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Abstract— Cloud computing has emerged as an inexpensive
and powerful computing paradigm, to the point that now even
applications with hard deadlines are executed in the cloud. It
may happen, due to unexpected events, that an application
becomes popular and receives a lot of attention and client
requests in a short period of time. Provisioning computing
capacity for such applications is quite a difficult task, because
content popularity cannot be easily predicted. One of the main
problems in case content has to be served with a hard deadline
is to ensure that this deadline is respected, even in the presence
of popularity spikes. To this end, partial computation and
graceful degradation were exploited, originating the brownout
framework. Applications would degrade the user experience in
the presence of load variations, to guarantee that deadlines
are met. Two different control paradigms were applied to
brownout: discrete-time control of optional content percentage
over a period and event-based queue management. The first
one had reasonable performance providing formal guarantees
about the solution. The second one was able to improve the
performance and keep the response time at the setpoint better,
but suffered from the drawback of not providing formally-
grounded mathematical guarantees. In this work we combine
the best of both worlds, providing a cascaded controller
for brownout, based on a more precise model of the cloud
application with respect to the original design. The BrownoutCC

controller achieves performance comparable with the event-
based version, without sacrificing formal guarantees.

I. INTRODUCTION

Control theory is becoming important in domains where
problems were previously solved using heuristic solutions,
without having access to formally grounded analysis tools.
One of these is the computing systems domain [12]. Com-
puting resource allocation can easily be cast into a control
problem, where a controller decides the amount of resource
to allocate to different entities based on desired and measur-
able performance metrics [1, 17, 21, 25]. Recently, the cloud
computing domain has emerged as an interesting application
domain for control-theoretical principles and techniques [4,
7, 10, 15, 22].

One of the most difficult problems in cloud computing
is to quickly and effectively react in the presence of flash
crowds. A flash crowd is caused by a sudden increase in
popularity of some content, that is then served to millions
of users at the same time. The amount of resources needed
to serve this increased amount of requests is unlikely to be
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available, unless there was a substantial over-provisioning of
computing capacity before the raise in popularity.

To mitigate this problem, it is common to resort to
techniques like graceful degradation. A possible way of de-
grading the performance of a web server is to deny admission
to some of the requests when it is not possible to meet
the user demands [1]. Admission control means that some
users would not receive any response at all, hence risking
losing them to competitors, incurring long-term revenue loss.
Another possibility is to assign a maximum time to each
request and iteratively refine an answer until the time budget
expires [9, 14]. This strategy works well for pruning search
queries of spurious results, but does not easily generalize to
all types of cloud applications.

A third possibility to apply the principles of graceful
degradation is called brownout [19, 22]. When producing the
response to the user requests, it is often possible to identify
a part of the response that is the necessary information the
user wants to see and a part of the response that would
provide a better user experience and increased revenues, but
is not mandatory. In the case of a travel agency website, the
mandatory part of the response is the flight search, while
additional optional information are car rental locations and
hotel suggestions. Clearly, the application owner wants to
provide the additional information, but not at the expense of
losing a customer. Brownout [19] divides the response into
the two mentioned parts and measures the response time to
determine if the optional content is served (at an additional
computation cost) or not.

The core idea behind brownout is to serve as much
optional content as possible, without penalizing response
times. The cloud application uses feedback from the response
times to determine how much optional content can be served
without sacrificing performance. The first brownout proposal
used a very simple first-order model for the system [19, 22]
and proposed some control strategies. Using discrete-time
control, it was possible to prove properties of the closed-
loop system, like stability and zero steady-state error [19].
However, the sampling period of the controller would still be
a critical parameter. Decisions would be made periodically,
but depending on the arrival rate of requests at the server,
the control period could either be too small, leading to
taking decisions based on too few response times, or too
large, leading to a large lag in controller response. This
could mean deciding based on the average of many response
times or of none. To avoid this disparity and gain addi-



tional performance, an event-based version of the brownout
principle was then devised [8], which would take a new
decision at every request arrival. The event-based brownout
controller [8] showed very good performance, but lacked the
mathematical formalization and analysis possibility.

