C(k)P(kpk− 1)CT (k)

)−1

P(k+ 1pk) = Φ(k)P(kpk− 1)ΦT(k) + Rv(k) (5.9)

− K (k)
(
Φ(k)P(kpk− 1)CT (k) + Rve(k)

)T

Homogeneous Coordinates

Homogeneous coordinates [Möbius, 1827; Graustein, 1930] will be used
extensively in this thesis. To simplify the notation, “∼” is defined ac-
cording to

x1 ∼ x2 Z[
x1 = λx2 for some λ ,= 0 (5.10)

where x1 and x2 are homogeneous coordinate vectors.
The projection matrix, Pc ∈ R

3$4, of a camera is a matrix such that

x ∼ PcX (5.11)

where X is a point in space and x is its projection onto the image plane.

47

Chapter 5. Object Tracking

X

Y

Z

lx
ly

ray

image point

image plane

focal point

Figure 5.1 Illustration of a ray. An object projected onto some image point
can be located anywhere along the corresponding ray.

5.4 Transforming Image Data for the Kalman Filter

From the position of a feature point in a single image it is possible
to determine a line in 3D-space along which the point must be. In
this thesis this line will be referred to as a ray (cf. Fig. 5.1). The ray
parameters then have to be related to the process model states in some
way in order to be used as input to the Kalman filter.

Extracting Rays

To determine the ray for a point in an image, first two lines through
the point in the image are chosen. The easiest way to do this is to take
one horizontal and one vertical line. Each one of these lines uniquely
defines a plane through the line and the focal point. Finally, the ray
can be determined as the intersection of these two planes. A line l in
an image can be represented as the points fulfilling the equation

lTx = 0 (5.12)

where l = [l1 l2 l3]T and x = [x y 1]T .

48

5.4 Transforming Image Data for the Kalman Filter

A plane π in space can similarly be represented by the points ful-
filling

π
TX = 0 (5.13)

where π = [π1 π2 π3 π4]T and X = [X Y Z 1]T .
Moreover, if the plane π is projected onto the line l, then

x ∼ PcX (5.14)

where Pc is the projection matrix of the camera. Inserting (5.14) into
the equation for the image line (5.12) we get

0 = lTx ∼ lTPcX = (PTc l)TX (5.15)

Hence it can be can concluded that the points that project onto the
line l reside in the plane defined by

π = PTc l (5.16)

If the coordinate of a feature point in an image is (x, y), a convenient
choice of lines through this point is lx = [−1 0 x]T and ly = [0 − 1 y]T
(cf. Fig. 5.1) corresponding to the planes defined by

πx = PTc lx
πy = PTc ly

(5.17)

The ray can then be described as the intersection of the planes πx and
πy.

Flying Ball Example

To illustrate how the rays are transformed into Kalman filter input
data, a simple example of a dynamical model is used; a ball flying
under the influence of gravity and without air friction. The state vector
is

x =
[

xb yb zb ẋb ẏb żb

]T

(5.18)

where the first three states represent the position and the last three
states represent the velocity in the coordinate system of Fig. 3.1. The

49

Chapter 5. Object Tracking

discrete-time process model in the form of (5.1) is

Φ(k) =

1 0 0 h 0 0

0 1 0 0 h 0

0 0 1 0 0 h

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

,∀k

Γ(k) =

0

h2/2
0

0

h

0

,∀k

u(k) = −�, ∀k

(5.19)

where � is the earth gravity constant and h is the sample period.

Including Constraints into the Kalman Filter

The planes in (5.17) each put the constraint

π
TX = 0 (5.20)

on the feature point position X. This can be rewritten as a constraint
on the state vector (5.18) of the process:

0 = πTX =
[

π1 π2 π3 π4

]

xd

yd

zd

1

Z[

[

π1 π2 π3

]

xd

yd

zd

 = −π4 Z[

50

5.4 Transforming Image Data for the Kalman Filter

−π4 = cx

where c =
[

π1 π2 π3 0 0 0
]

and x =
[

xd yd zd ẋd ẏd żd

]T

(5.21)

If π is normalized so
√

π 21 + π 22 + π 23 = 1, −π4 can be interpreted as the
signed length of the orthogonal projection of the feature point position
onto the direction [π1 π2 π3].
Each image with a measurement of a feature position gives two

constraints, each specified by a row vector c in (5.21); one in the x
direction and one in the y direction of the image. If several images are
available, this can be handled simply by adding rows in the C-matrix
of (5.2):

C =

cax

cay

cbx

cby
...

(5.22)

where a and b denote different images and x and y the different mea-
surement directions. Similarly, the measurement vector y of (5.2) is
composed of the negative fourth component of the planes π in (5.17):

y=

−π4ax

−π4ay

−π4bx

−π4by
...

(5.23)

If no measurement at all is available at some time step, the last term
of (5.4), (5.6), (5.7), and (5.9) simply disappears.

51

Chapter 5. Object Tracking

5.5 Detection of False Positives

When using computer vision, two different kinds of noise are common.
If the correct object is detected in the image, the value of the position
estimate has a probability distribution close to the true value. There
is also a risk that the position estimate is based on the wrong feature,
which typically results in outliers, i.e., estimates with values far away
from the main body of the distribution. For good tracker performance,
the outliers should be detected and discounted.

Outlier Detection

In this subsection the time index is left out in the notation, since it is
the same for all quantities.
The measurement is given on the form

y = Cx + e (5.24)

with E[e] = 0 and E[eeT] " Re. Based on the state estimate x̂ the
expectation value of the measurement is

ŷ = Cx̂ (5.25)

The state estimate error is x̃ = x − x̂ with E[x̃] = 0, E[x̃x̃T] = Rx and
E[x̃eT] = 0. The best estimate of the measurement error is

ỹ = y− ŷ= Cx̃ + e (5.26)

with the properties E[ỹ] = 0 and Ry " E[ỹỹT] = CRxCT + Re.
If all distributions are Gaussian the probability density function for

ỹ is

f (ỹ) = 1

(2π)n/2 pRyp1/2
exp

(

−1
2
ỹTR−1y ỹ

)

(5.27)

where n is the dimension of the state vector. Then it is natural to
consider the measurement as an outlier if a condition on the form

ỹTR−1y ỹ> p2 (5.28)

is fulfilled, where p is a tuning parameter. Inserting (5.28) into (5.27)
it can easily be seen that all points outside the decision boundary have
a lower probability density than all points inside it.

52

5.6 Results

Managing of Multiple Trajectories Simultaneously

It is useful to have a layer on top of the Kalman filter, keeping track
of several state vectors, each representing the trajectory of one ball.
The obvious advantage of this is that the trajectories of several balls
can be tracked simultaneously. A more important advantage has to
do with outlier detection. In each iteration of the Kalman filter, the
measurements are discarded if they are not close to what is expected
based on the previous estimates, as described in the previous subsec-
tion. If the measurement initiating the trajectory is a false positive,
successive correct measurements will be discarded, since they are not
close to what is expected after the incorrect measurement. This means
that one incorrect measurement will block the system. The algorithm
used to handle this situation is described by the following pseudo code,
which is run on every measurement:

for all trajectories

if the measurement is not an outlier to this trajectory

perform iteration of Kalman filter

if the trajectory has not received a measurement for a while

throw it away

if the measurement did not match any existing trajectory

create a new trajectory

5.6 Results

Figure 5.2 shows example images of a thrown ball from the perspectives
of two cameras. The detected positions of the ball from a sequence of
such images are marked with green dots connected with lines. Different
subsets of these data were used as input to the tracker described in
this chapter. The results are shown in Figs. 5.3 – 5.6. For all cases the
estimate was initialized by the method described in Chapter 4. The
model (5.19) was used with

Rv = 0.0012 ⋅ diag[22 22 22 52 52 52] (5.29)
Rve = 0 (5.30)
Rv = diag[0.012 0.012] (5.31)

The accuracy of the estimates are illustrated by ellipsoids on the
form (z− ẑ)TR−1(z− ẑ) = p2, where z is the position or velocity and

53

Chapter 5. Object Tracking

R is the covariance matrix of its estimate ẑ. In Figs. 5.3 – 5.6 p = 3,
which means that there is a 97 % probability that the real value is
within the ellipsoid, assuming that the distributions are Gaussian.
Figures 5.3 and 5.4 show the estimates based on all the data points

in Fig. 5.2. The position estimates formed a smooth parabola and the
estimated velocities decreased in the vertical direction linearly with
time, as expected by the model due to the gravity. The size of the
uncertainty ellipsoids decreased with the number of measurements.
The tracker classified one measurement as a false positive, which is
indicated by a red circle in Fig. 5.2.
It is possible to track the ball using only a single fixed camera, since

the ball is observed from slightly different angles as it moves across
the image. In Fig. 5.5 the blue curve shows the estimates based only
on measurements from the lower image in Fig. 5.2. The uncertainty
ellipsoids were initially very oblong, since the position in the direction
of the rays was very uncertain. As the ball moved and got observed
from different angles, the estimate variance decreased drastically. The
estimated trajectory based on the images from both cameras is plotted
in red for reference. The uncertainty ellipsoids of the estimates in the
blue trajectory enclose the corresponding estimates in the red trajec-
tory as expected. When both cameras are used a full state estimate
can be obtained after two time samples, while three time samples are
needed when only one camera is used. Hence the first point in the red
trajectory has no corresponding position estimate in the blue trajectory.
When the blue trajectory in Fig. 5.6 was generated, only the data

from the odd time indices in the upper image and the data from the
even time indices in the lower image of Fig. 5.2 were used. After four
measurements, the estimate converged to almost coincide with the red
curve, generated by all the data points in both images of Fig. 5.2, and
the 97 % confidence ellipsoids are almost too small to be visible. The
example illustrates that the filter works well if images from cameras at
two different locations are provided, even if the images are not captured
simultaneously.
The tracker was implemented on the ball-catcher described in Chap-

ter 3, and was successfully used to catch thrown balls. The performance
of the ball-catcher was limited by the accuracy of the image analysis
and the speed and acceleration of the robot, which were limited to 0.5
[m/s] and 13 [m/s2] respectively. The diameters of the ball and the hole

54

5.6 Results

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

Figure 5.2 Example images from a sequence of images of a thrown ball, as
seen from the two different cameras. The detected ball positions from the entire
sequence are marked with green dots. A detected ball position that was classified
as an outlier by (5.28) is marked with a red circle. In these example images the
ball can be seen at the third green dot in the trajectory.

