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ABSTRACT

Modelling the formation of super-km-sized planetesimals by gravitational collapse of regions overdense in small particles requires
numerical algorithms capable of handling simultaneously hydrodynamics, particle dynamics and particle collisions. While the initial
phases of radial contraction are dictated by drag forces and gravity, particle collisions become gradually more significant as filaments
contract beyond Roche density. Here we present a new numerical algorithm for treating momentum and energy exchange in colli-
sions between numerical superparticles representing a high number of physical particles. We adopt a Monte Carlo approach where
superparticle pairs in a grid cell collide statistically on the physical collision time-scale. Collisions occur by enlarging particles until
they touch and solving for the collision outcome, accounting for energy dissipation in inelastic collisions. We demonstrate that super-
particle collisions can be consistently implemented at a modest computational cost. In protoplanetary disc turbulence driven by the
streaming instability, we argue that the relative Keplerian shear velocity should be subtracted during the collision calculation. If it is
not subtracted, density inhomogeneities are too rapidly diffused away, as bloated particles exaggerate collision speeds. Local particle
densities reach several thousand times the mid-plane gas density. We find efficient formation of gravitationally bound clumps, with
a range of masses corresponding to contracted radii from 100 to 400 km when applied to the asteroid belt and 150 to 730 km when
applied to the Kuiper belt, extrapolated using a constant self-gravity parameter. The smaller planetesimals are not observed at low
resolution, but the masses of the largest planetesimals are relatively independent of resolution and treatment of collisions.

Key words. minor planets, asteroids: general – methods: numerical – hydrodynamics – planets and satellites: formation – turbulence
– protoplanetary disks

1. Introduction

The formation of super-km-sized planetesimals is an important
step towards terrestrial planets and the solid cores of gas and
ice giants (e.g. Safronov 1969; Goldreich et al. 2004; Chiang
& Youdin 2010). The asteroid and Kuiper belts of the solar
system, as well as the extrasolar debris discs, are believed to
be left-over populations of planetesimals that did not grow to
planets. Comparing models and simulations of planetesimal for-
mation to observations of such planetesimal belts constrains
our theoretical picture of the planetesimal formation stage, and
at the same time it gives insight into the physical processes
that shaped the architectures of these systems (Morbidelli et al.
2009; Weidenschilling 2010; Nesvorný et al. 2010; Sheppard &
Trujillo 2010; Krivov 2010; Kenyon & Bromley 2010).

Planetesimal formation takes place in a complex environ-
ment of turbulent gas interacting via drag forces with particles
of many sizes. The streaming instability thrives in the system-
atic relative motion of gas and particles and leads to spontaneous
clumping of particles (Youdin & Goodman 2005; Johansen &
Youdin 2007; Bai & Stone 2010b), seeding a gravitational col-
lapse into bound clumps (Johansen et al. 2009) and further to

� Appendices are available in electronic form at
http://www.aanda.org

solid planetesimals (Nesvorný et al. 2010). While the latest years
have seen major progress in numerical modelling of drag force
interaction between particles and gas (Youdin & Johansen 2007;
Balsara et al. 2009; Miniati 2010; Bai & Stone 2010a) as well as
the self-gravity of the particle layer (Johansen et al. 2007; Rein
et al. 2010), good algorithms for treating simultaneously hydro-
dynamics, gravitational dynamics and particle collisions are still
missing.

There are two main approaches in astrophysics to treating
particle collisions in numerical simulations. Modelling a set of
physical particles with collision tracking allows simulation of
particle aggregation in close concordance with the nature of real
physical collisions. This method has successfully been applied to
model the particle rings of Saturn (Wisdom & Tremaine 1988;
Salo 1991; Karjalainen & Salo 2004) and to model collisions be-
tween individual dust grains and aggregates (Dominik & Nübold
2002). The drawback of the physical-particle approach is that the
size of the system is limited by the number of numerical parti-
cles that can be afforded in the simulation. The formation of a
Ceres-mass planetesimal from 10-cm-sized rocks would e.g. re-
quire tracking of O(1020) particles, orders of magnitude beyond
what current computational resources allow.

Algorithms involving inflated particles group collections of
physical particles into much larger numerical particles under
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conservation of total mass M and mean free path λ. Decreasing
the particle number N to a number that can be handled in a
computer simulation, while maintaining λ−1 ≡ (N/V)σ by ar-
tificially increasing the collisional cross section σ, yields the
correct collision frequency in systems that are much larger than
what can be resolved with the physical particle approach. The in-
flated particle approach was used recently by Lithwick & Chiang
(2007), Michikoshi et al. (2007), Nesvorný et al. (2010), and
Rein et al. (2010), with different methods for tracking the actual
collision, but the concept of bloated particles has deeper roots
(e.g. Kokubo & Ida 1996).

In this paper we put forward a new algorithm to model col-
lisions between numerical superparticles. Superparticles are de-
signed to represent swarms of physical particles. The aerody-
namical properties of the superparticle (e.g. the friction time) is
still that of a single physical particle. Superparticles are widely
used to model the solid particle component in computer sim-
ulations of coupled gas and particle motion in protoplanetary
discs (Johansen & Youdin 2007; Bai & Stone 2010b). Since su-
perparticles can be considered to represent swarms of smaller
particles, direct collision tracking is not possible. Johansen et al.
(2007) modelled superparticle collisions by damping the random
motion of particles inside a grid cell on the collisional time-
scale. They showed that inelastic collisions, where part of the
kinetic energy is converted to heat and deformation during the
collisions, is beneficial for the gravitational collapse and allows
the formation of planetesimals in protoplanetary discs of lower
mass, compared to simulations without damping. However, the
simplified collision scheme of Johansen et al. (2007) is insuffi-
cient in capturing the pairwise momentum exchange and energy
dissipation.

We develop here a statistical approach to model the full mo-
mentum exchange and energy dissipation in collisions between
superparticles. The Monte Carlo scheme is inspired by the col-
lision algorithms presented by Lithwick & Chiang (2007) and
Zsom & Dullemond (2008). The essence of our algorithm is
to determine the collision time-scale between all superparticle
pairs within a grid cell. Two superparticles collide as if they were
physical particles touching each other, if a random number cho-
sen uniformly between zero and one is smaller than the ratio of
the simulation time-step to the collision time-scale.

Collisions can be followed together with hydrodynamics at
a moderate computational cost depending only on the number of
particles per grid cell. We compare the statistical properties of
the particle density in 3D hydrodynamical simulations with and
without collisions. Including the self-gravity of the particles, we
find formation of bound clumps, with masses comparable to that
of the 500-km-radius dwarf planet Ceres when applied to the as-
teroid belt, relatively independently of numerical resolution and
treatment of collisions. The scale-free nature of our simulations
allows application of the results to the Kuiper belt as well, with
contracted planetesimal radii approximately 80% higher than in
the asteroid belt.

The paper is organised as follows. In Sect. 2 we describe the
new superparticle collision algorithm. The algorithm is tested
against known test problems and conservation properties of the
shearing box in Sect. 3. In Sect. 4 we analyse statistical prop-
erties of the particle density achieved in simulations of gas and
particle turbulence driven by the streaming instability. We con-
tinue to include self-gravity in the simulations and analyse the
planetesimal masses obtained under various assumptions about
collisions in Sect. 5. We summarise and discuss our results in
Sect. 6. The Appendices A–C contain further descriptions of the
collision algorithm.

2. Superparticle collision algorithm

We will use the notation that a superparticle represents a swarm
of physical particles with number density n̂ and volume δV .
Since we are interested in coupling superparticle collisions to
grid hydrodynamics, the volume is taken to be that of a grid cell,
δV = δx × δy × δz. The physical particles in the swarm have in-
dividual mass, physical radius, material density, and collisional
cross section m, R, ρ• and σ. We assume that all swarms are sim-
ilar, both in internal particle number and in the physical mass of
the constituent particles.

