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In Monte Carlo computer simulations of high energy particle collisions, the 
Lund string hadronization model is a popular choice for transforming parton 
level calculations to a hadronic final state. The figure shows the simulated 
string configuration, in impact parameter space and rapidity, for a very busy 
proton-proton collision at 7 TeV. In the overlap regions, properties of the strings 
will change, as the strings form more complex ropes.
This thesis investigates how corrections to the hadronization model in collisions 
like this, can lead to novel physical phenomena.
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Populärvetenskaplig sammanfattning

Människans vilja att först̊a universums mest fundamentala byggstenar och dess naturla-
gar är den drivkraft som ligger till grund för elementarpartikelfysiken. Den teoretiska
forskningen inom detta omr̊ade vägleds idag till stor del av data fr̊an LHC-experimentet
utanför Genève (LHC förkortar ‘Large Hadron Collider’, dvs. den Stora Hadronacceler-
atorn). Vid LHC accelereras protoner till extremt höga hastigheter varp̊a de kollideras
parvis med varandra. I kollisionerna bildas nya partiklar ur protonernas rörelseenergi
tack vare Einsteins berömda ekvation E = mc2 som säger att massa kan konverteras till
energi och vice versa, och de nya partiklarnas egenskaper, s̊asom massa eller elektrisk
laddning, kan därefter uppmätas. Vi kan genom detta lära oss mer om redan kända
partiklar, samt leta efter nya hittills oupptäckta partiklar.

P̊a grund av den höga energin som uppn̊as vid LHC rör sig partiklarna med en hastighet
som oftast är mycket nära ljusets, vilket betyder att Einsteins speciella relativitetsteori
behövs för en korrekt beskrivning av vad som händer i dessa partikelkollisioner. Dessu-
tom sker processer under extremt korta tidsintervall p̊a ofantligt sm̊a avst̊and vilket
medför att kvantmekanik behöver tillämpas. Sammanförandet mellan den speciella rel-
ativitetsteorin och kvantmekaniken leder till den s.k. kvantfältteorin där alla partiklar
av en viss sort, t.ex. elektronen, beskrivs som sm̊a v̊agor, eller kvantexcitationer, av ett
och samma elektronfält vars utbredning sträcker sig över hela universum.

Den s.k. standardmodellen är en viss kvantfältteori som p̊a ett elegant och matematiskt
konsistent vis beskriver alla hittills detekterade elementarpartiklar (Higgspartikeln blev
den sista partikeln i standardmodellen att f̊a sin existens experimentellt bekräftad, vilket
skedde år 2012). Med endast ett tjugotal fria parametrar kan forskare med hjälp av
standardmodellen framg̊angsrikt förutsäga resultaten p̊a ofantligt m̊anga experimentella
mätningar, vilket gör att f̊a idag betvivlar standardmodellens korrekthet.

Genom att bestämma de numeriska värdena p̊a de fria parametrarna i standardmodellen
utifr̊an experimentella mätningar, framg̊ar dock vissa mönster som helt saknar förklar-
ing inom standardmodellen själv. Till exempel finns det tre kopior, eller s.k. familjer,
av varje fermion (t.ex. elektronen) som är helt identiska förutom i hur mycket de väger.
Det finns t.ex. tv̊a tyngre, men i övrigt identiska, kopior av elektronen (myonen och
tau-partikeln). Orsaken till den hierarkiska struktur som fermionmassorna uppvisar
utgör idag ett av standardmodellens stora mysterier.

Standardmodellen inneh̊aller en beskrivning av tre av naturens fyra fundamentala krafter
som vi hittills känner till (alla utom gravitationen): den elektromagnetiska kraften, den
svaga kraften (vilken bland annat är orsaken till en del radioaktiva sönderfall) samt
den starka kraften (vilken bland annat binder samman kvarkarna till protoner och neu-
troner). I standardmodellen sammanförs den elektromagnetiska kraften med den svaga
kraften genom den s.k. Higgs-mekanismen, vilket visar att dessa tv̊a krafter egentligen
är “tv̊a sidor av samma mynt”, dvs. den elektrosvaga kraften. P̊a ett liknande sätt
kan hypotetiska storföreningsteorier (eller “Grand Unified Theories”) sammanföra den
elektrosvaga kraften med den starka kraften till en enda fundamental kraft. Tv̊a av
artiklarna i denna avhandling (artikel II och III) handlar om en viss sorts storfören-



ingsteori, dvs. den s.k. trinifieringsteorin, där vi dessutom lägger till en ny hittills out-
forskad symmetri mellan fermionfamiljerna. Dessa artiklar handlar om hur en del av
standardmodellens egenskaper, t.ex. de hierarkiska fermionmassorna, skulle kunna förk-
laras av att naturen p̊a väldigt sm̊a avst̊and (mycket mindre än vad som hittills har
utforskats experimentellt) beskrivs av en s̊adan trinifieringsmodell. Den första artikeln
i avhandlingen, artikel I, handlar om ett matematiskt verktyg som kan användas för
att förenkla beräkningar av kvantmekaniska effekter i utvidgningar av standardmod-
ellen, s̊asom modellerna i artikel II och III, där traditionella metoder för att göra dessa
beräkningar lätt kan bli onödigt kr̊angliga p̊a grund av det stora antal nya partiklar
som ofta ing̊ar i s̊adana modeller.

Den fjärde och sista artikeln i denna avhandling, artikel IV, handlar om en annan
typ av utvidgning av standardmodellen, där existensen av nya Higgsfält postuleras. I
standardmodellen finns nämligen bara ett Higgsfält, men i modellen i artikel IV finns
tre familjer av Higgsfält, liknande de tre familjerna av fermioner. Genom att lägga
till fler Higgsfält kan man ocks̊a lägga till familjesymmetrier som i sin tur gör en del
av standardmodellens strukturer mindre godtyckliga. I artikel IV föresl̊ar vi ocks̊a en
metod som experimentalister skulle kunna använda sig av för att leta efter den lättaste
av de nya elektriskt laddade Higgspartiklarna som denna modell förutsäger.
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Introduction

The main body of this thesis consists of four journal articles (hereafter referred to
as Paper I, Paper II, Paper III and Paper IV respectively) that all deal with various
aspects of model building beyond the Standard Model of particle physics. The purpose
of this introduction is to present the reader with the background theory required for
understanding these articles. I have tried to write this introduction such that as much
of it as possible would be accessible to perhaps an undergraduate student that has for a
few years been enrolled in a standard theoretical physics program with a specialization
towards particle theory. I.e. a familiarity with basic group theory, the theory of special
relativity and the framework of quantum mechanics is assumed of the reader, as well
as hopefully a few previous encounters with field theory.

The Standard Model (which due to overwhelming observational evidence today consti-
tute our best understanding of all observed elementary particles and their interactions),
as well as the vast majority of its speculated extensions, are all formulated in the lan-
guage of quantum field theory (QFT). This is the subject of both Sec. 1 (which is devoted
to non-interacting QFTs) and Sec. 2 (in which we introduce interactions). These sec-
tions are heavily based on my favourite parts of standard QFT textbooks [1, 2, 3, 4], and
contain very little original material. They do however contain a few key ideas that help
explaining why modern theories of elementary particles are the way they are; ideas that
are well known in the community but perhaps not often taught in basic QFT courses
(at least they were not in any of mine!) which is the reason I wanted to write about
them. For example, Sec. 1.2 contains the very definition of what we today mean by a
(quantum) particle (i.e. the quantum states that follow from Wigner’s classification of
the representations of the Poincaré group), where after it is shown in Secs. 1.3–1.5 how
the standard free relativistic wave equations follow from this, depending on e.g. the spin
and the mass of the corresponding particle. These wave equations, such as Maxwell’s
equations or the Dirac equation, are often either derived in a historically correct but not
very illuminating way, or simply “pulled out of a hat”. Another example (in Sec. 2.2)



is Polchinski’s argument for why “things look renormalisable” when the ultra violet
cut-off of the theory is far above experimentally accessible energies.

Sec. 2 also contains important material for in particular Papers I–III. The quantum ef-
fective action and the so called Coleman-Weinberg potential are introduced in Sec. 2.2,
and are especially important for Paper I. In Paper I, we derive closed form analytical
expressions for an arbitrary number of derivatives of the Coleman-Weinberg potential
in a general four-dimensional renormalisable field theory with arbitrary numbers of
fields with spin ≤ 1. These correspond to the one-loop corrections to connected and
amputated n-point functions with only scalar external particles, in the approximation
where external momenta are neglected in internal propagators (this is explained in
Sec. 2.2). This approximation is justified when the momenta of the external particles
are all much smaller than the masses of the particles running in the loops. This is
indeed the typical situation when one is interested in the effects from heavy virtual
particles on the effective couplings among light particles that in turn may be directly
measured in experiment. Our results in Paper I can therefore serve as a tool for model
builders e.g. trying to figure out the low-energy predictions of Standard Model exten-
sions containing new heavy particles. This tool would be particularly useful in theories
with many new fields, since a standard diagrammatic approach in such cases tends to
be both very cumbersome and error-prone due to the large number of particles and
diagrams involved. Sec. 2.5 contains a brief discussion on the concept of effective field
theory which is mainly important for Paper II, but also to some extent for Paper III.
These papers deal with a non-supersymmetric and a supersymmetric version, respec-
tively, of a trinification model (the trinification model itself is described in Sec. 4.3)
where a novel SU(3)F family symmetry is introduced that greatly increases the degree
of unification compared to standard trinification constructions. The long term goal of
these research projects is to study if the Standard Model (or something very similar)
can be found as a low-energy effective field theory from such a trinification model, and
in Paper II and Paper III we take a first few steps in this direction. In fact, the discus-
sion on effective field theories in Sec. 2.5 is based on a toy model which in its structure
is very similar to the model in Paper II.

Sec. 3 then follows, in which the Standard Model is introduced. Its scalar sector, gauge
sector and fermion sector are all described, and in particular how they are affected in the
Higgs mechanism for the electro-weak symmetry breaking. Special attention is given
in Sec. 3.4 to the flavour structure of the Standard Model, such as the fermion mass
hierarchies and the almost Cabibbo form of the flavour mixing under charged current
interactions. This is important mainly for Paper IV, where we study a model where the
Standard Model scalar sector is augmented by two additional Higgs doublets (i.e. this is
a so-called 3 Higgs Doublet Model, or 3HDM for short). While there is no a priori reason
for the Standard Model flavour patterns to be found within the Standard Model itself,
the increased field content in 3HDMs makes it possible to impose additional symmetries
that can partly enforce such structures. In Paper IV we impose a U(1) × U(1) family
symmetry on a 3HDM, which in particular makes it so that the heaviest quark family
couples exclusively to the “third” Higgs doublet H3. The two lightest quark families
couple to the other two Higgs doublets H1,2 such that the up-type and the down-type
quarks receive their masses from H1 and H2 respectively. This leads directly to an

2



exact Cabibbo quark mixing, and a hierarchy in the vacuum expectation values of the
Higgs doublets, 〈H1,2〉 � 〈H3〉, can be directly linked to the quark mass hierarchies1.
Two important consequences of this hierarchy is that the scalar spectrum contains
a Standard Model-like Higgs boson, and that the other exotic scalar particles couple
most strongly to the second quark family, i.e. to the charm and the strange quarks. The
second point is interesting because searches for new physics often focus instead on the
heaviest quark family. In Paper IV we also propose a search strategy for the lightest
electrically charged scalar particle in the model that utilises this fact, and show that
a significant part of the model’s parameter space can be probed already with current
experimental data if our analysis were to be used by the experimental collaborations.

In Sec. 4 I describe a few possible ways in which the Standard Model may be extended.
Sec. 4.1 contains a minimalistic review of supersymmetry that is relevant for Paper
III. Sec. 4.2 then follows in which the idea of Grand Unification is described, and in
particular how the non-observation of proton decay is in some tension with the simplest
realisations of Grand Unification. Sec. 4.3 is then devoted to the particular Grand
Unification scenario called trinification, in which the proton is naturally much more
stable than in other Grand Unification models. After a quick review of previous work
on trinification models, I move on to discuss a few aspects of the trinification models
in Paper II and Paper III, where the trinification gauge group is augmented by a novel
SU(3)F family symmetry.

So called natural units are employed throughout this thesis, where ~ = c ≡ 1 (here, ~
is the reduced Planck constant and c is the speed of light). The basic unit of energy
will be gigaelectronvolt (GeV), which in natural units corresponds to

1 GeV ∼ 10−27 kg ∼
(
10−16 m

)−1 ∼
(
10−24 s

)−1
, (1.1)

in standard SI units. I have used the “mostly minus” convention for the Minkowski
metric, i.e. ηµν = diag(1,−1,−1,−1).

1 Quantum field theory: free fields

The framework of quantum field theory (QFT) has provided, since its gradual invention
starting in the 1920’s, an accurate description of physical phenomena over an astonish-
ingly wide range of energy scales. It is used to explain observations involving energies
all the way from the 10’s of TeV range (i.e. in proton-proton collisions at the Large
Hadron Collider) down to the MeV scale relevant for nuclear physics, and even cer-
tain precision effects in atomic physics2. Moreover, theorists today use the language
of QFT, mostly without worry, when postulating new models whose energy range of

1The tuning of the two numbers 〈H1,2〉 may be considered a slight improvement compared to the
tuning of the four quark masses mu,d,c,s in the Standard Model.

2The energy difference between 2S 1
2

and 2P 1
2

levels in the hydrogen atom amounts to roughly a few

µeV, and can be attributed to the quantum vacuum fluctuations of the electro-magnetic field. This is
the so called Lamb shift.

3



validity sometimes extends up to the Grand Unification scale, which can be as large
as 1016 GeV, i.e. twelve orders of magnitude above the highest energy scale that has
been directly probed in experiments (such models are the topics of some of the articles
included in this thesis). However, we will soon see that both the general framework of
QFT, as well as the particular form of the usual Lagrangians for spin ≤ 1 fields, follow
from very general (and reasonable) assumptions.

1.1 The Lorentz group and the Poincaré group

The starting point for our discussion of QFT will be the Poincaré group, which I very
briefly introduce in this section. This is the group of combined space-time translations
(xµ → xµ+aµ) and Lorentz transformations (i.e. xµ → Λµν x

ν with ΛµρΛ
ν
ση

ρσ = ηµν).
There are 10 generators of this group in the four-dimensional space-time we live in: the
temporal and the three spatial components of the four-momentum Pµ generate time and
space translations respectively, while the generators of Lorentz transformations can be
grouped into an anti-symmetric object J µν = −J νµ such that J ij generate rotations
in the xixj plane, while J 0i generate boosts in the xi direction. These generators obey
the Poincaré algebra,

[Pµ, P ν ] = 0 , [J µν , P ρ] = i (ηµρP ν − ηνρPµ) ,

[J µν ,J ρσ] = i (ηµρJ νσ − ηνρJ µσ + ηνσJ µρ − ηµσJ νρ) . (1.2)

The last line only involves generators of the Lorentz group SO(1, 3), i.e. the J µν from the
Lorentz algebra. If we write J ij ≡ εijkJk and J 0i ≡ Ki, and form the combinations
J i± ≡ J i ± iKi, then one can check that the Lorentz algebra is equivalent to two
factorized SU(2) algebras,

[J i±, J
j
±] = iεijkJk± , [J i+, J

j
−] = 0 . (1.3)

The representations of the Lorentz group are therefore very simple if you are familiar
with the representations of SU(2). The irreducible representations of SU(2) are labelled
by a half-integer s = 0, 1

2 , 1,
3
2 , . . . , each with dimensionality 2s + 1. Eq. (1.3) tells

us that the irreducible representations of the Lorentz group can always be put in the
form of (2s+ 1) by (2r+ 1) matrices where s, r = 0, 1

2 , 1,
3
2 , . . . . We can therefore label

irreducible representations of the Lorentz group by pairs of non-negative half-integers
(s, r). Also, note that (s, r) and (r, s) are related both by complex conjugation (since
(J i±)∗ = J i∓) and by parity (since J i → J i and Ki → −Ki and therefore J i± → J i∓
under ~x→ −~x).

The simplest representation of the Lorentz group is the scalar (0, 0). Next up are the
2-component Weyl spinors ( 1

2 , 0) and (0, 1
2 ), which are referred to as “left-handed” and

“right-handed” respectively. I will often use the so-called “dotted/undotted” notation
where indices belonging to (0, 1

2 ) are over-set by a dot · to distinguish them from ( 1
2 , 0)

indices. For example, if ξα ∼ ( 1
2 , 0), then (ξα)† ≡ ξ†α̇ ∼ (0, 1

2 ). Two Weyl spinors ξα

and χα can combine into a Lorentz invariant through the 2-dimensional Levi-Cevita

tensor as ξαχβεαβ ≡ ξαχα ≡ ξχ. Similarly, ξ†β̇χ†α̇εα̇β̇ ≡ ξ†α̇χ
†α̇ ≡ ξ†χ† is a Lorentz

invariant.
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The ( 1
2 ,

1
2 ) representation corresponds to the Lorentz vector (or the four-vector) rep-

resentation, i.e. the defining representation of the Lorentz group. Pairs of ( 1
2 , 0) and

(0, 1
2 ) indices can always be traded for a four-vector index through contractions with

either (σ̄µ)α̇α or (σµ)αα̇. Here, σ̄µ = (1,−~σ) and σµ = (1, ~σ), where ~σ are the Pauli

matrices, i.e. σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
and σ3 =

(
1 0
0 −1

)
.

1.2 The Hilbert space and the free Hamiltonian

Having outlined the basics of the Poincaré group, we are now ready to start constructing
quantum theories implementing this symmetry group. As with any quantum theory,
the first thing we need to do is to specify which states we want to include in our theory.
In the end we want to be able to handle multi-particle states, but let us first design our
one-particle states which will be the irreducible representations of the Poincaré group.
In particular, let first consider single particle momentum eigenstates,

one-particle state: |p, σ〉 . (1.4)

Here, σ is just a generic label, but we will soon find its significance by studying how |p, σ〉
behaves under Lorentz transformations. By being an eigenstate of the four-momentum
operator Pµ (with eigenvalue pµ), the state in Eq. (1.4) transforms with an over-all
phase under space-time translations: |p, σ〉 → e−iPµaµ |p, σ〉 = e−ipµaµ |p, σ〉 under xµ →
xµ + aµ.

Consider a Lorentz transformation Λ that takes pµ into some other four-momentum
p′µ = Λµνp

ν . There must be a corresponding unitary operator U(Λ) that acts on |p, σ〉
to produce the corresponding state with momentum ~p ′.

|p′, σ′〉 = U(Λ) |p, σ〉 . (1.5)

Note that I have allowed for U(Λ) to also act on σ in order to not loose generality.

Given |p, σ〉, let us now consider the subset of Lorentz transformations λ that leave pµ

invariant, i.e. pµ = λµνp
ν . These transformations form a subgroup of the Lorentz group,

often called “Wigner’s Little Group”, or just the “little group” for short. Such trans-
formations merely scramble the states with different σ’s but common four-momentum
pµ, i.e.

|p, σ〉 → |p, σ′〉 = U(λ) |p, σ〉 =
∑

σ′′

W (λ)σ′σ′′ |p, σ′′〉 , (1.6)

where the Wσσ′ ’s are matrix representations of the little group. For a particle with
mass m 6= 0, the four-momentum can always be brought to pµ = (m,~0) by a Lorentz
transformation. The little group for massive particles is therefore the group of spatial
rotations SO(3), since these are the Lorentz transformations that leave (m,~0) invariant.
But the representations of SO(3) are well known: σ is simply the spin of the particle!
That is, one-particle states of a massive particle can be arranged into representations of
SO(3) that are labelled by a non-negative half-integer s = 0, 1

2 , 1, . . . , where each such
multiplet is composed out of 2s+ 1 states that mix under Lorentz transformations.
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The situation is radically different for massless particles. For a massless particle, the
best we can do is e.g. to bring its four-momentum to the form pµ ∝ (1, 0, 0, 1), i.e. with
its three-momentum directed in the z-direction. This is invariant under rotations only
in the xy-plane (i.e. SO(2) transformations)3. Therefore, σ labels the spin along the
direction of motion which is the so-called helicity, i.e. one-particle states of massless
particles are labelled by a half integer h = 0,± 1

2 ,±1, . . . . States with different h do
not mix under Lorentz transformations; only the momentum and the phase of the state
change.

The above discussion has taught us that one-particle states are labelled by the momen-
tum and the spin (helicity) for massive (massless) particles, and is a baby version of the
classic derivation by Wigner in 1939 [5]. It is the fundamental reason for why massless
particles have less degrees of freedom than massive ones!

Quite often in calculations, one has to integrate over all possible three-momenta of a
particle. We can do this in a Lorentz invariant way by using the measure

∫
d4p

(2π)4
· (2π)δ(p2 −m2)p0>0 =

∫
d3p

(2π)3

1

2Ep
, (1.7)

with Ep =
√
~p 2 +m2. If we now choose our one-particle states to have the Lorentz

invariant normalisation

〈p, σ|q, σ′〉 = 2Ep(2π)3δ(3)(~p− ~q )δσ,σ′ , (1.8)

the factor 1/(2Ep) in Eq. (1.7) will often cancel against the 2Ep in Eq. (1.8), making
the calculations simpler to perform.

The Hilbert space (of a specific particle species) will be composed of all possible n-
particle states,

n-particle state: |p1, σ1; p2, σ2; . . . ; p1, σn〉 , (1.9)

where we now know that σ stands for the spin (helicity) for massive (massless) particles.
At this point, it becomes extremely convenient to introduce so-called creation operators
a†p,σ, defined as

|p, σ〉 =
√

2Epa
†
p,σ |0〉 . (1.10)

where |0〉 is the 0-particle state. I have here explicitly taken out a factor
√

2Ep to
account for the normalization of the states in Eq. (1.8). The n-particle states in Eq. (1.9)
can then be expressed as

√
2Ep1a

†
p1,σ1

. . .
√

2Epna
†
pn,σn |0〉 . (1.11)

One reason that this notation is convenient is that we can encode whether the par-
ticles obey Bose or Fermi statistics by having the a†’s obeying commutation or anti-
commutation relations respectively,

a†p,σa
†
q,σ′ − a†q,σ′a†p,σ = [a†p,σ, a

†
q,σ′ ] = 0 , (bosons),

a†p,σa
†
q,σ′ + a†q,σ′a

†
p,σ = {a†p,σ, a†q,σ′} = 0 , (fermions).

(1.12)

3The little group for massless particles is in fact larger than SO(2) since there are also combinations
of boosts and rotations that leave (1, 0, 0, 1) invariant. However, the actual massless particles in nature
are singlets under such transformations.
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Similarly, we can define the annihilation operators ap,σ from

〈p, σ| =
√

2Ep 〈0| ap,σ . (1.13)

The annihilation operators also either commute or anti-commute for bosons and fermions
respectively, and are assumed to annihilate the 0 particle state, i.e. ap,σ |0〉 = 0.

Furthermore, we can find commutators and anti-commutators between a†’s and a’s from
Eq. (1.8). E.g. for bosons,

2Ep(2π)3δ(3)(~p− ~q)δσ,σ′ =
√

2Ep
√

2Eq 〈0| ap,σa†q,σ′ |0〉

=
√

2Ep
√

2Eq


〈0| [ap,σ, a†q,σ′ ] |0〉+ 〈0| a†q,σ′ap,σ |0〉︸ ︷︷ ︸

=0




(1.14)
such that

[ap,σ, a
†
q,σ′ ] = (2π)3δ(3)(~p− ~q)δσ,σ′ , (bosons) . (1.15)

Similarly, one can show that

{ap,σ, a†q,σ′} = (2π)3δ(3)(~p− ~q)δσ,σ′ , (fermions) . (1.16)

The spin-statistics theorem [6] tells us that integer (half-integer) spin particles must be
bosons (fermions).

Eqs. (1.15) and (1.16) give us a simple way to express the free Hamiltonian H0 (i.e. the
Hamiltonian assuming no interaction energy between particles) in terms of the creation
and annihilation operators. Using these equations, one can easily show that the operator
Np =

∑
σ a
†
p,σap,σ counts the number of particles with momentum p when applied to

some state. Therefore, to get H0 we simply need to sum Np over all possible three-

momenta weighted by the energy Ep =
√
~p 2 +m2 that we want to associate with a

single particle, i.e.

H0 =

∫
d3p

(2π)3
Ep
∑

σ

a†p,σap,σ . (1.17)

To construct local interaction terms that we can add to H0, we first need to construct
functions of a’s and a†’s that depend on position ~x rather than momentum (i.e. through
the Fourier transform). Such functions are the quantum fields. I will now proceed to
find the fields and their conjugate momenta for the spin 0, 1

2 and 1 cases respectively.
We will then express in each case the creation and annihilation operators in terms of
the fields and conjugate momenta, which can then be plugged into Eq. (1.17). This
will lead to the Hamiltonians for all the familiar relativistic wave equations such as the
Klein-Gordon equation, the Dirac equation or Maxwell’s equations.

1.3 Free fields: spin 0

Let me for now focus on the spin 0 case (where we can drop the σ index on the quan-
tum states). I will define the real scalar field φ(~x) such that it produces the Fourier
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transforms of the one-particle states when acting on |0〉, i.e.

φ(~x) |0〉 =

∫
d3p

(2π)3

1

2Ep
e−i~p·~x |p〉 , 〈0|φ(~x) =

∫
d3p

(2π)3

1

2Ep
ei~p·~x 〈p| (1.18)

This means that φ(~x) can be expressed in terms of creation and annihilation operators
as

φ(~x) =

∫
d3p

(2π)3

1√
2Ep

(
a†pe
−i~p·~x + ape

i~p·~x) . (1.19)

In the Heisenberg picture, the creation and annihilation operators evolve in time ac-

cording to da†

dt = i[H, a†], which is solved by

a†p → eitEpa†p , ap → e−itEpap , (1.20)

assuming no interactions, i.e. H = H0. We can therefore write

φ(x) =

∫
d3p

(2π)3

1√
2Ep

(
a†pe

ipx + ape
−ipx

)
, (1.21)

where p0 = Ep is understood.

Let us give the time-derivative of φ(x) its own name,

π(x) ≡ ∂φ(x)

∂t
= i

∫
d3p

(2π)3

√
Ep
2

(
a†pe

ipx − ape−ipx
)
. (1.22)

The commutation relations for the creation and annihilation operators are now equiv-
alent to the equal-time (i.e. x0 = y0) commutators

[φ(x), φ(y)] = [π(x), π(y)] = 0

[φ(x), π(y)] = iδ(3)(~x− ~y ) .
(1.23)

These canonical commutation relations suggest that we are looking at the quantum
version of a classical system where π(~x) is conjugate momentum to the classical degree
of freedom φ(~x). A straightforward calculation shows that H0 can be expressed in terms
of φ(~x) and π(~x) as

H0 =

∫
d3x

(
1

2
π2 +

1

2
(~∇φ)2 +

1

2
m2φ2

)
. (1.24)

up to a constant. The classical equation of motion for φ that follows from this Hamil-
tonian is the Klein-Gordon equation

(∂2 +m2)φ(x) = 0 . (1.25)

We can also derive the Lagrangian for a free scalar field from Eq. (1.24), yielding

Ls=0
0 =

1

2
(∂µφ)(∂µφ)− 1

2
m2φ2 . (1.26)
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1.4 Free fields: spin 1
2

Previously, the σ label on the one-particle states denoted the components of the polar-
ization vectors for a generic spin. In this section, I will instead label this by α’s and
β’s as is customary for spin 1

2 particles. Furthermore, we can isolate the polarization
spinors from the creation operators a†p,α by writing

a†p,α =
1√
m

∑

s

us(~p )αb
†
p,s (1.27)

where us(~p )α is the polarization 2 component spinor (with components labelled by α)
for spin mode s at the given momentum. The factor 1√

m
is purely for future convenience

and could be absorbed into the normalization of the polarization vector. Now, us(~p )
transforms under the Lorentz group as the corresponding spin representation of the
particle, while b†p,s is an operator that transforms as the a†p for the spin 0 particle. For

a spin 1
2 particle (massless or massive), the index s in Eq. (1.27) labels the “spin up”

and “spin down” modes (s =↑, ↓) e.g. along the ẑ direction. In the massive case, we
can pick the following basis for the polarization vectors in the rest frame:

u↑(~0 )α =
√
m

(
1
0

)
, u↓(~0 )α =

√
m

(
0
1

)
. (1.28)

Since us(~p ) transforms as the spin 1
2 representation under rotations, it must belong

either to the ( 1
2 , 0) or the (0, 1

2 ) representation of the Lorentz group (these transform
identically under rotations, but oppositely under boosts). We will pick the ( 1

2 , 0) option,
but this choice is arbitrary as we can always go between the two. If we boost (with
rapidity η) to a general four-momentum,

(m,~0)→ (Ep, ~p ) = m(cosh η, p̂ sinh η) , (1.29)

where p̂ is the unit vector in the direction of ~p, we get the corresponding polarization
vector in that frame as

us(~p )α =
(

e−
1
2ηp̂·~σ

) β

α
us(~0 )β =

(√
p · σ
m

) β

α

us(~0 )β , (1.30)

where
√
p · σ =

(Ep +m)− ~p · ~σ√
2(Ep +m)

(1.31)

satisfies
√
p · σ · √p · σ = p · σ.

Under Lorentz transformations, we have that |p, α〉 ∼ ( 1
2 , 0) meaning that (|p, α〉)∗ ∼

(0, 1
2 ) (which would appropriately be named 〈p, α̇| using the dotted/undotted notation).

If it is this kind of state that corresponds to 〈p, σ| in Eq. (1.8), then we are in trouble
because we would have defined our state normalization from 〈p, α̇|q, α〉 ∝ δα̇α which
transforms non-trivially under Lorentz transformations. We can rectify this by instead
defining

〈p, α| ≡ 〈p, α̇|
(p · σ̄
m

)α̇α
. (1.32)

9



Let us also define

vs(~p )α ≡ us∗(~p )α̇

(p · σ̄
m

)α̇α
. (1.33)

If we now look at 〈p, α|q, β〉 and assume that {b†r,q, bs,p} = δrs(2π)3δ(3)(~p − ~q), then
Eq. (1.8) holds provided that

∑

s

vs(~p )αus(~p )β = mδαβ . (1.34)

This relation is easily verified in the rest frame (i.e. where ~p = ~0).

Let us now construct a field operator ξ(~x)α as

ξ(~x)α ≡
∑

s

∫
d3p

(2π)3

1√
2Ep

(
us(~p )αb

†
p,se
−i~p·~x + vs(~p )αbp,se

i~p·~x) . (1.35)

Like the scalar field operator φ(~x), this operator satisfies

ξ(~x)α |0〉 =
√
m

∫
d3p

(2π)3

1

2Ep
e−i~p·~x |p, α〉 , (1.36)

and similarly when acting on 〈0|.

For a real scalar field, there is one generalized coordinate degree of freedom (d.o.f.) and
one corresponding conjugate momentum d.o.f. at each space point ~x. We should have
twice that number of phase space d.o.f.’s (i.e. 4 per space point) for a massive spin 1

2
field. But treating the components of ξ and ξ† as independent already amounts to 4
d.o.f.’s. Therefore, the conjugate momentum to ξ must somehow be built out of ξ†.
With the benefit of hindsight, let us put in an additional factor ‘i’,

π(~x )α̇ ≡ iξ†(~x )α̇ . (1.37)

By brute force computation one can show that

{ξ(~x )α, ξ(~y )β} = {π(~x )α̇, π(~y )β̇} = 0 ,

{ξ(~x )α, π(~y )α̇} = iδαα̇δ
(3)(~x− ~y ) ,

(1.38)

i.e. ξα and πβ̇ obey canonical equal time anti-commutation relations. To figure out
the classical dynamics of ξα, we need to write H0 in Eq. (1.17) in terms of ξα and πα̇
and then compute the classical equations of motion that follow from this Hamiltonian.
First, one can show that bp,s and b†p,s can be expressed in terms of ξα and πα̇ as4,

bp,s =
1√
2Ep

∫
d3x e−i~x·~p [vs†(~p )αξ(~x )α − ius(~p )α̇π(~x )α̇

]
,

b†p,s =
1√
2Ep

∫
d3x ei~x·~p [us†(~p )αξ(~x )α − ivs(~p )α̇π(~x )α̇

]
.

(1.39)

4I am aware that the spinor index contractions look very strange in Eqs. (1.39). For example, a
downstairs index on vs† is contracted with the downstairs index on ξ in the first line, which is certainly
not Lorentz invariant. These are not typos!

10



Then, we note that H0 =
∫

d3p
(2π)3Ep

∑
s b
†
p,sbp,s, so if we plug in the above expressions

for the creation and annihilation operators, one can arrive at

H0 =

∫
d3x

[
iπα̇(~σ · ~∇)α̇βξβ +

m

2

(
ξαξα − πα̇πα̇

)]
, (1.40)

up to a constant. The corresponding Lagrangian is

Ls=1/2
0 = iξ†α̇(σ̄µ)α̇α∂µξα −

m

2
(ξαξα + ξ†α̇ξ

†α̇) , (1.41)

and the classical equation of motion for ξα is

i(σ̄µ)α̇α∂µξα = −mξ†α̇. (1.42)

Consider now the theory of two free Weyl fermions ξ and χ with the same mass m,

L = iξ†σ̄µ∂µξ + iχ†σ̄µ∂µχ−
m

2
(ξξ + χχ+ c.c.) . (1.43)

This theory has an SO(2) symmetry,

(
ξ
χ

)
→
(

cos θ − sin θ
sin θ cos θ

)(
ξ
χ

)
. (1.44)

The eigenstates of this symmetry operation are

ψL ≡
1√
2

(ξ + iχ) , ψR ≡
1√
2

(ξ − iχ) (1.45)

which transform as ψL,R → e±iθψL,R respectively, under (1.44). By introducing the
Dirac spinor Ψ(x)

Ψ ≡
(
ψLα

ψ†α̇R

)
, (1.46)

which belongs to the ( 1
2 , 0) ⊕ (0, 1

2 ) representation of the Lorentz group, we can write
Eq. (1.43) in a very condensed form,

L = iΨ̄γµ∂µΨ−mΨ̄Ψ (1.47)

where

γµ ≡
(

0 σµ

σ̄µ 0

)
and Ψ̄ ≡ Ψ†γ0 . (1.48)

Eq. (1.47) is just the Dirac Lagrangian, from which we can see that the classical dy-
namics of Ψ(x) is described by the Dirac equation

(iγµ∂µ −m)Ψ = 0 . (1.49)
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1.5 Free fields: spin 1

For a massive spin 1 particle in its rest frame, we need to define 2s+ 1 = 3 basis polar-
ization vectors εs(~0) that transform in the spin 1 representation of SO(3). Given this
transformation property, and that they also necessarily belong to some representation
of the Lorentz group, we conclude that the εs’s must be four-vectors (meaning that the
σ label on the one-particle states in this section will correspond to a Lorentz vector
index µ). Let us take these to be

ε±(~0)µ =
1√
2

(0, 1,±i, 0) and ε0(~0)µ = (0, 0, 0, 1) , (1.50)

which are eigenvectors under rotations around the z axis, i.e. eigenvectors of

(J 12)µν =




0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0


 . (1.51)

These have the Lorentz invariant normalization

εr∗(~p )µε
s(~p )µ = −δrs . (1.52)

The polarisation vectors also obey the relations

∑

s

εs(~p )µεs∗(~p )ν = −ηµν +
pµpν

m2
and pµε

s(~p )µ = 0 , (1.53)

which are most easily verified in the rest frame (but of course hold in any other frame
due to Lorentz covariance).

We can now define our creation operators b†p,s as before,

|p, µ〉 ≡
√

2Epε
s(~p )µb†s,p |0〉 . (1.54)

If we take these to obey [bp,s, b
†
q,r] = δrs(2π)3δ(3)(~p− ~q ), we find that our one-particle

states are normalized as

〈p, µ|q, ν〉 = 2Ep

(
pµpν

m2
− ηµν

)
(2π)3δ(3)(~p− ~q ) . (1.55)

This interesting equation is easiest to interpret in the rest frame (taking pµ = qµ =
pµrest ≡ (m,~0)). The states |prest, µ〉 and |prest, ν〉 have zero overlap when µ 6= ν which
is just a statement of the orthogonality of our state vectors. However, the right-hand
side of Eq. (1.55) also gives zero when µ = ν = 0. To interpret this, first note that
|prest, µ = 0〉 does not transform under rotations, meaning that it should be interpreted
as a spin 0 state rather than spin 1. In our description of spin 1 particles, the “spin 0
state” |prest, µ = 0〉 has zero norm. The probability to find the system in this state is
therefore always zero: it is not physical!
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We can now proceed to construct a field operator Aµ(~x) that should obey

Aµ(~x) |0〉 =

∫
d3p

(2π)3

1

2Ep
e−i~p·~x |p, µ〉 and 〈0|Aµ(~x) =

∫
d3p

(2π)3

1

2Ep
ei~p·~x 〈p, µ| .

(1.56)
In terms of the creation and annihilation operators, we find that

Aµ(~x) =

∫
d3p

(2π)3

1√
2Ep

∑

s

(
εs(~p )µb†p,se

−i~p·~x + εs∗(~p )µbp,se
i~p·~x) . (1.57)

Assuming a free theory, A(~x)µ has a time-dependence (i.e. A(x)µ) that is given by
replacing the exponentials in Eq. (1.57) as e±i~p·~x → e∓ipx.

So how do we find the conjugate momenta πµ to Aµ (i.e. the combinations of b’s and b†’s
that satisfy canonical commutation relations with Aµ)? First, note that the equation
pµε

s(~p)µ = 0 corresponds to ∂µA
µ = 0 in position space. This means that

Ȧ0 = −~∇ · ~A , (1.58)

i.e. A0 is not an independent dynamical degree of freedom (its time derivative at all

times, and hence its time evolution, is set by ~A(x)). Therefore, let us try to construct
πµ such that A0 does not have a conjugate momentum, i.e. π0 = 0. Second, recall that
for the spin 0 field φ we found that we could take ∂0φ as its canonical momentum. Let
us therefore try the following construction,

πµ ≡ −∂0Aµ + ∂µA0 , (1.59)

which in terms of b’s and b†’s becomes

πµ(~x) = −i

∫
d3p

(2π)2

√
Ep
2

∑

s

[(
εs(~p )µ − pµ

Ep
εs(~p )0

)
e−i~p·~xb†p,s

−
(
ε∗s(~p )µ − pµ

Ep
ε∗s(~p )0

)
ei~p·~xbp,s

] (1.60)

at x0 = 0. Indeed, using the commutation relations of bp,s and b†p,s combined with the
relations in Eq. (1.53), we arrive at just the right equal time commutation relations,

[Aµ(~x ), Aν(~y )] = [πµ(~x ), πν(~y )] = 0, (1.61)

and
[Aµ(~x ), πν(~y )] = i(−ηµν + ηµ0)δ(3)(~x− ~y) . (1.62)

That is, the spatial components satisfy [Ai, πj ] ∝ iδij while the temporal component
A0 has vanishing equal time commutators with all Aµ’s and πµ’s.
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We can now invert Eqs. (1.57) and (1.60), and arrive at

b†p,s = − 1√
2

∫
d3xei~p·~x

[
√
Ep

(
ε∗s(~p )µ −

ε∗s(~p )0

Ep
pµ

)
Aµ(~x)

+
i√
Ep

ε∗s(~p )µπ
µ(~x)

]
,

bp,s = − 1√
2

∫
d3xe−i~p·~x

[
√
Ep

(
εs(~p )µ −

εs(~p )0

Ep
pµ

)
Aµ(~x)

− i√
Ep

εs(~p )µπ
µ(~x)

]
.

(1.63)

Upon plugging these expressions into the free Hamiltonian, one can eventually obtain

H0 =

∫
d3x

[
1

2
(~π)2 − 1

2
Ai(δij ~∇2 − ∂i∂j)Aj +

1

2
m2 ~A 2 − 1

2
m2Φ2 + ~π · ~∇Φ

]
, (1.64)

where I have denoted
Aµ = (Φ, ~A) and ~π ≡ πi . (1.65)

To derive H0 in the form of Eq. (1.64), I have used the relation ∂iπ
i = −m2Φ which

follows from Eq. (1.60). The Lagrangian is one Legendre transformation away from
Eq. (1.64) and is very compact:

Ls=1
0 = −1

4
FµνF

µν +
1

2
m2AµA

µ (1.66)

where
Fµν ≡ ∂µAν − ∂νAµ . (1.67)

The equations of motion that follow from Eq. (1.66) are

∂µF
µν = −m2Aν . (1.68)

If we act with ∂ν on both sides of the above equation, we find that m2∂νA
ν = 0, i.e. the

constraint ∂νA
ν = 0 is still encoded in the Lagrangian in Eq. (1.66) for m2 6= 0. Note

also that Eq. (1.68) is just the covariant form of Maxwell’s equations when m→ 0.

Let us now recall an interesting property of particles with spin ≥ 1: The number of spin
states does not match the number of helicity states. The Lagrangian in Eq. (1.66) as it
stands describes one longitudinal and two transverse polarisation states of a massive spin
1 field. However, we know from Wigner’s classification that the massless spin 1 particle
only has two possible polarization states, meaning that the longitudinal polarization
state should somehow “drop out” of Eq. (1.66) if we take m2 → 0. How does that
happen?

With m2 = 0, the Lagrangian in Eq. (1.66) becomes invariant under gauge transforma-
tions, i.e.

Aµ(x)→ Aµ(x)− 1

g
∂µα(x) (1.69)
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where α is some arbitrary function, and g is a constant that I have put in for future
convenience (although it could be absorbed into α(x) at this stage). If we choose to stay
in the so-called Lorentz gauge where ∂µA

µ = 0, we can still do gauge transformations
using α’s that satisfy ∂2α(x) = 0. Such functions can be expanded in plane waves with
dispersion p2 = 0,

α(x) =

∫
d3p

(2π)3

1√
2Ep

iα̃(~p )eipx + c.c . (1.70)

In momentum space, such gauge transformations correspond to shifting the polarisation
vectors as

εs(~p )µ → εs(~p )µ +
1

g
α̃(~p )pµ . (1.71)

This can then be used to completely remove the longitudinal polarisation state, since
the corresponding polarisation vector satisfies εµ ∝ pµ.

This concludes our discussion of free field theories. To recap, starting only with the
quantum states allowed by Poincaré invariance, we were able to show that the classical
limit of the free Hamiltonian can lead either to e.g. the Klein-Gordon equation, the
Dirac equation or Maxwell’s equations, depending on the spin and the mass of the
particle. I have restricted this discussion to particles with spin ≤ 1 since higher spins
are not so often encountered in elementary particle physics (they at least do not appear
in any of the articles included in this thesis!).

2 Quantum field theory: interactions

2.1 The path integral

Before jumping into examples of interacting quantum field theories, I will introduce
another piece of formal theory which is extremely convenient for explicit calculations:
the path integral. Let us take a general quantum theory with basis states |q〉 that are

eigenstates of a generalized coordinate ~Q, i.e. ~Q |q〉 = ~q |q〉, and let ~P correspond to the

conjugate momenta of ~Q such that

[( ~Q)i, (~P )j ] = iδij . (1.72)

The δ-function is here to be read either as a Kronecker delta or a Dirac delta function
depending on if i and j are discrete or continuous labels. Given an arbitrary Hamiltonian
H( ~Q, ~P ), let us rewrite the amplitude for an initial state |qI〉 at t = tI to evolve into a
final state |qF〉 at t = tF ,

AI→F = 〈qF| e−i(tF−tI)H |qI〉 , (1.73)

in a somewhat obscure way. First, we write the exponential as a product of N factors
of e−iεH where ε ≡ (tF − tI)/N is a very short time interval when N is large. Second,
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we insert a complete set of coordinate eigenstates, 1 =
∫

d~q |q〉 〈q|, between each such
factor. This gives

AI→F =

∫
d~q1· · ·

∫
d~qN−1 〈qF| e−iεH |qN−1〉 〈qN−1| . . . |q1〉 〈q1| e−iεH |qI〉 . (1.74)

We can evaluate each individual overlap by also inserting a complete set of momentum
eigenstates,

〈qi+1| e−iεH(~Q,~P ) |qi〉 =

∫
d~pi 〈qi+1|pi〉 〈pi| e−iεH(~Q,~P ) |qi〉

=

∫
d~pi exp

[
iε

(
~pi ·

~qi+1 − ~qi
ε

−H(~qi, ~pi)

)]
,

(1.75)

where I have used that 〈qi|pi〉 = ei~pi·~qi , and assumed that all ~P ’s are to the left of the
~Q’s in H(~P , ~Q) (if they we’re not we could just use Eq. (1.72) to bring H to this form
plus an unimportant overall constant).

Now take N →∞ (i.e. ε→ 0). The amplitude becomes

AI→F =

∫ ~q(tF)=~qF

~q(tI)=~qI

D~q(t)
∫
D~p(t) exp

[
i

∫ tF

tI

dt
(
~p · ~̇q −H(~q, ~p )

)]
, (1.76)

where the functional integrals sum over all classical paths between ~q(tI) = ~qI and ~q(tF) =
~qF (at each point in time, there is an integral over the full classical phase space).

Although the ~p · ~̇q −H(~q, ~p ) in Eq. (1.76) certainly looks like a Lagrangian, it should

not be interpreted as such at this point since ~p and ~̇q are independent variables (and

not related by the classical equation of motion ~̇q = ∂H
∂~p ). Let us now return to field

theory, where the field operators and their conjugate momenta take the place of ~Q
and ~P respectively in the above discussion. For example, for the spin 0 field, one can
perform the integrals over π since they merely amount to a set of Gaussian integrals.
One gets

AI→F = N
∫
Dφ ei

∫
d4xLs=0

0 , (1.77)

where the functional integral sums over all field configurations of φ(~x, t) for tI < t < tF,
but where the endpoints correspond to some fixed field configurations φ(~x, tI,F) = φI,F(~x).