The contribution of this paper is three-fold: (i) We for-
malize the brownout control strategy in [8] into a cascaded
control problem; (ii) We design the inner and outer loop
controllers, proposing both a feedback and a feedforward
plus feedback version. Our controller features both the per-
formance of [8] and the formal guarantees of [19]; (iii) We
evaluate our approach and compare with previous solutions
using the brownout simulator. Besides providing formal guar-
antees, our controllers show fewer oscillations and maintain
the measured response times closer to the target.

II. THE BROWNOUT APPROACH

This section provides some background information about
the brownout model and controllers developed in [8, 19].
It also introduces some basic terminology that will then be
used to explain the BrownoutCC approach.

A brownout-aware application generates responses that
are composed of two different parts: the mandatory and
the optional content. In some cases, a response is produced
including both parts of the content, while in other cases,
to speed up the process and consume less resources, only
the mandatory part is included in the response. The aim of
the brownout approach is to maintain certain statistics for
the user response time. In cloud computing, the focus is on
maintaining tail response time – instead of average – as it
was shown to better correlate with user experience [6]. For
this reason, we focus our effort on the 95th percentile of the
response time for the user requests.

Furthermore, notice that simplicity is an important feature
of every control strategy for a system like this. In fact,
the control computation happens on the same hardware that
provides responses to the users’ requests. In case the control
strategy is simple and executes fast enough, more hardware
power is devoted to answering requests from actual users of
the web application. Due to this remark, simplicity is one of
the key points in evaluating our control strategy.

This simplicity also applies to plant modeling. In contrast
to physical plants, the hardware and software stack of cloud
applications are so complex that it is unfeasible to devise a
detailed model. Therefore, when controlling software system,
one aims for as simple plant models as possible while
still capturing the essential relationship between inputs and
outputs. This also implies that linear models and linear
design techniques often are a good choice.
A. Original control strategy

Assume that a brownout controller is periodically select-
ing the probability of including the optional content in a
response, called the dimmer value. The controller period is
τc seconds and to each controller intervention we associate
a cardinal number k. We denote by θ(k) the dimmer value
that the controller computes for the interval [(k−1) τc, k τc].

The brownout approach presented in [19] assumes that the
cloud application behaves according to a very simple first-
order model. According to the model, the value of the 95th

percentile of the response time τ95 varies depending on the
dimmer value as follows

τ95(k) = φ(k − 1) θ(k − 1) + δτ95(k), (1)

where φ(k−1) is a time-varying coefficient that depends on
the computing platform and can be estimated and δτ95(k) is a
disturbance, interfering with the nominal system’s behavior.
Loop shaping is then used to synthesize a controller for
the system. We denote by eτ95(k) the error between the
desired 95th percentile of the response time τ̄95(k) and the
actual value. Assuming that no disturbance is acting on the
system, the desired closed loop system Z-transform between
the setpoint τ̄95(k) and the actual value of τ95(k) is

G(z) =
1− pb
z − pb

(2)

where pb, the pole of the closed loop system, is simply a
parameter of the controller. The unsaturated dimmer value
θ∗(k) can then be selected as

θ∗(k) = θ(k − 1) +
1− pb
φ̂(k)

eτ95(k) (3)

where φ̂(k) is an estimate of φ(k) obtained with a Recursive
Least Square (RLS) filter. The dimmer value θ represents
the probability of carrying out the execution of the optional
content, therefore it is saturated in order to be bounded in
the interval [0, 1].

The expression of the closed loop system in (2) allows
one to prove stability (provided that the pole pb is chosen
accordingly) and zero steady-state error (the static gain is
equal to 1). The proof is subject to how well the model (1)
approximates the behavior of the cloud application [19].

B. Event-driven brownout
The event-based version of the brownout paradigm [8]

works as follows. A periodic controller updates a threshold
value ψq(k) for the length of the queue of requests that have
not yet been answered, with period τc.