To track a collision we calculate the mean free path λ̂ for a
test particle interacting with the swarm of particles represented
by a single superparticle,

λ̂ =
1

n̂σ
· (1)

Superparticles in the same grid cell are considered as potential
colliders. For each collision pair the collision time-scale is cal-
culated from

τc =
λ̂

δv
, (2)

where δv is the relative speed between particles i and j. The sim-
ulation time-step δt, set by hydrodynamics and drag forces, is
then used to calculate the probability that those two particles
collide in this time-step,

P =
δt
τc
· (3)

Two colliding swarms have their velocity vectors changed in-
stantaneously. The collision outcome is found by considering
two virtual spherical particles whose surfaces touch, with par-
ticle centres at the locations of the superparticles, and solving
for momentum conservation and inelastic energy dissipation (or
energy conservation, in case of elastic collisions). We define the
velocity vectors relative to the mean velocity field u = (u j+uk)/2,

u′j = u j − u , (4)

u′k = uk − u = −u′j . (5)

Here u j and uk are the velocity vectors of the two particles1. The
normal vector e⊥ connecting the centres of the particles at the
time of collision is calculated as

e⊥ =
x j − xk

|x j − xk | · (6)

The parallel vector e‖ is perpendicular to e⊥ in the same plane as
the relative velocity vector. The relative velocity vectors are now
decomposed on the two directions

u′j = a je⊥ + b je‖, (7)

u′k = ake⊥ + bke‖, (8)

with ak = −a j and bk = −b j. In the collision we maintain b,
while we reflect a according to

a→ −εa. (9)

1 We show in Sect. 3.2.1 that the Keplerian shear should be subtracted
from the velocity vectors when determining both the collision time-
scale and the collision outcome, in the limit of particles that are much
smaller than a grid cell.
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Here ε ∈ [0, 1] is the coefficient of restitution, parameterising the
degree of energy dissipation during the collision. Inelastic col-
lisions can play an important role in dissipating kinetic energy
and facilitating the gravitational collapse phase. In general the
coefficient of restitution depends on material parameters, impact
speed and ambient temperature. Water ice particles have been
measured to have a high coefficient of restitution ε ≈ 0.9 for
impact speeds below ≈2 m/s (quasi-elastic regime of Higa et al.
1996). Above this critical speed the measured coefficient of resti-
tution rapidly drops towards zero. More recent microgravity and
drop tower experiments find a coefficient of restitution between
0.06 and 0.84 in low-velocity collisions between 1.5-cm-sized
icy pebbles (Heißelmann et al. 2010). In this paper we consider
for the sake of simplicity the coefficient of restitution to be a
constant that is independent of the relative speed.

The collision time-scale has a simple relation to the friction
time-scale when particles are small and drag forces are in the
Epstein regime. We show in Appendix A how the collision time-
scale can be easily calculated from the friction time-scale, useful
e.g. for simulations of gas and particles in protoplanetary discs.

Consider now a grid cell containing N superparticles. For
particle i the collision probability for a representative particle2

from superparticle i to collide with the particle swarms j = i + 1
to j = N is calculated. The collision occurs if a random num-
ber, drawn for each collision partner, is smaller than P from
Eq. (3). The collision instantaneously changes the velocity vec-
tors of both particles i and j. This way the correct collision fre-
quency is obtained for both particles, even though the algorithm
only considers the possible collision i with j, but not j with i. In
Appendix B we describe how to consistently limit the number of
collision partners, and thus save computation time, in grid cells
which contain many (
100) particles.

There are several advantages to using such a probabilistic
swarm approach to particle collisions. We mention here a few:
(i) it is fast because we do not have to track when particles
touch or overlap within the grid cells; (ii) it allows us to freely
choose the relative speed that enters the collision frequency, use-
ful e.g. for subtracting off the Keplerian shear (see Sect. 3.2.1);
and (iii) the algorithm is easily generalisable to also include a
probabilistic approach to particle coagulation and shattering.

In Fig. 1 we show the collision path length of test particles
injected into a medium with 10 superparticles per grid cell and
a mean free path of λ = 0.1. Collisions are tracked through the
Monte Carlo method described above. The collision algorithm
makes some particles collide after a short flight path and others
after a longer. The distribution plotted in Fig. 1 follows closely
the expectation N = N0 exp(−	/λ). The Monte Carlo approach
to collisions is very similar to the physical particle approach in
the distribution of free flight paths.

The main technical difference between using inflated parti-
cles (see introduction) and our newly developed collision algo-
rithm for superparticles is that inflated particles always collide
when they overlap physically (the particle size can be associated
with the grid cell size), while superparticles sharing the same
grid cell collide with a certain probability which guarantees that
collisions occur on the average after a collisional time-scale.
Another difference is that superparticles which do not approach
must still be allowed to collide, as otherwise the mean free path
will be too long. Non-approaching particles are collided by flip-
ping the relative velocity vector before collision and reflipping

2 Zsom & Dullemond (2008) define a representative particle from a
swarm as a test particle (a random particle from the swarm) used to
probe the collision time-scale with another swarm.
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Fig. 1. Cumulative free path for 1000 superparticles released into
medium with mean-free-path of λ = 0.1. The distribution function fol-
lows the analytical expectation N = N0 exp(−	/λ) very closely. Our
Monte Carlo algorithm for superparticle collisions gives a free path in
good agreement with the real physical system consisting of many more
particles.

afterwards. The main issue with approaching collisions is that
collisions occur in fixed grid cells which are not centred on the
superparticle in question, and thus a superparticle at the edge of
a grid cell will have too few collision partners if only approach-
ing collisions are allowed. We show in Appendix C how the su-
perparticle approach transforms smoothly to the inflated particle
approach when the number of superparticles is reduced.

The Monte Carlo collision scheme presented here could
equally well be formulated in terms of inflated particles, by con-
structing inflated particles smaller than a grid cell. Solving sta-
tistically for the collision outcome of these “sub-grid” particles
is mathematically equivalent to the interpretation, chosen for this
paper, of the numerical particles as swarms.

3. Validation of algorithm

We have implemented the Monte Carlo superparticle collision
scheme described in Sect. 2 into the open source code Pencil
Code3. The Pencil Code evolves gas on a fixed grid and has
fully parallelised modules for an additional solid component
represented by superparticles (Johansen et al. 2007; Youdin &
Johansen 2007). We first validate the collision algorithm in the
limit of inflated particles (i.e. where two particles occupying
the same grid cell always collide and only approaching colli-
sions are considered), to compare our results directly to those
of Lithwick & Chiang (2007). The 2D algorithm of Lithwick &
Chiang (2007) has a probabilistic approach to determine whether
two particles are in the same vertical zone when they overlap in
the plane. Their algorithm can thus be seen as a hybrid of the
inflated particle approach and a Monte Carlo scheme.

We set up a test problem similar to the one presented in
Lithwick & Chiang (2007). We define a 2D simulation box cov-
ering the spatial interval [−2,+2]× [−2,+2] with 4000 grid cells
in both the x and y direction. 104 particles are placed randomly

3 The code, including the developments described in this paper, can be
freely downloaded at http://code.google.com/p/pencil-code/.
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in a ring of full width 0.08 centred at the radial distance r = 1.
A central gravity source, of strength GM = 1, is placed in the
centre of the coordinate frame.

We integrate the particle orbits, including collisions, for 104

revolutions of the ring centre. In order to compare directly with
Lithwick & Chiang (2007) we use their 2D approximation. The
particle number density can be approximated as n ∼ Σ/H, where
Σ is the column (number) density and H is the scale height of
the particle disc. The random particle motion u can be written as
u ∼ HΩ. This yields a collision time

τ(2D)
c ∼ 1

nσu
∼ 1
ΣσΩ

∼ Torb

τ
, (10)

where τ = Σσ is the vertical optical depth of the disc and
Torb = 2π/Ω is the orbital time-scale. While the collision time-
scale in general depends on the random particle motion, this
dependence vanishes in the 2D Keplerian disc approximation
– faster random motion cancels with increased particle scale-
height in the collision time expression.

Requiring that orbits are maintained for 104 orbital time-
scales, we set the time-step of the Pencil Code to δt = 0.01Ω−1,
covering each orbit Torb = 2π/Ω by around 600 time-steps.
This proved necessary because the third order time integration
scheme of the Pencil Code is not constructed to conserve orbital
angular momentum and energy. Using the highly optimized or-
bital dynamics code SWIFT, Lithwick & Chiang (2007) solve
the same problem with slightly less than five time-steps per
orbit.

In Fig. 2 we show the eccentricity evolution of the particle
ring. For a coefficient of restitution of ε = 0.3 the particles re-
lax to an equilibrium eccentricity of around erms = 0.001, com-
parable to δx/r. A higher coefficient of restitution of ε = 0.6
leads instead to catastrophic heating of the disc (Goldreich &
Tremaine 1978), with an eccentricity that evolves linearly with
time. The results presented in Fig. 2 show that the superparticle
collision algorithm is in excellent agreement with Lithwick &
Chiang (2007) in the limit of inflated particles.