Let us consider the transition amplitude AI→F when tF,I = ±∞ and when φ(~x)I,F

are whatever field configurations that minimize the energy. This amplitude, which I’ll
denote as Z[0], is the“vacuum-to-vacuum” transition amplitude and turns out to be a
very important quantity in QFT. We can further define the quantity Z[J(x)], which is
the vacuum-to-vacuum amplitude in the presence of an external source J(x):

Z[J(x)] ≡
∫
Dφ ei

∫
d4x[L+φ(x)J(x)] . (1.78)

The basic building block of physical quantities in QFT are the so called n-point functions

G(x1, . . . , xn) ≡ 〈Ω| T φ(x1) . . . φ(xn) |Ω〉 . (1.79)
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Here |Ω〉 is the vacuum state (which in free field theory just corresponds to the empty
state |0〉), and T φ(x1) . . . φ(xn) is the time-ordered product of the field operators φ(xi)
(i.e. they are to be ordered from left to right by ascending (xi)

0 = ti). Once you have
computed the relevant n-point functions, there are standard formulae you can use to
compute measurable quantities like cross-sections and decay rates. In short, if you know
the n-point functions, you know in principle the physical predictions of the theory. One
can show, by a similar calculation as the one above, that the n-point functions can be
computed using a path integral,

G(x1, . . . , xn) =

∫
Dφφ(x1) . . . φ(xn) ei

∫
d4xL

∫
Dφ ei

∫
d4xL

=
1

Z[0]

[
(−i)

δ

δJ(x1)
. . . (−i)

δ

δJ(xn)
Z[J ]

]

J=0

.

(1.80)

Although vacuum-to-vacuum amplitudes might seem rather dull at first sight, this shows
that once we have computed Z[J ] then we in principle know all the physical predictions
of the theory!

2.2 The Wilson renormalization group

Consider again Z[J ]. What field configurations φ(x) should we actually integrate over
in Eq. (1.78)? If we would integrate over all of them, then this implies that we allow
for variations in φ over arbitrarily small space-time intervals (or equivalently we allow
our particles to have arbitrarily high momenta). This might be asking too much of
the theory (unless you are a very ambitions model builder!), and in practice there is
always a highest energy scale Λ above which we expect our theory not to be valid. The
cut-off scale Λ could for example be the inverse lattice spacing in a solid state theory
(Λmetals ∼ (10 Å)−1), or the electro-weak scale in the Fermi theory (ΛFermi ∼ 100 GeV).
We do not yet know where the cut-off scale lies for the Standard Model (more about this
in Sec. 4), but it must at least be bounded from above by the Planck scale ΛSM < MPl

(at this scale, gravitational interactions, which are not included in the SM, are expected
to become important). So let us modify our path integral to only integrate over Fourier
modes with momenta less than some Λ,

Z[J ] =

∫ Λ

Dφ ei
∫

d4x(L+Jφ) . (1.81)

If we have a theory that has some number of coupling constants, we also need to do
the same number of independent measurements to set the numerical values of those
couplings before we can make any predictions. Should we also regard the cut-off Λ
as an additional parameter of the theory to be set by some experiment? Rather, we
can imagine that we could change the value of Λ slightly, and make compensating
small changes in the couplings of the theory such that Z[J ] is unchanged. This cut-off
dependence of the couplings defines the Wilson Renormalization Group. Let us take
the theory of a single real scalar field as an example,

L =
1

2
(∂φ)2 − V (φ) , (1.82)
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with

V (φ) =
1

2
g2φ

2 +
1

3!
g3φ

3 +
1

4!
g4φ

4 +
1

5!
g5φ

5 + . . . , (1.83)

defined with some cut-off ΛH. Note that we need to do an infinite number of measure-
ments to set the values of all gi (i.e. we require an infinite number of “renormalisation
conditions”). Theories with this property are traditionally called “non-renormalisable”.

If we now imagine that we continuously lower the cut-off Λ while keeping Z[J ] un-
changed, the flow of the couplings is described by a set of differential equations as

Λ
d

dΛ
gr = Λ4−rβr({Λs−4gs}) , (1.84)

where βr are dimensionless functions of the couplings that are in principle calculable
by solving Λ d

dΛZ = 0, and the factors of Λ are inserted by dimensional analysis. We
can rewrite Eq. (1.84) in terms of the dimensionless couplings λr ≡ Λr−4gr,

Λ
d

dΛ
λr = (r − 4)λr + βr({λs}) . (1.85)

Suppose that λ̄r(Λ) is the solution of Eq. (1.85) for some boundary conditions defined
at Λ = ΛH. Let us look at the behaviour of small perturbations around this solution,

λr(Λ) = λ̄r(Λ) + εr(Λ) . (1.86)

Linearising Eq. (1.85) then gives

Λ
d

dΛ
εr = (r − 4)εr +

(
∂βr

∂λs

)

λ=λ̄

εs . (1.87)

Unless the βr’s become very big, the first term on the RHS above essentially governs
the evolution of εr(Λ) (except for r = 4). We therefore expect that

εr(Λ) ≈
(

Λ

ΛH

)r−4

εr(ΛH) . (1.88)

When we lower Λ, say to ΛL (which can still be much larger than energies Λexp that are
directly accessible in experiments), from ΛH, εr>4 become extremely suppressed when
ΛH � ΛL. If we only perturbed λr>4 at ΛH, then the couplings would still flow towards
λ̄, meaning that the actual boundary conditions λr>4(ΛH) did not really matter much.
Instead, λr(ΛH) only depend on λr≤4(ΛH) up to corrections of size (ΛL/ΛH)r−4, which
in particular also means that λr>4(ΛL) can be entirely written in terms of λr≤4(ΛL).
For this reason, operators associated with positive (negative) energy dimension are
called relevant (irrelevant), while operators that come with dimensionless couplings are
called marginal. The theory becomes fully determined at ΛL by a few renormalization
conditions (that fix the numerical values of λr≤4(ΛL)), which is a huge improvement
compared to the infinite number of renormalization conditions that are needed to fix
the values of λr(ΛH). This is just the characteristic property of the theories that are
traditionally dubbed “renormalizable”. If there is enough “head room” to lower the
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cut-off from ΛH to ΛL � ΛH, but still having ΛL � Λexp, then the above procedure can
be used to get rid of the irrelevant information about the extreme high energy modes
in the theory. This discussion is originally due to Polchinski [7].

Note that the couplings gr>4 do not necessarily run to zero. However, they run towards
some given functions of λr≤4 suppressed by Λr−4. Provided that ΛL � Λexp, it turns
out that all the effects of the operators associated with λr>4 can either be “absorbed”
into the lower-dimensional operators by shifting the values of λr≤4, or are suppressed
by powers of Λexp/ΛL. This was proven by Appelquist and Carazzone in 1975 [8]. The
above discussion tells us that when we try to write down realistic quantum field theories
describing “long distance physics” far away from a physical cut-off Λ, it is justified to
only include operators that come with couplings with non-negative energy dimensions.
In particular, this is of course the way the Standard Model is constructed (more about
this in Sec. 3), and it certainly seems to work extremely well.

The above discussion showed that gr>4(ΛL) are largely insensitive to the boundary con-
ditions gr>4(ΛH). On the other hand, couplings with positive mass dimension gr<4(ΛL)
are extremely sensitive to the boundary conditions at ΛH, and must be very delicately
balanced in the UV limit to have a certain value at ΛL. In the Standard Model there
is one such parameter: the Higgs mass squared parameter −µ2

H (which in turn sets the
scale of the electro-weak symmetry breaking ΛEWSB). If we take ΛH ∼ ΛPl ≈ 1018 GeV
and use the Wilsonian renormalization group to lower the cut-off to say ΛL ≈ 1010 GeV
(any scale that is sufficiently larger than ΛEWSB would just as well) to get rid of ir-
relevant information about the couplings associated with higher-dimensional opera-
tors, then O(1 GeV2) variations in µ2

H(ΛL) correspond to incredibly minuscule varia-
tions of O(10−16 GeV2) in µ2

H(ΛH), since such variations scale as (ΛL/ΛH)2 according
to Eq. (1.88). This is the essence of the hierarchy problem which is indeed one of
the biggest unsolved mysteries in theoretical physics today. Namely, the Higgs mass
squared parameter needs to be suspiciously fine-tuned for maintaining the hierarchy
Λ2

EWSB/Λ
2
Pl ∼ 10−32 at the quantum level.

2.3 Feynman diagrams and the effective action

Having set up all this formalism, I will now go on to describe how we can in practice
compute the n-point functions in perturbation theory. This brings us to the topic
of Feynman diagrams, but I will also describe an alternative approach through the
use of the effective action (which is the starting point of Paper I in this thesis). For
concreteness, I will specialise to φ4-theory,

L =
1

2
(∂φ)2 − 1

2
m2φ2

︸ ︷︷ ︸
≡L0

− 1

4!
λφ4 . (1.89)

Let us set out to compute Z[J ], since we can then obtain the n-point functions by
applying various functional derivatives on Z[J ]. First, if λ = 0, then we can rewrite

Z[J ]0 ≡ Z[J ]λ=0 =

∫
Dφei

∫
d4x(L0+Jφ) , (1.90)
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by performing the shift

φ(x)→ φ(x)−
∫

d4yJ(y)D(x− y) (1.91)

where

D(x− y) =

∫
d4k

(2π)4

e−ik(x−y)

k2 −m2
. (1.92)

The function D(x− y) is the Green’s function to the differential operator (−∂2 −m2)
meaning that it satisfies

(−∂2 −m2)D(x− y) = δ(4)(x− y) . (1.93)

The 1
2 (∂φ)2 can be replaced by 1

2φ(−∂2)φ in Eq. (1.89) through an integration by
parts (plus an unimportant boundary term that we can ignore). Therefore, the shift in
Eq. (1.91) results in

1

2
φ(x)(−∂2 −m2)φ(x) + J(x)φ(x)→

1

2
φ(x)(−∂2 −m2)φ(x)− 1

2

∫
d4yJ(x)J(y)D(x− y) .

(1.94)

Plugging this into Eq. (1.90) gives that

Z[J ]0 = Z[0]0 e−
i
2

∫
d4x

∫
d4yJ(x)J(y)D(x−y) . (1.95)

If we now switch on λ, then we note that the exponential of the −iλ
∫
φ4/4! term can

be replaced by functional derivatives as

Z[J ] = Z[0]0 e−i λ4!

∫
d4z[(−i) δ

δJ(z) ]
4

e−
i
2

∫
d4x

∫
d4yJ(x)J(y)D(x−y) . (1.96)

Perturbation theory now proceeds by doing a Taylor expansion in λ. The terms that
show up in this expansion can be very neatly represented as Feynman diagrams, and the
“value” of such diagrams can be found by associating lines and their intersections with
algebraic expressions. This association using the so-called the Feyman rules (depicted
in Fig. 1.1):

• Each power of λ comes with four derivatives with respect to J(z) and an integra-
tion over z. This is called a vertex, and is pictorially represented by a dot labelled
by z with four outgoing legs. The associated vertex rule is (−i)λ

∫
d4z. The 1/4!

is not included in the Feynman rule since there are most often 4! equivalent ways
of attaching the four legs to other parts of the diagram (if this is not the case
then this shows up as a symmetry of the diagram whereby we should divide by
an appropriate symmetry factor).

• Each factor of iD(x − y) is represented by a line that connects the points x and
y. The factor iD(x− y) is called a propagator.
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z
= −iλ

∫
d4z

x y
= iD(x − y)

Figure 1.1: Position space Feynman rules for φ4-theory.

We are more often interested in Fourier transforms of G(x1, . . . , xn), which corresponds
to having the external particles in momentum eigenstates. In momentum space, the
Feynman rule for the vertex becomes −iλ, while a propagator with momentum pµ is

i
p2−m2 .

Let us now consider Z[0], i.e. the full vacuum-to-vacuum transition amplitude in absence
of sources. This is obtained by first performing the functional derivatives in Eq. (1.96)
and then setting all J ’s to zero. The perturbation series in λ is then represented by
the sum of all diagrams where all propagators are attached to vertices (a leg that is
not attached to a vertex corresponds to a factor of J and will thus vanish). Further-
more, this series exponentiates. The easiest way to see this is through the symmetry
factors: Each fully connected diagram D will be summed to all powers Dn. But since
Dn is diagrammatically represented by n identical disconnected sub-diagrams, there is
a permutation symmetry between these sub-diagrams such that we should divide by
n! to not over count. Each fully connected diagram D then contributes as a factor∑∞
n=0D

n/n! = eD in Z[0]. By representing the sum of all fully connected diagrams as
a shaded circle (see Fig. 1.2), we can write

Z[0] = Z[0]0 exp

[ ]
. (1.97)

We can now rewrite the n-point functions in Eq. (1.80) using Eq. (1.96),

G(x1, . . . , xn) =
1

Z[0]
lim
J→0

Z[0]0 e−i λ4!

∫
d4z[(−i) δ

δJ(z) ]
4

×
[
(−i)

δ

δJ(x1)
. . . (−i)

δ

δJ(xn)

]
e

i
2

∫
d4x

∫
d4yJ(x)J(y)D(x−y) .

(1.98)

The functional derivatives w.r.t. J(xi) bring down propagators that will connect xi
either to another external point xj or to some internal point (once acted upon by

e−i λ4!

∫
d4z[(−i) δ

δJ(z) ]
4

). Diagrammatically, this can be written as

G(x1, . . . , xn) =

x1

x2

x3

xn−1

xn

. (1.99)
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= + + + . . .

Figure 1.2: Vacuum bubbles in φ4-theory.

The shaded circle here represents all possible ways of connecting the external points
xi using any number of vertices, but without disconnected vacuum bubbles (these are
cancelled for by the 1/Z[0] in front). Note that this includes disconnected diagrams,

such as for the 4-point function.

An interesting quantity to consider is the generating functional W [J ], defined as

iW [J(x)] = lnZ[J(x)] . (1.100)

If we apply a set of functional derivatives w.r.t. J(xi) on W [J ] and then set J = 0,
we get the quantities that correspond to fully connected diagrams (i.e. the connected
n-point functions). To see this, let us for example compute

[
(−i)

δ

δJ(x1)
(−i)

δ

δJ(x2)
(−i)

δ

δJ(x3)
(−i)

δ

δJ(x4)
iW [j]

]

J=0

. (1.101)

Let δi ≡ (−i) δ
δJ(xi)

to simplify the notation. By noting that an odd number of deriva-

tives on Z[J ] will vanish when J → 0, we can see that the above expression equals

{
1

Z[J ]
δ1δ2δ3δ4Z[J ]− 1

Z[J ]2
[(δ1δ2Z[J ]) (δ3δ4Z[J ]) + (permutations of xi)]

}

J=0

=

x1

x2

x3

x4

−




x1

x2

x3

x4

+ (permutations of xi)




=

x1

x2

x3

x4

+

x1

x2

x3

x4

+

x1

x2

x3

x4

+

x1

x2

x3

x4

+ . . .

,

(1.102)
i.e. only fully connected graphs remain. The above sum also includes diagrams with

corrections on the external legs, e.g. .
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Let us denote the vacuum expectation value of φ(x) in the presence of a source J(x) as
ϕ(x),

ϕ(x) =
δW

δJ(x)
. (1.103)

Note that ϕ(x) has a functional dependence on the source J(x): the value of ϕ at a
certain point in space-time xi depends on the full functional form of J and not just
J(xi).

The effective action Γ[ϕ(x)] is obtained through a Legendre transform of W [J(x)] that
trades the functional dependence on J(x) for ϕ(x),

Γ[ϕ(x)] ≡
∫

d4zJ(z)ϕ(z)−W [J(x)] . (1.104)

The RHS here is to be read as only depending on ϕ(x), meaning that J(x) needs to
be expressed entirely in terms of ϕ(x) (which in principle can be done by inverting
Eq. (1.103)). In particular, the effective action satisfies

δΓ[ϕ]

δϕ(x)
= J(x) +

∫
d4zϕ(z)

∂J(z)

∂ϕ(x)
−
∫

d4z
δW

δJ(z)

δJ(z)

δϕ(x)

= J(x) .

(1.105)

Notice therefore that δΓ = 0 in the absence of sources, just like the classical action
is extremised at the classical level. At a given order in perturbation theory in a
weakly coupled theory, the effective action will almost look like the classical action,
up to small shifts in the coupling constants and the appearance of new loop suppressed
higher-dimensional interaction terms. While the interaction terms in the classical ac-
tion describe classical point-like interactions, the effective action tells us how masses,
interactions and field normalizations are modified by quantum fluctuations.

From this point of view, it is plausible that Γ[ϕ] is the generating functional of fully
connected diagrams without external leg corrections (so called connected and amputated
diagrams). I will not give a proof of this here, but merely make it more plausible by
explicitly computing the first few derivatives of Γ and show that the resulting expressions
indeed reproduce what we would have written down from the contributing Feynman
diagrams. In particular, I will do this after deriving Γ[ϕ] to the first loop order assuming
constant fields in space-time, which diagrammatically corresponds to the approximation
where we neglect the momenta of the external legs (a field without “wobbles” has no
momentum!).

To derive an explicit expression for Γ[ϕ] to first loop order, let us first compute Z[J ]
using the saddle-point approximation. That is, we first find the classical field config-
urations φc which maximise

∫
(L+ Jφ), and expand to second order around φc (since

linear perturbations around φc vanish). The classical field configuration φc is given by
the solution to

δ

[
S +

∫
d4zφ(z)J(z)

]

φ=φc

= 0 , (1.106)
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where the variation is taken w.r.t. φ. Now, let us take

φ(x) = φc(x) + φ̃(x) , (1.107)

and expand to second order in φ̃:

S[φc + φ̃]+

∫
d4zJ(z)

(
φc(z) + φ̃(z)

)
≈ S[φc] +

∫
d4J(z)φc(z)

+
1

2

∫
d4x

∫
d4y φ̃(x)

[
δ2S

δφ(x)δφ(y)

]

φ=φc

φ̃(y) .
(1.108)

If we take L = 1
2 (∂φ)2 − V0(φ) then

1

2

∫
d4x

∫
d4y φ̃(x)

[
δ2S

δφ(x)δφ(y)

]

φ=φc

φ̃(y) =

∫
d4x

1

2
φ̃(x)

(
−∂2 − V ′′0 (φc)

)
φ̃(x) .

(1.109)
Therefore, to first loop order, Z[J ] is given by

Z[J ] ≈ ei(S[φc]+
∫

d4J(z)φc(z))
∫
Dφ̃e

i
2

∫
d4xφ̃(−∂2−V ′′0 (φc))φ̃

= ei(S[φc]+
∫

d4J(z)φc(z)) C√
det (−∂2 − V ′′0 (φc))

,
(1.110)

where I have on the second line used the standard result for Gaussian integrals. Here,
C is an unimportant constant. Note that although J(z) only appears explicitly in one
place in the expression above, there is also an implicit dependence on J in φc. We can
now use

det(. . . ) = eTr log(... ) , (1.111)

to arrive at an expression for W [J ] at one-loop:

W [J ] ≈ S[φc] +

∫
d4J(z)φc(z) +

i

2
Tr log

(
−∂2 − V ′′0 (φc)

)
, (1.112)

where the trace refers to

Tr log
(
−∂2 − V ′′0 (φc)

)
=

∫
d4z

∫
d4k

(2π)4
log
(
k2 − V ′′0 (φc(z))

)
. (1.113)

The expectation value ϕ becomes

ϕ(x) =
δW

δJ(x)
= φ(x)c +

i

2

∫
d4z

δφc(z)

δJ(x)

∫
d4k

(2π)2

1

k2 − V ′′0 (φc(z))
. (1.114)

Since ϕ(x) = φc(x) + (higher order), we can replace φc(z) by ϕ(z) in the second term
and inside the trace in Eq. (1.112). A few lines of algebra reveal the one-loop effective
action:

−Γ[ϕ(x)] = S[ϕ(x)] +
i

2

∫
d4z

∫
d4k

(2π)4
log
(
k2 − V ′′0 (ϕ(z))

)
(1.115)
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This remarkably simple formula captures all one-loop quantum corrections to the clas-
sical action.

Consider now what happens when we take ϕ(x) = ϕ to be constant in x. Then

−Γ[ϕ] = −V T · Veff(ϕ), (1.116)

where V T is the total volume of space-time and Veff(ϕ) is the one-loop effective potential,

Veff(ϕ) = V0(ϕ)− i

2

∫
d4k

(2π)4
log
(
k2 − V ′′0 (ϕ)

)
. (1.117)

Often, V ′′0 (ϕ) ≡ m2(ϕ) is referred to the “field dependent mass” since it corresponds to
the mass of the field in presence of the constant background field ϕ. As an example, let
us take the tree-level scalar potential

V0(ϕ) =
1

2
m2ϕ2 +

1

3!
γϕ3 +

1

4!
λϕ4 , (1.118)

such that the tree-level vertex rules for tri-linear and quartic interactions are −iγ and
−iλ respectively (also, a tree-level “mass insertion” is given by −im2). The terms that

show up in each n-derivative V
(n)
eff (0) all have diagrammatic counterparts,

−iV
(1)
eff (0) =

1

2
(−iγ)

∫
d4k

(2π)4

i

k2 −m2
=

−iV
(2)
eff (0) =− im2 +

1

2
(−iγ)2

∫
d4k

(2π)4

(
i

k2 −m2

)2

+
1

2
(−iλ)

∫
d4k

(2π)4

i

k2 −m2

= + +

−iV
(3)
eff (0) =− iγ + (−iγ)3

∫
d4k

(2π)4

(
i

k2 −m2

)3

+
3

2
(−iγ)(−iλ)

∫
d4k

(2π)4

(
i

k2 −m2

)2

= + + 3 ·

−iV
(4)
eff (0) =− iλ+ 3(−iγ)4

∫
d4k

(2π)4

(
i

k2 −m2

)4

+ 6(−iγ)2(−iλ)

∫
d4k

(2π)4

(
i

k2 −m2

)3

+
3

2
(−iλ)2

∫
d4k

(2π)4

(
i

k2 −m2

)2

= + 3 · + 6 · + 3 ·

...
(1.119)
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The pre-factors in front of the diagrams are the number of different ways to contract
the external legs. Note that all loop propagators have the same momentum, namely
the loop momentum k, meaning that all external momenta are taken to zero in these
expressions.

But what good is all this? After all, instead of going through the trouble of deriving
Veff and then taking the derivatives w.r.t. ϕ, we could have arrived at the expressions
in Eqs. (1.119) by simply drawing the diagrams and employing the Feynman rules.
Rather, the power of the effective potential comes from the fact that the integral in
Eq. (1.117) can be performed directly, i.e. before taking derivatives w.r.t ϕ. In this
way, we do not have to compute all the loop integrals in Eqs. (1.119) in the effective
potential approach.

I will in the next section describe the necessary tools for performing the integrals over
momenta e.g. in Eq. (1.117) or in Eqs. (1.119) (in particular, dimensional regularization
and the minimal subtraction scheme). But to conclude the discussion on the effective
potential, I will here simply state the result of performing the integral in Eq. (1.117),
but for a general renormalizable four-dimensional quantum field theory with fields with
spin ≤ 1:

Veff(ϕk) = V0(ϕk) +
1

2(4π)2

∑

i

(−1)2si(2si + 1)m4
i (ϕk)

(
log

m2
i (ϕk)

µ2
− ksi

)
. (1.120)

This was derived in [9] and is known as the Coleman-Weinberg potential. Here, the
sum is taken over all mass eigenstates i in the theory, where si is the spin and m2

i (ϕk)
is the field dependent squared mass of particle i in presence of the background fields ϕk
(which corresponds to V ′′0 (ϕ) in Eq. (1.117)). In Eq. (1.120), µ is the renormalisation
scale and ksi are renormalisation scheme dependent constants5.

The derivatives of the Coleman-Weinberg potential give the connected and amputated
one-loop n-point functions in the zero external momentum approximation. Although
no loop integrals are present in Eq. (1.120), it is still often very cumbersome to directly
compute Veff from Eq. (1.120) and then take the derivatives in the context of theories
with many fields. In Eq. (1.120), all scalar fields ϕk need to be taken as non-zero

background fields before computing V
(n)
eff (even if only a small subset of ϕk will acquire

vacuum expectation values in the end). Therefore, it is far from trivial to compute
m2
i (ϕk), since these are the eigenvalues of large and non-sparse mass matrices. Alter-

natively, Veff can be computed directly before going to the mass eigenbasis, but this
involves the equally cumbersome task of computing the logarithm of large and non-
sparse mass matrices. This brings us to Paper I in this thesis. There, we derive closed

form “ready to use” analytical expressions of V
(n)
eff at one-loop in terms of the tree-level

couplings in a general renormalisable four-dimensional field theory with any number of
fields with spins ≤ 1. This tool is very useful in theories with many scalar fields (such
as the models considered in Paper II and Paper II), where a diagrammatic approach to
one-loop corrections would be inconvenient due to the large number of diagrams.

5In the MS scheme we have that k0 = k 1
2

= 3
2

and k1 = 5
6

. See [10].
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2.4 Loops and the continuum renormalisation group

Suppose we are interested in the connected and amputated four-point function at one-
loop in φ4-theory. Diagrammatically, this corresponds to

p1 p2

p3 p4

+

p1 p2

p3 p4

+

p1 p2

p3 p4

+

p1 p2

p3 p4

. (1.121)

For example, the first loop diagram is

p1 p2

p3 p4

k k + p1 + p2 =
(−iλ)2

2

∫
d4k

(2π)4

i

k2 −m2

i

(k + p1 + p2)2 −m2
. (1.122)

This integral should be performed with some finite cut-off Λ. We can in principle use
the Wilson renormalisation group to change Λ to whatever energy scale we want, but as
long as Λ is much larger than the masses and momenta of all particles involved, simple
dimensional analysis tells us that the expression Eq. (1.122) depends on Λ as

∼
(
λ2 ln

Λ2

(p2
i ’s and m2’s)

+ const. +O(Λ−1)

)
. (1.123)

Higher powers of the logarithm, lnn Λ2, will appear at higher loop orders. I will assume
that we have chosen Λ to a sufficiently large value such that all terms with inverse
powers of Λ can be dropped in this expression. In the end, we will want to express the
bare parameter λ in our theory in terms of the physical parameter λp, which is the finite
interaction strength that actual φ particles are measured to experience for some given
momenta pi. We can do this by setting the sum of the diagrams in Eq. (1.121) equal
to −iλp and then inverting this expression to O(λ2). When λ in this way is expressed
in terms of λp, we will find that λ has a logarithmic dependence on Λ that cancels the
ln Λ’s from the loop integrals.

In this sense, the cut-off Λ only served as a regulator of the loop integrals that in the
end always drops out of the physical quantities. If we so like, we could alternatively use
other regularisation schemes if they lead to simpler calculations. A far more convenient
regularisation scheme is the so called dimensional regularisation, where we integrate
over all momenta, but perform the integrals in 4−2ε dimensions (where ε is taken to be
a very small number). The loop integral in Eq. (1.122) will then contain a “divergent”
1
ε piece that is cancelled by a 1

ε dependent term in the bare parameter λ. Let us do
this calculation explicitly.

First, we can do Feynman’s trick and use the relation

1

AB
=

∫ 1

0

dx
1

(xA+ (1− x)B)2
, (1.124)
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to bring Eq. (1.122) into
λ2

2

∫ 1

0

dx

∫
ddk

(2π)d
1

D2
. (1.125)

The denominator D is

D = (1− x)(k2 −m2) + x
(
(k + p1 + p2)2 −m2

)

= (k + x(p1 + p2))
2

+x(1− x)s−m2

︸ ︷︷ ︸
≡−∆(s)

, (1.126)

where s ≡ (p1 + p2)2. We then perform the change of variables lµ ≡ (k + x(p1 + p2))
µ
,

such that Eq. (1.125) becomes

λ2

2

∫ 1

0

dx

∫
ddl

(2π)d
1

(l2 −∆)2
. (1.127)

We can now go to Euclidean space6 setting l0 = il0E and li = liE, in particular such that
l2 = −l2E. Then, going to d-dimensional polar coordinates, Eq. (1.127) becomes

i
λ2

2

1

(2π)d

∫
dΩd

∫ 1

0

dx
1

2

∫ ∞

0

d(l2E)
(l2E)

d−2
2

(l2E + ∆)2
. (1.128)

The d-dimensional solid angle
∫

dΩd is

∫
dΩd =

2π
d
2

Γ(d2 )
, (1.129)

where Γ(a) ≡
∫∞

0
dxxa−1e−x is the Euler gamma function. The integral over l2E can be

performed by changing the integration variable to y ≡ l2E
l2E+∆

, and using the standard

integral ∫ 1

0

dy yα−1(1− y)β−1 =
Γ(α)Γ(β)

Γ(α+ β)
. (1.130)

This leads to ∫ ∞

0

d(l2E)
(l2E)

d−2
2

(l2E + ∆)2
= ∆

d
2−2Γ

(
d

2

)
Γ

(
2− d

2

)
. (1.131)

We also note that λ is dimensionless only in d = 4 dimensions. For the action to be
dimensionless in d dimensions, the kinetic term demands that the scalar field φ has a
mass dimension of d

2 − 1, which in turn leads to that λ has mass dimension 4− d. Let
us therefore put in an explicit (arbitrary) energy scale µ by making the replacement

λ→ λµ4−d , (1.132)

6As it stands, the integral in Eq. (1.127) can hit the pole l2 = ∆, and it is not obvious that we
so straightforwardly can do this so-called Wick rotation into Euclidean space. However, had I been
more rigorous in the previous section, we would have seen that we only get the correct time-ordering
in Eq. (1.79) if we add an infinitesimal imaginary part +iε to all inverse propagators, which in the
process also justifies the Wick rotation. See any quantum field theory text book for a more rigorous
treatment of this.

28



such that we can still think of λ as being dimensionless for d 6= 4. We can put all this
together, and a few lines of algebra shows that Eq. (1.128) equals

iµ4−d · λ
2

2

∫ 1

0

dx
Γ
(
2− d

2

)

(4π)
d
2

(
µ2

∆

)2− d2
. (1.133)

The overall factor of µ4−d just reflects the mass dimension of the 4-point function in d
dimensions. Let us now set d = 4− 2ε, and expand in ε. In particular, we will need to
use

Γ(ε) =
1

ε
− γE +O(ε) (1.134)

where γE ≈ 0.577 is the Euler-Mascheroni constant. Expanding Eq. (1.133) in ε gives

iµ2ε λ2

2(4π)2

∫ 1

0

dx

[
1

ε
− γE + ln 4π − ln

∆(s)

µ2
+O(ε)

]
. (1.135)

Similarly, the other two loop diagrams in Eq. (1.121) are obtained by replacing s in the
above formula by t ≡ (p1 − p3)2 and u ≡ (p1 − p4)2 respectively.

Suppose that, for some given reference kinematic variables s0, t0 and u0, the interaction
strength is measured to be λp(s0, t0, u0). We therefore have that

−iλp(s0, t0, u0) = − iµ2ε

[
λ− 3λ2

2(4π)2

(
1

ε
− γE + ln 4π

)

+
λ2

2(4π)2

∫ 1

0

dx

(
ln

∆(s0)

µ2
+ ln

∆(t0)

µ2
+ ln

∆(u0)

µ2

)]
.

(1.136)

The overall factor µ2ε → 1 as ε → 0 so it can be ignored from now on. The above
relation can easily be inverted to O(λ2) to express the bare coupling λ in terms of the
physical interaction strength λp. In particular, we find that λ has a piece ∝ 1

ε that
renders the above expression finite for ε→ 0.

By fixing λ using a particular measurement of λp(s0, t0, u0), we can now use our calcu-
lation to predict the value of the interaction strength at some other kinematic variables
s, t and u to O(λ2

p),

λp(s, t, u) =λp(s0, t0, u0)

+
λp(s0, t0, u0)2

2(4π)2

∫ 1

0

dx

(
ln

∆(s)

∆(s0)
+ ln

∆(t)

∆(t0)
+ ln

∆(u)

∆(u0)

)
.

(1.137)

Look how nice this expression is! It is perfectly finite, and all dependence on the
fictitious ε and µ are completely gone. The first term on the RHS is to be fixed by
a measurement, while the second term gives clear but non-trivial prediction for the
momentum dependence of the physical scattering amplitude that is entirely due to
quantum fluctuations.

However, computing observables is in general messy, so the above method to renormalise
is often very cumbersome. In practice, we instead usually define our renormalized
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couplings through some subtraction scheme. In particular, in the “modified minimal
subtraction” scheme MS, we define the renormalised coupling λMS through

λ ≡ λMS +
3λ2

2(4π)2

(
1

ε
− γE + ln 4π

)
(1.138)

where the second term is constructed such that it cancels both the 1
ε piece in Eq. (1.136)

and the constant ∝ −γE + ln 4π that anyway always drops out when computing observ-
ables. The physical interaction strength λp(s, t, u) is now related to λMS as

λp(s, t, u) = λMS +
λ2
MS

2(4π)2

∫ 1

0

dx

(
ln

∆(s)

µ2
+ ln

∆(t)

µ2
+ ln

∆(u)

µ2

)
. (1.139)

Note that λMS is defined with a particular value of µ in mind. If we change µ slightly,
it is always possible to a compensating shift in λMS such that λp(s, t, u) is unchanged.
This defines the continuum renormalisation group. In fact, we can figure out how
λMS(µ) should vary with µ such that λp(s, t, u) is unchanged by simply demanding
that µ d

dµλp(s, t, u) = 0. The above equation then leads to

µ
d

dµ
λMS =

3λ2
MS

(4π)2
≡ βλ ., (1.140)

which is a simple differential equation that can be solved for λMS(µ). In a general
interaction field theory, each coupling λi comes with its own βλi-function that describes
how the coupling must vary with the renormalisation scale µ such that observables
are rendered µ-independent. In Paper II, the results rely heavily on the use of the
continuum renormalisation group.

2.5 Effective field theory

I will in this section introduce the concept of effective field theories, which is the formal
way of getting rid of (or “integrating out”) high-momentum degrees of freedom that are
irrelevant for low-energy physics. The purpose of this is to introduce some of the tools
used in Paper II in this thesis.

Both Paper II and Paper III concern a class of so-called Grand Unification Theories
(or GUTs for short), that aim to explain certain features of the Standard Model by
postulating a larger symmetry that would only become manifest at very high energies
ΛGUT � ΛEW. This will be explained in more detail in Sec. 4, but here I want to
first focus on a problem that generically occurs in calculations beyond tree-level in
such theories: the appearance of large logarithms that can spoil the convergence of the
perturbative series.

Recall from the previous section that in loop calculations, logarithms of the ratio be-
tween masses and the renormalization scale, i.e. log(m2/µ2), generally appear. We are
free to pick the value of the renormalization scale µ, but we better pick it such that
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U(1)A U(1)B

L, L̃ +1 0

QL, Q̃L −1/2 +1/3

QR, Q̃R −1/2 −1/3

Table 1.1: U(1)A × U(1)B charges in a toy version of the non-supersymmetric trinification model in Paper II.

µ ∼ m, so it is justified to do an expansion in λ log(m2/µ2). However, in GUTs, we
typically have a set of heavy particles with masses mH ∼ ΛGUT along side with the
“light” particles in the Standard Model which all have masses mL . ΛEW. In this
situation there is no consistent choice of the value of µ such that both log(m2

H/µ
2) and

log(m2
L/µ

2) are small.

In the end, we are interested in if the electro-weak scale physics looks anything like that
of the Standard Model, and what kind of signatures beyond the Standard Model that
characterises the given GUT. The strategy we employ in this situation goes as follows:
We first take µ ∼ ΛGUT and compute all the n-point functions corresponding to relevant
and marginal interactions7 involving only external light particles. We then write down
an “effective theory” Leff involving only light fields, where the coupling constants are
matched such that the n-point functions are all reproduced to the desired accuracy. In
this way, the effects of the heavier particles are encoded in the point-like interactions
described by Leff . This can be shown (see e.g. [11]) to be equivalent to performing
the integrals over the heavy fields in the path integral, and this process is therefore
referred to as “integrating out” the heavy fields. We can then evolve the couplings in
the effective theory using the continuum renormalization group in Leff to µ ∼ ΛEW.

To illustrate this, let us consider a toy version of the non-supersymmetric trinification
model in Paper II, with three complex scalar fields L̃, Q̃L and Q̃R, and three Weyl
fermions L, QL and QR. Trinification will be introduced in Sec. 4.3, where these fields
will be the analogues of the 3-by-3-by-3 scalar multiplets (L̃i)lr, (Q̃iL)cl and (Q̃iR)rc,
and the Weyl fermions (Li)lr, (QiL)cl and (QiR)rc.

This toy model gets a very similar structure to the theory in Paper II if we impose
a U(1)A × U(1)B symmetry (which I will take to be global in this toy example) with
charges shown in Tab. 1.1, and a Z3 symmetry that simultaneously cyclically permutes
the elements of {L̃, Q̃L, Q̃R} and {L,QL, QR}. The charge assignment in Tab. 1.1 forbids
direct mass terms for the fermions. The most general renormalisable Lagrangian that
respects this symmetry is

L = Lkinetic + LYukawa − V , (1.141)

where
LYukawa = −y

[
L̃QLQR + (Z3 permutations)

]
+ c.c. , (1.142)

7We could also include irrelevant interactions if we are interested in effects from irrelevant operators.
The first step in the GUTs considered in this thesis is however to see to what extent the Standard
Model can be found as a low-energy limit, and only the marginal and relevant operators are needed
for this.
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and

V =

(
−µ2

S|L̃|2 +
1

4
λ|L̃|4 + α|L̃|2|Q̃L|2 + (Z3 permutations)

)

+ γ
(
L̃Q̃LQ̃L + c.c.

)
,

(1.143)

Lkinetic contains the standard kinetic terms. The scalar potential has a minimum where

〈Q̃L,R〉 = 0 , 〈L̃〉 =
v√
2

with µ2
S =

λv2

4
, (1.144)

for which U(1)A is spontaneously broken. Here, Q̃L,R arrange themselves into the mass
eigenstates

Q̃± =
1√
2

(
Q̃L ± Q̃∗R

)
, (1.145)

with masses

m2
± =

(
α

2
± γ

v
√

2

)
v2 . (1.146)

We can also write

L̃(x) =
1√
2

(ρ(x) + v) ei
a(x)
v (1.147)

where a(x) is the massless field (i.e. the Goldstone boson) associated with the sponta-
neous breaking of U(1)A (Goldstone bosons are further discussed in Sec. 3.1). Note that,
since L̃ → eiωAL̃ under U(1)A, a(x) transforms as a → a + vωA. This shift symmetry
protects a(x) from acquiring a mass.

In the fermion sector, QL,R combine into a massive Dirac spinor

Q =

(
QL

Q†R

)
, mQ =

yv√
2
, (1.148)

while L stays massless. Note, however, that there is no symmetry that force L to
stay massless at higher loop orders. It is convenient to put L into a four-component
Majorana spinor

Ψ =

(
L
L†

)
. (1.149)

In particular, one can now show that LYukawa contains the interaction terms

LYukawa ⊃
y√
2
Q̃+Q̄Ψ− y√

2
Q̃−Q̄γ

5Ψ + c.c. (1.150)

Let us now consider what happens when we integrate out the massive fields Q, Q̃± and
ρ at one-loop. The lowest order terms allowed in the effective Lagrangian of L and a
are

Leff =ZLiL†σ̄µ∂µL+ Za
1

2
(∂a)2 −

(
1

2
mLe−2i avLL+ c.c.

)

=
1

2
ZLiΨ̄/∂Ψ + Za

1

2
(∂a)2 +

1

2
mL cos

2a

v
Ψ̄Ψ− 1

2
imL sin

2a

v
Ψ̄γ5Ψ ,

(1.151)
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where mL and ZL,a are to be matched to the couplings µ2
S, y, λ and α in the original

theory. At tree level, the matching conditions are

mL = 0 , Za,L = 1 . (1.152)

However, at loop level, these conditions will in general change. Consider for exam-
ple the Ψ 2-point function at one-loop in the original theory. The one-loop diagrams
that contribute to this are shown in Fig. 1.3. The sum of those diagrams in the MS

Ψ Ψ

Q

Q̃±

Figure 1.3: One-loop diagram that contributes to mL in Eq. (1.151).

subtraction scheme is

/p · i
y2

(4π)2

∫ 1

0

dxx log

√
∆+(p2)∆−(p2)

µ2
+ i

y2mQ

2(4π)2

∫ 1

0

dx log
∆+(p2)

∆−(p2)
. (1.153)

where
∆±(p2) = −x(1− x)p2 + xm2

± + (1− x)m2
Q (1.154)

and pµ is the momentum of the Ψ particle (/p = γµp
µ ). Since mL = 0 at tree-level, the

second term in Eq. (1.153) with p2 = 0 directly gives the one-loop value of −imL in the
effective theory, or

mL = − y
2mQ

2(4π)2

∫ 1

0

dx log
xm2

+ + (1− x)m2
Q

xm2
− + (1− x)m2

Q

, (1.155)

at one-loop order. We also find that ZL,a both deviate from 1 at this loop order,

and we should therefore perform the field redefinitions L → Z
− 1

2

L L and a → Z
− 1

2
a a to

have canonically normalized kinetic terms. However, since mL = 0 at tree-level, this
field renormalization does not affect the mass of L at one-loop8. Note also that the
contribution in Eq. (1.155) is independent of the renormalization scale µ, even though
the diagrams in Fig. 1.3 individually are logarithmically divergent. These divergences
cancel between the diagrams since they come with opposite signs (this sign difference
can be traced back to the γ5 in Eq. (1.150)).

8This point was realized by the late Erik Gustafsson and me when we worked on the one-loop
matching of the fermion sector of the model considered in Paper II.
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Field SU(3)C SU(2)L U(1)Y

Left-handed
Weyl fermions

LiL 1 2 −1/2
eciR 1 1 1
Qci

L 3 2 1/6
uci

R 3̄ 1 −2/3
dci

R 3̄ 1 1/3

Scalar Φ 1 2 1/2

Gauge
bosons

G 8 1 0
W 1 3 0
B 1 1 0

Table 1.2: Standard Model fields and their representations under the SM gauge group. The index i takes values 1,
2 and 3, and refers to the generation. The fields Ga=1,...,8

µ , Wa=1,2,3
µ and Bµ in the bottom three rows

are the gauge fields for the SU(3)C, SU(2)L and U(1)Y groups respectively.

3 The Standard Model

In this section I will give a condensed overview of the Standard Model (SM) of particle
physics. The SM is the quantum field theory that combines the theory of electro-weak
interactions [12, 13, 14] with the theory of Quantum Chromo Dynamics (QCD) which
describes the strong interactions [15, 16, 17]. It provides a truly remarkable agreement
between theory and experiment. If one accounts for neutrino masses, the SM has O(20)
free parameters which on the one hand, on aesthetic grounds, might be considered too
many for a supposedly fundamental theory of nature. On the other hand, this number
becomes very small when compared to the ∼ 40000 measurements listed by the Particle
Data Group [18], out of which essentially none show significant deviations from what
the SM predicts.

The SM is a gauge theory based on the gauge group

SU(3)C × SU(2)L ×U(1)Y , (1.156)

with the field content summarised in Tab. 1.2. We construct its Lagrangian by first
summing the free field Lagrangians for each field, and then adding all possible renor-
malisable interaction terms that are allowed by the imposed symmetry. We get

LSM = LGauge−kinetic + LYukawa − VHiggs (1.157)

where LGauge−kinetic contains the kinetic terms and the gauge interactions, LYukawa con-
tains the interaction terms between the Higgs doublet and the fermions, and VHiggs is
the scalar potential. In particular, VHiggs is constructed such that potential energy is
minimized for a non-zero vacuum expectation value of the Higgs doublet which spon-
taneously breaks the electro-weak symmetry SU(2)L×U(1)Y into the familiar U(1)e.m.

gauge symmetry of electromagnetism (this and its consequences is the so-called Higgs
mechanism [19, 20, 21, 22]). The electro-weak symmetry breaking comes with non-
trivial consequences in each of the three sectors in Eq. (1.157), which I will now go
through one-by-one.
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3.1 Scalar sector

The most general renormalisable scalar potential of the SM Higgs doublet is very simple,

VHiggs(Φ) = −µ2Φ†Φ + λ(Φ†Φ)2 . (1.158)

The minimum of the potential is given by

〈Φ†Φ〉 =
µ2

2λ
≡ v2

2
, (1.159)

for µ2 > 0. The scalar potential makes no reference to whether electro-weak symmetry
is global or local, so let me first proceed as if it was global. Let us label the components
of Φ as

Φ =
1√
2

(
φ1 + iφ2

φ3 + iφ4

)
. (1.160)

A general global SU(2)L ×U(1)Y transformation with real parameters ω1,2,3
L and ωY is

realised on Φ as Φ→ exp
[

i
2 (ωaLσ

a + ωY)
]

Φ, or

1√
2

(
φ1 + iφ2

φ3 + iφ4

)
→ 1√

2

(
φ′1 + iφ′2
φ′3 + iφ′4

)

= exp

[
i

2

(
ω3

L + ωY ω1
L − iω2

L

ω1
L + iω2

L −ω3
L + ωY

)]
1√
2

(
φ1 + iφ2

φ3 + iφ4

)
,

(1.161)

in terms of the components of Φ. We can use such a transformation to bring the general
〈Φ〉,

〈Φ〉 =
1√
2

(
〈φ1〉+ i〈φ2〉
〈φ3〉+ i〈φ4〉

)
,

4∑

i=1

〈φ2
i 〉 = v2 , (1.162)

e.g. into the simpler form

〈Φ〉 =
1√
2

(
0
v

)
. (1.163)

ω1,2,3
L and ωY are in general independent transformation parameters. However, if there

are symmetries that are unbroken by Eq. (1.163), we can find the corresponding con-
straints on ω1,2,3

L and ωY by finding the combinations that leave 〈Φ〉 in Eq. (1.163)
invariant. It is sufficient to do this infinitesimally, which gives

0
!
= δ〈Φ〉 =

i

2

(
ω3

L + ωY ω1
L − iω2

L

ω1
L + iω2

L −ω3
L + ωY

)
1√
2

(
0
v

)
. (1.164)

This is solved by ω1,2
L = 0 and ω3

L = ωY ≡ ωe.m.. In a representation independent
setting, the unbroken symmetry is then the subset

ωaLT
a
L + ωYY ⊃ ωe.m.(T

3
L + Y ) ≡ ωe.m.Te.m. , (1.165)

where we identify the single unbroken generator Te.m. ≡ T 3
L + Y . This generates the

U(1)e.m. symmetry of electromagnetism.
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Note that the choice in Eq. (1.163) is not unique, and we could equally well have

picked for example 〈Φ〉 ∝
(
v
0

)
for which we would have found an unbroken U(1)e.m.

group generated by T 3
L−Y . This merely amounts to shuffling how the physical fields are

expressed in terms of the initial fields in the Lagrangian. The physical states themselves
are however indifferent to the specific form of 〈Φ〉 (precisely because of the electro-weak
symmetry). It is in fact a quite nice property of the SM Higgs sector, that is not often
shared with models with extended Higgs sectors, that the SM Higgs doublet can break
SU(2)L ×U(1)Y only into U(1)e.m. and nothing else.