Assume that a request r arrives at time tr and that time
tr is included in the control interval [k, k + 1]. Denote with
or ∈ {0, 1} the indicator of the execution of the code for
the optional content – i.e., if or = 1 the optional content
is computed and if or = 0 the optional content is not
computed. The web server compares the amount of requests
already queuing in the system q(t) and the threshold set by
the controller at the closest k-th control period ψq(k) and
determines if the optional content should be provided or not.

q(tr) ≥ ψq(k) =⇒ or = 0
q(tr) < ψq(k) =⇒ or = 1

(4)

This algorithm has the advantage of being very easy to
implement. The threshold ψq was in [8] set using a manually
tuned PI controller with anti-windup.

However, the absence of a proper model for the queue
behavior and the application behavior creates difficulties in
proving properties of the closed loop system. Empirically
though, the cloud application was shown to have very good
performance in terms of the 95th percentile of the response
times being close to its desired value [8].
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Fig. 1: A general cascaded control structure interpretation of [8].

III. THE BROWNOUTCCAPPROACH

This section describes the design of a brownout control
strategy that combines the advantages of both the methods
described in Section II, obtaining a formally analyzable
controller. Subsection III-A motivates the use of a cascaded
structure. Section III-B describes the inner loop, while Sec-
tions III-C, III-D, and III-E respectively discuss modeling,
feedback, and feedforward control of the outer loop.
A. Event-driven brownout interpreted as cascaded control

In this section, we take a closer look at the event-driven
approach in [8], that we briefly summarized in Section II-B.
We here show that the threshold-based algorithm described in
Equation (4) – that decides on optional content execution via
the variable or – can be interpreted as part of a queue length
control loop. In this interpretation, the threshold ψq(k) trans-
lates to a queue length setpoint rq(k). In fact, the threshold-
based approach serves optional content until the threshold
ψq(k) is reached and avoids serving optional content when
the threshold is passed. The number of enqueued requests is
then kept as close as possible to a function of the threshold,
therefore translating it into a setpoint rq(k).

We denote by tr the arrival time of a generic request
r. At tr, the algorithm shown in Equation (4) tries to
keep the measured queue length q(tr) equal to a setpoint
rq(tr), by means of a simple on/off controller – i.e., turning
on and off the computation of the optional part of the
response. The controller takes as input the queue length
error eq(tr) = rq(tr) − q(tr), and determines the choice
of executing optional content or ∈ {0, 1} as control signal.

This queue length control loop is driven by the request
arrival, and acts at times tr, when the request is received.
To fully describe the algorithm of Section II-B, we need to
complement this choice with the selection of the setpoint
rq , which as stated before, was done using a periodically
executed PI controller.

The overall scheme can then be described using the cas-
caded structure depicted in Figure 1. In this representation,
the generic control signal u (Figure 1), is the control signal
or, CI corresponds to the on/off controller in Equation (4)
and CO the manually tuned PI controller that selects the
queue length setpoint. In [8], PI and PO are left unmodeled.

The cascaded interpretation in Figure 1 lays the foundation
for our approach. The generic inner loop control signal u
influences the response times of the cloud application, by
changing the length of the queue of unserviced requests. PI
is the transfer function from the control signal determined
by the controller CI to the queue length, while PO models
the effect of the queue length on the response times. The
outer loop control signal rq > 0 is determined by the outer
controller CO and indicates a queue length setpoint.

To complete the model, we introduce two terms – w
and d – representing disturbances acting respectively on
the inner and outer loop. A web application hosted in the
cloud is always subject to disturbances, such as changes
in the number of users or in the computation speed. For
example, additional load could be co-located with the virtual
machine hosting the application, changing the efficiency of
the computation resources [23]. We distinguish between two
different types of disturbances: w represents a disturbance
that causes the queue length q to vary due to stochastic
variations (i.e. deviations from the mean) in the arrivals, d, on
the contrary, is a load disturbance that causes τ95 to deviate
even if rq is kept constant. The control strategy, i.e., CI and
CO, should be designed with both disturbance types in mind,
in order to successfully keep τ95 close to its setpoint τ̄95.