3.1. Density evolution

The width of a particle ring increases due to collisional viscos-
ity. Since the collision time-scale scales inversely with particle
density, the collisional evolution slows down with time. An an-
alytical solution to the diffusion problem was found by Petit &
Henon (1987). In the notation of Lithwick & Chiang (2007) the
width σr of an initially narrow ring increases according to

σr =

(
36

203/2
kν

(δx)4

r
Ntp

t
Torb

)1/3

· (11)

Here kν is a dimensionless factor that depends on the coefficient
of restitution ε, δx is the grid spacing, r is the mean radial coor-
dinate of the particles, Ntp is the particle number and t the time.

We follow Lithwick & Chiang (2007) and define an initially
very narrow ring of radial extent 2Δ = 10−3. The units follow
from our choice of GM = 1. The evolution of the radial width
is shown in Fig. 3 over 104 orbits. We overplot the analytical
solution for kν = 0.016, similar to the fit in Lithwick & Chiang
(2007), and find excellent agreement.

3.2. Superparticle collisions in the local frame

Hill’s equations describe motion relative to a frame that corotates
with the Keplerian frequencyΩ at an arbitrary distance from the
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Fig. 2. The eccentricity evolution of particles orbiting a central gravity
with GM = 1. Relatively inelastic collisions, with coefficient of restitu-
tion ε = 0.3, evolve towards an equilibrium eccentricity of 10−3, with
orbital excursions comparable to the grid spacing. More elastic colli-
sions, with ε = 0.6, lead to catastrophic heating of the particle system.
The results follow closely Fig. 1 of Lithwick & Chiang (2007).

102 103 104

t/Torb

0.001

0.010

σ r

Fig. 3. The width of a particle ring orbiting a central gravitating mass
versus time. The 10 000 particles were initially placed in a ring centred
at r = 1 and a width of 2Δ = 10−3, similar to the grid spacing. Compare
to upper panel of Fig. 3 in Lithwick & Chiang (2007).

central gravity source. The coordinate axes are defined such that
x points radially outwards and y points along the flow of the disc.
The 2D equations of motion of particles are

dvx
dt
= +2Ωvy + 3Ω2x , (12)

dvy
dt
= −2Ωvx . (13)

Particle positions are evolved through ẋ = u. The boundary con-
ditions are periodic in the azimuthal direction. Particles passing
over the inner (outer) radial boundary get the velocity (3/2)ΩLx
subtracted (added) to their azimuthal velocity. We also refer
to the frame as the shearing box. We consider a box size of
Lx = Ly = 0.2 covered by 322 grid cells and 102 400 particles.

The conserved energy (Jacobi constant) is

E =
1
2

mẋ2 +
1
2

mẏ2 − 3
2

mΩ2x2 . (14)
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Fig. 4. Evolution of energy in a shearing box simulation where parti-
cles have a mean-free-path of λ = 0.1H and coefficient of restitution
ε = 0.3. Drag forces are ignored. The Jacobi constant falls due to dis-
sipative collisions. By monitoring the energy released as particles pass
the boundaries and the energy dissipation by inelastic collisions we can
account for all the energy in the system.

Elastic collisions re-orient the particles without changing en-
ergy, and thus convert circular orbits into eccentric ones while
conserving energy. Ignoring gas, which damps the velocity rela-
tive to the gas and hence the eccentricity, elastic collisions con-
serve the Jacobi energy. Figure 4 shows the energy of particles
versus time in local frame simulation with inelastic collisions.
Particles are initialised with random position and velocity vec-
tors (δv = 1). The mean-free-path is λ = 0.1H, giving an initial
collision time-scale of τc ∼ 0.1. The coefficient of restitution
is ε = 0.3. The Jacobi constant falls with time due to the en-
ergy dissipated by inelastic collisions. At the same time parti-
cles passing over the radial boundaries release energy from the
Keplerian shear through their mean Reynolds stress (the code
tracks and outputs that energy release for each particle passing
the radial boundary). All energy in the system is accounted for
in these three reservoirs.

3.2.1. Shear during collision

Particle collisions in the shearing box release energy from the
Keplerian shear into random motion, leading in the absence of
drag forces either to catastrophic heating (vrms → ∞) or to
an equilibrium with energy dissipation in inelastic collisions
(vrms ∼ RΩ where R is the particle radius). Discounting the for-
mer option, the result of the latter can be artificially exaggerated
by the numerical scheme because we identify the collision be-
tween two superparticle swarms with the collision between two
members of the swarms located at the respective swarm centres.
In reality collisions would occur between neighbouring particles
separated by less than their physical diameter. The numerical al-
gorithm will make the system settle for an equilibrium where
vrms ∼ (δx)Ω, where δx is the grid spacing and also the typical
distance between superparticle centres. This rms speed greatly
exceeds the desired vrms ∼ RΩ. In other words, the naive colli-
sion algorithm will input artificial heating.

Collisions between particles of radius R  δx can be mod-
elled by subtracting the Keplerian shear part from the relative

speed both for determining the collision time-scale and for deter-
mining the outcome of the collision. Decomposing the azimuthal
velocity field as ẏ = ṽy + v

(0)
y , where v(0)

y = −(3/2)Ωx is the
Keplerian shear velocity and ṽy is the peculiar velocity, we can
calculate both the collision time-scale and outcome in terms of ṽy
(together with vx and vz). Lyra et al. (2009) applied a similar trick
to subtract off the entire (Keplerian plus peculiar) gas velocity
from the particle velocity. However, two particles moving at the
same velocity as the local gas do not necessarily avoid collisions,
even if the gas is incompressible, since the particle motion is not
completely coupled to the gas. Therefore we choose in this paper
to subtract off only the Keplerian orbital speed from the particle
velocity. The dynamical equations of the Pencil Code are already
formulated relative to the Keplerian shear, so subtracting off the
shear is natural to the governing system of equations.

Collisions relative to the Keplerian shear conserve both the
total momentum and the momentum relative to the Keplerian
shear, but the energy in elastic collisions is only conserved rela-
tive to the Keplerian shear. To see this, consider the kinetic en-
ergy of two particles,

E =
1
2

m
{
v2x1 +

[
ṽy1 + v

(0)
y1

]2
}
+

1
2

m
{
v2x2 +

[
ṽy2 + v

(0)
y2

]2
}
· (15)

Here m is the mass of a superparticle, assumed to be the same
for both colliders. An elastic collision solved in terms of (vx1, ṽy1,
vx2, ṽy2) conserves both the sum of the squares of those velocity
components, as well as the squares of v(0)

y1 and v(0)
y2 (the latter is

true since the position x is not changed by the collision). The
difference in energy before and after the collision is therefore

ΔE = Eafter − Ebefore = m
[
Δṽy1v

(0)
y1 + Δṽy2v

(0)
y2

]
. (16)

This result holds also in 3D. The energy difference is generally
not zero, even thoughΔṽy1 = −Δṽy2 by momentum conservation,
since the offset v(0)

y is not the same for the two particles. The
non-conservation is nevertheless small: the azimuthal velocity
change in the collision is uncorrelated with the Keplerian shear
velocity, so 〈Δṽyv(0)

y 〉box ≈ 0. The particle integrator’s slight non-
conservation of Keplerian orbits is not a serious limitation in
simulations where the dynamics is driven by hydrodynamical
instabilities and drag forces. The correct relative Keplerian shear
based on the physical size of the particles can in principle be
added artificially, to obtain the correct energy release from the
shear, but this is negligible for 1–10 cm particles considered in
this paper.

