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Preface

In 2002, | was diagnosed with diabetes type 1. Being an erginih a control
and systems oriented curriculum | realized that this waswrobproblem, how-
ever, set in an unfamiliar context, and | decided to put mylp@arned skills to
the test by trying to identify my own data in my Master TheBigthen, frequent
data sampling was less developed and not readily availatz&ing identifica-
tion an even harder task than it is today, which was a bit disaging.

Six years later, Rolf invited me to join the department aredribwly started
EU FP7 IP DIAdvisor project. During the years since gradcagtmajor leaps in
sensor technology had been achieved, changing the plagldgdiiamatically—
well-sampled data could now be easily attained. Four yeses,Ithe project
has ended, adding new knowledge to the rapidly growing bddsnowledge
of diabetes glucose metabolism, and bringing new hope dihieal solutions
to support the management of this often difficult medicalditbon. Lots of re-
search and development is pursued both in academia and iimdhstry. Since
1999, two scientific journals on diabetes technology haenlestablished, and
both the U.S. and E.U. are putting major funding into diabééehnology ori-
ented cross-disciplinary research projects. Being afteetith type 1 diabetes
| embrace this development, and | feel extremely fortunatget a chance of
being part of this endeavour, which in the end may make botierand millions
of other people’s daily lives easier to manage.

Lund, December 3rd 2012

Fredrik Stahl



Abstract

Diabetes Mellituss a chronic disease of impaired blood glucose control due to
degraded or absent bodily-specific insulin production,tdization. To the af-
fected, this in many cases implies relying on insulin it and blood glucose
measurements, in order to keep the blood glucose levelmdtbceptable lim-
its. Risks of developing short- and long-term complicasiaitue to both too high
and too low blood glucose concentrations are severalfaldl, generally, the glu-
cose dynamics are not easy too fully comprehend for the teffdadividual—
resulting in poor glucose control. To reduce the burdenithjsies to the patient
and society, in terms of physiological and monetary cosffgrdnt technical so-
lutions, based on closed or semi-closed loop blood glucosé&a, have been
suggested.

To this end, this thesis investigates simplified linear araigad models of
glucose dynamics for the purpose of short-term predictimveloped within
the EU FP7 DIAdvisor project. These models could, e.g., leelLisi a decision
support system, to alert the user of future low and high gdadevels, and, when
implemented in a control framework, to suggest proactitioas.

The simplified models were evaluated on 47 patient data decdoom the
first DIAdvisor trial. Qualitatively physiological corréepesponses were imposed,
and model-based prediction, up to two hours ahead, andfiggdlgi for low
blood glucose detection, was evaluated. The glucose gaiaimd lowering ef-
fect of meals and insulin were estimated, together with threcally relevant
carbohydrate-to-insulin ratio. The model was further exjeal to include the
blood-to-interstitial lag, and tested for one patient dsgtr Finally, a novel al-
gorithm for merging of multiple prediction models was deydd and validated
on both artificial data and 12 datasets from the second Dkahtrial.
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1

Introduction

1.1 Motivation

Diabetes Mellituss a chronic metabolic disease where the affected patients h
disturbed glucose regulation, which, if left untreatedultssin elevated blood
glucose levels. The disease is divided into two categotygs 1 diabetes and
type 2 diabetes. In type 1 diabetes, the pancreas no longéupes insulin due
to an auto-immune destruction of the pancreatic insulimlipeingB-cells. Type
2 diabetes is a common diagnosis for several different uyidgrcauses to de-
teriorating glucose control, such as reduced insulin sgitgiand prolonged or
deteriorated pancreatic insulin response. There is agtyenetic component to
the risk of both type 1 and type 2. The etiology behind the sadalto-immune
attack leading to type 1 is still obscured, but some evidgooa to that viral in-
fections may play a key role in the triggering mechanism [&hnet al, 2012].
Type 2 diabetes typically evolves over a number of yearsreal@gnosis, and
is strongly connected to sedentary life-style and overhieigut the incidence
also increases with age.

The incidence of both types of diabetes, especially typ@@gases at an
alarming rate on a global scale. In year 2000, WHO estima?ddniillion to
be affected [Wildet al, 2004], and in 2011 the International Diabetes Federa-
tion (IDF) estimated the number to 366 million (of which 188lion are undi-
agnosed) [International Diabetes Federation, 2012]adirexceeding the 2030
forecast from WHO in 2000. By 2030, the expected number edg880 million
in IDF’s recent analysis [International Diabetes FederatR012]. In Sweden,



Chapter 1. Introduction

Table 1.1 Comparison of the cost structure for an average patient gatient with both
micro and macrovascular complications. Costs in SEK (1@98hrikssonet al, 2000].

Average Patient Patient with both micro- and macro-
vascular complications

Hospitalization 10599 29555
Ambulatory Care 7719 11 053

Drugs 6 665 9520
Total 24983 50128

the total number is about 365.000, of which about 40.000 e 1 patients
[The Swedish National Board of Health and Welfare, 2012apéneral, about
10% of the patients are of type 1. Along with the increasinghbars of af-
fected, the total costs increase dramatically. In Swedentdtal direct cost of
diabetes treatment was estimated to 7 billion SEK in 199&sickering only type
2 diabetes patients [Henrikssenal, 2000], and globally, figures of 465 billion
USD has been stated, amounting to 11% of the total healtlesgenditure for
adults (20-79 years old) [International Diabetes Fedenat?012]. The main
cost drivers are costs related to treatment of acute andctatglications re-
sulting from poor glycemic control [Henrikss@t al, 2000], see Table 1.1, and
the indirect costs, related to loss of productivity resigtirom mortality and
disability from these complications—in Sweden estimate®.¢ billion SEK
[Bolin et al, 2009].

These complications spring from either too low glucose @gsJinypoglyce-
mia, which may result in acute seizure, coma and death, amdhiggh blood
glucose concentrations, hyperglycemia, which, over adotigne period may
lead to impairment of the inner organs due to micro and maardiavascular
implications, and result in, e.g., renal failure, ampwtiatand blindness. Studies
show that, in general, almost half of the diabetic popufatio Sweden have a
mean glucose value, measured as HbAlc, above the guidelne, vmplying a
significantly increased risk of the afore-mentioned loeg¥tcomplications [The
Swedish National Board of Health and Welfare, 2012b], ardehs good rea-
son to believe that these numbers translate globally. Thaans to improve the
metabolic control for these patients are seminal to cut blaeldismaying rate
of growth of monetary and physiological costs of this diggasd to lighten the

10



1.2 Publications

heavy burden this implies on the healthcare programmesmtitlitions. In or-
der to contribute to this end, this thesis investigatesiiddalized mathematical
models of glucose dynamics—describing the relationshiywéen carbohydrate
and insulin ingestion and the blood glucose evolution—agnfior use in an arti-
ficial pancreas or a decision support system. These modetdieen developed
within the European FP7 IP research project DIAdvisor [Di&sdr, 2012].

Even though these problems affect both type 1 and type 2maticus of
this thesis will be on type 1 diabetes and insulin-treatgeb t® patients, here-
after lumped together as a common cohort, insulin-depdrdiabetes mellitus
(IDDM). The reason for this is the following. In order to ttéygpe 1 patients, ex-
ternal insulin must be administrated. For non-insulin defaat (NIDDM) type
2 diabetes, insulin sensitivity promoting oral agent, tbge with changes in
lifestyle, may suffice to improve the metabolic control. Hawer, for many type
2 patients, insulin is required after a few years. Thus,ehgra fundamental
and significant difference in treatment between the IDDM EHHADM groups,
which also implies differences in time perspectives of thiegse dynamics. For
IDDM, the appropriate amount of insulin to administer iseofthard to estimate
and steep changes of the glucose level may suddenly arisendesirable, or
even dangerous, situation may thereby quickly arise,rgafior new treatment
decisions. For NIDDM, the variations are slower, the nundfefecision points
over the day are less and different, and the acute risks leswpnced. The
need, prerequisites and type of decision support or autoroantrol is there-
fore very different between these two groups. For the IDDbhtmuous sup-
port to optimize the insulin regime may have a profound afeche possibility
to maintain normal glucose levels, whereas managementtf elercise and
other lifestyle-related changes, and long-term followtgreof, is the core to
improved NIDDM type 2 metabolic control.

1.2 Publications

This thesis is based on the following publications:

Stahl F. and Johansson R., "Diabetes Mellitus Modellind §hort-Term Pre-
diction Based on Blood Glucose Measurements’Mithematical Biosciences
217, pp. 101-117, January 2009.

Stahl F., Johansson R. and Renard E.,"Models of Diabetic@e Dynamics:

11



Chapter 1. Introduction

Challenges of Identifiability and Physiological Corredsie Submitted téEEE
Transactions on Biomedical Engineering

Stahl F., Johansson R. and Renard E..”Investigation ofelationship between
elevated levels of insulin antibodies and prolonged imsattion”, Accepted

for presentation ath International Conference on Advanced Technologies and
Treatments for Diabete®aris, France, Feb 27-March 2, 2013.

Stahl F. and Johansson R., "Observer Based Plasma Glucedietdn in Type
1 Diabetes”, InProc. 3rd IEEE Conf. on Systems and Contygb. 1620-1625,
Yokohama, Japan, 8-10 Sept, 2010.

Stahl F, Johansson R. and Renard E., "Bayesian Combiraftiunltiple Plasma
Glucose Predictors”, IfProc. 34th Annual International IEEE EMBS Confer-
ence (EMBC 2012)p. 2839-2844, San Diego, CA, U.S, Aug 28-Sept 1 2012.

Stahl F. and Johansson R.,’Receding Horizon PredictioBdyesian Combi-
nation of Multiple Predictors”, Accepted for presentatatrblst Annual IEEE
Conf. on Decision and Control (CDC2012¥aui, Hawaii, U.S, Dec. 10-13,
2012.

Other publications:

Stahl F. and Johansson R., "Short-Term Diabetes Bloodd@kiPrediction Based
On Blood Glucose Measurements”, Rroc. 30th Annual International IEEE
EMBS Conference (EMBC2008)p. 291-294, Vancouver, British Columbia,
Canada, August 20-24, 2008.

Stahl, F., Cescon M., Johansson R., and Renard E., "Infigitzon prediction
of postprandial breakfast plasma glucose excursiorrbt. of the 9th Annual
Diabetes Technology Meeting (DTM2009) A163, San Francisco, CA, U.S,
Nov. 5-7, 2009.

Cescon, M., Stahl F., Landin-Olsson M., and Johansson Bbsj®ice-based
model identification of diabetic blood glucose dynamicsPhoc. of the 15th
Symposium on System Identification (SYSID2Qg®)233-238. Saint-Malo,
France, July 6-8, 2009.

Stahl F., Johansson R., Renard E., "Post-Prandial Pladow& Prediction in
Type | Diabetes Based on Impulse Response ModelsRrbt. 32nd Annual

12



1.3 Outline and Contributions

International IEEE EMBS Conference (EMBC 2010p. 1324-1327, Buenos
Aires, Argentine, Aug 31-Sep. 4, 2010.

Stahl, F., Johansson R., and Renard E., "Can Blood GlucosesiDuring Exer-
cise Be Predicted From Heart Rate Data?'Pinc. of the 11th Annual Diabetes
Technology Meeting (DTM2011). A175, San Francisco, CA, U.S, Oct. 27-29,
2011.

1.3 Outline and Contributions
This thesis is organized as follows with the following cdmitions:

Chapter 2 provides an introduction to diabetes, a brief descriptibthe
metabolic physiology and a presentation of the DIAdvisaijgat.

Chapter 3 presents the DIAdvisor data and an analysis of these in tefms
some specific data characteristics, typical of diabeticage data.

Chapter 4 describes simplified linear models with qualitatively emtrre-
sponses to insulin and carbohydrate digestion. The modelvaidated for
short-term glucose prediction, including hypoglycemitedé&on, on 47 patient
data sets from the first trial of the DIAdvisor project, antiraates of the carbo-
hydrate-to-insulin ratio are given.

Chapter 5 presents an augmented model including the dynamics refated
the glucose measurements. The concept is evaluated fazaedagging of the
short-term prediction on one patient data set from the fiigtdf the DIAdvisor
project.

Chapter 6 introduces a novel algorithm for ensemble prediction, gisiev-
eral models derived for short-term glucose prediction. Jinggested method is
validated on simulated data, as well as 12 patient datasetsthe second DI-
Advisor trial.

Chapter 7, finally, concludes the thesis and directions for futureaesh are
outlined.

13



2

Background

2.1 Diabetes Type 1 and the Glucoregulatory System

Diabetes type 1 is, as previously mentioned, a chronic deseehere the3-
cells of the pancreas have stopped to produce insulin. $hismost cases due
to an auto-immune attack, but may in rare cases also be céyssdstained
injuries from accidents or pancreatic cancer. In order weustand the disease,
a brief overview of the glucoregulatory system is presented, e.g., [Nussey
and Whitehead, 2001] for a more extensive review.

The Glucoregulatory System

The glucoregulatory system is concerned with glucose noéitsah and the in-
sulin/glucose mechanisms needed to maintain normoglyadfig. 2.1 presents
a simplified overview of the flow of glucose and insulin betwége most impor-
tant organs relevant for this system. Below, a short desenpf these organs
and their role in the so-called absorptive state and the gosbrptive state, the
two parts that make up the metabolic cycle, is given. A braegatiption of in-
sulin absorption from insulin injections will also be prated. Emphasis will be
put on the digestive system and insulin absorption froncigas.

The absorptive state is the time following a meal during \Whtee ingested
carbohydrates are digested and absorbed. During thisdyeaess glucose is
absorbed and stored for later use. The post-absorptive istéhe time after a
meal when the gastro-intestinal tract is empty and energydbae provided by
the body’s own storages.

14



2.1 Diabetes Type 1 and the Glucoregulatory System
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Figure 2.1 Overview of the glucoregulatory system describing theti@tahip between
the flux from the gut into blood system and the interactiorhwie insulin-dependent tissue
(IDT), the insulin-independent tissue (IIT), the pancraged the liver.

During the absorptive stage, glucose is converted anddstw¢he polysac-
charide glycogen, mainly in the liver, but also to some eixtirectly in the
muscle cells. This process is stimulated by insulin. Duthng post-absorptive
stage, the liver glycogen storage is broken down to glucasereleased into
the blood stream, providing energy for the body cells. Thixpss is stimulated
by glucagon and inhibited by insulin. Apart from convertigigcogen to glu-
cose, new glucose can be formed from protein and fat by gkmgenesis. The
metabolism of consumed alcohol inhibits this process [Siteal, 1998], which
may result in severe hypoglycemiain IDDM patients [Turaeal, 2001].

In the pancreas, two important hormones relevant to theogagilatory sys-
tem are synthesized, namely insulin and glucagon. Insel@ase is mainly stim-
ulated by elevated blood glucose concentration. Therg$ofgstantial amounts
are released in the absorptive stage, when the glucoseisenagsed due to the
absorption from the gut. Glugacon, which has the opposfecebn the hep-
atic balance, is accordingly released when blood glucoseeastdration falls.
These two hormones are thus in a feedback arrangement wvethldlod glu-
cose concentration—controlling the glucose metabolisntype 1 patients the
insulin feedback is not functional. Another hormone gro@ijimportance dur-
ing the absorbtive stage is the incretine gut hormone grogpetine is secreted
during meal uptake and stimulates pancreatic insulin seleand inhibits the
glucose flux from the gut into the blood stream. Impairedetioe function is
believed to play an important role to the reduced and imgairsulin response

15



Chapter 2. Background

of type 2 patients [Nauckt al, 2004].

Insulin-dependent tissue (IDT) is dependent on insulintitiza glucose.
This mechanism is discussed in the insulin section belovigAificant portion
of the insulin-dependent tissue is made up of skeletal reasth the absorp-
tive state, skeletal muscle cells not only consume the gleichrectly, but also
convert some to glycogen, providing an energy storage ter lase in a local
depot.

Insulin independent tissue (lIT), such as the brain and érdral nervous
system, do not need insulin to utilize glucose.

Insulin

Insulin is the main hormone controlling the glucose metisiwl It is a protein
consisting of three peptide parts; an A-, B- and C-chain. éaltiy subjects
it is produced in the3-cells in the pancreas, whereas IDDM patients depend
mostly on injections of artificially produced insulin angf Three categories
of different types of therapeutic insulins exist; rapiditermediate and long-
acting insulins. The long-acting insulins are used to ctivebasal metabolism,
i.e., mainly to support the insulin-dependent tissue inpgbst-absorptive state.
The most recent insulin types of this category, detemir fineiv™, 2012] and
glargine [Lantu$¥, 2012] type have almost flat pharmacokinetic profiles. Rapid
acting insulins, such as lispro [Humald$ 2012], aspart [Novolog", 2012]
and glulisine [ApidraM, 2012] are designed to handle the glucose flux follow-
ing a meal in the absoptive state. Therefore, these inshdivs a short pharma-
cokinetic profile with a distinct peak after about 60 minutatermediate-acting
insulin are a mix of both, and are often used to support incagen some
insulin production is still left, i.e., insulin-dependegipe 2 patients or the so-
called latent auto-immune diabetes (LADA) patients [Lan@isson, 2002].