Viewing the control structure as a cascaded one has several
advantages compared to single loop structure: (a) The system
is faster in rejecting disturbances w acting on the inner loop;
(b) The dynamics of the inner closed-loop can be linearized
as shown in Section III-B; and (c) The separation of the
time-scales simplifies the control design. The inner controller
can be designed to reject w disturbances of a fast stochastic
nature, and the outer controller can be designed to reject
load disturbances d. As a drawback, the cascaded structure
requires measurements of the queue lengths in addition to
the response time data. However, this is easy to solve from
an implementation standpoint, as all the needed variables are
already used in the implementation provided with [8].

Motivated by the good performance obtained empirically
with the event-based brownout controller despite the lack
of modeling, and by the promising benefits of the structure,
the BrownoutCC approach uses a model-based cascaded con-
troller design and splits the modeling of the cloud application
behavior into the two introduced loops.
B. Inner loop modeling and control

In cloud computing, usually applications are modeled
using principles from queuing theory [20]. We summarize
in the following the background notions that inspired us in
the design of the model and controller for the inner loop.

Queuing discipline models such as first-in-first-out (FIFO)
and processor sharing (PS) are commonly used to model
the behavior of web servers, see for example [5, 11–13].
With the FIFO model, each request is executed individually
based on the order of arrival, as represented by Figure 2a.
In the PS model, all the active requests are assumed to be
executed simultaneously, using fractions of the computing
capacity of the web server. The PS discipline can be seen as
a queue where each request is processed for an (infinitely)
short time-slice, and returned to the back of the queue, unless
completed. From the modeling perspective, a queue that uses
the PS discipline is normally seen as a queue with feedback
where the single parameter, γ, represents the proportion
of requests returned to the queue, as shown in Figure 2b.
A third option is the use of an approach that integrates
both disciplines, the Combined FIFO and Processor Sharing
(CFPS) model [18]. Here, the PS queue can only hold a
limited MC > 0 jobs. MC models the number of available
computing entities in the computing infrastructure – number
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Fig. 2: Queuing discipline models.

of cores, number of threads – that can be executed in
parallel. Requests exceeding MC wait in a FIFO queue.
This situation is shown in Figure 2c. The CFPS model is
a generalization of both FIFO and PS. These two disciplines
are easily interpreted as special cases of CFPS, respectively
with MC = 1 and MC =∞.

For our approach to be as general as possible, we consider
our application to behave as a queue with the CFPS discipline
as the underlying model, without any restrictions on the value
of MC . We also avoid considering special arrival processes
A(t) or service time distributions B(x), i.e., a G/G/1 queue.

To design a proper control strategy for the cascaded con-
troller, we need a valid model for PI in the form of a transfer
function, that represents the behavior of the application queue
length as a response to the control signal – u = θ in the case
of the original controller [19] and u = or for the event-based
version [8]. Writing such a (linear) model using queuing
principles is difficult.

Here we use queuing theory as an inspiration to select
a meaningful continuous-time control signal u that would
allow us to model the inner loop plant PI using a transfer
function. We define u = v = dq/dt, representing the growth
rate of the queue. Using this control signal, the transfer
function PI(s) from v to q becomes a simple integrator:

PI(s) =
1

s
. (5)

By utilizing the concept of feedback linearization [16], i.e.,
determining the choice of v and designing CI(s), we are
able to linearize the inner loop and choose its dynamics.
The dynamics of the closed inner loop GI(s) will affect the
outer loop, leading to a desire for simplicity. To achieve this
simple dynamics for GI(s), CI(s) is then chosen as a P
controller with gain K:

CI(s) = K. (6)
As the process PI(s) is integrating, this simple controller
is able to follow reference step changes in rq without any
stationary errors. However, these might still occur due to
disturbances w entering the inner loop. The inner closed loop
GI(s) becomes:

GI(s) =
K

s+K
, (7)

where the design parameter K determines the speed of the
system. The complete inner loop model is shown in Figure 3.