55

Chapter 5. Object Tracking

0

0.5

1

1.5

2

2.5

−0.5

0

0.5

0

0.5

z (m)

x (m)

y
 (

m
)

Figure 5.3 Position estimates based on all measured image coordinates from
both cameras in Fig. 5.2.

−12
−10

−8
−6

−4

−2

0

2
−2

−1

0

1

2

3

z (m/s)x (m/s)

y
 (

m
/s

)

Figure 5.4 Velocity estimates based on all measured image coordinates from
both cameras in Fig. 5.2.

56

5.6 Results

0

0.5

1

1.5

2

2.5

−0.5

0

0.5

0

0.5

z (m)

x (m)

y
 (

m
)

Figure 5.5 The blue curve shows position estimates based on the measured
image coordinates from only the upper image in Fig. 5.2. For comparison, esti-
mates based on the data in both images of Fig. 5.2 are shown in red.

0

0.5

1

1.5

2

2.5

−0.5

0

0.5

0

0.5

z (m)

x (m)

y
 (

m
)

Figure 5.6 The blue curve shows estimates based on data from only one cam-
era for odd time indices, and data from another camera for even time indices.
Estimates based on all the data from both cameras are shown in red.

57

Chapter 5. Object Tracking

were 5 [cm] and 6 [cm] respectively. A video of the robot catching balls
is available on Youtube [Ball-Catcher Video, 2009].

5.7 Discussion

No explicit triangulation was done in the proposed procedure. However,
if the rows in C of (5.22) correspond to measurements in many different
directions over time, an estimate with low variance in all directions can
be obtained.
A benefit of the tracking approach described in this chapter is that

it easily handles any number of cameras. In (5.22) and (5.23) two
more rows are simply added to C and y for every camera that captured
an image at the same sampling instant. Another advantage is that
a measurement can be used even if there are no valid measurements
from any other cameras, so that no 3D position estimate could be made
from the data from only that sampling instant. It was shown that
a ball can be tracked using a single camera. Accuracy is, however,
significantly improved if two or more cameras at different positions
are used.
If a continuous-time model of the process is available, the procedure

can be generalized to completely aperiodic measurements. The expres-
sions (5.1) - (5.9) then have to be recalculated at every measurement
to reflect the actual time that passed since the previous measurement.
Each row of C and y in (5.22) and (5.23) describes a hyperplane in

the state space. The above proposed procedure can thus be extended to
any feature that can be expressed as a hyperplane in the state space.

5.8 Conclusions

This chapter describes a strategy for tracking dynamical objects with
computer vision. A novel way of mapping image space data to a Kalman
filter in 3D space is described. It provides a simple way to use data
from an arbitrary number of pictures captured simultaneously. In com-
bination with a dynamical model of the tracked object, it enables de-
termination of the position of the object in 3D space without any two

58

5.8 Conclusions

images being captured at the same time. It also allows tracking of
objects in 3D space, using only a single static camera.
A method to determine whether a measurement is an outlier, based

on the covariances of the measurement and the position estimate, is
presented.

59

6

Robot Trajectory

Generation with Uncertain

Target Point

6.1 Introduction

The tracker described in Chapter 5 can be used to estimate the po-
sition where a ball should be caught. When few measurements are
available, the variance of the estimated state of the ball may be large,
and since there is a long distance to the robot, the uncertainties will
be magnified when the trajectory is extrapolated to the future. As the
ball moves along the trajectory and more measurements of the posi-
tion are performed, the variance of the state estimate decreases. In
order to have good performance of the ball-catcher, the robot should
start moving the box toward the catching position as soon as there is
an estimate, and then modify the end point of the trajectory on the fly
when better estimates become available.

60

6.2 Problem Formulation

6.2 Problem Formulation

The task is to generate a trajectory for moving a robot from one pose to
another and reach the final position before a given deadline. While the
robot is moving along the trajectory, the final point may change both
in space and time and the trajectory should be modified accordingly.
In order to reduce wear on the mechanical parts it is desirable not

to shake the robot excessively, even if the target point moves around
very much.

6.3 Method

Decomposition

Since only the end-point of the trajectory is of interest for the ball-
catcher, trajectory generation in joint space and in Cartesian space
are both possible solutions. Computation in joint space, however, leads
to simpler calculations and is less sensitive to kinematic singularities.
The strategy suggested is thus to solve the inverse kinematics of the
target point, i.e., find the target position for each joint, and then do
trajectory generation for each joint separately.

Assumptions

When a new destination point is acquired at time t0 the joint has an
initial position x0 and initial velocity v0. The time left to the deadline td
is T = td− t0 and the final position is x f , where the velocity should be
zero. The velocity and acceleration are limited to V and A respectively.
The total distance left to go is denoted by X = x f − x0.

Trajectory Primitive

In the following, two strategies for trajectory generation will be de-
scribed. They both split the movement into three parts:

• apply acceleration a∗ during time t1

• apply acceleration 0 during time t2

• apply acceleration −a∗ during time t3

61

Chapter 6. Robot Trajectory Generation

This trajectory primitive can be seen as bang-bang control in the ac-
celeration, used to minimize the maximum acceleration, when moving
a given distance within a given time. The middle time interval with
zero acceleration is needed in case the velocity reaches its maximum
value.
Let vt be the velocity in the time interval when the acceleration is

zero. Since the acceleration has different signs before and after this
interval, vt is always an extremum of the velocity, and is hence con-
venient for determining whether an attempt to generate a trajectory
violates the velocity constraints.

Strategy 1: Minimize Maximum Acceleration

This subsection describes a strategy that uses the smallest possible
acceleration needed to reach the destination before the deadline. If the
deadline cannot be met, the destination will be reached at time t f , with
t f > td. The smallest possible t f that does not violate the constraints
on velocity and acceleration will then be used. It will be shown that
there always is exactly one solution.
The problem can be formally described by equations (6.1)–(6.11),

where x(t), v(t) and a(t) are the position, velocity and acceleration as
functions of time.
Initial conditions

x(t0) = x0 (6.1)
v(t0) = v0 (6.2)

Dynamics

v(t) = v0 +
∫ t

t0

a(t) dt (6.3)

x(t) = x0 +
∫ t

t0

v(t) dt (6.4)

Constraints

x(t f) = x f (6.5)
v(x f) = 0 (6.6)

62

6.3 Method

t1 + t2 + t3 = t f − t0 (6.7)
t1 ≥ 0, t2 ≥ 0, t3 ≥ 0 (6.8)

−V ≤ pv(t)p ≤ V ,∀t (6.9)
−A ≤ pa(t)p ≤ A,∀t (6.10)

a(t) =

a∗, t0 ≤ t < t0 + t1
0, t0 + t1 ≤ t < t0 + t1 + t2
−a∗, t0 + t1 + t2 ≤ t ≤ t0 + t1 + t2 + t3

(6.11)

The goal is to find t1, t2, t3 and a∗ that solve (6.1)–(6.11). The quantities
x0, v0, x f , V and A are given as a part of the problem formulation.
Inserting (6.11) into (6.3) and (6.4) results in

X = x f − x0

= v0(t1 + t2 + t3) + a∗

(
t21
2
+ t1t2 + t1t3 −

t23
2

) (6.12)

vt = v(t), t0 + t1 ≤ t < t0 + t1 + t2
= v0 + a∗t1

(6.13)

v(t f) = v0 + a∗(t1 − t3) (6.14)

where vt is the velocity when the acceleration switches sign. Combining
(6.6), (6.13) and (6.14) gives

vt = v0 + a∗t1 = a∗t3 Z[(6.15)
{

t1 = (vt − v0)/a∗

t3 = vt/a∗
(6.16)

No saturation of velocity, no saturation of acceleration. First
assume the case where there is no saturation of the velocity, which
gives

t2 = 0 (6.17)

63

Chapter 6. Robot Trajectory Generation

Further assume that the deadline can be met without violating the
acceleration constraints, which gives the constraint

T = t1 + t3 (6.18)

Inserting (6.16) and (6.17) into (6.18) and (6.12) gives

T = 2vt − v0
a∗

(6.19)

X = 2v
2
t − v20
2a∗

(6.20)

By taking X /T , a∗ can be eliminated, resulting in

X

T
= v

2
t − v20/2
2vt − v0

Z[

0 = v2t − 2
X

T
vt +

X

T
v0 −

v20
2

=
(

vt −
X

T

)2

− X
2

T2
+ X
T
v0 −

v20
2

=
(

vt −
X

T

)2

−
(
X

T
− v0
2

)2

−
(v0

2

)2
Z[

vt =
X

T
+ k

√
(
X

T
− v0
2

)2

+
(v0

2

)2
(6.21)

where k = ±1. To determine the sign of k, consider (6.16). In order for
the times to be non-negative, as required by (6.8), both vt and (vt−v0)
must have the same sign as a∗ or be zero, which implies

0 ≤ vt(vt − v0) (6.22)

Inserting (6.21) into (6.22) gives.