Insulin is normally injected in the subcutaneous tissueheftbrso or legs.
Rapid-acting insulin is injected in the abdominal fat lgyenereas long-lasting
insulin is usually taken in the upper side of the thigh. Frdvase depots the
insulin is transferred to the blood system via the cap#ésrirhe absorption rate
depends on a series of factors. One contributing factoreic#pillary density.
A higher density results in a greater diffusion area betwtberdepots and the
capillaries. The abdominal region has the highest capitlensity and the thigh
the lowest [Home, 1997]. This explains why rapid-actingulivsis preferably
infused in the abdominal fat layer and long-lasting in thighh

The size of the insulin molecules is a dominant rate limltarge molecules
will have difficulties passing through the capillary por&se structure of the

16



2.1 Diabetes Type 1 and the Glucoregulatory System

Glucose

3

Association | @ @ @/
@ /s \ Dissociation
@ Intracellular pool $
of GLUT4 v
PM \\ @

Figure 2.2 Insulin receptor and glucose transporter cycle. Repratldoem [Sasaki,
2002].

insulin molecules are either monomer, dimer or hexameulimsvill sponta-
neously form hexamers if the concentration is sufficientghh This so-called
self-association can be catalyzed by zinc ions. Therefone, is added to the
insulin solution in slow-acting insulins, thereby consaldy reducing the ab-
sorption rate [Home, 1997]. In the rapid-acting insulifee tnsulin molecules
are mainly monomeric or dimeric. They have been modified abitexamer for-
mation is completely avoided [Shoelson and Halban, 1994],aae also called
monomeric insulins. Another major factor affecting theabsion rate is the size
of the injection dose. A large dose reduces the ratio betweeabsorption area
and the depot volume, thus reducing the absorption. A nummbstudies have
been undertaken, all indicating a linear relationship leetwinsulin dose and
absorption half-time [Hildebrandit al, 1984] and [Planlet al, 2005]. These
studies have been performed using slow-acting or interatedicting insulins.
However, studies indicate that the linear relationshipoisvalid for monomeric
insulin [Brange and Vglund, 1999]. Finally, blood flow andeerature of the
injected site have a significant contribution to absorptiate. Raised temper-
ature enhances the disassociation of hexameric insuliraacelerates insulin
diffusion, and increased blood flow raises absorption rHEtes, exercise plays
a key role for absorption, since it raises both body tempegand blood flow.
After the absorption from the depots, the insulin is cirtedein the blood system
and finally interacts with a insulin receptor at the cell agé.

The insulin receptors are so-called tetramers, consistiriggo a- and two
B-subunits. Thex-subunits are entirely extracellular and serve as a binsiieg

17



Chapter 2. Background

for the insulin molecule. When the insulin has attached éxttsubunits, a sig-
nal process is initiated via th@-subunits, resulting in increased glucose trans-
porter activity. The glucose transporters facilitate glse cell membrane cross-
ing, thereby reducing blood glucose concentration. Thep®xg/transporter cy-
cle can be seen in Fig. 2.2. There are different types of gleit@nsporters and,
so far, five different types have been found [White and Kal®94]. Not all of
these types require insulin to become active. Therefoegglilcose utilization is
divided into insulin-dependent and insulin-independéiization. It is a well-
known fact that exercise enhances insulin sensitivity antthérefore one part
of common type 2 therapy. However, what actually causesitreased insulin
sensitivity is still not well understood. Studies indic#tat the GLUT4 trans-
porter activity is stimulated, resulting in increased iinsalependent glucose
utilization [Kahn, 1997].

Treatment

The most common therapy for IDDM patients is the multi-dogedtion (MDI)
basal-bolus regime. The patients use insulin pens, or perite new Swedish
mini pen—the DailyDose [Daily Dose, 2012]—to administesaldansulin, once
or sometimes twice a day, and rapid-acting insulin for eaehlmas well as for
additional corrections. An alternative therapy is to usénasalin pump, which,
loaded with rapid-acting insulin, provides a continuodsision, corresponding
to the basal need and bolus doses accordingly.

Doses are based on heuristic rules derived from the patientlerstanding
of his/her metabolism, assessment of current glucose fieral glucose meters
and expected future evolution and estimates of carbohgdattent in digested
meals. One common measure used in this regard is the cantadéstd-insulin
ratio, which is an estimate of how many insulin units to adsiar to match
the amount of digested carbohydrates. To avoid acute amgdtem complica-
tions, the goal is to maintain normoglycemia (blood glucGdeetween 70-180
mg/dl) as far as possible, and especially to avoid insulthiced hypoglyce-
mia (G <70 mg/dl) altogether, and to minimize time spent in hypergiyia
(G >180 mg/dl). An extensively used evaluation criterion of tutcome is the
glycosylated hemoglobin (HbAlc) blood measure, which mtes an assess-
ment of average blood glucose level over a 8-12 week periaash§id and John,
2010].

Current research is focused on improving the therapy aleogain direc-
tions; closed-loop control and semi-closed loop controhiisans of decision
support systems.

18



2.1 Diabetes Type 1 and the Glucoregulatory System

Closed-loop control, or as it is often referred to in the éials context—the
artificial pancreas—is most often suggested in the form efalator controlling
an insulin pump by glucose sensor feedback. The earliesedioop system
in this sense dates back to the '60s and '70s and the first cocrahelosed-
loop system, the bed-side Biostator system, was introdunc&€77, relying on
venous insulin infusion and glucose measurement. Todayrérequisites have
changed dramatically with major improvements in pump amgsetechnology,
and both academic researchers and biotechnology compgani&se the closed-
loop control using primarily the subcutaneous route. Trst §itep to implement
an autonomous function in a commercial outpatient systesnblegn made in
the MedTronic Veo pump, which automatically suspends far hwurs when a
predefined hypoglycemic threshold is passed (this feasise far only available
in the E.U.) [MedTronic, 2012]. Reviews of current and hiital development
and of the challenges ahead can be found in, e.g., [Cobebi, 2011] and
[Bequette, 2012].

Closed-loop control is in many aspects a promising techgylbut espe-
cially two major concerns need to be considered when evalyie prospects
of this technology to resolve glucose control for a larget pathe IDDM pop-
ulation. Firstly, using a closed autonomous system catla fobust safe design.
This aspect needs to be considered all throughout the syktsign, and identi-
fied hurdles, concerning, e.g., sensor accuracy and rélabiodeling and pa-
rameter estimation errors, disturbance detection andtrejeand programming
and software errors, still remain to be resolved. The se@spect is the cost
aspect, as such a system relies on many expensive compodaltgss prices
are forcefully reduced, it is unlikely that an artificial gaeas system will be
the default therapy for a majority of the IDDM population imetnear future.
An alternative technology is to provide the patient with iden support. The
advantages of such an approach in comparison to the altjj@ncreas, is that
it is more flexible in underlying therapy format, as it is notked to the pump
technology, no injections are made automatically—praxgdin opportunity to
detect wrongful and potentially dangerous actions—antl ttine total cost is
lower, implying possible better cost effectiveness. Ondtier hand, the depen-
dency on user interaction makes it more vulnerable in mapgas. Unless user
confidence to the system is achieved, poor compliance touggested deci-
sions may prove the system useless. Furthermore, in sihsatvhere the user
is unable to respond, no action can be taken. Also, the pateisk reduction,
associated with capturing dangerous actions, relies ondgpendent basic in-
sight to the glucose dynamics of the user, and a sound ndwdtatrian attitude
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Chapter 2. Background
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Figure 2.3 User Interface of the DIAdvisor system patient applicatimplemented on
the UMPC. On the screen, the user can follow the present amhtrglucose values to-
gether with a projected future trajectory within specifiattertainty limits. Other vital
signs, such as heart rate (see upper left screen cornerjlswale possible to follow. User
inputs, regarding, e.g., insulin and meal intake, are pieviby a menu system controlled
by the buttons at the bottom of the screen. Reproduced fréva P1Advisor Consortium,
2012].

to the system. Of course, to the extent possible, self-radng and evaluation
need to be implemented at a system level, to catch such &etose actions are
suggested to the user.

2.2 The DIAdvisor Project

The DIAdvisor project [DIAdvisor, 2012] was an EU FP7 Intatgd Project
(IP) running between 2008 and 2012. The aim of the projecttwvakevelop a
personal decision support system for IDDM patients usireg-psovided input,
minimally invasive sensors and individualized models afcgise dynamics, in
order to provide the user with short-term predictions ofcgke evolution, to-
gether with insulin therapy decision support.

A mobile research system, incorporating these aspectsdexssoped and
successfully evaluated under clinical conditions at tholggcal sites covering
50 patients, with a significant reduction of time spent indglgcemia, and in-
crease in time in normoglycemia [The DIAdvisor Consorti@12]. Using an
Ultra Mobile PC (UMPC), the user could follow his/her glueasurve together
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Figure 2.4 DIAdvisor system network. The UMPC communicated with thesees at-
tached to the patient, see Chapter 3, and transmitted threriafion to the clinician’s laptop
through a wireless network. After each visit the clinicarteuploaded the data to a com-
mon FTP-server. Reproduced from [The DIAdvisor Consortigfi2].

with an estimate of the near-time (2 hours) ahead projectiee Fig. 2.3. The
same information was concurrently provided to the clinisdaptop application
by a wireless network according to the network layout in Rig.

The project consortium consisted in total of 14 partner) boademic insti-
tutions and commercial companies—each providing exgenisireas relevant
for the development of the system. Especially noteworthye coming chap-
ters are the three clinical partners where the data wereatetl; Montpellier
University Hospital, Department of Clinical and ExperintedriMedicine (Mont-
pellier), University of Padova, UNIPD (Padova) and theitngt for Clinical and
Experimental Medicine, IKEM (Prague).

The models and algorithms presented in this thesis havedmeatoped and
used within this project, and were implemented in the systestribed above.
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3

Protocol and Data
characteristics

3.1 The DIAdvisor Data

The clinical part of the DIAdvisor project consisted of tardinical studies; the
data acquisition (DAQ) trial (2009), the DIAdvisor | (2018hd DIAdvisor I
(2011-2012) trials. The purpose of the first trial was to ectlidata in order to
facilitate model and algorithmic development of the indivél modules of the
DIAdvisor system. The two following trials were set up fostieg and validating
the entire system in clinical settings. The results preseintthis thesis are based
on retrospective analysis of the data collected in the DA@RIAdvisor | trials.

A total of 90 patients participated (29 Montpellier, 31 PealB30 Prague) in
the DAQ trial, including users of both MDI and subcutaneoursip therapy. For
this thesis, the data were assessed for data completerest@nconsistency.
Exclusion criteria were missing bolus doses and missing deda in the diary,
missing continuous glucose measurement (CGM) data and tisgrepancies
between the CGM and the reference glucose meter data. Dateests not ful-
filling the criteria were rejected, and only data recordstaming at least 48
hours of consecutive qualitative data were included in théys In all, 47 out of
the 90 patient data records reached the quality standaidslogion (17 Mont-
pellier, 19 Padova, 11 Prague). A summary of collected paijmn statistics can
be found in Table 3.1.

The DAQ trial was divided into two main parts; a three day hiadged
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3.1 The DIAdvisor Data

study and an ambulatory second part, where the patientsallereed to bring
the system home under normal living conditions. In this idedata from the
hospitalized part of the trial were used in Chapter 4, 5 and 6.

In the second trial, the first configuration of the DIAdvisgstem was tested
for some of the patients that participated in the DAQ trialyeell as for some
new patients. The trial was divided into six different sulais, DIAdvisor | A-
F—each with a specific evaluation purpose. Trial A was a daltaation study in
order to validate that the system could retrieve data framettiernal sensors as
expected, the B and C trials had identical protocols but different purposes.
The intention of trial B was to test the predictive perforrm@nwhereas trial C
aimed at an assessment of the therapeutic advices prowd#tesystem. In
trial D, the patients underwent two different exercisedeand in trial E, free
meals, not regulated by the standardized procedure, wiergeal. In the final
F trial, periods of hypo- and hyperglycemia were inducedal3rA, B, D were
conducted at the Montpellier hospital, trial E at the Padsit@ and trial F in
Prague. Trial C was evaluated at all three sites. Data frarBttand C trials
were used in this thesis in Chapter 6. Six patients datadscaamely patients
3,7,8, 18, 25 and 30 from Montpellier, who also participdtethe DAQ trial,
fulfilled the necessary quality standards outlined above.

The third trial, DIAdvisor Il, was set up to validate the fir@rformance
against the project endpoints using on updated versioredDtAdvisor system.
Data from this trial has not been analysed in this thesis.
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Table 3.1 Population Statistics of the DAQ trial. Mean values and fmiax].

Parameter Montpellier Padova Prague
Male/Female 13/4 10/9 6/5
Pump/MDI 9/8 10/9 8/3
Rapid Insulin 11 Aspart/ 1 Glulisine /5 Lispro 15 Aspart / &pio 4 Aspart/ 7 Lispro
Age 44 [22-68] 42 [25-67] 33 [19-65]
BMI [kg/n¥] 24.2[19.7-30.1] 24.5[18.7-33.2] 25.0[16.8-35.9]
HbAlc [mmol/mol] 7.7 [5.6-9.1] 8.0[6.0-9.3] 7.8[6.4-9.7]
Daily Total Insulin [IU] 47 [18-82] 44 [22-74] 22 [6-54]

Antibodies [% binding] 15.6 [0-62.1] 20.4[0-75] 12.9[0F3

solslialoeIeyd Bleq pue |020101d ‘€ Jaidey)d



3.2 Equipment

3.2 Equipment

During the trials, the patients were equipped with senseicds in order to
collect vital signs of potential interest in metabolic mbig.

Glucose Sensors

Blood glucose is generally measured manually by the indi&fighatient using
a personal glucose meter. A small blood sample is analysedté@st strip by
the meter using enzymatically catalyzed-based electevrital or photometric
methods [Hone®t al, 2008]. Today, there exist more than 27 different per-
sonal glucose meters from 18 different manufacturers fmemnet al, 2010].
The accuracy requirements of these is generally quite ddimgne.g., meters
marked with the European CE mark should comply with the DINIE® 15197
standard, specifying that the measurements may not diftee than 15 mg/dl
for glucose concentration below 75 mg/dl and less than 20 %gltecose con-
centration above 75 mg/dl [Freckmaehal, 2010], when evaluated against a
laboratory equipment such as a Yellow Springs Instrumerdlyser [Yellow
Springs Instrument, 2012]. Other norms and regulatione Isawilar require-
ments [Tonyushkina and Nichols, 2009].

Self-monitored blood glucose (SMBG, BG or G) thus providesiaccu-
rate readings, but reveals little about the dynamics, sréasnpled frequently
enough. Generally, the diabetic population seem to medbkaneglucose level
far too seldom, considering, e.g., the average HbAlc leleé[Swedish Na-
tional Board of Health and Welfare, 2012b], and numeroutedifit studies
show a definite positive correlation between increasedngp$tequency and
lowered HbAlc [St Johet al, 2010].

The HemoCue Glucose 201+ Analyzer (Fig. 3.1, [HemoCue Ge@dl+
Analyzer, 2012]) is a high-quality glucose meter of laborgtprecision [Stork
et al, 2005]. This meter was used as blood glucose reference nthals.

Frequent automatic glucose measurements have become coialiyavail-
able over the last ten years. Today, there are three conspaitie commercial
systems, and this number will increase in the coming yeags, Boche and
BD are researching and developing similar systems. Thes®ossystems are
called Continuous Glucose Measurement (CGM) Systems amslst®f a dis-
posable sensor including a subcutaneous probe, a radEntiti@r connected
to the external part of the sensor and a receiver device tonggtnate and dis-
play the results. The sensor lasts for 3-7 days, dependisgsiam, after which
it is replaced. The measurements are made in the interskitid and do not
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Chapter 3. Protocol and Data characteristics

Figure 3.1 The HemoCue 201+ Analyzer, [HemoCue Glucose 201+ Analf?]
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Figure 3.2 CGM systems used in the DIAdvisor project; the Abbott FndeSEGM sys-
tem, [Abbott Freestyle Navigator, 2012] (left), and the Bax Seven Plus CGM system
[Dexcom Seven Plus, 2012] (right).

directly correspond to the blood glucose level, due to tre-&rder diffusion-
like relationship between the blood stream and the intekstiompartment, see
e.g., [Rebrin and Steil, 2000b]. The use of CGM has been shovgmomote
improved glycemic control with decreased level of HbAlc ¢ et al, 2008].

In the DAQ trial, the patients were equipped with the FrdesBGM system
(Fig. 3.2) from Abbott [Abbott Freestyle Navigator, 2012he system provided
a CGM reading every 10 minutes, but the raw current signat fitee sensor was
also collected on a one-minute basis at the Montpellier eatbf?a sites. The
sensors require initialisation during 10 hours and havédeatiine of 5 days,
where after they need to be replaced. In the DIAdvisor | tttleé CGM system
Seven Plus (Fig. 3.2) from Dexcom was used [Dexcom Seven P02]. This
sensor has an initial calibration time of 2 hours and is regadaafter 7 days. Both
systems need to be recalibrated every 12 hours.

26



3.3 \ital Signs Sensors

Figure 3.3 Vital signs sensor systems used in the DIAdvisor project; YivoMet-
rics’ LifeShirt system [VivoMetrics, 2012] (left), and ti&ensium Life Pebble sensors by
Toumaz [Toumaz, 2012] (right)

3.3 Vital Signs Sensors

During the DAQ trial the patients wore the Clinical LifeSh{Fig. 3.3) from
VivoMetrics [VivoMetrics, 2012], which is specially desigd for clinical trials.
This non-invasive monitoring system continuously cobeptcords and analyses
several vital signs. To measure respiratory function, @enare woven into the
shirt around the wearer’s chest and abdomen. A single-eéh&®G measures
heart rate, a three-axis accelerometer records posturadivity level, and a
thermometer measures the skin temperature.

In the DIAdvisor trial, the LifeShirt was replaced by the Sem Life Peb-
ble sensors (Fig. 3.3) developed by Toumaz [Toumaz, 201#sé& continuously
monitor ECG, heart rate, physical activity (3-axis accateeter) and skin tem-
perature, and stream the data using a wireless datalinkacsteort range (5 m).

3.4 Experimental Protocols and Conditions

The DAQ and the DIAdvisor | trials followed the same basictpool. Standard-
ized meals were served for breakfast (08:00), lunch (13@@)dinner (19:00),
according to the protocol. The amount of carbohydratesided in each meal
was about 40 (45 in DAQ), 70 and 70 grams, respectively. Aalthtl snacks, in
some cases related to counter-act hypoglycemia, were iglestdd. No specific
intervention on the usual diabetes treatment was underi@ikeng the studies,
since a truthful picture of normal blood glucose fluctuatiom insulin-glucose
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Chapter 3. Protocol and Data characteristics

interaction was pursued. Meal and insulin administrati@mesnoted in a log-
book, glucose was monitored by the Continuous Glucose Measnt system
and by frequent blood glucose measurements in the DAQ 8Tal{easurements
daily according to the protocol). The outcome, however, thas 39, 37 and 7
measurements (Montpellier, Padova and Prague) were maeeenage every
day. In the DIAdvisor B and C trials, even more reference mesaments were
collected, making the average 43 measurements a day.