We have now defined how to compute the control signal v.
In order to complete the inner loop control, we should also
specify how to actuate it. Our controller is realized using a
periodic sampling strategy, with the actuation relying on the
threshold-based algorithm (4). For each sampling period h:

1

s
K+ +

rq
weq v q

−1

Fig. 3: Inner loop control using feedback linearization.

(i) At the beginning of the sampling period h, i.e., at time
ta, the controller (6) calculates a control signal v(ta).
The control signal represents the derivative of the queue
length that we desire to actuate;

(ii) A queue length threshold ψq(ta) is set as:
ψq(ta) = q(ta) + v(ta);

(iii) For all incoming requests during h, the algorithm in
Equation (4) is used, for each request, to determine if
optional content should be served or not;

(iv) This strategy ensures1 that the new queue length
q(ta + h) stays close to q(ta)+v(ta), actuating v(ta).

On the negative side, the actuation strategy is not exact,
i.e., it does not guarantee to exactly actuate v, as, e.g., the
arrivals A(t) enter the queue according to some general
random process. These deviations from the intended queue
growth rate caused by actuation errors can be seen as part
of the disturbance w, entering as shown in Figure 3. On the
positive side, the algorithm above actuates the control signal
v well, regardless of both MC , arrival process, and service
time distribution. It also reacts quickly to stochastic changes
in the system, like modifications of the arrival rate – thanks
to its event-driven execution. Finally, it is also very simple
to implement and requires minimal execution time.

After testing the inner controller in simulations, using
different values of MC , we choose K = 1 as the best fit for
the inner loop design. The closed inner loop then becomes:

GI(s) =
K

s+K
=

1

s+ 1
. (8)

C. Outer loop modeling
To describe the outer open loop GP (s), i.e. from rq to the

response times, we split the model into two parts: (i) from
rq to q and; (ii) from q to the response times. The first part
is completely described by the inner closed loop GI(s).

To model the second part we need to define precisely the
meaning of “response times”. We denote by τm95 the 95th

percentile of the response times served only with mandatory
content and by τo95 the 95th percentile of the response times
of the requests served with mandatory and optional content.
The mandatory τm95 and optional τo95 response times are
expected to diverge depending on the value of MC . The
larger MC becomes, the more the requests spend time being
processed in the PS queue rather than waiting in the FIFO
queue. As the mean service times are assumed to be related

1Assume that the mean inter-arrival times are denoted by t̄, the mean
mandatory and optional content service times respectively by x̄m and x̄o,
and that x̄m < t̄ < x̄o holds. If the last assumption does not hold, brownout
cannot find a feasible solution, and the inter-arrival times have to be adjusted
to fit this assumption by e.g. adding or removing servers. According to
Equation (4), mandatory content or = 0 is chosen for all q(tr) > τq(k).
Then, the queue length is “stable”, i.e., kept close to (or slightly above)
the threshold τq(k), since x̄m < t̄. For a proof, see [20]. Since optional
content or = 1 is chosen for all q(tr) ≤ τq(k), the queue stays within a
bound, ξ, around τq(k) since x̄o > t̄ below the threshold.
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Fig. 4: The outer loop model.

as x̄m � x̄o, a high value of MC causes the mandatory τm95
and optional τo95 response times to diverge. Since we can
only act on the optional response times, we measure and use
for feedback only the optional response times τo95.

Then, the model of the second part, i.e., from q to τo95,
corresponding to the PO block in Figure 1, can be inspired
by Little’s Law τ̄ = q̄/λ [20]. Here τ̄ and q̄ represent mean
response times and queue lengths, and λ represents the mean
arrival rate. Instead of mean values, we want to model the
95th percentile of the response times. The theorem is thus
not directly applicable, but it serves as a good approximation
when we introduce a correction term, that we denote by α.
The following static relation from q to τo95 is then proposed:

PO(s) =
α

λ
. (9)

Here the constant α is assumed to vary with λ and MC . The
complete outer loop model is shown in Figure 4.