0 ≤ 2
(
X

T
− v0
2

)

(
X

T
− v0
2

)

+ k

√
(
X

T
− v0
2

)2

+
(v0

2

)2

 (6.23)

64

6.3 Method

Since

√
(
X

T
− v0
2

)2

+
(v0

2

)2
≥

∣
∣
∣
∣

X

T
− v0
2

∣
∣
∣
∣

(6.24)

(6.23) is fulfilled for

k =
{
1, X /T ≥ v0/2
−1, X /T ≤ v0/2

(6.25)

If X /T = v0/2, either sign of k is valid. The difference it will make is
whether t1 = 0 or t3 = 0. In both cases a(t) is the same.
The acceleration can be solved for in, e.g. (6.19), giving

a∗ = 2vt − v0
T

(6.26)

To see that a∗ does not have different sign than vt or (vt − v0), and
hence fulfilling (6.8) and (6.16), remember that vt and (vt − v0) do not
have different signs and that T ≥ 0. Then consider

vt + (vt − v0) = 2vt − v0
= a∗T

(6.27)

Saturation of velocity, no saturation of acceleration. Now con-
sider the case when the velocity is saturated and hence

vt = V sign(X) (6.28)

It is assumed that the deadline can be met without violating the ac-
celeration constraints, which gives the constraint

T = t1 + t2 + t3 Z[
t2 = T − t1 − t3

(6.29)

65

Chapter 6. Robot Trajectory Generation

Inserting (6.29) into (6.12) gives

X = v0T + a∗

(
t21
2
+ t1(T − t1 − t3) + t1t3 −

t23
2

)

= (v0 + a∗t1)T − a∗

(
t21
2
+ t

2
3

2

)

= vtT −
(vt − v0)2 + v2t

2a∗

(6.30)

where the last equality follows from (6.16). Solving (6.30) for a∗ gives

a∗ = (vt − v0)2 + v2t
2(vtT − X)

(6.31)

Now we have vt and a∗ and can get t1 and t3 from (6.16) and get t2
from (6.29). For the solution to be valid we must have t3 ≥ 0, which in
combination with (6.16) gives that vt and a∗ must have the same sign.
Applied to (6.31) this gives that vt and (vtT − X) must have the same
sign, which in combination with (6.28) gives

pX p < VT Z[pX p
T
< V (6.32)

This requirement is very intuitive, since it means that the mean ve-
locity must be less than the maximum velocity.

No saturation of velocity, saturation of acceleration. In this
case it is assumed that the velocity will not be saturated, so t2 = 0. The
deadline, however, can not me met, so (6.18) must be relaxed and the
maximum possible acceleration will be applied to reach the target as
soon as possible. This gives a∗ = ±A, where the sign will be determined
later. The conditions for (6.20) being valid are fulfilled, and solving for
vt gives

vt = k
√

X a∗ + v20/2 (6.33)

66

6.3 Method

where k = ±1. It will now be shown that there is always exactly one
solution to (6.33) fulfilling

X a∗ + v20/2 ≥ 0 (6.34)
t1 = (vt − v0)/a∗ ≥ 0 (6.35)
t3 = vt/a∗ ≥ 0 (6.36)

The condition (6.36) gives

0 ≤ vt
a∗
= k

a∗

√

X a∗ + v20/2Z[

k = sign(a∗)
(6.37)

• Now assume that a∗ = A > 0 .
Through (6.33) and (6.37) this gives vt ≥ 0. Condition (6.34) is
then equivalent to

2X A ≥ −v20 (6.38)

Condition (6.35) is trivial to verify if v0 ≤ 0 and in the case v0 > 0
it is equivalent to

vt − v0 ≥ 0Z[
√

X A+ v20/2 ≥ v0 Z[
X A+ v20/2 ≥ v20 Z[

2X A ≥ v20

(6.39)

Condition (6.38) is valid for all v0 and (6.39) only for v0 > 0. Both
conditions are fulfilled if and only if

2X A ≥ v0pv0p (6.40)

• Now assume that a∗ = −A < 0 .
Through (6.33) and (6.37) this gives vt ≤ 0. Condition (6.34) is
then equivalent to

2X A ≤ v20 (6.41)

67

Chapter 6. Robot Trajectory Generation

Condition (6.35) is trivial to verify if v0 ≥ 0 and in the case v0 < 0
it is equivalent to

vt − v0 ≤ 0Z[

−
√

−X A+ v20/2 ≤ v0 Z[
−X A+ v20/2 ≥ v20 Z[

2X A ≤ −v20

(6.42)

Condition (6.41) is valid for all v0 and (6.42) only for v0 < 0. Both
conditions are fulfilled if and only if

2X A ≤ v0pv0p (6.43)

Since either (6.40) or (6.43) is fulfilled for all values of X and v0,
there is always a solution for either a∗ = A or a∗ = −A. On the curve
2X A = v0pv0p both values of a∗ are valid. The sign of a∗ will only affect
whether t1 = 0 or t3 = 0 and in both cases a(t) will be the same.
Inserting (6.33) into (6.36) gives

t3 =
vt

a∗

= sign(a
∗)

a∗

√

X a∗ + v20/2

= 1
A

√

X a∗ + v20/2

(6.44)

Combining (6.35) and (6.36) gives

t1 =
vt

a∗
− v0
a∗

= t3 −
v0

a∗

(6.45)

Saturation of velocity, saturation of acceleration. In this case
it is assumed that both velocity and acceleration become saturated so

vt = V sign(X) (6.46)
a∗ = A sign(X) (6.47)

68

6.3 Method

and the deadline can not be met. Inserting (6.16) into (6.12) gives

X = vtv0 − v
2
0

a∗
+ v0t2 +

vtv0

a∗

+ a∗

(
v2t − 2vtv0 + v20

2a∗2
+ t2
a∗
(vt − v0) +

v2t − vtv0
a∗2

− v2t
2a∗2

)

= vtt2 +
2v2t − v20
2a∗

(6.48)

Solving (6.48) for t2 gives

t2 =
X

vt
− vt
a∗
+ v20
2vta∗

= pX p
V
− V
A
+ v20
2VA

(6.49)

The durations t1 and t3 can be obtained from (6.16).

Summary of solution. In the following the solution to equations
(6.1)–(6.11) for different cases of saturation will be summarized. First
try using Case 1, where neither velocity nor acceleration is saturated.

• Case 1: velocity not saturated, acceleration not saturated

vt =

X /T +
√

(X /T − v0/2)2 + (v0/2)2, X /T ≥ v0/2

X /T −
√

(X /T − v0/2)2 + (v0/2)2, X /T ≤ v0/2
a∗ = (2vt − v0)/T
t1 = (vt − v0)/a∗

t2 = 0
t3 = vt/a∗

If pvtp > V the velocity constraint is violated and the solution is
not valid. Try using Case 2.

If pa∗p > A the acceleration constraint is violated and the solution
is not valid. Try using Case 3. The deadline will not be met.

69

Chapter 6. Robot Trajectory Generation

• Case 2: velocity saturated, acceleration not saturated

vt = V sign(X)

a∗ = (vt − v0)2 + v2t
2(vtT − X)

t1 = (vt − v0)/a∗

t3 = vt/a∗

t2 = T − t1 − t3

If VT < pX p or pa∗p > A the solution is not valid. Use Case 4. The
deadline will not be met.

• Case 3: velocity not saturated, acceleration saturated

a∗ =
{
A, 2X A ≥ v0pv0p
−A, 2X A ≤ v0pv0p

vt = sign(a∗)
√

X a∗ + v20/2

t3 =
1
A

√

X a∗ + v20/2

t2 = 0
t1 = t3 − v0/a∗

If pvtp > V the velocity constraint is violated and the solution is
not valid. Use Case 4.

• Case 4: velocity saturated, acceleration saturated

a∗ = A sign(X)
vt = V sign(X)
t1 = (vt − v0)/a∗

t2 =
pX p
V
− V
A
+ v20
2VA

t3 = V/A

70

6.4 Experimental Results

The above calculations are performed for every joint every time new
estimates of x f and td become available. If one joint can not meet the
deadline, the other joints are slowed down so they all reach the end
point at the same time. This is an attempt to limit the deviation of
the tool point from the plane where x0 and all x f are, and can also
decrease the acceleration of some joints. The tool will not reach its
target position before all joints reach their target position

Strategy 2: Use Maximum Acceleration

This strategy applies the maximum acceleration to move the joint to x f
as fast as possible. Hence the value of T is only used for determining
whether the deadline could be met. The motion will be jerkier than
with Strategy 1, but the deadlines may be met more often.
The expressions for a, t1, t2 and t3 are the same as for the case with

saturation of the acceleration in Strategy 1.