3.5 Graphical Data Evaluation Tool

The trial data was continuously uploaded into an Oracleldet& on a com-
mon FTP-server, from which the model developers could doacshtata as they
became available. In order to facilitate data overview aadagement, a stand-
alone Graphical User Interface (GUI), see Fig. 3.4, was ldeeel in Matlab
code [MathWorks, 2012]. Using this GUI, different data chels and time pe-
riods could be selected for any individual patient in ordeevaluate the data
for completeness and correctness, before extracting gmartaxg them into a
single Matlab data file. The evaluation described in secdidnwas performed
using this tool.

3.6 Glucose Data Characteristics

Before digging into modeling and prediction of glucose dyiws, some inter-
esting features of the glucose data are worthwhile to egpolittle more in-
depth.

Optimal sampling frequency

An interesting question is how often sampling is needed deoto reconstruct
the most important features of the glucose signal, and tbwsmmportant CGM
measurements may be, and whether interpolation of fred@@@mheasurements
can be used to reconstruct the glucose curve. According éotfivigton, 1990],
at least 8 samples per day are needed to get the lowest asshmamics of
the system, namely the rise and fall of the blood glucosd kgwe to the car-
bohydrate intake. This is a rigid assumption, relying ort the meal-related
period is about 6 hours, and that the subject follows a stdbedule. In real-
ity, people tend to have more irregular routines. This isegally overcome by
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3.6 Glucose Data Characteristics
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Figure 3.4 The Graphical User Interface (GUI) to manage the DAQ datffef2int data
sections from both the clinical and the home-monitored phtthe DAQ trial can be anal-
ysed. The upper plot always shows the linearly interpol&@€&M (blue curve) and the
HemoCue reference measurements (circles). The lower wimdan be used to display
any of the recorded signals. In this example, the three datsfdom the clinical part of
the trial has been selected. The second plot from the topsstioving and amount of in-
gested carbohydrates, the third plot depicts bolus aneéction insulin doses, and in the
bottom window the pump basal curve has been chosen for igaéisn.

non-equidistant sampling, collecting data on an eventedrbasis, rather than a
time-scheduled ditto.

Method In order to evaluate how much information is lost as the sargpl
rate decreases, the CGM data collected at the Montpelligpited 3-day visit
of the DAQ trial were used. The data was down-sampled to a lsagnperiod

of 20, 40, 60 min and then interpolated by piecewise splinirigewise, the

frequent BG measurements were also interpolated by the szetieod. Error
analysis of the down-sampled signals in comparison to thggnad signal was
done by frequency analysis, see [Johansson, 2009], aististdtanalysis of the
time-domain data.

Results Obviously, the frequency content diminished with increbsampling
period, as seen in Fig. 3.5, where the periodogram of thenaligignal and the
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Blood Glucose
— CGM

——— CGM, resampled 20 min ]
—— CGM, resampled 60 min

Power
3
T

Frequency [Hz]

Figure 3.5 Periodogram of the SMBG, the original and the down-sampléi/Gignals.
Average for the Montpellier patients.

Table 3.2 Comparison between the original and the resampled CGM Isigméerms of
Root Mean Square Error (RMSE) and maximum error. Average ttneDAQ population.

Criteria Sampling period [min]
20 40 60 80 100

RMSE [mg/dl] 14 40 7.0 104 127
maximum error[mg/dl] 8 18 30 45 51

interpolated signals can be seen.

The spectrum of the blood glucose signal is very similar &t tf the CGM
signal. For the down-sampled CGM signals, the energy dsesgfar the higher
frequencies as expected. However, frequency assessmenhdoeasily trans-
late to clinically relevantinformation. Turning to the #ndomain, the difference
between the signals deteriorates as depicted in Table &@ady at a reduced
sampling period of 60 min, the maximum average error amotonisore than
30 mg/dl. This is not surprising, as the glucose rise/dragr @n hour can be in
the magnitude of -35 mg/dl to +60 mg/dl (95 % conf. bound) atgke levels
of 100 mg/dl, and with an even wider spread for higher glucose levels, FKg.
3.6.

Discussion It should be borne in mind that these values are under-egina
considering the low-pass character of the relationshipvéen interstitial and

30



3.6 Glucose Data Characteristics
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Figure 3.6 95 % confidence bounds of the deviation distribution oveedght time hori-
zons. Average for all three clinical sites.

blood glucose value. This aspect also inhibits the podsilbdr direct compari-
son between these signals. However, the frequency respboeas that the inter-
polated BG curve incorporates the same frequency conteheasiginal CGM
signal and should thus be a reasonable approximation ofukebtood glucose
evolution. Thus, even though only 37 samples were colleateéaly, making the
average sample period about 40 min, the applied sampliregisédmade it pos-
sible to capture the dynamical changes. In general, glussiéenonitoring does
not follow a strict sampling schedule. Rapid changes in fbedglucose can
be recognized by persons with normal hypoglycemic seiitgitas hypoglyce-
mia, changes into hypoglycemia or hyperglycemia are ofegaaded, and these
circumstances call for unscheduled measurement to estagilyjcemic status.
Therefore, the high and low peaks are, for many instancpsesented in home-
monitored data, but as the hypoglycemic sensitivity desgsaver the years
since diagnosis, the risk of undetected hypoglycemia asae [Mokaret al,
1994].

Distribution

In order to investigate the range of excitation in the dataiims of glucose level,
and to determine if there are any systematic differenceBignaspect between
the different sites, the distribution of the CGM data wasysed.

Method The distribution of the CGM data from the DAQ trial was asselss
by standard statistical methods for all three clinicalssite
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Figure 3.7 Total distribution of glucose leveéb(t) and the 20 minute glucose deviation,
G(t+20) — G(t). Montpellier patients.

N @ IS
8 8 s
8 3 38

Incidence [-]

-100

oo

100 150 -50

0
Glucose [mg/dl]00 Glucose Deviation [mg/dl]

Figure 3.8 Total distribution of glucose leveb(t) and the 20 minute glucose deviation,
G(t+20) — G(t). Padova patients.
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Figure 3.9 Total distribution of glucose leveéb(t) and the 20 minute glucose deviation,
G(t+20) — G(t). Prague patients.
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3.6 Glucose Data Characteristics

Table 3.3 Likelihood of each glycemic zone [%], and average mean gled¢mg/dl] for
the patient data from each clinical site.

Glycemic Zone Zone Limits Montpellier Padova Prague
[mg/dl]
Severe Hypoglycemia G <50 0 0 0
Hypoglycemia 5 G<75 3 2 4
Lower Euglycemia 75 G <125 32 23 37
Upper Euglycemia 125 G <175 31 30 34
Lower Hyperglycemia 175 G <225 20 27 15
Hyperglycemia 225:. G <275 14 18 10
Upper Hyperglycemia G> 275 0 0 0
Mean Glucose [mg/dl] - 153 169 142
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Figure 3.10 Total distribution of CGM glucose level. All DAQ patients.

Results The dynamical total distribution of glucose lev@(t) and glucose
deviations over 20 minute&(t + 20) — G(t) can be seen in Fig. 3.7, 3.8 and 3.9.
There is a clear difference in distribution between theicdihsites. The glucose
range can be divided into 7 different zones of differenticihimportance, and
the likelihoods of each zone are found in Table 3.3.

The glucose data clearly do not follow a Gaussian distrilmytas seen from
Fig. 3.10, depicting the total distribution of the accuntethCGM readings col-
lected at all three site. The samples fluctuate around arageesf about 160
mg/dl, but the deviations are not normally scattered ardbisdnean. This phe-
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nomenon has been noted in [Kovatclehal, 1997] as well, where the follow-
ing data transformation was suggested to transform the idedaa Gaussian
distributed variable with zero mean.

f(BG.a,B) = (IogBG)” — B (3.1)

The parameters andf should be 1.084 and 5.381 when using the milligram-
per-dl scale. The accumulated data from each site was tmansfl in this man-
ner and the distributions can be seen in Fig. 3.12, 3.13 &t 3he data from
Padova do not fit the normal distribution very well, but théadiaom the other
sites show better resemblance. However, the normal hysisthvas rejected in
every case (Kolmogorov-Smirnov test, [Johansson, 20@8pirary to the re-
sults in [Kovatchewet al, 1997]. From Fig. 3.12, 3.13 and 3.14 it can be seen
that the upper tail of the normal distribution is missing efatmed, which is
due to the low incidence of hyperglycemia, see Table 3.3.

Discussion The Prague patients have the most aggressive glucose lgontro
with fewer high values and more time spent in hypoglycemfee Padova pa-
tients have more hyperglycemic events, but also half as rimehspent in hypo-
glycemia compared to the Prague patients. This is also tefléc the average
mean glucose values, which are statistically significadifferent from each
other (p<0.01 for all possible comparisons).

The total distribution was found to be non-Gaussian, butdgenormal like
distribution suggested by [Kovatcheval, 1997] could not be confirmed. Under
free-living conditions, the hyperglycemia tendency is epatly higher than for
the DIAdvisor DAQ data evaluated here, which may explain ikgvatchev
etal, 1997] found that 203 out of 205 transformed home-monit&&dBG data
sets confirmed the normal hypothesis.

The data transformation stems from an intention to creatskavalue de-
scribing the increased clinical risk associated with hypogmia and hyper-
glycemia. By taking the square of the transformated gludegel and multi-
plying by 10, the risk function of [Kovatchest al, 2000] is retrieved, see Fig.
3.11. This function forms the basis for the cost functiorliseChapter 6.

Time-variability

Another important aspect of diabetic glucose data is thstiureof time-varia-
bility. The circadian rhythm may have a significant impacimsulin sensitivity
over the course of the day [Van Cautetr al, 1997a], especially in the early
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Figure 3.11 Risk function using Kovatchev’s transformation.

morning, when counter-regulatory hormones (primarilywgiohormone, corti-
sol and adrenalin) are released—triggering increasedticgmaduction [Per-
riello et al, 1991].

Variability over longer time horizons has not been thordygtvestigated in
the literature, which may be explained by the scarcity affitdlty of obtaining
qualitative longer data records. Very few longitudinaladsets longer than a few
days, or weeks at best, seem to be available for type 1 déshiatihe research
community. The data set used in [Stahl and Johansson, Z0@js quite unique
in this aspect. This data set was collected during the firgtthsoof a newly di-
agnosed type | patient (the author). This period of time isegally referred to
as the "honey-moon period’, during which the pancrefBticells recover some-
what, resulting in temporary remission with consideratdying insulin doses
and glycemic response [Abdul-Rasailal, 2006]. Mathematically, this trans-
lates into time-varying model parameters.

Method The honey-moon data were analysed. In order to estimate alird v
date different models, data segments with constant paesivedtes are needed.
To find such segments, the data were investigated using thaptid Forget-
ting Multiple Model change detection algorithm (AFMM), ingmnented in the
Matlab command "SEGMENT” [MathWorks, 2012].

Results In Fig. 3.15, the variations of the estimated ARMAX parametger
the time period can be seen.

Discussion The model parameters shifted a number of times during theyron
moon period, giving an indication of both more stable andalvie data sections,
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Figure 3.12 Empirical and Approximated Distribution of transformed K@ata. Mont-

pellier patients.
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Figure 3.13 Empirical and Approximated Distribution of transformed Kl@ata. Padova

patients.
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Figure 3.14 Empirical and Approximated Distribution of transformed K@ata. Prague
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Figure 3.15 Data segmentation using the Matlab command SEGMENT. \iiityabf
the parameters of the recursive ARMAX model over approxatya200 days.

and this behavoir is expected during this remission phdselast stable param-
eter section is more than a month in length, signalling tlteadthe honey-moon
period. It may also be noted that the parameter values entbae t the origi-
nal values, which may be another indication that the tenmygBacell recovery
has ended. Longer time-variability in non-newly-diagribgatients is generally
less dramatic, but should not be overlooked, especiallyhi@so-called 'brittle’
patients [Voulgaret al, 2012].

Blood-to-Interstitial Glucose Delay

The diffusion-like relationship between the blood andiistifial compartments
implies a low-pass character in the response to glucosegesawhich means
lagging glucose levels in the CGM sensor in comparison todfexence SMBG.

Methods The CGM signal and the blood glucose reference measurements
from the DAQ trial were analysed as follows. To retrieve d@tiahnon-parametric

37



Chapter 3. Protocol and Data characteristics

(4]
a1

X Montpellier
= 30f @ + Padova |
z Q Prague
E o5
>

X
B 20f (o) x 1
©
2 15p © 1% & +x o |
&) +
1 10 + 4
B x o}i +
5¢ + x + L+ 1
o) i
O 1 1 H 1 1 1 1 m 1 1 1
16 18 20 22 24 26 28 30 32 34 36 38
BMI [kg/m?]

Figure 3.16 Delay between blood glucose reference measurement andrtlesggonding
CGM measurement vs. BMI for the DAQ data from the three clihtes.

estimate of the magnitude of the lagging between the bloodogle reference
BG(t) and the CGM signal, the lag was approximated to a delay, asdaued
by finding the delayA which minimized the Root Mean Square Error (RMSE)
between the blood glucose measurem&@égc) and the corresponding back-
ward-translated CGM measureme8GM(tgs + A) for the time pointgg, cor-
responding to time points when the blood glucose refereregsorements were
sampled. The measurement error was also assessed by RM&ebehe un-
translated CGM signal and the blood glucose reference, gudsible correla-
tion between sensor delay and Body Mass Index (BMI) was tigeted.

Results In Tables 3.4, 3.5 and 3.6 the estimated delay and RMSE batwee
the CGM signalCGM(t) and the HemoCue referen@t) is given for every
included patient. The BG-CGM delay was statistically large the Prague pa-
tients than for the Montpellier patients<0.05) and for the Padova patients
(p<0.001), and the BG-CGM delay of the Montpellier patients Veager than
that of the Padova patients<0.02). In terms of BG-CGM measurement error,
the Prague patients had a significantly larger BG-CGM RM%ia the Padova
patients (p<0.002) and the Montpellier patients<0.003). No correlation be-
tween BMI and BG-CGM delay was found, see Fig. 3.16.

Discussion The differences between the Prague data and the other sits ¢
be explained by the significantly lower number of referen@asurements at
the Prague site (7 measurements) compared to the Padovaeg@liraments)
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and the Montpellier (39 measurements) patients, and thglifiea assumption
of estimating the delay and not the lag. The low number of sasppnainly
collected during periods of substantial glucose changesrethe low-pass filter
relationship causes long delays and mismatches, reshiafrttte delay estimate
is biased. Thus, the estimates for the Prague patientsdheudisregarded.

Intuitively, a correlation was expected between high BMien indicating a
thicker abdominal layer, and longer BG-CGM time delay, asssible explaina-
tion for the large interpersonal differences. Howeverdiffeision may be more
dependent on other factors than mere amount of abdominalieh as capillary
density and blood turn-over rate.
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Table 3.4 Glucose Data Statistics Montpellier

PatientID BG-CGM BG-CGM
Delay [min] RMSE [mg/dI]

102 15 19.8
103 6 11.8
104 5 221
105 7 14.7
106 12 27.7
107 22 28.1
108 8 15.3
111 9 19.6
112 18 23.9
115 8 15.4
117 20 27.6
118 11 23.7
120 16 24.9
122 7 17.9
126 12 21.5
127 8 14.4
130 1 34.3
Mean (std) 10.9(5.7) 21.3(6.0)
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Table 3.5 Glucose Data Statistics Padova

Patient ID BG-CGM BG-CGM
Delay [min] RMSE [mg/dl]

201 1 22.8
202 10 145
203 5 27.2
205 10 30.1
209 1 21.5
211 12 24.6
212 6 21.9
213 10 20.6
214 1 16.2
215 5 15.6
216 3 24.0
217 8 14.8
219 13 25.6
220 13 19.8
221 15 233
222 4 30.0
226 10 28.4
227 9 24.2
231 1 18.3
Mean (std)  7.2(4.6) 22.3(4.9)
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Table 3.6 Glucose Data Statistics Prague

Patient ID BG-CGM BG-CGM
Delay [min] RMSE [mg/dI]

301 20 30.7
310 20 22.0
313 15 41.0
316 17 36.2
317 30 50.3
318 17 16.8
322 12 34.5
324 15 28.9
325 1 17.7
326 30 44.5
328 2 23.3

Mean (std) 16.3(9.2) 314(116)




4

Modeling and Prediction

Prediction of glucose changes in typ®ibetes Mellitusas received a consid-
erable amount of scientific and commercial interest oveddsedecade. The
driving force behind this surge in research can in large hada@xed by the
recent advances in sensor technology [Vaddietjal/, 2010], and the thereto
attached promises and hopes of closed, or semi-closed,dowoipol of dia-
betic glucose dynamics. Predicting models play a key rolm@my of these
concepts—providing the essential simulation tool in MRt@uted closed loop
arrangements of an artificial pancreas [Cobatifa/, 2011], or as a componentin
a decision support system—providing predictions direttilyhe user [Poulsen
etal, 2010].

However, even though many of these models indicate goodaqpretiperfor-
mances, less attention has been put into establishing etité physiological
responses are qualitatively correct and safe. Evaluatideiustrict clinical pro-
tocols, or even during normal life style, may not reveal sfoomings due to a
flawed identified model that may produce dangerous or sulaptrediction
under less strict conditions. Furthermore, identifyingd®lg with these features
may be non-trivial, with regards to the opposite influencetmnglucose level
from the main driving inputs— carbohydrates and insulin.

In this chapter, low-level models of glucose dynamics avestigated, con-
sidering the aspects of identifiability and physiologiaarectness outlined above,
and concerning the ability to detect hypoglycemiain adeanc
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4.1 Previous Work

Models of glucose dynamics for predictive purposes can ipaim divided into
two categories; physiologically-oriented models and dateen black-box ap-
proaches. The latter sometimes incorporate physiologidaimodels of insulin
and glucose infusion following insulin administration ameal intake, but the
main part of the dynamics stem from the statistically detikedationships.