Each of the three broken generators (times ‘i’) acting on 〈Φ〉 defines an equipotential (or
“flat”) direction in field space, and field oscillations in these three directions therefore
correspond to massless bosons9: These are the Nambu-Goldstone bosons [24, 25] associ-
ated with the breaking SU(2)L×U(1)Y → U(1)e.m.. For 〈Φ〉 on the form in Eq. (1.163),
the broken generators are T 3

L − Y , T 1
L and T 2

L for which we can associate φ4, φ2 and φ1

in Eq. (1.160) respectively as the Goldstone bosons.

Recall from Sec. 1.5 that for free massless spin-1 fields, we could use the gauge symmetry
to get rid of their longitudinal polarization states. When the gauge fields are coupled
to other fields (such as the Higgs doublet), these other fields must also transform under
the gauge symmetry. To “fix the gauge”, we can therefore instead impose constraints on
these other fields, rather than on the gauge fields themselves. In particular, in the case of
spontaneously broken gauge symmetries, we can perform a gauge transformation in each
space-time point to completely cancel out the Goldstone fields (this corresponds to the so
called “unitary gauge”). For example, for general φi(x), we can always choose ω1,2,3

L (x)
and ωY(x) in Eq. (1.161) to set φ′1,2,4(x) = 0. The price we have to pay for getting
rid of the Goldstone bosons is that we no longer have the freedom to “gauge away”
the longitudinal polarisation state of the gauge bosons corresponding to spontaneously
broken gauge generators. However, we will see in the next section that this is still
consistent with the discussion on spin-1 fields in Sec. 1.5, since precisely these gauge
bosons become massive once 〈Φ〉 6= 0.

Let me also write φ′3(x) = v + h(x) such that h(x) = 0 in the vacuum. In the unitary
gauge, we therefore have

Φ(x) =
1√
2

(
0

v + h(x)

)
, (1.166)

such that

VHiggs = λv2h2 + λvh3 +
1

4
λh4 + const. (1.167)

Excitations in the field h(x) therefore correspond to massive scalar particles (with mass
m2
h = 2λv2). This particle is the Higgs boson, and was the final particle in the SM that

were experimentally verified [26, 27]. Its mass is measured to be 125.09±0.24 GeV [18]
which together with v = 246 GeV (which can be extracted from the Fermi constant)
fixes the values of all interaction strengths in Eq. (1.167). In particular, we have the
tree-level relation λ = m2

h/2v
2 ≈ 0.13.

9If this one-sentence-proof isn’t convincing enough for you, then you can find three more proofs of
the Goldstone theorem in [23].
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Let me finally end this section by commenting on the slight abuse of language that I
have employed so far regarding spontaneously broken gauge symmetries. In the case
of a global symmetry, the Goldstone fields really do span the manifold of different but
physically equivalent vacua, meaning that the ground state is truly degenerate (which
is the characteristic feature of spontaneous symmetry breaking). However, for a gauge
symmetry, all points on this vacuum manifold do correspond to the same physical
vacuum which is therefore unique. Instead of having degenerate vacuum states, there is
a redundancy (i.e. a gauge redundancy) in our description of the single unique vacuum
state.

3.2 Gauge-kinetic sector

The gauge-kinetic terms in the SM are

LGauge−kinetic = iLi†L σ̄
µDµL

i
L + iei†R σ̄

µDµe
i
R + iQi†L σ̄

µDµQ
i
L

+ iui†R σ̄
µDµu

i
R + idi†R σ̄

µDµd
i
R + |DµΦ|2

− 1

4
BµνB

µν − 1

4
W a
µνW

aµν − 1

4
GaµνG

aµν ,

(1.168)

where I have explicitly indicated the generation index i on the fermions, and the gauge
adjoint index a on the gauge boson field strengths in the bottom line. Spinor and
fundamental gauge indices are implicit. The covariant derivatives can all be read off
from the field representations in Tab. 1.2 by plugging in the appropriate representation
for the generators T aL,C and hypercharge Y into

Dµ = ∂µ − igCG
a
µT

a
C − igLW

a
µT

a
L − igYBµY . (1.169)

Here, gC,L,Y are the gauge couplings for SU(3)C, SU(2)L and U(1)Y respectively. In
particular, the covariant derivative of the Higgs doublet is

DµΦ =

(
∂µ − igLW

a
µ

σa

2
− i

2
gYBµ

)
Φ . (1.170)

Consider now evaluating the |DµΦ|2 term in Eq. (1.168) for Φ = 〈Φ〉 = 1√
2

(
0
v

)
,

|Dµ〈Φ〉|2 =
v2

8

∣∣∣∣
(
gLW

3
µ + gYBµ gL(W 1

µ − iW 2
µ)

gL(W 1
µ + iW 2

µ) −gLW
3
µ + gYBµ

)(
0
1

)∣∣∣∣
2

=
g2

Lv
2

4

∣∣∣∣∣
W 1
µ + iW 2

µ√
2

∣∣∣∣∣

2

+
v2

8

(
W 3
µ Bµ

)( g2
L −gLgY

−gLgY g2
Y

)(
W 3
µ

Bµ

)
.

(1.171)

The first term here provides a mass m2
W = 1

4g
2
Lv

2 for the W boson,

W±µ ≡
1√
2

(W 1
µ ∓ iW 2

µ) . (1.172)
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The states W± have electric charge ±1 which can be verified by seeing how they change
under an infinitesimal U(1)e.m. transformation. The second term in Eq. (1.171) needs
to be diagonalised in order to find the mass eigenstates and their corresponding masses.
We find that there is one massless gauge boson which corresponds to the gauge field
Aµ of U(1)e.m.,

Aµ ≡
gLBµ + gYW

3
µ√

g2
Y + g2

L

, (1.173)

and a massive electrically neutral gauge boson

Zµ ≡
−gLW

3
µ + gYBµ√
g2

Y + g2
L

, (1.174)

with mass m2
Z = 1

4 (g2
L + g2

Y)v2. The masses of the electro-weak gauge bosons are
measured [18] to be

mW = 80.385± 0.015 GeV , mZ = 91.1876± 0.021 GeV . (1.175)

The interactions between the physical gauge bosons and the other fields can now be
found by expressing the covariant derivative in Eq. (1.169) in terms of W±µ , Zµ and Aµ:

Dµ = ∂µ − igCG
a
µT

a
C − i

1√
2
gL

(
T+

L W
+ + T−L W

−)

− i
g2

YY − g2
LT

3
L√

g2
L + g2

Y

Zµ − i
gLgY√
g2

L + g2
Y

(T 3
L + Y )Aµ ,

(1.176)

where I have abbreviated T±L ≡ T 1
L ± iT 2

L . We can here identify the electromagnetic
coupling as

e ≡ gLgY√
g2

L + g2
Y

. (1.177)

3.3 Fermion sector

Given the field representations in Tab. 1.2, one can check that any fermion mass term
would violate the SM gauge symmetry. Rather, all fermion masses in the SM are due
to interactions between the fermions and the vacuum expectation value of the Higgs
doublet. The most general set of such interactions is

LYukawa = −(ye)
ijΦ†LiLe

cj
R − (yd)

ijΦ†QiLd
cj
R − (yu)ijΦ̃†QiLu

cj
R + c.c. (1.178)

Here,
Φ̃ ≡ iσ2Φ∗ , (1.179)

transforms as a doublet under SU(2)L but with opposite hypercharge Y from Φ. We
can label the components of the fermion SU(2)L doublets LiL and QiL as

LiL =

(
νiL
eiL

)
, QiL =

(
uiL
diL

)
, (1.180)
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motivated by their electric charges (i.e. by the eigenvalues of T 3
L +Y ). Now, let us look

at Eq. (1.178) for Φ = 〈Φ〉 = 1√
2

(
0
v

)
(meaning that 〈Φ̃〉 = 1√

2

(
v
0

)
). We then get the

terms
− v√

2
(ye)

ijeiLe
cj
R −

v√
2

(yd)
ijdiLd

cj
R −

v√
2

(yu)ijuiLu
cj
R + c.c. , (1.181)

which provide all fermions with their masses except the neutrinos νiL. The mass eigen-
states are related to the interaction eigenstates through the unitary transformations



eL, e

c
R

µL, µ
c
R

τL, τ
c
R


 =


 V eL,R





e1

L, e
c1
R

e2
L, e

c2
R

e3
L, e

c3
R






dL, d

c
R

sL, s
c
R

bL, b
c
R


 =


 V dL,R





d1

L, d
c1
R

d2
L, d

c2
R

d3
L, d

c3
R






uL, u

c
R

cL, c
c
R

tL, t
c
R


 =


 V uL,R





u1

L, u
c1
R

u2
L, u

c2
R

u3
L, u

c3
R




(1.182)

where the unitary matrices V e,d,uL,R are chosen such that they diagonalize the Yukawa
matrices ye,d,u as

v√
2

(V e,d,uL )Tye,d,uV
e,d,u
R = diag(me,d,u,mµ,s,c,mτ,b,t) . (1.183)

Let us finally write LYukawa in Eq. (1.178) in terms of the fermion mass eigenstates
assuming the unitary gauge. This gives

LYukawa = −
∑

f

mf

(
1 +

h

v

)
fLf

c
R + c.c

= −
∑

f

mf

(
1 +

h

v

)
f̄f

(1.184)

where f runs over all massive fermions in the SM,

f ∈ {e, µ, τ, d, s, b, u, c, t} . (1.185)

The top line in Eq. (1.184) is given in terms of left-handed Weyl fermions, while the
bottom line is given in terms of the more conventional four-component Dirac spinors

f ≡
(
fL

fR

)
, (1.186)

where fR ≡ f c†
R .

The change of basis in Eq. (1.182) has non-trivial effects only in the interaction terms
between the fermions and W±, since all other terms in the SM are fermion flavour
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diagonal. Using the results from the previous section, we find the interaction terms

LGauge−kinetic ⊃
gL√

2
W+
µ

(
νi†L σ̄

µeiL + ui†L σ̄
µdiL

)
+ c.c.

=
gL√

2
W+
µ

[
(V eL νL)i†σ̄µẽiL + (V uL V

d†
L )ij ũ

i†
L σ̄

µd̃jL

]
+ c.c.

(1.187)

where
ẽiL = (eL, µL, τL) , d̃iL = (dL, sL, bL) and ũiL = (uL, cL, tL) , (1.188)

are the charged fermion mass eigenstates. With massless neutrinos, we can simply
absorb V eL into the definition of the neutrino flavours (i.e. the neutrino flavour eigen-
states are defined through W± interactions). For quarks on the other hand, we see from
Eq. (1.188) that interactions with the W can change the flavour of (left-handed) quarks.
The tendency to change quark flavour is encoded in the Cabibbo–Kobayashi–Maskawa
(CKM) matrix [28, 29]

VCKM ≡ V uL V d†L . (1.189)

Although LYukawa at first sight appear to contain a large number parameters, we see
only a few of these are physical, namely the nine fermion masses and the elements
of VCKM (for massless neutrinos). Furthermore, there is a residual phase freedom in
particular for the six left-handed quarks that can be used to rotate away five unphysical
complex phases of VCKM (we can rotate away one less phase than the number of quark
flavours since a simultaneous phase redefinition with a common phase of all quarks does
not redefine any of the elements of VCKM). Therefore, VCKM can be expressed in terms
of three angles and one complex phase.

One can easily accommodate the neutrino masses with the field content of the SM by
adding the terms

− (yν)ij

Λ

(
Φ̃†LiL

)(
Φ̃†LjL

)
+ c.c. = − v

2

2Λ
(yν)ij

(
1 +

h

v

)2

νiLν
j
L + c.c. (1.190)

to LSM. This is the well known Weinberg operator [30], and is the only gauge invariant
operator with a mass dimension of 5 that can be built out of the SM fields. I have
therefore put in an explicit energy scale Λ such that (yν)ij are dimensionless. This term
generates neutrino Majorana masses of the order v2/Λ for yν ∼ O(1), i.e. naturally small
w.r.t. to the electro-weak scale if Λ is large. The neutrino masses lead to an additional
V νL in the first term in the second line of Eq. (1.187), which in turn gives the lepton
analogue of VCKM (this is known as the PMNS-matrix [31, 32]). However, Majorana
mass terms 1

2mν(νLνL + c.c) are not invariant under rephasing of the neutrino fields, so
we only have the freedom to rotate away 3 phases (by picking the phases of eL, µL and
τL) in the PMNS-matrix. The PMNS-matrix is therefore in general expressed in terms
of three mixing angles and three complex phases.

3.4 The mysterious flavour structure

Up until this point, all structure has more or less followed from the imposed gauge sym-
metry and the field content: The Higgs doublet mass parameter −µ2 sets the energy
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Fermion Mass (GeV) Mass (me)

u

(
2.2

+0.6
−0.4

)
· 10−3 4.3

d

(
4.7

+0.5
−0.4

)
· 10−3 9.2

e (0.5109989461± 0.0000000031) · 10−3 1

c 1.28± 0.03 2500

s

(
96

+8
−4

)
· 10−3 190

µ (106.6483745± 0.0000024) · 10−3 210

t 173.5± 1.1 340000

b 4.18
+0.04
−0.03

8200

τ 1.77686± 0.00012 3500

Table 1.3: Observed charged fermion masses. The numbers are taken from [18].

scale of the electro-weak symmetry breaking, and correspondingly, gauge bosons corre-
sponding to the broken symmetry generators, and the Higgs boson, obtain masses of the
order of this symmetry breaking scale. The electro-weak symmetry breaking provides
the fermions with their masses through their interactions with the Higgs vacuum. All
fermions can obtain their mass through dimension-4 operators except for the neutrinos,
which can at best obtain masses from dimension-5 operators which must therefore be
suppressed by another energy scale Λ (that in the SM is completely unrelated to the
electro-weak symmetry breaking scale). We therefore expect the neutrinos to be ex-
tremely light compared to the electro-weak scale, which indeed matches what is seen in
experiments.

But what are we to expect for the numerical values of the fermion masses? A naive
guess would be that all Yukawa couplings are O(1) such that all fermions have masses
around v√

2
. Another less naive guess would be that all Yukawa couplings (and hence

all fermion masses) are very small, because of the chiral symmetry that appears in the
absence of fermion Dirac masses (this is the symmetry of independent phase rotations of
all left-handed and right-handed fermions respectively). If the Yukawa couplings are all
small, the chiral symmetry protects them from large quantum corrections. It would in
this sense be “natural” [33] to have fermion masses much smaller than the electro-weak
scale.

Neither of these two guesses agree by themselves with the observed fermion masses
(which I have listed in Tab. 1.3). While the top quark indeed has a mass very close
to v√

2
≈ 174 GeV (in fact, suspiciously close!), the lightest fermion in the SM (i.e. the

electron) is roughly 10−5 times lighter than this. This is even though all fermion masses
enter on a complete equal footing, at least from the viewpoint of the SM.

Also, the form of VCKM is completely unconstrained by the imposed symmetries of the
SM (it is only predicted to be unitary). However, the measured [18] absolute values
the VCKM entries reveal a non-trivial structure for which there is no explanation to be
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found within the SM:


|Vud| |Vus| |Vub|
|Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|


 =




0.97417± 0.00021 0.2248± 0.0006 0.00409± 0.00039
0.220± 0.005 0.995± 0.016 0.0405± 0.00015

0.0082± 0.0006 0.0400± 0.0027 1.009± 0.031




=



| cos θC| | sin θC| 0
| sin θC| | cos θC| 0

0 0 1


+O(10−2)

(1.191)
with sin θC ≈ 0.225. I.e. to O(1%) accuracy, the third quark family has diagonal gauge
interactions, leaving behind a 2-by-2 mixing between the lightest two quark families.

These flavour structures might have a natural explanation if the SM is extended by
additional scalar fields. With such an increased field content it becomes possible to
impose additional symmetries on the model. The most well-studied such model is the
2 Higgs Doublet Model (2HDM), where a second Higgs doublet is added to the SM.
This leads to a very diverse phenomenology (see e.g. [34] and references therein), in
particular due to discrete discrete symmetries that can be imposed. To add even more
Higgs doublets might at first seem rather unmotivated, since there is still plenty of
room in the phenomenologically viable regions of the 2HDM parameter space. But for
example, in a model with 3 Higgs doublets (3HDM), the number of realisable symmetries
on the scalar potential [35, 36] vastly exceeds that of the 2HDM [37, 38, 39, 40], and the
more constraining symmetries lead to 3HDMs that are simpler in their structure than
popular 2HDM realizations. In Paper IV we propose a 3HDM where we impose the
most constraining Abelian symmetry possible (which is U(1)×U(1) in 3HDMs [35, 36])
with the purpose of partly explaining the flavour structure of the SM fermions. There,
the U(1) × U(1) charges are assigned such that the first two doublets (H1 and H2 in
the paper) give rise to the masses of the up-type and down-type quarks, respectively,
in the two lightest quark families, while the third doublet H3 couples exclusively to the
bottom and the top quark. This directly leads to the 2-by-2 Cabibbo form of VCKM.
Furthermore, if we “tune” the vacuum expectation values such that 〈|H1,2|2〉 � 〈|H3|2〉,
we simultaneously get a SM-like Higgs boson in the scalar mass spectrum, and two light
and one heavy quark family10. In addition, this model predicts new scalar particles
that couple mainly to strange and charm quarks, and in the paper we propose a search
strategy for the lightest charged scalar in the model which utilises the cs̄ fusion channel.

10Allegedly, Howard Georgi is to have said that one should have “not more than one half of an idea
per paper” [41]. In this spirit, we only use 〈|H1,2|2〉 � 〈|H3|2〉 to explain the quark mass hierarchies,
but leave the lepton sector very SM-like. I.e. in this model, the electron, the muon and the tau all get
their masses from 〈H3〉 which is most often . 246 GeV.
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4 Physics above the electro-weak scale

4.1 Supersymmetry

The hierarchy problem (which was mentioned in Sec. 2.2) refers to the problem of the
seemingly unnatural hierarchy between the electro-weak scale and the UV cut-off scale
for the SM ΛSM (which is usually assumed to be very large, ΛSM . ΛPl ∼ 1018 GeV).
This hierarchy is strange within the context of the SM by itself since the electro-weak
scale is set by the Higgs mass squared parameter −µ2 which is quadratically sensitive
to ΛSM (as argued in Sec. 2.2). This is because there is no symmetry in the UV limit
of the SM that forbids the |Φ|2 operator. Such a symmetry is hard to imagine, but it
turns out that supersymmetry (SUSY) can do the job.

I will in this section introduce the very basics of supersymmetry, which is required for
Paper III in this thesis. This section is heavily based on [42].

Supersymmetry is most appropriately thought of as an extension of the Poincaré algebra
(see Sec. 1.1). In its minimal version, the generators of the Poincaré group Pµ and Jµν

are augmented by one pair of fermionic generators Qα and Q†α̇ (which are in the ( 1
2 , 0)

and (0, 1
2 ) representations of the Lorentz group respectively). This is the so-called

N = 1 supersymmetry, where N refers to number of {Q,Q†} pairs. The Poincaré
algebra (Eq. (1.2)) is extended by

{Qα, Q†α̇} = −2(σ̄µ)αα̇Pµ , {Qα, Qβ} = {Q†α̇Q†β̇} = 0

[Qα, P
µ] = 0 , [Q†α̇, P

µ] = 0
(1.192)

which is the SUSY algebra. We should now go back all the way to Wigner’s classification
(Sec. 1.2), and see what the one-particle states are that form representations of the
SUSY algebra. In particular, since Qα is fermionic, we have that Q |boson〉 = |fermion〉
and Q |fermion〉 = |boson〉. Fermionic and bosonic states that are related in this way
are referred to as “super partners”11. The particle representations of the N = 1 SUSY
algebra are “super-multiplets”, each consisting of two particles differing in spin by 1

2 .
The Qα’s commute with P 2 (since they commute with Pµ), so the particles in each
supermultiplet must have the same mass (for exact supersymmetry). They must also
form the same representations under internal symmetries.

The generators of the Poincaré group can be represented on space-time xµ as

Pµ → −i∂µ , Jµν → xµ∂ν − xν∂µ . (1.193)

We can extend space-time with a pair of Grassmann valued 2-component coordinates
θα and θ†α̇, to form the so called superspace {xµ, θα, θ†α̇}. Qα and Q†α̇ can now be

11However, supersymmetry does not always imply that for each fermionic particle there is corre-
sponding bosonic particle. In so called non-linearly realized supersymmetry [43], the superpartner of
the fermion is instead a two-fermion state which is therefore is bosonic.
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represented on superspace as

Qα → −i
∂

∂θα
+ (θ†σ̄µ)α∂µ , Q†α̇ → i

∂

∂θ†α̇
− (σ̄µθ)α̇∂µ . (1.194)

An arbitrary scalar function of the superspace coordinates transform under supersym-
metry (with fermionic parameters εα) as

√
2δεS(xµ, θ, θ†) = − i(εQ+ ε†Q†)S

= S(xµ + iεσµθ† + iε†σ̄µθ, θ + ε, θ† + ε†)− S(xµ, θ, θ†)
(1.195)

so supersymmetry transformations can be viewed as translations in superspace.

However, S is a reducible representation, and can be constrained in a few ways consistent
with SUSY. In particular, if we form

D†α̇ ≡ −
∂

∂θ†α̇
+ i(θσµ)α̇∂µ, (1.196)

then one can verify that if a superfield Φ satisfies

D†α̇Φ = 0 , (1.197)

then Φ also satisfies Eq. (1.197) after a supersymmetry transformation. Fields that
satisfy Eq. (1.197) are called chiral superfields. Another constraint consistent with
supersymmetry is

V ∗ = V , (1.198)

which yields so called vector superfields.

The solution to Eq. (1.197) is

Φ = Φ(y, θ)

= φ(y) +
√

2θψ(y) + θθF (y) ,
(1.199)

with yµ ≡ xµ + iθ†σ̄µθ. Therefore, each chiral superfield contains a complex scalar φ
and a 2-component Weyl fermion ψ. It also contains an auxiliary field F (y) which will
turn out to be a non-propagating degree of freedom (we will see that F lacks a kinetic
term).

It turns out [42] that a vector superfield V can always be put in the form

V = θ†σ̄µθAµ + θ†θ†θλ+ θθθ†λ† +
1

2
θθθ†θ†D . (1.200)

This corresponds to the so-called Wess-Zumino gauge. We can see from this that the
vector multiplet contains a vector field Aµ and a fermion (a “gaugino”) λ. Similarly to
F in Φ, the auxiliary field D in V does not correspond to propagating particles since it
lacks a kinetic term.
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One can check from Eq. (1.195) that F transforms as a total derivative w.r.t. xµ under
SUSY transformations. Note also that any holomorphic function of Φ (i.e. a function
only of Φ but not of Φ∗) W (Φ) is also a chiral superfield. Therefore, the terms

∫
d4x

∫
d2θW (Φ) + c.c. (1.201)

are real and invariant under SUSY transformations. (The integrals
∫

d2θ only receive
a non-zero contribution from θθ component of W (Φ).)

Eq. (1.195) can also be used to show that the θ2θ†2 component D of a vector superfield
V does not transform under SUSY transformations. We can therefore obtain SUSY
invariant action terms by integrating V over θ2θ†2. In particular, Φ∗Φ satisfies the
reality condition in Eq. (1.198) and is therefore a vector superfield. The terms

∫
d4x

∫
d2θ

∫
d2θ†Φ∗Φ =

∫
d4x

(
|∂φ|2 + iψ†σ̄µ∂µψ + F ∗F

)
, (1.202)

are therefore SUSY invariant. I have on the RHS explicitly performed the integrals over
θ or θ†, whereby we see that we can recover the standard kinetic terms for φ and ψ,
but no kinetic term for F (as promised).

If we now for example take W (Φ) = 1
2µΦ2 + 1

3!λΦ3, then the terms from Eq. (1.201)
can be shown to be

∫
d4x

(
µφF − 1

2
µψψ +

1

2
λφ2F − λφψψ

)
+ c.c. (1.203)

We can add these terms to the terms in Eq. (1.202), and find the equations of motion
for F as

F + µ∗φ∗ +
1

2
λ∗φ∗2 = 0 . (1.204)

This can be used to remove F in the action in Eq. (1.203), giving

S =

∫
d4x

[
|∂φ|2 + iψ†σ̄µ∂µψ −

1

2
(µψψ + c.c.)

−
∣∣∣∣µ+

1

2
λφ

∣∣∣∣
2

|φ|2 − (λφψψ + c.c.)

]
.

(1.205)

Note that ψ and φ have the same mass, and also e.g. that the |φ|4 and the φψψ
interactions have related strengths. One can check that, as a consequence of this, the
one-loop contributions to the masses of ψ and φ vanish.

The fact that the masses of the fields in this toy model do not receive quantum correc-
tions is just a special case of more general SUSY non-renormalisation theorems [44, 45],
which state that no superpotential parameters do (meaning that they are cut-off inde-
pendent contrary to e.g. the Higgs squared mass parameter). If the electro-weak scale
is given by a superpotential parameter in a supersymmetrised version of the SM, its
smallness compared to any UV cut-off would therefore be less awkward.
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However, there is obviously no manifest supersymmetry at the electro-weak scale, since
we simply do not see any of the superpartners of the fields in Tab. 1.2 (i.e. fields with
the same mass and quantum numbers but different spins). It is however not difficult to
write down a theory with an approximate supersymmetry that still retains many of the
nice features of exact SUSY. Consider modifying a SUSY theory by adding operators
with mass dimension d < 4 (which come with couplings of positive mass dimensions).
These are the so called soft SUSY breaking terms. Suppose that all such couplings are
related to some energy scale Λsoft � ΛUV. Then, at least, all SUSY breaking effects
such as the mass splitting between particles in the same supermultiplets, or radiative
corrections to the electro-weak scale, can at most be O(Λsoft) rather than O(ΛUV).

Soft SUSY breaking parameters are often introduced to parametrise our ignorance about
the mechanism that broke SUSY in the first place. However, given that this mecha-
nism might be completely unrelated to the superpotential, one can argue that if the
electro-weak scale is set by superpotential parameters, such as e.g. in the Minimal Su-
persymmetric Standard Model (MSSM), the natural scale for the electro-weak scale
would still be at ΛUV and not at Λsoft. This is the so called µ-problem of the MSSM. A
very nice feature of the supersymmetric trinification model in Paper III is that only the
Grand Unification scale (more about this in the next section) is set by superpotential
parameters, while all subsequent symmetry breaking scales (including the electro-weak
scale) are completely determined by soft SUSY breaking parameters only.

4.2 Grand unification

We have seen from Eq. (1.190) that the neutrino masses force us to introduce another
scale Λ in the SM, in addition to the electro-weak scale that is set by the Higgs mass
squared parameter. The neutrino (Majorana) mass terms are the only terms in the
SM that do not preserve lepton number, meaning that we might want to think of Λ
as the energy scale associated with lepton number violation. The actual values of the
neutrino masses mν1,2,3

are notoriously difficult to measure and are therefore not known.
However, neutrino oscillation experiments can quite accurately measure the differences
between the squared masses, which are found to be

m2
ν2
−m2

ν1
= (7.53± 0.18) · 10−5 eV2 ≈ [8.67± 0.10 meV]2 ,

|m2
ν3
−m2

ν2
| =

{
(2.45± 0.05) · 10−3 eV2 ≈ [(49.9± 0.5) meV]2 (NH)
(2.52± 0.05) · 10−3 eV2 ≈ [(50.1± 0.5) meV]2 (IH)

,
(1.206)

where the numbers are taken from [18]. Here, (NH) and (IH) refers to normal (mν3 >
mν2

> mν1
) and inverted (mν2

> mν1
> mν3

) mass hierarchy respectively. In particular,
this implies a lower bound on the mass of heaviest neutrino species at ∼ 50 meV. If we
assume that (yν)ij ∼ O(0.1–1), then we can translate this into an estimate of an upper
bound on Λ as

Λ ∼ v2

mν
. 1015−16 GeV . (1.207)

This is a very interesting energy scale! Not only is it just a few orders of magnitude
below the Plank scale ΛPl ∼ 1018 GeV. It also coincides with another energy scale that
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can be indirectly inferred from the SM, namely the scale of gauge coupling unification.

The gauge couplings in the SM take on the values

α3 ≡
g2

C

4π
≈ 1

8.5
, α2 ≡

g2
L

4π
≈ 1

29
, α1 ≡

g2
Y

4π
≈ 1

101
(1.208)

for a renormalisation scale µ = mZ (we also have αe.m. ≡ e2

4π ≈ 1
128 at this scale). Note

that this value of α1 is specific to the normalisation of the hypercharges in Tab. 1.2. For
reasons that will become clear later, let me change the hypercharges Ŷ to a different
normalization such that

Ŷ =

√
3

5
Y . (1.209)

The new hypercharge gauge coupling is ĝY =
√

5
3gY, such that

α̂1 ≡
ĝ2

Y

4π
≈ 1

60
, (1.210)

at µ = mZ . With the SM field content, the corresponding β-functions are

β(α̂1) =
41

10
· α̂

2
1

2π
, β(α2) = −19

6
· α

2
2

2π
, β(α3) = −7 · α

2
3

2π
(1.211)

with β(αi) ≡ µ d
dµαi, which we can use to run the gauge couplings towards higher

energies. See e.g. [3] for the computation of the β-functions in Eq. (1.211). The solutions
to these evolution equations (for the boundary conditions in Eqs. (1.208) and (1.210)
for µ = mZ) are shown in figure 1.4. This figure reveals something interesting: At an
energy scale of about µ ∼ 1014−16 GeV, the gauge couplings acquire almost the same
value. Note that the running is logarithmically slow, meaning that the energy scale, at
which two curves in figure 1.4 intersect, is exponentially sensitive both to their slopes
(given by their β-functions) and their boundary values at µ = mZ . It might therefore
seem unlikely coincidental not only that the gauge couplings almost unify, but also that
the unification scale roughly coincides with the new physics energy scale that can be
inferred from neutrino masses.

A natural question we can now ask is: Could there be a symmetry reason for the gauge
coupling unification? That is, can we construct a model where there is a symmetry that
enforce a common value for the gauge couplings, and that gets spontaneously broken
at a scale ΛGUT ∼ 1014−16 GeV?

The answer is of course that such models exist, and they go under the name Grand
Unification Theories (GUTs). The minimal grand unified construction is based on the
observation that the SM gauge group can be found as a subgroup of SU(5)[46]. In
particular, the generator of the hypercharge subgroup now comes out with the normal-

ization of
√

3
5 in Eq. (1.209), such that a manifest SU(5) gauge symmetry implies

α̂1 = α2 = α3 . (1.212)
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Figure 1.4: Gauge coupling scale evolution in the Standard Model.

The unification of the SM gauge group into a simple Lie group also explains another
curiosity of the SM, namely the particular hypercharges of the SM fermions. In the
SM, we are a priori completely free to pick the U(1)Y charges (and by extension the
electric charges) of the fields. In this sense, the electric charges of the proton and the
electron are independent quantities in the SM, and it may thus seem like a numerical
coincidence that these charges are so delicately balanced against each other. This is on
the contrary a natural consequence in GUTs.

The fermions dci
R and LiL can be grouped into the 5̄i representation, while uci

R , QiL and eci
R

together furnish a 10i (i.e. the anti-symmetric bi-fundamental) representation of SU(5).
The Higgs doublet Φ needs to be supplemented with an exotic colour triplet scalar field
such that they together can form a 5. Furthermore, it turns out that the breaking
SU(5) → SU(3)C×SU(2)L×U(1)Y can be induced by a vacuum expectation in a scalar
multiplet in the 24 (i.e. in the adjoint) representation. This vacuum expectation value
should be of the order of ΛGUT, and provides O(ΛGUT) masses to all fields that are not
in the SM.

SU(5) GUTs also come with a very striking experimental signature that is absent in
the SM, namely that of proton decay. Since quarks and leptons sit in common gauge
multiplets, there exist exotic heavy gauge bosons that transform quarks into leptons and
vice versa (just like gluons in the SM change the colour charge of the quarks). We can
quite straightforwardly estimate the proton lifetime from this. At the GeV scale, such
processes would be described by baryon number violating effective operators that are
obtained from integrating out the heavy gauge bosons. These operators must at least
be of mass-dimension 6, meaning that the decay amplitude is proportional to Λ−2

GUT.
The decay width Γp is proportional to the square of the amplitude, and dimensional
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analysis tells us where to put in extra factors of the proton mass mp:

Γp ∼ mp ·
(

mp

ΛGUT

)4

. (1.213)

The proton lifetime τp is the inverse of Γp, and can therefore be related to ΛGUT as

ΛGUT ∼ mp (mpτp)
1
4 . (1.214)

Proton decay has been extensively looked for but never observed, which can be trans-
lated into lower limits of τp. In particular, the mean partial lifetime due to p → e+π0

is constrained [18] as

τp > 8.2 · 1033 years ≈ 3.9 · 1065 GeV−1 . (1.215)

This leads to an estimate of a lower bound on the grand unification scale as

ΛGUT > 2 · 1016 GeV . (1.216)

Although both this limit and the limit in Eq. (1.207) were very crudely estimated, we
see that there is a potential tension between them. More detailed calculations [47]
indeed show that the simplest SU(5) realisations are ruled out experimentally, while
ΛGUT is tightly constrained in other versions.

4.3 Trinification

We can now ask if it is possible to achieve grand unification where the proton is still
very stable (such that the bound in Eq. (1.216) on ΛGUT does not apply). Indeed, the
trinification [48] grand unified scheme can achieve this. The trinification gauge group
is

SU(3)3 ≡ [SU(3)C × SU(3)L × SU(3)R] o Z3 , (1.217)

where SU(3)C is the familiar colour group of QCD, while SU(3)L× SU(3)R extends the
electro-weak gauge group. The Z3 symmetry refers to a cyclic permutation symmetry
of the representations of the three SU(3) groups, which enforces a common value of the
corresponding gauge couplings. It has a total of 3 · 8 = 24 generators T 1,...,8

L,R,C which in

the fundamental representations correspond to 1
2λ

1,...,8 (with λa being the Gell-Mann
matrices).

Each generation of SM fermions can be embedded into three bi-fundamental represen-
tations Li, QiL and QiR as

Li ∼ (1,3, 3̄)i , QiL ∼ (3, 3̄,1)i , QiR ∼ (3̄,1,3)i . (1.218)

Each Li can be represented as a 3-by-3 matrix (Li)lr where SU(3)L,R transformations
act on the l (‘row’) and r (‘column’) indices respectively (QL,R can of course also
be similarly represented). From now on, the indices belonging to fundamental (anti-
fundamental) representations will be denoted as superscripts (subscripts), e.g. such that
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[(Li)lr]
† = (L†i )l

r. The Z3 in Eq. (1.217) acts on the fermions as a cyclic permutation
in {L,QL, QR}.

Let us first look at the gauge-kinetic terms of the fermions,

L ⊃ i(L†i)l
rσ̄µ

(
DµL

i
)
l
r + i(Q†Li)c

lσ̄µ
(
DµQ

i
L

)
c
l + i(Q†Ri)r

cσ̄µ
(
DµQ

i
R

)
r
c , (1.219)

where

(
DµL

i
)
l
r =

[
δll′δ

r′

r ∂µ −
1

2
igLG

a
Lµ(λa)ll′δ

r′

r +
1

2
igRG

a
Rµ(λa)r

′

rδ
l
l′

]
(Li)l

′

r′ ,

(
DµQ

i
L

)
c
l =

[
δcc′δ

l′

l ∂µ −
1

2
igCG

a
Cµ(λa)cc′δ

l′

l +
1

2
igLG

a
Lµ(λa)l

′

lδ
c
c′

]
(QiL)c

′

l′ ,

(
DµQ

i
R

)
r
c =

[
δrr′δ

c′

c ∂µ −
1

2
igRG

a
Rµ(λa)rr′δ

c′

c +
1

2
igCG

a
Cµ(λa)c

′

cδ
r
r′

]
(QiR)r

′

c′ ,

(1.220)

where GaL,R,Cµ are the gauge fields associated with SU(3)L,R,C respectively (in partic-
ular, GaCµ are the gluons in the SM), and gL,R,C are their associated gauge couplings.
From this we can see that the terms in Eq. (1.219) are Z3 invariant if the cyclic permu-
tation in {L,QL, QR} is accompanied by a cyclic permutation in {GLµ, GCµ, GRµ} and
the gauge couplings are unified to a common value,

gL = gR = gC ≡ gU . (1.221)

The trinification gauge group can be broken to that of the SM by vacuum expectation
values in two scalar (1,3, 3̄) fields (i.e. scalar “cousins” of L). To keep a consistent
notation with Paper II and III, let me denote these two scalar multiplets as (L̃3)lr and
(L̃2)lr (as you might guess, there is also a third such field (L̃1)lr in these articles). Let
us take the forms of 〈(L̃2,3)lr〉 to be

〈(L̃3)lr〉 =




0 0 0
0 0 0
0 0 v√

2


 , 〈(L̃2)lr〉 =




0 0 0
0 0 0
0 w√

2
0


 . (1.222)

Here, v 6= 0 induces the breaking

SU(3)L × SU(3)R → SU(2)L × SU(2)R ×U(1)L+R , (1.223)

where SU(2)L,R are generated by T 1,2,3
L,R and U(1)L+R is generated by

TL+R ≡
1√
3

(
T 8

L + T 8
R

)
. (1.224)

Furthermore, w 6= 0 provides the breaking SU(2)R ×U(1)L+R → U(1)Y, where we find
the hypercharge generator as

Y ≡ −T 3
R − TL+R = −T 3

R −
1√
3

(
T 8

L + T 8
R

)
. (1.225)

50



We can label the components of QiL,R as

QiL =
(
uiL diL Di

L

)
, QiR =

(
uci

R dci
R Dci

R

)
, (1.226)

motivated by their hypercharges (I have here suppressed the colour degree of freedom for
clarity). The SU(2)L doublets

(
uiL diL

)
have Y = 1

6 meaning that they must correspond
to the SM electro-weak quark doublets (while the extra SU(2)L singlet quarks Di

L have
Y = − 1

3 and therefore do not have any SM counterpart). Similarly, uci
R have Y = − 2

3 ,
so they have to be identified with the SM uci

R in Tab. 1.2. However, both dci
R and Dci

R

have Y = 1
3 , i.e. the same quantum numbers as the SM dci

R ’s. Therefore, as far as the
electro-weak group concerns, both diR and Di

R can play the roles of the right-handed
components of the SM down-type quarks.

The components of Li are labelled as

Li =



H+
d
i H0

u
i νiL

H0
d
i H−u

i eiL
eci

R νci
R Φi


 (1.227)

which can also be motivated by their hypercharges. Here, eci
R are the only SU(2)L

singlets with Y = +1, and must therefore correspond to eci
R in Tab. 1.2. However, the

two SU(2)L doublets

(
νiL
eiL

)
and

(
H0
u
i

H−u
i

)
both have Y = − 1

2 and therefore are both

candidates for the SM lepton doublets. The SU(2)L doublets made out of H0,+
d

i have
hypercharge Y = + 1

2 , while νci
R and Φi are electro-weak singlets.

Since the quarks and leptons sit in different gauge multiplets, there is no gauge-mediated
proton decay in this model. However, the Z3 symmetry in Eq. (1.217) forces us to
introduce a pair of colour charged scalar fields Q̃L,R that are the Z3 conjugates of L̃.
These fields can potentially mediate a decay of the proton through the baryon number
violating interaction terms

(y/B)ijkQ̃iL,RQ
j
L,RQ

k
L,R , (1.228)

where the gauge indices are understood to be contracted with three-dimensional Levi-
Cevita tensors. This is however not as severe as e.g. in SU(5) constructions since there
the relevant couplings are gauge couplings whose values are fixed by the values of the
SM gauge couplings, contrary to the above coupling constants (y/B)ijk which can be
independently tuned to be small (see e.g. [49]).

Suppose that the scales v and w in Eq. (1.222) are quite well separated with w � v.
The trinification model can in this case be traded for an effective theory based on the
gauge group

SU(3)C × SU(2)L × SU(2)R ×U(1)L+R , (1.229)

at energies below v, which can be obtained by integrating out all fields obtaining O(v)
masses. This is a well known gauge group which has been extensively studied in the past
in many different realizations, most often without invoking an origin in the trinification
gauge group. In fact, it is the basis for a class of models dubbed Left-Right symmetric
models [50, 51, 52, 53, 54]. In such models, parity can be treated as an exact symmetry
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that interchanges representations of SU(2)L,R, and that gets spontaneously broken along
side with SU(2)R × U(1)L+R → U(1)Y. This is in contrast to the SM, where parity is
explicitly and brutally violated since the left-handed and the right-handed components
of the SM Dirac fermions have different gauge interactions. In the simplest Left-Right
symmetric models, the “right-handed” fields in the SM are put into SU(2)R doublets
(which requires the inclusion of right-handed neutrinos) to form parity conjugates of
the SM SU(2)L doublets. In such constructions, it turns out that the U(1)L+R charges
of the fermions match that of (baryon number)− (lepton number), i.e. B−L. For this
reason, U(1)L+R is often instead written as U(1)B−L. However, as already discussed,
there is in trinification models an ambiguity in which fermions will correspond to the
SM fermions, and in general the U(1)L+R charges do not match B−L. For example, the
Dci

R
† fields can potentially become the right-handed SM down-type quarks, and they

are SU(2)R singlets rather than being components of SU(2)R doublets. For this reason,
labelling the U(1) group in Eq. (1.229) with B − L would be misleading, and we do
not employ that notation in Paper II and Paper III. For phenomenological aspects of a
Left-Right symmetric model derived from a trinification UV completion, see [55, 56].

One can also find a motivation for trinification from the high energy limit. Namely, the
trinification gauge group SU(3)3 can be found as a maximal subgroup of the exceptional
group E6 [57], under which the three fermion bi-triplets in each generation can form a
complete 27 representation,

27 ∼ (1,3, 3̄)⊕ (3, 3̄,1)⊕ (3̄,1,3) . (1.230)

This embedding of the trinification gauge group into E6 can be shown to be one of the
phenomenologically plausible low-energy scenarios of a superstring theory with gauge
group E8 × E8 [58, 59], where fields transforming under one of the E8 groups contains
the SM, while fields transforming under the other E8 group constitute a hidden sector.
In turn, E8 contains E6×SU(3) as a maximal subgroup [57], and its 248 representation
branches under E8 → E6 × SU(3) as

248→ (1,8)⊕ (78,1)⊕ (27,3)⊕ (27, 3̄) . (1.231)

Note in particular that the 248 of E8 contains three 27 representations of E6 that
together form an SU(3) triplet. Given that the each SM fermion generation can fit
into a 27, it is tempting to interpret the SU(3) in E6 × SU(3) as acting in the space of
fermion generations.

Paper II and III concern a non-supersymmetric and a supersymmetric version respec-
tively of the above trinification model, where we indeed augment the trinification gauge
symmetry by a novel global SU(3)F family symmetry that acts on the space of genera-
tions of L̃i, Q̃iL,R, Li and QiL,R (i.e. the index i on these fields belong to the fundamental

representation of SU(3)F). In particular, SU(3)F forces (y/B)ijk ∝ εijk such that the in-

teraction terms in (1.228) vanish since QjL,RQ
k
L,R is symmetric under i ↔ j. In fact,

one of the nice consequences of SU(3)F is the appearance of an accidental U(1)B baryon
number symmetry that stabilizes the proton12.

12However, if we have in mind the embedding SU(3)3 ∈ E6, then there must be baryon number
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The Yukawa interactions become extremely constrained once SU(3)F is imposed. In
fact, the Yukawa sector then only contains a single free parameter yU,

LYukawa = yUεijk (L̃i)lr (QjL)cl (Q
k
R)rc + c.c.+ (Z3 permutations) , (1.232)

from which all SM Yukawa interactions must originate (at some loop level) for this
model to be viable. However, the terms in Eq. (1.232) exhibit a larger global symmetry
than what was imposed. To start with, one can perform independent phase rotations
e.g. on (QL, Q̃L) and (QR, Q̃R) respectively, while making a compensating phase rotation
of (L, L̃). This means that the model exhibits two accidental global U(1) symmetries
(which I will denote as U(1)A×U(1)B in the reminder of this section). In particular, op-
posite phase rotations of (QL, Q̃L) and (QR, Q̃R) respectively (with (L, L̃) being neutral)
defines a U(1)B symmetry that leads to a conserved baryon number (that was alluded
to in the previous paragraph). It turns out that the full U(1)A×U(1)B symmetry is also
respected in all other sectors of both the supersymmetric and the non-supersymmetric
versions of the model.

The terms in Eq. (1.232) are together also invariant under a quite non-trivial discrete
symmetry that interchanges SU(3)L and SU(3)R representations. Let me for this reason
temporarily divert from from our standard notation and instead denote both SU(3)L,R

indices by s, s′ etc. (one can still find which index belongs to which group from their
positions on the fields). This symmetry also trades Weyl fermions for their complex
conjugates, so let me also for a moment drop the dotted-undotted notation and denote
indices belonging to the ( 1

2 , 0) and (0, 1
2 ) representations of the Lorentz group as α,

β etc. (it should be understood that spinor indices on undaggered and daggered Weyl
fermions belong to (1

2 , 0) and (0, 1
2 ) respectively). The tri-triplet fields transform under

this symmetry as

(L̃i)ss′ → −(L̃∗i )s′
s ,

[
(Li)ss′

]
α
→ −i

[
(L†i )s′

s
]α

,

(Q̃iL,R)cs → (Q̃∗R,L i)s
c ,

[
(QiL,R)cs

]
α
→ i

[
(Q†R,L i)s

c
]α

.
(1.233)

One can now check that e.g. εijkL̃
iQjLQ

k
R transforms into its complex conjugate (1.233)

such that the terms in Eq. (1.232) are invariant. However, the kinetic terms for the
fermions are not quite invariant under the transformations in Eq. (1.233). Take for
example the kinetic term for L,

L ⊃ iL†α(σ̄µ)αβLβ , (1.234)

where I have left gauge and family indices implicit since their contractions are trivial
in this term. If we now take Lα → −iL†α = −iεαβL†β (and therefore L†α → iLα =
iεαβLβ), and use the identity εαδ(σ̄µ)γδεγβ = (σ̄µ)αβ , we see that the above kinetic term
is only invariant (up to a total derivative) if we simultaneously take ∂µ → ∂µ. This
corresponds to spatial inversion, i.e.

xµ → xµ , (1.235)

violating interactions involving the E6 gauge fields, which could mediate a decay of the proton. The
proton decay width would then be suppressed by the energy scale associated with the breaking E6 →
SU(3)3 which can be much larger than unification scale ΛGUT (which is the energy scale associated
with the breaking in Eq. (1.223)).
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or ~x→ −~x (while t→ t). This discrete symmetry therefore corresponds do a so called
Left-Right parity symmetry. Curiously, there are also Colour-Left and Right-Colour
parity symmetries in these terms due to the presence of the Z3 symmetry.