6.4 Experimental Results

Simulations Based on Real Data

Figures 6.1 - 6.4 show simulated robot trajectories based on real data
generated by the tracker described in Chapter 5. The simulations as-
sumed that the robot had two independent actuators that could move
the tool in the x and y directions respectively. The velocity was limited
to V = 2 [m/s] and the acceleration was limited to A = 20 [m/s2],
giving the robot properties similar to those of an IRB140.
Figures 6.1 and 6.2 are based on the same data, data set 1, but

in Fig. 6.1 the trajectory is generated using method 1 and in Fig. 6.2
method 2 is used. Similarly, Figs. 6.3 and 6.4 are based on the same
data, data set 2, but in Fig. 6.3 the trajectory is generated using method
1 and in Fig. 6.4 method 2 is used.
In the upper part of each figure the target points estimated by the

tracker are marked with blue stars. The stars are connected by blue
lines in chronological order and the final target point is marked in
red. The simulated robot trajectory is shown as a green curve. The
positions the robot was at when new target points arrived are marked

71

Chapter 6. Robot Trajectory Generation

with green stars.
The lower left part of each figure shows the position, velocity and

acceleration in the x-direction as functions of time, and the lower right
part shows the corresponding functions in the y-direction. The final
target position and time is marked by a star.
Comparing Fig. 6.1 and Fig. 6.2 it can be seen that method 1 used

smaller accelerations than method 2 in the beginning and hence avoid-
ed making a detour to the first bad estimates of the target position. Due
to a late update of the target position method 1 was 0.4 [mm] away from
the target at the deadline and reached the target 6 [ms] later. Method
2 was only 0.02 [mm] away from the target at the deadline and reached
the target 1 [ms] later.
Comparing Fig. 6.3 and Fig. 6.4 it can again be seen that the tra-

jectory generated by method 2 made a bigger detour to the first bad
estimates of the target position. Both methods reached the target in
time and method 2 even finished 7 [ms] before the deadline. Method 1,
however, used less acceleration.

Real-Time Execution

The trajectory generation methods were implemented in Java and used
in real-time to catch balls, as described in Chapter 3. The robot used
was an IRB140, and the first three joints were used to move the hole
of the box to the catching position. The choice was made to always
try to catch the ball where it intersected a vertical plane in front of
the robot. For each joint a trajectory was generated according to the
following sequence every time a new target position was estimated by
the tracker

• Go to the target position before the deadline;

• Wait 0.5 [s];
• Go to the home position in 1 [s].

Usually only the first part of the trajectory was executed when a new
target estimate became available and a new trajectory was generated
from the current position. Only the trajectory based on the last mea-
surement of a throw was executed to the end. Since a safe return to the
home position was generated every time a trajectory was generated, no
special action had to be taken for the last estimate, and there was no

72

6.5 Discussion

risk for a trajectory to end while the robot was moving. The trajectory
generation took approximately 0.1 [ms] on a desktop PC with 3 [GHz]
processor.
Both methods of trajectory generation were tested. Method 1 gener-

ated significantly smoother motions and less noise from the robot than
method 2. A video of the robot catching balls is available on Youtube
[Ball-Catcher Video, 2009].

6.5 Discussion

Alternative approaches for generating trajectories are, e.g., dynamic
programming [Bellman, 1954] or MPC (model predictive control) [Ma-
ciejowski, 2002]. They are, however, based on sampling of the trajectory
and require much more computations than the suggested approach.
Related work on real-time trajectory generation can be found in,

e.g., [Lambrechts et al., 2004; Bruyninckx, 2005; Macfarlane, 2001].
The suggested method has a constant computation time with re-

spect to the length of the trajectory, and the generated trajectory can
be represented as at most three concatenated second order polynomi-
als. The trajectory will still have to be sampled before sending it to the
robot controller, but this can be done just before the value is needed.
There is no need to sample the entire trajectory if only the first part
will be used before a modified trajectory is generated.
The closed form solutions presented on pages 69 – 70 can be com-

puted very quickly. In the worst case scenario three of the cases have
to be tested to find a valid solution.
For simplicity, it was chosen to aways catch the ball where it in-

tersected a specified vertical plane. It would be possible to instead
optimize along the trajectory of the ball, to find the position where the
ball could be caught the most easily.

73

Chapter 6. Robot Trajectory Generation

0 0.01 0.02 0.03 0.04 0.05

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

x [m]

y
 [

m
]

Target positions

Final position

Robot trajectory

0 0.05 0.1 0.15 0.2 0.25
0

0.05

x
 [

m
]

0 0.05 0.1 0.15 0.2 0.25

−1

0

1

v
 [

m
/s

]

0 0.05 0.1 0.15 0.2 0.25
−20

0

20

a
 [

m
/s

2
]

t [s]

0 0.05 0.1 0.15 0.2 0.25
0

0.05

y
 [

m
]

0 0.05 0.1 0.15 0.2 0.25

−1

0

1

v
 [

m
/s

]

0 0.05 0.1 0.15 0.2 0.25
−20

0

20

a
 [

m
/s

2
]

t [s]

Figure 6.1 Generated trajectory based on data set 1, using trajectory gen-
eration method 1. (Upper) Target points and robot trajectory in the xy-plane.
(Lower left) Time plots of position, velocity and acceleration in the x-direction.
(Lower right) Time plots of position, velocity and acceleration in the y-direction.

74

6.5 Discussion

0 0.01 0.02 0.03 0.04 0.05

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

x [m]

y
 [

m
]

Target positions

Final position

Robot trajectory

0 0.05 0.1 0.15 0.2 0.25
0

0.05

x
 [

m
]

0 0.05 0.1 0.15 0.2 0.25

−1

0

1

v
 [

m
/s

]

0 0.05 0.1 0.15 0.2 0.25
−20

0

20

a
 [

m
/s

2
]

t [s]

0 0.05 0.1 0.15 0.2 0.25
0

0.05

y
 [

m
]

0 0.05 0.1 0.15 0.2 0.25

−1

0

1

v
 [

m
/s

]

0 0.05 0.1 0.15 0.2 0.25
−20

0

20

a
 [

m
/s

2
]

t [s]

Figure 6.2 Generated trajectory based on data set 1, using trajectory gen-
eration method 2. (Upper) Target points and robot trajectory in the xy-plane.
(Lower left) Time plots of position, velocity and acceleration in the x-direction.
(Lower right) Time plots of position, velocity and acceleration in the y-direction.

75

Chapter 6. Robot Trajectory Generation

0 0.02 0.04 0.06 0.08 0.1

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

x [m]

y
 [

m
]

Target positions

Final position

Robot trajectory

0 0.05 0.1 0.15 0.2 0.25
0

0.05

x
 [

m
]

0 0.05 0.1 0.15 0.2 0.25

−1

0

1

v
 [

m
/s

]

0 0.05 0.1 0.15 0.2 0.25
−20

0

20

a
 [

m
/s

2
]

t [s]

0 0.05 0.1 0.15 0.2 0.25

−0.05

0

y
 [

m
]

0 0.05 0.1 0.15 0.2 0.25

−1

0

1

v
 [

m
/s

]

0 0.05 0.1 0.15 0.2 0.25
−20

0

20

a
 [

m
/s

2
]

t [s]

Figure 6.3 Generated trajectory based on data set 2, using trajectory gen-
eration method 1. (Upper) Target points and robot trajectory in the xy-plane.
(Lower left) Time plots of position, velocity and acceleration in the x-direction.
(Lower right) Time plots of position, velocity and acceleration in the y-direction.

76

6.5 Discussion

0 0.02 0.04 0.06 0.08 0.1

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

x [m]

y
 [

m
]

Target positions

Final position

Robot trajectory

0 0.05 0.1 0.15 0.2 0.25
0

0.05

x
 [

m
]

0 0.05 0.1 0.15 0.2 0.25

−1

0

1

v
 [

m
/s

]

0 0.05 0.1 0.15 0.2 0.25
−20

0

20

a
 [

m
/s

2
]

t [s]

0 0.05 0.1 0.15 0.2 0.25

−0.05

0

y
 [

m
]

0 0.05 0.1 0.15 0.2 0.25

−1

0

1

v
 [

m
/s

]

0 0.05 0.1 0.15 0.2 0.25
−20

0

20

a
 [

m
/s

2
]

t [s]

Figure 6.4 Generated trajectory based on data set 2, using trajectory gen-
eration method 2. (Upper) Target points and robot trajectory in the xy-plane.
(Lower left) Time plots of position, velocity and acceleration in the x-direction.
(Lower right) Time plots of position, velocity and acceleration in the y-direction.

77

Part II

Robotic Assembly

7

Introduction

Chapters 7–10 present work done on robotic assembly. Traditional
position-based robot control is very successful in many applications. In
assembly, however, the relative position of the objects to be assembled
may require an accuracy that can not be accomplished by a position-
controlled robot. Additional sources of uncertainty may result from
difficulties in gripping the objects accurately.
If contacts can be detected by force sensors, many assembly op-

erations can be performed even if the position accuracy is bad. The
following chapters describe a framework that allows a programmer to
define and execute force controlled assembly tasks in a convenient way.
The work described in Chapters 7–10 has been done in close coop-

eration with Andreas Stolt and we assert equal contribution, except
for the work on learning in Sec. 9.3, which was done by me.
A previous approach for performing robotic force control was de-

scribed in [Khatib, 1987]. In [Bruyninckx et al., 2001] a survey of the
requirements for autonomous robotic assembly was presented. In [Ols-
son et al., 2005] force sensing and vision were used to handle contact
transitions. Additional examples of force control were given in [Arai
et al., 2006], [Di Xiao et al., 2000] and [Jörg et al., 2000].