The development of physiological diabetic glucose modestarted with
the simple models of [Bolie, 1961] and [Ackermahal, 1965], aiming at de-
scribing the relationship between glucose and insulimzation. External meal
and insulin administrations were not considered, and theatsdound little use
beyond basic insight to the dynamics of this interactionldwong these efforts,
the slightly more complex and well-established minimal eld@ergman and
Cobelli, 1980] was suggested as a means to estimate in®ngitivity from
an intravenous glucose tolerance test (IVGTT). Detailed@oof the glucose
metabolism; separating insulin and non-insulin depend&rtose utilization,
incorporating models of hepatic balance, renal clearaamin some cases pan-
creatic insulin synthesis and release, have surged siece lih [Lehmann and
Deutsch, 1992], a simulation model was presented, andtlaedecision sup-
port system AIDA [Lehmann, 1994] was developed using thisiehoThe sys-
tem was validated on a set of 24 subjects with parameter cgernee achieved
in 80% of the cases [Lehmarmat al, 1994].

A large model with 19 tunable parameters was proposed in tnenSen
thesis [Sorensen, 1985], a model often used as a verificetao assess dif-
ferent control approaches, e.g., [Eren-Oruétal, 2009a]. The web-based ed-
ucational simulation model GlucoSim [Ageat al, 2005] has been developed
based on another thesis [Puckett, 1992]. Generally, theselsmare difficult to
fit to an individual person, and may lack structural identifity. This makes
them unsuitable for predictive purposes, but synthetigeziib may be created
for simulation studies. Currently, the most influential slation model is the
University of Virginia and Padova University (UVa/Padowaddel described in
[Dalla Man et al, 2007a] and [Dalla Maret al, 2007b], which has been ac-
cepted by the Federal Drug Administration of the U.S. (FD&\pe used as a
substitute for animal trials in preclinical trials of clas&®op development [Ko-
vatchevet al, 2008]. To this purpose, 300 artificial subjects have beeiveld
from estimated parameters from population studies, andlinse.g., [Leeet al,
2009].

A simpler model, with only five tunable parameters, is the étea model
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[Hovorka et al, 2004], later extended and altered for the critically ill[iov-
orkaet al, 2008]. The former model has been validated for predictygacity
on 15 subjects with a RMSE of 3.6 mg/dI for a prediction honipd15 minutes.
Parameter estimates were retrieved recursively from @nglidata window us-
ing a Bayesian approach. This model is also used extenswelfPC-oriented
closed-loop validation, e.g., in the evaluation of PID cohin [Farmeret al,
2009], which also make use of the Sorensen [Sorensen, 1883%ha minimal
model [Bergman and Cobelli, 1980].

Data-driven models have been investigated on CGM timesatbne, or by
considering inputs as well. The meal sub models of [Dalla gz, 2007b] and
[Lehmann and Deutsch, 1992] are furthermore often usedpsg generating
components in data-driven models to approximate the geuiaz input from
the gut following a meal intake. Here, the focus has beenigtied for the
purpose of early hypoglycemic detection, e.g., to be usealsrm triggering
in CGM devices, or temporary insulin pump shut-off, as wellestablishing
models suitable for model-based control.

Time-series analysis by Auto-regressive (AR) models etivtith [Bremer
and Gough, 1999], who evaluated the basic underlying assonspconcerning
stationarity and auto-covariance that AR modeling is bagaseh, concluding
that diabetic data generally is non-stationary, but highyo-correlated, thus
recommending the models to be recurrently re-estimatelibwvrag this, AR
and ARMA models were developed in [Stahl, 2003] and [Statd Johansson,
2009] using glucose data from a recently diagnosed typeletia In [Spara-
cino et al, 2007], first-order recursive AR models were investigated®B sub-
jects using a low-pass filtered CGM signal from the GlucoD&MCsystem.
The results indicate that hypoglycemia can be detected dyrtbdel 25 min
before the CGM signal passes the same threshold. Anotherp&af recur-
sive AR and ARMA models of third order, incorporating a chardgtection
feature for more rapid parameter re-estimation when laktgmges in the dy-
namics are detected, is found in [Eren-Oruklual, 2009b]. The models were
evaluated for 30 healthy, 7 glucose-intolerant and 25 tymiabetic subjects,
with less than 4% mean Relative Average Deviation (RAD) dntbat no val-
ues in D or E zones of the Clarke Error Grid (p-CGA, see sectibrbelow for
definition) for the 30-minute predictions in comparisontie CGM Medtronic
Gold reference [MedTronic, 2012]. Contrary to the above,dhthors of [Gani
et al, 2009] claim that a generic patient- and time-invariant ABdel of order
30 can be identified from any patient and used for glucoseigied for any
other patient. Very promising results were achieved in [Gaal, 2010], where
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the model was evaluated for three different datasets, etiicting a different
CGM device, and the patient cohorts included both type | gpd tl diabetes.
The prediction error was on average, in terms of RMSE, leas 816 mg/dI
for a 30-minute prediction, with negligible delay, and w8B% of the paired
prediction-reference points in the A and B zones of the p-CBéwever, these
results were achieved by filtering the CGM signal in bothrtireg) and test data
using a non-causal filter, removing the high frequency camepés. In [Luet al,
2011] the causality aspect of the input filtering was addr@sshe AR model,
here reduced to order 8 after model complexity considenatiwas reformulated
as a linear model with a Kalman filter, and the filter paransatesre adjusted to
account for the filtering of the CGM signal. For evaluatiomgmses, the refer-
ence was however still filtered in the same non-causal wagfasda Using this
approach on the same data set as in [Gd@l, 2010], yielded more moderate
results with an average prediction error of 16 mg/dl, and artute lag for the
20-minute prediction.

Algorithms specifically developed for hypoglycemic detecthas also been
proposed. In [Palerret al, 2005], a Kalman filter approach was proposed, es-
timating the states corresponding to the interstitial gheclevel, and the first
and second derivative thereof, i.e., rate of glucose chandeacceleration. In
[Palerm and Bequette, 2007] this method was evaluated fdryp8glycemic
clamp data sets. Using a hypoglycemic threshold of 70 mpelsensitivity and
specificity were 90 and 79%, respectively, with unknownralime. Combining
three different methods for hypoglycemic detection wite &kRMA model of
[Eren-Orukluet al, 2009b], data from insulin-induced hypoglycemic tests for
54 type 1 subjects were evaluated in [Eren-Orugdwal, 2010]. With a hypo-
glycemic threhold of 60 mg/dl, sensitivity of 89, 88, and 88#d specificity of
67, 74, and 78% were reported for each method, respectMelgn values for
time to detection were 30, 26, and 28 minutes. In [Dasgal, 2010], five dif-
ferent algorithms were used together in a voting based tietesystem called
hypoglycemic prediction algorithm (HPA). The system wagadeped using 21
datasets from a 24-hour Abbott Navigator CGM trial for creld with type 1 di-
abetes, and was validated on hypoglycemic induced studi€g type 1 patient
records. With a voting scheme of 3-out-of-5, and a hypogtyjicalefined as 60
mg/dl, a sensitivity of 91% was achieved, and when 4-oub-pbsitive alarms
were required, the sensitivity dropped to 82%.

A short-coming of the AR models and the algorithms above ésléick of
input-output relationship, excluding them from being usedx model-based
control framework. A natural extension to the AR concepbisniclude exter-
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nal inputs, transforming the model to an ARX model. This tgpenodel has
been considered in, e.g., [Finahal, 2009a], where both batch-wise and recur-
sively identified patient-specific ARX-models have beenysed for 9 patients
with a mean 30-minute prediction error RMSE of 26 mg/dl. Ire§Con, 2011]
both ARX, ARMAX and state space models were investigatedgudifferent
identification methods for 30-, 60-, 90- and 120-minute p&ah for 9 Mont-
pellier patients from the DAQ trial. The best performanceaeahieved with the
ARX and the ARMAX models. The ARX model gave a standard désiedf the
prediction error of 17, 34, 46 and 56 mg/dl on average for e &0-, 90- and
120-minute prediction, respectively. The correspondesyltts for the ARMAX
model were 16, 30, 39 and 44 mg/dI.

Another type of transfer function model, cast in the contimsidomain, was
approached in [Percivalt al, 2010], where it was evaluated for 9 type | subjects
on separated meal and insulin intakes. Model parameteesaetermined both
heuristically and by least-squares estimation. The carth@tte and insulin im-
pacts of the model, i.e., the steady-state rise and dropucbgk following these
intakes, were further compared to the corresponding malbtiused estimates
of these factors. No independent prediction validation gigen. This model
was later evaluated in a control framework in [Perciogal, 2011], where two
data sets were created by the Hovorka (4 subjects) and Pédbsabjects) sim-
ulation models. Here, the model could approximate the sitedldata very well,
with a 3-hour look-ahead prediction error of 26 mg/dl repdrtA very similar
model structure was used in [Kirchsteigafral, 2011], the difference being a
time delay changed into a time lag. In this paper, breakfagtoge excursion
prediction was addressed for 10 Montpellier patients from DAQ trial. For
each patient, model parameters were determined by camstir&east squares
for two breakfast meals and validated on a third breakfaith an average fit
value of 42%.

Neural network (NN) models have been shown to be a competiproach
in [Daskalakiet al, 2012], where a feed-forward NN model was compared
against an AR and an ARX model on a 30 patient dataset, rettidtom the
Padova simulation model. Here, the NN clearly outperforriexcompeting
models with an average RMSE of 4.9 mg/dl versus 29 mg/dl (AR)26 mg/dI
(ARX) for the 45-minute prediction. Apart from meal and ifisunformation,
emotional factors, hypoglycemic/hyperglycemic symptand lifestyle/ activ-
ities, were collected in an electric diary and used as inputise NN model of
[Pappadat al, 2011]. Training was performed on a dataset from 17 patient
performance was evaluated on 10 patient data sets not ggtlmdthe training
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set, with a RMSE of 44 mg/dl for the 45-minute prediction.

A fully connected three-layer (5,10,1 neuron per layer) Mith sigmoidal
transfer functions in the first two layers and a linear for tlugput block was
used in [Pérez-Gandgt al, 2010]. No insulin nor meal information were used,
but the concurrent and previous CGM values, up to 20 minuteg,kacted as
inputs. The model was evaluated on two datasets with diffe€€&M devices
(Abbott Freestyle and MedTronic Guardian). Three subjata dets were used
for training for each patient group and were thereafterweet from the vali-
dation data. For the 6 Guardian patients and the 3 AbbotsBrieepatients the
performance was 10, 18 and 27 mg/dl for the 15, 30 and 45-mim&diction,
with a delay of around 4, 9, and 14 min for upward trends, addb5and 26 min
for downward trends. In [Zecchiet al, 2011], the linear predictor from [Spara-
cinoetal, 2007] worked in a cascade-like configuration with a NN moddich
also used both CGM and glucose flux from the meal model of fDdknet al,
2007b]into account as inputs. Training and validation wassdusing 15 patient
records from the 7-day free-living conditions set of the Di@l, see Chapter 3.
The NN was trained and validated on 25 time series, each otees days, se-
lected so as to ensure a wide variety of glycemic dynamiase Maily profiles,
containing several hypo- and hyperglycemic events, weeel ts test the NN
with an average of 14 mg/dl and a 14 min delay for the 30-mipugeliction.
For an assessment on 20 simulated subjects using the U\ atbdel, the
corresponding metrics were 9.4 mg/dl and 5 min. Both insatid carbohydrate
digestion were considered by incorporating input-geiggatub models in the
support vector machine of [Georgaal, 2011]. Additionally, exercise-induced
glucose and insulin absorption variations were also censitlas inputs by pro-
cessing a metabolic equivalent (MET) estimate, deriveshfadSenseWear body
monitoring system (BodyMedia Inc.) used in the study, in aleidy [Roy and
Parker, 2007]. The NN was trained individually for 7 type ligats with RMSE
of 9.5, 16, 25 and 36 mg/dl for the 15, 30, 60 and 120-minutdiptien.

Deeper reviews can be found in [Makrogletial, 2006] and [Balakrishnan
etal, 2011] and [Georgat al, 2011].

4.2 Identifiability

The challenges of identifiability in physiologically-basaodels (structural iden-
tifiability) have been widely recognized [Cheg al, 2011], and specifically for
the diabetic glucose dynamics [Docheetyal, 2011], and optimal experimental
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design to facilitate parameter estimation [Galvagiral, 2009; Galvaniret al,
2011]. Empirical black-box identification problems haveaiged less attention,
but the problems associated to identification of ARX modélfiecose dynam-
ics have been considered in [Finahal, 2009b].

In diabetic real world data, the problem is especially int@ot, since the
two main inputs affecting the dynamics, meal and insuliaket have opposing
impact and similar dynamics, and generally act simultasgoThe aspect is
further problematic since safety concerns impose comgsran the possibility to
excite the system sufficiently (which of course does notyafpsimulated data).
Thus, from an identification viewpoint, the impact from inpmay be entangled
with one another, and it may be impossible to separate thadtrgd each input
without considering constraints to the identification roaf incorporating prior
information of the expected qualitative response. In [Rate@t al, 2010], this
was resolved by applying an experimental protocol, wherenallsmeal and
the corresponding bolus dose were separated by a few hoowgeudr, such an
approach yields only short data sets and may be infeasille jfere-estimation
recurrently is required due to, e.g., shifting dynamics.

4.3 Data

Data from the three day hospitalized part of the DAQ trial wssessed for data
completeness and data consistency. Exclusion criteria mé&sing bolus doses
and missing meal data in the diary, missing CGM data and ldigepancies
between the CGM and the reference glucose meter data. Qatesés not ful-
filling the criteria were rejected, and only data recordstaming at least 42
hours of consecutive qualitative data were included in thdys Thereafter, the
data was divided in batches of 24 hours, two hours apart,grmsding 9 data
sets for a 42-hour period and 24 data sets for a 72-hour period

A total of 47 out of the 90 patient data records reached thétgstandards
of inclusion (17 Montpellier, 19 Padova, 11 Prague).

The CGM data were interpolated to a 5-minute sampling pebiptnear
interpolation, giving the discrete-time CGM glucose sigBacm (k) sampled at
time instanceg € (5,10,...) min. For the Montpellier and Pdavoa patients, the
blood glucose reference was also interpolated to a five misamnpling rate by
piece-wise splining, for use in the hypoglycemic detectiesessment.
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4.4 Modeling
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Figure 4.1 Overview of the modeling approach. Notation: Plasma Insiglit), Rate of
Glucose Appearance following a mé(t), Blood glucose5(t), Capillary glucosésc(t),
Interstitial GlucoseG; (t), CGM raw current signaG raw(t) and CGM signalGegm(t).
M; represent the model describing the glucose-insulin iotena in the blood and inner
organs (GIlIM), theM, model represents the diffusion-like relationship betweleod and
interstitial glucose and the CGM sensor dynamics, &hads the joint model ofM; and
Mo.

For modeling purposes, the system was considered to cofitisee main parts:
the Glucose Sub Model (GSM), the Insulin Sub Model (ISM) ahd Glu-
cose/Insulin interaction Model (G1IM), including blood-tnterstitial dynamics,
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as outlined in Fig. 4.1. The GSM describes the absorptiohuaioge from meal,
the ISM the absorption of insulin from insulin injectionstethe GIIM the inter-
action of glucose and insulin in the blood system and ordearsnow, we ignore
the division ofM3 into My andM,, and letM3 represent the GIIM as a single
model. In other words, we use the CGM sig@cm(t) as a proxy for blood
glucoseG(t), and ignore the lag, described in Chapter 3, between thgsalsi

Insulin Sub Model

The transport of rapid-acting insulin from the subcutarsgojection site to the
blood stream has been described in quite a few models ofiingbarmacoki-
netics, see [Nucci and Cobelli, 2000] and [Wilins&aal, 2005] for reviews.
Among these, the Insulin Sub Model (ISM), was based on thepestment
model in [Dalla Manet al, 2007a] and [Dalla Mawt al, 2007b], as follows.

Isca(t) = — (ka1 +Kg) - Isa (t) + D(t) (4.1)
|IS(2(t) = I<d |sCl( )_ka2'|sc2( ) (4-2)
I (t) Kat - lsa (t) + Kaz - Is(t) — (Mp+1mu) - | ()"‘ml I(t) (4.3)
I (t) = mg- 1p(t) — (Mg +mg) -1y (t) (4.4)
e = 06HEb Vi - Maw (4:9)
Mg = TE_bHZ; (4.6)
ms =04, .C,\;BW (4.7)

Following the notation in [Dalla Maet al, 2007a] and [Dalla Maet al, 2007b],
lsa is the amount of non-monomeric insulin in the subcutanepase|seo is
the amount of monomeric insulin in the subcutaneous spggds,the rate con-
stant of insulin dissociatiokg; andky, are the rate constants of non-monomeric
and monomeric insulin absorption, respectivBlft) is the insulin infusion rate,
Ip is the level of plasma insulin; the level of insulin in the livermz is the
rate of hepatic clearance, ang,mp, my are rate parameters. The parameters
mp, mg, my are determined based on steady-state assumptions—getlaim to
the constants in Table 4.1 and the body weidiiy.

Only rapid-acting insulins were considered. This meantsttieadynamics of
the basal doses of the MDI patients were not included in theliim signal.
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Glucose Sub Model

The initial stages of glucose metabolism, describing tlyestive process and
the flux of glucose from the intestines, have been modelsclggnsively. How-
ever, two models have been widely used; the model by [LehraadrDeutsch,
1992] and [Dalla Maret al, 2006]. The latter, a nonlinear compartment model,
was used in this study:

QSto(t) = QStol(t) + qStOZ(t) (4.8)
Qstar (t) = —Kgri - Gsta (1) +C(t) (4.9)
qstuZ(t) = kgri “Qsta (t) — kempt' QSto(t) : QSto'Z(t) (4.10)

Ogut(t) = —Kaps" Agut(t) + Kempt: Gsto(t) - st (t) (4.11)

Rat) =+~ Kabs Gur(t) 'ka:\’;;f“‘(t) (4.12)

where, again following the notation in [Dalla Mahal, 2006],0st0 iS the amount
of glucose in the stomaclydq solid, andgsiq liquid phase)ggut is the glucose
mass in the intestindyg,; the rate of grindingkempt is the rate constant of gas-
tric emptying,kaps is the rate constant of intestinal absorptidns the fraction

of intestinal absorption which actually appears in the tletreamC(t) is the
amount of ingested carbohydrates d&gt) is the appearance rate of glucose in
the blood kempt is @ non-linear function ofisyo andC(t):

kempt(Qsto) = kmin+ k- {tanﬂa(QSto_ b- G(t))]—l- (4.13)

— tanHB (sto— d- G(t))] + 2} (4.14)

with k= (Kmax— kmin)/2, 0 =5/2D(1b), B =5/2Dc, with parameterBmay Kmin,
b, andd.