The total angular momentum of two colliding particles,

L = mr1 × u1 + mr2 × u2, (17)

is conserved in the collisions, both with and without Keplerian
shear in the collision, as long as the force during the collision
acts along the line connecting the two particles. This is the case
both with and without Keplerian shear. For equal-mass particles
we can write the change in the velocity as Δu1 = −Δu2 = c(r2 −
r1), giving

ΔL = mr1 × Δu1 + mr2 × Δu2 = 0. (18)

The above arguments for energy and angular momentum con-
servation are generalisible to distinct particle masses as well.
However, while the Monte Carlo collision scheme in itself is
fully consistent with distinct particle masses, correct energy
equipartition among particle sizes can not be obtained with
equal-mass superparticles (see discussion in Appendix A.1).
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In the following we use the abbreviations KS for collisions
that include Keplerian shear and NS for collisions where the
Keplerian shear is subtracted off when determining the colli-
sion time-scale and outcome. Figure 5 shows the evolution of the
particle rms speed in a shearing box simulation. The top panel
shows the decay of initially random particle motion by inelas-
tic (ε = 0.3) collisions for KS collisions and for NS collisions.
KS collisions decay towards vrms ≈ (δx)Ω, the random motion
released by the Keplerian shear in a single collision. NS colli-
sions on the other hand continue to decay towards zero. In the
bottom panel of Fig. 5 we start with zero random motion and
observe how elastic (ε = 1.0) KS collisions heat up the system.
Rerunning the simulation with elastic NS collisions from various
starting times of the KS simulation shows clearly that the evolu-
tion of the system is very similar as long as the particle rms speed
is larger than (δx)Ω. In actual simulations with gas and hydrody-
namical instabilities driving particle dynamics with characteris-
tic motion much faster than v ∼ (δx)Ω, one can subtract off the
Keplerian shear term when determining the time-scale and out-
come of collisions and still model the correct system, without
any spurious energy released by bloated particles.

4. Particle collisions and the streaming instability

Armed with a collision algorithm for superparticles, we are now
ready to explore the effect of particle collisions on particle con-
centration by streaming instabilities and planetesimal formation
by self-gravity. The streaming instability feeds off the relative
(streaming) motion of gas and particles in protoplanetary discs
and has a characteristic length scale comparable to the sub-
Keplerian length ηr (Youdin & Goodman 2005). Here η is the
radial pressure gradient parameter of Nakagawa et al. (1986)
and r is the distance to the central star. Johansen et al. (2009) and
Bai & Stone (2010b) demonstrated that the streaming instability
leads to strong particle clumping when the heavy element abun-
dance of the disc is above a threshold value of Z ≈ 0.02 for par-
ticle sizes Ωτf � 0.1 (and moderate radial drift, see Bai & Stone
2010c). Clumping proceeds as initially very low amplitude parti-
cle overdensities accelerate the gas towards the Keplerian speed,
hence reducing the local head-wind, which in turn slows the ra-
dial drift of the particles. Drifting particles pile up where the
head-wind is slower, causing exponential growth of the particle
density as the particles continue to increase their drag force influ-
ence on the gas. Johansen et al. (2009) found that overdense re-
gions contract when including particle self-gravity and that even-
tually a number of gravitationally bound clumps form. These
models nevertheless did not include any particle collisions.

We perform 3D simulations where the gas is modelled on a
fixed grid and solid particles with superparticles. We solve the
standard shearing box equations for gas and particles (same as
in Johansen & Youdin 2007, but with additional vertical grav-
ity). The frame corotates at the Keplerian frequencyΩ at a fixed
orbital distance r from the star. The coordinate axes are ori-
ented such that x points radially outwards, y points along the
rotation direction of the disc, while z points perpendicular to
the disc along Ω. The gas is subjected to a radial pressure gra-
dient which reduces its orbital speed by the positive amount
Δv = 0.05cs. Particles do not feel this radial pressure gradient,
and the resulting relative motion between particles and gas drives
the streaming instability (Goodman & Pindor 2000; Youdin &
Goodman 2005). We consider a cubic box with side lengths
Lx = Ly = Lz = 0.2H, where H = cs/Ω is the gas scale height,
to capture the fastest growing modes of the streaming instability
of marginally coupled particles, λSI/H ∼ ηr/H ∼ Δv/cs = 0.05.
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Fig. 5. Evolution of particle rms speed in the shearing box for a sim-
ulation with normal collisions (KS, blue/black line) and a simulation
in which the relative Keplerian shear is subtracted when determining
the collision time-scale and outcome (NS, red/gray line). The top panel
shows the decay of initially random particle motion due to inelastic col-
lisions (ε = 0.3). The rms speed can not fall below vrms ≈ (δx)Ω for
KS collisions, due to the energy release from the Keplerian shear. In the
simulation with NS collisions, on the other hand, the rms speed contin-
ues to decay towards zero. In the bottom panel we consider elastic col-
lisions (ε = 1.0) with zero random motion initially. Energy is released
from the Keplerian shear. The blue line shows results of simulations
with NS collisions, rerun from snapshots of the KS simulation at vari-
ous times. The two solutions match increasingly well when the particle
rms speed increases above (δx)Ω.

This is also the characteristic scale of Kelvin-Helmholtz instabil-
ities, thriving in the vertical shear in the gas and particle velocity
(Youdin & Shu 2002; Lee et al. 2010), although Bai & Stone
(2010b) demonstrated that the streaming instability is dominant
over Kelvin-Helmholtz instabilities in setting the dynamics of
particle layers with Ωτf > 0.1.

The friction time of the particles is fixed at Ωτf = 0.3 in
all simulations, corresponding to approximately 20-cm rocks
around the location of the asteroid belt at 3 AU, and to 6-mm
pebbles at 30 AU (Weidenschilling 1977). The particle column
density is set to 2% of the total gas column density, the latter
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Table 1. Simulation parameters.

Run Lx × Ly × Lz Nx × Ny × Nz Npar Ωτf Collisions ε Δt tsg

SI64_nocoll 0.2 × 0.2 × 0.2 64 × 64 × 64 300 000 0.3 – – 100 –
SI64_e1.0 0.2 × 0.2 × 0.2 64 × 64 × 64 300 000 0.3 KS 1.0 100 –
SI64_e0.3 0.2 × 0.2 × 0.2 64 × 64 × 64 300 000 0.3 KS 0.3 100 –
SI64_e0.3_NS 0.2 × 0.2 × 0.2 64 × 64 × 64 300 000 0.3 NS 0.3 100 52
SI128_nocoll 0.2 × 0.2 × 0.2 128 × 128 × 128 2 400 000 0.3 – – 50 –
SI128_e1.0 0.2 × 0.2 × 0.2 128 × 128 × 128 2 400 000 0.3 KS 1.0 50 –
SI128_e0.3 0.2 × 0.2 × 0.2 128 × 128 × 128 2 400 000 0.3 KS 0.3 50 –
SI128_e0.3_NS 0.2 × 0.2 × 0.2 128 × 128 × 128 2 400 000 0.3 NS 0.3 50 19

Notes. Column (1): Name of simulation. Column (2): Box size in scale heights. Column (3): Resolution. Column (4): Number of parti-
cles. Column (5): Friction time. Column (6): Collision type. Column (7): Coefficient of restitution. Column (8): Simulation time in orbits.
Column (9): Time of starting self-gravity.

including the gas beyond the vertical boundaries of the box. For
our choice of Δv strong particle clumping can only be obtained
at such super-solar metallicity4. The average dust-to-gas ratio in
a box of Lz = 0.2H is 〈ρp/ρg〉 ≈ 0.25 when Z = 0.02. We set
sound speed cs, Keplerian frequency Ω and mid-plane gas den-
sity ρ0 to unity, so these form the natural units of the simulations.

We compare results obtained without and with particle colli-
sions. Simulations with particle collisions are run in three varia-
tions: either with elastic collisions (ε = 1.0), with inelastic colli-
sions (ε = 0.3) or with inelastic collisions where Keplerian shear
is subtracted off when determining the time-scale and outcome
of collisions. Simulation parameters are given Table 1. Each par-
ticle swarm contains a mass per volume of ρ̂p/ρ0 ≈ 0.219 for the
considered particle number at both 643 and 1283.

4.1. Maximum particle density

We monitor the maximum particle density regularly in the sim-
ulations. In Fig. 6 we show the maximum particle density ver-
sus time in simulations with 643 grid cells and 1283 grid cells,
respectively. Simulations without collisions generally achieve
higher particle density – up to 600 times the gas density at 643

and 1200 times the gas density at 1283. Elastic collisions and
inelastic collisions with ε = 0.3 give very high particle densi-
ties too, but the peaks have an approximately 50% lower value
than in simulations without collisions. Elastic collisions achieve
a somewhat lower maximum density than inelastic collisions.
The kinetic energy dissipation in inelastic collisions reduces
the random motion of the particles and allows higher particle
contraction.

The inclusion of Keplerian shear during the collision can
lead to unphysical results, since the shear term is exaggerated
by enlarging particles to the size of a grid cell. The exaggerated
kinetic energy input will in turn suppress concentration peaks,
in agreement with what is seen in Fig. 6. In Fig. 7 we show the
maximum density in simulations with inelastic KS and NS col-
lisions respectively (and the results without collisions for com-
parison). Simulations with NS collisions display a three times
higher maximum density than simulations with KS collisions.
The maximum density is even a factor 2–3 times higher than in
simulations without collisions. This way collisions actually pro-
mote particle concentration.