One can further check that the gauge fields need to transform as

GµL,R,C → GR,L,Cµ , (1.236)

for gauge interactions to be Left-Right parity invariant. However, the most general
renormalisable scalar potential containing L̃, Q̃L and Q̃R is in general not invariant
under Left-Right parity, which is why this symmetry is not considered in the non-
supersymmetric trinification model in Paper II.

In the non-supersymmetric model in Paper II, the tree-level scalar potential for L̃ often
has a global minimum where 〈L̃3〉 has the form in Eq. (1.222). In this paper, we first
integrate out the fields that obtain large masses from 〈L̃3〉 6= 0, to obtain an effective
Left-Right symmetric13 model based on the gauge group in Eq. (1.229). We then show
that the mass term of the SU(2)R scalar doublet

(
ẽ1,2

R ν̃1,2
R

)
can become negative

through the (continuum) renormalisation group evolution towards lower energies. This
running consequently triggers the 〈L̃2〉 in Eq. (1.222), such that SU(2)R × U(1)L+R is
radiatively broken to U(1)Y. Furthermore, we show that this can be done with light
Higgs doublets from L̃ still remaining in the spectrum, as required for electro-weak
symmetry breaking.

In the supersymmetric trinification model in Paper III, the fields L̃ and L belong to the
same chiral superfield which we denote as L (the same goes for Q̃L,R and QL,R which
belong to the chiral supermultiplets QL,R). With only these fields, the supersymmetric
sector of the model contains only two free parameters, i.e. the gauge coupling gU and
the single real superpotential parameter λ27 defined as,

W27 = λ27 εijk (Li)lr (Qj
L)cl (Q

k
R)rc . (1.237)

Contrary to the non-supersymmetric version of the model, Left-Right parity is an ac-
cidental symmetry of the full supersymmetric trinification theory with SU(3)F. It is
manifest already at the superspace level where we can take the Left-Right transforma-
tion rules to be

(Li)ss′ → −(L∗i )s′
s , (Qi

L)cs → (Q∗R i)s
c , (Qi

R)sc → (Q∗L i)c
s . (1.238)

The superpotential W27 transforms under these transformations as

W27 →W ∗27 , (1.239)

so the corresponding Lagrangian terms (see e.g. Eq. (1.201)) become Left-Right parity
invariant provided that

θα → iθ†α , θ†α → iθα (1.240)

13However, as was earlier discussed, the Left-Right parity is only respected by Yukawa and gauge
interactions (but not the interactions in the scalar potential) at the matching scale. Explicit Left-Right
parity violation then sneaks into the gauge and Yukawa sectors via renormalisation group effects at
lower energies (as can be seen e.g. by comparing values of the gauge couplings corresponding to the
SU(2)L,R groups.)
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such that θθ → θ†θ†.

However, the resulting scalar potential does not allow for the vacuum structures in
Eq. (1.222). One way to see this is to look at the D-term contribution to the scalar
potential,

VD =
1

2
Da

LD
a
L + (Z3 permutations) , (1.241)

where

Da
L =

1

2
gU

[
(L̃∗i )l

r(λa)ll′(L̃
i)l
′

l − (Q̃∗L i)c
l(λa)l

′

l(Q̃
i
L)cl′

]
. (1.242)

Suppose we take w = 0 in Eq. (1.222) for simplicity. With v 6= 0, we see that we can put
vacuum expectation values into Q̃L,R such that 〈Da

L,R,C〉 = 0 and consequently V = 0
(one can also show that F -terms do not alter this discussion). This must correspond
to a global minimum of the scalar potential since V ≥ 0 in supersymmetry. However,
〈Q̃L,R〉 6= 0 is unacceptable from a phenomenological point of view since it would break
SU(3)C which is of course known to be unbroken in nature. Another way to see that
〈L̃〉 6= 0 is phenomenologically problematic is to note that the third generation right-
handed lepton doublets

(
e3

R ν3
R

)
are the superpartners to Goldstone bosons from the

breaking of [SU(3)]3. These Goldstone bosons become the longitudinal polarisation
states of massive gauge bosons (with GUT scale masses), which also implies that their
superpartners receive GUT-scale masses. There are therefore not enough light states to
build up the all three SM lepton generations!

In Paper III we present a possible solution to this problem. There we add three new
chiral superfields ∆a

L,R,C (with scalar and fermion components ∆̃a
L,R,C and ∆a

L,R,C re-

spectively) in adjoint representations of the SU(3) gauge groups in SU(3)3, i.e.

∆C ∼ (8,1,1) , ∆L ∼ (1,8,1) , ∆R ∼ (1,1,8) , (1.243)

that are cyclically permuted under Z3. Such fields are not completely unmotivated,
but can be found in the 78 of E6 [57] which is also contained in the 248 of E8 (see
Eq. (1.231)). The most general renormalisable superpotential now becomes

W = W27 +W78 (1.244)

with

W78 =
1

2
µ78∆a

L∆a
L +

1

3!
λ78dabc∆

a
L∆b

L∆c
L + (Z3 permutations) , (1.245)

where dabc = 2Tr[{T a, T b}T c] are the totally symmetric SU(3) coefficients. Here, the
phases of ∆L,R,C can be chosen such that µ78 is real, leaving λ78 complex in general.
Note that there is no renormalisable superpotential interaction term between ∆L,R,C

and the tri-triplet chiral superfields, such that they only communicate via gauge inter-
actions (and soft SUSY breaking terms).

Left-Right parity is still respected by gauge interactions if we take the following trans-
formation rules for the gauge adjoint chiral superfields,

∆a
L,R,C →∆∗aR,L,C . (1.246)
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However, we only recover
W78 →W ∗78 , (1.247)

in the special case where the coupling λ78 is real. The phase of λ78 therefore provides
a source of explicit breaking of Left-Right parity.

The scalar potential now contains several disconnected SUSY preserving minima where
each gauged SU(3) group is either unbroken or broken to SU(2) ×U(1) independent of
the others. In particular, there is a minimum such that

〈∆̃a
C〉 = 0 , 〈∆̃a

L〉 = 〈∆̃a
R〉 =

v∆√
2
δa8 , (1.248)

where v∆ = 2
√

6µ78

λ78
. This leaves SU(3)C unbroken, but breaks SU(3)L,R into SU(2)L,R×

U(1)L,R where SU(2)L,R are generated by T 1,...,3
L,R and U(1)L,R are generated by 1√

3
T 8

L,R.

Note also that 〈∆̃a
L〉 = 〈∆̃∗aR 〉 only if λ78 is real, meaning that Left-Right parity is

unbroken if it was respected by W78 in the first place.

One can now check that all fields contained in ∆a
L,R,C receive GUT scale masses, i.e. of

the order of v∆. The symmetry breaking is transmitted to the tri-triplet sector via
gauge interactions, and integrating out all fields with GUT scale masses leaves behind
an effective Left-Right symmetric supersymmetric effective theory based on the gauge
group

SU(3)C × SU(2)L × SU(2)R ×U(1)L ×U(1)R , (1.249)

with a field content given by the branching rules of L, QL and QR.

In Paper III we also study the consequences of adding soft SUSY breaking terms to this
model. As all components of L, QL and QR are massless in the case of exact SUSY, the
only mass scales in the effective theory can come from soft SUSY breaking parameters.
This includes all subsequent symmetry breaking scales (in particular the energy scale
for the breaking of Left-Right parity as well as the electro-weak scale). This model
therefore does not exhibit a µ-problem (which was described in Sec. 4.1).

This concludes the introduction to the research papers that will now follow. Far more
time could have been spent on many of the topics that have been described so far, and
several topics have been completely omitted. However, this is an inevitable consequence
of one my personal goals regarding this text; namely to guide the reader all the way
from the basic postulates of quantum field theory up to one of the many current research
frontiers in theoretical high energy physics.
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Abstract: Using the one-loop Coleman-Weinberg effective potential, we derive a gen-
eral analytic expression for all the derivatives of the effective potential with respect to
any number of classical scalar fields. The result is valid for a renormalisable theory
in four dimensions with any number of scalars, fermions or gauge bosons. This result
corresponds to the zero-external momentum contribution to a general one-loop diagram
with N scalar external legs. We illustrate the use of the general result in two simple
scalar singlet extensions of the Standard Model, to obtain the dominant contributions
to the triple couplings of light scalar particles under the zero external momentum ap-
proximation.

1 Introduction

The Large Hadron Collider (LHC) ATLAS [1] and CMS [2] experiments, have achieved
in recent years a landmark in the history of particle physics: the direct confirmation of
the first known fundamental scalar in Nature. Scalar fields are frequently used in the
modelling of new physics beyond the Standard Model (SM) of particle physics and in
cosmology. Interesting examples are models with scalar dark matter candidates [3, 4, 5,



6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18], models of scalar field inflation [19, 20, 21],
or even in attempts to explain the finer structure of the SM parameters through scalar
flavour models1. Furthermore they are very often predicted as part of many Beyond
the Standard Model (BSM) scenarios such as supersymmetric theories [23], models with
extra dimensions [24, 25], little Higgs models [26] and grand unified theories [27, 28, 29],
among many others. Searches for scalar particle states are therefore of great interest
and one of the focuses of the ongoing LHC searches.

Whether the current 13 TeV run of the LHC provides us a new scalar state, such as
the hypothetical state recently hinted for with a 750 GeV mass [30, 31], or whether it
provides measurements of the SM Higgs self couplings, the low energy observables of
these lighter scalars may receive contributions from new heavy states through radia-
tive corrections. If the typical scale of the external momentum of the light particles
involved in such observables is small compared to the masses of the hypothetical heavy
particles inside the diagrams, then their contributions can be computed in the zero-
external momentum approximation [32]. In that approximation, for the particular case
of purely scalar operators with no derivative terms, such “heavy” contributions to the
corresponding loop corrected vertices can be extracted solely from derivatives of the
scalar effective potential.

The computation of the scalar effective potential for a generic Quantum Field Theory
(QFT), is often performed in dimensional regularisation and mass independent renor-
malisation schemes such as the MS or DR schemes for simplicity. This has been reviewed
at two-loop order in such schemes and in the Landau gauge in [33]. In this paper we
start from the one-loop Coleman-Weinberg (CW) effective potential [34] for a generic
QFT and extend the analysis to find a general analytic expression for all its derivatives
(corresponding to an arbitrary number of external legs). This is done by simplifying
the derivatives of the matrix-log of the field dependent mass squared matrix. It reduces
to a combinatoric problem involving the tree level vertices of the theory in the tree level
mass eigenbasis, and a set of totally symmetric tensors that are functions only of the
physical masses of the eigenstates. Our central result consists of explicit expressions for
the derivatives of the one-loop effective potential with an arbitrary number of deriva-
tives. These expressions can be easily implemented and evaluated for any theory, either
as analytic expressions or numerically (reducing to common linear algebra operations).

Though our results focus on the derivatives of the effective potential, recently there
have been advances in obtaining the functional derivatives of the one-loop effective
action after integrating out heavy degrees of freedom using a covariant derivative ex-
pansion [35, 36, 37, 38]. In such approach all the operators can be obtained in addition
to the translation invariant operators captured by the one-loop effective potential. Nev-
ertheless, the results have to be computed at a fixed order in the derivative expansion
while our general result for the effective potential contribution is valid for an arbitrary
number of scalar field derivatives.

Finally, we also apply our results in two simple scalar singlet extensions of the SM that
are still phenomenologically viable. We use our results to illustrate the importance of

1For a review in the context of neutrino physics see for example [22].
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the Next to Leading Order (NLO) radiative corrections due to a new heavy scalar, to
the triple vertices in the real (RxSM) and the complex (CxSM) singlet extensions of
the SM recently analysed in [39].

The structure of the paper is the following. In Sect. 2 we set conventions for a general
QFT and define the various fields and respective couplings. In Sect. 3 we derive our
main result by applying derivatives to the CW effective potential, where many of the
technical steps are described in detail in appendix I.A. We also explicitly verify the
symmetry properties of the result under the interchange of scalar indices in the remain-
ing sub-sections for cases with up to four derivatives. In Sect. 4 we provide examples
of applications and in Sect. 5 we summarise our conclusions.

2 Notations and definitions

In this article we follow the general approach of [33], and write the most general Gauged
QFT Lagrangian with fields of spin up to 1. Before choosing the vacuum of the theory,
i.e. before symmetry breaking, we use the following notations for the various fields2:

• Scalars: All scalar multiplets are decomposed as N0 real scalar fields, Φi with
i = 1, . . . , N0.

• Fermions: All fermion multiplets are decomposed as N1/2 Weyl 2-spinors, ΨI with
I = 1, . . . , N1/2.

• Gauge bosons are represented by a 4-vector with a gauge group index running
over N1 bosons in the adjoint representation of the gauge group, i.e. Aµa .

The most general renormalisable interaction Lagrangian involving the scalar sector3 is
then written as:

−LS = LiΦi +
1

2!
LijΦiΦj +

1

3!
LijkΦiΦjΦk +

1

4!
LijklΦiΦjΦkΦl ,

−LF =
1

2
Y IJΨIΨJ +

1

2
Y IJkΨIΨJΦk + c.c. , (I.1)

−LSG =
1

4
GabijAaµAµbΦiΦj +GaijAaµΦi∂

µΦj .

We adopt the Einstein convention where repeated indices that are one up (superscript)
and one down (subscript) are summed over. We also adopt the convention that repeated
indices that are all down or all up are not summed over. This will become useful to
define tensor components in the mass eigenstate basis. The scalar couplings in the gauge
eigen-basis are denoted by

{
Li, Lij , Lijk, Lijkl

}
respectively for the linear, quadratic,

2The kinetic terms of the various fields are canonically normalised
3We suppress the interaction terms without scalar fields because we will focus on the one-loop

effective potential.
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cubic and quartic couplings and they are totally symmetric in the scalar indices i, j, k, l.
In this decomposition, they are all real.4 The fermion quadratic and Yukawa terms are
denoted by the complex numbers Y IJ and Y IJk, which are symmetric under interchange
of fermionic indices. The gauge-scalar couplings are denoted by Gabij and Gaij (see
also [33] for details).

After symmetry breaking, the scalar fields are shifted around a classical field configura-
tion. We denote a generic classical field configuration, around which the perturbative
calculations are set, by vi and shift the fields as follows: Φi(x) = vi +φi(x) (now φi are
the quantum scalar field fluctuations around the classical configuration vi). Then we
obtain the following Lagrangian in a basis that we define to be the Λ-basis5

−LS = Λ + Λi(S)φi +
1

2
Λij(S)φiφj +

1

3!
Λijk(S)φiφjφk +

1

4!
Λijkl(S) φiφjφkφl ,

−LF =
1

2
M IJΨIΨJ +

1

2
Y IJkΨIΨJφk + c.c. , (I.2)

−LSG =
1

2
Λab(G)AaµAµb +

1

2
Λabi(G)AaµAµb φi +

1

4
Λabij(G) AaµA

µ
b φiφj +GaijAaµφi∂µφj ,

where

Λ ≡ Livi +
1

2!
Lijvivj +

1

3!
Lijkvivjvk +

1

4!
Lijklvivjvkvl = V (0)(vi) ,

Λi(S) ≡ Li + Lijvj +
1

2
Lijkvjvk +

1

6
Lijklvjvkvl ,

Λij(S) ≡ Lij + Lijkvk +
1

2
Lijklvkvl , (I.3)

Λijk(S) ≡ Lijk + Lijklvl ,

Λijkl(S) ≡ Lijkl ,

and

Λab(G) ≡ 1

2
Gabijvivj ,

Λabi(G) ≡ Gabijvj , (I.4)

Λabij(G) ≡ Gabij .

We have defined in Eqs. (I.3) and (I.4) the scalar mass-squared matrix, Λij(S), the gauge

boson mass-squared matrix Λab(G) and the tree level effective potential V (0)(vi). The
fermion mass-squared matrix is obtained from

ΛIJ(F ) ≡M∗ILM J
L = Y ∗ILY J

L +
(
Y JLY ∗ Ik

L + Y ∗ILY Jk
L

)
vk + Y ∗ILkY Jm

L vkvm ,
(I.5)

4We follow the notation in [40] where basis invariant expressions for the two-loop beta functions of
the scalar couplings were derived using the two-loop effective potential.

5Note that the Landau gauge conditions can be used to eliminate a term GaijviAaµ∂µΦj , up to a
surface term, through an integration by parts.
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where we use the fermion mass matrix defined through the shifted Lagrangian, Eq. (I.2):

M IJ = Y IJ + Y IJkvk . (I.6)

Note that all (non-spacetime) Latin indices are assumed to be in Euclidean space (they
are lowered and raised with the identity matrix). Another important point is that,
though the fermionic tensors that appear directly in the Lagrangian are symmetric
under interchange of fermionic indices, the fermion mass-squared matrix defined in
Eq. (I.5) is not necessarily symmetric. In general it is, however, hermitian. Below we
will define fermionic cubic and quartic effective vertices that are also hermitian with
respect to the two fermionic indices.

This basis will be particularly useful to obtain expressions for the derivatives of the
effective potential analytically, which are directly related to the scalar N -point functions
of the theory at zero external momenta. The final results, however, will adopt a much
simpler form in a third basis, which we name as the λ-basis. This is defined as the basis
that diagonalises all the tree level mass-squared matrices. In the λ-basis the Lagrangian
takes the form

−LS = Λ + λi(S)Ri +
1

2
m2 i

(S)R
2
i +

1

3!
λijk(S)RiRjRk +

1

4!
λijkl(S) RiRjRkRl ,

−LF =
1

2
mIJψIψJ +

1

2
yIJkψIψJRk + c.c. , (I.7)

−LSG =
1

2
m2 a

(G)AaµA
µ
a +

1

2
λabi(G)AaµA

µ
bRi +

1

4
λabij(G) AaµA

µ
bRiRj + λaij(G)AaµRi∂

µRj ,

where the rotated fields are

Ri =
[
O(S)

]j
i
φj

Aaµ =
[
O(G)

]b
a
Abµ (I.8)

ψI =
[
U∗(F )

]J
I

ΨJ .

Here we must use orthogonal matrices for the bosonic rotations and unitary matrices
for the fermions. If we denote, generically, such a transformation matrix for the field of
type T = {S,G, F} by U(T ) (unitary or orthogonal) then all mass-squared matrices are
diagonal in this basis so the Λ-basis mass-squared matrices defined above obey

U(T )Λ(T )U†(T ) = diag{m2
(T )a} . (I.9)

Note that on the right hand side we have now used Latin indices from the beginning
of the alphabet to denote the component of the diagonal. Whenever the type T is
not specified, we follow the convention of using lower case indices from the beginning
of the Latin alphabet (a, b, c, . . .) and reserve indices from the middle of the alpha-
bet (i, j, k, . . .) for scalar field indices. Finally, note that all couplings in the λ-basis,
Eq. (I.7), are now in lower case. The transformation relating them to the corresponding
upper case couplings defined in Eq. (I.2) (Λ-basis) is obtained by rotating each index
using the U(T ) matrix corresponding to the index type (S, F or G) as induced by the
transformations in Eq. (I.8).
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In the following sections it will also be useful to note that the derivatives of the vari-
ous mass-squared matrices with respect to the vi are related to the cubic and quartic
couplings as follows:

∂kΛij(S) = Lijk + Lijklvl = Λijk(S) ,

∂klΛij(S) = Lijkl = Λijkl(S) ,

∂kΛIJ(F ) = ∂kM∗ILM J
L +M∗IL∂kM J

L ,= Y ∗ILkM J
L +M∗ILY Jk

L ≡ ΛIJk(F ) ,

∂kmΛIJ(F ) = Y ∗ILk∂mM J
L + ∂mM∗ILY Jk

L ,= Y ∗ILkY Jm
L + Y ∗ILmY Jk

L ≡ ΛIJkm(F ) ,

∂iΛab(G) = Gabijvj = Λabi(G) ,

∂ijΛab(G) = Gabij = Λabij(G) . (I.10)

We use the notation ∂i = ∂
∂vi

, ∂ij = ∂2

∂vi∂vj
etc... for derivatives with respect to the

arbitrary classical scalar field configuration vi. If we denote generically the cubic and
quartic couplings for type T (on the right hand side of each of the equations in (I.10))
by Λ(T )abi and Λ(T )abij respectively, then these relations can be written collectively as
(after lowering the indices with the Euclidean metric)

∂iΛ(T )ab = Λ(T )abi ,

∂ijΛ(T )ab = Λ(T )abij . (I.11)

3 One-loop N-point vertices at zero external momenta

In this section we present the general analytic expressions for the Nth order derivatives
of the effective potential. We start from the general one-loop contribution to the effective
potential in the Landau gauge that is given by [33]

V (1) =
1

4

∑

T

(−1)2sT (1 + 2sT )Tr
[
Λ2

(T )

(
log Λ(T ) − kT

)]
. (I.12)

Here the general loop expansion of the effective potential is defined as

Veff ≡
∑

n

εnV (n) , (I.13)

with ε = ~/(4π)2 so that V (n) is the n-loop effective potential. The spin of the field is
denoted by sT and we have defined log (m2) ≡ log(m2/µ2) with µ the renormalisation
scale and kT depends on the renormalisation scheme (MS or DR) and can be specified
later. The log function is defined over matrices.

We now state the general result. Further details of the proof are provided in ap-
pendix I.A. Applying the N -th order derivative operator with respect to the fields
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vi1 , . . . , viN , in the Λ-basis, to the one-loop effective potential (with N ≥ 1) we obtain

∂i1,...,iNV
(1) = ∂i1,...,iN−1

1

4

∑

T

(−1)2sT (1 + 2sT )×

× Tr
[
∂iN

(
Λ2

(T )

) (
log Λ(T ) − kT

)
+ Λ2

(T )∂iN
(
log Λ(T )

)]
. (I.14)

In appendix I.A we prove the result that Tr
[
Λ2

(T )∂i
(
log Λ(T )

)]
= 1

2Tr
[
∂i

(
Λ2

(T )

)]
.

Using this result, we can effectively lower by one the order of the derivatives acting on
the log . Using this identity, the cyclic property of the trace and the fact that a function
of a matrix commutes with the matrix itself we obtain

∂i1,...,iNV
(1) = ∂i1,...,iN−1

∑

T

(−1)2sT (1+2sT )
4 Tr

[
∂iN

(
Λ2

(T )

)(
log Λ(T ) − kT +

1

2

)]
.

(I.15)

So we have reduced by one the order of the derivative that will act on the matrix-log 6.
Acting with the remaining N − 1 derivatives we obtain an expression in the form

∂i1,...,iNV
(1) =

1

4

∑

T

(−1)2sT (1 + 2sT )×

S{i1...iN−1}


Tr

min{N−1,3}∑

p=0

(
N − 1

p

)
∂

(p+1)
i1,...,ip,iN

(
Λ2

(T )

)
∂ip+1,...,iN−1

(
log Λ(T ) − kT + 1

2

)

 ,

(I.16)

where the innermost sum is over all possible partitions of the {i1, . . . , iN−1} indices
in two lists and we define here the operator S{i1...iN−1}, which denotes symmetrisation
with respect to the (N−1)-indices in the list. Observe that in the range of the sum over
p we have used the fact that the mass-squared matrix only has non-zero derivatives up
to order two. The term in the product that contains derivatives acting on the square
of the mass-squared matrix is simple to obtain (since it is polynomial). For notational
simplicity we present the result making use of the following set of tensors

σ
(p)
(T )abi1...ip

≡ U c
(T )a U

† d
(T ) bO

j1
(S) i1

. . . O
jp

(S) ip

[
∂j1...jp

(
Λ2

(T )

)
cd

]
. (I.17)

The components for the non-zero cases are




σ
(1)
(T )abi = m2

(T )aλ(T )abi + λ(T )abim
2
(T )b ,

σ
(2)
(T )abij = m2

(T )aλ(T )abij + λ(T )abijm
2
(T )b + λ(T )aciλ

c
(T ) bj + λ(T )acjλ

c
(T ) bi ,

σ
(3)
(T )abijk = λ(T )acijλ

c
(T )bk + λ(T )bcijλ

c
(T )ak + (j ↔ k) + (i↔ k) ,

σ
(4)
(T )abijkl = λ(T )acijλ

c
(T )bkl + λ(T )bcijλ

c
(T )akl + (j ↔ k) + (i↔ k) .

(I.18)

6Note however that the matrix multiplying the log now contains derivatives, so it no longer com-
mutes with Λ(T ) and this process cannot be continued.
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Here the cubic and quartic couplings for field of type T in the λ-basis are generically
denoted by λ(T )abi and λ(T )abij . They are obtained from the corresponding Λ(T )abi and
Λ(T )abij couplings using the U(T ) transformation matrices. For the second term in the
product, Eq. (I.16), we define the following tensor:

δ
(N)
(T )abi1...iN

≡ U c
(T )a U

† d
(T ) bO

j1
(S) i1

. . . O
jN

(S) iN

[
∂j1...jN

(
log Λ(T ) − kT +

1

2

)

cd

]
,

(I.19)
which, for N > 0, is a rotated version of the derivatives of the matrix-log . In ap-

pendix I.A we derive a general algebraic analytic expressions for the δ
(N)
abi1...iN

tensors.
The general expression, Eq. (I.51), contains another set of useful tensors whose compo-
nents are

f
(k)
(T )a1...aN

≡
N∑

x=1

m2k
(T )ax

logm2
(T )ax∏

y 6=x

(
m2

(T )ax
−m2

(T )ay

) . (I.20)

More explicitly, the first few cases that contribute to the 2, 3 and 4-point functions are
(using Eqs. (I.43), (I.48) and (I.51)),

δ
(0)
(T )ab = δab

(
logm2

(T )a − kT + 1
2

)
,

δ
(1)
(T )abi = f

(0)
(T )abλ(T )abi,

δ
(2)
(T )abij = f

(0)
(T )abc

(
λ

c
(T )a iλ

c
(T ) bj + λ

c
(T )a jλ

c
(T ) bi

)
+ f

(0)
(T )abλ(T )abij , (I.21)

δ
(3)
(T )abijk = 3S{ijk}

[
2 f

(0)
(T )acdbλ

c
(T )a iλ

cd
(T ) jλ

d
(T ) bk+

+ f
(0)
(T )acb

(
λ

c
(T )a ijλ

c
(T ) bk + λ

c
(T )a iλ

c
(T ) bjk

)]
.

We emphasise here that the repeated indices are summed over only once and that
all repeated indices are all inside the same (suppressed) sum symbol according to the
Einstein convention – the fact that several repeated indices appear simultaneously up
and down is a peculiarity of the mass eigenbasis (or diagonal basis).

We finally present the general result for the derivatives of the one-loop effective poten-

tial. This is fully determined using the δ
(N)
(T )ab,i1...iN

and σ
(N)
(T )ab,i1...iN

tensors and we

obtain

∂i1,...,iNVeff = Λ
(N≤4)
i1,...,iN

+ εO
j1

(S) i1
. . . O

jN−1

(S) iN−1
O

jN
(S) iN

∑

T

(−1)2sT
(1 + 2sT )

4
×

× S{j1...jN−1}




min{N−1,3}∑

p=0

(
N − 1

p

)
σ

(p+1)ab
(T ) j1,...,jp,jN

δ
(N−1−p)
(T )bajp+1,...,jN−1


+O(ε2) .

(I.22)

In the first term of Eq. (I.22) we note that for N > 4 the tree level term does not exist
since we are working with a renormalisable theory.
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The final result, Eq. (I.22), may in principle contain infrared (IR) divergences. This is
a well known issue of the effective potential [41, 42] but it is also well known that the p2

dependent contributions to the vertices must cancel out such IR divergences. In practice
one may introduce an IR regulator whenever a massless particle is present in Eq. (I.22)
to safely identify and discard the IR divergences. Furthermore, typically the situation
is even more favourable because: i) for external lines with massless scalar states the IR
divergences must cancel because the approximation p2 → 0 for the external momenta
becomes exact so the effective potential description is complete, and ii) in the examples
that we will consider the only massless states are the SM-like Goldstone bosons and
their couplings are such that, at one-loop, no IR divergences appear for triple vertices
with the other physical scalars appearing in the external lines.

A final concern may be how to deal with particular limits with degenerate masses in
Eq. (I.20). This is only an apparent issue. For all derivatives up to order four we will
show, in the next subsections, that the result is always expressed in terms of f (1)-tensors
which are more regular than f (0) tensors. In addition expanding the f (1)-tensors around
the degenerate limit we find that, in fact, no extra divergences occur besides the IR
ones.

3.1 First derivatives

The results that we have found can be directly applied to obtain the first derivatives,
which are usually necessary for the tadpole conditions that define the vacuum of the
theory. Then, at one-loop order they are given by

∂iVeff = ∂iV
(0) + ε∂iV

(1) +O(ε2)

= Λi + ε∂iV
(1) +O(ε2) . (I.23)

Using Eqs. (I.18), (I.19) and (I.21) in Eq. (I.16) specialised to N = 1, we obtain that
the tadpole truncated at one-loop is

∂iVeff = Λi + εO
j

(S) i

∑

T

(−1)2sT (1+2sT )
2 m2

(T )aλ
a

(T )a j

(
logm2

(T )a − kT +
1

2

)
+O(ε2) .

(I.24)

3.2 Second derivatives

The second derivatives are also straightforward to obtain in an explicit form. They are
important to determine the one-loop correction to the masses of the particles. The zero
external momentum contribution to the one-loop scalar two point function is obtained
from

∂klVeff = Λkl + εO
i

(S) kO
j

(S) l

∑

T

(−1)2sT (1+2sT )
2 S{ij}

[
λab(T )iλ(T )baj

(
f

(1)
(T )ab − kT +

1

2

)
+

+λa(T )aijm
2
(T )a

(
logm2

(T )a − kT +
1

2

)]
+O(ε2) (I.25)
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where now we have used the identity

m2
af

(0)
(T )ab1...bn

= f
(1)
(T )ab1...bn

− f (0)
(T )b1...bn

δaa . (I.26)

This result can be used to evaluate the one-loop pole masses associated with the propa-
gators of the scalar states in the theory, in the zero external momentum approximation.
For the special case of massless states, such as for Goldstones, where the pole condi-
tions are evaluated at zero external momentum, the second derivatives of the effective
potential provide the exact pole conditions.

3.3 Third and fourth derivatives

Applying the same procedure one obtains higher derivatives. The third derivative is

∂lmnVeff = Λlmn + εO
i

(S) lO
j

(S) mO
k

(S) n

∑

T

(−1)2sT (1+2sT )
2 S{ijk}

[
2f

(1)
(T )abcλ

ab
(T )iλ

bc
(T )jλ

ca
(T )k+

+3λab(T )ijλ(T )bak

(
f

(1)
(T )ab − kT + 1

2

)]
+O(ε2) .. (I.27)

Note that, despite the apparent break down of the total symmetry under exchange of
the scalar indices in the reduction leading to Eq. (I.16), the final result is manifestly
symmetric as it should – see Eq. (I.27). The same procedure can be applied for the
fourth derivative to obtain

∂j1j2j3j4V
(1)
eff = Λj1j2j3j4 + εO

i1
(S) j1

O
i2

(S) j2
O

i3
(S) j3

O
i4

(S) j4
×

×
∑

T

(−1)2sT (1+2sT )
2 3S{i1i2i3i4}

[
λab(T )i1i4

λ(T )bai2i3

(
f

(1)
(T )ab − kT + 1

2

)
+

+2
{
f

(1)
(T )abcdλ

ab
(T )i4

λ
bc

(T ) i1
λ

cd
(T ) i2

λ
d

(T ) ai3
+ 2f

(1)
(T )abcλ

ab
(T )i4

λ
bc

(T ) i1i2
λ

ca
(T ) i3

}]

+O(ε2) . (I.28)

For higher order derivatives, it becomes increasingly cumbersome to simplify the ex-
pressions explicitly, to check their symmetry property. Nevertheless the full result is
explicitly determined by Eq. (I.22).

To verify our general expressions, we have compared against various simple cases where
the derivatives can be computed directly with Mathematica. This included the SM
Higgs sector and a toy model with an SU(2) gauge field, plus a Weyl fermion doublet,
a Weyl fermion singlet and a scalar doublet. We also performed various checks of
the one-loop tadpole conditions and mass-squared matrices in the scalar sector of the
CP-conserving two Higgs doublet model.
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4 Examples

The general result obtained in the previous sections, Eq. (I.22), can in principle be used
for computations involving N -point scalar vertices under the approximation of small
external momenta. That is the case, for example, in the construction of effective field
theories by the usual matching and running procedure [38] where the heavy degrees of
freedom are integrated out.7 In principle our result can then be used to obtain all the
one-loop matching conditions for a given scalar N -point vertex with no derivatives and
light particles in the external lines. These are given by computing all diagrams that
contain at least one heavy particle in the loop [43, 38], which is equivalent to computing
all diagrams and subtracting out diagrams involving only light particles, i.e. the match-
ing conditions capture the differences due to the heavy particle interactions. In general,
in this procedure, there are contributions from loops with only heavy particles or with
a mixture of heavy and light particles [37, 38, 44, 45]. These mixed contributions can
be found in the internal sums over the indices corresponding to particles of type T in
Eq. (I.22).

Eq. (I.22) can also be used more directly in a phenomenological context to evaluate
the one-loop contributions to the effective triple couplings of light scalar states due to
heavier degrees of freedom at the electroweak scale. This is interesting because the LHC
is now probing the Higgs sector of the SM and the structure of its scalar potential so, in
particular, Higgs-to-Higgs decays should play a primary role. We will illustrate this with
a real and a complex singlet extension of the SM where one adds a real or a complex
scalar field that is a singlet under the SM gauge group. There are many attractive
features for this type of models. Namely, they may provide dark matter candidates [3,
4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18], allow for electroweak baryogenesis through
a strong first-order electroweak phase transition in the early universe [46, 47, 48, 49, 50]
and they can provide a rich collider phenomenology [51, 52, 53, 54, 55, 56, 57, 58, 59,
60, 39, 40, 61, 62] with Higgs-to-Higgs decays or invisible decays.

The theory and phenomenology of the models that we will consider in the next sub-
sections were recently studied in detail in [39, 40, 61]. We will use, for each model,
the samples generated in [39], which contain all the latest phenomenological constraints
from: collider experiments (LEP, Tevatron and LHC); electroweak precision observables;
dark matter observables (direct detection and relic density upper bounds); and tree level
theoretical constraints such as boundedness from below, vacuum stability (the minimum
is global) and perturbative unitarity. For further details we refer the reader to [39]. We
note that in those samples we have used one-loop accurate relations between the input
couplings, the Vacuum Expectation Values (VEVs), masses and mixings of the mass
eigenstates, with full p2 dependence. These were computed for the CxSM in [39] and
the details of the calculations for general scalar singlet extension of the SM will appear
in [63]. In all our calculations we keep all the new scalar sector contributions and only
the dominant SM top quark corrections as illustrated below for the triple couplings.

7We remind the reader that our calculations assume we are working with a renormalisable theory,
thus for the particular case of matching a high scale non-renormalisable effective theory with another
effective theory our general formula would have to be generalised.
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The one-loop corrected couplings, λ(S)i1,...,iN , for an N -point vertex of the light scalar
states corrected at one-loop by the heavy states is, under the zero external momentum
approximation, given by

λ(S)i1,...,iN = λ
(0)
(S)i1,...,iN

+ ε ∂Ni1,...,iNV
(1)
heavy . (I.29)

Here the subscript “heavy” indicates that in the indices of the internal sums in the
one-loop effective potential at least one index is running over heavy particles, i.e. the
contributions with internal sums over only light particles are dropped out. In the
remainder of this section, for ease of notation, we will keep the one-loop corrected
coupling represented with no superscript, λ(S)i1,...,iN , as in Eq. (I.29). The first term,

λ
(0)
(S)i1,...,iN

, consists of the tree level diagrams with heavy particles in the internal lines.

For the triple couplings that we will obtain in the next section there are no tree level
contributions due to the heavy states, only the tree level vertices.

4.1 The RxSM

The simplest model we consider is the real singlet extension of the SM. This is obtained
by adding to the SM a real singlet S with a discrete symmetry under S → −S. The
(renormalisable) potential is

VRxSM =
m2

2
H†H +

λ

4
(H†H)2 +

λHS
2

H†HS2 +
m2
S

2
S2 +

λS
4!
S4 , (I.30)

with m,λ, λHS ,mS and λS all real. The vacuum of the theory that is consistent with
the Higgs mechanism is such that

H =
1√
2

(
G+

v + h+ iG0

)
and S = vS + s , (I.31)

where the SM Higgs VEV is v ≈ 246 GeV, and the singlet VEV is vS . This model
contains a symmetric phase with vS = 0, in which case S is a dark matter candidate,
and a broken phase with vS 6= 0, which has two (visible) mass eigenstates h1 and h2

that are mixtures of h and S and are ordered in mass (mh1
< mh2

). We focus on the
broken phase, in which the mass eigenstates are given by

(
h1

h2

)
=

(
cosα sinα
− sinα cosα

)(
h
s

)
≡
(
R11 R12

R21 R22

)(
h
s

)
. (I.32)

In this model, we can evaluate the one-loop contributions to the SM-like Higgs (h1 ≡
h125) triple coupling and to the Higgs coupling to a pair of Goldstones (equivalently
longitudinal modes of massive vector bosons), in the scenario where it is the lightest
of the two scalars, h1 ≡ h125, and where the second Higgs, h2, is heavy. We consider
scenarios with h2 > 250 GeV and we also include the top quark contributions in the
zero external momentum approximation. This approximation is justified noting that
the one-loop contributions due to the top quark appear through a vertex with a Higgs
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and a pair of top quarks so we expect a kinematic suppression of the p2 6= 0 corrections
by m2

h1
/(4m2

t ) ∼ 0.13. We also consider the heavy scalar mass, mh2
, to be larger than

2mh1
∼ 250 GeV for the same reason, i.e. so that the p2 → 0 approximation is reliable.

For simplicity let us illustrate the use of Eq. (I.22) for the triple h1 coupling. At tree
level, this is given by [39]

λ
(0)
(S)h1h1h1

=
3

2
λR3

11v + 3λHSR
2
11R12vS + 3λHSR11R

2
12v + λSR

3
12vS , (I.33)

The other non-zero tree level scalar couplings that appear in the one-loop calculation
are

λ
(0)
(S)h1h1h2

= R2
11

(
3λR21v

2
+ λHSR22vS

)
+R2

12(λHSR21v + λSR22vS) +

+2λHSR11R12(R21vS +R22v) ,

λ
(0)
(S)h1h2h2

= R11

(
3

2
λR2

21v + 2λHSR21R22vS + λHSR
2
22v

)
+ (I.34)

+R12

(
λHSR

2
21vS + 2λHSR21R22v + λSR

2
22vS

)
,

λ
(0)
(S)h1h1h2h2

= R2
11

(
3λR2

21

2
+ λHSR

2
22

)
+R2

12

(
λHSR

2
21 + λSR

2
22

)
+ 4λHSR11R12R21R22 .

To include the dominant top-quark coupling (yt) contributions we also need the follow-
ing effective fermionic couplings

λ
(0)
(F )IJh1

= R11vytδIJ , (I.35)

λ
(0)
(F )IJh1h1

= R2
11y

2
t δIJ , (I.36)

with I, J = 1, . . . , 6, i.e. running over three colours and two helicities for the top quark.
Finally, applying Eq. (I.27) with at least one heavy particle in the sum we obtain the
one-loop correction:

∂3
h1h1h1

V
(1)
heavy

= 3f
(1)
(S)h1h1h2

λ
(0)
(S)h1h1h1

(
λ

(0)
(S)h1h1h2

)2

+ 3f
(1)
(S)h1h2h2

λ
(0)
(S)h1h2h2

(
λ

(0)
(S)h1h1h2

)2

+

+f
(1)
(S)h2h2h2

(
λ

(0)
(S)h2h2h2

)3

+
(
f

(1)
(S)h2h2

− kT + 1
2

)
λ

(0)
(S)h1h1h2h2

λ
(0)
(S)h1h1h2

+

−6R3
11y

4
t v
[
2v2y2

t f
(1)
(F )ttt + 3

(
f

(1)
(F )tt − kT + 1

2

)]
. (I.37)

Note that f
(1)
(F )ttt, f

(1)
(S)h2h2h2

, . . . are the loop functions defined in Eq. (I.20) for k = 1,

with the indices in subscript (hi or t) denoting which masses are used to evaluate them.
Note also that the top quark contribution takes the same form as for the SM Higgs
multiplied by a factor of R11 for each h1 in the external legs. This is expected in this
type of scalar singlet extensions of the SM. This comes from the fact that the coupling
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of each hi to SM particles is simply suppressed by a factor given by the overlap of the
SM Higgs doublet fluctuation h with the corresponding mass eigenstate – see Eqs. (I.31)
and (I.32).

Similarly, we can obtain a simple expression for the one-loop correction for the h1GG
triple coupling. The result is expressed through the following tree level vertices (here
G denotes one of the three real Goldstone degrees of freedom):

λ
(0)
(S)hiGG

=
1

2
λRi1v + λHSRi2vS

λ
(0)
(S)hihjGG

=
1

2
λRi1Rj1 + λHSRi2Rj2 . (I.38)

Then we have

∂3
h1GGV

(1)
heavy

= 2f
(1)
(S)h1h2G

λ
(0)
(S)h1h1h2

λ
(0)
(S)h2GG

λ
(0)
(S)h1GG

+

+
(
f

(1)
(S)h2h2G

λ
(0)
(S)h1h2h2

+ f
(1)
(S)h2GG

λ
(0)
(S)h1GG

)(
λ

(0)
(S)h2GG

)2

+

+
3

4

[
2λ

(0)
(S)h1h2GG

λ
(0)
(S)h1h1h2

(
f

(1)
(S)h1h2

− kT + 1
2

)
+

+ λ
(0)
(S)h2h2GG

λ
(0)
(S)h1h2h2

(
logm2

h2
− kT + 3

2

)
+ 2λ

(0)
(S)h1h2GG

λ
(0)
(S)h2GG

(
logm2

h2
− kT + 1

2

)]

−6R11vy
4
t

(
logm2

t − kT + 3
2

)
, (I.39)

where again, in the last line, the top quark contribution is the SM-like term multiplied
by one R11 factor due to the h1 in the external leg. For other one-loop corrected
vertices the steps to follow are similar, but to avoid overshadowing the discussion we
omit the detailed expressions in the next section. In all our examples we work in the
MS scheme (kT = 3/2) and choose the renormalisation scale to be the Higgs boson
mass, i.e. µ = 125 GeV.

In Fig. I.1 we present a sample of points from the parameter space scan of this model
generated in [39], with all the constraints applied as discussed in the beginning of
Sect. 4. We show the two triple couplings for the light degrees of freedom in units of v
as a function of the mass of the new heavy scalar (mh2

). On the left panels we have the
SM-like Higgs triple coupling and on the right we have the Higgs-Goldstone-Goldstone
coupling, which corresponds to the coupling of the Higgs to a pair of longitudinally
polarised vector bosons. The top panels show two layers. In green we display the
tree level value of the triple coupling and in blue the one-loop correction. The bottom
panels show the one-loop corrected triple couplings with a colour code showing the
relative magnitude of the one-loop contribution.

On the bottom left panel we see that the corrections to the Higgs triple coupling in
most of the parameter space are typically8 . 20%, except for a region for larger masses

8Note, however, that there are plenty of points with much smaller corrections because the colour
scale is such that lighter points are on top of darker points.
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RxSM: Higgs-Higgs-Higgs
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Figure I.1: One loop contributions from a heavy scalar in the RxSM: The top left panels display the light SM-like Higgs
(h1) triple coupling in units of v at tree level (green) and the one-loop correction due to the heavy Higgs
(h2) as a function of its mass (blue). In the right hand side panel the colour code is the same except
that we display the corresponding quantities for the Higgs-Goldstone-Goldstone coupling. In the bottom
panels, we present the same points with the one loop corrected couplings on the vertical axis. The colour
scale is the percentage of shift due to the one loop corrections to the couplings.

mh2
& 500 GeV where the one-loop corrections can become of the order of9 ∼ 50%. A

future precise measurement of the Higgs triple coupling through Higgs pair production
will constrain the deviations of this coupling from the SM value. Thus, in the high mass
regions, it will be particularly important to take into account the one-loop corrections
due to the new heavy scalar singlet state. Note, however, that the Higgs pair production
process is rather small in the SM [64] and even at the high luminosity stage of the LHC
it will be challenging to measure it very accurately [65]. Nevertheless the experimental
collaborations are performing dedicated searches and these will provide increasingly
tighter bounds for this process – see e.g. [66].

The bottom right panel shows a similar pattern for the Higgs coupling to longitudinally
polarised vector bosons. Formh2 & 500 GeV there are scenarios where the corrections to
the Higgs-Vector-Vector triple couplings can be larger than 25%. Thus we would expect

9Note also that we have cut out from the bottom left panel of Fig. I.1 points where λh1h1h1
/v →

is small because the definition of the relative shift δh1h1h1
becomes singular.
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that improved measurements of the off-shell decay of the SM-like Higgs to vector bosons
would again constrain the contribution from the heavy scalar singlet and, consequently,
the parameter space of this model.

4.2 The CxSM

The theory and phenomenology of the complex singlet extension of the SM has recently
been studied in detail in [39, 40, 61]. In this model the Lagrangian of the SM is extended
only in the Higgs sector by a complex singlet field S = S + iA. Its scalar potential is

VCxSM =
m2

2
H†H+

λ

4
(H†H)2+

δ2
2
H†H|S|2+

b2
2
|S|2+

d2

4
|S|4+

(
b1
4
S2 + a1S + c.c.