81

8

Control Framework

8.1 Task Specification

For the specification of the assembly operations the constraint-based
task specification methodology [De Schutter et al., 2007] was used. An
overview of the parts relevant for the following chapters will be given
here.
The constraint-based task specification methodology provides a con-

venient way of describing robot motions without being restricted to
joint space or Cartesian space. One or several feature chains are de-
fined, relating the tool frame of the robot to the world frame. Each
feature chain has six DOFs (degrees of freedom) χ f , which typically
are chosen to represent relevant quantities for the task.
The transformation from the world frame to the tool frame can

through the robot kinematics be described as a function of the joint
positions

Tq(q) (8.1)

The pose of the tool frame can also be described by a feature chain,
which typically consists of a series of translations and reorientations.
The transformation from the world frame to the tool frame can be
described as a function of the feature coordinates

Tf (χ f) (8.2)

82

8.1 Task Specification

The geometric Jacobians of (8.1) and (8.2) are Jq(q) and J f (χ f), re-
spectively. The condition that (8.1) and (8.2) describe the same tool
frame pose gives the equations

Tq(q) = T f (χ f) (8.3)

Jqq̇ = J f χ̇ f Z[
χ̇ f = J−1f Jqq̇

(8.4)

The outputs y are defined by

f (q, χ f) = y (8.5)

Cq =
� f
�q (8.6)

Cf =
� f
�χ f

(8.7)

Combining equations (8.4)-(8.7) gives

ẏ = Cqq̇+ Cf χ̇ f
= Aq̇ (8.8)

A = Cq + Cf J−1f Jq (8.9)

Object and Feature Frames

For convenience, object and feature frames can be introduced to facil-
itate the specification of the feature chain. The relations between the
frames are depicted in Fig. 8.1 and an example is shown in Fig. 9.2.
Below is a description of the frames and guidelines for how to choose
them.

• o1 – object frame 1. Usually attached to the object to manipulate;

• f1 – feature frame 1. Usually attached to a feature on the object
to manipulate;

• f2 – feature frame 2. Usually attached to a feature on the robot;

• o2 – object frame 2. Usually attached to the robot.

83

Chapter 8. Control Framework

w

q1
o1

χ f I
f1

χ f I I

f2
χ f I I I

o2q2

Figure 8.1 Illustration of frame interconnections.

The feature coordinate vector χ f can be partitioned into three parts
according to Fig. 8.1 with χ f = (χ f IT χ f I I

T χ f I I I
T)T . The six DOFs

of χ f can be distributed between χ f I , χ f I I and χ f I I I as appropriate
for the task at hand. In this thesis q1 will be constant unless otherwise
stated.

Control

The robot motion is described in terms of the outputs on the velocity
level:

ẏ= ẏd + C
︸ ︷︷ ︸

ẏ○
d

(8.10)

where ẏd is feed-forward for the desired trajectory and C is a controller
using feed-back from, e.g., force sensors, cameras or measured robot
joint angles. The desired robot joint velocities can then be obtained as
the solution to

ẏ○d = Aq̇d (8.11)

Unless y and q have the same dimensions and A has full rank, some
kind of pseudoinverse of A has to be used to solve (8.11). For under-
constrained systems a possibility is

q̇d = A# ẏ○d, A# = M−1AT
(
AM−1AT

)−1 (8.12)

84

8.1 Task Specification

which is the solution to the optimization problem

min
q̇d
q̇TdMq̇d

s. t. ẏ○d = Aq̇d
(8.13)

The matrix M is a weighting matrix that is used to choose the opti-
mization criterion. If the desired weighting is more easily described
in Cartesian space, then this property can easily be handled by using
M = JTq (q)M̄ Jq(q), where M̄ describes the weights in the Cartesian
space.
The Extctrl interface [Blomdell et al., 2010] to the robot allows send-

ing of joint angle references and feed-forward values for velocities and
torques. The q̇d from (8.12) is thus integrated to obtain the robot joint
angle references.

State Estimation

The pose of the tool frame can be obtained from the robot joint angles
q through (8.1). The corresponding feature coordinates χ f that solve
(8.3) can be obtained iteratively. Assume that there is an initial guess
χ̂0f of χ f . If χ̂ if ,= χ f this results in an error T id satisfying

Tq(q) = T idT f (χ̂ if) (8.14)

T id =
[

Ri ti

0 1

]

(8.15)

where Ri is a rotation matrix which can be converted to a rotation
vector vi in axis/angle representation [Spong et al., 2006]. The feature
coordinates χ f can then be obtained iteratively by

χ̂ i+1f = χ̂ if + J−1f (χ̂ if)
[

ti

vi

]

(8.16)

If the system were linear, a single iteration would be needed to arrive at
the correct solution. If χ f is estimated continuously, then the estimate
from the previous time step can be used as an initial guess, and one
or a few iterations are usually sufficient for convergence.

85

Chapter 8. Control Framework

8.2 Control Strategies

Three different control strategies were used in (8.10). Independent
scalar controllers were applied to the different components of y.

Position Control

Position control in the operational space was implemented as PI con-
trollers. Each position-controlled component of the output y was gov-
erned by

ẏ○d = ẏd
︸︷︷︸

0

+K
(

(y− yre f) +
1
Ti

∫

(y− yre f)dt
)

(8.17)

where yre f is the reference output value and K and Ti are controller
parameters. The output of the controller is hence the time derivative
of the desired output yd.

Velocity Control

Velocity control was implemented like (8.17), but with non-zero ẏd and
updating yre f according to ẏre f = ẏd.

Impedance Control

Impedance control [Hogan, 1985] was implemented to make the robot
behave as if it were a body with mass M , a viscous damping D and a
force Fre f acting on it. This was realized by

ÿ○d =
1
M
(F − Fre f − Dẏ○d) (8.18)

where F is the measured force acting on the robot, transformed through
the feature coordinates to the outputs.

8.3 Software

A framework for specifying and executing tasks described by the con-
straint-based task specification methodology was implemented in Mat-
lab/Simulink. The programs were compiled by the Real-Time Work-
shop toolbox [Real-Time Workshop, 2011] and executed on a real-time

86

8.3 Software

Linux PC [Xenomai, 2011], which connected to the robot controllers via
the Extctrl interface [Blomdell et al., 2010].
The program was structured to strictly separate task independent

parts from task specific parts. The task independent parts included
initialization, controllers, coordinate transformations, kinematics cal-
culations, gravity compensation and overload protection.
All task specific parts were to be implemented in a state machine.

State machines used were implemented in, e.g., Stateflow [Stateflow,
2011], JGrafchart [JGrafchart, 2011] or Java [Java, 2011]. The output
from the state machine to the task independent parts of the software
consisted of the following time-variable parameters:

• feature chains to be used, described as sequences of translations
and reorientations;

• active outputs;

• reference values for the outputs;

• controller types (position, velocity or impedance);

• controller parameters.

The state machines made state transitions based on, e.g., robot joint
positions or force measurements and varied the parameters to the task
independent parts through the execution of the task.

87

9

Snap Fit Assembly of

Emergency Stop Switch

9.1 Introduction

Generally, assembly without well-defined fixtures is difficult without
support from sensors. This chapter illustrates a successful approach to
solve this problem, using feedback from a force/torque sensor. Figure
9.1 shows a partly assembled emergency stop button that was used as
an example application of force controlled assembly. This chapter will
describe how to attach the dark gray switch to the light gray box using
a snap fit.

9.2 Task Description

The constraint-based task specification methodology (Sec. 8.1) was
used to describe the assembly operation. The object and feature frames,
illustrated in Fig. 9.2, were chosen as follows:

• o1 was attached to the box and was related to the world frame
by a fix transformation;

• f1 was attached to a point on the switch and had the same ori-

88

9.2 Task Description

Figure 9.1 Emergency stop button that is to be assembled.

x

y

z

o1

x

y

z
f1

x

y

z

f2
o2

y

z

y

z f2

zu

Figure 9.2 Illustration of object and feature frames.

89

Chapter 9. Snap Fit Assembly of Emergency Stop Switch

entation as o1;

• f2 had its origin coinciding with the origin of f1, but the orien-
tation was the same as for the robot flange frame;

• o2 coincided with the robot flange frame.

The feature coordinates were defined as:

• χ f I = (x y z)T described the translation from o1 to f1 with
Cartesian coordinates in o1;

• χ f I I = (ϕ θ ψ)T described the reorientation from f1 to f2 in
ZYX Euler angles;

• χ f I I I was empty since the transformation between f2 and o2 was
fix.

The process outputs were chosen to be the feature coordinates:

y= χ f = (x y z ϕ θ ψ)T (9.1)

It was assumed that the position of the box, onto which the switch
should be snapped, was only known with an accuracy of a few mm. Un-
der these circumstances position controlled assembly was not possible.
Instead, a wrist-mounted force/torque sensor was used to search for
contact with the box and hence resolve the uncertainties.
The state machine describing the assembly sequence can be seen

in Fig. 9.3 and snapshots from the execution are shown in Fig. 9.4.
In order to perform the assembly, the different controller strategies
described in Sec. 8.2 were applied to different components of the output
y at different stages of the execution.
It was assumed that the position and orientation of the box was

known well enough for the switch to hit the bottom of the box in front
of the slot where the switch should be mounted. First, all outputs y
were position controlled to position the switch over the box. Then a
velocity controller on z was used to lower the switch toward the box.
When a big contact force was detected in the z-direction, the transi-
tion to the next state was triggered and an impedance controller was
started. This was used during the rest of the execution to maintain con-
tact in the z-direction. Similarly, the other contact surfaces were found
with guarded search motions and then maintained with impedance

90

9.2 Task Description

Figure 9.3 State machine describing the assembly sequence.