D. Design of outer loop feedback controller
The task is to design the outer loop controller CO(s), given

the open loop transfer function from rq to τo95 as

GP (s) =
K

s+K

α

λ
=

1

s+ 1

α

λ
, (10)

using K = 1 as chosen in Section III-B. We design the
controller using pole-placement. As GP (s) is a first order
system, the poles can be placed arbitrarily using only two
controller parameters. In addition, the controller should be
able to reject load disturbances d, resulting from stationary
errors in the inner loop as well as from changes in the load.
Furthermore, the controller should be able to handle the fact
that α is unknown and varying and cope with changes in
the process gain GP (0), especially since the arrival rate λ
is expected to vary over time. The proposed solution is to
select the controller parameters assuming a nominal process
gain GN . The adaptive controller gain ka is then adjusted
in order to counteract multiplicative changes to GP (0), such
that GP (0) ka ≈ GN , giving the adaptive PI controller:

CO(s) = ka

(
kp +

ki
s

)
. (11)

Here, ka = GN/ĜP (0), where ĜP (0) is estimated as
described in Section IV. As GP (0) might change rapidly, it
is not certain that ka is able to adapt accordingly. Also, other
model uncertainties might occur, requiring a robust design.
For the nominal design, α = 1 and λ = 20 are chosen
giving GN = 0.05, and the nominal process GNP (s) as

GNP (s) =
0.05

s+ 1
. (12)

The poles of the outer closed loop system are placed accord-
ing to the characteristic equation

s2 + 2ζωOs+ ω2
O, (13)

where 0 ≤ ζ ≤ 1 is the relative damping and ωO the speed
of the outer loop. In order to ensure a robust design, ζ =
1 is chosen placing the poles on the negative real axis as
(s+ ωO)

2. The choice of ωO results in a trade off between
robustness and noise rejection as the maximum MS of the
sensitivity function S in this case decreases when ωO grows.
As a result, ωO = 0.6 is chosen, setting the speed of the outer
loop to about half the speed of the inner loop (ωI = 1). The
choice also ensures good robustness properties as MS =
1.03. This results in the controller parameters kp = 4.0 and
ki = 7.2, the adaptive PI controller equation becoming

CO(s) =
0.05

ĜP (0)

(
4.0 +

7.2

s

)
. (14)

The derived controller is fairly standard. However, in our
opinion this is only an advantage made possible by the
cascaded structure. Using such a simple controller allows us
not to waste computational power, that the application could
use to serve user requests.
E. Design of outer loop feedforward controller

Testing the feedback controller of Section III-D, we have
experienced the need for a better disturbance rejection mech-
anism for the outer loop. We achieve this with the design of
a standard feedforward controller.

Equation (10) shows the outer open loop process dynamics
GP (s). Selecting τo95 = τ̄o95, as well as considering the
dynamics in (10) in stationarity, leads to a proposed static
feedforward scheme

rff
q =

1

ĜI(0)

λ̂

α̂
τ̄o95. (15)

Here ĜI(0), λ̂ and α̂ are estimated as described in Sec-
tion IV. The feedforward scheme (15) is combined with
the feedback controller designed in the previous section,
resulting in the complete control structure shown in Figure 5.

IV. EVALUATION

This section presents our results. We validate our control
strategy using the open source Python-based brownout simu-
lator2, built to mimic the behavior of cloud applications [10]
and described in the following Section IV-A.
A. The simulator

The simulator defines the concepts of Client, Request,
Replica – a single server, running a brownout application
– and Replica Controller. Clients issue requests to be served
by the replica (server). Clients can behave according to the
open-loop or to the closed-loop client model [2, 24]. In the
closed-loop model, clients wait for a response and issue a
new request only after some think time. In the open loop
model, clients do not wait and instead issue new requests
with a specific request rate. Being better at modelling a large
number of independent users, we performed the evaluation
with open-loop clients.