Both models were evaluated using generic population paemalues ac-
cording to Table 4.1.

GIlIM

The outputdp(tx) andRa(tk) from these models were fed, using the generic pa-
rameter values in Table 4.1, as inputk) = [Ip(tk) Ra(tk)]" into a linear state
space model of the Glucose-Insulin Interaction (GIIM), gexing the final out-
put - the blood glucos&(k) at timety € (5,10,...) min. The model equations,
with model ordem, are:

x(k+ 1) = Ax(K) + Bu(k) -+ w(K) (4.15)
G(K) = Cx(K) + v(K) (4.16)
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Table 4.1 Generic parameter values used for the GSM and ISM.

Parameter Value Unit Parameter Value Unit
Kgri 0.0558 [min!] Ka1 0.004 [min?
Kmax 0.0558 [min!] Kao 0.0182 [min?]
Kmin 0.008 [min1] Kq 0.0164 [min1]
Kabs 0.0568 [min] Kg 0.0164 [min1]
b 0.82 [-] mq 0.1766 [min]
d 0.01 [-] Vi 0.05 [L/kg]
f 0.9 [-] CL 1.1069 [L/min]

with system matriced €¢ R™", B € R™, C € R™", and process and measure-
ments noisew/(k) andv(k).

4.5 ldentification

Subspace Identification

To identify the GIIMZ : {A,B,C, D}, including a prediction feedback vectgr
the subspace algorithm N4SID was used. The CGM glucose &yl was
normalized by subtracting the mean value over the datasseeind the station-
ary basal insulin level, equal to the minimum insulin leveéothe data section,
was removed from this input.

For each 24-hour data segment, models of model ard2+4) were identi-
fied. In order to fulfill the a priori constraints of physiologl correctness, mod-
els that exhibited initial improper input response (risgigcose due to insulin
administration or lowered glucose after meal intake) wéseatded. Thereafter,
the best model was determined by the Minimum Descriptiorgtle(MDL) cri-
terion [Johansson, 2009], for the 2-hour ahead predictior ér all estimated
models. These models will hereafter be referred to as tleattcally identified
models.

Models were also identified by manual selection of suitabladections, no
longer than 24 hours. These models were subject to the saeenstg criteria as
the automatically identified models described above. Tilitae manual model
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identification, a graphical user interface was developddatiab, see Fig. 4.2.
These models will hereafter be referred to as the manualytified models.

Short-term predictiong) steps ahead, were evaluated using the Kalman fil-
ter:

K(k+1) = AR(K) + Bu(k) + K (y(k) — Cx(k)) (4.17)
R(k+ p) = AX(k+ p—1) +Bu(k+ p—1) (4.18)
G(k+ p) = CX(k+ p) (4.19)

where meal and insulin announcement was assumed aflfjgasiinutes ahead,
implying thatu(k—+1) was known for all 0< | < p. For validation purposes, the
predictions were evaluated on the entire feasible datebgaheans of RMSE
and by Clarke Error Grid Analysis (p-CGA, see below), fordiction horizons
Tpy = 20— 120 min (D =4 24).

The Clarke Error Grid Analysis The Clarke Error Grid Analysis (p-CGA)
[Clarke et al, 1987] is a metric originally developed to evaluate bloogcglse
meters, relating the measurement error to clinical imgibce. This metric is
also often used to rate CGM precision, and recently to agsesction perfor-
mance as well. It will be used in this aspect in this and theingrthapters 5
and 6. Estimated glucose is plotted against the referenasunements and eval-
uated according to how the points fall into the differenbemones, each with a
different clinical interpretation, see Fig. 4.3. For comgi&ve purposes, the triv-
ial zero-order hold predictor (ZOHEB(t 4+ Ten) = G(t), was used as a reference
of a non-informative, minimum performance predictor. kegdns with similar
or worse performance than the ZOH, measured as

~ RMSEgm

are not providing any predictive value and were thus comsitlas flawed.

The ability to detect hypoglycemic events beforehand wae aksessed.
Hypoglycemia was defined as glucose values below 72 mg/dtieast 20 min-
utes. The hypoglycemic episode was considered to have evitsdeuglycemia
was restored, here defined as glucose level above 100 my&lhyipoglycemia
was considered detected by the predictor, at fiigewhen the predicted value
was below the hypoglycemic alarm thresh@g,, and the same alarm lasted
until the predicted value was above 100 mg/dl for at least lutas. Assess-
ment was performed by calculating the sensitivity, the cdtfalse alarms and
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Figure 4.2 A Graphical User Interface (GUI) developed in order to featié manual model identification. Patient specific data can
be loaded from each of the DIAdvisor trials and displayedhiee different columns of data windows. The top windows deglucose
data, where the blue circles correspond to blood glucoseardte values, the blue line represents the splined ifétigo of these
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from basal and bolus doses. The lower plots describe thesmonding results from the Glucose Sub Model (GSM), yigldire rate
of appearance of gluco$®, following meal intakes. Different types of models can beeated by changing in the scroll-down menu

in the header of the GUI, and previous developed models sarbal imported for comparative purposes. Model evaluatiots pan
be requested using the push buttons in the upper right cofrtee GUI header.
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2001

1501

1007 B

501

0 c -
0 100 200 300 400
Reference Concentration [mg/dl]

Figure 4.3 The Clarke Error Grid [Clarket al, 1987] is divided into different zones; the
A zone corresponds to error of little clinical significantdge B zone represent values that
deviate more than 20% from the reference, but would lead nigheor no treatment deci-
sions if acted upon, the C zone error could result in oveettion, the D zone represents
failure to detect dangerously low or high glucose valueszome E corresponds to predic-
tions that would lead to erroneous and dangerous treatneeigidns (e.g. administrating
insulin when already hypoglycemic).

the warning time for each prediction horizon. The warnimgetiwas calculated
for the issued alarms,

Twarn = T72_Tth+TPH (4-21)

whereTy; is the time instant when the glucose level first drops belowng2dl.
The sensitivity is defined as

TP

(4.22)

whereT P corresponds to the true positive alarms, i.e., the numbi@nes when
an alarm was triggered before an event when the glucosedevspped below
72 mg/dl.FN, false negatives, correspond to that the predictor migsetypo-
glycemic event or raised an alarm too late, i.e., if no pesivarning timely, is
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4.5 |dentification

provided. The false alarm ratmwas defined as:

FP

~ TP FP (4.23)

P

where, the false positivelSP correspond to the number of times the predicted
glucose level5(k) was belowGi, while the reference blood gluco&k) was
above 72 mg/dl.

Input Impact Modification

All models identified in this manner will have a pole close he integrating
pole atz= 1 on the unit circle. Not surprisingly they are all slightlif,since
the data series is finite, and it only takes a small pertushato shift the pole
in either direction of '1’. This means that the total stadopimpact from either
input goes to zero (or explodes, if the model is unstablejclvbf course is
non-physiological for a diabetes patient. In order to hawelets suitable not
only for short-term prediction, but also for longer preatos, the total impact
over longer time horizons should be correct. Thus, the matétg term has to be
fixed. Simply moving the closest pole to "1’ would alter thérgand dynamics
in an unacceptable way.

Physiologically qualitatively correct models, incorpting the necessary in-
tegrating term, are retrieved based on the models idenbfjetie subspace al-
gorithm as follows for the second order system. New poleb@fdynamics are
determined from the characteristic polynomial as

(2= prew)(z—1) = (z— p1)(z2— p2) (4.24)

wherep; andp, represent the existing poles, apghy is the second pole in the
modified model. The equation lacks solutions, gRgly is approximated as the
average of the second and third coefficient of the charatiepolynomial:

+ p2+ -1
Prew— P1-+ P2 2p1p2 (4.25)

The new poles are introduced by transforming the systemtirgaompanion
canonical form and replacing the terms of the charactenmilynomial in the
right column of the new A-matrix.
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Now, in order to determine the new B matrix, the following strained reg-
ularized Least Squares (LS) optimization is undertaken

3

min [[Y = AX]|2+ 3 [|H(K) —CA*B||, (4.26)
k=1

X =®X+TU (4.27)

Gij =CAB(,j) (4.28)

Giyl < Gi_;|_7;|_<07 ie {l,...,ZO} (4.29)

Gi2>Gi12>0, ie{l,...,20} (4.30)

whereY = [y;...yn]" is the 24-hour CGM estimation record used to identify the
GIIM, X =[x;...xn]T is the corresponding stacked state matdix: [u; ... un]"

is the vectorized input recoré (1), H(2), H(3) is the 15-, 30- and 45-minute
impulse response of the GIING; j is thei:th term of the impulse response from
input j of the modified model, and is the vectorized matrix. ®, ' and A
represent the dynamical relationship of the model as:

0 ... 07 B ... O

o= |A 0 ... r=/0 B ... —M-b (4.31)
[0 A ] nNnN LO n-N,n-N
C 01

A=]0 C .. (4.32)
L0 ... "'-N,.n.N

wherell is a suitable transformation matrix. The regularizatioloves$ for a
sound balance between approximating the model to the Glialimesponse
(the first 45 minutes) and fitting the long term impact to thead@he constraints
guarantee qualitatively correct impulse responses. Hemestraints over 100
minutes,i = 20 in (4.29) and (4.30), was considered long enough to gteean
sign-correct impulse responses.

4.6 Results

The selected model order was= 2 for all models. The summarizing results of
the predictive performance for 20-, 40-, 60- and 120-miraktead prediction
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4.6 Results

for the automatically identified GIIM in terms of RMSE are falin Tables 4.2.
The corresponding results for the p-CGA is found in Tabl8s4.4, 4.5. In Fig.
4.4, an example of a 40-minute ahead prediction can be sadringrig. 4.5
the relative performance in comparison to the ZOH predist@resented. The
performance slowly deteriorates as the prediction horinoreases, and seems
to converge to a value of D for long prediction horizons. The predictions were
similar when the manually identified GIIM models or the maetifimodels were
used.

Table 4.2 Mean RMSE prediction results for the 20-, 40-, 60- and 120ut@ ahead
predictions [minimum and maximum values]. Automaticathemtified models.

RMSE [mg/dl]

T [min]  Montpellier Padova Prague

20 9[6-13] 8[5-11]  9[4-11]
40 17[13-23] 15[10-21] 18[9-23]
60 25[18-33] 21[14-31] 24 [14-33]
120  40[20-57] 35[26-49] 37 [25-58]

Table 4.3 Montpellier mean p-CGA results for the 20-, 40-, 60- and h@fute ahead
predictions [minimum and maximum values]. Zone A and B aesented separately, but
the erroneous zone C and the dangerous zones D and E weredltoge¢her. Automati-
cally identified models.

Montpellier

T [min] A %] B [%] CDE [%]

20  98.6[95.1-100] 1.0[0-4.2]  0.4[0-1.6]
40  94.6[83.7-99.7] 4.4[0.4-15.9] 0[0-3.3]
60  91.6[79.0-99.3] 7.1[0.7-17.9] 0[0-4.3]
120  87.8[65.9-99.3] 9.6[0.7-30.5] 0.1[0-14.7]

Depending on the length of acceptable data, between 9 andddlswere
automatically identified for each patient. On average, 8B0&6 of the models
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Table 4.4 Padova mean p-CGA results for the 20-, 40-, 60- and 120-miahead pre-

dictions [minimum and maximum values]. Zone A and B are preebseparately, but the
erroneous zone C and the dangerous zones D and E were |lungatideto Automatically

identified models.

Padova

T [min] A %] B [%] CDE [%]

20  99.1[96.4-100] 0.5[0-2.8]  0.3[0-2.6]
40  96.1[92.3-99.7] 2.6[0.3-7.1] 1.3[0-3.8]
60  93.5[86.5-99.3] 4.5[0.9-11.1] 2.0[0-5.3]
120  89.9[80.0-99.3] 6.2[1.6-11.4] 3.9[0-11.7]

Table 4.5 Prague mean p-CGA results for the 20-, 40-, 60- and 120-miahead pre-

dictions [Minimum and maximum values]. Zone A and B are pnése separately, but the
erroneous zone C and the dangerous zones D and E were |lungatideto Automatically

identified models.

Prague

T [min] A %] B [%] CDE [%)]

20  99.2[97.6-100]  0.6[0-1.4] 0.2[0-1.2]
40  96.0[90.6-98.7] 3.0[0.8-5.5] 1.1[0-3.8]
60  93.1[87.3-98.4] 5.2[1.2-10.1] 1.7[0-4.2]
120  91.9[83.7-97.4] 6.5[2.6-13.6] 1.6[0-6.2]

fulfilled the screening criteria, but with large interpemabdifferences. For two
patients only one, out of all evaluated models, was accéptalhereas for 21
patients, all models were satisfactory in terms of qualiéatesponse.

In Fig. 4.6, a typical example of the model response for madliasulin
can be seen for both the modified and the original model de:firem the au-
tomatically identified model. The modified model responsdiedv the original
models closely up until about 100 minutes after insulin oahigtake.

The values of the stationary estimated insulin and carb@tgimpact levels
are found in Fig. 4.7. The distribution of the ratio betwelese was estimated
by a log-normal distribution and by the Parzen estimate otetising a Gaussian
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40-minute Prediction of Glucose Dynamics
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Figure 4.4 Example of a 40-minute ahead predictiBrcompared to the reference CGM
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Figure 4.5 Mean relative performance in comparison to the ZOH predittoluding
standard deviations.

kernel (0 = 2.0) [Bishop, 2006]. The results are found in Fig. 4.8. Simi&sults
were achieved when the modified models were derived from uk@nzatically
and the manually identified models.

The Carbohydrate-to-Insulin Ratio (CIR) was estimatednftbe modified
models, and is a common metric in clinical diabetologicalgtice, used to es-
timate the insulin need for different meals [Davidseihal, 2008]. The actual
CIR was calculated for each individual, by dividing the suanimed amount of
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Response to 1 U of rapid bolus insulin
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Figure 4.6 Example of response to 1 Insulin Unit (1U) of rapid insulindatO g of car-
bohydrates. Black curve: Modified model, Red dotted curvegi@al prediction model
(automatically identified).

digested carbohydrates and insulin over the study. In ER. the actual and
the estimated CIR were compared. The similarity is quitedg@regression:
y=a-x,a= 1.05+0.05 R=0.8,p < 0.05), apart for some outliers and for
some of the Prague patients, where there is a clear bias.

The dynamical aspect of the insulin and carbohydrate imgestribed by
the time constantg,s andcar (cOrresponding to the time it takes to reach 63%
of the stationary level), as determined by the modified maatel illustrated in
Fig. 4.10. The time constants were heavily distributedigy= 110 minutes and
Tcarb = 70 minutes. There was no principal difference in distribntbetween the
three sites.

The data were reviewed for hypoglycemic events. In total (3 Mont-
pellier, 22 Padova, 0 Prague) hypoglycemic events wereddon21 patients
(13 Montpellier, 10 Padova, 0 Prague), when reviewing tbedglucose refer-
ence records. Due to the low number of blood glucose samplesxted at the
Prague site, no interpolation could be undertaken, and atysis in terms of
hypoglycemic detection could therefore be performed froosé data records.
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Figure 4.8 Distribution of Carbohydrate-to-Insulin Ratio (CIR) féret data from all three
sites.

Four different settings of the alarm threshold were analy3e, 78, 84 and 90
mgy/dl, for prediction horizons 1d5,...,60 min of the underlying predictors.
In Fig. 4.11 and 4.12, the sensitivity, false alarm ratio avarning time are
plotted for every combination of threshold level and prédithorizon for the
Montpellier and the Padova sites. The Montpellier resuisas) are based on
the automatically identified models, and the Padova rekalte been retrieved
using the manually identified models.

For the Montpellier patients, the automatically identifieddels were slightly
better than the manually identified models. A thresholdgef=90 mg/dl and
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Figure 4.9 Actual versus estimated Carbohydrate-to-Insulin RatidRfC

Tpy = 40 gave a sensitivity of 70%, a false alarm rate of 49% and awgtime
of 24 minutes. On the contrary, the manually identified medetre the better
choice in this aspect for the Padova patients. A thresholgp=90 mg/dl and
Tpy = 20 gave a sensitivity of 76%, a false alarm ratio of 47% and ening
time of 34 minutes. Using the ZOH, the sensitivity, false@aatio and warning
time results can be found in Tables 4.6 and 4.7.