91

Chapter 9. Snap Fit Assembly of Emergency Stop Switch

Figure 9.4 Snapshots from the execution of the assembly with the state num-
bers indicated in each image. The arrows indicate the direction of movement.

92

9.3 Learning

controllers. Finally the snap was detected and the assembled parts
lifted from the fixture.

9.3 Learning

When searching for contact between the robot and another object,
there is a delay between the moment when contact is made and when
the robot actually stops. If the materials are stiff, the contact forces
increase very rapidly during this delay and components may break.
Hence, the robot has to move quite slowly when searching for contact.
A learning strategy was applied to the assembly operation to re-

duce the execution time. In the initial implementation of the assembly
operation the parameters (initial position, velocities etc.) were set man-
ually. Then, the assembly operation was performed 13 times and for
each search operation the value of the corresponding feature coordinate
was recorded when contact was made. The empirical distribution of the
contact positions was used to determine a region where contact was
expected to be made. The velocity of the robot could then be increased
in the initial part of each search operation and when it reached the re-
gion where contact was expected to be made, the velocity was reduced
to the same value as before the learning strategy was applied

Experimental Results

Figure 9.5 illustrates the performance improvement gained by the
learning strategy. The figure shows the states described in Fig. 9.3 as
a function of time, with and without learning. As can be seen, the total
execution time was reduced from 8.6 [s] to 3.5 [s]. This simple learning
strategy shows that big performance improvements can be achieved by
using learning and feed-forward data. A video of the assembly being
performed with and without learning is available through [Stolt et al.,
2011].

9.4 Transient Detection

The condition for transitioning from state 7 to state 8 in Fig. 9.3 was
that the switch snapped in place. When the snap occurred, the signals

93

Chapter 9. Snap Fit Assembly of Emergency Stop Switch

0 1 2 3 4 5 6 7 8 9
1

2

3

4

5

6

7

8

Not trained

Trained

Time [s]

S
ta
te

Figure 9.5 Time evolution of the state sequence from the assembly task with
and without training. The vertical lines indicate when the assembly operations
finish.

of the z-force and the ψ -torque followed a specific signature. An auto-
matic snap detector was developed to determine whether a sequence
of measurements were caused by a snap or not.
An assumption was made that the sequence of force and torque

measurements could be considered as an n-dimensional multivariate
Gaussian random variable, where n is the number of measurements
used for the classification. With mean value µ and covariance matrix
R the probability distribution function is

fµ,R(x) =
1

(2π)n/2pRp1/2 exp
(

−1
2
(x − µ)TR−1(x − µ)

)

(9.2)

As a classification criterion to determine whether the measurement
sequence x was caused by a snap, the hyper-ellipsoid defined by

h(x) < c2 (9.3)

94

9.4 Transient Detection

was used, where

h(x) = (x − µ)TR−1(x − µ) (9.4)

Using this criterion was motivated by the fact that all points inside the
hyper-ellipsoid have higher probability density than all points outside
the hyper-ellipsoid, which can easily be verified by combining (9.2) and
(9.4).
The probability of a snap being detected as a snap is given by (9.5)

for even n and (9.6) for odd n.

p =
∫

(x−µ)TR−1(x−µ)<c2
fµ,R(x)dx

= 1− exp
(

− c
2

2

) n/2−1
∑

i=0

(c2/2)i
i!

(9.5)

p =
∫

(x−µ)TR−1(x−µ)<c2
fµ,R(x)dx

= erf
(
c√
2

)

−
√

2
π
exp

(

− c
2

2

) (n−1)/2
∑

i=1

c2i−1
∏i
j=1(2 j − 1)

(9.6)

The formulas (9.5) and (9.6) look quite complicated, but are straight
forward to evaluate on a computer, and a value of c giving an appro-
priate level of confidence could be found off-line. During execution µ,
R and c were kept constant and at each sampling instant the latest
measurement sequence x was applied to (9.3) to determine whether a
snap occurred.

Experimental Results

Two specimens of the switch were available for training of the snap
detector. Data from 10 snaps were recorded for each switch. The sam-
pling instant when the snap occurred was manually marked for each
data sequence. The 9 samples centered around the snap were then
selected and a weighted mean value subtracted. The data from the

95

Chapter 9. Snap Fit Assembly of Emergency Stop Switch

2 4 6 8 10 12 14 16 18 20
−10

−5

0

5

2 4 6 8 10 12 14 16 18 20

−0.2

−0.1

0

0.1

0.2

0.3

z-
fo
rc
e
[N
]

Sample

ψ
-t
or
qu
e
[N
m
]

Sample

Figure 9.6 The data used for training of the snap detection. The dotted curves
show the results for the 20 different experiments and the thick curve shows the
point-wise mean. Only samples 7-15 were used for the classification. In the
plots the data was aligned so the snap occurred at sample 11, and the offset was
compensated for by subtracting a weighted mean of samples 7-15.

z-force and ψ -torque were then considered as the outcome of an 18-
dimensional random variable, that would be used for detection. The
empirical mean value µ ∈ R

18 and covariance matrix R ∈ R
18$18 for

the 20 training snaps were calculated. The training data are shown in
Fig. 9.6.
When the detector was used, the 9 latest samples of the z-force and

ψ -torque were used to evaluate the snap detection criterion (9.3) at
every sampling instant. In Fig. 9.7 the snap detection is evaluated by
applying the method to 6 snaps that were not used in the training;

96

9.4 Transient Detection

0 2 4 6 8 10 12 14
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

90 %

95 %

99 %

99.9 %

Snap 1 − Switch A

Snap 2 − Switch A

Snap 3 − Switch A

Snap 4 − Switch B

Snap 5 − Switch B

Snap 6 − Switch B

1/
h
(x
)

Time [s]

Figure 9.7 Results from the snap detection. In the plot data from 6 snaps,
each with a different color, are concatenated and h(x) in (9.4) is evaluated. The
horizontal lines show the decision boundaries for different confidence levels. For
99 % of the snaps, the peak will be higher than the line marked with 99 % and
so on.

3 snaps from each specimen of the switch. The six sequences were put
side by side with 1/h(x) plotted. The snaps can be seen as very distinct
peaks.
In the lower part of Fig. 9.6, it can seen that the two different

switches had different signatures, which probably was a consequence
of one of the switches being worn out, since it had been snapped in
place many times before. The different signatures may have affected
the classification performance. In a real application scenario, however,
a new switch would be used every time, and if a new switch would be
used for every training snap too, the training data would probably be
more realistic.

97

Chapter 9. Snap Fit Assembly of Emergency Stop Switch

gripper 1 gripper 2

robot base 1 robot base 2

fixfix

world

q1
q2

χ a

χ b

Figure 9.8 Schematic overview of cooperating robots performing snap fit as-
sembly. The robot joint angles for the different robots are denoted by q1 and q2,
and the feature coordinates for the two feature chains are denoted by χ a and
χ b.

9.5 Cooperating Robots

In the assembly operations described in the previous sections of this
chapter, the switch was held by a robot and the bottom box was mount-
ed in a fixture. The same assembly was also performed with the bot-
tom box held by a second robot. The setup is schematically described
in Fig. 9.8. The box was held by gripper 1 and the switch by gripper
2. The transformation between the box and the switch, described by
feature coordinates χ a, was identical to the case with the box in a fix-
ture. Hence the state machine describing the assembly could be reused
without modifications. The remaining feature coordinates, χ b, could be
kept constant to keep gripper 1 fixed, or be used to superimpose a mo-
tion of the parts without affecting the relative position of the grippers.
Figure 9.9 shows a photo of an IRB140 and an IRB2400 performing
assembly together.

98

9.5 Cooperating Robots

Figure 9.9 Photo of cooperating robots performing snap fit assembly.

99

10

Dual Robot Lead-Through

10.1 Introduction

This chapter describes the implementation of a lead-through system
for two robots, shown in Fig. 10.1. Each robot was equipped with a
handle mounted on a 6-DOF force/torque sensor, which in turn was
mounted on the flange of the robot. The robots were constrained to
move so they always had identical positions relative to their respective
initial positions. The simultaneous motion of the robots was governed
by an impedance controller, giving the robots a virtual mass, moment

Figure 10.1 Lead-through of virtually connected robots.

100

10.2 System Structure

of inertia and damping.
Forces applied to the handle of one robot, were felt by a hand hold-

ing the handle of the other robot. A system like this can hence be used
as a haptic device for teleoperation. By applying different gains on the
two robots it can be used to, e.g., increase the strength of the user.