For each request, the simulator computes the service time.
The time it takes to serve requests with only the mandatory
or with the optional content in addition to the mandatory one
are computed as random variables, with normal distributions,
whose mean and variance are based on profiling data from

2https://github.com/cloud-control/brownout-lb-simulator
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Fig. 5: The complete cascaded structure, with the proposed models and controllers for both outer and inner loop.

the execution of experiments on a real machine [19]. The
processing time for a request with optional content is a
random variable Y ∼ N (0.07, 0.01), while the processing
time for the mandatory content is a random variable Z ∼
N (0.001, 0.001). Furthermore, the simulator supports the
CFPS queuing discipline with any MC .

Finally, replicas implement a replica controller, that takes
care of selecting – for each request – when to serve optional
content. In the simulator, we implemented our own replica
controller, described in Section III. The controller code
developed in the simulator can be directly plugged into
brownout-aware applications like RUBiS3 and RUBBoS4.
For the controller implementation, the adaptive PI controller
in (14) was discretized with sample period h = 0.5 s
using the method suggested in [3], and complemented by
a tracking-based anti-windup solution. The parameter esti-
mations that the feedback and feedforward schemes require
(ĜP (0), ĜI(0), λ̂, α̂) are implemented as exponentially
weighted moving averages according to

ŷ(k + 1) = βŷ(k) + (1− β) y(k). (16)

Here ŷk is the estimate of y, yk the measurement at time k
and 0 ≤ β ≤ 1 a design parameter. In our simulations we
use slightly different β values for the different parameters
that we estimate, but mostly β ' 0.9.

B. Control validation

The response time requirements of the application are
expressed in the form of a maximum value for the 95th

percentile of the response times. To bound this value, the
controller should be able to constrain the 95th percentile of
the response times for the requests that are served with op-
tional content, τo95. The remainder of this evaluation focuses
on τo95, and uses a setpoint τ̄o95 = 1 s.

The adaptive PI controller (denoted by Cfb) derived
in Section III-D is compared with the combined feed-
back+feedforward scheme (denoted by Cff ) from Section III-
E, as well as with the original brownout design (denoted
by Corig) described in Section II-A and the event-based
design5 (denoted by Cevent and described in Section II-B).
Since no clear tuning rules were proposed in [8], we have
tuned its outer controller in the same way as Cfb without the
adaptive gain. As anticipated, the simulations are performed
with Poisson arrivals generated by open-loop clients, and

3https://github.com/cloud-control/brownout-rubis
4https://github.com/cloud-control/brownout-rubbos
5In the event-based design, we use τo95 as measurement signal, for fairness

with respect to our solution.

with both MC = 3 and MC = 10, respectively representing
behaviors close to FIFO and PS.

Figures 6 to 11 show a simulated sequence (repeated 20
times for statistical significance) of varying arrival rates for
both values of MC . The arrival rates vary following the
sequence {20, 100, 30, 70, 20} s-1, representing step changes
in the load d, and each value is kept constant for 60 s.
Figures 6 to 9 show the 95% confidence intervals of the
plotted quantities. The upper plots show the derivative of the
queue length (i.e., the v = q̇ control signal), displaying both
the computed (v) and the actuated control signal (vactual).
The middle plots show the actual queue length q and its
reference value rq (i.e., the outer loop control signal). Finally,
the bottom plots display the response times τo95 and its
setpoint τ̄o95 = 1. Figures 10 and 11 show a comparison of
all the four strategies. The upper plots represent the dimmer
value θ (i.e., the percentage of requests served with optional
content), which is determined by the controller in the case
of Corig and a posteriori computed in the case of the other
strategies. The middle plots show the reference values of the
queue length rq for the proposed strategies (Cfb, Cff ) and for
the event-based controller (Cevent). The lower plots show τo95
and its setpoint τ̄o95 = 1. The plots of Figures 10 and 11 show
average values over the 20 repeated sequences for readability.