)
,

(I.40)

where all parameters are real and the terms in parenthesis softly break a U(1) symmetry
of the other terms. The doublet and the complex singlet are, respectively,

H =
1√
2

(
G+

v + h+ iG0

)
and S =

1√
2

[vS + s+ i(vA + a)] , (I.41)

with v ≈ 246 GeV the SM Higgs VEV, and {vS , vA} respectively the VEVs of the real
and imaginary parts of the complex singlet. The potential in Eq.(I.40) is Z2 symmetric
underA→ −A. As a consequence, there are two possible minima that break electroweak
symmetry consistently with the Higgs mechanism. If vS 6= 0, vA = 0 then h, s mix into
a pair of scalars that are visible at colliders and A does not couple to the other SM-
particles, so it is a dark candidate. If both vS 6= 0, vA 6= 0 then h, s, a all mix and we
have three scalars that are visible at colliders (one of them being the observed SM-like
Higgs). We focus only on the dark matter phase of this model where we denote the
masses of the visible Higgs bosons by mh1 and mh2 , and the mass of the dark matter
candidate by mD.

In the case of the dark phase of the singlet extension of the SM we can have a new
ingredient in the light spectrum of the theory. We consider the scenario where, again,
mh2

> 250 GeV, mh1
= 125 GeV is the SM-like Higgs boson, but now there is a dark

matter candidate that we choose to be light, mD < 90 GeV. Thus, besides the Higgs
triple coupling, the one-loop corrections due to the heavy state h2 now affect the Higgs-
dark-dark triple coupling. For this vertex, the one-loop corrections are only due to the
scalar sector since the dark particle does not couple, at tree level, with the SM particles.
This coupling is very important for dark matter observables, namely the calculation of
the relic density that is left over after freeze out in the early Universe, the cross-section
for direct detection in underground experiments and invisible decays at colliders. The
former two severely constrain the parameter space allowed for the model.

In Fig. I.2 we present a sample of points from the parameter space scan of this model
generated in [39], with all the constraints applied as discussed in the beginning of Sect. 4.
The top panels are for the Higgs triple coupling, λh1h1h1

/v , and the bottom panels for
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Figure I.2: One loop contributions from a heavy scalar in the dark phase of the CxSM: The panels show several projec-
tions with triple couplings on the vertical axis versus the dark matter particle mass, mD (left column)
or the heavy scalar mass mh2

(right panel). The colour code on each row is the same for the left and the

right panels as well as the triple coupling on the vertical axis.

the Higgs-dark-dark triple coupling λh1DD/v. We first note that in the left panels there
is a peak around mD ∼ mh1

/2 corresponding to the kinematic region where dark matter
annihilates efficiently into Higgs bosons in the early Universe, so the triple couplings are
allowed to be larger while the relic density does not become larger than the combination
of the observational values from the WMAP and Planck satellites [67, 68]. The loss
in density to the right of this threshold is also because of the LUX dark matter direct
detection bounds [69], which are stronger in the region ∼ 20 GeV to ∼ 70 GeV but
become progressively less restrictive outside this window.

We observe in the top panel that all scenarios in the scan have a one-loop contribution
to the Higgs triple coupling that is typically . 20−30%. In the bottom panel, however,
we see that the correction to the Higgs-dark-dark coupling can become as large as the
tree level one. This typically happens for points where the tree level contribution is
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already small, so that the one-loop contribution can enhance it. Since this sample of
points was generated with tree level dark matter observables, the potentially large one-
loop corrections can exclude such parameter space points or bring back other points
excluded by the tree level analysis.

5 Conclusions

In this article we have obtained the derivatives of the one-loop CW effective potential
with respect to the scalar fields up to an arbitrary number of derivatives. Our central
result, Eq. (I.22), was derived for an arbitrary renormalisable quantum field theory in
four space-time dimensions. We have first found that it is possible to obtain exact
expressions for such derivatives, in a closed form, in the tree level mass eigenbasis. This
was done using the CW effective potential in mass independent renormalisation schemes
in the Landau gauge. The general result follows from the properties of the matrix-log
and suitable combinatorics. It remains valid in an arbitrary basis after applying suitable
basis transformations.

Our result can in principle be used to compute effective field theory scalar operators
without derivatives with any number of light scalar external legs when integrating out
heavy degrees of freedom. It can also be used directly to compute one-loop corrections
due to heavy states to scalar interaction vertices. In this context we have analysed two
scalar singlet extensions (the RxSM and the dark phase of the CxSM) to observe the
effect of a new heavy scalar on the low energy phenomenology of the SM-like 125 GeV
Higgs boson and of a light dark matter candidate. We have found that in some cases
the corrections to the SM-like Higgs self-coupling and the coupling to vector bosons
can be comparable to the tree level value. This shows the importance of computing
the full one-loop corrections for these models. Most importantly, the corrections to the
coupling between the SM-like Higgs and the dark matter candidate in the dark phase
of the CxSM can be large. This can take some scenarios out of the phenomenological
viable region, due to one-loop shifts to the dark matter observables that are already
constrained, or bring back scenarios that were excluded in a tree level analysis.

Finally, it would be interesting to study whether our general analytic result could be
extended to the derivatives of the two-loop effective potential or if it could be generalised
to non-renormalisable theories.
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I.A All Nth order derivatives of the matrix-log term

In Sec. 3 we have summarised the ingredients needed to obtain the zero external mo-
menta contributions to the scalar N -point functions from the derivatives of the effective

potential. Here we provide details on how to obtain the general result for the δ
(N)
abi1...iN

tensors from the derivatives of the matrix-log . It is indeed instructive to start by de-
riving the lower order cases first, on one hand because N = 1, 2 are special, and on the
other hand because it is then easier to observe the pattern to generalise it to higher
orders. For notational simplicity, to avoid carrying around factors of µ2, we use units
of mass such that µ2 = 1. In this case log is equivalent to the log function. The final
result will remain valid with the µ2 dependence simply appearing in masses inside the
log factors.

I.A.1 N = 1

The quantity we seek is (suppressing for convenience the indices of Λ(T ), i.e. using
matrix notation)

∂ilog Λ(T ) = −∂i
+∞∑

n=1

(−1)n

n

(
Λ(T ) − 1

)n

=

+∞∑

n=1

(−1)n+1

n

n∑

q=1

(
Λ(T ) − 1

)q−1
qthterm

∂iΛ(T )

(
Λ(T ) − 1−

)n−1−q

=

+∞∑

n=1

(−1)n+1

n

n∑

q=1

(
Λ(T ) − 1

)q−1
qthterm

Λ(T,3)i

(
Λ(T ) − 1

)n−1−q
. (I.42)

Here we have used the matrix series representation of the matrix log and defined the set
of matrices [Λ(T,3)i]ab ≡ Λ(T )abi, which are the cubic vertices of field of type T in the
Λ-basis. Note that on the second line we have obtained n terms by applying the Leibniz
rule for the derivative operator acting on the product of n equal terms. Each term is
obtained by replacing

(
Λ(T ) − 1

)
→ ∂iΛ(T ) in the the term appearing in position q of

the product (named qthterm). Using the definition of the δ
(N)
abi1...iN

tensors, Eq. (I.21),
and inserting the orthogonality/unitarity relations for the transformation matrices U(T )
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several times between products of matrices10, we have

δ
(1)
(T )abi =

+∞∑

n=1

(−1)n+1

n

n∑

q=1

[(
m2

(T) − 1
)q−1

] c

a

qthterm

λ
d

(T )c i

[(
m2

(T) − 1
)n−q]

db

= λ(T )abi

+∞∑

n=1

(−1)n+1

n

n∑

q=1

(
m2

(T )a − 1
)q−1 (

m2
(T )b − 1

)n−q

= λ(T )abif
(0)
(T )ab . (I.43)

In the last line we have used the N = 1 case of the following general formula

f [x1, . . . , xN ]

≡
+∞∑

n=1

(−1)n+1

n

n−N∑

P1=0

n−N−P1∑

P2=0

. . .

n−N−∑N−1
i=1 Pi∑

PN−1=0

(x1 − 1)
P1 (x2 − 1)

P2 . . . (xN − 1)
n−N−∑N

i=1 Pi

=

N∑

i=1

log xi∏
k 6=i (xi − xk)

, (I.44)

which relates to the f
(0)
(T )abi1...iN

tensors defined in Eq. (I.20).

I.A.2 N = 2

In this case, the two derivatives will either produce two cubic vertices or a quartic as
follows

∂ij log Λ(T ) = ∂ij

+∞∑

n=1

(−1)n+1

n

(
Λ(T ) − 1

)n

=

+∞∑

n=1

(−1)n+1

n

[
n∑

q=1

(
Λ(T ) − 1

)q−1
qthterm

∂ijΛ(T )

(
Λ(T ) − 1

)n−q
+ (I.45)

+

n−1∑

p=1

∑

p<q≤n

(
Λ(T ) − 1

)p−1
pthterm

∂iΛ(T )

(
Λ(T ) − 1

)q−p−1
qthterm

∂jΛ(T )

(
Λ(T ) − 1

)n−q
+

+

n−1∑

p=1

∑

p<q≤n

(
Λ(T ) − 1

)p−1
pthterm

∂jΛ(T )

(
Λ(T ) − 1

)q−p−1
qthterm

∂iΛ(T )

(
Λ(T ) − 1

)n−q

 .

Clearly, the term with the second derivative is similar to the N = 1 case up to a
replacement of the cubic by a quartic λ(T )abij vertex. The last term, however, introduces

10For a lighter notation, from here on, we use m2
(T)

to denote the diagonal mass-squared matrix

diag{m2
(T )
}.
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a new case. Applying again the definition of the δ
(N)
abi1...iN

tensors we have

δ
(2)
(T )abij

=

+∞∑

n=1

(−1)n+1

n

[
n∑

q=1

[(
m2

(T) − 1
)q−1

] c

a

λ
d

(T )c ij

[(
m2

(T) − 1
)n−q]

db

+ (I.46)

+

n−1∑

p=1

∑

p<q≤n

[(
m2

(T) − 1
)p−1

] c

a

λ
d

(T )c i

[(
m2

(T) − 1
)q−1−p] e

d

λ
f

(T )e j

(
m2

(T) − 1
)n−q
fb

+

n−1∑

p=1

∑

p<q≤n

[(
m2

(T) − 1
)p−1

] c

a

λ
d

(T )c j

[(
m2

(T) − 1
)q−1−p] e

d

λ
f

(T )e i

(
m2

(T) − 1
)n−q
fb


 .

This can be further simplified using the definition of the f
(0)
(T )abi1...iN

tensors

δ
(2)
(T )abij

= λ(T )abij

+∞∑

n=1

(−1)n+1

n

[
n∑

q=1

(
m2

(T )a − 1
)q−1 (

m2
(T )b − 1

)n−q
]

+ (I.47)

+λ
d

(T )a iλ
d

(T )b j

+∞∑

n=1

(−1)n+1

n



n−1∑

p=1

∑

p<q≤n

(
m2

(T )a − 1
)p−1

×

×
(
m2

(T )d − 1
)q−1−p (

m2
(T )b − 1

)n−q]
+ (i↔ j)

= f
(0)
(T )abλ(T )abij + f

(0)
(T )abc

(
λ

c
(T )a iλ

c
(T ) bj + λ

c
(T )a jλ

c
(T ) bi

)
. (I.48)

I.A.3 N ≥ 3

From the N = 2 case, it is now clear that the general result for N ≥ 3 will be a sum of
terms that are generalised versions of the last term we found for N = 2, Eq. (I.48). This

looks like a chain of vertices attached to an f
(0)
(T )acb tensor (where we have used its total

symmetry under exchange of any two indices) with an internal contraction (through the
index c) and two external indices a, b fixed. To obtain the general expression we note
the following rules (which follow from applying the differential operator to the series
expansion of the matrix-log for general N):

• For each N , the result is a sum over terms containing an f
(0)
(T )ac1...cmb

tensor. The

allowed values of m are such that11
[
N−1

2

]
≤ m ≤ N − 1.

11We denote the integer part of an number X by [X].
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Figure I.3: Diagrams representing the possible terms appearing in the δ
(N)
abi1...iN

tensors.

• Each f
(0)
(T )ac1...cmb

is the base of a chain with two ends fixed a, b where we at-

tach (through internal contractions with the ci indices) cubic or quartic vertices
following the pattern

f
(0)
(T )ac1...cmb

× λ c1
(T )a {L1}λ

c2c3
(T ) {L2} . . . λ

cm−1cm
(T ) {Lm}λ

cm
(T ) b {Lm+1}. (I.49)

Each {Lk} contains either one index (for cubic vertices) or a pair of indices (for
quartic vertices) from the list {i1, . . . , iN}. Note that m + 1 counts the number
of cubic vertices in the chain.

• The relative position of the internal vertices (without an a or b index) is only rel-
evant for the purpose of counting multiplicities. The internal contractions of such

vertices with the ci indices in f
(0)
(T )ac1...cmb

(which is totally symmetric) automat-

ically symmetrises the result. Thus, it is enough to multiply one representative
case by the combinatorial factor under the constraint that the ends of the chain
are fixed. Later we can just symmetrise over {i1, . . . , iN} to obtain the correct
result.

The possible types of terms can be better visualised through graphs as presented in
Fig. I.3 for the first three cases. The bottom solid lines with Latin indices {a, b, ci}
represent the f

(0)
(T )ac1...cmb

base chain. The dashed lines represent the λT coupling tensor

(one line for cubic or two lines for quartic) with the external scalar indices {i, j, . . .}
denoted with diamonds. The external indices {a, b} that are uncontracted are denoted
with a solid circle, whereas the ci indices contracted between adjacent λ(T ) couplings
are denoted by open circles.

The problem then reduces to the computation of combinatorial factors. The natural
way of organising the result is to start with the case m + 1 = N (where all vertices in
the chain are cubic) and then at each step (after reducing m by one) we delete a cubic
vertex and replace another cubic vertex by a quartic12 – from left to right in Fig. I.3.

12This guarantees that the number of ik indices is always the same.
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This rule is very important since it defines the number of cubic and quartic vertices at
each order n ≡ N−1−m in the sum. For the purpose of counting it is in fact convenient
to use n instead of m. This counts the number of quartic vertices in the chain, so it
runs from n = 0 to [N/2] (simultaneously m runs from m = N − 1 to [(N − 1)/2] ). To
obtain the correct multiplicities for the general expression one notes that:

• At order n, the number of ways of distributing the n quartic vertices by the N−n
vertices in the chain (before deciding about the positions of the ik indices) is(
N−n
n

)
. As already noted, the relative position of internal vertices in Eq. (I.49)

is only relevant for the purpose of counting multiplicities. Since the internal ci
contractions with the f

(0)
(T )ac1...cmb

tensor automatically symmetrise the expression

under the internal positions, it is enough to multiply one representative case by
the combinatorial factor. The only possibilities (and the respective multiplicites)
are as follows:

1. Two quartic vertices are external - Here we need to choose n − 2 positions
out of the remaining N −n− 2 internal positions (regardless of ordering), to
distribute the remaining quartic vertices, i.e.

(
N−n−2
n−2

)
.

2. One quartic vertex in the left external position and one cubic in the right
one - In this case, what remains is to choose n − 1 internal positions out
of the remaining N − n− 2 to distribute the remaining quartic vertices, i.e.(
N−n−2
n−1

)
.

3. Cubic vertex in the left external position and a quartic in the right one -
This is just a flipped case, compared to the previous one, so it has the same
multiplicity.

4. Two cubic vertices are external - In this case we need to distribute all n
quartic vertices by N − n− 2 positions, i.e.

(
N−n−2

n

)
.

We note that if we sum the multiplicities of these four cases we obtain
(
N−n
n

)
,

which is precisely the number of ways of distributing n quartic vertices among
N − n available positions.

• The final step consists of assigning the i1, . . . , iN indices to the free positions {Lk}
in each vertex (internal or external). Since the cubic vertices only have one free
index to fill, it is easier to use them to start the counting. At order n there are
N − 2n indices to assign to cubic vertices, so there are N(N − 1) . . . (N − 2n +
1) = N !/(2n)! ways of distributing them13. Finally we are left with 2n indices
to distribute among the n quartic vertices. This corresponds to the number of
different ways of arranging the 2n indices in groups of 2. However we must note
that in this case the ordering of the two indices within each pair is irrelevant, since
the quartic vertices come from a second derivative operator. The combinatorial
factor is(

2n

2

)(
2n− 2

2

)
. . . 1 =

(2n)!

2!(2n− 2)!
× (2n− 2)!

2!(2n− 4)!
× . . . 1 =

(2n)!

2n
. (I.50)

13Note that now the ordering is relevant. It corresponds to different terms in the expansion of the
differential operator (when the Leibniz rule is applied), acting on the polynomials that appear in the
series expansion of the matrix-log .
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Multiplying this factor by the first one, we obtain that the total multiplicity due
to the distribution of the indices {i1 . . . iN} among the various {Lk} is

N !

2n
.

Gathering all the multiplicities we can finally write the general expression for N > 2:

δ
(N)
(T )abi1...iN

= S{ip}

[N2 ]∑

n=0

N !

2n
f

(0)
(T )ac1...cN−1−nb

[(
N − n− 2

n

)
λ

c1
(T )a i1

. . . λ
cN−1−n
(T ) biN

+

+

(
N − n− 2

n− 1

)(
λ

c1
(T )a i1i2

. . . λ
cN−1−n
(T ) biN

+ λ
c1

(T )a i1
. . . λ

cN−1−n
(T ) biN−1iN

)

+

(
N − n− 2

n− 2

)
λ

c1
(T )a i1i2

. . . λ
cN−1−n
(T ) biN−1iN

]
. (I.51)

Here the internal terms that are suppressed using . . . are to be replaced by the internal
vertices according to the pattern in Eq. (I.49) in any order14. Also note that whenever
the binomial factor is not defined (such that the corresponding chain is inconsistent),
the corresponding term is to be deleted. For example for n = 0, only the first term is
defined (it is a term with cubic vertices only).

14As explained before the S{ip} takes care of covering all possible cases.
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Abstract: In this work, we present a trinification-based grand unified theory incor-
porating a global SU(3) family symmetry that after a spontaneous breaking leads to a
left-right symmetric model. Already at the classical level, this model can accommodate
the matter content and the quark Cabbibo mixing in the Standard Model (SM) with
only one Yukawa coupling at the unification scale. Considering the minimal low-energy
scenario with the least amount of light states, we show that the resulting effective the-
ory enables dynamical breaking of its gauge group down to that of the SM by means of
radiative corrections accounted for by the renormalisation group evolution at one loop.
This result paves the way for a consistent explanation of the SM breaking scale and
fermion mass hierarchies.

1 Introduction

The discovery of the Higgs boson at the Large Hadron Collider (LHC) [1, 2] and con-
tinuous studies of its properties have revealed an intriguing consistency of experimental
results with the Standard Model (SM) predictions. This highlights yet another major



step in precision verification of the SM structure. Besides being a big phenomenological
success as a fundamental theory of particle physics, the SM as an effective theory still
allows for possibilities for new interactions and particles (such as Dark Matter, right-
handed neutrinos, heavy Higgs boson partners, new gauge interactions, among others)
at energy scales much larger then the electroweak (EW) scale. This kind of new physics
might bring answers to current open questions and could be detected already at the
LHC. In addition, the origin of the large set of measured (not predicted!) fermion mass
and mixing parameters as well as the Higgs boson mass and self-couplings still remains
as one of the most interesting open questions to date. Furthermore, there is still no
explanation for the characteristic hierarchies in the measured fermion mass spectrum.

In order to get a better understanding of these long-standing issues in the framework
of quantum field theory, one naturally considers the SM as a low-energy approximation
of a bigger and more symmetric (unified) theory whose dynamics at high energies is
implicitly encoded in the observed structure of the SM.

An important example of such a grand unified theory (GUT) based upon the trinified
gauge group SU(3)L × SU(3)R × SU(3)C ≡ [SU(3)]3 (also known as trinification) was
proposed by De Rújula, Georgi and Glashow (RGG-model) back in 1984 [3]. Since
then, trinified extensions of the SM have been traditionally considered as good bets
for a GUT, both with and without supersymmetry (SUSY) [4, 5, 6, 7, 8, 9], due to
many attractive features (for a good introduction into trinification GUTs, see [10] and
references therein).

The gauge trinification [SU(3)]3 o Z3 is a maximal subgroup of E6, where Z3 is the
group of cyclic (L,R,C)-permutations (for a comprehensive discussion of E6-inspired
GUT scenarios, see e.g. Refs. [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37]). Typically, this model is considered to be a low-
energy limit of the heteroic E8×E′8 string theory [38] as well as the N = 4 supergravity
[39]. It naturally incorporates the left-right (LR) symmetric gauge interactions [40] as
well as the gauge couplings’ unification at a GUT scale. All matter fields (including the
Higgs fields) can be elegantly arranged into bi-fundamental representations where each
family belongs to a 27-plet, 27 = (3, 3̄,1)⊕ (1,3, 3̄)⊕ (3̄,1,3) , being the fundamental
representation of the E6 group [11, 41]. Remarkably, no adjoint Higgs fields are needed
to break SU(3)L × SU(3)R down to the electroweak (EW) symmetry group of the SM,
SU(2)L×U(1)Y. The spontaneous breaking of trinification with at least two Higgs 27-
plets yields the standard GUT-scale prediction for the weak mixing angle, sin2 θW =
3/8, which leads to quantization of the U(1)Y hypercharge in the SM (e.g. resulting in
electron charge being exactly opposite to the proton charge) and provides a consistent
explanation of parity violation in the SM. As was shown in Refs. [42, 43] it is possible
to achieve naturally light neutrinos via a seesaw mechanism as well. Moreover, in the
RGG formulation, the model accommodates any quark mixing angles [44] and a natural
suppression of proton decay [4, 8].

However, many existing realizations of the RGG model suffer from severe issues with
phenomenology, a considerable amount of particles in its spectrum and many (e.g. Yukawa)
parameters. One particular issue, common to most of the well-known GUTs, is an un-
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motivated strong hierarchy between the trinification and the EW symmetry breaking
scales as well as hierarchies in the SM fermion mass spectrum. In addition, the exist-
ing minimal SUSY-based trinification [44] has problems in avoiding TeV-scale lepton
masses without imposing higher-dimensional operators, large Higgs representations or
an artificial and simultaneous fine tuning of many parameters. At the same time, real-
istic calculations including quantum corrections are cumbersome due to a large number
of scalar particles and gauge bosons in any [SU(3)]3-symmetric theory. These issues left
the trinification-based models among the least-developed GUT scenarios so far.

To be consistent with SM phenomenology, a number of additional U(1) groups emerging
in E6 (or E8) breaking [45] should be consistently broken at intermediate steps by the
conventional Higgs mechanism. Having a few 27 Higgs multiplets coupled to fermions
which acquire several low-scale vacuum expectation values (VEVs), may resolve this
issue. However, those interactions induce potentially large flavour-changing neutral
current processes which are severely restricted by experiment, and a large degree of fine
tuning is required.

Due to a huge hierarchy in the mass spectra, at low energy scales heavy d.o.f.’s have
to be integrated out at each intermediate symmetry breaking scale giving rise to a new
effective model having a fewer amount of light fields in the spectrum. Depending on
the symmetry breaking scheme and the hierarchy in the initial [SU(3)]3 GUT model
parameters, one may end up with a few possible low-energy effective models having
different light particle content.

One possible development would be to consider a mechanism for Yukawa couplings
unification, severely reducing the number of free parameters at the GUT scale [15, 16].
Similarly to the gauge couplings, the unified Yukawa coupling would then give rise
to several different couplings by means of radiative corrections via the renormalisation
group (RG) evolution and loop-induced operators, which may reproduce the SM fermion
mass and mixing hierarchies at low energies. In this way, family symmetries acting in the
space of fermion generations [46] are known to provide a convenient tool for generating
the necessary patterns in fermion spectra [16, 47]. In particular, such symmetries help
to avoid GUT-scale lepton masses in trinification-type models.

An example of an effective LR-symmetric scenario with very interesting phenomenology
has been discussed in Ref. [48]. There the authors introduce the gauge group SU(3)C×
SU(2)L×SU(2)R×U(1)B−L as originating at lower energies from the trinification model
with two Z2-even and odd Higgs 27-plets. However, the properties of the Yukawa
sector in this model rely on additional higher-dimensional representations of E6 such as
(anti)symmetric 351 reps.

In this work, we consider an alternative non-SUSY trinification model [SU(3)]3 o Z3

augmented by a SU(3)F global family symmetry which acts both on fermion and scalar
multiplets. The latter are thus incorporated in a symmetric way essentially inspired by
SUSY. Our scenario is however manifestly non-supersymmetric and it does not invoke
any higher-dimensional reps or extra singlets besides lowest 27-plets of E6. The scenario
we present is naturally inspired by a reduction E8 → E6 × SU(3) where the remnant
SU(3) is identified with a global family symmetry SU(3)F at the trinification breaking
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scale. The symmetry group is spontaneously broken down to a LR-symmetric model
with an extra SU(2)F × U(1)X × U(1)Z × U(1)B global symmetry that is a remnant of
the SU(3)F and an accidental U(1)A × U(1)B symmetry in the high-scale trinification
theory.

As we show in the present work, this model inherits all the important features of trinified
GUTs and resolves some of their known difficulties. In the considered implementation
of the family symmetry together with the trinification model, all Yukawa couplings are
manifestly unified into a single coupling at the GUT scale, and the number of free scalar
self-couplings in the scalar potential is remarkably low, making a complete RG analysis
of this model feasible. Many of the relevant interactions in the low-energy effective
theory emerge radiatively at one (or higher) loop level, bringing a potential explanation
to a variety of hierarchies in the SM parameters. However, a detailed calculation of such
quantities is beyond the scope of this paper and left for future work. Simultaneously,
the family symmetry forbids proton decay due to an appearance of an accidental U(1)B

symmetry and protects the light SM fermion sector from large radiative corrections
offering potentially interesting phenomenological consequences. Another feature of this
model, that we show in this work, is that the SU(2)R ×U(1)L+R subgroup gets broken
radiatively to U(1)Y at a much lower scale in a natural way for a large region of the
parameter space of the GUT-scale trinification model.

In Sect. 2, we introduce the high-scale trinification model augmented by the family
symmetry. In Sect. 3, we discuss in detail the first symmetry breaking stage down
to a low-energy LR-symmetric effective theory. In Sect. 4, we describe the effective
model and the matching of effective couplings in order to study, in Sect. 5, under which
circumstances the effective theory shows radiative breaking of the SU(2)R × U(1)L+R

symmetry. In Sect. 6, we perform a parameter space scan to find the regions where
the radiative symmetry breaking happens in the simplest feasible scenario. In Sect. 7
we discuss, in the light of our results, under which conditions it could be possible to
reproduce the SM mass spectra. Concluding remarks are given in Sect. 8.

1.1 A quick note on notations

In the text that follows, we employ the following notations:

• Fundamental representations carry superscript indices while anti-fundamental
representations carry subscript indices.

• Fundamental and anti-fundamental indices of SU(3) groups are denoted with lower
case letters, while fundamental and anti-fundamental indices under SU(2) groups
are denoted with upper case letters.

• SU(3)K and SU(2)K (anti-)fundamental indices are denoted by k, k′, k1, k2 . . . and
K,K ′,K1,K2 . . . for K = L,R,C, respectively.

• Indices belonging to (anti-)fundamental representations of SU(3)F and SU(2)F are
denoted by i, j, k . . . and I, J,K . . . respectively.
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• If a field transforms both under gauge and global symmetry groups, the index
corresponding to the global one is placed within the parenthesis around the field,
while the indices corresponding to the gauge symmetries are placed outside.

• Global symmetry groups will be indicated by {. . . }.

For example, (Li)lr is a 3⊗ 3⊗ 3̄ representation of SU(3)L × SU(3)R × {SU(3)F}, and
(l̃R

I)R is a 2⊗ 2̄ representation of SU(2)R × {SU(2)F}, where SU(3)F and SU(2)F are
global family symmetry groups.

2 The GUT-scale [SU(3)]3 o Z3 × {SU(3)F} model

The fields in the high-scale trinification model form representations of the symmetry
group

[SU(3)L × SU(3)R × SU(3)C] o Z3 × {SU(3)F}, (II.1)

as shown in Tab. II.1, and consist of three Weyl fermion multiplets (L, QL, QR), three
scalar multiplets (L̃, Q̃L, Q̃R) and gauge bosons (GL, GR, GC). Here, SU(3)F is a
global family symmetry acting on the space of fermion and scalar field generations,
while SU(3)L × SU(3)R × SU(3)C is the standard trinification gauge group. Although
our model is not supersymmetric, we employ a notation inspired by SUSY, since we
have the same group representations in the scalar and fermion sectors. The fermions
and scalars both form bi-triplet representations under the gauge group, but tri -triplets
under the full symmetry group (including the SU(3)F)1.

The Z3 symmetry refers to the cyclic permutation of the fields

GL
Z3→ GC,

GC
Z3→ GR,

GR
Z3→ GL,

L
Z3→ QL,

QL
Z3→ QR,

QR
Z3→ L,

L̃
Z3→ Q̃L,

Q̃L
Z3→ Q̃R,

Q̃R
Z3→ L̃.

(II.2)

which in turn enforces the gauge coupling unification. This symmetry combined with
the global SU(3)F also dramatically reduces the number of possible terms in the scalar
potential as well as in the fermion sector of the theory.

The most general renormalizable scalar potential for the trinification model reads

V = V1 + V2 + V3 (II.3)

1Gauging the family SU(3)F in an E8 inspired scenario would effectively mean the doubling the
number of chiral and scalar multiplets as is required by the anomaly cancellation condition. In this
paper, however, we avoid such a huge complication by treating the family symmetry as a global one,
as a first step.
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SU(3)L SU(3)R SU(3)C {SU(3)F}

fermions

L 3 3̄ 1 3
QL 3̄ 1 3 3
QR 1 3 3̄ 3

scalars

L̃ 3 3̄ 1 3

Q̃L 3̄ 1 3 3

Q̃R 1 3 3̄ 3

gauge bosons

GL 8 1 1 1
GR 1 8 1 1
GC 1 1 8 1

Table II.1: Field content of the GUT-scale trinification model. The fermionic fields are left-handed Weyl fermions.

where

V1 = −µ2(L̃i)lr (L̃∗i )
r
l + λ1

[
(L̃i)lr (L̃∗i )

r
l

]2

+ λ2(L̃i)lr (L̃j)l
′

r′ (L̃
∗
j )
r
l (L̃∗i )

r′

l′

+ λ3(L̃i)lr (L̃j)l
′

r′ (L̃
∗
i )
r′

l (L̃∗j )
r
l′

+ λ4 (L̃i)lr (L̃j)l
′

r′ (L̃
∗
j )
r′

l (L̃∗i )
r
l′

+ (Z3 permutations),

V2 = α1 (L̃i)lr (L̃∗i )
r
l (Q̃L

j)cl′ (Q̃
∗
Lj)

l′

c

+ α2 (L̃i)lr (L̃∗j )
r
l (Q̃L

j)cl′ (Q̃
∗
Li)

l′

c

+ α3 (L̃i)lr (L̃∗i )
r
l′ (Q̃L

j)cl (Q̃∗Lj)
l′

c

+ α4 (L̃i)lr (L̃∗j )
r
l′ (Q̃L

j)cl (Q̃∗Li)
l′

c

+ (Z3 permutations),

(II.4)

and
V3 = γ εijk (L̃i)lr (Q̃L

j)cl (Q̃R
k)rc + c.c. (II.5)

The scalar potential thus contains two dimensionfull parameters, mass parameter µ and
trilinear coupling γ, and eight quartic couplings λ1,...,4 and α1,...,4 which can be taken
to be real without loss of generality.

Due to the interplay between SU(3)F and Z3, combined with the trinification gauge
group, the fermion sector in the model only contains one single Yukawa coupling,

LFermion = −y εijk (L̃i)lr (QL
j)cl (QR

k)rc + c.c.

+ (Z3 permutations).
(II.6)

The trinification Yukawa coupling y can be taken to be real since any complex phase
may be absorbed into the definition of the fermion fields.
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U(1)A U(1)B

L, L̃ +1 0

QL, Q̃L −1/2 +1/3

QR, Q̃R −1/2 −1/3

GL,R,C 0 0

Table II.2: Charge assignment under the accidental symmetries.

Once all the renormalizable terms invariant under the trinification gauge group and the
global SU(3)F symmetry are written, one can notice that the terms are also invariant
under an accidental {U(1)A×U(1)B} symmetry. A convenient charge assignment under
the accidental U(1) groups is shown in Tab. II.2, where one immediately recognizes
U(1)B as giving rise to a conserved baryon number. Furthermore, U(1)B will stay
unbroken at lower scales (including the SM), since L̃ is uncharged under U(1)B and no
other fields will develop VEVs throughout the evolution to the EW scale. Though the
symmetry would still allow for the proton to decay into coloured scalars Q̃L,R, we will
see that all the coloured scalar states acquire their masses of the order of the unification
scale (i.e. much larger than the proton mass), making such a proton decay kinematically
impossible. Meanwhile, the heavy coloured scalars are relevant for generation of loop-
induced lepton mass terms at the matching scale in the low-energy effective model as
will be discussed in more detail below.

3 Spontaneous trinification breaking down to a LR-
symmetric model

In this paper, we would like to explore whether after the spontaneous symmetry breaking
(SSB) of the trinification gauge symmetry, it will be possible for the effective LR-
symmetric model to break down to the SM gauge group by means of the RG evolution
of the corresponding couplings, in particular, mass parameters. In order to do that,
one has to explore first the SSB of the group in Eq. (II.1) (also taking into account
the accidental {U(1)A × U(1)B} symmetry). The most straightforward way to break
trinification is when only one component in L̃ acquires a real non-zero VEV, namely,

〈(L̃i)lr〉 = δi3δ
l
3δ

3
r

v3√
2

=




0 0 0
0 0 0
0 0 v3√

2



i=3

, (II.7)

where the l (r) index labels the rows (columns), while 〈Q̃L〉 = 〈Q̃R〉 = 0. As will
be shown in Sect. 3.5, this often corresponds to the global minimum of the potential
in Eq. (II.3), assuming no SU(3)C breaking VEVs. The extremal conditions (i.e. the
requirement that the first derivatives of the scalar potential vanish in the minimum)
allow us to rewrite µ in terms of v3 as follows

µ2 = (λ1 + λ2 + λ3 + λ4) v2
3 . (II.8)
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By applying a general infinitesimal gauge transformation on 〈(L̃i)lr〉, we find that the
following subset of the trinification gauge symmetry generators leaves that vacuum
invariant:

T 1,...,8
C , T 1,2,3

L , T 1,2,3
R , TL+R ≡

2√
3

(
T 8

L + T 8
R

)
. (II.9)

Therefore, the vacuum (II.7) spontaneously breaks the trinification gauge group to the
LR-symmetric gauge group SU(3)C×SU(2)L×SU(2)R×U(1)L+R. Before the SSB, the
global symmetry group is the full symmetry group SU(3)C×SU(3)L×SU(3)R×SU(3)F×
U(1)A×U(1)B. When applying a general infinitesimal global symmetry transformation
on the vacuum given by Eq. (II.7), we find that the following generators leave it invariant

T 1,2,3
F , TX ≡

2√
3

(
T 8

L − T 8
R − 2T 8

F

)
, TZ ≡

2

3

(
TA +

√
3T 8

F

)
, (II.10)

in addition to TB and the generators in Eq. (II.9). Here, we have constructed TX,Z

such that they are orthogonal to TL+R and chosen their normalisation for convenience.
However, any other two linearly independent combinations of TX,Z and TL+R that are
also linearly independent of TL+R, generate an unbroken {U(1) × U(1)} symmetry.
Therefore, after the SSB, in addition to the unbroken gauge group, the symmetry
{SU(2)F × U(1)X × U(1)Z × U(1)B} remains unbroken as well. In summary, the VEV
setting (II.7) leads to the SSB pattern

SU(3)L × SU(3)R × SU(3)C × {SU(3)F ×U(1)A ×U(1)B}
↓

SU(3)C × SU(2)L × SU(2)R ×U(1)L+R × {SU(2)F ×U(1)X ×U(1)Z ×U(1)B} ,
(II.11)

and the basic properties of the resulting effective LR-symmetric model will be studied
below in detail.

3.1 Colour-singlet scalar sector

The colour-singlet scalars (CSS) are contained in L̃ which is the tri-triplet representation
3 ⊗ 3̄ ⊗ 3 of SU(3)L × SU(3)R × {SU(3)F}. It therefore contains 54 real degrees of
freedom. The VEV structure (II.7) breaks nine gauge symmetry generators, meaning
that one identifies nine massless real d.o.f.’s in the CSS mass spectrum that become
the longitudinal polarisation states of nine massive gauge bosons. In addition, the non-
gauge part of the symmetry group is reduced from SU(3)F × U(1)A × U(1)B down to
SU(2)F×U(1)X×U(1)Z×U(1)B so that the CSS spectrum, after the SSB, also contains
four corresponding Goldstone d.o.f.’s. These so-called “global Goldstone” bosons remain
as physical massless scalar d.o.f.’s. However, at energy scales much lower than v3, these
are effectively decoupled from all other light fields (including the SM fields) since their
interactions are always suppressed by powers of v3. The decoupling of global Goldstone
bosons is further discussed in Sect. 4.4. The mass eigenstates and the corresponding
squared masses of the CSS after (L̃3)3

3 develops a VEV, are listed in Tab. II.3. Local
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Fields (Mass)2 (L+R,X,Z) Comment

(L̃I)LR −(λ2 + λ3 + λ4) v2
3 (0, 0,+1)

(L̃I)3
R m2

R ≡ −(λ2 + λ3) v2
3 (−1,−1,+1)

(L̃3)LR m2
h ≡ −(λ3 + λ4) v2

3 (0,+2, 0)

(L̃I)L3 −(λ2 + λ4) v2
3 (+1,−1,+1)

Re[(L̃3)3
3] 2(λ1 + λ2 + λ3 + λ4) v2

3 (0, 0, 0)

Im[(L̃3)3
3] 0 (0, 0, 0) Gauge Goldstone

(L̃3)L3 0 (+1,+1, 0) Gauge Goldstone

(L̃3)3
R 0 (−1,+1, 0) Gauge Goldstone

(L̃I)3
3 0 (0,−2,+1) Global Goldstone

Table II.3: Mass eigenstates in L̃ after the SSB of the trinification group, and the corresponding tree-level squared
masses and U(1) charges. All states have zero baryon number here. In Sect. 4, we consider the LR-

symmetric low-energy effective model with (L̃I )3R ≡ (l̃R
I )R and (L̃3)LR ≡ h̃

L
R assuming that m2

R,h � v2
3

while all other masses are heavy, i.e. ∼ v3.

stability of the minima in the CSS sector is obtained when these squared masses are
non-negative. Combined with the requirement that µ2 > 0, this is ensured when

λ1 + λ2 + λ3 + λ4 > 0 , λ2 + λ3 ≤ 0 , λ2 + λ4 ≤ 0 , λ3 + λ4 ≤ 0 . (II.12)

3.2 Coloured scalar sector

When L̃ acquires a VEV according to Eq. (II.7), all coloured scalar (CS) d.o.f.’s become
massive. The mass eigenstates and masses are listed in Tab. II.4. Requiring that the
squared masses must be non-negative constrains the parameters in V2 and V3 as

α1 ≥ 2(λ1 + λ2 + λ3 + λ4) ,

α1 + α2 ≥ 2(λ1 + λ2 + λ3 + λ4) ,

α1 + α3 −
|γ|√
2v3

≥ 2(λ1 + λ2 + λ3 + λ4) ,

α1 + α2 + α3 + α4 ≥ 2(λ1 + λ2 + λ3 + λ4) .

(II.13)

3.3 Gauge boson sector

After the SSB, nine gauge bosons become massive. Their masses are determined by
the trinification gauge coupling g as indicated in Tab. II.5. They can be conveniently
grouped into two doublets (one for each SU(2)L,R)

VL
L
µ ≡

1√
2

(
GL

6 + iGL
7

GL
4 + iGL

5

)

µ

, VR
R
µ ≡

1√
2

(
GR

6 + iGR
7

GR
4 + iGR

5

)

µ

, (II.14)

and one singlet

Vsµ ≡
1√
2

(
GL

8 −GR
8
)
µ
. (II.15)
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Fields (Mass)2 (L+R,X,Z,B)

(Q̃L
I)cL

1
2

[α1 − 2(λ1 + λ2 + λ3 + λ4)] v2
3 (−1/3,−1, 0,+1/3)

(Q̃R
I)Rc

1
2

[α1 − 2(λ1 + λ2 + λ3 + λ4)] v2
3 (+1/3,−1, 0,−1/3)

(Q̃L
3)cL

1
2

[α1 + α2 − 2(λ1 + λ2 + λ3 + λ4)] v2
3 (−1/3,+1,−1,+1/3)

(Q̃R
3)Rc

1
2

[α1 + α2 − 2(λ1 + λ2 + λ3 + λ4)] v2
3 (+1/3,+1,−1,−1/3)

(Q̃ILR±)c 1
2

[
α1 + α3 ± γ√

2v3
− 2(λ1 + λ2 + λ3 + λ4)

]
v2
3 (+2/3, 0,+1/3)

(Q̃L
3)c3

1
2

[α1 + α2 + α3 + α4 − 2(λ1 + λ2 + λ3 + λ4)] v2
3 (+2/3,+2,−1,+1/3)

(Q̃R
3)3
c

1
2

[α1 + α2 + α3 + α4 − 2(λ1 + λ2 + λ3 + λ4)] v2
3 (−2/3,+2,−1,−1/3)

Table II.4: Mass eigenstates in Q̃L and Q̃R after the SSB of the trinification symmetry group, and the corresponding

tree-level squared masses and U(1) charges. Here, (Q̃ILR±)c ≡ 1√
2

[
(Q̃L

I )c3 ± ε
IJ (Q̃∗RJ )c3

]
.

3.4 Fermion sector

The fermions (Li)lr, (QL
i)cl and (QR

i)rc couple to the scalars (L̃i)lr, (Q̃L
i)cl and (Q̃R

i)rc
via the Yukawa interactions given in Eq. (II.6). In particular, the VEV leads to a Dirac
mass term for one fermionic SU(2)F doublet. The corresponding down-type Dirac state

is built out of (QL
I)c3 and (Q†RI)

c
3 as follows

(DH
I)c ≡

(
(QL

I)c3
εIJ(Q†RJ)c3

)
. (II.16)

The U(1) charges of DH are shown in Tab. II.6.

3.5 Finding the global minimum through homotopy continua-
tion

If we restrict ourselves to the case of two generations of colour singlet scalars L̃i get-
ting VEVs, the most general VEV setting after accounting for gauge [43] and family
symmetries can be written as2

〈(L̃1)lr〉 =
1√
2



v1 0 0
0 v2 0
0 0 v3


 , 〈(L̃2)lr〉 =

1√
2



v5 0 v6

0 0 0
v7 0 v8


 . (II.17)

Note that, due to Z3, this choice is physically equivalent to assuming only VEVs in two
generations of either Q̃L or Q̃R.

As discussed in the previous sections, we are interested in the case where only one real
scalar field aqcuires a non-zero VEV. The question remains as to whether this is indeed
the global minimum of the scalar potential or if the global minimum has a different set
of non-zero VEVs and therefore a different symmetry breaking chain takes place.

2Using the SU(2)F ⊂ SU(3)F family symmetry we can “rotate away” one of the VEVs of the general
case shown in Ref. [43].
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Fields (Mass)2 (L+R,X) Comment

GC
1...8
µ 0 (0, 0) Gauge field of SU(3)C

GL
1...3
µ 0 (0, 0) Gauge field of SU(2)L

GR
1...3
µ 0 (0, 0) Gauge field of SU(2)R

1√
2

(
GL

8 +GR
8
)
µ

0 (0, 0) Gauge field of U(1)L+R

VL
L
µ

1
4
g2 v2

3 (+1,+1)

VR
R
µ

1
4
g2 v2

3 (+1,−1)

Vsµ
2
3
g2 v2

3 (0, 0)

Table II.5: Gauge boson states after the SSB of the trinification group. All gauge boson states are uncharged under
{U(1)Z × U(1)B}.

Using the homotopy continuation method through HOM4PS2 [49], we performed a
random scan over 5000 parameter points satisfying the conditions in Eqs. (II.12) and
(II.13). The homotopy continuation method finds all the solutions of systems of poly-
nomial equations, in this case the minimisation conditions of the tree-level potential
(II.3) for the VEV setting in Eq. (II.58).

For all the points in the scan, the global minimum was always the one for which v3 ≡
v 6= 0 and vi 6=3 = 0, even for parameter points where other minima were present. In
other words, for the model described here if we require that there exists a minimum
with one real field acquiring a VEV then, excluding pathological cases that might have
been missed in the numerical analysis, that minimum is the global one.

The most general case where a third generation is also allowed to acquire VEVs could
not be treated with HOM4PS2 due to a complicated system of equations outpacing
our computational resources. However, a purely numerical minimisation was performed
over a second scan of parameter space leading to the same result as for the case of two
generations. Given a parameter point that satisfies the positive scalar mass-squares
condition in the one VEV minima, the numerical minimisation procedure was started
in a random point in field space, whereby the minimum of the potential was found by a
simple steepest-descent method. For the minima obtained in this way, we computed the
gauge boson mass spectrum and observed that it numerically matched the masses in
Tab. II.5. By pretending that SU(3)F is gauged, we computed the number of unbroken
global symmetry generators by counting the number of “new” massless gauge bosons,
and could in all cases conclude that it matched the number of global symmetry gener-
ators in the effective LR-symmetric model. Therefore, we believe that the all of these
minima are related to the one VEV minima in Eq. (II.7) by a symmetry transformation,
and are hence physically equivalent.
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Fields (Mass)2 (L+R,X,Z,B) Comment

(DH
I)c 1

2
y2v2

3 (+2/3, 0, 0,+1/3) Dirac fermion

Table II.6: The first and second generation SU(2)L×SU(2)R-singlet quarks make up an SU(2)F-doublet Dirac fermion

that gets a tree-level mass at the trinification breaking scale. All other fermionic d.o.f.’s in (Li)lr , (QL
i)cl

and (QR
i)rc are massless at tree-level.

4 The low-scale effective LR-symmetric model

4.1 Minimal particle content of the effective model

The trinification group is spontaneously broken by the VEV v3 in Eq. (II.7) to the
following symmetry

SU(3)C × SU(2)L × SU(2)R ×U(1)L+R × {SU(2)F ×U(1)X ×U(1)Z ×U(1)B}. (II.18)

The decomposition of L̃ in terms of representations of the group (II.18) can be written
as

(L̃i)lr =δiI

[
δlLδ

R
r (H̃I)LR + δlLδ

3
r (l̃L

I)L + δl3 δ
R
r (l̃R

I)R + δl3δ
3
r Φ̃I

]

+ δi3

[
δlLδ

R
r h̃

L
R + δlLδ

3
r l̃
s
L
L + δL3 δ

R
r l̃

s
RR + δl3δ

3
r

(
Φ̃s +

v3√
2

)]
.