4 The threshold for clumping can be estimated analytically to be Z ∼
η(r/H) (Youdin & Shu 2002). Bai & Stone (2010c) and Johansen et al.
(2007) confirmed numerically that the threshold for particle clumping
by the streaming instability shifts towards higher (lower) metallicity as
the sub-Keplerian speed difference Δv is increased (decreased).
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Fig. 6. Maximum particle density, relative to the mid-plane gas density,
versus time for a series of 643 simulations (top panel) and 1283 simu-
lations (bottom panel) of turbulence driven by the streaming instability
with different treatment of collisions. The maximum particle density in-
creases by a factor approximately 2 when doubling the resolution, but
the maximum density peaks are consistently 50% lower when including
particle collisions. Note the different scale of the axes in the two plots.

In Fig. 8 we analyse the particle motion within three grid
cells of the run SI128_e0.3. We choose the grid cell with the
maximum particle density in the box and two grid cells with a
particle density close to 100 and 10 times the gas density, respec-
tively. The particle velocity shows both systematic trends and
random motion within the cells. The random motion is slower in
the cells of higher density. The Keplerian shear is clearly visible
in the y-velocity of particles in the two densest grid cells. Thus
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Fig. 7. Maximum particle density, relative to the mid-plane gas density,
versus time for simulations with normal collisions (KS) compared to
simulations where we subtract off the Keplerian shear difference be-
tween particle pairs when calculating the collision time and the out-
come of the collision (NS). NS collisions display more than three times
higher particle densities than KS collisions. Peak concentrations fill a
larger fraction of the simulation time at 1283.

the hydrodynamical simulations are prone to spurious heating, as
explained above. Subtracting off the Keplerian shear term when
determining the time-scale and outcome of collisions avoids this
problem. Figure 8 also shows a systematic trend in the radial par-
ticle velocity. Radial convergence and divergence in the particle
velocity are expected when particles concentrate in radial bands
and when the concentrations dissolve again. We do not attempt
to correct for this systematic velocity within grid cells, but note
that systematic trends from smooth gradients will decrease with
increasing resolution.

4.2. Particle concentration versus scale

Overdense particle sheets contract radially under the action of
self-gravity and drag forces (Youdin 2011; Michikoshi et al.
2010; Shariff & Cuzzi 2011). A full non-axisymmetric collapse
is initiated when the particle density crosses the Roche density

ρR =
9

4π
Ω2

G
· (19)

The mass of the planetesimal will be characterized by the scale
over which the Roche density is achieved. To quantify the scale-
dependence of the particle concentrations, we measure the max-
imum particle density over cubic regions of side length Nt grid
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Fig. 8. The three components of the particle velocity as a function of
the radial position within a grid cell. Three grid cells were chosen at
t = 45Torb of the run SI128_e0.3, one with the highest particle density
in the box, one with a particle density close to 100 times the gas density
and finally one with a particle density close to 10 times the gas density.
Both systematic and random particle motion is present within the grid
cells. The Keplerian shear is clearly visible in the y-velocity (marked
with a solid line in the middle panel). The cells with the highest density
have generally a slower random motion and are thus more affected by
the Keplerian shear.

cells, increasing Nt from 1 to Nx. We ensure that all concen-
trations centres are probed by stepping the measurement re-
gion through the entire grid. Measurement regions crossing the
boundaries are handled by expanding the particle density field
with its periodic counterpart in all directions (glueing together
33 copies which are identical except for a shift due to Keplerian
shear).

For snapshots saved once per orbit from t = 20Torb to
t = 50Torb we calculate the maximum particle density as a
function of scale. The results are shown in Fig. 9 for simula-
tions with NS collisions (SI64_e0.3_NS and SI128_e0.3_NS) in
the top panel and simulations with no collisions (SI64_nocoll
and SI128_nocoll) in the bottom panel. We extend the measure-
ments of SI64_e0.3_NS to t = 60Torb to catch a major concen-
tration event (see top panel of Fig. 7). We indicate in Fig. 9 both
the maximum density over all times and the mean of the time-
dependent maximum density. The maximum scale-dependent
density in NS simulations is very similar at 643 and at 1283.
This quantity is nevertheless very sensitive to the low-number
statistics of the concentration events. A more robust measure
is the mean of the maximum density. This measure increases
somewhat from 643 to 1283. It is also evident from Fig. 7 that
major concentration events have a higher temporal filling fac-
tor at 1283. Whether this is intrinsic to the streaming instability
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Fig. 9. Maximum particle density, relative to the mid-plane gas density,
as a function of scale, for simulations with NS collisions (top panel) and
simulations with no collisions (bottom panel). Diamonds indicate the
maximum density over a given scale, while pluses indicate the mean of
the time-dependent maximum density. Simulations with NS collisions
display good convergence in the maximum density, following closely a
max(ρp) ∝ L−2 law (thin black line), while the mean of the maximum
density increases from 643 to 1283, due to a higher temporal filling fac-
tor of major concentration events at higher resolution (see Fig. 7). The
dashed line shows the maximum density for a uniform razor-thin mid-
plane layer for comparison. Blue dotted lines show the Roche density
for the minimum mass solar nebula at 3 AU from the central star, and
for five times less and more massive nebulae. The red dotted line indi-
cates the characteristic length scale of the streaming instability, L = ηr.
Particle densities above 103 times the gas density are reached in regions
smaller than ≈0.003H, equivalent of L ≈ 50 000 km at 3 AU.

dynamics or just an effect of running simulations for too short
time is not possible to discern.

The apparent linear decrease of logarithmic density with log-
arithmic scale implies max(ρp) ∝ L−α as a good model for
the scale-dependence of the maximum density. Two limits can
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Fig. 10. Zoom in on the densest grid cell in SI128_e0.3_NS at t =
32Torb. The overdense particle structure is elongated along the shear
direction with a density decreasing in all directions from the densest
point. The lower-right panel shows the particle density average over
shells of thickness one grid cell and a 1/r2 power-law overplotted.

immediately be put on α. The lowest value would stem from
a razor-thin particle mid-plane layer of uniform density, with
M ∝ L2, giving max(ρp) ∝ M/L3 ∝ L−1 and thus α = 1.
Concentration of all particles in a single point would yield the
upper limit of α = 3. We overplot in Fig. 9 with a thin black line
the power law max(ρp) ∝ L−2, fitted to match the mean density
of the box at L = 0.2H. The α = 2 power law follows the data
extremely well. This implies that M ∝ L, i.e. that the particles
primarily concentrate either in 1-D filaments or in spherically
symmetric clouds of density ρ(r) ∝ 1/r2, known in star forma-
tion as the singular isothermal sphere solution (e.g. Shu 1977).
In Fig. 10 we show the particle density around the densest grid
point in SI128_e0.3_NS at t = 32Torb. The overdense structure
appears elongated along the y-direction with the density falling
rapidly towards all directions (although slower along y).

Simulations without collisions (bottom panel of Fig. 9) show
similar trends as the simulations with NS collisions, but there is
a marked decrease in the maximum density over the smallest
shared scale between 643 and 1283. Nevertheless the mean of
the maximum density agrees between the two resolutions.

The convergence in scale-dependent maximum density
shows that the dynamics of the streaming instability concen-
tration events is well-resolved and independent of dissipation
scale and viscosity. This is in contrast to turbulent concentra-
tion in driven isotropic turbulence which, for a given parti-
cle size, appears on length scales that are fixed relative to the
Kolmogorov (viscous) scale (Hogan & Cuzzi 2007; Pan et al.
2011). In contrast the streaming instability is fixed relative to the
sub-Keplerian scale ηr ∼ 0.05H. At 	 ∼ 0.0016H, probed only
at 1283, the maximum density in simulations with NS collisions
reaches more than three thousand times the gas density. Higher
resolution simulations will be needed to test if the particle den-
sity continues to follow the max(ρp) ∝ L−2 trend, or eventually
finds a smallest scale. The 2D streaming instability simulations
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of Bai & Stone (2010a) converged in density statistics at be-
tween 5122 and 10242 grid cells. Reaching those resolutions in
3D is very computationally demanding, but should be an impor-
tant priority for the future.