Table 4.6 Performance metrics for the hypoglycemic detection ushegdomparative
ZOH model, triggered at the different alarm threshold Ie&},. Montpellier patients

Gtn [mg/d]
72 78 84 90

Sensitivity [%] 3 15 17 37
False Alarm Ratiop [%] 89 63 81 79
Warning time [min] 10 8 12 8

The relationship between level of insulin antibodies anktconstant of the
ISM was investigated, with no positive outcome, see Fig34.1
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Figure 4.10 Distribution of Carbohydrate and Insulin Time constantse Eolor of the
boxes, corresponding to different combinations of carbloée and insulin impact con-
stants, represents is described by the

Table 4.7 Performance metrics for the hypoglycemic detection usiregdomparative
ZOH model, triggered at the different alarm threshold Ie&|. Padova patients

Gin [mg/dl]
72 78 84 90

Sensitivity [%0] 0 15 31 34
False Alarm Ratep [%] 100 78 80 82
Warning time [min] N/A 5 12 12

4.7 Discussion

Prediction

The selected linear model structure of the GIIM is in manyeatpa crude ap-
proximation to known non-linearities, e.g., in terms of theerse relationship
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Figure 4.11 Average hypoglycemic sensitivity (a), specificity (b) andming time (c),
using different thresholds and prediction horizons. Metiigr patients.

between insulin sensitivity and glucose level [Chetral, 2010], and different
aspects of time-variability, see Chapter 3. Furthermdve generic parameters
used in the sub models are also non-optimal, and can be exbiecteduce the
predictive performance (see discussion on the insulin sotbet’s influence on
the input response further down). However, these choicescasome extent
driven by the available data. On average, the investigadé¢iént records con-
tained 58 hours of data, or about 700 samples collected véitmaute sampling
period. Considering splitting these data into estimatiod ealidation data, fur-
ther reduces the available data for identification—setifignit for the parame-
ter complexity of the model. The sub models were chosen ierdtransform
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Figure 4.12 Average hypoglycemic sensitivity (a), specificity (b) andming time (c),
using different thresholds and prediction horizons. Paduatients.

the meal and insulin impulses into a continuous signal todadle in the chosen
state-space framework. Individual parametrization ofshke models, even on
the individual meal composition, see e.g. [Ceseobal, 2009], would have been
preferred, but the modeling errors introduced by the gempaiameters in these
sub models can to some extent be handled by the GIIM modgiwfivlg the sub
models in a cascade-like manner. Furthermore, the protackéd identifiabil-
ity concerns in terms of that it was not designed to, e.g.videexcitation to
the system over the entire glucose range, to excite theraysiih a single input
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Figure 4.13 Time constant of the insulin impact in relation to the levieotibodies.

channel separately, or to test a wider range of input made#uThis, together
with the short data set, makes assessment of time-vatyatnilnon-linear effects
very difficult, and should therefore not be addressed in arfimleling attempt.

The aspects outlined above may also be responsible for tiebl@adegree
of identifiability, experienced for some data segments effiatient data. Non-
linearity, time-variability and large inter-variabilitetween meal responses may
be perceived as data inconsistencies to the model. Howavéne positive side,
it should be noted that the patient data contained extreksraax insulin correc-
tions during the three day course (on average 5 meals andi4 dokes in total
over a day). These unscheduled inputs, often separatemén pirovided some
extra excitation to the system identification.

Despite these short-comings in terms of modeling, the ptidiquality of
the simplified model is quite good for short prediction horg. The Clarke Grid
evaluation (Tables 4.3, 4.4, 4.5) indicates that clinijcaticeptable results (here
defined a®\+ B > 98%) in general could be achieved for prediction horizons up
to 60 minutes.

Comparing the three clinical sites, no significant differerin predictive
quality was found. However, it was found that the predictregformance was
significantly better for the MDI patients than for the pumgigats (0.05 sig-
nificance levelyT < 90 min, when Montpellier and Padova where considered,
VT < 40 min, when the Prague patients were included. Data notrshow

The main difference between these two groups, with regardsodeling, is
in terms of the insulin signal. Here, the basal dose is insilfdr the pump pa-
tients, whereas the insulin signal used for the MDI patientg take bolus doses
from the rapid-acting insulin into account. The basis fas tthoice was that the
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action profiles of the long-acting insulins used by the MDiigrats (glargine and
detemir) are very flat, with low dynamic impact, and is noteoted to directly
influence the short-term dynamics investigated. The bawsad tbr pump patients
on the other hand, utilizes the same rapid insulin as usdablas purposes. The
short action profile of the rapid insulins allows for suddbarmges in basal dose,
a feature that often is exploited to optimize the 24-houabesgime for these
patients. The fast response to these changes is a strongemgtor including
the basal level in the insulin signal for the pump patientswiver, a difficulty in
modeling and identifying pump patients with shifting baleakel is to establish
the true reference level, i.e., the basal level correspmnigi a stationary glucose
level when no other external inputs affect the system. Amumnt for not in-
cluding the basal level for pump patients is that the intandif the shifting basal
therapy regime is to match the circadian rhythm of the mdisindVVan Cauter
et al, 1997b], and that the selected basal dose thus matchesitheeference.
In reality, mismatches are expected. Considering thesecasihe models were
identified both with, and without, the basal level, but with@rincipal differ-
ence in result. The underlying reason for better predigtiwdormance of the
MDI patients thus remains unknown.

Comparing the results to previously published predictersat always easy
due to the use of different evaluation metrics. Howevemwelome compara-
ble results have been found. In [Finahal, 2009a] both batch-wise and recur-
sively identified patient-specific ARX models have been ysed for 9 patients
and compared to a ZOH predictor for 30-, 45- and 60-minut@dipeediction.
The corresponding mean relative performance was 0.91 [ftiirale prediction
horizons, and the absolute RMSE values are summarized I8 Fabdtogether
with results for the following studies. A neural network apgch was utilized in
[Zecchinet al, 2012] for 30-minute predictions on 9 subjects, and suppsrt
tor regression was applied to the problem in [Geartal, 2011] for 7 patients.
In this latter study, the results were also evaluated withghCGA, see Table
4.9. Comparing these results with the results from thisystndables 4.2, 4.3,
4.4 and 4.5, show that the results achieved are competitive.

For hypoglycemic detection, a sound balance between satysfalse alarm
rate and maximum warning time is crucial. The results showrg wigh false
alarm rate. However, this metric depends on the binary dogiatf whether the
blood glucose level passed the hypoglycemic threshold;twiniakes it sensitive
to small changes. As it turns out, many of the false alarm&wkrse misses.
The mean value of the blood glucose reference at these aestawas 88 and
93 mg/dl for the Montpellier and the Padova site, respelgtivath many values
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Table 4.8 Comparative values of previous publications.

RMSE [mg/dl]

Prediction Horizon [min]

Publication
Nr of subjects 15 30 45 60 120
[Finanet al, 2009a] 9 N/A 26 34 40 N/A
[Zecchinet al, 2012] 9 N/A 14 N/A NA N/A
[Georgaet al, 2011] 7 96 16.2 N/A 249 358

Table 4.9 Comparative Clarke values [%] from [Georgaal, 2011].

Prediction Horizon [min]

Zone
15 30 60 120
A 98.8 925 80.0 62.9
B 1.1 7.0 185 337
C 0 0 0.1 04
D 01 05 14 3
E 0 0 0 0

close to the hypoglycemic threshold. Considering theseltseshe high false
alarm rate should not be overstated, and comparing thegboediarms’ overall
results to the corresponding results for ZOH predictonigicant improvements
are apparent. Furthermore, it should be borne in mind tlealoilv incidence of
hypoglycemic events has a high impact on the estimate ottpegformance
metrics. Considering the strong amplification of the ins@iction in the hypo-
glycemic zone, reported in [Chaat al, 2010], a specialized low blood glucose
model may well improve these results. However, the hypagtyic episodes of
the data sets used here are short, and are shadowed by thie datlycemia
and hyperglycemiain the identification process.
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Long-term Impact Response

It is interesting to note that the impact responses of th&@hlodels are similar
to the modified models up until about 100 min (Fig. 4.6). Thisufficient to
ensure short-term predictions within this range, as théiptien results indi-
cate. However, the entanglement of the inputs after thistppakes the models
unsuitable for control strategies dependent on long-terpact, such as manual
control, and the modified models should be employed instead.

The estimated time constants of the model from each inpué \weavily
distributed in the lower end atys = 110 andtcap = 70 min, see Fig. 4.10.
Looking at the dynamics of the sub models in section 4.4,ntloa concluded
that the ISM has a time constant close to 110 minutes. Thseseits likely that
the generic model was too slow for some of the patients. Thiel,GSaluated
in the same manner, has a time constant of 58 min, which isrltve@ 70 min,
and this sub model is therefore not subject to the same proble

Case studies suggest that high levels of insulin antibartiekl have a neg-
ative effect on glucose regulation in insulin-dependeabdtic patients, such as
post-prandial hyperglycemia, followed by, in some casgpoglycemia, long
time after the expected duration of the insulin action [Vaaefen, 1989]. The
causal pathways to such an influence would be the bindingsoflim result-
ing in prolonged, and initially dampened, insulin impadie®e adverse effects
have not been found in large cross trial analysis, [Lindhetnal, 2002], but
the numerous case studies suggest that the problem cannifecaigt for some
individuals, see e.g. [Hirata and Uchigata, 1994]. Theuiudial specific condi-
tions explaining the case reports remain to the revealesiidh binding effect
was present in the data at hand, the estimated insulin impagtd possibly
have a large time constant for patients with high antibogiglle However, the
results, see Fig. 4.13, suggest the opposite—the largeatsti time constants
belong to the patients with low antibody levels, possiblggesting that most of
antibodies identified in our patients are of high affinity fiesulin, thus forming
stable immune-complexes, which are not prone to on/offibmtb insulin, and
consequently have minimal effect on insulin action.

4.8 Conclusion

In this study, patient-specific models were identified fordifferent patients.
The predictive quality was competitive to previously pehkd results, and it
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was found that there is a significant difference in predictjaality between the
MDI and pump patient groups for short prediction horizonse Teason for this
is unknown. No difference was found between the differemticdl sites, but
large interpersonal differences. Further in-depth anglstsould be undertaken
to investigate whether any stratifications are possibledhas basic patient char-
acteristics, as those collected in the study, see Chaptéyglycemic alarm
triggering was evaluated with an average sensitivity of 738minutes in ad-
vance with a 48% false-alarm rate. However, the averageogkigalue when
the false alarms were raised was 90 mg/dl, with many valuesedb the hypo-
glycemic threshold. Thus, most of the false alarms were messes, reducing
the significance of the high false alarm rate. The modelsideoa significant
improvement in the possibility to detect hypoglycemia ivaatce, in compar-
ison to relying on CGM data alone. Furthermore, the estichatgacts of the
modified models seem plausible and the estimated Carbadieytrdansulin Ra-
tio (CIR) matched the true ratio well. Overall, the resuttdicate that the used
modeling and identification approach may prove useful farsterm predic-
tion, utilized in a decision support system or an artificahpreas.

72



5

Augmented Model
Incorporating Sensor
Dynamics

Predicting the glucose level in a real-time setting mealysng on CGM data.
In Chapter 4 the delay between the blood glucose and the mesbmerstitial
glucose level was ignored, and the CGM signal was used asxg fooblood
glucose. Actually, this is the most common way of glucose eftiod and pre-
diction, and applies to all the models listed in Chapter 4wkler, in many
cases there is a significant lag between the interstitiaiqfle and the blood glu-
cose due to physiological and sensor dynamics [Keeatai, 2009]. Ignoring
this delay in the modeling implies corresponding delayshim prediction, an
aspect of special importance during falling glucose legeld impending hypo-
glycemia, when an hypoglycemic alarm, based on the predictould warn the
patient and instigate corrective actions. For an assesshéme delay between
these signals in the data at hand, see Chapter 3. The capilidrsensor charac-
teristics of the finger-stick measurement sensors arejsrctintext negligible,
and are generally disregarded (and the delay is indicatbd small [Dyeet al,
2010]). In this chapter, the GIIMVI; in Fig. 5.1, and the interstitial and sensor
dynamics (here treated as one mdde| see [Boyneet al, 2003] for a brief dis-
cussion on the contribution of each term to the delay) arstified separately,
and thereafter merged together into one single grey-boxematsing an ob-
server, the blood glucose evolution is predicted aheadas the raw sensor
output.
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Glucose
Subsystem

Insulin
Subsystem

Ra(t) Ip(t)

Interstitial
Dynamics

! G0

Figure 5.1 Overview of the modeling approach. Notation: Plasma Insiglit), Rate of
Glucose Appearance following a mé&(t), Blood glucoses(t), Capillary glucosésc(t),
Interstitial GlucoseG, (t), CGM raw current signal; raw(t) and CGM signalGegm(t).
M; represent the model describing the glucose-insulin intena in the blood and inner
organs (GlIM), theM, model represents the diffusion-like relationship betweleod and
interstitial glucose and the CGM sensor dynamics, ERds the joint model ofM; and
Mz. Same figure as Fig. 4.1.

The interstitial and CGM sensor dynamics have been inveggtiassuming
a first-order diffusion model in [Kovatchest al, 2006] and [Facchinet&t al,
2007]. In [Facchinettet al, 2007], the blood glucose level was recovered from
the CGM signal using deconvolution, and in [Bequette, 2G0%arly attempt
at observer-based estimation was presented. In [géeal, 2010] a third order
Box-Jenkins model was used to estimate the glucose level fihe raw sensor
signal. However, so far (to the best of the author’'s know#ahgp attempts have
been made on merging all the modules together for the pugfddeod glucose
prediction.

74



5.1 Data

5.1 Data

Based on the assessment of blood-to-interstitial delayap@r 3 and data com-
pleteness, one patient was chosen from the total DAQ datinsatder to show
significant results, a patient with large lag was choseridpail07 from Mont-
pellier).

Signals

The HemoCue measurements were interpolated using a shegerying spline
interpolation method (pchip in Matlab [MathWorks, 2012)yétrieve an equidis-
tant sampled signdb(t) with sampling period 5 minutes.

Apart from theGegm(t) signal (10 min sampling rate), an intermediate sig-
nal G raw(t) from the glucose sensor was collected (1 min sample ratey. Th
signal, corresponding to the electrical current measuyettié sensor, was nor-
malized to the same amplitude as the blood glucose data asachpted to a
5 minute basis, and was used in the identification insteathe@fQGM signal

GCGM(t)-

5.2 GIIM Modeling - M1

Denoting the blood glucos8(ty), at sampling timey, with y(k), and the raw
CGM signalG; raw(tx) with z(k):

<= [ZE'S] - [G|,Gr::vk<)tk>] &

and the filtered inputs, = [Ip(k)  Ra(k)]T, the GIIM is modeled with a discrete-
time state space model;.

x(k+ 1) = Ax(K) + Bau(K) + w(K) (5.2)
y(k) = Cax(k) + v (k) (5.3)

wherex(k) € R" is the state vector an@ is process noise and is the finger-
stick measurements noise with covariances:

((9)(9) )

The model order was determined using the Akaike criteriohdhsson, 2009].

(5.4)

Q O
0 R
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5.3 Interstitial and Sensor Model - M2

The dynamics between blood glucasand interstitial glucosg, as measured
by the sensor, was modeled as an ARX process.

A(z) -z(k) = B(2) - y(k—d) +e(k) (5.5)

whereA, B are polynomials of the zero-order-hold operatod is a delay, and
e(k) is the CGM measurement noise. The model oragrsig andd evaluated
for values according to Table 5.1 are determined using thé. Igiiderion. The

choice of evaluated model orders covers the compartmenehsoggested in
[Rebrin and Steil, 2000a].

Table 5.1 Evaluated model orders

Parameter Value
na 1-2
ng 1-2
d 1-4

5.4 Model Merging - M3

Converting the sensor ARX model into a state-space mtiel {Az,B2,Co}
with process and measurement noi@esandR,, the GIIM and sensor models
are merged into one modkls : {Ag, Bz, Cs}, with the augmented state vectr
and the output .

As — [ A [nAlanz]] 7 Bs — By (5.6)
1B2-Cy Ao Olna, x2)
rC C 0
1Cs2 Oixng,) 2
[Q1 O ] |:R1 0 }
_ , Rg= 5.8
Qs 0 0O =10 R (5.8)
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5.5 State Estimation and Sensor Fusion

Data is available at different rates from the two measurérdenices, and at
least from the finger-stick measurements, in a non-eqgaidishanner. Thus,
combinatorially there are 3 (4) possibilities; (1) datanfrboth, (2) Data from
HemoCue and (3) Data from the CGM sensor, ((4) No data). Taiis for time-
varying system of switched dynamics. The boolean variablesdd, are used
to keep track of which signal that is present in the feedbaic#d,the new system
becomes:

E(k+1) = AsE (k) +K({ (k) —Csé (K)) (5.9)
2 = [fj ;’J CE (K (5.10)

where the time-varying Kalman galk depends on the unknown covariance
of the process nois® and measurement nois& and R,. The accuracy of
the finger-stick HemoCue glucose monitor [HemoCue Gluc@de-2Analyzer,
2012] has been studied in [Stogkal, 2005], which indicate a standard deviation
in the area of 10-15 mg/dl when compared to a state of thelzotdaory device
(Yellow Spring Instrument [Yellow Springs Instrument, 2J)1L The study indi-
cates a linear relationship between noise and glucose, ke@th is common
for glucose meters. No information on the measurement rajitiee relatively
new Abbott CGM system [Abbott Freestyle Navigator, 20123 baen found,
but a standard deviation of 20 mg/dl is not an unrealisticigggion (compare
to the BG-CGM deviation in Chapter 3). Also for CGM systemgapprtional
increase in noise level to the glucose level is found. Cureealuation methods
to assess the performance of CGM systems is based on comgpaerCGM
signal to a blood glucose reference. As the previous digsmushows, the sig-
nal to reference deviation incorporates deviation duegdithe lag between the
signals and does not accurately capture the stochastatizarin the CGM sig-
nal. Recent developments in CGM error assessment aim tdifyuéoese error
dynamics, but do not address the estimate of CGM variatiosg@¢Clarke and
Kovatchev, 2009]. In this thesis, the initial guess for edevel standard devia-
tion was chosen to correspond to 15 mg/dl for the HemoCuedearid 20 mg/dl
for Abbott CGM. The measurement errors were considered tmberrelated.
Given the initial guesse§, andRy, Q andR can be iteratively estimated
by first calculating the state estimation sequeﬁge: [€1...én] and the esti-
mation error sequend&N = [Wy...Wy] from the estimation dat@YN,UN,éo}
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[Johansson, 2009].

SNt =AXN+BUy+K(Yy —CZp) (5.11)
Wh =C3n— Yy (5.12)

Thereafter the covariance estimates
S=E{((-&)(E-&)T}), R=E{Wm¥} (5.13)

are determined. Given that the sequence is stationary

lim Sy=S (5.14)
N—00

and
lim Ry =R (5.15)
N—oc0

Now {A,B,C} may be re-estimated again by recognizing that:

1= (A—AKC) &+B K W (5.16)
Wk — Yk = —Cé (5.17)
Finally,
Q=S - ASIAT —KRyKT' (5.18)
R=CSC" —Ry (5.19)

Note that this computation may result in sign-indefiniteutohs [Johansson,
2009].