(II.19)

Here, l̃sL,R and Im[Φ̃s] are the gauge Goldstone d.o.f.’s that become the longitudinal

polarisation states of the heavy vector bosons listed in Tab. II.5, wheras Φ̃I is the
“global” Goldstone boson. Similarly, the fermion multiplet L can be written in terms
of reps of the new symmetry group as follows

(Li)lr =δiI
[
δlLδ

R
r (HI)LR + δlLδ

3
r (lL

I)L + δl3δ
R
r (lR

I)R + δl3δ
3
r ΦI

]

+ δi3
[
δlLδ

R
r (Hs)LR + δlLδ

3
r l
s
L
L + δl3δ

R
r l

s
RR + δl3δ

3
r Φs

]
.

(II.20)

Moreover, the decomposition of the trinification quark multiplets, QL and QR, reads

(QL
i)cl =δiI

[
δLl (QL

I)cL + δ3
l (DL

I)c
]

+ δi3
[
δLl QsLcL + δ3

l D
s
L
c
]
,

(QR
i)rc =δiI

[
δrR (QR

I)Rc + δr3(DR
I)c
]

+ δi3
[
δrRQsRRc + δr3 D

s
Rc

]
,

(II.21)

and similarly for Q̃L,R.

As mentioned in Sect. 3, we want to explore whether a radiatively induced breaking
down to the SM gauge group can happen for the proposed model. As will be discussed
later in detail, in order for that to happen, we need to have at least one SU(2)R and one
SU(2)L scalar doublet in the effective theory so that the SU(2)R-doublet mass parameter
can run negative. With this in mind, and considering the simplest possible scenario, we
will focus our attention on a subset of the parameter space where after the trinification
symmetry is broken, the scalar spectrum comprises two very light states, namely,

h̃LR ≡ (L̃3)LR and (l̃R
I)R ≡ (L̃I)3

R , (II.22)
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in addition to the global Goldstone field Φ̃I ≡ (L̃I)3
3. The remaining scalars either get

masses of O(v3) or get “eaten” by heavy gauge bosons. For this particular case, one can
integrate out all the heavy scalars ending up with a simpler effective theory containing
the light and massless fields only. In the fermion sector, the fields (QL

I)c3 and (QR
I)3
c

can also be integrated out as they make up the heavy Dirac fermions shown in Tab. II.6.
The fields that are present in the effective theory are shown in Tab. II.7.

In order to parametrize the relevant regions of parameter space giving rise to such a
minimal particle content of the effective model, let us define small dimensionless δ and
ε parameters as follows

ε ≡ −λ2 − λ3 , δ ≡ −λ3 − λ4, (II.23)

such that m2
R = εv2

3 and m2
h = δv2

3 . We will then construct the effective LR-symmetric
model assuming ε � 1 and δ � 1. At higher orders in perturbation theory, other
tree-level couplings (such as αi and γ) will enter in the full expressions for m2

h,R. To
still keep these states sufficiently light at the matching scale will then further constrain
the parameter space as the simple assumptions ε, δ � 1 will not suffice. This is further
discussed in Sec. 7.2.

In the LR-symmetric effective model, the fields interact with gauge bosons according
to their representations under the gauge groups as given in Tab. II.7, with strengths
determined by the gauge couplings gL, gR, gC and gL+R. At the matching scale v3,
these are related to the trinification gauge coupling g as

gL = gR = gC = g , gL+R =

√
3

8
g . (II.24)

4.2 Matching of the scalar potential parameters

The GUT-scale scalar potential V should be matched onto the most general renormal-
izable scalar potential for h̃LR, (l̃R

I)R and Φ̃I in the low-energy LR-symmetric model:

VLR = m2
h |h̃|2 +m2

R |l̃R|2 +m2
Φ̃
|Φ̃|2

+ λa |h̃|4 + λb |l̃R|4 + λc |Φ̃|4 + λd |h̃|2|Φ̃|2 + λe |l̃R|2|Φ̃|2 + λf |l̃R|2|h̃|2

+ λg (l̃R
I)R1

(l̃∗RI)
R2

h̃LR′1 h̃
∗R′2
L εR1R

′
1 εR2R′2

+ λh (l̃R
I1)R (l̃∗RJ1

)
R

Φ̃I2 Φ̃∗J2
εI1I2 ε

J1J2

+ λi (l̃R
I1)R1

(l̃R
I2)R′1 (l̃∗RJ1

)
R2

(l̃∗RJ2
)
R′2 εI1I2 ε

J1J2 εR2R′2
εR1R

′
1

+ λj h̃
L1

R1
h̃
L′1
R′1

h̃∗R2

L2
h̃∗R

′
2

L′2
εL1L′1

εL2L
′
2 εR2R′2

εR1R
′
1

(II.25)

The tree-level matching conditions in the scalar sector are obtained by requiring that
the n-point functions with external scalars in the high-scale and the low-scale theory
coincide at tree-level at the matching scale µm, which we take to be the trinification
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breaking scale v3. In this case, we get all relations between the high scale parameters
{v3, λ1,3, ε, δ}, and the low-scale parameters {m2

h,R,Φ̃
, λa,...,j} from the two-point func-

tions (i.e. from the masses squared) and the four-point functions (quartic couplings).
We compute the four-point functions taking the limit of small external momenta (com-
pared to v3 scale), since we are only interested in the matching of the renormalizable
operators. Any momentum dependence in the four-point functions in the low-scale the-
ory would instead be attributed to (non-renormalizable) derivative interactions. We
do not take these higher order derivative operators into account since they presum-
ably would have a negligible effect in the infrared behaviour of the theory. Thus, the
matching conditions are

m2
h = δv2 , m2

R = εv2 , m2
Φ̃

= 0 ,

λc = λd = λe = λh = 0 ,

λg = −2λ3 , λi =
1

2
ε , λj =

1

2
δ ,

λa = λ1 − λ3 − ε− δ −
(λ1 − λ3 − ε)2

λ1 − λ3 − ε− δ
≈ −2δ +O(ε2, εδ, δ2) ,

λb = λ1 − λ3 − ε− δ −
(λ1 − λ3 − δ)2

λ1 − λ3 − ε− δ
≈ −2ε+O(ε2, εδ, δ2) ,

λf = 2

[
λ1 + λ3 −

(λ1 − λ3 − ε)(λ1 − λ3 − δ)
λ1 − λ3 − ε− δ

]
≈ 4λ3 +O(ε2, εδ, δ2) .

(II.26)

Interestingly, all λ1’s cancel out in the matching conditions, provided that ε and δ are
sufficiently small, which means that λ1 does not affect the values of the couplings in
the effective LR-symmetric model at tree-level. This can be seen as a consequence of
h̃LR, (l̃R

I)R and Φ̃I becoming Goldstone bosons of the O(54) → O(53) breaking that
is induced in the CSS sector by the v3 VEV in the limit λ2, λ3, λ4 → 0 (since they
are Goldstone bosons in this limit, they must decouple from the scalar potential in the
same limit).

4.3 Fermion sector

Though the trinification theory only contains one Yukawa coupling, many terms are
allowed by the symmetry group of the LR-symmetric effective model in the fermion
sector:

L(LR)
Fermion = Yα (l̃∗RI)

R
(lR

I)R Φs + Yβ (l̃∗RI)
R
lsRR ΦI + Yγ (l̃R

I)R (QR
J)R Ds

L εIJ

+ Yδ h̃
∗R
L (Hs)LR Φs + Yε h̃

∗R
L lsL

L lsRR + Yζ h̃
L
R (QL

I)L (QR
J)R εIJ

+ Yη Φ̃∗I ΦIΦs +
mΦs

2
ΦsΦs + c.c.

(II.27)
The matching conditions for the Yukawa couplings are rather easy at tree-level, as only
two of them are found to have non-vanishing values at the matching scale. This does
not mean that the other couplings are not present in the effective theory and it would
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be a subject of a future study to calculate the matching conditions at higher orders
where they might not necessarily vanish. However, for the purpose of this work, which
is to explore a potential for the radiative breaking of the LR symmetry down to the SM
gauge group, the tree-level approximation is expected to be sufficient. In this case, the
matching conditions are such that

Yζ = −y and Yγ = y , (II.28)

while Yα,β,δ,ε,η = 0. Furthermore, the β-functions in Appendix II.A indicate that the
Yukawa couplings that are zero at the matching scale will also remain zero at lower
scales, since βYi ∝ Yi.

With the matching conditions defined above, the parameters of the effective LR-symmetric
model can be determined from a reduced set of parameters of the GUT-scale theory.
The vacuum stability constraints (II.12) and (II.13) can be then translated as well to re-
duce further the allowed parameter space for the effective theory. With this framework
in mind, the question remains as to whether the remaining symmetries of the effective
theory can be broken radiatively by one-loop RG running at a lower scale leading to an
effective model which approaches the SM.

4.4 Decoupling of “global” Goldstone bosons

It can be shown, on very general grounds that Goldstone bosons appearing due to
the spontaneous breaking of a global symmetry at a scale v3, have negligibly small
interactions at scales µ� v3 [50, 51]. This decoupling is obvious if one chooses a specific
exponential representation of the Goldstone d.o.f.’s, which comes at expense of manifest
renormalisability. In this work, we have instead chosen the simple (but equivalent) linear
representation of the global Goldstone d.o.f.’s Φ̃I such that renormalisability (but not
decoupling) is manifest in the GUT-scale trinification theory. Nevertheless, with the
results from the three previous sections, we can see explicitly how Φ̃I decouple at scales
well below v3.

Firstly, we notice that Φ̃I decouples from the scalar potential at the matching scale since
mΦ̃ = 0 and λc = λd = λe = λh = 0. Instead, one finds that for the matching to agree at
non-zero Goldstone boson momenta, one has to introduce derivative interactions among
the Goldstone bosons as well as between the Goldstone bosons and non-Goldstone fields.
These derivative interactions necessarily have dim > 4 and hence must be suppressed
by the trinification breaking scale ∼ v3. Since these operators presumably will be
increasingly irrelevant in the infrared, we simply omit them from our LR-symmetric
effective Lagrangian.

In the trinification fermion sector shown in Eq. (II.6), one can check that the only
Yukawa interactions involving Φ̃I that are non-zero at tree-level also involve the heavy
quark fields (QL

I)c3 and (QR
I)3
c (which are integrated out at the trinification break-

ing scale). In addition, in the effective theory, one new Yukawa interaction with Φ̃I is
allowed by symmetry (Yη in Eq. (II.27)), but it vanishes at the matching scale. The cor-
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SU(2)L SU(2)R SU(3)C U(1)L+R {SU(2)F} {U(1)X} {U(1)Z} {U(1)B}

fermions

H 2 2̄ 1 0 2 0 +1 0
lL 2 1 1 +1 2 −1 +1 0
lR 1 2̄ 1 −1 2 −1 +1 0
Φ 1 1 1 0 2 −2 +1 0
QL 2̄ 1 3 −1/3 2 −1 0 +1/3
QR 1 2 3̄ +1/3 2 −1 0 −1/3
Hs 2 2̄ 1 0 1 +2 0 0
lsL 2 1 1 +1 1 +1 0 0
lsR 1 2̄ 1 −1 1 +1 0 0
Φs 1 1 1 0 1 0 0 0
QsL 2̄ 1 3 −1/3 1 +1 −1 +1/3
QsR 1 2 3̄ +1/3 1 +1 −1 −1/3
DsL 1 1 3 +2/3 1 +2 −1 +1/3
DsR 1 1 3̄ −2/3 1 +2 −1 −1/3

scalars

h̃ 2 2̄ 1 0 1 +2 0 0

l̃R 1 2̄ 1 −1 2 −1 +1 0

Φ̃ 1 1 1 0 2 −2 +1 0

gauge bosons

GL 3 1 1 0 1 0 0 0
GR 1 3 1 0 1 0 0 0
GC 1 1 8 0 1 0 0 0
GL+R 1 1 1 0 1 0 0 0

Table II.7: Field content of the effective LR-symmetric model.

responding β-function, βYη , is proportional to Yη, meaning that the vanishing matching
condition also forces Yη = 0 at lower scales.

Having shown the disappearance of scalar and Yukawa interactions with Φ̃I , only gauge
interactions remain. However, since Φ̃I is a gauge singlet, it will neither interact via
gauge interactions nor contribute to the running of the gauge couplings in the effective
LR-symmetric model.

5 Breaking of SU(2)R×U(1)L+R in the effective model

In order to reproduce the phenomenology of the SM at low energies, the gauge SU(2)R×
U(1)L+R subgroup needs to be broken to the SM hypercharge group U(1)Y. One of the
persistent issues in high energy models is the fact that the vastly different energy scales
associated have to be given through input parameters. One way of dealing with this
issue is to introduce the possibility of radiative symmetry breaking, i.e SSB triggered by
the RG evolution of the model. This is a standard way of understanding, for example,
EW symmetry breaking in the MSSM where the running of m2

Hu
drives the breaking

of SU(2)L × U(1)Y [52, 53, 54]. The question remains as to whether this model offers
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a possibility of breaking SU(2)R × U(1)L+R through the RG running of m2
R and the

rest of parameters of the effective model with initial conditions coming from tree-level
matching of the high energy theory. This will give us the possibility of checking under
which conditions (for the high-energy input parameters) this radiative breaking can be
induced.

For this purpose, we consider two separate scenarios. In scenario I, we study the
properties of a minimum in the scalar potential of the effective LR-symmetric model
where SU(2)R ×U(1)L+R is broken to the analogous of U(1)Y in the SM, (i.e. the EW
gauge group SU(2)L ×U(1)Y is unbroken in this minimum). To study the model at
the electro-weak scale, where SU(2)L × U(1)Y is broken, a second step of matching
and running would have to be performed to discover whether there is a sign change of
the Higgs squared mass parameter inducing the electro-weak symmetry breaking. In
scenario II, we instead study minima with a more complicated VEV structure such that
SU(2)L× SU(2)R×U(1)L+R is directly broken down to U(1)E.M.. This is accomplished
by suitable VEVs both in h̃ and in l̃R. The VEV in l̃R needs to be larger than the Higgs
VEV to keep the W ′ and Z ′ bosons heavy, but not too large as to ruin the convergence
the perturbative expansion through large logarithms of the ratio between the two VEVs.
If this ratio would become too large, Scenario I is more appropriate.

5.1 Scenario I: Breaking to the SM gauge group

Let us first understand what are the conditions necessary for SU(2)R×U(1)L+R breaking
through non-vanishing VEV for the scalar field l̃R,

〈(l̃RI)R〉 = δI2δ
2
R

w√
2

=

(
0 0
0 w√

2

)
, (II.29)

where w is taken to be real. The extremal condition for such a VEV setting reads

−m2
R = λbw

2. (II.30)

This leaves the following gauged U(1) generator unbroken,

TY = T 3
R +

1

2
TL+R, (II.31)

which can be identified as the SM hypercharge generator. In addition, Eq. (II.29) leaves
four global U(1) generators unbroken,

TD ≡
1

2

(
TX − TL+R

)
, TE ≡ T 3

F +
1

2
TZ , TG ≡

1

2

(
TZ + TL+R

)
, TB . (II.32)

Thus, the VEV (II.29) breaks the LR symmetry group (II.18) down to

SU(3)C × SU(2)L ×U(1)Y × {U(1)D ×U(1)E ×U(1)G ×U(1)B}. (II.33)

which will also be the symmetry group of a SM-like effective model that is obtained
when the heavy particles in the effective LR-symmetric model are integrated out.
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Fields (Mass)2 (Y,D,E) Comment

h̃L1 m2
h2
≡ m2

h + 1
2

(λg − λf )w2 (−1/2,+1, 0)

h̃L2 m2
h1
≡ m2

h −
1
2
λfw

2 (+1/2,+1, 0)

(l̃R
1)1 m2

r2
≡ 2λiw

2 (−1, 0,+1)

Re[(l̃R
2)2] m2

r1
≡ 2λbw

2 (0, 0, 0)

(l̃R
2)1 0 (−1, 0, 0) Gauge Goldstone

Im[(l̃R
2)2] 0 (0, 0, 0) Gauge Goldstone

(l̃R
1)2 0 (0, 0,+1) Global Goldstone

Table II.8: Mass eigenstates in h̃ and l̃R after SSB of the LR symmetry by l̃R VEV, the corresponding tree-level
masses and U(1) charges. All scalars are uncharged under the {U(1)G × U(1)B} global symmetry.

The scalar mass eigenstates in the minimum described by Eq. (II.30) are shown in
Tab. II.8. Notice, in particular, that the scalar spectrum contains one massless complex
d.o.f. that is the “global” Goldstone boson from the breaking of the global part of
the LR symmetry. We expect this to decouple at scales µ � w, similarly to how Φ̃I

decouples for µ� v.

The gauge fields after SSB of the LR symmetry are mixed and give rise to the massive
and massless states shown in Tab. II.9. The massless states are the gauge fields of the
unbroken gauge symmetries, and the massive gauge fields are the combinations

W ′±µ =
1√
2

(
GR

1 ∓ ıGR
2
)
µ
, Z ′0µ = cos θV GL+Rµ − sin θV GR

3
µ (II.34)

with tan θV = gR/2gL+R. The hypercharge gauge coupling gY becomes

gY =
2 gR gL+R√
4g2

L+R + g2
R

. (II.35)

For general values of the Yukawa couplings in Eq. (II.27), many fermion fields become
massive once 〈l̃R〉 6= 0. However, in the approximation employed in this work, i.e. tree-
level matching and one-loop RG evolution, most of the Yukawa couplings are zero and
only one Dirac fermion becomes massive in the effective LR-symmetric model (shown
in Tab. II.10). This fermion is a Dirac state

Ds
c ≡

(
Ds

L
c

(Q†R
1
)2
c

)
(II.36)

and, when integrated out, leaves behind three SU(2)L doublet quarks and six SU(2)L

singlet quarks that will make up the SM quark sector.

5.2 Scenario II: Breaking directly to U(1)E.M.

A second possible scenario is that in which both (l̃R
I)R and h̃LR develop VEVs, which

would directly trigger SU(2)L × SU(2)R × U(1)L+R → U(1)E.M.. Although this case is
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Fields (Mass)2 Y Comment

GC
1,...,8
µ 0 0 Gauge field of SU(3)C

GL
1,2,3
µ 0 0 Gauge field of SU(2)L

sθV GL+Rµ + cθV GR
3
µ 0 0 Gauge field of U(1)Y

W ′±µ m2
W ′ ≡

1
4
g2
Rw

2 ±1

Z′0µ m2
Z′ ≡

(
g2
L+R + 1

4
g2
R

)
w2 0

Table II.9: Gauge boson mass eigenstates and their hypercharges after the spontaneous LR symmetry breaking. All
gauge bosons are uncharged under the global {U(1)D×U(1)E×U(1)G×U(1)B} group. Here, cθV

≡ cos θV
and sθV

≡ sin θV .

certainly allowed by the model, and might also be triggered by RG running of effective
Lagrangian parameters, there is no a priori reason that there will be any hierarchy in
the VEVs of the fields consistent with the SM. This could lead to several massive gauge
bosons with comparable masses which would immediately be in conflict with what is
observed experimentally. So far, only the SM W± and Z0 bosons have been observed,
and the existing LHC bounds on extra gauge bosons [55, 56] would force an unnatural
hierarchy which is precisely the problem one wants to avoid by means of radiative
breaking.

Nevertheless, let us explore the conditions under which such symmetry breaking might
lead to an unbroken U(1)E.M.. The most general VEV setting, after accounting for
gauge symmetries for (l̃R

I)R and h̃LR would be:

〈(l̃RI)R〉 =
1√
2

(
w1 w2

0 w3

)
〈h̃LR〉 =

1√
2

(
v1 0
0 v2

)
. (II.37)

However, not all of these minima lead to a U(1)E.M. remaining gauge symmetry con-
sistent with the proposed framework. To understand this, it is useful to think as if the
VEVs are attained sequentially. Let us assume (l̃R

I)R gets its VEV first. From our
previous analysis we know that in order to identify TE.M. = T 3

L + TY we need h̃LR to
break down to two SU(2)L doublets with opposite hypercharge. This is only possible
with w1 = w2 = 0 (up to any symmetry transformation on 〈l̃R〉). Once (l̃R

I)R has
obtained its VEV, there are physically different VEV settings in the Higgs bi-doublet
we should explore separately: v1 = v 6= 0 and v2 = 0 (Case A), v2 = v 6= 0 and v1 = 0
(Case B), and v1 6= 0 and v2 6= 0 (Case C). In the following we will explore the details
of Case A and B. Case C, where both Higgs VEVs are non-zero, is cumbersome and
can be left for a future work. The reason for this is that for that case the masses in
the scalar sector can not be obtained analytically and the type of analysis we will do in
Sect. 6.1 is not feasible without further work. We will thus take a closer look at scenario
I and the first two cases described above.
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Fields (Mass)2 (Y,D,E)

Ds
c m2

q ≡ 1
2
Y 2
γ w

2 (+1/3, 2/3,−1/3)

Table II.10: Massive quark field and its quantum numbers after the SU(2)R × U(1)L+R breaking.

Case A

Given the VEV setting

〈(l̃RI)R〉 =

(
0 0
0 w√

2

)
, 〈h̃LR〉 =

(
0 0
0 v√

2

)
, (II.38)

the extremal conditions become
(
m2
h + v2λa −

1

2
w2λf

)
v = 0 ,

(
m2
R + w2λb −

1

2
v2λf

)
w = 0. (II.39)

With v 6= 0 and w 6= 0, there is only one unbroken gauge symmetry generator

TE.M. = T 3
L + T 3

R +
1

2
TL+R (II.40)

which corresponds exactly to the generator of U(1)E.M. in our previous analysis with
only (l̃R

I)R VEV. There are also two new U(1) global symmetries in addition to
{U(1)G ×U(1)B} with generators

TV = TX − TL+R + 4T 3
L , TW = T 3

F −
1

2
TL+R (II.41)

The mass eigenstates in the scalar sector after this symmetry breaking are shown in
Tab. II.11. In particular, there is one real state which obtains a mass of O(v) when
v � w, which would be the candidate for the 125 GeV SM Higgs particle.

Case B

A second possible case follows from the VEV assignment

〈(l̃RI)R〉 =

(
0 0
0 w√

2

)
〈h̃LR〉 =

( v√
2

0

0 0

)
. (II.42)

The extremal conditions in this case will be
(
m2
H + v2λa +

1

2
w2(−λf + λg)

)
v = 0 ,

(
m2
R + w2λb +

1

2
v2(−λf + λg)

)
w = 0.

(II.43)
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The mass eigenstates in the scalar sector after this symmetry breaking are shown in
Tab. II.12, where as in the previous case the spectrum contains a candidate for the SM
Higgs particle. The VEV setting (II.42) leaves the same gauged U(1)E.M. and global
U(1)W unbroken as the vev setting in Eq. (II.38). However, the U(1)V is replaced by
U(1)V′ which is generated by

TV′ = TX − TL+R − 4T 3
L . (II.44)

Fields (Mass)2 Comment

sα(l̃R
2)1 − cαh̃2

1
1
2

(v2 + w2)λg
(l̃R

1)1
1
2
v2λg + 2w2λi

h̃1
1

1
2
w2λg + 2v2λj

cη<[h̃2
2] + sη<[(l̃R

2)2] v2λa + w2λb +
√
. . .

cη<[(l̃R
2)2]− sη<[h̃2

2] v2λa + w2λb −
√
. . . ∼ O(v2) for tanα ∼ 0

(l̃R
1)2 0 Global Goldstone

h̃1
2 0 Gauge Goldstone

=[h̃2
2] 0 Gauge Goldstone

=[(l̃R
2)2] 0 Gauge Goldstone

cα(l̃R
2)1 + sαh̃2

1 0 Gauge Goldstone

Table II.11: Case A: Mass eigenstates in h̃ and l̃R after SSB of the LR symmetry group to U(1)E.M. and the

corresponding tree-level masses. Here,
√
. . . =

√
(v2λa − w2λb)

2 + (vwλf )2, cα = cosα, sα = sinα

with tanα = v/w and cη = cos η, sη = sin η with η being the corresponding mixing angle whose explicit
form we omit for simplicity.

6 Numerical results

The main question to answer for the proposed framework is whether for a consistent set
of parameters of the trinification theory, the RG running in the effective LR-symmetric
theory can trigger the radiative breaking of SU(2)R×U(1)L+R, and for what regions in
parameter space this happens. In addition, we will explore under which circumstances
we can get close to a realistic SM-like scalar sector, with a light SU(2)L scalar doublet
with hypercharge Y = +1/2 remaining in the spectrum at lower energies (which po-
tentially can induce EW symmetry breaking). The resulting low-scale mass spectrum
after the radiative symmetry breaking will depend on our choice of initial parameters
only, but the connection between the initial values of the parameters and the resulting
mass spectrum is not obvious. In order to explore it, we implemented a parameter
scanning framework using numerical integration of the RG equations together with a
simulated annealing (SA) procedure to scan over the possible initial values of high-scale
parameters.

We calculated one-loop β-functions for the effective LR-symmetric model using the
package pyr@te [57], which are written in Appendix II.A.
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Fields (Mass)2 Comment

cα<[h̃1
2] + sα<[(l̃R

2)1] − 1
2

(v2 + w2)λg
sα=[(l̃R

2)1]− cα=[h̃1
2] − 1

2
(v2 + w2)λg

(l̃R
1)1 − 1

2
v2λg + 2w2λi

h̃2
2 − 1

2
w2λg + 2v2λj

cκ<[h̃1
1] + sκ<[(l̃R

2)2] v2λa + w2λb +
√
. . .

cκ<[(l̃R
2)2]− sκ<[h̃1

1] v2λa + w2λb −
√
. . . ∼ O(v2) for tanα ∼ 0

(l̃R
1)2 0 Global Goldstone

h̃2
1 0 Gauge Goldstone

=[h̃1
1] 0 Gauge Goldstone

=[(l̃R
2)2] 0 Gauge Goldstone

−sα<[h̃1
2] + cα<[(l̃R

2)1] 0 Gauge Goldstone

cα=[(l̃R
2)1] + sα=[h̃1

2] 0 Gauge Goldstone

Table II.12: Case B: Mass eigenstates in h̃ and l̃R after SSB of the LR symmetry group directly to U(1)E.M. and the

corresponding tree-level masses. Here,
√
. . . =

√
(v2λa − w2λb)

2 + v2w2(λg − λf )2, cα = cosα, sα =

sinα with tanα = v/w and cκ = cosκ, sκ = sinκ with κ being the corresponding mixing angle whose
explicit form we omit for simplicity.

6.1 Parameter scan

Effectively, we would like to explore a five-dimensional parameter subspace of the high-
scale model {λ3, ε, δ, g, y} assuming we have fixed the scale at which trinification is
broken and imposed the constraints in Eq. (II.12). This is due to the fact that in the
effective LR-symmetric model after tree-level matching, the β-functions only depend
on those parameters as seen in Eq. (II.26). Once a consistent set of high-scale model
parameters is found, the matching can be performed and the RG equations can be
numerically integrated yielding a scale dependence of the effective model parameters.
The running starts from the matching scale µm, which is chosen to be the trinification
breaking VEV,

µm = v3, (II.45)

since the heavy states in the trinification theory that we integrate out have masses of
O(v3). The running is then terminated at a lower scale µr, which is defined as

µr =

√
|m2

R(µr)|+ |m2
h(µr)|

2
, (II.46)

since, at this scale, there are again states with masses of the same order as the renormal-
isation scale. These states then have to be integrated out before we can run down even
further. Depending on the initial values at a high scale, m2

R may have run negative at
this scale, thus triggering the radiative symmetry breaking we are looking for. However,
we have to guarantee that, at the stopping scale µr, the minimisation conditions for
the VEV setting described in Eq. (II.29) are satisfied (i.e. that all the squared masses
in Tab. II.8 are positive).
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Simulated annealing

In order to find viable parameter space points in the high-scale theory, we implemented
the SA algorithm together with the numerical integration of β functions. The SA is
a method for estimating the global minimum of a given function E({pi}) in a multi-
dimensional parameter space {pi} [58].

If we interpret the function E({pi}) as the energy of a system whose physical state is
defined by {pi}, and imagine that the system is in thermal contact with a heat bath
with temperature T , we can let this system approach its equilibrium state by employing
the Metropolis algorithm. That is, we start with a random set of initial parameters,
and propose random updates {pi} → {p′j} that are accepted with probability

Pacc({pi} → {p′i}) =

{
1 if E({p′i}) < E({pi})
e(E({pi})−E({p′i}))/T otherwise,

. (II.47)

Given a constant T , this procedure fulfils detailed balance w.r.t. the canonical ensemble
P({pi}) ∝ e−E({pi})/T , which in the limit T → ∞ is a flat distribution where all {pi}
are equally likely, while in the limit T → 0 becomes highly peaked for the ground states
of the system, i.e. the states {pi} that minimise E({pi}).

The SA works by initialising the system at a large temperature, and then running the
Metropolis algorithm while slowly (i.e. adiabatically) decreasing the temperature until
T ∼ 0. In this way, E({pi}) is minimised and the corresponding parameter space points
{pi} are found. This procedure has the advantage of being easy to implement while
also being less prone to get stuck in local minima compared to for example a gradient
descent method since local energy barriers can be overcome by “thermal fluctuations”.

For the purpose of this work we defined

E =





10 if m2
R(µ) > 0∀µ ∈ (mZ , µm)

5 +
min(m2

i )

max(|m2
i |)

if m2
j < 0 for some j

2
min(m2

hi
)

min(m2
q,m

2
Z′ ,m

2
W ′ )

+
min(m2

hi
)

max(m2
q,m

2
r2
,m2

Z′ ,m
2
W ′ )

if m2
R(µr) < 0 and m2

j (µr) > 0

(II.48)
where E = E(λ3, ε, δ, g, y) and m2

i = (m2
q,m

2
hi
,m2

Ri
,m2

Z′ ,m
2
W ′) are the masses after

radiative symmetry breaking evaluated at the scale µr. Minimisation of this function
guarantees that we find parameter space points where m2

R runs negative while also
introducing a bias towards parameters that yield a light Higgs-like SU(2)L doublet.

Choosing the trinification breaking scale

One of the free parameters of the proposed framework is the scale at which trinification
symmetry is spontaneously broken. This scale, which is the starting point for all the
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successive symmetry breakings at low scales, is defined only by the trinification breaking
VEV (II.7). In order to get an idea of what scales are sensible to explore, we integrated
the one-loop RG equations for gauge couplings in the effective LR-symmetric model,
an easy task due to the fact that at one-loop the β-functions only depend on the gauge
couplings themselves. It was possible then to relate the trinification breaking scale to
the measured values of the SM SU(2)L, U(1)Y and SU(3)C gauge couplings. We found
that for a trinification breaking scale of µm = 1012.2 GeV, the boundary condition
of g0 = 0.61 leads roughly to the SM values at mZ . In Fig. II.1 we show the result
from integrating the gauge coupling β-functions from µm down to mZ . Because the
β-functions only depend on the gauge couplings at one-loop, this running is valid for
any parameter space point with g0 = 0.61 as boundary condition. We show in the same
plot

gY(µ) ≡ 2 gR gL+R√
4g2

L+R + g2
R

(II.49)

which would be the matching condition for g1, the hypercharge gauge coupling, as
function of the scale µ. Note however that in Fig. II.1, the running is performed all
the way down to the EW scale mZ , without decoupling the massive states at µr. A
more accurate calculation would implement this intermediate step, which would alter
the slopes of the lines in Fig. II.1 at scales below µr. Therefore, this calculation should
only serve as a very rough estimate of the numerical values of the matching scale (and
the value of the trinification gauge coupling at this scale).
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Figure II.1: One-loop RG evolution of gauge couplings in the effective LR-symmetric model and matching condition
for the hypercharge coupling gY with g0 = 0.61. A trinification breaking scale of µm ≈ 1012.2 GeV
leads to roughly SM values for gL ≡ g2, gC ≡ g3 and gY ≡ g1 at µ ≈ mZ .

6.2 Regions of parameter space with radiative breaking

Using the framework described above we found 22081 parameter space points by running
our implementation of the SA algorithm allowing for high-scale parameters within the
unitarity bounds and for a trinification breaking scale of µm = 1012.2 GeV. Remarkably,
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we found that the considered model naturally contains large parameter space regions
where SU(2)R×U(1)L+R is radiatively broken down to U(1)Y while a light Higgs doublet
remains in the spectrum at the stopping scale µr. In Fig. II.2 we show the allowed
regions in several slices of the high-scale parameter space. Most of the features of
these regions can be explained by the structure of the mass-parameter β-functions in
Eqs. (II.84) and (II.83). Our algorithm selects points where m2

R would have a positive
β-function so that it could run to negative values at low scales. For example, we see
that the allowed parameter space region always satisfies ε < δ which translates into
the inequality m2

R < m2
h at the matching scale. Although one can find points for

which (II.84) is positive and ε > δ, for such points m2
h value runs negative before m2

R

does. This would trigger an unwanted simultaneous breaking of SU(2)L and SU(2)R

with the same VEV, as opposed to the desired situation where the VEV responsible for
SU(2)R ×U(1)L+R → U(1)Y is much larger than the Higgs VEV that triggers the EW
symmetry breaking.
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Figure II.2: Regions of the high-scale model parameter space with the radiative SU(2)R×U(1)L+R symmetry break-
ing down to U(1)Y by RG evolution in the effective LR-symmetric model. The ranges for the scan were
chosen such as to preserve the unitarity property at tree-level. The colours indicate the lightness of the
lightest Higgs doublet compared to the renormalization scale at the stopping scale µr .

We selected the most promising candidates from the results of the scan by requiring the
maximal hierarchy between a light Higgs-like doublet and heavy exotic particles at the
scale µr while having parameters within the perturbativity constraints. In Fig. II.3 we
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show the running of mass parameters before and after the radiative SU(2)R ×U(1)L+R

symmetry breaking for a benchmark point satisfying those conditions. We find that it
is possible to find some mass hierarchy at the symmetry breaking scale, with a Higgs-
like scalar doublet coming from h̃ with masses up to two orders of magnitude lighter
than the rest of the mass spectrum. In addition, we also observe that a complex scalar
coming from l̃R prefers to have a small mass at µr (this is the dark solid curve in
Fig. II.3, corresponding to m2

r2 in Tab. II.8). This scalar is a singlet under SU(2)L

while having unit hypercharge, meaning that it will have unit electric charge after EW
symmetry breaking. At present, it is not clear to what extent this state accumulates a
much larger mass when evolving from µr down to the EW scale.

Although the gauge couplings of the effective LR-symmetric model start with the same
values due to the matching conditions and the Z3 symmetry in the high-scale model,
the RG evolution induces a splitting as seen in Fig. II.1. It is interesting to note that
although we did not impose the boundary condition g0 = 0.6 for the SA algorithm, the
allowed points in parameter space seem to be consistent with the boundary condition
as seen in the upper right plot in Fig. II.2. We also note from Fig. II.1 that there is an
approximate relation gL ≈ gR that is exact at the matching scale, while a small splitting
between gL and gR is generated in the low energy limit. This observation points towards
an approximate Z2 symmetry between the SU(2)L and SU(2)R gauge groups. In fact,
we can trace the origin of the radiative Z2 breaking to the scalar sector in the effective
model, where the choice of keeping only l̃R and h̃ leads to βgL

6= βgR
. This is because

only h̃ transforms under SU(2)L (while both l̃R and h̃ transform under SU(2)R).

11.0 11.2 11.4 11.6 11.8 12.0 12.2

log10(µ/GeV)

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

[G
eV

]2

×1022

m2
r1

m2
r2

m2
h1

m2
h2

m2
q

m2
W ′

m2
Z ′

m2
R

m2
h

Figure II.3: One-loop RG evolution of the mass parameters before and after the radiative SU(2)R×U(1)L+R symme-

try breaking down to U(1)Y for an example point. The two vertical lines mark the scales at which m2
R

first runs negative (right) and the scale µr at which the RG running is terminated (left), respectively.

This serves to prove that in the proposed framework it is possible to trigger the full
symmetry breaking down to the SM gauge group by means of the trinification breaking
VEV (II.7) only, while at the same time generating a desired hierarchy at low energy
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scales. In other words, in the model proposed in this work, the RG evolution makes it
possible to have a highly symmetric trinification model whose gauge group is naturally
broken down to the SM gauge group.

For the alternative case of breaking directly to U(1)E.M. discussed in Sect. 5.2 we per-
formed a similar analysis as we did above by preparing a SA scan to find parameter
space points looking for a possibility for the radiative breaking to U(1)E.M.. For case A
(discussed in Sect. 5.2) 6080 points were produced during three weeks where both m2

h

and m2
R ran negative. However, none of the points showed positive squared masses in

the scalar sector, i.e. no points were found where the desired vacuum was a minimum
of the scalar potential. Similarly, for case B (discussed in Sect. 5.2) we run a SA scan
that produced 32631 points, again with none of them showing stable minima with the
desired radiative symmetry breaking. What this means is that as far as our analysis
could tell, when m2

h and m2
R became negative through RG running, the true minimum

of the scalar potential did not exhibit U(1)E.M. as a remaining symmetry, thus making
it unviable as a phenomenological model within the proposed framework.

7 Discussion and future work

7.1 Fermion sector at one-loop

In the present analysis, many Yukawa couplings (and also the Majorana mass mΦs)
in the effective LR-symmetric model are zero simply due to the tree-level matching
procedure. However, this will no longer be true once the matching and running are
performed at a higher loop level. Although the full one-loop matching and two-loop
running analysis is necessary to obtain precise numerical values that is planned for a
future work, it is interesting to understand which diagrams will lead to non-vanishing
matching conditions for some of the parameters in Eq. (II.27).

We first note that mΦs receives a non-zero contribution from the diagram in Fig. II.4,
with the trinification VEV in Eq. (II.7). From this we can estimate that mΦs will be
suppressed with respect to the trinification breaking scale v3 as

m
(1−loop)
Φs ∼

(
y3

(4π)2
· γ
v3

)
v3. (II.50)

If the trinification Yukawa coupling y and the scalar tri-linear coupling γ are sufficiently
large, it might be appropriate to integrate out Φs along with the heavy trinification-
scale quarks in Tab. II.6, so that it no longer appears in the effective LR-symmetric
model. If instead y and γ are small, the suppression factor in Eq. (II.50) can easily
be very small such that mΦs ∼ mh,mR. At present, as was shown in Sect. 6, we see
no preference for neither large nor small values of y and γ, and both possibilities thus
remain open.

Next, we turn to the Yukawa interactions that are generated by the diagrams in Fig. II.5.
These diagrams are of interest when the external leg L̃ corresponds to one of the two
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L L

〈L̃〉

〈L̃〉

Q̃L Q̃R

QR QL

Figure II.4: A diagram in the trinification theory that constitutes the one-loop contribution to the matching onto
the Majorana Φs mass, mΦs , in the effective LR-symmetric model.

remaining scalars in the effective LR-symmetric model, namely h̃ and l̃R. One can then
show that the diagram is non-vanishing when the external fermion legs are such that
the loop corresponds to Yukawa interactions of the types

(l̃∗RI)
R

(lR
I)R Φs + c.c. ,

(l̃∗RI)
R

(lR
s)R ΦI + c.c. ,

h̃∗RL (lL
s)L (lR

s)R + c.c. ,

(II.51)

i.e. the Yukawa couplings Yγ , Yδ and Yη receive a non-zero contribution at one-loop.

In particular, when 〈l̃R〉 6= 0 the upper two interaction terms in Eq. (II.51) will provide
masses to two generations of right-handed neutrinos. Note, however, that right-handed
neutrinos receive a Dirac mass that is formed together with two generations of Φ. We
can identify the last interaction term in Eq. (II.51) as containing the Yukawa term for
SM leptons of the third generation.

L L

〈L̃〉

L̃

Q̃L Q̃R

QR QL
L L

L̃

〈L̃〉

Q̃L Q̃R

QR QL

Figure II.5: These two diagrams give rise to Yukawa terms that, in turn, provide Dirac masses for two generations
of right-handed neutrinos and Φ’s, as well as for SM leptons of the third generation.
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7.2 One-loop corrections to masses of light scalars

Although we have performed tree-level matching down to an effective theory, its im-
portant to understand whether the scalars h̃LR, (l̃R

I)R can remain light as soon as the
higher-order corrections are considered. In general, this may not be the case and thus
it would no longer be justified to keep those light scalars in the low-energy theory. Even
if the corrections would keep the scalars sufficiently light, the particular values for their
masses also affect the RG flow potentially leading to different conclusions regarding the
radiative LR-symmetry breaking.

Q̃L

L̃ L̃

Q̃R

γ γ

Q̃L, Q̃R, L̃

L̃ L̃
αi, λi

Figure II.6: Class of diagrams with a non-vanishing contribution to m2
h and m2

R in the trinification theory.

It turns out that the only non-vanishing one-loop contributions (in the zero external
momenta approximation) to m2

h and m2
R come from the type of diagrams shown in

Fig. II.6. Any other topology will either (i) be forbidden by the trinification symmetry
(such as fermion loops), or (ii) vanish once the zero momentum approximation is taken
into account.

The tri-linear coupling γ plays an important role in the one-loop matching conditions.
Namely, it determines the size of the one-loop corrections to m2

h and m2
R coming from

the left panel in Fig. II.6. It thus suffices to make γ/v3 � 1 in order to keep those
corrections small3. For the second type of diagrams in Fig. II.6 (right), the corrections
become functions of λi but also αi (the tree-level masses are only functions of λi). As
long as the coloured scalars remain heavy, choosing appropriate values for αi would give
us enough freedom for h̃LR, (l̃R

I)R to remain light.

In the tree-level study of the model that has been presented here, we thus assume that
the scalars are light leaving the specifics of the physical mechanism which appropriately
tunes the values for γ and αi as well as the corresponding effect on the RG evolution
for future work. However, we expect that the qualitative conclusions reached in this
work would still be valid when accounting for the higher-order corrections due to the

3The model presented here, while inspired by SUSY, is not supersymmetric. However, as long as
SUSY is concerned, γ/v3 � 1 condition could be justified by γ corresponding to a soft-SUSY breaking
term whose natural values are around the SUSY breaking scale.
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fact that, as discussed in section 6, the regions of the effective theory parameter space
where the radiative LR-symmetry breaking takes place are quite broad.

7.3 The low-energy LR-symmetric model with additional light
Higgs-doublets

We have shown that the proposed model brings an intriguing possibility of the radiative
SU(2)R × U(1)L+R → U(1)Y breaking. To do this, we integrated out the maximal
number of fields in the high scale trinification theory in order to make the effective
LR-symmetric model as simple as possible. Although the radiative symmetry breaking
in such a toy model is realized, we show in this section that in order to accurately
generate all fermion masses in the SM, we need to consider the case where more scalars
are present in the effective theory. This is due to the fact that some mass terms are
forbidden by the global group that remains unbroken in the scenario considered in
Sect. 4. However, we note that the interplay between scalar mass parameters and their
β-functions allowing m2

R to run negative, will still be present when integrating out fewer
Higgs doublets. Although a more detailed study will be needed to find explicit regions of
parameter space with the radiative symmetry breaking, we expect that the qualitative
conclusions in Sect. 6 will not be changed.

SM quarks

Trinification effective LR-symmetric model U(1)E U(1)G

(QL
2)c2 (QL

2)c2 −1/2 −1/6
(QL

3)c1 (QL
s)c1 −1/2 −2/3

(QL
3)c2 (QL

s)c2 −1/2 −2/3

(Q†R3)c1 (Q†R
s
)1
c +1/2 +1/3

(Q†R3)c2 (Q†R
s
)2
c +1/2 +1/3

(Q†R3)c3 (D†R
s
)3
c +1/2 +5/6

Table II.13: Components in the trinification quark tri-triplets (and the corresponding fields in the effective LR-
symmetric model) that should build up the left- and right-handed components of the lightest SM u, d, s
quarks. In the current realisation of the model, the mass terms for these quarks are forbidden by the
global {U(1)E × U(1)G} group that is left unbroken by the two Higgs VEVs.

With tree-level matching (and one-loop running) the only non-zero Yukawa coupling
with SM particles is Yζ in Eq. (II.27). Arranging the h̃ and l̃R VEVs as in Eq. (II.37),
we see that, through this term, v1 gives masses to two up-type quarks which could
be identified with the top and charm quarks of the SM. On the other hand, the VEV
v2 gives a mass to one down-type quark (which can be identified with the bottom
quark) and also a contribution to the mass of the heavy down-type quark in Tab. II.10.
However, there still remain one up-type and two down-type quarks that are massless
at tree-level, which should be identified with the lightest u, d, s quarks in the SM.
The corresponding left-handed and right-handed components are shown in Tab. II.13
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along with their charges under the global group {U(1)E × U(1)G}, which is unbroken
by the Higgs VEVs in Eq. (II.37). Since none of the QL fields have the same global

U(1) charges as any of the Q†R fields in Tab. II.13, it is not possible to generate Dirac
masses for the u, d, s quarks since those mass terms would violate {U(1)E × U(1)G}.
However, there is a simple way to accommodate these masses. For regions of parameter
space with light Higgs doublets in the effective LR-symmetric model, their VEVs would
break {U(1)E×U(1)G} enabling the radiative generation of the light quark mass terms.

Colour singlet fermions

As in the quark sector, many colour neutral fermion mass terms are forbidden by the
global group that is left unbroken by the two Higgs VEVs. By looking at the global
U(1) charges of the components of the colour neutral fermions, we find that the only
electrically charged and electrically neutral fermions that can participate in a fermion
bilinear term are contained in

ψC =
(

(lR
s)1 (lL

s)1 (H2)1
2 (Hs)1

2 (Hs)2
1 (lR

2)1

)T
,

ψN =
(

(lR
s)2 (H2)1

1 (H2)2
2 Φ2 (lL

s)2 (lR
2)2 (Hs)1

1 (Hs)2
2 Φs

)T
,

(II.52)
respectively. For all other colour neutral fermions, there is no fermion field with opposite
U(1) charges such that they together could form a mass term. In particular, note that
ψC,N contain no first generation colour singlet fermions.