5. Planetesimal formation

The gravitational potential field of the particles is found by map-
ping the particle density on the grid, using a second order spline
interpolation scheme, and solving the Poisson equation using a
fast Fourier transform method (Johansen et al. 2007). The gravi-
tational acceleration is interpolated back to the particle positions
using second order spline interpolation. The strength of the grav-
ity is defined by the non-dimensional parameter

G̃ =
4πGρ0

Ω2
, (20)

which is related to the thin-disc self-gravity parameter Q through
Q ≈ 1.6G̃−1 (Safronov 1960; Toomre 1964). The solar nebula of
Hayashi (1981) has G̃ ≈ 0.04 at 3 AU from the sun, the pa-
rameter depending weakly on the distance. We use G̃ = 0.1 as a
reference choice in the simulations, but experiment with G̃ down
to 0.02.

The total particle mass in the box is

Mp = 〈ρp〉L3 ≈ 0.002H3ρ0, (21)

where the mass unit M0 = H3ρ0 depends on the temperature and
location in the disc [H] and the strength of the self-gravity [ρ0 =
(4πG)−1G̃Ω2]. While the expression in Eq. (21) does not depend
on G̃, in units where H = ρ0 = 1, the physical mass unit does. In
a nebula with the scale-height given by Hayashi (1981), we have
at r = 3 AU with G̃ = 0.1 a mass unit of M0 ≈ 1.3 × 1027 g and
Mp ≈ 2.8 MCeres.

We activate particle self-gravity in simulations of the stream-
ing instability with inelastic NS collisions, at times when there
is little particle concentration, to catch the simultaneous action
of streaming instability and self-gravity during the next con-
centration event. In SI64_e0.3_NS we thus start self-gravity at
t = 52Torb, while in SI128_e0.3_NS we start self-gravity at
t = 19Torb (see Fig. 7). We then evolve the simulation for an-
other 5 orbits, either ignoring collisions or applying the usual
variation of collision types (elastic, inelastic KS, inelastic NS).

Results of 643 simulations are shown in Fig. 11. Between
3 and 4 clumps5 initially condense out of the dominantly ax-
isymmetric filament forming by the streaming instability. These
clumps have masses between a tenth and a third of the dwarf
planet Ceres – corresponding to contracted radii between 220
and 330 km, assuming an internal density of 2 g/cm3. All the
clumps form in a single planetesimal-formation event shortly af-
ter the onset of self-gravity. The clumps continue to grow mainly
by accreting particles from the turbulent flow, but no new grav-
itationally bound clumps form. Clumps eventually collide and
merge in all simulations. Such clump merging is likely an un-
physical effect driven by the large sizes of the planetesimals. The
self-gravity solver does not allow gravitational structures to be-
come smaller than a grid cell, and that leads to artificially large
collisional cross sections. A more probable outcome of the real
physical system is gravitational scattering and/or formation of
binaries (Nesvorný et al. 2010).

5 The algorithm for identifying bound clumps is based on 2D column
density snapshots and is described in detail in Johansen et al. (2011).

Results at 1283 are shown in Fig. 12. At higher resolution the
number of clumps condensing out is about twice as high com-
pared to the lower resolution simulation. However, the masses
of the most massive clumps are very similar to lower resolu-
tion (although a bit higher – up to 60% of Ceres), so it appears
that higher resolution simply allows lower-mass clumps to con-
dense out as well. The masses of the clumps condensing out at
1283 resolution correspond to contracted radii between 84 and
405 km. The ability to form smaller clumps at higher resolution
is expected from the picture that a radial contraction phase is
needed before the Roche density can be achieved6. Higher reso-
lution allows contraction to narrower bands and thus formation
of less massive planetesimals. It is nevertheless difficult to com-
pare the planetesimal masses condensing out at the two resolu-
tions as the initial conditions are not the same.

Rein et al. (2010) observed in their 2D shearing sheet sim-
ulations that inclusion of collisions would lead to condensation
of fewer and more massive clumps, when compared to simula-
tions without collisions. Our Fig. 12 also shows that the simula-
tion with no collisions makes the highest number of clumps of
all the four simulations. Nevertheless the characteristic mass of
the most massive clumps appears indifferent to the treatment
of collisions.

Since G̃ controls the relative strength of self-gravity, results
obtained with a given G̃ can not be scaled to other values of
G̃. We vary the self-gravity parameter in 1283 simulations in
Fig. 13, starting self-gravity at the same time as in Fig. 12.
Weaker self-gravity gives lower clump masses, but gravitation-
ally bound clumps of up to 0.01 Ceres masses (or 100 km radius)
condense even at G̃ = 0.02. The solar nebula model of Hayashi
(1981) has G̃ ≈ 0.04 at 3 AU from the sun. Thus the streaming
instability allows planetesimal formation in disc models that are
similar in mass to the solar nebula, in contrast to recent simu-
lations of planetesimal formation in pressure bumps excited by
the magnetorotational instability which required disc masses up
to 10 times the solar nebula (Johansen et al. 2011).

The presented simulations do not catch the transition from
bound clump to solid planetesimal. However, Nesvorný et al.
(2010) simulated the gravitational collapse of spherical particle
clouds and generally found formation of binary planetesimals,
with the two largest bodies containing a significant fraction of
the mass of the cloud. The fact that the masses of the most mas-
sive bound clumps in our simulations are relatively independent
of resolution allows us to critically compare the mass distribu-
tion of the clumps to to the observed properties of the asteroid
and Kuiper belts and extrasolar debris discs.

5.1. Application to the Kuiper belt

The physical mass of the clumps depends on location in the disc
and on the self-gravity parameter G̃. While the simulations are
dimensionless, the translation to physical mass involves multi-
plication by the mass unit M0 = ρ0H3 = G̃Ω2H3/(4πG). In a
nebula with constant G̃ and T ∝ r−1/2, the mass unit scales as
M0 ∝ r3/4, so re-scaling to the Kuiper belt7 gives planetesimal
masses 5–6 times higher than in Figs. 11 and 12. Contracted radii

6 A similar order of events is seen in simulations of star formation
in self-gravitating accretion discs around supermassive black holes, see
e.g. Fig. 3 of Alexander et al. (2008).
7 The orbits of trans-Neptunian objects extend to several 10 AU be-
yond the orbit of Neptune, although many of these must have formed
within the orbit of Neptune and been scattered outwards later. Thus we
take 30 AU as an approximate distance scale.
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Fig. 11. Particle column density versus time after self-gravity is turned on at t0 = 52Torb = 326.726Ω−1 in the simulation SI64_e0.3_NS. An
overdense sheet forms by the streaming instability and breaks up in a number of gravitationally bound clumps. We indicate the number of clumps
and their masses, in units of the mass of the dwarf planet Ceres, in the lower left part of the plots. Between 3 and 4 clumps condense out
independently of how collisions are treated, with masses slightly smaller than Ceres. Clump merging, likely driven by the artificially large sizes
of the planetesimals, reduces the number of clumps with time in all cases. Note that the initial condition for all four simulations is taken from
SI64_e0.3_NS.

at the location of the Kuiper belt are approximately 80% higher
than in the asteroid belt, yielding planetesimal radii between 150
and 730 km. The upper range is comparable to the masses of the
largest known Kuiper belt objects (Chiang et al. 2007; Brown
2008).

This extrapolation is only valid for an assumed constant self-
gravity parameter G̃. The minimum mass solar nebula, with
Σ ∝ r−3/2, has G̃ ∝ r1/4. The weak dependence on radial

distance from the star gives in the Kuiper belt at r = 30 AU a
101/4 ≈ 1.8 times larger G̃ than in the asteroid belt. From Fig. 13
we read off an approximate doubling in planetesimal mass when
increasing G̃ from 0.05 to 0.1. We expect that this scaling holds
for larger G̃ as well. This way the minimum mass solar nebula
gives somewhat higher masses in the Kuiper belt compared to
the constant-G̃ extrapolation presented above.
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Fig. 12. Same as Fig. 11, but for 1283 simulations with self-gravity started at t0 = 19Torb = 119.381Ω−1. More clumps form initially, but the most
massive clumps have similar masses to the 643 simulation. The run with no collisions forms more low-mass clumps than the other runs. The initial
condition for all four simulations is taken from SI128_e0.3_NS. The total particle mass in the box is approximately 2.8 Ceres masses.