10.2 System Structure

The forward kinematics will in this chapter be computed for the tool
frame, which has the same orientation as the flange frame and has its
origin where the hand grips the handle. All robot Jacobians used will
be described in the tool frame. The subscript i is used to denote the
two different robots, and the subscript j is used to denote one of the six
components in a force/torque vector or a translational and rotational
velocity vector.
The initial positions of the robots are denoted by

T0i (10.1)

where i = 1 for one of the robots and i = 2 for the other. Since both
robots have the same motion relative to their initial positions, the out-
put of the controller can easily be described in a robot independent
way. The reference position Ti is described by the displacement Td for
the respective robots:

Ti(qi) = T0iTd (10.2)

which through the inverse kinematics gives the reference positions for
the robot joints qi. The impedance controller outputs the desired trans-
lational and rotational velocity v of the tool frame described in the tool
frame, fulfilling

v = Ji(qi)q̇i (10.3)

101

Chapter 10. Dual Robot Lead-Through

where Ji is the Jacobian of robot i, and v has the structure

v =

v1

v2

v3

v4

v5

v6

=
[

ṫ

ω

]

(10.4)

where ṫ is the translational velocity and ω is the rotational velocity.
The desired robot joint velocities can be calculated as

q̇i = J−1i (qi)v (10.5)

The controller is implemented as six independent scalar impedance
controllers according to

v̇j =
1
Mj
(Fj − D jvj) (10.6)

where vj is one of the six components of v, Fj is the applied force/torque
in the corresponding direction, D j is the virtual damping and Mj is the
virtual mass/moment of inertia. The output of the controller, to be used
in (10.5), is then obtained by integrating the left hand side of (10.6);
vj =

∫
v̇jdt.

Since the output of the controller is a velocity and the interface to
the robots requires a reference position, the controller output has to be
integrated somehow. This is done in the joint space of robot 1:

q1 =
∫

J−11 (q1)v dt (10.7)

From the forward kinematics T1(q1) the displacement can then be cal-
culated as

Td = T−101 T1(q1) (10.8)

102

10.3 Experimental Results

The force vector F, whose components are used in (10.6), is calcu-
lated as a combination of the forces Fsi measured by the force/torque
sensors and virtual torques τ qi applied to avoid joint limits:

F = k1Fs1 + k2Fs2 + J−T1 (q1)τ q1 + J−T2 (q2)τ q2 (10.9)

where k1 and k2 are gains. Since the transformations from the sensor
frames to the respective tool frames are fix and the control is done in
the tool frame, the sensor measurements can be transformed to Fs1
and Fs2 using fix transformations. The gains k1 and k2 can be used to
scale how forces applied to one robot are perceived at the other robot.
When a joint limit was close to being violated, a virtual linear

spring applied a torque to the corresponding joint in τ qi, and the torque
was transformed to the tool frame by means of the robot Jacobian as
described in (10.9). By setting the joint limits properly this could also
be used to avoid kinematic singularities.
For safety reasons the robots were in teach mode when doing the

lead-through, which meant that the robot was to do an emergency stop
if any of the motors exceeded a threshold speed. These speed limits
were easily exceeded, and to avoid the robot doing emergency stops all
the time, a speed limitation was added to the controller on the motor
level.
To avoid the robots drifting away, due to noise and offsets of the

force measurements, the applied forces to the handles had to exceed
some threshold values before the robots started moving.

10.3 Experimental Results

The system was successfully implemented, using an ABB IRB140 and
an ABB IRB2400, which proves the ability of the system to handle
robots with different kinematics. If a person grabbed the handle of one
of the robots, the robot could be moved with a perceived virtual mass,
moment of inertia and damping. Both robots would make identical
motions and if the joint limits of any of the robots were close to being
violated, the force of virtual springs were felt in the handle. If a robot
made contact with an object, the contact force was perceived by the
person holding the handle of the other robot. In one experiment a

103

Chapter 10. Dual Robot Lead-Through

spatula was attached to one of the robots and used to cut a birthday
cake.

104

11

Conclusions

A new way of initializing the Kalman filter has been presented, mak-
ing it possible to calculate a state estimate that is not influenced by
any guess of the initial value of the state. Instead the estimate can be
determined completely based on the first measurements. This is ac-
complished by choosing a new state space where the directions with
infinite variance are orthogonal to as many basis vectors as possible.
A strategy for tracking dynamical objects with computer vision was

described. It provides a simple way to fuse data from an arbitrary
number of pictures captured simultaneously. In combination with a
dynamical model of the tracked object, it enables determination of the
position of the object in 3D space without any two images being cap-
tured at the same time. It also allows tracking of objects in 3D space,
using only a single static camera.
A method for generating trajectories with uncertain target points

was described. It pays attention to the deadline and uses the smallest
acceleration possible to reach the goal in time. When a new target point
is received, the trajectory is smoothly modified on the fly.
A method for performing force controlled assembly was described

and used to perform snap fit assembly of an emergency stop switch.
Learning was used to reduce the execution time.

105

A

Bibliography

ABB Robots (2011): “http://www.abb.com/product/us/9AAC100735.

aspx.”

Arai, T., N. Yamanobe, Y. Maeda, H. Fujii, T. Kato, and T. Sato (2006):
“Increasing Efficiency of Force-Controlled Robotic Assembly::-
Design of Damping Control Parameters Considering Cycle Time.”
CIRP Annals-Manufacturing Technology, 55:1, pp. 7–10.

Ball-Catcher Video (2009): “http://www.youtube.com/watch?v=

Fxzh3pFr3Gs.”

Basler (2011): “http://www.baslerweb.com/beitraege/unterbeitrag_

en_23042.html.”

Bäuml, B., F. Schmidt, T. Wimböck, O. Birbach, A. Dietrich, M. Fuchs,
W. Friedl, U. Frese, C. Borst, M. Grebenstein, O. Eiberger, and
G. Hirzinger (2011): “Catching flying balls and preparing cof-
fee: Mobile humanoid Rollin’ Justin perfoms dynamic and sensi-
tive tasks.” In Proc. IEEE Intl. Conf. Robotics and Automation
(ICRA2011), May 9-13, Shanghai, China, pp. 3443–3444.

Bayes, T. (1763): “An essay towards solving a problem in the doctrine of
chances.” Phil. Trans. of the Royal Soc. of London, 53, pp. 370–418.

Bellman, R. (1954): “The theory of dynamic programming.” Bulletin of
the American Mathematical Society 60, pp. 503–516.

Birbach, O. and U. Frese (2009): “A multiple hypothesis approach for
a ball tracking system.” In Fritz et al., Eds., ICVS, vol. 5815 of
Lecture Notes in Computer Science, pp. 435–444. Springer.

106

Birbach, O., U. Frese, and B. Bäuml (2011): “Realtime perception for
catching a flying ball with a mobile humanoid.” In Proc. IEEE Intl.
Conf. Robotics and Automation (ICRA2011), May 9-13, Shanghai,
China, pp. 5955–5962. IEEE.

Birbach, O., J. Kurlbaum, T. Laue, and U. Frese (2008): “Tracking
of ball trajectories with a free moving camera-inertial sensor.” In
Iocchi et al., Eds., RoboCup, vol. 5399 of Lecture Notes in Computer
Science, pp. 49–60. Springer.

Blomdell, A., G. Bolmsjö, T. Brogårdh, P. Cederberg, M. Isaksson, R. Jo-
hansson, M. Haage, K. Nilsson, M. Olsson, T. Olsson, A. Roberts-
son, and J. Wang (2005): “Extending an industrial robot controller–
Implementation and applications of a fast open sensor interface.”
IEEE Robotics & Automation Magazine, 12:3, pp. 85–94.

Blomdell, A., I. Dressler, K. Nilsson, A. Robertsson, and I. Dressler
(2010): “Flexible application development and high-performance
motion control based on external sensing and reconfiguration of
abb industrial robot controllers.” In Proc. ICRA 2010 Workshop on
Innovative Robot Control Architectures for Demanding (Research)
Applications. Anchorage, AK.

Bruyninckx, H. (2005): “http://people.mech.kuleuven.be/~bruyninc/

blender/doc/interpolation-ap%i.html.”

Bruyninckx, H., T. Lefebvre, L. Mihaylova, E. Staffetti, J. De Schutter,
and J. Xiao (2001): “A roadmap for autonomous robotic assembly.”
In Proc. Intl. Symp. Assembly and Task Planning. Fukuoka, Japan.

De Schutter, J., T. De Laet, J. Rutgeerts, W. Decré, R. Smits, E. Aert-
beliën, K. Claes, and H. Bruyninckx (2007): “Constraint-based task
specification and estimation for sensor-based robot systems in the
presence of geometric uncertainty.” Intl. J. Robotics Research, 26,
pp. 433–455.

Di Xiao, B., N. Xi, and T. Tarn (2000): “Sensor-based hybrid posi-
tion/force control of a robot manipulator in an uncalibrated en-
vironment.” IEEE Trans. Control Systems Technology, 8:4, p. 635.

Einhorn, E., C. Schröter, H.-J. Böhme, and H.-M. Gross (2007): “A
hybrid Kalman filter based algorithm for real-time visual obstacle

107

Appendix A. Bibliography

detection.” Proc. 52nd Intl. Scientific Colloquium (IWK), II, pp. 353–
358.

Farooq, M. and S. Bruder (1990): “Information type filters for tracking
a maneuvering target.” Trans. Aerospace and Electronic Systems,
26:3, pp. 441–454.

Frese, U., B. Baeuml, G. Schreiber, I. Schaefer, M. Haehnle,
G. Hirzinger, and S. Haidacher (2001): “Off-the-shelf vision for
a robotic ball catcher.” In Proc. IEEE/RSJ Intl. Conf. Intelligent
Robots and Systems (IROS2001), October 2001, Maui, pp. 1623–
1629.

Graustein, W. C. (1930): Homogeneous Cartesian Coordinates. Linear
Dependence of Points and Lines. Ch. 3 in Introduction to Higher
Geometry. Macmillan, New York.