Estimation and Validation

The overnight data between the first and the second day wedgogether with
breakfast meal data from the second day for estimation. $t deided to use
overnight data together with meal data, in order to have a skettwith sufficient
amount of excitation. Using meal data alone is problemsitice both inputs act
simultaneously during these circumstances. An assesshng importance of
input excitation to identification using simulated diabedata sets is made in
[Finan et al, 2009b]. The first and third days’ breakfasts were used fos<r
validation. Additionally, to challenge the predictor, HkémoCue measurements
were removed from the validation data sets.
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5.6 Evaluation Criteria

To evaluate the predictive performance of the model, 20,060 minute pre-
dictions were considered. The correspondence to the refetdemoCue mea-
surements were assessed using the Clarke Pointwise EridbrABalysis (p-
CGA), see Chapter 3, RMSE and maximum absolute error. Thferpaance
was compared to the CGM signal’s ability to measure the biglodose.

5.7 Results

Pointwise Clarke Error Grid Analysis (pCGA) for Breakfast Day 3
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Figure 5.2 Example of Clarke Error Grid Diagram, 40 min prediction DayP8ediction
versus the interpolated HemoCue blood glucose reference.

First, the GIIMM; was identified. Using the interpolated HemoCue data and
the meal and insulin sub models to retrieve the filtered impatsecond-order
state-space model was identified using the N4SID commard@ystem Iden-
tification Toolbox in Matlab [MathWorks, 2012]. The model svstable and re-
sponded qualitatively correctly to input (not shown). Theerstitial modeM,

was thereafter identified from the interpolated blood giecdatas and the raw
CGM signalG, raw. The model order chosen according to the MDL criteria was
na = 2, ng = 1 andd = 1. Converting theM, model to state space format, the
merged modeMs was retrieved.
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Since only CGM data were available in the validation data=£ 0), the
system became time-invariant and a stationary Kalman filtey designed.

Using the initial guess fo@ andR produced noisy predictions. The attempt
to estimate the noise characteristics from the estimataia droke down into
non-positive definite covariance matrices. Inste@dind R were heuristically
chosen to strike a sound balance between signal smoothmésssponsiveness
to model-to-feedback mismatch.

In Fig. 5.3, the 20, 40 and 60 minutes predictions togethér mormalized
G raw signal and théScem signal can be seen, and in Fig. 5.2 an example of
p-CGA can be seen. All performance metrics have been surnedhin Table
5.2.

Table 5.2 Performance evaluation for thés predictor and th&cgy in comparison to
the blood glucose referen€&on validation data.

Prediction p-CGA[%] RMSE max |e|
Horizon A B CDE [mg/dl] [mg/dl]

20 842 158 0 19 42
40 849 151 0 20 46
60 83.7 163 0 21 45
Geom 459 516 25 47 )

5.8 Discussion

Error Analysis

To determine the source of the prediction error, the sinaragrrors of the sen-
sor model,
&=2—-2 (5.20)

and of the GIIM model

&=y—y (5.21)
were investigated separately. In Fig. 5.4, the simulatioordetween the simu-
lated raw CGM signa raw and the true signal can be seen. The error distribu-
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Breakfast Day 1 Breakfast Day 2 Breakfast Day 3
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Figure 5.3 Plasma glucose predictions. Interpolated HemoCue measuts (thick
solid blue),Gcm (solid black),G) raw (dash dotted magenta) aMB predictions (dashed
red) for estimation data (middle plot) and validation dadét @nd right plots).
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Figure 5.4 Simulation erroi; of the simulated raw CGM signa(K) given blood glucose
y(k) using the sensor modRkl,. Estimation data (middle plot) and validation data (lefilan
right plots).
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Figure 5.5 Simulation errore, of blood glucosey(k) given inputsu(k) using M. Esti-
mation data (middle plot) and validation data (left and tiglots).

tion is clearly non-Gaussian. This could be explained byetirarying dynam-
ics, and in [Sparacinet al, 2007] a recursive sensor model is used to handle
such occurences. However, the evaluated time periods arg sind applying
the model over the entire data record gives a more evenhilisth (Fig. 5.6).
Given atolerance interval af20 mg/dl, corresponding to the p-CGA A zone for
a 100 mg/dl blood glucose value, the model error can be cereicacceptable.

Residual Distribution
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-10 0
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Figure 5.6 Distribution of the simulation error of the sensor modelratvee entire data
record.

The simulation error of the GIIM can be seen in Fig. 5.5. Thetgbution is
significantly larger. For breakfast day one, the model uestanates the glucose
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drop after the peak. On day three on the other hand, the medetstimates
the same drop. Given that these are infinite-horizon priedigtithout any mea-
surement feedback, a maximum error in the magnitude of 4@Insgbuld be
considered to be a very good result. In fact, the error is atmwihin the p-CGA
A zone at all times.

Looking at the predictions in Fig. 5.3, the behavior of thedsction error can
be understood from the error contribution from the sensadehsensor errors
and the GIIM. As the prediction horizon increases, the Gltkdebecomes more
and more dominant.

The corresponding prediction error for the model from Chagt without
the sensor model and with CGM as feedback signal, in termd8IR can be
found in Table 5.3. Compared to the results in Table 5.2, aamovement can be
seen for every evaluated prediction horizon, with a reddyilarger improvement
as the prediction horizon increases.

Table 5.3 Prediction error assessment for the model without incateor sensor model
in terms of RMSE.

Prediction RMSE [mg/dl]
Horizon [min]  vsGcgm  VvsG

20 8.0 25.0
40 16.3 314
60 24.4 37.6

Glucose and Insulin Sub Models

Major sources of uncertainty are the intermediate injg4tandl, and the as-
sumptions made to retrieve them. Unfortunately, theseaslest are hard to over-
come in the applied modeling framework. Neither the ratdwégse appearance
following a meal nor the plasma insulin level are normallgitable for measure-
ment. Estimates dR,; have been made in [Dalla Mast al, 2006] and require
atracer based experimehg.can be obtained from lab assays of blood samples.
Obviously, such arrangements cannot be expected in a ndagaetting. Fur-
ther work to assess the intra- and inter-individual vaoiagi of these processes,
and on mitigations to handle these principle obstaclesésiad.
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IG Dynamics

These dynamics were assumed to be time invariant, and hareogs in di-
rection and magnitude of glucose change and glucose leliela¥sumption of
independence of the sign of the glucose change has been shdwnques-
tionable, see [Kovatchest al, 2009], where statistically significant differences
in response time, depending on the direction of glucosegdaare presented.
However, in this study no such differences could be observed

5.9 Conclusions

The comparison of the merged prediction to the CGM signartleshows that

the augmented model manages to significantly reduce thg, diet otherwise

is present when only relying on the CGM signal to estimatebibed glucose.

Furthermore, the results indicate that the underlying Giibtlel seems to, with
acceptable accuracy, describe the combined impact of &flastand the sub-
sequent insulin injection. Further research is neededatuate the concept on
more patient data, to investigate whether generic sensdelmoan be utilized—
thereby reducing the necessity of well-sampled referetmedbglucose data—
and to investigate potential non-linear sensor charatiesiand time-variability

associated with sensor drift.
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Ensemble Prediction

Diabetic glucose dynamics is known to be subject to timéislgidynamics, as
indicated in Chapter 3. Considering this, and the vast nurmbmodels devel-
oped in the literature, as described in Chapter 4, it is @ndée single model can
be determined to be optimal under every possible situafibis. raises the ques-
tion whether it is more useful to use one of the models sobelif,it is possible
to gain additional prediction accuracy by combining theitcmmes. Accuracy
may be gained from merging, due to mismodeling or to chandinmgamics in
the underlying data creating process, where a single megélicing the system
behavior may be infeasible, e.g., for practical identifamatoncerns. Thus, by
an ensemble approach, robustness and performance may bevé@dplin this
chapter, a novel merging approach—combining elements froth switching
and averaging techniques, forming a ‘soft’ switcher in a &agn framework—
is presented for the glucose prediction application.

6.1 Related Research

Merging models for the purpose of prediction has been deeeldn differ-
ent research communities. In the meteorological and ecetramtommunities
regression-oriented ensemble prediction has been a @s&hrch area since the
late '60s, see e.g. [Raftest al, 2005] and [Elliottet al, 2006].

Also in the machine learning community, the question of haffecent pre-
dictors or classifiers can be used together for increasddrpsance has been
investigated, and different algorithms have been develppech as the bag-
ging, boosting [Breiman, 1996] and weighted majority [leistone and War-
muth, 1994] algorithms, and online versions of these [O8852 Kolter and
Maloof, 2003].
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In most approaches the merged predicgpattimek is formed by a linear
weighted average of the individual predictds

95 = Wi 9k (6.1)

It is also common to restrict the weightg to [0,1]. The possible reasons for
this are several, where the interpretation of the weighpsaisabilities, or rather
Bayesian beliefs, is the dominating. Such restrictionareever not always ap-
plicable, e.g. in the related optimal portfolio selectionlgem, where negative
weight (short selling) can reduce the portfolio risk [Eltetal, 1976].

A special case, considering distinct switches betweeprmifft linear system
dynamics, has been studied mainly in the control commumhg data stream
and the underlying dynamic system are modelled by pure Bimgcbetween
different filters derived from these models, i.e., the we&ghky, can only take
value 1 or 0. A lot of attention has been given to reconstngcthe switching
sequence, see e.g. [Gustafsson, 2000; Ohlssah, 2010]. From a prediction
viewpoint, the current dynamic mode is of primary interestd it may suffice
to reconstruct the dynamic mode for a limited section of tlestmecent time
points in a receding horizon fashion [Alessanetral, 2005].

Combinations of specifically adaptive filters has alsoatirsome interest in
the signal processing community. Typically, filters witffelient update pace are
merged, to benefit from each filter's specific change respensss, respectively
steady state behaviour [Arenas-Garetal, 2006].

Finally, in fuzzy modeling, soft switching between mulégphodels is of-
fered using fuzzy membership rules in the Takagi-Sugeniesys[Takagi and
Sugeno, 1985].

6.2 Problem Formulation

A non-stationary data stream : {yx, Ux} arrives with a fixed sample rate, set
to 1 for notational convenience, at timee {1,2,...}. The data stream con-
tains a variable of primary interest callgg € R and additional variablesy.
The data stream can be divided into different peridgsof similar dynamics
S € S=1...n], and wheres € Sindicates the current dynamic mode at titpe
The system changes between these different modes acctodioge unknown
dynamics.
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6.3 Sliding Window Bayesian Model Averaging

Givenm number of expert-steps-ahead predictioméur;‘k,j € {1,.m} of
the variable of interest at timig, each utilizing different methods, and/or dif-
ferent training sets; how is an optimaisteps-ahead predictioyf +;‘k of the
primary variable, using a predefined norm and under timgivgrconditions,
determined?

6.3 Sliding Window Bayesian Model Averaging

Apart from conceptual differences between the differeptapches to ensemble
prediction, the most important difference is how the wesgate determined.
Numerous different methods exist, ranging from heuriskipathms [Takagi
and Sugeno, 1985; Arenas-Gareizal, 2006] to theory based approaches, e.g.,
[Hoeting et al, 1999]. Specifically, in a Bayesian Model Averaging framekwo
[Hoeting et al, 1999], which will be adopted in this chapter, the weights ar
interpreted as partial beliefs in each predidiy and the merging is formulated
as:

P(Ykq/Dk) = ) P(YictqlMi, Di) p(Mi|Di) (6.2)

wherep(ykq|Dk) is the conditional probability of at timety, 4 given the data,
Dy : {zs«} received up until timé, and if only point-estimates are available, one
can, e.g., use:

it gk = E(YicralD) (6.3)
= > E(Mi[D)E(Yi.q/Mi, Dx) (6.4)
=Wk (6.5)

W_|(<I> = E(Mi|Dk) (6.6)
p(wy) = p(Mi|Dy) 67)

whereyfg+q is the combined prediction ofi,4 using information available at

timek, andwl((i) indicates positiom in the weight vector. The conditional proba-
bility of predictorM; can be further expanded by introducing the latent variable
0j.
P(Mi|Di) = 3 p(Mi|©;, Di)p(©;|Dy) (6.8)
]
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or in matrix notation

p(W) = [P(Wyg,1) ---P(Wyg.—n) | P(O|Dk) (6.9)

Here,0; represents predictor moden a similar sense to the dynamic moSe
and likewisef represents the prediction mode at tiknp(©|Dy) is a row vector
of p(©j[Dx), j = {1...m} andp(wye,) is a row vector of the joint prior distri-
bution of the conditional weights of each predictor modekgi the predictor
mode0;.

Data for estimating the distribution f@(wye, ) is given based upon using a
constrained optimization on the training data. In casesloélled training data
sets, the following applies:

k+N/2
{Wk\@i }Tg = argmin z g(y(tm)aw-ll—‘@i yi)a ke TS (610)
m=k—N/2

() _
s.t.Zwk‘(ai =1
]

whereTg represents the time points corresponding to dynamic n&add is
the size of the evaluation window an# (y,y) is a cost function. From these
data sets, the prior distributions can be estimated by tresRavindow method
[Bishop, 2006], giving meamgp = [E(wy ) and covariance matriRg,. An
alternative to the Parzen approximation is of course toregé a more parsimo-
niously parametrized probability density function (pdf)d., Gaussian) for the
extracted data points. For unlabelled training data, viitle {pointsT, the corre-
sponding datasefsvye, }T are found by cluster analysis, e.g., using a Gaussian
Mixture Model (GMM) [Bishop, 2006].

Now, in each time stef, thewyg, , is determined from the sliding win-
dow optimization below, using the current active md#e;. For reasons soon
explained, onlyv,g, , is thus calculated:

k-1 .
Wg_, = argmin Z Nu"’h?f(yj Wio . I1) (6.11)
J= —
+(Wigg,_, —Woja,_,) g, , (Wiig,_, —Woig,_,)"

)
s.t;wk‘ek_1 =1
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6.3 Sliding Window Bayesian Model Averaging

Here, uj is a forgetting factor, and\g, is a regularization matrix. To infer the
posteriorp(®|Dy) in (6.9), it would normally be natural to set this probabil-
ity function equal to the corresponding posterior pdf foe tthynamic mode
p(S|Dx). However, problems arise if( S|Dy) is not directly possible to estimate
from the datasdDy. This is circumvented by using the information provided by
the p(wk‘gk) estimated from the data retrieved from equation (6.10) abdkie
p(wk‘ek) prior density functions can be seen as defining the regiorabdity

for each predictor mode. If they g, estimate leaves the current active mode
regionB_1 (in a sense thai(wyg, , ) is very low), it can thus be seen as an indi-
cation of that a mode switch has taken place. A logical tessésl to determine

if a mode switch has occurred. The predictor mode is swit¢tbendode®;, if:

p(j|wyk,Dx) > A, and 6.12)
p(wk|©i,Dk) > 3 :
where oD ob
P(©i|wk, Dk) = P/, i) p(i]Di) (6.13)

Y j P(wk|©j, D) p(©;|Dy)

A A somewhat larger than.® gives a hysteresis effect to avoid chattering be-
tween modes, and assures that non-conclusive situations, evaluated oruthe o
skirts of the probability functions, don’t result in swifaly. Unless otherwise es-
timated from data, the conditional probability of each ficeédn modep(©;|Dy)
is set equal for all possible modes, and thus cancels in6The logical test is
evaluated using the priors received from the pdf estimadetizew, g received
from (6.11). If a mode switch is considered to have occur(éd,1) is rerun
using the new predictor mode.

Now, since only one prediction modg is active; (6.9) reduces to(wy) =

P(Wyg, )-

Parameter choice

The lengthN of the evaluation period is, together with the forgettingtde u,
a crucial parameter determining how fast the ensemble giredireacts to sud-
den changes in dynamics. A small forgetting factor will putaln emphasis on
recent data, making it more agile to sudden changes. Howtineedrawback is
of course that noise sensitivity increases.

Ng, should also be chosen, such that a sound balance betwedsilitiexi
and robustness is found, i.e., a too snjlll, ||> may result in over-switching,
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whereas a too largé\g, || will give a stiff and inflexible predictor. Furthermore,
Neg, should force the weights to move within the perimeter defimgg(w|©;).

This is approximately accomplished by settifig, equal to the inverse of the
covariance matriRg,, thus representing the pdf as a Gaussian distribution in
the regularization.

Nominal mode

Apart from the estimated prediction mode centres, an amditipredictor mode
can be added, corresponding to a heuristic fall-back madd case of sensor
failure, or other situations where loss of confidence in thtemeated predictor
modes arises, each predictor may seem equally valid. Inctss, a fall-back
mode to resort to may be the equal weighting. This is also @rakdtart for the
algorithm. For these reasons, a nominal mp¢ie?) € N(1/n,1) is added to the
set of predictor modes.

Summary of algorithm

=

Estimaten numbers of predictors according to best practice.

2. Run the constrained estimation (6.10) on labelled tngjdiata and
retrieve the sequence @iy, }1,, Vi € {1,...n}.

3. Classify different predictor modes, and determine dgfishctions
p(wye,) for each mode®; from the training results by supervised
learning. If possible; estimaig(©;|D).

4. Initialize mode to the nominal mode.

5. For each time step; calculatg according to (6.11).

6. Test if switching should take place by evaluating (6.12) €6.13),
and switch predictor mode if necessary and recalculatemew
according to (6.11).

7. Goto5.

The ensemble engine outlined above will hereafter be eder as Sliding
Window Bayesian Model Averaging (SW-BMA) Predictor.
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6.4 Choice of Cost Function ¥

Cost function should be chosen by the specific applicatiomiimd. A natural
choice for interpolation is the 2-norm, but in certain sitoas asymmetric cost
functions are more appropriate. For the glucose prediegiication, a suitable
cost function for determining appropriate weights shoakktinto account that
the consequences of acting on too high glucose predictiotigei lower blood
glucose @) region <90 mg/dl) could possibly be life threatening. The margins
to low blood glucose levels, that may result in coma and deathsmall, and
blood glucose levels may fall rapidly, as seen in Chapteréhdé, much empha-
sis should be put on securing small positive predictiversrand sufficient time
margins for alarms to be raised in due time in this regionhé&rtormoglycemic
region (here defined as 90-200 mg/dl), the predictive quaiof less impor-
tance. This is the glucose range that healthy subjects figrexqerience, and
thus can be considered, from a clinical viewpoint in regéodsossible compli-
cations, a safe region. However, due to the possibility pidfluctuation of the
glucose into unsafe regions, some considerations of gheelguality should be
maintained.