Generally, we can then write the mass terms for the colour neutral fermions as

1

2
ψTC MCψC +

1

2
ψTN MNψN + c.c. (II.53)

Upon demanding invariance under the global U(1) groups (and of course U(1)E.M.), we
find that the mass matrices MC,N have the following structure:

MC =




• •
•
•

• •
•
•



, MN =




• • • •
•
•
•
•

? • • •
• ? • •
• • ? •
• • • ?




,

(II.54)
where entries marked with a ‘•’ (‘?’) denote the Dirac (Majorana) contributions that
are allowed to be non-zero. These would amount to two electrically charged massive
Dirac fermions (which we would have to identify with the τ -lepton and muon in the
SM), one massive electrically neutral Dirac fermion, and four electrically neutral Weyl
fermions that receive both Dirac and Majorana mass contributions.
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The tri-triplet (Li)lr contains twelve electrically charged Weyl fermions, meaning that
we will still have eight electrically charged Weyl fermions whose mass terms are for-
bidden by the unbroken global group. Out of the remaining fifteen electrically neutral
components in (Li)lr, at least nine Weyl fermions are necessarily massless. To make
more components in (Li)lr massive (to evade obvious inconsistencies with phenomenol-
ogy), we have to include more Higgs doublets in the effective LR-symmetric model
originating from the high-scale trinification theory.

7.4 CKM mixing with additional Higgs doublets

In the previous section, we have seen that in order to explain the observed fermionic
mass spectra, more components of L̃ should be kept in the effective LR-symmetric
model. By looking at the CSS mass spectra, we see that this will be possible when

λ2,3,4 � λ1 , (II.55)

in which case the fields

(L̃I)LR , (L̃I)3
R , (L̃I)L3 , (L̃3)LR , (II.56)

would all remain in the effective LR-symmetric model (see Tab. II.3). In this case, the
CSS potential exhibits an approximate O(54) symmetry. Although this increase in the
number of scalar fields would lead to a substantial increase in complexity in the low-
energy theory, we are confident that the radiative SU(2)R×U(1)L+R → U(1)Y breaking
will still be present as mentioned above. In this section, we show in a straightforward
tree-level analysis, that the structure of the SM Cabibbo-Kobayashi-Maskawa (CKM)
mixing matrix in the Cabibbo form emerges as a consequence of SU(3)F if VEVs are
strategically placed in the tri-doublet (L̃I)LR. These VEVs would be allowed at lower
scales when keeping the extra fields in the effective theory after SSB of trinification.

Consider the following VEV setting:

〈(L̃1)LR〉 = 1√
2

(
h1 0
0 h2

)
, 〈(L̃2)LR〉 = 1√

2

(
h3 0
0 0

)
(II.57)

In terms of the full trinification tri-triplet L̃, this means that

〈L̃1〉 = 1√
2



h1 0 0
0 h2 0
0 0 0


 , 〈L̃2〉 = 1√

2



h3 0 0
0 0 0
0 w 0


 , 〈L̃3〉 = 1√

2




0 0 0
0 0 0
0 0 v3


 .

(II.58)
where we have also indicated the trinification and LR symmetry breaking VEVs v3 and
w. The VEV setting (II.58) leaves the group

SU(3)C ×U(1)E.M. × {U(1)P ×U(1)B} (II.59)

unbroken, where the global U(1)P is generated by

TP ≡
1√
3

(
T 8

R + T 8
F

)
. (II.60)
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For a consistency with the SM, we have to impose the following hierarchy between the
above VEVs

v � w � h1,2,3 ∼ 102 − 103 GeV , (II.61)

such that h1,2,3 would correspond to the SM-breaking Higgs VEVs. In the gauge sector,
at tree level one recovers one massless (photon) state

Aµ =
1

2
√

2

[
GL

8
µ +GR

8
µ −
√

3(GL
3
µ +GR

3
µ)
]
, (II.62)

W± bosons

W±µ = GL
1,2
µ , m2

W '
1

8
g2
∑

i

h2
i , (II.63)

and the Z0 boson

Z0
µ =

1

2
√

10

[
5GL

3
µ − 3GR

3
µ +
√

3(GL
8
µ +GR

8
µ)
]
, m2

Z '
2

10
g2
∑

i

h2
i , (II.64)

in a rough consistency with the SM. Besides, at w scale one finds heavy W ′± and Z ′0

bosons

W ′
±
µ = GR

1,2
µ , m2

W ′ '
1

8
g2w2 , (II.65)

Z ′
0
µ =

1√
10

[
2GR

3
µ +
√

3(GL
8
µ +GR

8
µ)
]
, m2

Z′ '
5

16
g2w2 , (II.66)

which can be recognised as the heavy vector states in Tab. II.9. The other nine gauge
bosons corresponding to broken (by v3) generators of [SU(3)]2 → [SU(2)]2 in trinifica-
tion get masses at the GUT scale µm ∼ v3 (see Tab. II.9).

In the quark sector with QiL = {uiL, diL, Di
L}, we obtain three weak-singlet down-type

quarks Di = {D, S, B} that acquire large (Dirac) tree-level masses

mB ' 1√
2
yw , mD ' mS ' 1√

2
yv , (II.67)

and hence decouple from the SM. The other three down-type states di = {d, s, b}
remain light

md = 0 , ms ' mb ' 1√
2
yh2 , (II.68)

and could thus be identified with masses of down, strange and bottom quarks of the SM,
respectively, such that there is no tree-level splitting between s and b quarks, and d-
quark is massless. Interestingly enough, all the down-type quarks di and Di practically
do not mix with each other to the leading order in small hi/v, hi/w and w/v ratios.
Note, while it is possible to introduce a non-zero tree-level splitting between s and b
quarks by imposing more VEVs in neutral components of two Higgs doublets, a non-
zero d-quark mass can only acquire a non-zero value by an unnaturally small VEV in
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a neutral component of a third Higgs doublet, but we do not consider this situation
here. All the physical up-type quarks emerge as mixures of trinification up-type quarks
ui = {u1, u2, u3} remain light

u =
u1h1 + u2h3√

h2
1 + h2

3

, c =
−u2h1 + u1h3√

h2
1 + h2

3

, t = u3 , (II.69)

mu = 0 , mc ' mt ' 1√
2
y
√
h2

1 + h2
3 , (II.70)

which could be identified with masses of up u, charm c and top t quarks of the SM,
respectively. Again, in the considering scenario, there is no tree-level splitting between
c and t, and it can not be generated at tree level by imposing any additional VEVs.
The observed substantial charm-top and strange-bottom splittings can be in principle
generated radiatively by (i) RG runnings of the corresponding Yukawa couplings which
will have different slopes as long as trinification symmetry is broken, and by (ii) higher-
loop effects which may modify the starting values for the Yukawa couplings at the
matching scale. The quark CKM mixing aquires an approximate Cabbibo form already
at tree level

V CKM '




cos θC sin θC 0
− sin θC cos θC 0

0 0 1


 , tan θC =

h1

h3
, (II.71)

which is a remarkable feature of the family symmetry, while small observed distortions
of the Cabbibo mixing could only be generated at a higher-loop level. Non-unitarity
corrections to the quark CKM mixing are also suppressed by small hi/v, hi/w and w/v
ratios. This means that phenomenological constraints on those corrections could be
important for setting lower limits on hierarchies between the trinification symmetry
breaking scales.

8 Conclusions

In this work we have introduced a GUT based on the trinification gauge group. By
introducing a global SU(3)F family symmetry, our model resolves some of the issues with
previous attempts to work with gauge trinification-based models while also considerably
reduces the number of free parameters.

We found that SSB of the trinification symmetry can be triggered by the VEV of
only one component of a scalar 27-plet and that the minimum is, in a large part of
the parameter space, the global one. We found that radiative breaking of gauge (i.e.
SU(2)R×U(1)L+R) and global symmetries, that are not present in the SM, was possible
in the effective LR-symmetric model that is left after SSB of trinification. We did
so by studying the most simple scenario (two light scalar multiplets remaining in the
effective theory) where the mass-squared parameter for a scalar field charged under such
symmetries could become negative by means of the RG evolution. By implementing a
parameter scan algorithm using simulated annealing, we were able to efficiently scan
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the parameter space of the trinification theory and found regions where the radiative
breaking happens in the chosen effective LR-symmetric model.

We also explored under which circumstances the high-scale theory might reproduce the
masses and hierarchies of the SM at lower energies. We found that the simple scenario
used to understand the radiative symmetry breaking needs to be extended in order to
get for example CKM mixing and masses for all SM fermions. By having more light
scalar multiplets present in the effective theory, their VEVs could break the remaining
global symmetries which forbid the necessary mass terms in the low-energy theory. We
also show that if such fields are present, the proposed model has good potential to
result in a realistic quark mass spectrum resembling the SM one, while keeping the
ingredients necessary to trigger the radiative breaking shown in this work. It is clear
then that future studies should include one-loop matching, two-loop RG running and the
extra scalar multiplets in the effective theory. Although we have shown the feasibility of
radiative breaking and the possibility to explain the hierarchies in mass parameters for
the proposed model, in order to offer a complete consistency with the SM such extended
study needs to be performed in future work.
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II.A RG equations for the LR-symmetric theory

In this appendix we list the one-loop β-functions for the LR symmetric theory described
in Section 4. The convention we will follow is that for a given coupling g, the β-function
is defined as

βg =
dg

dt
(II.72)

where t = log(µ) with µ the renormalisation scale.
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II.A.1 Gauge couplings

(4π)2βgR = −2

3
g3

R (II.73)

(4π)2βgL
= −g3

L (II.74)

(4π)2βgL+R
=

124

9
g3

L+R (II.75)

(4π)2βgC = −19

3
g3

C (II.76)

II.A.2 Yukawa couplings

(4π)2βYα =

(
7

2
|Yα|2 + |Yβ |2 + 3|Yγ |2 + 2|Yδ|2 −

9

4
g2

R − 3g2
L+R

)
Yα (II.77)

(4π)2βYβ =

(
|Yα|2 + 3|Yβ |2 + 3|Yγ |2 + |Yε|2 −

9

4
g2

R − 3g2
L+R

)
Yβ (II.78)

(4π)2βYγ =

(
|Yα|2 + |Yβ |2 +

11

2
|Yγ |2 + |Yζ |2 − 8g2

C −
9

4
g2

R −
5

3
g2

L+R

)
Yγ (II.79)

(4π)2βYδ =

(
2|Yα|2 +

7

2
|Yδ|2 + |Yε|2 + 6|Yζ |2 −

9

4
g2

L −
9

4
g2

R

)
Yδ (II.80)

(4π)2βYε =

(
|Yβ |2 + |Yδ|2 + 3|Yε|2 + 6|Yζ |2 −

9

4
g2

L −
9

4
g2

R − 6g2
L+R

)
Yε (II.81)

(4π)2βYζ =

(
1

2
|Yγ |2 + |Yδ|2 + |Yε|2 + 8|Yζ |2 − 8g2

C −
9

4
g2

L −
9

4
g2

R −
2

3
g2

L+R

)
Yζ

(II.82)
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II.A.3 Scalar masses

(4π)2βm2
h

=

(
20λa − 8λj + 2|Yδ|2 + 2|Yε|2 + 12|Yζ |2 −

9

2
g2

L −
9

2
g2

R

)
m2
h (II.83)

+ 4 (λg + 2λf )m2
R − 4|Yδ|2m2

Φs

(4π)2βm2
R

=

(
20λb − 8λi + 2|Yα|2 + 2|Yβ |2 + 6|Yγ |2 −

9

2
g2

R − 6g2
L+R

)
m2
R (II.84)

+ 4 (λg + 2λf )m2
h − 4|Yα|2m2

Φs

II.A.4 Singlet Fermion mass

(4π)2βmΦs
= 4(|Yα|2 + |Yδ|2)mΦs (II.85)

II.A.5 Quartic couplings

(4π)2βλa = 32λ2
a + 4λ2

f + 2λ2
g + 4λfλg + 16λ2

j − 16λaλj

+ 4
(
|Yε|2 + |Yδ|2 + 6|Yζ |2

)
λa

− 2
(
|Yε|4 + |Yδ|4 + 6|Yζ |4

)

− 9
(
g2

L + g2
R

)
λa

+
9

8
g4

L +
3

4
g2

Lg
2
R +

9

8
g4

R
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(4π)2βλb = 32λ2
b + 4λ2

f + 2λ2
g + 4λfλg + 16λ2

i − 16λbλi

+ 4
(
|Yα|2 + |Yβ |2 + 3|Yγ |2

)
λb

− 2
(
|Yα|4 + |Yβ |4 + 3|Yγ |4

)

− 3
(
3g2

R + 4g2
L+R

)
λb

+
9

8
g4

R + 3g2
Rg

2
L+R + 6g4

L+R

(II.87)

(4π)2βλf = 4λ2
f + 2λ2

g + 4 (5λf + 2λg) (λa + λb)− 8 (λf + λg) (λi + λj)

+ 2
(
|Yα|2 + |Yβ |2 + 3|Yγ |2 + |Yδ|2 + |Yε|2 + 6|Yζ |2

)
λf

− 4
(
|Yα|2|Yδ|2 + |Yβ |2|Yε|2 + 3|Yγ |2|Yζ |2

)

− 3

(
3

2
g2

L + 3g2
R + 2g2

L+R

)
λf +

9

4
g4

R

(II.88)
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(4π)2βλg = λg(2|Yα|2 + 2|Yβ |2 + 6|Yγ |2 + 2|Yδ|2 + 2|Yε|2 + 12|Yζ |2)

− 9

2
λgg

2
L +

1

2
|Yα|2|Yδ|2 +

5

2
|Yβ |2|Yε|2 +

15

2
|Yγ |2|Yζ |2

+ 8λgλi + 8λgλj + 8λfλg + 4λbλg + 4λaλg

− 9λgg
2
R − 6λgg

2
L+R + 4λ2

g

(II.89)

(4π)2βλi =− 16λ2
i + λ2

g + 24λbλi

+ 4
(
|Yα|2 + 3|Yβ |2 + 3|Yγ |2

)
λi

− 1

8

(
|Yα|4 + 5|Yβ |4 + 3|Yγ |4

)

− 3
(
3g2

R + 4g2
L+R

)
λi + 3g2

L+Rg
2
R

(II.90)

(4π)2βλj =− 16λ2
j + λ2

g + 24λaλj

+ 4
(
|Yδ|2 + |Yε|2 + 6|Yζ |2

)
λj

− 5

8

(
|Yδ|4 + |Yε|4 + 6|Yζ |4

)

− 9
(
g2

R + g2
L

)
λj −

3

2
g2

Lg
2
R

(II.91)

136



References

[1] ATLAS Collaboration, G. Aad et al., “Observation of a new particle in the
search for the Standard Model Higgs boson with the ATLAS detector at the
LHC,” Phys. Lett. B716 (2012) 1–29, arXiv:1207.7214 [hep-ex].

[2] CMS Collaboration, S. Chatrchyan et al., “Observation of a new boson at a
mass of 125 GeV with the CMS experiment at the LHC,” Phys. Lett. B716
(2012) 30–61, arXiv:1207.7235 [hep-ex].
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Abstract: We present a supersymmetric (SUSY) model based on trinification [SU(3)]3

and family SU(3)F symmetries embedded into a maximal subgroup of E8, where the
sectors of light Higgs bosons and leptons are unified into a single chiral supermultiplet.
The common origin of gauge trinification and of the family symmetry from E8 sepa-
rates the model from other trinification-based GUTs, as it protects, in particular, the
Standard Model fermions from gaining mass until the electroweak symmetry is broken.
Furthermore, it allows us to break the trinification symmetry via vacuum expectation
values in SU(3)-adjoint scalars down to a left-right symmetric theory. Simultaneously,
it ensures the unification of the gauge and Yukawa couplings as well as proton stability.
Although the low-energy regime (e.g. mass hierarchies in the scalar sector determined
by a soft SUSY-breaking mechanism) is yet to be established, these features are one
key to revive the once very popular trinification-based GUTs.

1 Introduction

Finding a compelling theory for the unification of the fundamental interactions that is
capable of reproducing known features of the Standard Model (SM) has been a major



goal of the theoretical physics community. Popular SM extensions are supersymmetric
(SUSY) grand unified theories (GUTs) based on simple Lie groups such as e.g. SU(5)
[1], SO(10) [2], E6 [3], and E7 [4]. However, many of the existing GUTs typically suffer
from various issues with, e.g., proton stability, fine-tuning, and hierarchies in parameters
such as fermion masses and mixings lacking a fundamental explanation, as well as with
inconceivably complicated parameter spaces severely reducing their predictive power.

GUTs inspired by E6 are becoming increasingly popular due to their rich phenomenology
and their many attractive properties (see, e.g., Refs. [5, 6, 7, 8]). One such GUT scenario
based upon a maximal rank-6 subgroup [SU(3)]3 ⊂ E6 and known as gauge trinification
(T-GUT) was initially proposed by Glashow et al in 1984 [9]. The trinification symmetry
is typically identified as a left-right-color product group, i.e., [SU(3)]3 ≡ SU(3)L ×
SU(3)R × SU(3)C, and is supplemented by a cyclic permutation symmetry Z3 forcing
the gauge couplings to unify, i.e. gU ≡ gL = gR = gC. One of the appealing features of
T-GUT models is that all the matter fields, which belong to bitriplet representations
(reps) of the trinification symmetry,

(
Li
)l
r

=



H11 H12 eL

H21 H22 νL

ecR νcR φ



i

,
(QL

i)xl =
(
uxL dxL Dx

L

)i
,

(QR
i)rx =

(
ucRx dcRx Dc

Rx

)> i
,

(III.1)

can be embedded into three 27-plets of E6 as 27i → (3, 3̄,1)i ⊕ (3̄,1,3)i ⊕ (1,3, 3̄)i.
Here, the left, right, and color SU(3) indices are l, r, and x, respectively, while the
generations are labelled by an index i (for an alternative realization containing the
trinified gauge symmetry [SU(3)]3, see Refs. [10, 11]). Some T-GUT versions claim
to preserve baryon number naturally [12, 13] but can also be engineered to account
for the baryon-antibaryon asymmetry in the Universe through heavy Higgs decays at
one loop [14]. They can, in principle, accommodate any quark and lepton masses and
mixing angles [12] while neutrino masses can be generated by, e.g., a radiative [13] or
an inverse [15] see-saw mechanism. However, despite some progress in recent years, the
T-GUT scenarios remain among the least explored extensions of the SM. One of the
major theoretical challenges in building the SUSY-based T-GUTs is finding a stable
vacuum with spontaneously broken gauge trinification while keeping a low number of
free parameters at the GUT scale.

In order to avoid GUT-scale lepton masses, previous realizations of T-GUTs introduced
either additional unmotivated Higgs multiplets [12, 16, 17, 18, 19, 20, 13, 15, 21, 22,
23, 24], whose vacuum expectation values (VEVs) provide a consistent spontaneous
symmetry breaking (SSB) of trinification down to the SM gauge symmetry, or higher-
dimensional operators [25, 17, 18, 20, 15]. Such constructions may, however, result
in severe phenomenological contradictions with proton stability [12, 18, 13] and too
many unobserved low-scale signatures [9, 25, 17, 22, 23, 26]. As a consequence, a large
number of free Yukawa parameters in the superpotential has to be highly fine-tuned
in order to reproduce the SM mass hierarchies [13]. A proper renormalization group
(RG) analysis of a high-scale SUSY model containing a few hundreds of particles and
couplings and accounting for several SSB scales down to the effective low-energy SM-like
theory remains barely feasible in practice. Thus, deriving even basic features of the SM
(such as fermion mass/mixing hierarchies and Higgs sector properties) as a low-energy
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effective field theory (EFT) limit of a T-GUT remains a big unsolved problem (for more
details, see, e.g., Ref. [27] and references therein).

In this paper, we propose a new way to resolve the problem of GUT-scale masses of
the SM leptons inspired by an embedding of the trinification [SU(3)]3 ⊂ E6 and family
SU(3)F symmetries into the maximal exceptional symmetry group E8. A common
origin of family symmetry and SM gauge symmetries from [SU(3)]3 × SU(3)F ⊂ E8

implies that, in particular, the light Higgs and lepton sectors originate from the same
(tritriplet) rep of [SU(3)]3 × SU(3)F. Having such light Higgs-lepton unification in the
E6-extended theory (inspired by E8) leads to a complete unification of quark and lepton
Yukawa couplings for all three generations (as well as the quartic interactions of the
scalar potential) at the trinification-breaking scale. This is at variance with popular
SO(10) and Pati-Salam models where the unification of Yukawa couplings is restricted to
the third family [28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40]. Such a distinct feature
of the high-scale model dramatically reduces its parameter space making its complete
analysis computationally simple, at least, at tree level. We have found that the proposed
E6-extended T-GUT model gives rise to an effective left-right (LR) symmetric theory
with specific properties. The remnant SU(3)F family symmetry reduces the number
of allowed terms in the LR-symmetric EFT, simplifying its matching procedure with
the high-scale theory and making its RG flow analysis technically feasible. A consistent
match of the LR-symmetric EFT with the SM at low scale would then strongly constrain
the hierarchies in the soft SUSY-breaking sector offering new possibilities for studies of
the SUSY breaking in E6-based theories.

2 E8-inspired family symmetry

In earlier work by some of the authors [41], it was understood that the SM gauge group
can arise dynamically from a non-SUSY T-GUT in a scenario where fermions and scalars
belong to the same E6 reps [augmented by a global SU(3)F], thus hinting at a possible
presence of SUSY at (or beyond) the GUT scale. In particular, the color-neutral scalars
L̃ (containing the Higgs scalars) and fermions L (containing the SM leptons and right-
handed neutrinos) could then be naturally considered as components of L. Here and
below, the notations f̃ and f for scalar and fermion components of the superfield f are
used.

Inspired by this observation, the implications of a Higgs-lepton unification in a SUSY
T-GUT were explored, with local gauge trinification [SU(3)]3 and global family SU(3)F

motivated by a minimal E6 embedding into E8 as E6 × SU(3)F ⊂ E8 [42, 43]. Indeed,
such an E6-extended trinification model inspired by its E8 embedding can be considered
as an approximation to the full gauge [SU(3)]3×SU(3)F ⊂ E8 theory in those regions of
parameter space where gauge SU(3)F interactions are suppressed, gF � gU. A special
interest in E8-based models originates from string theories where massless sectors are
described by the E8 × E′8 symmetry [44, 43].

At variance with the non-SUSY model [41], incorporating the SU(3)F family symmetry
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in a SUSY T-GUT model with only tritriplets of [SU(3)]3 × SU(3)F (specified in the
first three rows of Table III.1) leads to a scalar potential containing flat directions with
color-breaking VEVs. Even with the inclusion of soft breaking terms, such a model at
tree level is necessarily inconsistent with the SM at low scales. Alternatively, the desired
trinification SSB becomes possible in a SUSY T-GUT when relaxing SU(3)F. However,
this reintroduces GUT-scale masses for those SM leptons that are SUSY partners of
the Goldstone bosons from L̃, due to terms such as −

√
2gU

(
L̃∗i
)r
l1

(
T aL
)l1
l2

(
Li
)l2
r
λaL. These

terms lead to gaugino-lepton mass terms of the order of the T-GUT-breaking VEV L̃i.
Although components in the trinification gaugino fields λaL,R could in principle build up
one generation of the SM leptons, we find such a construction unappealing both due
to the reduction of the family symmetry and the abandonment of the full Higgs-lepton
unification. Besides, the gaugino mass scale in this case would then be unnaturally
small for a consistency with the SM lepton sector.

This gaugino-lepton mixing indeed posed a big problem for early attempts to consis-
tently unify the Higgs and lepton sectors. However, rather than including additional
copies of L, we have found that the leptons are protected from obtaining GUT-scale
masses via the inclusion of SU(3) adjoint superfields which, together with tritriplets L,
QL, and QR, are irreducible representations (irreps) of the E8 symmetry group. This
novel scenario is in the focus of our further discussion.

3 Minimal E6-extended T-GUT model

The proposed [Z2×Z3]-symmetric E6-extended model, where the problem of SUSY T-
GUT breaking is consistently resolved, preserves all the well-known attractive features
of T-GUTs. The chiral superfield content of this model transforms as (8,1), (3,27), and
(1,78) of SU(3)F × E6, where SU(3)F is a global family symmetry. This set contains,
in addition to the lepton and quark superfields L, QL and QR, chiral supermultiplets
in the adjoint rep of SU(3)A (A=L,R,C,F) shown in Table III.1. The superpotential of
this model reads

W =
∑

A=L,R,C

[
λ78 dabc∆

a
A∆b

A∆c
A + µ78∆a

A∆a
A

]

+ λ1dabc∆
a
F∆b

F∆c
F + µ1∆a

F∆a
F + λ27 εijkQ

i
LQ

j
RL

k ,

(III.2)

where λ27 is the unified quark-lepton Yukawa coupling, the subscript under the cou-
plings denotes the E6 irreps, dabc ≡ 2 Tr [{Ta, Tb}Tc] are the totally symmetric SU(3)

coefficients, Qi
LQ

j
RL

k ≡ (QL
i)xl (QR

j)rx
(
Lk
)l
r
, and summation over repeated indices is al-

ways implied. Furthermore, L unifies the light Higgs scalar and lepton sectors while QL

and QR contain the SM quarks. In what follows, we refer to this model as the SUSY
Higgs-unified trinification (or, shortly, SHUT) model.
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Superfield SU(3)C SU(3)L SU(3)R SU(3)F

Lepton
(
Li

)l
r

1 3l 3̄r 3i

Right-Quark (QR
i)rx 3̄x 1 3r 3i

Left-Quark (QL
i)xl 3x 3̄l 1 3i

Colour-adjoint ∆a
C 8a 1 1 1

Left-adjoint ∆a
L 1 8a 1 1

Right-adjoint ∆a
R 1 1 8a 1

Family-adjoint ∆a
F 1 1 1 8a

Table III.1: The minimal chiral superfield content of the SUSY [SU(3)]3 × SU(3)F ⊂ E8 model [with global family
SU(3)F].

The soft SUSY-breaking potential contains

V G
soft =

{
m2

27L̃L̃
† +m2

78∆̃∗aL ∆̃a
L +

[
b78∆̃a

L∆̃a
L

+ dabc
(
A78∆̃a

L∆̃b
L∆̃c

L + C78∆̃∗aL ∆̃b
L∆̃c

L

)

+ AG∆̃a
LT

a
L

(
L̃†L̃+ Q̃†LQ̃L

)
+ c.c.

]}
o Z3

+
[
A27εijkQ̃

i
LQ̃

j
RL̃

k + c.c.
]

(III.3)

accounting for gauge adjoint scalars ∆̃a
L,R,C, and

V Gl
soft = m2

1∆̃∗aF ∆̃a
F +

{
b1∆̃a

F∆̃a
F +A1dabc∆̃

a
F∆̃b

F∆̃c
F+

+ AF ∆̃a
F

(
L̃†T aF L̃

)
o Z3 + c.c.

} (III.4)

for interactions involving family octets ∆̃a
F, where T aA are the SU(3)A generators such

that L̃†T aL L̃ ≡
(
L̃∗k
)r
l

(
T aL
)l
l′

(
L̃k
)l′
r

etc, and summation over Z3 permutations is implied by
the symbol oZ3. For completeness, we also include soft SUSY-breaking interactions in
the fermion sector,

Lferm
soft =

{
− 1

2
M0λ̃

a
Lλ̃

a
L −M ′0λ̃aL∆a

L + h.c.
}
o Z3 . (III.5)

Here, besides the gaugino Majorana mass M0, the symmetry allows a Dirac mass term
parameterized by M ′0.

Notably, by setting all the soft SUSY-breaking parameters to zero the model still allows
for the trinification SSB with a T-GUT-breaking but SUSY-preserving stable vacuum
giving rise to an effective SUSY LR-symmetric model below the GUT scale. At the
moment, however, it is unclear if one could generate a consistent soft SUSY-breaking
and gauge symmetry SSB in such an effective model providing a large splitting between
the GUT and SM energy scales as required by phenomenology. We leave this open
question to further studies taking into account the generic soft SUSY-breaking sector
in the considered T-GUT as specified above.

In SUSY models with Dirac gauginos (such as minimal supersymmetric SM) the addi-
tional adjoint superfields spoil the gauge couplings’ unification. This problem is resolved
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in the so-called minimal Dirac-gaugino supersymmetric standard model [45, 46] inspired
by SU(3)3 T-GUTs. In the SHUT model this problem is also resolved but, in a more
elegant way, offering a framework that accommodates both the Dirac gauginos and
the unified gauge coupling gU. Furthermore, the proton is stabilized to all orders in
perturbation theory due to an accidental U(1)B. This global baryon symmetry is then
preserved all the way down to the SM scale since none of the (Q̃L, Q̃R) squarks carrying
the baryon number (B = +1/3, −1/3) acquire a VEV [41] (see also Ref. [13]).

4 SUSY T-GUT symmetry breaking

The presence of family SU(3)F symmetry together with adjoint superfields ∆a
A allows

for a consistent trinification SSB which is rather clean compared to older SUSY T-GUT
realizations. It also provides, in particular, SM-like fermion candidates whose masses
are protected from GUT-scale contributions. Choosing a VEV along the ∆̃8

A direction
yields the rank-preserving trinification SSB

SU(3)A → SU(2)A ×U(1)A , A = L,R,F . (III.6)

Such a VEV choice is

〈∆̃8
L〉 ≡ vL , 〈∆̃8

R〉 ≡ vR , 〈∆̃8
F〉 ≡ vF (III.7)

(where vL = vR ≡ v is required by vacuum stability) which provides the SSB scheme

[SU(3)C × SU(3)L × SU(3)R] o Z3 × SU(3)F

v, vF→ SU(3)C ×
[
SU(2)L × SU(2)R (III.8)

× U(1)L ×U(1)R

]
o Z2 × SU(2)F ×U(1)F ,

in addition to implicit accidental symmetries such as U(1)B. Here, the square brackets
denote parts gathered under the permutation symmetries.

After the T-GUT symmetry breaking (III.8) the fermionic tritriplets L, QL, and QR

are split into blocks revealing, e.g., massless SU(2)L [SU(2)R] doublets of leptons EL ≡
(eL, νL) [ER ≡ (ecR, ν

c
R)] and quarks qL ≡ (uL, dL) [qR ≡ (ucR, d

c
R)], whose first and

second generations form SU(2)F doublets. Notably, the matching of Yukawa couplings
in subsequent EFT scenarios is greatly simplified due to the unified Yukawa interactions
in the considered T-GUT.

5 Left-right-symmetric effective theory

We have found that the high-scale SHUT model gives rise to a non-SUSY LR SU(2)L×
SU(2)R-symmetric EFT [Eq. III.8] as long as the quadratic and trilinear soft SUSY-
breaking terms are small compared to the GUT scale. Here, we briefly discuss an
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important class of its characteristic low-energy scenarios where (i) all the gauge-adjoint
∆̃L,R,C and the flavour-adjoint ∆̃1,2,3,8

F scalars are heavy, thus are integrated out at the

T-GUT-breaking (or, simply, GUT) scale, and (ii) the fundamental scalars L̃ are lighter
than the GUT scale and are kept in the LR-symmetric EFT. This is indeed the most
natural choice as the masses of the latter are solely governed by soft SUSY-breaking
interactions while those of the former also contain large F- and D-term contributions
of the order of the GUT scale. In particular, assuming for simplicity the superpotential
and soft SUSY-breaking parameters to be real, it follows from Eqs. (III.3) and (III.4)
that the masses of the scalar components of the tritriplets L, QL, and QR are of the
form

m2
ϕ̃i = m2

27 + ci1AGv + ci2AFvF , (III.9)

where the index i runs over all fundamental scalars and ci1,2 are irrational constants.
We can now relate all dimensionful parameters to the T-GUT-breaking VEV as m2

27 ≡
α27v

2, AG ≡ σGv, AF ≡ σFv, and vF ≡ βv. Here, α27, σG, σF � 1 are small, as they
parametrize unknown details of soft SUSY breaking, while β ∼ O (1) such that both
gauge and family SSBs occur simultaneously. This allows us to recast the scalar masses
as

m2
ϕ̃i = v2

(
α27 + ci1σG + ci2βσF

)
≡ v2ωϕ̃i , ωϕ̃i � 1 . (III.10)

Interestingly, the light scalar spectrum of the effective LR-symmetric model is fully de-
termined by three independent small parameters characterizing the soft SUSY-breaking
sector and thus is protected from gaining the GUT-scale radiative corrections. Choos-
ing, for example, ωH̃(3) ≡ ξ, ωẼ(1,2)

L,R

≡ δ, and ωH̃(1,2) ≡ κ, one obtains

m2
H̃(3) = v2ξ ,

m2

Ẽ
(3)
L,R

= v2 (δ + ξ − κ) ,

m2
φ̃(3) = v2 (2δ + ξ − 2κ) ,

m2

q̃
(3)
L,R

= 1
3v

2 (δ + 3ξ − κ) ,

m2

D̃
(3)
L,R

= 1
3v

2 (4δ + 3ξ − 4κ) ,

m2
H̃(1,2) = v2κ ,

m2

Ẽ
(1,2)
L,R

= v2δ ,

m2
φ̃(1,2) = v2 (2δ − κ) ,

m2

q̃
(1,2)
L,R

= 1
3v

2 (δ + 2κ) ,

m2

D̃
(1,2)
L,R

= 1
3v

2 (4δ − κ) .

(III.11)

where ξ, δ and κ determine all possible mass hierarchies in the scalar spectrum in the LR-
symmetric EFT at the GUT scale. Together with quartic, Yukawa, and gauge couplings,
they control the initial conditions and shape of the RG flow and therefore define a
particular SSB scheme affecting the features of the low-energy EFT limit. For example,
setting κ� ξ � δ one finds that m2

H̃(1,2) � m2
H̃(3) � m2

others � v2. One of the possible
symmetry-breaking schemes down to the SM gauge group consists of two subsequent

steps that can be induced by the VEVs 〈φ̃(3)〉 ≡ 〈
(
L̃3
)3

3
〉 and 〈ν̃(2)

R 〉 ≡ 〈
(
L̃2
)3

1
〉 at

well-separated scales. This is represented by the following SSB chain:

SU(3)C × [SU(2)L × SU(2)R ×U(1)L ×U(1)R] o Z2

〈φ̃(3)〉→ SU(3)C × [SU(2)L × SU(2)R] o Z2 ×U(1)L+R

〈ν̃(2)
R 〉→ SU(3)C × SU(2)L ×U(1)Y ,

(III.12)
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where only the gauge symmetry and Z2 are shown.

Consider the SSB chain (III.12) in more detail. Due to the presence of both Majo-
rana and Dirac mass terms in the fermion-adjoint sector, with a large splitting one
recovers light neutralino- and gluinolike states in the LR-symmetric EFT with masses
mSL,R ' mTL,R ' mg̃ ' 2M0 in terms of the soft SUSY-breaking parameter
M0 � v ∼ µ78. Here, the SU(2)L,R triplet TL,R and singlet SL,R states emerge
from a decomposition of the SU(3)L,R octets as 8 → 30 ⊕ 21 ⊕ 2−1 ⊕ 10, and g̃ is

the lightest gluino. On the other hand, as long as M0 ∼ 〈φ̃(3)〉 � v, these gaug-
inolike states will be integrated out at the O

(
〈φ̃(3)〉

)
scale. Thus, in the resulting

SU(2)L × SU(2)R × U(1)L+R EFT, the gaugino-lepton mass terms do not appear and
the SM fermions are guaranteed to remain massless until the electroweak scale. Conve-
niently, the charges of the weak-singlet (non-SM) down-type quarks allow them to gain

masses at the LR-breaking scales 〈φ̃(3)〉, 〈ν̃(2)
R 〉 via the high-scale Yukawa terms of the

form QLQRL̃.

6 Significance, expectations and future work

The proposed E6-extended SHUT model represents a promising way of unifying the light
Higgs scalar and SM lepton sectors into the same supermultiplet L, where [due to the
trinification SSB via adjoint scalar VEVs and the family SU(3)F] the SM fermions are
protected from gaining masses in the high-scale model, in consistency with the SM. The
inclusion of SU(3)F also results in the high-scale unification of the tree-level quark-lepton
Yukawa couplings in the current framework [see λ27 in Eq. (III.2)]. Due to the emergent
Yukawa and Higgs-lepton unification properties, the SHUT model has a relatively low
number of free parameters at the GUT scale without introducing additional Higgs
multiplets besides those in E8 and also without assuming any universality in the soft
SUSY-breaking sector. While potentially sharing some of the key features of the non-
SUSY T-GUT scenario discussed in Ref. [41], the SHUT model brings a straightforward
explanation to some of its seemingly arbitrary characteristics such as the presence of
scalars and fermions with the same quantum numbers.

In particular, in Ref. [41] it was demonstrated that in the non-SUSY T-GUT the LR
symmetry breaking down to the SM gauge group can be initiated radiatively through
the RG evolution. The circumstances under which the model leads to a realistic mass
spectrum at lower energies were also explored, as well as aspects of its one-loop sta-
bility. Indeed, due to the running of a mass squared of a scalar SU(2)R/F bidoublet
(ẽi=1,2, ν̃i=1,2) to a negative value at lower scales, the SSB can be triggered in the
LR-symmetric EFT with a residual global SU(2)F down to the SM gauge symmetry
[cf. the last SSB step in Eq. (III.12)]. Similar low-energy features could be present in
the considered SHUT model as a plausible possibility, though they are not immediately
guaranteed since its mass spectra differ from that of Ref. [41]. A better understanding
of the radiative symmetry breaking in the resulting LR-symmetric EFT which deter-
mines the structure of the SM-like theory at low energies should be the subject of future
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studies.

In the SM-like EFT, resulting from the chain (III.12), the three lightest SM Higgs
SU(2)L doublets originating from the scalar SU(2)L×SU(2)R×SU(2)F tridoublet in the
LR-symmetric EFT are expected to develop VEVs breaking the electroweak symmetry.
As long as this property holds true, it provides a correct mass scale for the SM quarks in
the second and third generations as well as gives rise to the Cabbibo mixing pattern at
tree level. While there are no tree-level Higgsino, SM lepton, and first-generation quark
masses in the high-scale theory, those can, in principle, be regenerated radiatively as
soon as the LR and electroweak symmetries are broken. The EFT fermion mass spectra
should thus be explored at least to one-loop order in following studies.

7 Conclusions

By unifying light Higgs bosons and SM leptons in the same supermultiplet of trinifi-
cation, by breaking the trinification symmetry with adjoint scalar VEVs, and by in-
troducing a global family symmetry, the SHUT model protects the SM fermions from
gaining masses until the electroweak symmetry is broken while still ensuring the pro-
ton stability. The apparent simplicity of the SHUT model, originating from its gauge,
Yukawa, and Higgs-lepton unification at the trinification breaking scale, makes it a very
interesting candidate for further theoretical and phenomenological studies. Depending
on the chosen symmetry-breaking scheme as well as on values of the high-scale cou-
plings and the hierarchy between them, the path down to an effective SM-like theory
could lead to vast and yet unexplored low-energy phenomena. While those are yet to be
understood in full detail, the SHUT model presented here shows potential for reviving
the trinification GUT model building.

The first immediate task in further developments of the proposed high-scale SHUT
model is to derive the basic properties of its SM-like EFT limit (at least, to one loop) and
then to search for possible deviations from the characteristic SM signatures. This would
allow us to set constraints on the SHUT parameter space and, possibly, to predict new
smoking gun signals of new physics specific to the corresponding LR-symmetric EFT.
The latter would then offer a plethora of opportunities for phenomenological studies of
potentially observable beyond-SM phenomena in connection with the ongoing LHC and
astroparticle physics searches.
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Abstract: We describe a class of three Higgs doublet models (3HDMs) with a softly
broken U(1) ×U(1) family symmetry that enforces a Cabibbo-like quark mixing while
forbidding tree-level flavour changing neutral currents. The hierarchy in the observed
quark masses is partly explained by a softer hierarchy in the vacuum expectation values
of the three Higgs doublets. As a consequence, the physical scalar spectrum contains a
Standard Model (SM) like Higgs boson h125 while exotic scalars couple the strongest to
the second quark family, leading to rather unconventional discovery channels that could
be probed at the Large Hadron Collider. In particular, we describe a search strategy
for the lightest charged Higgs boson H±, through the process cs̄ → H+ → W+ h125,
using a multivariate analysis that leads to an excellent discriminatory power against
the SM background. Although the analysis is applied to the proposed class of 3HDMs,
we employ a model-independent formulation such that it can be applied to any other
model with the same discovery channel.



1 Introduction

The Standard Model (SM) remarkably stands as one of the most successful theories in
physics. However, it can still be considered rather ad hoc in its nature, with unexplained
features that arise from fitting the experimental data. In addition, it fails to offer
an explanation to several observed natural phenomena such as dark matter, neutrino
masses or baryon asymmetry in the universe. It is then natural to study extensions of
the SM that, while retaining its predictive power, offer explanations or shed light into
the origin of e.g. the hierarchy of fermion masses or rather specific flavour structure of
the SM. There is a plethora of such beyond the SM (BSM) theories, but not many of
those offer unconventional features testable at the current experiments.

One of the simplest and most studied extensions is the class of the so-called Two-Higgs
Doublet Models (2HDMs) that add a second SU(2)L doublet to the SM (an exten-
sive review can be found in Ref. [1]). The 2HDMs offer interesting phenomenological
signatures and can lead to e.g. extra sources of CP violation, dark matter candidates
and stable vacua at high energies. However, they typically introduce many new free
parameters, fail to address the origin of the mass hierarchy in the fermion sector of the
SM and require extra discrete symmetries to avoid tree-level Flavour Changing Neutral
Currents (FCNCs).

The Three Higgs Doublet Models (3HDMs) can overcome some of those limitations (see
e.g. Refs. [2, 3, 4]) and have sparked interest in recent literature (see e.g. Refs. [5, 6, 7,
8, 9, 10, 11]). While retaining most of the features of 2HDMs, 3HDMs can offer expla-
nations to yet unexplained features of the SM with predictions testable in the current
collider measurements. In particular, the increased field content makes it possible to
impose higher symmetries, which in turn can lead to interesting flavour structures.

As shown in Refs. [12, 13], the most constraining realisable abelian symmetry of the
scalar potential in 3HDM is U(1) × U(1). In this work, we promote the U(1) × U(1)
symmetry of the scalar sector to the fermion sector, hereinafter called U(1)X × U(1)Z,
in such a way that (1) no tree-level FCNCs are present, (2) a Cabibbo-like mixing is
enforced, and (3) the fermion mass hierarchies are related to a hierarchy in the three
vacuum expectation values (VEVs) of the doublets. This leads to a model that, although
remarkably simple due to its high symmetry, is still capable of both reproducing the
current experimental data and providing the exotic collider signatures. The latter is
due to the fact that, as a consequence of the model symmetries, the new scalar states
(both charged and neutral) couple dominantly to the second quark family.

At the LHC, the searches for charged Higgs bosons are generally categorized into two
mass regions depending on whether its mass mH± is smaller or bigger than the top
quark mass mt. The motivation of this categorization comes from the properties of
H± within the various 2HDM types or supersymmetric models. Usually, for a heavy
charged Higgs state (mH± & mt), the dominant production and decay channels in the
LHC context are pp → H−tb̄ (H+t̄b) and H+ → tb̄ (H− → t̄b), respectively [14, 15].
Apart from this channel, production of H± in vector boson (W±Z) fusion followed
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by the H± → W±Z decay is prominent in Higgs triplet models such as the Georgi-
Machacek model [16]. This channel has also been searched for by the ATLAS [17] and
CMS [18] collaborations recently. Conversely, a light charged Higgs boson (mH± . mt)
that decays to τ ν̄ [19, 15], cs̄ [20, 21] or cb̄ [22] has also been searched for at the LHC.
Previously, at LEP, pair production of H± was considered where H± subsequently
decays to a W±A pair [23, 24] (where A is a scalar with mass mA > 12 GeV and
predominantly decays to bb̄ pairs).

Searches for heavy H± become increasingly important with the rise of the LHC center-
of-mass energy and luminosity, thus it is important to explore new production and decay
modes of H± that are predicted by various BSM theories. In this paper, we particularly
focus on a new search channel where a heavy H± resonantly decays to a W±h125 pair
after being produced in cs̄ (c̄s) fusion. This rather uncommon search channel leads to
testable predictions of our model at current LHC energies. In Refs. [25, 26, 27], the
H± →W±h125 decay is considered where the H− (H+) is produced in association with
a tb̄ (t̄b) pair. In our case, H+ is produced in the s-channel resonance through cs̄ fusion.
In Ref. [28], the possibility of sizable cs̄ → H+ production cross section is discussed
in the SUSY context where a squark mixing can circumvent the chiral suppression of
the single H± production. In Ref. [29], cs̄→ H+ production is shown to be dominant
for a 2HDM with a Yukawa sector chosen such that one doublet couples strongest to
the second generation. In our model, we will see that the cs̄H+ and c̄sH− couplings
are sizable due to the hierarchy in VEVs combined with the particular structure of the
Yukawa sector.

In section 2, we introduce the model, its fermion and scalar sectors and their interplay
as given by the U(1)X × U(1)Z symmetry, the VEV hierarchy and the spectrum of
the theory. In section 3, we discuss the charged Higgs boson production and decay
channels of the model and introduce a model-independent way to study H± production
in the same unconventional channels. In section 4, we show the results of a multivariate
analysis for the charged Higgs boson searches and show, by using the results of a genetic
algorithm scan, that our proposed theory can produce the type of signals visible with
such an analysis at the LHC. Finally, we summarize and conclude our results in section 6.

2 The model

In this work, we propose a 3HDM, with features that lead to a simple yet predictive the-
ory. The model has a U(1)X×U(1)Z global symmetry constraining its scalar potential.
This symmetry is the biggest abelian symmetry not leading to additional accidental
symmetries in a 3HDM [5, 12, 13]. As a consequence, in the limit of one VEV being
much larger than the other two, we can derive simple analytical formulas for masses and
mixing matrices in the scalar sector and readily understand the features of the model
and its physical consequences.

The U(1)X × U(1)Z is also present in the fermion sector of the theory. We choose
the charge assignments to constrain the Yukawa sector in a manner consistent with the
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experimental hierarchies in the quark mass spectrum while forbidding tree-level FCNCs
arising from the scalar sector. The upside of this is that the mass hierarchy is directly
connected to a VEV hierarchy, which needs not to be as strong as the hierarchy in the
SM Yukawa parameters to explain the known quark masses.

A nice consequence is the opening of new search strategies for testing this model at
the LHC. Due to the structure of the Yukawa sector, two physical charged Higgs
bosons would be produced mainly through cs̄ fusion, which can lead to good signal-to-
background ratios as will be shown in section 4.