Figures 6 to 9 show one of the benefits of a cascaded
structure: the inner loop can be very fast6, allowing a tighter
control. In some cases (e.g., Figures 7–9, in the time interval
60 s–120 s) the system experiences some actuation errors,
leading to a stationary error in the inner loop. Thanks to
the integral action in the outer controller, response times
τo95 are still kept close to their setpoints. In fact, the inner
loop is in general able to follow the outer loop control
signal rq and drive the queue length q to acceptable values.
The good control performance that we experience can be
linked directly to the model being a better approximation
compared to previous models [19]. The cascaded structure
Cfb shows no overshoot in the queue setpoints but is slower
in responding to changes in d, while Cff is faster in handling
changes in the arrival rates, but overshoots. For MC = 10,
the Cff controller gets larger overshoots in its outer loop
control signal rq , as a result of the assumed model (10) not
describing the dynamics as well as for MC = 3. However,
this has a minimal effort on the control performance.

Looking at Figures 10 and 11, the amount of optional
content served (shown in the θ plot) is an indication of how

6As there is no physical actuator involved, the aggressive behavior is not
an issue.
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Fig. 6: 95% confidence interval plots for Cfb with MC = 3.
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Fig. 7: 95% confidence interval plots for Cfb with MC = 10.
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Fig. 8: 95% confidence interval plots for Cff with MC = 3.
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Fig. 9: 95% confidence interval plots for Cff with MC = 10.
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Fig. 11: Average value plots for all 4 strategies with MC = 10.

well the application behaves in terms of potential revenues
for the application owner. Both in the case of the event-
based strategy Cevent and our proposals Cfb and Cff , the
average dimmer value is 28%, while the original strategy
Corig only achieves an average value of 25% optional content
served. Quite naturally, as the arrival rate increases the
amount of optional content served decreases. As a result of
the robust design, the control performances of Cfb and Cff

are able to serve additional optional content, while keeping

the response times around the setpoint under the different
conditions, clearly outperforming the original design. Note
that the results are truncated for Corig, its peak values of τo95
reaches about 5 seconds for both MC .

Table I presents quantitative data comparing the four
strategies in the same 20 repeated simulations, for both
values of MC . The first two columns show the Integral of the
Absolute Error (

∫
|eoτ95(t)|dt), the following columns show

the variance of all the optional content response times τo



TABLE I: Quantitative comparison of all 4 strategies.
IAE [·103s] var(τo) [s] τomax [s]

MC 3 10 3 10 3 10
Corig 8.23 8.34 0.695 0.745 5.68 6.27
Cevent 1.58 1.01 0.031 0.021 1.82 1.93
Cfb 1.48 0.98 0.030 0.021 1.81 1.83
Cff 1.23 1.43 0.026 0.034 1.56 1.65
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Fig. 12: Empirical cumulative distributions of τo for all 4 strategies.

and the last two columns show the maximum value of τo.
The developed controllers are very close to the event-based
controller [8], but provide formal guarantees. Also, especially
with Cff the maximum response time is lower than with
Cevent.

Finally, to complete our evaluation, we computed the
empirical Cumulative Distribution Function (CDF) of τo for
both values of MC , using the four control strategies. Also
in this case, the simulations are repeated 20 times (but not
averaged). Figure 12 shows the results, indicating clearly that
the control strategies synthesized in this paper outperform the
original design [19] Corig, and behave similarly to the event
based controller Cevent. Cff and Cfb display much shorter
tails in the response times, and are able to keep the 95th

percentile close to 1 second. Finally, Cff is able to keep the
tails slightly shorter than Cfb, thanks to its faster reactions
to changes in the arrival rate.

V. CONCLUSION AND FUTURE WORK

In this paper a novel brownout controller was presented,
capable of combining the benefits of both the event-based
brownout [8] in terms of performance and the advantages of
the original approach [19], in terms of analysis.

This research was motivated by the desire of solving
the autoscaling problem for brownout applications – i.e., to
decide when to start a new virtual machine for the same
cloud application, taking also advantage of the knowledge
of the dimmer value and not only of the response times. We
have realized that the brownout loop, in any of its forms,
was not suitable for being directly extended with autoscaling
capabilities and there was a need for a more realistic model
of the behavior of the application. Together with a better
control strategy, this paper provides such a model, which we
plan to use for brownout-aware autoscaling.
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