The comparison to observed planetesimal belts is neverthe-
less complicated by a potentially very efficient accretion of un-
bound particles (pebbles and rocks) by the newly born planetes-
imals after their formation (Johansen & Lacerda 2010; Ormel &
Klahr 2010), an epoch not captured in our simulations. It is inter-
esting to note that, given the power of the streaming instability
in producing Ceres-mass planetesimals from pebbles and rocks,
the challenging question may not be how these planetesimal

belts form8 or how the characteristic mass arises, but rather why
the planetesimals did not immediately continue to grow towards
terrestrial planets, super-Earths, and cores of ice and gas gi-
ants. Perhaps these planetesimal bursts were “abandoned” by the

8 This does require sufficient amounts of pebbles and rocks to begin
with, the formation of which is not yet well-understood (Blum & Wurm
2008).
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Fig. 13. Evolution of maximum planetesimal mass (full line) and total
mass in planetesimals (dash-dotted line) for 1283 simulations with in-
elastic NS collisions (thin yellow line shows the G̃ = 0.1 simulation
without collisions for comparison). Colors indicate G̃ = 0.02, 0.05, 0.1.
Extended wiggles in the G̃ = 0.1 curve arise during clump merging.
The total particle mass in the box is 2.8, 1.4 and 0.56 Ceres masses, in
order of decreasing G̃.

particle overdensity from which they formed, by radial drift of
the particles, stranding as planetesimal belts. Such stranding is
evident in the last frames of Figs. 11 and 12 where the gravita-
tionally bound clumps clearly lag behind the overdense particle
filament. The lag might have be even more pronounced if the
particle clumps would not be bloated to fill a grid cell.

This stranding scenario is an alternative to the more classical
view that the asteroid and Kuiper belts were disturbed by the
presence of giant planets (e.g. Kenyon & Bromley 2004).

6. Summary and discussion

This paper focuses on the effect of momentum exchange and
energy dissipation in collisions on particle concentration by the
streaming instability and on the subsequent gravitational col-
lapse to form dense clumps and planetesimals. We develop a new
algorithm for tracking collisions between superparticles repre-
senting swarms of physical particles. The time-scale for a par-
ticle in a given swarm to collide with a particle from another
swarm is calculated for all superparticle pairs in a grid cell.
Collisions occur instantaneously if a random number is less than
the ratio of the simulation time-step to the collisional time-scale,
ensuring that superparticles collide statistically on the correct
time-scale. We have demonstrated that this algorithm can be in-
corporated into a hydrodynamical code at a modest computa-
tional cost. This is true even for large particle numbers, since
the number of possible collision partners that are considered in a
given timestep can be reduced with little or no loss of generality.

Collisions can have a number of effects on particle dynam-
ics, by making particle motion more isotropic and by dissipa-
tive collisions which drain kinetic energy from the system. We
have considered the simplest case of a constant coefficient of
restitution (either unity or 0.3), but a more physically motivated

coefficient of restitution, depending on material properties and
impact speed and angle, could be easily implemented in the
scheme. We emphasize that we have focused in this paper en-
tirely on particles with a friction time of 0.3 relative to the local
Keplerian time-scale, corresponding to 20-cm rocks in the as-
teroid belt and 6-mm pebbles at 30 AU. Future studies will be
needed to determine the influence of particle collisions on the
dynamics of smaller and larger particles and on their ability to
form planetesimals.

Our simulations show that collisions are important to con-
sider when modelling particle concentration by the streaming
instability. Taking into account the energy dissipation in inelas-
tic collisions increases the maximum particle density. This in-
crease is most pronounced, more than a factor of three compared
to simulations with no collisions, when we ignore the relative
Keplerian shear for determining the collision time-scales and
outcomes. We argue that the Keplerian shear velocity should
be subtracted when determining the outcome of collisions be-
tween superparticles representing physical particles that are
much smaller than a grid cell. The collision algorithm enlarges
particles to the size of a grid cell during a collision, and this
can lead to unphysical heating of the particle component if the
Keplerian shear is included during the collision.

The treatment of collisions has no apparent effect on the
planetesimals which form by self-gravity. The masses of the
most massive planetesimals are relatively independent of the in-
clusion or absence of collisions, although we find some evidence
that more low-mass clumps condense out in simulations without
collisions. The particle densities reach several hundred and even
thousand times the gas density both with and without collisions –
much higher than the Roche density which governs gravitational
collapse – and that may explain why particle collisions play a
relatively small role in determining the outcome of the gravita-
tional contraction to form planetesimals. The simulations show a
characteristic planetesimal mass-scale comparable to the dwarf
planet Ceres at the location of the asteroid belt. The mass-scale
increases approximately linearly with distance from the central
star, giving almost double the contracted radius at the distance of
the Kuiper belt. This scaling may explain why the largest Kuiper
belt objects are bigger than the largest asteroids.

Particle collisions are also important as a stepping stone
towards implementing coagulation and fragmentation in plan-
etesimal formation models (Ormel & Spaans 2008; Zsom &
Dullemond 2008). Including all the physics relevant for mod-
elling particle-dominated self-gravitating flows is a major task,
but the reward will be a much better understanding of the im-
portant step from pebbles and rocks to planetesimals and dwarf
planets.
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Appendix A: Collision time from friction time

In connection with the presence of gas it is convenient to express
the collision time-scale in terms of the gas friction time-scale. In
the Epstein drag force regime, valid when the radius of a particle
R is smaller than (9/4 times) the mean free path of gas molecules
(Weidenschilling 1977), the friction time-scale is

τf =
Rρ•
csρg
· (A.1)

Here ρ• is the material density of the particles, while cs and ρg
are the sound speed and density of the gas molecules.

The time-scale for a particle of radius Rk to collide with a
swarm of particles with physical radius R j is

τ(k)
c =

1
n̂ jσ jkδv jk

· (A.2)

where σ jk is the mutual collisional cross section. Writing fur-
ther n̂ j = ρ̂ j/m j and σ jk = π(R j + Rk)2 and assuming spherical
particles we arrive at

τ(k)
c =

(4/3)ρ•R3
j

ρ̂ j(R j + Rk)2δv jk
· (A.3)

In terms of the friction time we get

τ(k)
c =

4
3
τ

( j)
f

ρg

ρ̂ j

cs

δv jk

⎛⎜⎜⎜⎜⎜⎝ τ
( j)
f

τ
( j)
f + τ

(k)
f

⎞⎟⎟⎟⎟⎟⎠
2

· (A.4)

For collisions between equal-sized particles, with τ( j)
f = τ

(k)
f , the

expression reduces to

τc =
τf

3

ρg

ρ̂ j

cs

δv jk
· (A.5)

A time-dependent numerical solution of a collisional particle
system must take collisions into account when choosing the
time-step. The time-step criterion of the Monte Carlo collision
scheme originates in the requirement that two particles can col-
lide at most once during a time-step, i.e. the collision probability
P = δt/τc between any two particles in the same grid cell must
be much smaller the unity. This time-step is independent of the
maximum density in a grid cell, since particles in dense grid
cells have many collision partners and hence can suffer more
collisions in the same time-step.

In the streaming instability simulations presented in Sects. 4
and 5 we observe a typical particle rms speed δv ∼ 0.025cs.
The mass density represented by a single superparticle is ρ̂p ≈
0.219ρg and the friction time is Ωτf = 0.3 (we normalise here
by the Keplerian frequency Ω which we define in Sect. 4). This
gives Ωτc ≈ 18 from Eq. (A.5). The Courant criterion for the
hydrodynamical part of the streaming instability gives the time-
step δthydro = 0.000625Ω−1 for 643 and δthydro = 0.0003125Ω−1

for 1283 simulations. Therefore we can ignore the collision
time-scale in the simulations when determining the numerical
time-step.

A.1. Multiple particle sizes

Equation (A.2) defines the collisional time-scale between parti-
cles of two sizes. For two superparticles of equal internal particle
number (n̂) we have τ(k)

c = τ
( j)
c , because the cross section σ jk and

relative speed δv jk are symmetric in ( j, k). However, equal par-
ticle number per superparticle is numerically expensive, as the
mass of a superparticle in that case scales as R3, requiring many
more superparticles to represent an equal mass of smaller par-
ticles. The second complication is that the collision time-scale
becomes very short for smaller particles.