Hagander, P. (1973): Operator Factorization and Other Aspects of the
Analysis of Linear Systems. PhD thesis TFRT-1005, Department of
Automatic Control, Lund University, Sweden.

Hogan, N. (1985): “Impedance control: An approach to manipulation.”
ASME J. Dynamic Systems, Measurement, and Control, 107, pp. 1–
24.

Hyland, J. (2002): “An iterated-extended Kalman filter algorithm
for tracking surface and sub-surface targets.” OCEANS ’02
MTS/IEEE, 3, pp. 1283–1290.

Java (2011): “http://www.oracle.com/technetwork/java/index.

html.”

JGrafchart (2011): “http://www.control.lth.se/Research/tools/

grafchart.html.”

Jia, Z., A. P. Balasuriya, and S. Challa (2005): “Sensor fusion based
3D target visual tracking for autonomous vehicles with IMM.” In
Proc. IEEE Intl. Conf. Robotics and Automation (ICRA 2005), April
18-22, 2005, Barcelona, Spain, pp. 1829–1834.

Jörg, S., J. Langwald, C. Natale, J. Stelter, and G. Hirzinger (2000):
“Flexible robot-assembly using a multi-sensory approach.” In IEEE
Intl. Conf. Robotics and Automation (ICRA2000), vol. 4, pp. 3687–
3694. San Francisco.

108

JR3 (2011): “http://www.jr3.com.”

Kailath, T., A. Sayed, and B. Hassibi (2000): “Linear estimation.”
Prentice Hall, Upper Saddle River, NJ, pp. 310–361.

Kalman, R. (1960): “A new approach to linear filtering and prediction
problems.” Transactions of the ASME–J. Basic Engineering, 82:Se-
ries D, pp. 35–45.

Khatib, O. (1987): “A unified approach for motion and force control of
robot manipulators: The operational space formulation.” IEEE J.
Robotics and Automation, 3:1, pp. 43–53.

LabComm (2011): “http://torvalds.cs.lth.se/moin/LabComm.”

Lambrechts, P., M. Boerlage, and M. Steinbuch (2004): “Trajectory
planning and feedforward design for high performance motion
systems.” In American Control Conference, pp. 4637–4642.

Lamiroy, B., B. Espiau, N. Andreff, and R. Horaud (2000): “Controlling
robots with two cameras: How to do it properly.” In IEEE Intl.
Conf. Robotics and Automation (ICRA2000), pp. 2100–2105. San
Francisco.

Linderoth, M. (2008): “Vision based tracker for dart catching robot.”
Master’s Thesis ISRN LUTFD2/TFRT--5830--SE. Department of
Automatic Control, Lund University, Sweden.

Linderoth, M., A. Robertsson, K. Åström, and R. Johansson (2009): “Vi-
sion based tracker for dart-catching robot.” In Preprints 9th IFAC
Intl. Symp. Robot Control (SYROCO’09). Gifu, Japan, September
9-12, 2009, pp. 883-888.

Linderoth, M., A. Robertsson, K. Åström, and R. Johansson (2010):
“Object tracking with measurements from single or multiple cam-
eras.” In Proc. Intl. Conf. Robotics and Automation (ICRA2010),
pp. 4525–4530. Anchorage, AK.

Ma, Y., S. Soatto, J. Kosecka, and S. S. Sastry (2003): An Invitation
to 3-D Vision: From Images to Geometric Models. SpringerVerlag.

Macfarlane, S. (2001): “On-line smooth trajectory planning for manip-
ulators.” M.A.Sc. thesis. Dept. Mech. Eng., Univ. British Columbia,
Vancouver, Canada.

109

Appendix A. Bibliography

Maciejowski, J. (2002): Predictive Control with Constraints. Prentice
Hall, Pearson Education, England.

Marayong, P., G. D. Hager, and A. M. Okamura (2008): “Control meth-
ods for guidance virtual fixtures in compliant human-machine in-
terfaces.” In Proc. IEEE/RSJ Intl. Conf. Intelligent Robots and Sys-
tems (IROS2008), September 22-26, 2008, Nice, France, pp. 1166–
1172.

Matsushima, M., T. Hashimoto, and F. Miyazaki (2003): “Learning to
the robot table tennis task – ball control & rally with a human.”
IEEE Intl. Conf. Systems Man and Cybernetics, 3, pp. 2962 – 2969.

Möbius, F. (1827): Die Barycentrische Calcül, Reprinted 1967 in
Gesammelte Werke, vol. 1, pp. 36–49. Dr. M. Saendig oHG, Wies-
baden, Germany.

Moutarlier, P. and R. Chatila (1990): “An experimental system for
incremental environment modelling by an autonomous mobile
robot.” In The First Intl. Symp. Experimental Robotics I, pp. 327–
346. Springer-Verlag, London, UK.

Olsson, T., J. Bengtsson, A. Robertsson, and R. Johansson (2003):
“Visual position tracking using dual quaternions with hand-eye
motion constraints.” In IEEE Intl. Conf. Robotics and Automation
(ICRA2003), pp. 3491–3496. Taipei, Taiwan.

Olsson, T., R. Johansson, and A. Robertsson (2005): “Force/vision
based active damping control of contact transition in dynamic
environments.” In Proc. 10th IEEE Intl. Conf. Computer Vision,
Workshop on Dynamical Vision. Beijing.

Olsson, T., R. Johansson, and A. Robertsson (2006): “High-speed visual
robot control using an optimal linearizing intensity-based filtering
approach.” In Proc. IEEE/RSJ Intl. Conf. Intelligent Robots and
Systems (IROS2006). Beijing, China.

Pearl, J. (1985): “Bayesian networks: A model of self-activated memory
for evidential reasoning.” In Proc.7th Conference of the Cognitive
Science Society, pp. 329–334. Irvine, CA.

Real-Time Workshop (2011): “http://www.mathworks.com/products/

simulink-coder/index.html.”

110

Sato, Y., J. Takamatsu, H. Kimura, and K. Ikeuchi (2003): “Recognition
of a mechanical linkage based on occlusion-robust object tracking.”
In Proc. IEEE Conf. Multisensor Fusion and Integration for Intel-
ligent Systems, pp. 329–334. Tokyo, Japan.

Smith, R., M. Self, and P. Cheeseman (1990): Estimating uncertain
spatial relationships in robotics, pp. 167–193. Springer-Verlag New
York, Inc., New York, NY, USA.

Smith, R. C. and P. Cheeseman (1986): “On the representation and
estimation of spatial uncertainly.” Intl. J. Robotics Research, 5,
December, pp. 56–68.

Spong, M. W., S. Hutchinson, and M. Vidyasagar (2006): Robot
Modeling and Control. John Wiley & Sons, Hoboken, NJ.

Stateflow (2011): “http://www.mathworks.com/products/stateflow.”

Stolt, A., M. Linderoth, A. Robertsson, and R. Johansson (2011): “Force
controlled assembly of emergency stop button.” In Proc. 2011 IEEE
Intl. Conf. Robotics and Automation (ICRA2011), pp. 3751–3756.
May 9-13, 2011, Shanghai, China.

Thrun, S., Y. Liu, D. Koller, A. Y. Ng, Z. Ghahramani, and H. Durrant-
Whyte (2004): “Simulataneous localization and mapping with
sparse extended information filters.” Intl. J. Robotics Research,
23:7–8, pp. 693–716.

Walter, M. R., R. M. Eustice, and J. J. Leonard (2007): “Exactly
sparse extended information filters for feature-based SLAM.” Intl.
J. Robotics Research, 26:4, pp. 335–359.

Weiner, L. B. (1981): “Kalman filter initialization with large initial
uncertainty and strong measurement nonlinearity.” Proc. Region 3
Conf. and Exhibit, Huntsville, AL; United States, pp. 150–151.

Xenomai (2011): “http://www.xenomai.org.”

Yilmaz, A., O. Javed, and M. Shah (2006): “Object tracking: A survey.”
ACM Comput. Surv., 38:4.

111

Department of Automatic Control

Lund University
Box 118

SE-221 00 Lund Sweden

Document name
LICENTIATE THESIS
Date of issue
June 2011
Document Number
ISRN LUTFD2/TFRT--3251--SE

Author(s)
Magnus Linderoth

Supervisor

Rolf Johansson, Anders Robertsson

Sponsoring organisation

ROSETTA (EU FP7)
Title and subtitle

Robotic Work-Space Sensing and Control

Abstract

Industrial robots are traditionally programmed using only the internal joint position sensors, in a sense
leaving the robot blind and numb. Using external sensors, such as cameras and force sensors, allows
the robot to detect the existence and position of objects in an unstructured environment, and to handle
contact situations not possible using only position control.

This thesis presents work on how external sensors can be used in robot control. A vision-based robotic
ball-catcher was implemented, showing how high-speed computer vision can be used for robot control with
hard time constraints. Special attention is payed to tracking of a flying ball with an arbitrary number of
cameras, how to initialize the tracker when no information about the initial state is available, and how
to dynamically update the robot trajectory when the end point of the trajectory is modified due to new
measurements. In another application example, force control was used to perform robotic assembly. It is
shown how force sensing can be used to handle uncertain positions of objects in the workspace and detect
different contact situations.

Key words
Robotics, computer vision, visual tracking, filter initialization, on-line trajectory generation, force control,
assembly, cooperating robots

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title

0280–5316
ISBN

Language

English
Number of pages

114
Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through:
University Library, Box 134, SE-221 00 Lund, Sweden
Fax +46 46 222 42 43 E-mail lub@lub.lu.se