2.1 VEV hierarchy and the softly broken U(1)X×U(1)Z symmetry

Besides the field content of the SM, the model has two additional scalar SU(2)L doublets
for a total of three. We will denote them by H1,2,3, with charges shown in Table IV.1,
and expand around the vacuum as

Hi =

(
H+
i

1√
2

(vi + hi + iAi)

)
, i = 1, 2, 3 . (IV.1)

We will often focus on the case where v3 � v1,2. This particular limit calls for the
definition of a small parameter ξ,

ξ ≡
√
v2

1 + v2
2

v3
. (IV.2)

After spontaneous symmetry breaking, in the limit ξ → 0, there remains a U(1)X ×
U(1)YZ symmetry where U(1)YZ is generated by a combination of the U(1)Y and U(1)Z

generators. That means that all processes violating U(1)X ×U(1)YZ (and in particular
U(1)X) would be suppressed by some power of ξ. As we will see, in the limit that ξ � 1
it is possible to derive simple expressions for the masses and mixing matrices in the
scalar sector. It is worth mentioning at this stage that, while such expressions serve as
tools to understand the model’s features, all scalar masses and mixing matrices will be
computed fully numerically (i.e. not as expansions in ξ) when scanning the parameter
space of the model.

A spontaneously broken U(1)X ×U(1)Z global symmetry would lead to massless Gold-
stone bosons and constrain the model significantly when considering e.g. the precise
measurements of the Z-boson width. This motivates us to softly break the symmetry
by adding additional mass terms in the scalar potential. The scalar potential consis-
tent with a softly broken U(1)X ×U(1)Z global symmetry group can be split into fully
symmetric and soft-breaking parts as V = V0 + Vsoft, where

V0 = −
3∑

i=1

µ2
i |Hi|2+

3∑

i,j=1

(
λij
2
|Hi|2|Hj |2 +

λ′ij
2
|H†iHj |2

)
, Vsoft =

3∑

i=1

1

2
(m2

ijH
†
iHj+c.c)

(IV.3)

160



with

λij = λji , λ′ij = λ′ji , m2
ij = m2

ji , (IV.4)

λ′11 = λ′22 = λ′33 = 0 , m2
11 = m2

22 = m2
33 = 0 . (IV.5)

All parameters in the scalar potential can be taken real without any loss of generality.
This is due to the fact that the parameters in V0 are real by construction, while any
phases on m2

ij can be eliminated by field redefinitions of the three Higgs doublets. As
a consequence the scalar sector of the model has no choice but to be CP-conserving.

For convenience we define
λ̃ij = (λij + λ′ij) . (IV.6)

Finally, assuming that v1,2,3 6= 0 and requiring that the first derivative of V vanishes,
we can write

µ2
i =

3∑

j=1

[
1

2
λ̃ijv

2
j +m2

ij

vj
vi

]
. (IV.7)

2.2 Extending the U(1)X × U(1)Z to the fermion sector

We assign the quark U(1)X × U(1)Z charges such that the neutral component of H3

couples to only up- and down-type quarks of the third generation while the neutral
components of H1 and H2 couple to the first and second generation down-type and
up-type quarks respectively, i.e.

Lq
Yukawa =

2∑

i,j=1

{
yd
ij d̄

i
RH
†
1Q

j
L − yu

ij ū
i
RH̃
†
2Q

j
L

}
+ ybb̄RH

†
3Q

3
L − ytt̄RH̃

†
3Q

3
L + c.c. (IV.8)

In this way we forbid scalar-mediated tree-level FCNCs and simultaneously enforce a
Cabibbo-like quark mixing, where the gauge eigenstates of the third quark family are
aligned with the corresponding flavour eigenstates. This also means that a hierarchy in
the VEVs of the Higgs doublets, where v3 � v1,2, leads to a third quark family that is
much heavier than the first two without a strong hierarchy in the Yukawa couplings. In
Table IV.1, we show the most general quark charge assignments allowing the terms in
Eq. (IV.8) once the U(1)X×U(1)Z charges of H1,2,3 are fixed. As long as the parameters
α, β, γ and δ in Table IV.1 satisfy

(β − γ, α− δ) /∈ {(−1,−1), (−1, 0), (0, 0), (1, 0), (1, 1), (2, 1)} , (IV.9)

the terms in Eq. (IV.8) are also the only allowed quark Yukawa interactions. It is worth
noting that in the mass basis, the free parameters in the quark sector are simply the
quark masses and the Cabibbo angle. The reader might note that at higher orders,
the Yukawa interactions only allow for a mixing between the first and second quark
generations, thus opening the question of how to reproduce the observed full CKM
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U(1)Y U(1)X U(1)Z

H1
1
2

−1 − 2
3

H2
1
2

1 1
3

H3
1
2

0 1
3

Q1,2
L

1
6

γ δ

Q3
L

1
6

β α

u1,2
R

2
3

1 + γ 1
3

+ δ

tR
2
3

β 1
3

+ α

d1,2
R − 1

3
1 + γ 2

3
+ δ

bR − 1
3

β − 1
3

+ α

Table IV.1: Charges of the global U(1)X, U(1)Z and gauge (hypercharge) U(1)Y symmetries in the considering class
of 3HDMs. The fermion charges together with the constraints in Eq. (IV.9) are chosen so that the only
allowed Yukawa terms are those in Eq. (IV.8).

mixing in the quark sector. As this model is thought as an effective theory, one can
write the following dimension-6 operators consistent with the imposed symmetries

d̄1,2
R

(
H†iQ

3
L

)(
H†jHk

)
, ū1,2

R

(
H̃†iQ

3
L

)(
H†jHk

)
,

b̄R

(
H†iQ

1,2
L

)(
H†jHk

)
, t̄R

(
H̃†iQ

1,2
L

)(
H†jHk

)
.

(IV.10)

Such terms will induce naturally small (suppressed by a scale of new physics) mixing
terms with the third quark family once Higgs VEVs appear. The operators can in
principle be generated à la Frogatt-Nielsen mechanism [30] by integrating out the heavy
fields of a high-energy theory. A deeper analysis of this is beyond the scope of this paper.

Finally, we note that the lepton Yukawa sector can be made very SM-like by assigning
the lepton U(1)X × U(1)Z charges such that they only couple to H3. We will assume
that this is the case throughout this work, and will not discuss the implications on
lepton phenomenology any further. However, we want to point out that there are also
other interesting scenarios, e.g. where the leptons couple to H1,2,3 such that the lepton
mass hierarchies are also related to v1,2 � v3.

2.3 The spectrum, mixing matrices and interactions of the scalar
sector

After spontaneous symmetry breaking, the mass terms in the scalar potential V in
Eq. (IV.3),

3∑

i,j=1

[
1

2
Ai(M

2
P)ijAj +

1

2
hi(M

2
S)ijhj +H−i (M2

C)ijH
+
j

]
, (IV.11)
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can be neatly expressed using

(M2
P)ij = m2

ij − δij
3∑

k=1

m2
ik

vk
vi
,

(M2
S)ij = λ̃ijvivj + (M2

P)ij ,

(M2
C)ij = λ′ijvivj − δij

3∑

k=1

λ′ikv
2
k + (M2

P)ij .

(IV.12)

We note that both M2
C,P have an eigenvector ∝ vi with vanishing eigenvalue. The cor-

responding Goldstone states become the longitudinal polarization states of the massive
electroweak gauge bosons.

The electrically neutral scalar, pseudo-scalar and charged scalar mass eigenstates,

h̄i = (ha, hb, h125) , Āi = (Aa, Ab, AG) , H̄±i = (H±a , H
±
b , H

±
G ) , (IV.13)

are related to the interaction eigenstates as

hi = Sij h̄j , Ai = PijĀj , H±i = CijH̄
±
j , (IV.14)

The states AG and H±G in Eq. (IV.13) denote the Goldstone bosons. Working in the
ξ � 1 limit, the mixing matrices S, P and C are identical up to O(ξ) but differ at O(ξ2).
It is here convenient to define an angle β ∈ [0, π2 ] as

tanβ =
v2

v1
. (IV.15)

To the second order in ξ, we have

S = T + ξ2S′ , P = T + ξ2P′ , C = T + ξ2C′ (IV.16)

with

T =

(
1 Xξ cβξ
−Xξ 1 sβξ
−cβξ −sβξ 1

)
, X ≡ m2

12sβcβ
m2

13sβ −m2
23cβ

. (IV.17)

For the O(ξ2) pieces, we have

P′ =

(
− 1

2 (X2+c2β) − 1
2 (1−Y )sβcβ 0

− 1
2 (1+Y )sβcβ − 1

2 (X2+s2β) 0

Xsβ −Xcβ 0

)
,C′ = P′ +

(
0 Z1 0
−Z1 0 0

0 0 0

)
,S′ = P′ +

(
0 0 Z2

0 0 Z3

−Z2 −Z3 0

)
,

(IV.18)
where

Y =
(2m4

12 +m4
23)c2β − (2m4

12 +m4
13)s2

β

(m2
13sβ −m2

23c
2
b)

2
, Z1 =

(λ′23 − λ′13)s2
βc

2
βm

2
12v

2
3

(m2
13sβ −m2

23cβ)2
,

Z2 = (λ̃13 − λ33)c2β
v2

3

m2
13

, Z3 = (λ̃23 − λ33)s2
β

v2
3

m2
23

.

(IV.19)
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Here, Z1,2,3 parametrize the leading order difference between the mixing matrices, which
will be important as these parameters determine the off-diagonal scalar-scalar interac-
tions with the electroweak gauge bosons. We also note that as X, Y , Z1, Z2, Z3 get
larger, the expansion in ξ becomes less reliable.

The state h125 contains mostly h3, meaning that it couples substantially to the third
quark family. It also receives a mass of the order of v3 ∼ v,

m2
h125

= λ33v
2
3 +O(ξ2) , (IV.20)

making this state our candidate for the observed SM Higgs-like 125 GeV state. The
exotic scalars ha,b, Aa,b andH±a,b can all be made heavy as the leading order contribution

to their masses is inversely proportional to ξ. To this leading order, {ha, Aa, H
±
a } are

degenerate in mass. This is also the case for {hb, Ab, H
±
b }. More accurately, the masses

are given by

m2
Aa

= m2
ha

= −m
2
13

cβξ
−m2

12tβ − (m2
13cβ +Xm2

12)ξ , m2
H±a

= m2
Aa
− λ′13v

2
3 ,

m2
Ab

= m2
hb

= −m
2
23

sβξ
− m2

12

tβ
− (m2

23sβ +Xm2
12)ξ , m2

H±b
= m2

Ab
− λ′23v

2
3 ,

(IV.21)

to O(ξ). This means that the exotic scalars and pseudo-scalars are typically very close
in mass when ξ � 1, i.e. m2

Aa,b
−m2

ha,b
= O(ξ2). Note also that the couplings λ′ij can

either be positive or negative, such that the charged scalars H+
a,b can both be heavier

and lighter than the neutral scalars in the respective family.

We conclude this section by listing the trilinear interactions between the physical scalars
and the electroweak gauge bosons, as they are relevant for the collider phenomenology
of the charged Higgs boson discussed in section 3. The interactions between the neutral
scalars, charged scalars and the W boson are given by

L ⊃ i
g2

2
W−µ

3∑

i=1

[
(∂µH+

i )hi −H+
i (∂µhi)

]
+ c.c

= i
g2

2
W−µ

3∑

i,j=1

(CTS)ij
[
(∂µH̄+

i )h̄j − H̄+
i (∂µh̄j)

]
+ c.c ,

(IV.22)

with

CTS =

(
1 −Z1ξ

2 Z2ξ
2

Z1ξ
2 1 Z3ξ

2

−Z2ξ
2 −Z3ξ

2 1

)
+O(ξ3) . (IV.23)

The top line in Eq. (IV.22) is written in the interaction eigenbasis of the scalars, while
the bottom line is the same expression in terms of the mass eigenstates. The W boson
also couples to pairs of charged scalars and pseudo-scalars as

L ⊃ g2

2
W−µ

3∑

i=1

[
(∂µH+

i )Ai −H+
i (∂µAi)

]
+ c.c

=
g2

2
W−µ

3∑

i,j=1

(CTP)ij
[
(∂µH̄+

i )Āj − H̄+
i (∂µĀj)

]
+ c.c ,

(IV.24)
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with

CTP =

(
1 −Z1ξ

2 0

Z1ξ
2 1 0

0 0 1

)
+O(ξ3) . (IV.25)

Similarly, for the trilinear interactions with the Z boson, we have

L ⊃ g2

2cW
Zµ

3∑

i=1

[(∂µAi)hi −Ai(∂µhi)]

=
g2

2cW
Zµ

3∑

i,j=1

(PTS)ij
[
(∂µĀi)h̄j − Āi(∂µh̄j)

]
,

(IV.26)

where cW is the cosine of the Weinberg angle and

PTS =

(
1 0 Z2ξ

2

0 1 Z3ξ
2

−Z2ξ
2 −Z3ξ

2 1

)
+O(ξ3) . (IV.27)

2.4 Scalar-fermion couplings

Knowing the mixing matrices S, P and C for the neutral scalars, pseudo-scalars and
charged scalars, respectively, to the first orders in ξ, it is straightforward to obtain the
Yukawa interactions between the physical scalars and the quarks. Using Eq. (IV.14) we
find that h125 couples to quarks in a way similar to the SM,

L ⊃
∑

q

mq

v3
q̄q h125 +O(ξ) . (IV.28)

For the third quark family, this is an obvious consequence of the model’s symmetries,
as t and b quarks receive their masses from H3 with v3 . v, and h125 is mostly made
of h3. On the other hand, the first and second family get their masses from H1,2 with
v1,2 � v3, so the corresponding Yukawa couplings with the gauge eigenstates H1,2 are
quite large as O(mq/v1,2) ∼ O(mq/ξv3). When shifting to the mass eigenbasis, h1,2

contribute to h125 only at O(ξ) thus giving an overall coupling of O(mq/v3).

In the same process, we also find the interaction terms between the quarks and the exotic
scalar states ha,b, Aa,b and H±a,b. Couplings to the third quark family are generally quite
small ∼ mt,bξ/v3. In our model, phenomenologically the most relevant couplings are
with the second quark family instead, which to the leading order in ξ read

L ⊃ cos θC

√
2ms

v1
s̄RcLH

−
a − cos θC

√
2mc

v2
c̄RsLH

+
b + c.c.+O(ξ)

+
ms

v1
s̄sha −

mc

v2
c̄chb + i

ms

v1
s̄γ5sAa − i

mc

v2
c̄γ5cAb +O(ξ) ,

(IV.29)

where θC is the Cabbibo angle. When the masses of the scalars are in the appropriate
range, we can expect that the charged scalars H+

a,b would be produced in collider ex-
periments through cs̄ fusion while ha and Aa (hb and Ab) would mainly be produced
by the ss̄ (cc̄) fusion.
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3 A model independent approach

One of the interesting features of our model is the existence of heavy charged scalars
H+ (H−) that mostly couple to a cs̄ (c̄s) pair as their interactions with tb̄ (t̄b) are
small due to the model symmetries. Furthermore, we find that H± can decay to a
W± h125 pair with a sizable branching ratio (BR) which is still allowed by the current
experimental data. It turns out that this unconventional channel, while not explored
in the literature before for mH± > 200 GeV, can be a rather clean way to search for
charged scalars at the LHC.

In the following, we adopt a model independent approach in searching for charged
scalars exhibiting those features. In section 5, we will show how the analysis can be
used to find discovery regions in the parameter space of the 3HDM we have proposed
above. We take a model independent approach to not only test the predictions of our
model, but also to offer a guideline for our experimental colleagues to implement this
new search channel in the experimental analyses.

We start with the following model independent Lagrangian for H± including its kinetic
(Lkin) and interaction (Lint) terms

Lkin ⊃ DµH
+DµH− −m2

H± H
+H− , (IV.30)

Lint ⊃ κpcs c̄RsLH
+ + κmcs s̄RcLH

− + iκWh125

(
h125∂

µH+ −H+∂µh125

)
W−µ + c.c. .

(IV.31)

There are four free parameters in the above Lagrangian viz. the charged Higgs mass
mH± , and the three couplings κpcs, κ

m
cs and κWh125

. In general, κpcs and κmcs both could be
non-zero. In that case, the production cross section, σ(pp→ H±) is proportional to the

combination
[
(κpcs)

2
+ (κmcs)

2
]
. Therefore, instead of two free couplings, we introduce

a single free parameter κcs which is, κ2
cs = (κpcs)

2
+ (κmcs)

2
. From the above model

independent Lagrangian, we see that H+ has only two decay modes: W+ h125 and cs̄.
The corresponding tree-level partial widths are given by

Γ
(
H± →W± h125

)
=
κ2
Wh125

m3
H±

64πm2
W

[
1− (mh125

−mW )
2

m2
H±

][
1− (mh125

+mW )
2

m2
H±

]

×
[

1− 2
(
m2
h125

+m2
W

)

m2
H±

+

(
m2
h125
−m2

W

)2

m4
H±

]1/2

, (IV.32)

Γ
(
H+ → cs̄

)
=

3
[
(κpcs)

2
+ (κmcs)

2
]
mH±

16π
=

3κ2
csmH±

16π
. (IV.33)

where mh125
= 125 GeV. The expression Γ(H+ → cs̄) is given in the limit of massless

c and s quarks. In general, H± can have other decay modes too. We, therefore, take
the BR of the decay mode H± → W± h125 denoted by BRWh125 as a free parameter
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instead of κWh125
. So, one can write the following in the narrow-width approximation,

σ(pp→ H± →W± h125) = σ(pp→ H±)× BRWh125 = κ2
cs × σ0(mH±)× BRWh125

,
(IV.34)

where σ0(mH±) is the cross section of pp→ H± for κcs = 1. We show σ0(mH±) at the
LHC (

√
s = 13 TeV) as a function of mH± in Fig. IV.1.

200 400 600 800 1000 1200

mH± [GeV]

100

101

102

103

104

σ
(p
p
→

H
±

)/
κ

2 cs
(p

b
)

13 TeV

Figure IV.1: σ(pp→ H±)/κ2
cs = σ0(m

H± ) as a function of m
H± at the LHC (

√
s = 13 TeV).

4 Search for charged scalars produced by cs̄ fusion

We implement the model independent Lagrangian of H± as shown in Eqs. (IV.30) and
(IV.31) in FeynRules [31] from which we get the Universal FeynRules Output [32]
model files for the MadGraph [33] event generator. We use the NNPDF [34] parton
distribution functions (PDFs) for the signal and background event generation. For the
signal, we use fixed factorization µF and renormalization µR scales at µF = µR = mH±

while for the background these scales are chosen at the appropriate scale of the process.
We use Pythia6 [35] for subsequent showering and hadronization of the generated
events. Detector simulation is performed using Delphes [36] which employs the Fast-
Jet [37] package for jet clustering. Jets are clustered using the anti-kT algorithm [38]
with the clustering parameter R = 0.4. For the multivariate analysis (MVA), we use the
Boosted Decision Tree (BDT) algorithm in the TMVA [39] framework. In this analysis,
all calculations are done at the leading order, for simplicity.
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4.1 Signal

We focus the H+ (H−) production from the cs̄ (c̄s) initial state followed by the decay
H± → W± h125. We consider a semileptonic final state where W± decays leptonically
and h125 decays to bb̄. Therefore, the chain of the signal process in our case is

pp→ H± →W±h125 → `± + /ET + bb̄ . (IV.35)

Here, ` = {e, µ}. We then have one charged lepton, two b-jets and missing transverse
energy in the final state and our event selection criteria is exactly one charged lepton
(either an electron or a muon including their anti-particles), at least two jets and missing
transverse energy that pass the following basic selection cuts:

• Lepton: pT (`) > 25 GeV, |η(`)| < 2.5

• Jet: pT (J) > 25 GeV, |η(J)| < 4.5

• Missing transverse energy: /ET > 25 GeV

• ∆R separation: ∆R(J1, J2) > 0.4, ∆R(`, J) > 0.4

Here, J1 and J2 denote the first and the second highest pT jets. After selecting the
events, we further demand b-tagging on the two leading-pT jets. The b-tagging on jets
can reduce the background very effectively but it can also somewhat reduce the signal.
Therefore, to enhance the signal cut efficiency we do not always demand two b’s tagging
although there are two b-jets present in the signal. Depending on the number of b-tagged
jets we demand, we define the following two signal categories

• 1b-tag: In this category, we demand at least one b-tagged jet among the two leading
pT jets.

• 2b-tag: In this category, we demand that both the two leading pT jets are b-tagged.
This category is a subset of the 1b-tag category.

To reconstruct the Higgs boson, we apply an invariant mass cut |mH± −mh125
| < 20

GeV around the Higgs boson mass mh125
= 125 GeV. However, the full event is not

totally reconstructible due to the presence of the missing transverse energy.

4.2 Background

The main background for the signal with one lepton, at least one or two b-tagged jets
and missing energy can come from the following SM processes:

1. W± + jets: The definition of our inclusive W± + jets background includes up to
two jets and we include the b parton in the jet definition i.e. j = {g, u, d, c, s, b}. We
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Process W + n j Wbj Wbb̄ tt̄+ n j tj tb tW WW WZ Wh125

x-sec (pb) 1.53× 105 308.9 41.7 431.3 174.6 2.6 54.0 67.8 25.4 1.1

Table IV.2: Parton-level cross sections of various background processes (without any cut) at the LHC (
√
s = 13

TeV). Here, n is the number of jets.

generate these background events in two separate parts. In one sample, we only
consider light jets i.e.j = {g, u, d, c, s} and combine pp→W±+(0, 1, 2) j processes
where we set the matching scale Qcut = 25 GeV. This background is the largest
(the cross section is about 1.53× 105 pb at the LHC, with

√
s = 13 TeV, without

any cut) among all the dominant SM backgrounds we have considered. Although
the bare cross section is large, it will reduce drastically after b-tagging due to a
small mistagging (light jet is tagged as b-jet) rate. We find that its contribution
in the 1b-tag category is substantial but in the 2b-tag category is very small. In
the other sample, we consider at least one b parton in the final state where we
combine pp → W± bj and pp → W± bb̄ processes (no SM pp → W± b process
exists). This background will contribute significantly in both the categories. We
include pp → W± h125 → W± bb̄ and pp → W± Z → W± bb̄ processes in the
pp→W± bb̄ channel.

2. tt̄+ jets: The definition of our inclusive tt̄ + jets background includes up to two
jets containing also b partons. We generate this background by combining pp →
tt̄ + (0, 1, 2) j processes using the matching scale Qcut = 25 GeV. The matched
cross section is about 431 pb before the top decay and without any selection cut
applied. We find that this background is the dominant one after the strong basic
selection cuts (applied before passing the events to the MVA).

3. Single top: This background includes three types of single top processes – s-

channel single top (such pp→ tb̄), t-channel single top (i.e. pp→ tj) and single-top
associated with W (such as pp → tW±) processes. Note that for the pp → tW±

process, the selected lepton can come from two possible ways, either from the de-
cay of the associated W± or from the W± coming from the top decay. These two
possibilities are properly included in our event sample. The single top background
also contributes significantly to the total background.

4. Diboson: This background includes pp→W±W∓ →W±+jj and pp→W± Z →
W± + jj processes where two light jets come from the decay of W or Z bosons.
In this background, we have also included pp→W± Z →W± νν̄ processes where
two selected jets come from the parton showers. This background reduces drasti-
cally due to the small mistagging efficiency of light jets that are misidentified as b-
jets. Finally, in the MVA this background contributes negligibly to the total back-
ground. Note that two diboson production processes viz. pp→W±h125 →W±bb̄
and pp→W±Z →W±bb̄ are already considered in the W + jets background.

5. QCD multijets: The multijet background arises due to QCD interactions at the
LHC and has a very large production cross section, especially in the soft region.
The QCD-induced multijet production processes can potentially contribute to the
total background for our signal by faking the lepton, /ET and b-tagged jets. It is
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impractical to study this part of the background using a Monte-Carlo simulation
since it is computationally challenging to generate enough events due to very low
fake rates. In experimental analyses, this contribution is usually estimated from
the data. In our analysis, we do not consider this background since it will be
largely diminished after strong preselection cuts and will be further reduced due
to small fake rates of the considered final states.

The SM background, especially the W + jets component, is large and therefore one has
to design a clever set of cuts which would notably reduce such a background but would
not notably affect the signal. This implies that the cut efficiency for the background
is very small and hence, a large number of background events has to be generated. In
order to avoid the generation of a large event sample, we apply a strong cut on the
partonic center-of-mass energy,

√
ŝ > 200 GeV at the generation level of all background

processes. This cut can reduce the W + jets background by two orders of magnitude.
However, this cut has no or very little effect on the other backgrounds viz. tt̄ + jets,
single top and diboson ones since the threshold energy for them is either above or
slightly below 200 GeV. In the case of a signal,

√
ŝ is always above 200 GeV since we

are interested in the parameter space regions where mH± > mW +mh125 & 205 GeV.

One should note that, in reality, the full reconstruction of
√
ŝ of an event is not possible

if there is missing energy present in that event. In this case, one can construct an
inclusive global variable

√
ŝmin defined in Ref. [40] which is closest to the actual

√
ŝ

of the event. One can roughly approximate
√
ŝ ≈
√
ŝmin if there is only one missing

neutrino in the event but this approximation gets poorer with the increase of the number
of neutrinos in the final state. For simplicity, we have used the cut

√
ŝ > 200 GeV at

the generation level. But in reality, one can use a cut on
√
ŝmin to trim the background

before passing it for further analysis.

4.3 Multivariate analysis

A Wh125 resonance, similar to our case, can also appear from the decay of a heavy
charged gauge boson, W ′. The search forW ′ in the `±+ /ET+bb̄ channel (same final state
that we are interested in) has been carried out at the LHC [41, 42]. In these searches,
they mainly focus in the TeV-scale W ′ mass and the analyses are done using the cut-
based techniques. A cut-based analysis may not perform well in our case, especially
for low mH± region due to the presence of a large SM background [43, 44]. Therefore,
we choose to use a MVA to obtain a better signal-to-background discrimination which
usually leads to a better significance than a cut-based analysis. See Ref. [45] for a brief
review on various multivariate methods and their use in collider searches. In this paper,
we only use multivariate techniques and do not compare our achieved sensitivity with
the cut-based techniques.

We choose the following twelve simple kinematic variables that are also listed in Ta-
ble IV.3 for our MVA.
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• Transverse momenta of lepton, pT (`) and two leading-pT jets, pT (J1) and pT (J2).

• Missing transverse energy /ET and pseudorapidity of /ET vector denoted by η(/ET ).

• Scalar sum of transverse momenta of all visible particles denoted by HT .

• Invariant mass of two leading-pT jets denoted by M(J1, J2).

• ∆R separation of (`, J1), (`, J2), (/ET , `), (J1, J2) and (/ET , J1) combinations.

These variables are chosen by comparing their distributions for the signal generated
for mH± = 300 GeV with the total background distributions. They are selected from
a bigger set of variables based on their discriminating power and less correlation. In
Fig. IV.2, we show the normalized distributions of these variables for the signal with
mH± = 300 GeV and the total background. Similar distributions for mH± = 500 GeV
are shown in Fig. IV.3. From these figures, one can see that each of these distributions
has reasonable discriminating power between the signal and the background. We use
these kinematic variables simultaneously in a MVA whose output shows large differences
in their shapes for the signal and the background. One should notice that the signal
distributions deviate more from the background ones as we increase mH± . Therefore,
isolation of the signal from the background becomes easier for heavier resonances. We,
therefore, tune our MVA for lower masses and use the same optimized analysis for larger
masses.

Variable Importance Variable Importance Variable Importance Variable Importance
pT (`) 0.095 /ET 0.072 M(j1, j2) 0.092 ∆R(/ET , `) 0.065
pT (j1) 0.092 η(/ET ) 0.076 ∆R(`, j1) 0.088 ∆R(j1, j2) 0.072
pT (j2) 0.074 HT 0.153 ∆R(`, j2) 0.077 ∆R(/ET , j1) 0.044

Table IV.3: Input variables used for MVA (BDT algorithm) and their relative importance. These numbers are ob-
tained for m

H± = 300 GeV for the 2b-tag category. These numbers can vary for other choices of
parameters.

In Table IV.3, we show the relative importance of each variable in the BDT response for
mH± = 300 GeV for the 2b-tag category. For this particular benchmark, theHT variable
has the highest relative importance of about 15%. The greater relative importance
implies that the corresponding variable becomes a better discriminator. Note that the
relative importance of such a variable can change for other benchmarks and for different
LHC energies that can change the shape of the distributions. It can also change due to
different choices of algorithms and their tuning parameters.

One should always be cautious while using the BDT algorithm since it is prone to
overtraining. This can happen during the training of the signal and background test
samples due to improper choices of the tuning parameters of the BDT algorithm. One
can decide whether a test sample is overtrained or not by checking the corresponding
Kolmogorov-Smirnov (KS) probability. If it lies within the range 0.1 to 0.9, we say the
sample is not overtrained. We use two statistically independent samples in our MVA
for each benchmark mass, one for training the BDT and another for testing purposes.
In our analysis, we ensure that we do not encounter overtraining while using the BDT
by checking the corresponding KS probability.

171



(l)
T

p

50 100 150 200 250

(l
)

T
d
p

 
/  

(1
/N

) 
d
N

0

0.005

0.01

0.015

0.02

0.025

0.03
Signal

Background

(l)
T

Input variable: p

)
1

(j
T

p

50 100 150 200 250

) 1
(j

T
d
p

 
/  

(1
/N

) 
d
N

0

0.005

0.01

0.015

0.02

0.025

)
1

(j
T

Input variable: p

)
2

(j
T

p

40 60 80 100 120 140 160 180

)
2

(j
T

d
p

 
/  

(1
/N

) 
d
N

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

)
2

(j
T

Input variable: p

m
TE

50 100 150 200 250

m T
d
E

 
/  

(1
/N

) 
d
N

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

m

T
Input variable: E

)
m

T
(Eη

4− 2− 0 2 4

)
m T

(E
η

d 
/  

(1
/N

) 
d
N

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

)
m

T
(EηInput variable: 

TH

100 200 300 400 500 600 700 800 900

T
d
H

 
/  

(1
/N

) 
d
N

0

0.002

0.004

0.006

0.008

0.01

T
Input variable: H

)
2

,j
1

M(j

105 110 115 120 125 130 135 140 145

)
2

,j 1
d
M

(j
 

/  
(1

/N
) 

d
N

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

)
2

,j
1

Input variable: M(j

)
1

R(l,j∆

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

) 1
R

(l
,j

∆
d 

/  
(1

/N
) 

d
N

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

)
1

R(l,j∆Input variable: 

)
2

R(l,j∆

1 2 3 4 5

)
2

R
(l
,j

∆
d 

/  
(1

/N
) 

d
N

0

0.1

0.2

0.3

0.4

0.5

)
2

R(l,j∆Input variable: 

,l)
m

T
R(E∆

1 2 3 4 5 6 7

,l
)

m T
R

(E
∆

d 
/  

(1
/N

) 
d
N

0

0.05

0.1

0.15

0.2

0.25

,l)m

T
R(E∆Input variable: 

)
2

,j
1

R(j∆

0.5 1 1.5 2 2.5 3 3.5 4

)
2

,j 1
R

(j
∆

d 
/  

(1
/N

) 
d
N

0

0.2

0.4

0.6

0.8

1

1.2

)
2

,j
1

R(j∆Input variable: 

)
1

,j
m

T
R(E∆

1 2 3 4 5 6 7 8

) 1
,j

m T
R

(E
∆

d 
/  

(1
/N

) 
d
N

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

)
1

,jm

T
R(E∆Input variable: 

Figure IV.2: Normalized distributions of the input variables at the LHC (
√
s = 13 TeV) used in the MVA for the

signal (blue) and the background (red). Signal distributions are obtained for m
H± = 300 GeV, and

the background includes all the dominant backgrounds discussed in subsection 4.2. These distributions
are drawn by selecting events after the cuts defined in subsection 4.1.

In Figs. IV.4a and IV.4c, we display a normalized BDT output of the signal and the
background for mH± = 300 GeV and mH± = 500 GeV, respectively, for the 2b-tag
category at the LHC (

√
s = 13 TeV). One can see that the BDT outputs for the signal

and the background are well-separated, and this can improve as we go to higher mH±

values. One then applies a BDT cut i.e. BDTres > C, where C ∈ [−1, 1] on the signal
and background samples. The corresponding cut efficiencies are shown as functions of
C in Fig. IV.4b (Fig. IV.4d) for mH± = 300 GeV (mH± = 500 GeV). The optimal BDT
cut (BDTopt) is defined for which the significance NS/

√NS +NB is maximized (where
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Figure IV.3: The same as Fig. IV.2 but for m
H± = 500 GeV.

NS and NB are the number of signal and background events, respectively, for a given
luminosity that are survived after the BDT cut). We see in Fig. IV.4b that if we have,
at least, 222 signal events (for L = 50 fb−1) before the BDT analysis, it is possible
to achieve a maximum 5σ significance for BDTopt & 0.26. After this cut, the number
of signal events is reduced to 118 from 222 but the background events are drastically
reduced to 436 from 33031. In Table IV.4, we show NS and NB along with N bc

S , the
minimum number of signal events before the BDT cut that is required to achieve 5σ
significance, for different mH± values and for the two selection categories.
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Figure IV.4: (a) The BDT response for the signal and the background for m
H± = 300 GeV at the LHC (

√
s =

13 TeV) for the 2b-tag category. (b) The corresponding signal and background cut efficiencies and
significance as functions of the BDT cut. Discovery significance of 5σ is achieved for the optimal BDT
cut, BDTopt & 0.26. Similar figures for m

H± = 500 GeV are shown in (c) and (d) where a maximum

5σ significance is achieved for BDTopt & 0.39.

mH± 1b-tag category 2b-tag category
(GeV) N bcS BDTopt NS NB N bcS BDTopt NS NB

250 1227 0.31 579 12796 260 0.23 151 758
300 983 0.42 341 4303 222 0.26 118 436
350 680 0.44 262 2485 176 0.29 99 295
500 229 0.48 49 47 79 0.39 47 41
800 149 0.43 55 66 60 0.44 37 17

NSM 344173 - - - 33031 - - -

Table IV.4: The number of the SM background events (NSM) for the 1b-tag category at the LHC (
√
s = 13 TeV)

with L = 50 fb−1 that enters in the MVA. The minimum number of signal events that can be discovered

with 5σ significance using our MVA is denoted by NbcS (this is before the optimal BDT cut as shown
in the third column). The signal and background events that survived after the optimal BDT cut are
denoted by NS and NB , respectively, and they lead to 5σ significance.
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5 Discovery regions of the 3HDM parameter space

The question still remains: Can the model we proposed in section 2 predict signals
that would be visible using the presented analysis? In this section we find regions of
the parameter space where that is the case, which shows that if limits are set by the
experimental collaborations, the theory can be further constrained using the current
experimental data.

The first task is to match our model to the Lagrangian in Eqs. (IV.30) and (IV.31).
For each parameter space point, we choose the lightest charged scalar for the analysis.
Although we concentrated our search in the parameter space region with v1,2 � v3,
as to exploit the SM-like h125 state in that limit, we do not rely on the validity of
the expansion in small ξ in this analysis. The couplings κcs and κWh125

are found in
Eq. (IV.22) after a numerical calculation of the spectrum and mixing matrices. To find
the discovery reach of our parameter space, we translate N bc

S in terms of the model
parameters by using the following relation

N bc
S = σ(pp→ H± →W±h125 → `± + /ET + bb̄)× εS × L , (IV.36)

where σ is the cross section after showering and hadronization, εS is the signal cut
efficiency and L is the integrated luminosity.

For the calculation of BRWh125
, it is important to note that although in general H±

can decay to W±ha,b,125 , we are interested only in the decay mode involving h125, as
in our model this is the state that couples the strongest to bb̄ (see Eqs. (IV.28) and
(IV.29)).

In addition, our model must be able to pass several consistency tests in order to be phe-
nomenologically viable, such as reproducing the electroweak precision measurements.
The original formulation [46] for BSM contributions to the electroweak precision observ-
ables in terms of the S, T and U parameters assumes that the scale of new physics is & 1
TeV. As our model allows for new exotic scalars to have masses around the electroweak
scale, we must employ the more general formalism introduced in Refs. [47, 48] with an
extended set of oblique parameters S, T , U , V , W and X. These can then be used to
calculate S′, T ′ and U ′ for which the standard Z-pole constraints on S, T and U apply.
To compute S′, T ′ and U ′, we have applied the results in Ref. [49], in which S, T , U ,
V , W and X are computed for a general N -Higgs Doublet Model with the inclusion of
arbitrary numbers of electrically charged and neutral SU(2)L singlets. To summarize,
when scanning the model parameter space for phenomenologically interesting regions,
we look for points for which the following constraints are satisfied:

• There are no tachyonic scalar masses and the scalar potential is bounded from
below (the corresponding constraints on the quartic couplings can be found in
Ref. [12] taking into account that our λii differ by a factor two from theirs).

• The tree-level scalar four-point amplitudes satisfy |M| < 4π.

175



• The SM Higgs-like scalar has a mass no more than 5 GeV away from the observed
125 GeV value, and has a Yukawa coupling to the top quark satisfying |ytt̄h125

| ∈
[0.9, 1.1].

• The exotic decays Z → ha,bAa,b are kinematically forbidden, as to not be in
conflict with the precision measurements of the Z width.

• The lightest charged Higgs has a mass in the range [m
(min)
H± , 1000 GeV], with a

different m
(min)
H± for each run (taking values 250, 300, 400 or 450 GeV).

• The computed values of S′, T ′ and U ′ fall within the error bars on S, T and U
as reported in Ref. [50].

• The value of κ2
cs×BRWh125

is at least 0.5 above the 100 fb−1 discovery threshold
for the 1b-tag category set by the MVA.

5.1 Scanning the parameter space

A random scan over the parameter space of the theory is both computationally expensive
and not efficient. A good alternative, without the need for sophisticated statistical
methods but still very powerful is the use of Genetic Algorithms (GA).

Following the guidelines set in Ref. [51], we wrote a GA in Mathematica for finding the
parameter points in the discovery region, with a fitness function taking into account
all the constraints listed above and including the so-called biodiversity enhancement to
explore the parameter space more thoroughly.

GAs start from a randomly generated initial population, with each full cycle resulting
in a new generation of candidates. The fittest parameter points are selected for every
generation and their parameters are modified (by crossover and/or mutations) leading
to a new generation. The new candidate points are then used in the next iteration of the
GA. The GA finishes when either a maximum number of generations or a satisfactory
fitness level is reached. We decided to build the GA relying on mutations only as it usu-
ally performs comparably to GAs including a crossover but it is simpler to implement,
and it was stopped once a given number of valid parameter points was reached.

5.2 Results of the GA parameter scan

We performed five independent scans with different initial population sizes ranging from
50 to 1000, with varying mutation rates and different lower limits on mH± . We found
2116 parameter space points of the proposed model satisfying all the constraints within
the discovery region of our analysis. In Figs. IV.5a and IV.5b, we show the 5σ discovery
contours of κ2

cs × BRWh125
corresponding to 1b- and 2b-tag categories, respectively, as

functions of mH± for L = 50, 100 fb−1 at the LHC (
√
s = 13 TeV). Here, these functions

are overlayed with the corresponding values for the parameter points found by the GA
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scanning procedure. We find that both selection categories are almost equally sensitive
in probing the parameter space of our model. However, the 2b-tag category is slightly
more sensitive than the 1b-tag category since the background reduction is better for the
former. The irregularities in the charged Higgs mass dependence seen in Figs. IV.5a
and IV.5b are due to a combination of points from scans with different lower limits on
mH± .

As discussed before, since a W ′ can also produce a Wh125 resonance, we compare
our reach with the Wh125 resonance search data. In Fig. IV.5b, the shaded region is
excluded by the ATLAS Wh125 resonance search data [41] in the `+ /ET + bb̄ channel.
To obtain this, we translate the 95% confidence level (CL) upper limit (UL) on the
cross section set by ATLAS in terms of our model parameters by using the following
relation,

(σ × BR)UL × εW ′ = σ(pp→ H±)× BR(H± →W±h125)× εH± (IV.37)

where εW ′ and εH± are the cut-efficiencies for the W ′ and H± respectively and they are
different, in general. For simplicity, we assume εW ′ = εH± while obtaining the exclusion
region on our model parameters. For instance, for mH± = 800 GeV, κ2 × BRWh125

&
2× 10−3 is excluded with 2σ CL using L ≈ 36 fb−1 data but κ2×BRWh125

. 2× 10−3

region can be discovered with 5σ significance if we go to a higher luminosity. The
exclusion region starts frommH± = 500 GeV since the latest data used here are available
for W ′ masses above 500 GeV.
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Figure IV.5: The 5σ discovery contours of κ2
cs × BRWh125

(scaled by 103) as functions of m
H± for L = 50, 100

fb−1 at the LHC (
√
s = 13 TeV) for (a) 1b-tag category and (b) 2b-tag category. The dots represent

the parameter points resulting form the GA scan with the corresponding values of ξ encoded in their
color.

Although the lightest charged scalar (identified as H± for the analysis) does not pri-
marily decay into Wh125, it can still reach the discovery regions due to being mainly
produced through cs̄ fusion and having BR(Wh125) comparable to the BR of the
other decay channels. In Fig. IV.6a we show the BR(H± → W±h125) vs BR(H+ →
light quarks) for the lightest charged scalar, where light scalars refers to first and second
generations and the dashed line represents the case when both decay modes dominate.
For the parameter points not close to this line, the remaining decay width is mostly
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due to the H± → W±ha,b decay. For a few outlier points, the H+ → tb̄ mode is also
relevant.
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Figure IV.6: (a) BR(H+ → W+h125) vs. BR(H+ → light quarks). Here, ‘light quarks’ refers to 1st and 2nd

generation quarks. The dashed line represents when BR(H+ → W+h125)+BR(H+ → light quarks) =
1, i.e. when these two channels dominate the total decay width. For almost all points far away from

this line, the lightest charged Higgs often decays to W±ha,b. (b) Scalar vs. pseudo-scalar masses for
the lightest (blue) and heaviest (orange) states. The alignment of these masses is consistent with the
ξ � 1 expansion.

It is worth noting that although the GA did not rely on the validity of the ξ � 1 ex-
pansion, it often found points where that is the case. Although the initial populations
had a hierarchy in the VEVs of the scalar fields (v1,2 � v3), the GA had no inherent
constraints stopping it from exploring the regions without it. Notably, the majority
of the found points did show that feature and therefore a diminished hierarchy in the
Yukawa couplings of the quark sector together with all the features described in sec-
tion 2. That can also be seen in Figs. IV.5a–IV.5b where we have indicated the specific
values of ξ for the valid parameter points. We have checked the difference between the
O(ξ) expressions for masses and the full numerical calculation, and find that for a vast
majority of the valid parameter points the ξ � 1 expansion is reliable.

In Fig. IV.7, we show distributions of quartic couplings, values of ξ and mass parameters
in the scalar potential, as well as the Higgs VEVs, for points in the discovery region
found by the GA. Indeed, the typical values of v1,2 are likely to be below 100 GeV, with
v2 extending over a larger domain than v1, while v3 values are mostly concentrated close
to the maximal 246 GeV limit. There is still a small number of valid points incompatible
with the ξ-expansion due to the smallness of one of m2

ij . Such points would still be in
the discovery region, although without the features that assume ξ � 1. As can be seen
from Fig. IV.6b, the masses of the exotic scalars and pseudo-scalars tend to align as
predicted by the ξ � 1 expansion (see Eq. (IV.21)).

6 Summary and conclusions

We have, in this article, introduced a class of 3HDMs with a global U(1)X × U(1)Z

family symmetry that is softly broken by bi-linear terms in the scalar potential. We
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Figure IV.7: Distribution of different parameters and ξ values for points in the discovery region found by the Genetic
Algorithm. The green solid line in the first three plots indicates when λij = −λ′ij .

have shown how to assign the X and Z charges of the quarks such that no tree-level
FCNCs are present, while enforcing the Cabibbo-like structure of VCKM. We described
how a mixing with the third quark family can be induced from dim-6 operators, which
would explain the smallness of the corresponding entries in VCKM. Moreover, we showed
that a hierarchy in the VEVs of the three Higgs doublets, v1,2 � v3, leads to a heavy
third quark family without the need for a strong hierarchy in the Yukawa couplings
(contrary to what happens in the SM where e.g. yup/ytop ∼ 10−5). The same hierarchy
has been exploited to derive simple closed expressions for the scalar masses and mixing
matrices by expansions in the small parameter ξ ≡

√
v2

1 + v2
2/v3 � 1.

A generic prediction of the model is that the new scalars ha,b, Aa,b and H±a,b are likely
to couple strongly to the s and c quarks, yielding different signatures in colliders at
variance with the standard searches focusing on the third quark family. As an example,
we studied collider phenomenology of the lightest charged Higgs when its mass is in the
250 – 1000 GeV range, under the assumption that the other charged Higgs is sufficiently
heavy to be dropped out of the analysis. In that case, the lighter charged Higgs would
be resonantly produced through a cs̄ fusion, and, for certain regions of the parameter
space, subsequently decay to Wh125. All other decay channels are assumed to only
contribute to its total width.

We particularly focused on one of the possible channels – the cs̄ → H+ → W+ h125

channel, which has not been explored before in the context of heavier charged Higgs
searches. This channel is specific to our class of 3HDMs and is particularly sensitive
to the sub-TeV charged Higgs mass and small-ξ regions. We showed that this uncon-
ventional channel, when combined with the power of a multivariate analysis, leads to
good signal-to-background ratios even for masses below 500 GeV and thus can be used
to probe models with that particular feature at the LHC. We employed a model inde-
pendent formulation so that our approach can be applied to any model which predicts
a sufficiently large cross section for the cs̄→ H+ →W+ h125 process to be observed in
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the future LHC runs. Our analysis can also be applied to improve sensitivity for W ′

searches especially for the sub-TeV masses.

We then used a genetic algorithm to find parameter space points in our 3HDM which
would yield signals with > 5σ significance, while still satisfying the standard phe-
nomenological constraints. Although the scan did not rely on ξ � 1, a vast majority of
the points were consistent with that limit and thus showed all the features mentioned
above and described in section 2. This shows that the described unconventional search
strategy can effectively probe realistic multi-Higgs theories with the current LHC data,
and so we think it should be seriously considered by our experimental colleagues.
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