A more common approach is to have equal mass per super-
particle. In that case we can define a collision time-scale as the
time for all mass in particle j to interact with all mass in parti-
cle k. This time-scale is shared between the two particle species
and is given by

τc =
4
3

max(τ( j)
f , τ

(k)
f )
ρg

ρ̂ j

cs

δv jk

⎛⎜⎜⎜⎜⎜⎝max(τ( j)
f , τ

(k)
f )

τ
( j)
f + τ

(k)
f

⎞⎟⎟⎟⎟⎟⎠
2

· (A.6)

To illustrate this, take small particles of friction time τ( j)
f = 1

and large particles of friction time τ(k)
f = 100. The collision time-

scale for the large particles is 100 times shorter than for the small
particles, because the superparticle with small physical particles
contains 100 times more particles in the swarm. However, the
time-scale for collision between a large and a small particle does
not imply that all small particles have collided during that time.
The correct time-scale is the time for small particles to collide
with large particles. When an average small particle has expe-
rienced a collision, then all small particles have collided with
a large particle, and all the mass in the two superparticles have
interacted.

After waiting the common collision time τc, the collision
outcome can be solved as if the two colliding particles had equal
mass, since effectively a large particle collides with mk/m j small
particles during this time. This approach is slightly inconsistent
since discrete collisions with N particles of mass m j is not equal
to a single collision with a particle of mass Nm j. A collision be-
tween a particle of velocity vk and a stationary particle results in
the new velocity

v′k =
mk − m j

mk + m j
vk· (A.7)

After N such collisions the velocity of particle k is

v′k =
(

mk − m j

mk + m j

)N

vk· (A.8)

In the limit where vk − v′k = Δvk  vk, this equation describes a
velocity damping

dvk
dt
= − 1
τc

2m j

mk + m j
vk (A.9)

with characteristic time-scale τd = τc(mk + m j)/(2m j).
Completely braking down the large particle requires infinite
time, whereas a single discrete collision with an equal-mass par-
ticle would remove all the momentum from particle j in one col-
lision time.

To really get the collisional energy equipartition right be-
tween particles of different sizes one would have to allow for
collisions between a large particle and individual smaller parti-
cles. This could either be done by letting superparticles not rep-
resent the same mass, but rather the same number of particles.
However, this approach would become unpractical to model a
large span in particle sizes, since a huge number of superparti-
cles would be required to represent the low-mass particle bins.
Alternatively the collision between a swarm of large and small
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particles could be modelled on the collision time-scale of indi-
vidual collisions, distributing afterwards the energy and momen-
tum of the particle that suffered the collision among the entire
swarm of small particles or among all particle swarms within
its mean free path. However, for a large span in particle sizes,
this would still require a very small time-step and is therefore
unpractical. We simply note here that while collisions between
unequal-sized particles can be modelled with the right conser-
vation properties, actual equipartition of particle energies would
require an adaptation of the collision algorithm.

Appendix B: Limiting the collision number

During the gravitational contraction of particle clumps the num-
ber of particles in a grid cell can become very large, on the or-
der of 1000 s or even 10 000 s. Tracking (1/2)N(N − 1) possi-
ble collisions per grid cell then becomes very computationally
expensive.

However, particles do not collide with all possible partners
during a single time-step. One can limit the number of collision
partners, while maintaining the overall collision rate, by sam-
pling only a subset Nmax of the possible collisions. Considering
only Nmax out of the N − 1 collision partners for each particle
in a grid cell, while increasing the collision probability for each
collision partner by (N − 1)/Nmax, yields statistically the same
number of collisions.

Consider as an example 101 particles in a grid cell, with
the collision probability between any two particles of 10−2.
Particle 1 will then on the average collide with 1 other parti-
cle. However, calculating the collision probability with 100 other
particles is expensive, even when it does not lead to a collision,
which is most often the case. Instead we let particle 1 only inter-
act with particles 2 to 6, and give each collision the probability
10−1 instead of 10−2. Particle i has particles i + 1 to i + 5 as col-
lision partners. When reaching particle 97, the collision partners
wrap around to particle 1 again, and this way all particles on
the average get 10 collision partners (5 of higher index and 5 of
lower index) instead of 100.

When reducing the number of collision partners, one has to
be careful that the particles do not interact only with particles
of a nearby index in each time-step. To avoid any such spuri-
ous particle preferences, we therefore shuffle the order of par-
ticles inside a grid cell in each time-step. We have empirically
found that reducing the number of collision partners becomes
important when there are more than 100 particles in a grid cell.
We show in Fig. B.1 the rms speed of particles undergoing in-
elastic collisions with coefficient of restitution ε = 0.3. We use
100 particles per grid cell and show results where we consider
all particles in a cell to be collision partners together with results
where we limit the collision partners to 10 and 2. The results
are indistinguishable, but the code speed is significantly higher
when limiting the number of collision partners (lower panel of
Fig. B.1). The typical speed of the Pencil Code for a hydrody-
namical simulation with two-way drag forces between gas and
particles is ∼10 μs per particle per time-step. Figure B.1 shows
that the computational time needed for superparticle collisions
is similar to or lower than the time needed for gas hydrodynam-
ics, particle dynamics, and drag forces, if the number of collision
partners is kept below approximately 100.

A side effect of reducing the number of collision partners is
that the maximum number of collisions is reduced accordingly.
Therefore it be must required that the boosted collision proba-
bility P′ = P(N − 1)/Nmax is always much smaller than unity.
This must hold for all particle pairs. One can use the maximum
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Fig. B.1. Evolution of particle rms speed in simulation starting with ran-
dom motion of amplitude 1. Particles have mean-free-path λ = 0.1 and
coefficient of restitution ε = 0.3. Drag forces are ignored. The blue line
shows the results of a simulation with 100 particles per grid cell and full
collision partner list, while the red and golden lines show the results of
limiting the collision partners to 10 and 2, respectively, while increasing
the collision probability accordingly. The results are extremely similar.
The lower panel shows the instantaneous inverse code speed. Limiting
the number of collision partners has increased the speed by a factor of
approximately three.

relative speed between any two particles within a grid cell to
estimate the smallest allowed Nmax that keeps all P′  1.

Each swarm in our simulations represents ρ̂p/ρg ≈ 0.219.
The base probability for collision between two superparticle
swarms with random motion δv/cs ∼ 0.025 is P = δt/τc ∼ 10−5

using Eq. (A.5) and a typical hydrodynamical time-step δt at 643

and 1283 resolution. The maximum density reached in the sim-
ulations is ρp/ρg ≈ 3000 (see Fig. 7), giving ≈13 700 particles
in the densest cells. We use Nmax = 100 and thus the maximum
boosted probability is P′ ∼ 10−3, safely in the regime where the
collision time-scale can be ignored when determining the nu-
merical time-step of the code.

Appendix C: From superparticles to inflated
particles

Consider a particle component of mass density ρp. A superparti-
cle can maximally hold a particle number N̂ (equivalently parti-
cle mass density ρ̂p) that covers the whole area of the grid cell,

N̂σ =
ρ̂p

mp
(δx)3σ =

ρ̂p

ρp

(δx)3

λ
< (δx)2 . (C.1)
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Here σ is the cross section of a swarm member and λ is the
mean free path of physical particles in the system. This gives a
maximum superparticle mass density of

ρ̂p = ρp
λ

δx
· (C.2)

At this mass density the Monte Carlo method breaks down be-
cause the superparticle area is larger than a single grid cell (this
is not taken into account in the model because collisions are only
considered when superparticles share the same grid cell). The
free path of a test particle encountering this maximum density
superparticle is

λ̂ =
1

n̂σ
=
ρp

ρ̂p
λ = δx· (C.3)

using σ = 1/(λ̂n̂) = 1/(λn). Thus the maximum area criterion
coincides with the particle density where the free path is the
same as the grid spacing, giving a collision probability of unity
when the particle enters a grid cell occupied by a superparticle.
This is in fact equivalent to the inflated particle approach, i.e.
that overlapping particles always collide.

We still must show that the mean free path of the system is
equal to the physical mean free path. The total particle number
in the box is

N =
ρpL3

ρ̂p(δx)3
· (C.4)

This gives a mean free path for the “grid point particles” of

λ′ =
L3

Nσ
=
ρ̂p(δx)3

ρp(δx2)
=
ρ̂p

ρp
δx = λ· (C.5)

This shows how the superparticle Monte Carlo method smoothly
transforms to the inflated particle method when reducing the
number of superparticles and increasing their mass. At the point
when the superparticle fills up its grid cell, the collision proba-
bility approaches unity inside the cell and the mean free path of
the grid cell particles is equal to the mean free path of the physi-
cal particles. At the same time one must only allow approaching
particles to collide, to avoid multiple collisions inside the grid
cell. Of course, the collision detection algorithm for these cubic
particles is rather crude, but the geometric effect of considering
cubic rather than spherical particles is minor.
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