Based on the cost function in [Kovatchet/al, 2000], the selected cost func-
tion incorporates these features; asymmetrically inénga=ost of the prediction
error depending on the absolute glucose value and the site g@irediction er-
ror.

In Fig. 6.1 the cost function can be seen, plotted againativel prediction
error and absolute blood glucose value.

Correspondence to the Clarke Grid Error Plot

A de facto accepted standardized metric of measuring tHenpeaince of CGM
signals in relation to reference measurements, and oftet toesevaluate glu-
cose predictors, is the Clarke Grid Plot [Clamdeal, 1987], described in Chap-
ter 3. This metric meets the minimum criteria raised eartiewever, other as-
pects makes it less suitable; no distinction between ptiedierrors within error
zones, instantaneous switches in evaluation score, etc.

In Fig. 6.2, the isometric cost of the chosen cost functionlifierent predic-
tion errors at differenG values has been plotted together with the Clarke Grid
Plot. The boundaries of the A/B/C/D/E areas of the Clarkel Gain be regarded
as lines of isometric cost according to the Clarke metrichinfigure, the iso-
metric cost of the cost function has been chosen to correljocthe lower edge,
defined by the intersection of the A and B Clarke areas at 7@Inghus, the
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-50 o0

Relative prediction error [%] Plasma Glucose value [mg/dl]

Figure 6.1 Cost function of relative prediction error.

area enveloped by the isometric cost can be regarded as ttesponding A
area of this cost function. Apparently, much tougher dersamd imposed both
in the lower and upp€e® regions in comparison to the Clarke Plot.

Clarke's Error Grid Analysis
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Figure 6.2 Isometric cost in comparison to the Clarke Grid.
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6.5 Example I: Approximate Lower-Order Models

Data

Data were generated using a switched fourth-order ARX systéhere the A-
polynomial switches between three different modéls Mg, Mc, with poles ac-
cording to Table 6.1. The B-polynomial was simply a one stelay and white
noiseN(0,0.25) was added to the output channel. A PRBS signal was used for
input.

Table 6.1 Poles of the data generating processes.

Model Poles
Ma 0.8,0.1,-0.3+iv0.41,-0.3—iv/0.41
Mg 0.9,0.2,-0.2,-05
Mc 0.8,-0.2,-0.4,-0.4

The active dynamic modg € Sswitches between dynamic mode A, B and
C according to a Markov Chain with transition mathik
0.99 0005 Q005
M= [0.005 Q99 0005 (6.14)
0.005 Q005 099

A labelled training set of 2000 samples and a 2000 sampleatiin set
were simulated in 40 different batches. An example of a iingidata set can be
seenin Fig. 6.3.

Predictors

To simulate modeling errors, three prediction modé|s- M;;; were set up as
reduced order approximations of the corresponding steeesmodels of the
data generating processes. Model reduction was undertakemgular value
evaluation to the second order [Johansson, 2009]. Usirsgtmedels and their
associated Kalman filters, 50 step prediction length wakiated.

Cost function
For this example the 2-norm was used.
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Input

| | | |
200 400 600 800 1000 1200 1400 1600 1800 2000

Output

| | | |
200 400 600 800 1000 1200 1400 1600 1800 2000

Switching sequence
4 T T T T T T T T T

0 | | | | | | | | |
200 400 600 800 1000 1200 1400 1600 1800 2000

Time [samples]

Figure 6.3 Training Data. Upper plot: input, middle plot: output and/& plot: switch-
ing sequence of dynamic mode. Example I.

Parameter Choices

Different values for the tunable parametdrandu were evaluated; 20 batches
for the combinations 0{10,20,30} and {0.8,0.9,1}, and 20 batches for the
combination of{25,50,75} and{0.7,0.8,0.9}. The parameterd andd were
fixed to 06 and 3103,

Evaluation Metric

To evaluate the predictive performance, the squared summeafigiion errors
was compared to the squared sum of prediction errors usingeagwitching
strategy, where it (optimally) has been assumed that thardicxmode at the
time of prediction was known.

Results
Training the Mode Switcher Using the labelled training set, the pdbevye,)

were estimated for each batch using the diffefdntalues. For this example
the best evaluation record length for the estimation task 1a In Fig. 6.4, an
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Weight predictor Il

Weight predictor Il Weight predictor |

Figure 6.4 Distribution of weights in the training data retrieved by1@®). Blue stars
representg € Ta for Mode A, Red circlesTg for Mode B and Green crossek; for Mode
C. Example I.

example of the distribution (3[fvvk@i +s along the{wy +wo+w3=1,0<w; <1}
plane can be seen for one representative training batch.

The corresponding probability distribution for each maatejected onto the
(wy,W,)-plane, estimated by Parzen window technique, can be se€ig.if.5
together with the pdf of the nominal mode. The densities tagbker values in
the corners1,0,0], [0,1,0] and|[0,0,1], and the means/y; = [0.57,0.03,0.4],
W2 = [0.18,0.76,0.06] andwqs = [0.25,0.03,0.72], define the expected weights
for each predictor mode.

Evaluation of Parameter Choices Comparing the predictive performance for
the different value combinations of and u, the slightly better choice over the
others wag25,0.8]. Table 6.2 summarizes the predictive performance for each
combination oN andp.

Predictive Performance The merged prediction was compared on the valida-
tion data, using the best choicesf= 25 andu = 0.8, to; 1) each individual
predictor, 2) an unregularized version of (6.11) withouitsking functionality,
and 3) to the optimal pure switching strategy. The resukéssarmmarized in
Table 6.3.
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Probability Density Functions for the different prediction modes

|

Figure 6.5 Estimated probability density functions for the weightgtfie training data,
including the nominal mode. Batch 4. Example I.
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Table 6.2 Summary of predictive performance using differdh&nd i on validation data
over all simulated batches, evaluated as mgaﬁ‘”/zegpt, whereey ;, is corresponding
prediction error(pe) aneyp is the pe when using the optimal switching strategy. Example
I

N/u 1 09 08 07

10 092 091 0.90 -
20 095 094 0.92 -

25 - 091 0.87 0.87
30 094 092 0.88 -
50 - 1.05 1.04 101
75 - 0.95 0.90 0.88

Compared to the other approaches a 7% improvement can becsden
unregularized version, and a 13% improvement to the opSmiathing scheme.

Looking at the distribution of the weights for the validatidata in Fig. 6.6,
itis apparent that the merging mechanism has concenttatsd airound the pre-
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6.5 Example I: Approximate Lower-Order Models

Table 6.3 Summary of predictive performance on validation data oukesienulated
batches. Example .

Predictor S5 G
Predictor | 1.07
Predictor Il 2.76
Predictor Il 1.39
Merged Predictor 0.87
Unregularized Merged Predictor 0.93
Optimally Switched Predictor 1.0

Mode |

Mode II
Mode Il
Mode IV

%+ O %

0.6

0.4

0.2

Weight predictor Il

Weight predictor Il Weight predictor |

Figure 6.6 Distribution of weights in the test data using the estimaefds and expected
weights. Batch 4. Example |.

diction mode centres, especially if comparing to the cqesling distribution
for the unregularized version, see Fig. 6.7.

Switching between the different prediction modes, in corigoa to the dy-

namic mode for the validation data, can be seen in Fig 6.8 fepeesentative
batch.
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0.9
0.8
0.7
0.6
05

0.4

03 b
£ o
*+ ;é*

Weight predictor Il

Weight predictor Il

Figure 6.7 Distribution of weights in the test data using the unregaéat merging pre-

dictor. Batch 4. Example .

Ensemble Prediction

Weight predictor |

T
Dynamic Mode | |
Predictor Mode

I I I
0 200 400 600

Figure 6.8 Example of switching between different predictor modeshie validation

Il Il Il Il Il Il
800 1000 1200 1400 1600 1800 2000
Time [samples]

data. Predictor mode 4 represents the nominal mode. Exdmple

Discussion

Parameter Choice The optimal choices dfl andu, are unsurprisingly, closely
connected. These parameters must be set with the speciiotgsin mind, and
are probably difficult to determine beforehardandd should probably not be
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set too low in order to avoid uncalled for switching, and tlaues used are
deemed correct from this aspect.

Predictive Performance The merged predictor clearly outperformed each of
the individual predictors, and also the unregularizedivaras well as the op-
timal pure switching predictor. The latter can be explaibgdhat the merged
predictor offers some extra robustness to sudden dynactiealges, as all pre-
dictors to some extent are used in all situations. The uitaeiged version has
quite good performance, but the regularization in the psepanerging mecha-
nism reduces the impact of noise, making it slightly better.

6.6 Example Il: The UVa/Padova Simulation Model

Data

Data was generated using the non-linear metabolic sinonlatiodel, jointly
developed by the University of Padova, Italy and Universityirginia, U.S.
(UVa) and described in [Dalla Maat al, 2007b], with parameter values ob-
tained from the authors. The model consists of three paatscin be separated
from each other. Two sub models are related the influx of indollowing an
insulin injection and the rate of appearance of glucose ftergastro-intestinal
tract following meal intake, respectively, and have beestdbed in Chapter 4.
The final part of the total model is concerned with the intdoexcof glucose
and insulin in the blood stream, organs and tissue, incudemal extraction,
endogenous glucose production and insulin and non-indelpendant glucose
utilization. The model equations are found in [Dalla Metral, 2007b].

Twenty datasets, each corresponding to 8 days, were gedefato dy-
namic modedA and B were simulated by, after 4 days, changing four model
parameters (following the notation in [Dalla Mat al, 2007b])ky, ki, k3 and
p2u, related to endogenous glucose production and insulin arabge utiliza-
tion. One data set was used for training and the others wergdered test data.

A section of four days, including the period when the dynachiange takes
place, of an example training and test data set can be seémp i6.9.

Timing and size of meals were generated with some normabrraimition
for each data set, according to Table 6.4. The amount ofimsulministered
for each meal was based on a fixed carbohydrate-to-insuia merturbed by
normally distributed noise, with a 20% standard deviation.
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Table 6.4 Meal amount and timing randomization. Standard deviatioparenthesis.

Meal Time Amount carbohydrates (g)
Breakfast  08:00 (30 min) 45 (5)

Lunch 12:30 (30 min) 70 (10)

Dinner 19:00 (30 min) 80 (10)

Traiping Data

Blood Glucose [mg/dI]

“C L L I L L

T\mesn[h]

Test Data

Blood Glucose [mg/dl]

L L | L L |

T\me’ih]

Figure 6.9 Four days of the blood glucose data of the training and teatfdaone of the
20 generated datasets. The upper plot correspond to thengalata, and the lower plot
represents the test data. For both plots, a mode switch pd&es after 2 days & 48h).
Example Il: UVa/Padova Model.

Process noise was added by perturbing some crucial modeheaers; in
each simulation steg (t) = (1+6(t)) p°, wherep? represent nominal value and
d(t) € N(0,0.2). The affected parameters are (again following the notation
[Dalla Man et al, 2007b]))k1, k2, pau, ki, My, Mg, My, ks, and represents natural
variability in the underlying physiological processes.

Predictors

Three models, based on subspace based technique, werifiedeasing the
N4SID algorithm of the Matlab System Identification Toolbdodel orderf2 —
4] was determined by the Akaike criterion [Johansson, 200®. first model
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Mode 1

Wl’l’l"i

Weight 2 08

Nominal Mode.

Density Function [-]

02

03
04
06 0s

Weight 1

Figure 6.10 Estimated probability density functions for the weightghe training data,
including nominal mode. Example II.

was estimated using data from dynamic mode A in the traineg,dand the
third 111 from the modeB data, and the final modél from the entire training
data set. Thus, modelandlll are each specialized, wherdass an average of
the two dynamic modes. The models were evaluated for a pi@adlizorizon of
60 min.

Results

Training the Mode Switcher The three predictors were used to create three
sets of 60 minute ahead predictions for the training datandJ$.10) withN =

10, the weightsv, were determined. The corresponding probability distrdout
for each mode, projected onto the;, w,)-plane, was estimated by Parzen win-
dow technique. The densities are well concentrated to theees[1,0,0] and
[0,0,1], with meanswg; = [0.83,0.11,0.06] andwg, = [0.25,0.1,0.65 defin-

ing the expected weights for each predictor mode. The ndminde probabil-

ity density function was set thi(332,0.11). In Fig. 6.10 all density functions,
including the nominal mode, projected onto {v@,w,)-plane, can be seen to-
gether.

Ensemble Prediction vs Individual Predictions Using the estimated pdf:s and
expected weightw of the identified predictor modes, the ensemble machine was
run on the test data. An example of the distribution of theglvts for the two
dynamic mode# andB can be seen in Fig. 6.11.
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+ Dynamic Mode B (days 1-4)
o Dynamic Mode A (days 5-8)

Weight predictor |1l
o
o

06 0.4

Weinht nredictor 11 Weight predictor |

Figure 6.11 Example of the distribution of weights in the test data udimg estimated
pdf:s and expected weights. Example II.

An example of how switching between the different modes oxowver the
test period can be found in Fig 6.12.

For evaluation purposes, all predictors were run indiviguin Table 6.5,
a comparative summary of the predictive performance betwke different

approaches, in terms of mean Root Mean Square Error (RMSé&)the test
batches, is given.

Table 6.5 Performance evaluation by RMSE for the 60 minute prediatsisg different

approaches.
RMSE [mg/dl]
Predictor Type Section A SectionB A+B
Predictor | 8.3 16.3 13.0
Predictor Il 9.1 11.2 10.9
Predictor Il 14.3 7.9 12.6
Merged prediction 8.7 10.5 9.6
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Mode [-]

1 1
2000 4000 6000 8000 10000 12000
Time [min]

Figure 6.12 Example of switching between different predictor modeshia test data.
The transition from dynamic mod® to modeA takes place at 5760 min (4 days). Mode
3 represents the nominal mode, and the gaps (mode=0) conet$p time instances when
no pi(w|D) fulfilled the criteria (in which case the mode stays at thedineent predictor
mode). Example II.

6.7 Example lll: The DIAdvisor Data

Data and evaluation criteria

Predictors Three different predictors of different structure weredugethis
study; the state-space-based model (SS) of Chapter 4, esreciARX model
[Estradaet al, 2010] and a kernel-based predictor [Naumeva/, 2011], all
developed within the DIAdvisor project. The SS and ARX maddilized in-
puts, generated by the population parametrized sub modstsitling the flux
and digestion of insulin and glucose following an insulifection or meal in-
take [Dalla Manet al, 2007b], described in Chapter 4. For further information
regarding the ARX and the kernel-based predictors, seedé@amset al, 2010]
and [Naumoveet al, 2011].

Training and Test Data Data from the clinical part of the DAQ trial and the
DIAdvisor | B and C trials were used. A number of patients iograited in all
three trials. Based on data completeness, six of these leavedelected for this
study. CGM data was used for model identification, whereasrterpolated
frequent blood glucose reference measurements, see CRaptere used for
validation purposes.
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T T
*  Cluster 1
Nominal Cluster
v Cluster 3
+  Cluster 4
x Cluster Centers
(=) Contours Parzen Dist.

Figure 6.13 Example of distribution of weights in the training data byl® and clusters
given by the k-means algorithm. The red ellipses represeriitted Gaussian covariances
of each cluster (patient 0103, Trial B).

The first trial data (DAQ) was used to train the individual giotor mod-
els. The second and third trial data (DIAdvisor I.B and C) evased to train
and cross-validate the SW-BMA, i.e., the SW-BMA was trainedB data and
validated on C data, and vice versa.

Evaluation Criteria  The prediction results were compared to the interpolated
blood glucoses in terms of Clarke Grid Analysis, see Chapter 4, and the com-
plementary Root Mean Square Error (RMSE).

Results

Training the Mode Switcher

Cluster Analysis - Finding the Modes The three predictors were used to cre-
ate 40 minute ahead predictions for both training dataBeBt(g). Using (6.10)

with N = 20, the weights{wk}TB@ were obtained; example depicted in the
(wy,W,) plane in Fig. 6.13. The weights received from the training easily
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Example: Parzen Estimates of Distribution of Weights per Cluster

Cluster 4
%

Cluster 3

Cluster 2 LA Cluster 1

Density Function [-]

Weight 1

Figure 6.14 Example of estimated probability density functions for tfigerent predic-
tor mode clusters in the training data (patient 0103, Trjal B

visually recognized as belonging to different groups (timreall patients, not
shown). Attempts were made to find clusters using a Gaussiatuid Model
(GMM) by the EM algorithm, but without viable outcome. Th&gnot totally
surprising, considering, e.g., the constraints @&; > 1 andyw = 1. A more
suitable distribution, often used as a prior for the weightes GMM, is the
Dirichlet distribution, but instead the simpler k-meangaaithm was applied
using four clusters (number of clusters given by visual @t$ipn of the distri-
bution of{wk}TB(Q), providing the cluster centevgyg, .

The corresponding probability distribution for each made|©; ), projected
onto the (wy,w»)-plane, was estimated by Parzen window technique, and an
example can be seen in Fig. 6.14. Gaussian distributions fiteed to give the
covariance matriceRg, used in (6.11).

Feature Selection The posterior mode probability(©|Dy) is likely not de-
pendent on the entire dalx, but only a few relevant data features, possible to
extract fromDy. Features related to the performance of a glucose prechigr
include meal information, insulin administration, levélaztivity, measures of
the glucose dynamics, etc. By plotting the training CGM detdored according

to the best mode at the prediction horizon retrieved by thiaitrg, interesting
correlations become apparent (Fig. 6.15). The binary featim Table 6.6 were
selected.
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CGM coloured accordlng to best mode in 40 min
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Figure 6.15 Example of CGM coloured according to best predictor modedimdnutes
together with active features (patient 0103, Trial B).

When extracting the features, meal timing and content wemsidered to be
known 30 minutes before the meal.

From the training data, the posterior mode probabilifig3;| f; ), given each
featuref;j, were determined by the ratio of active time for each mode the
time periods when each feature was present. Additionakypterall priop(©;)
was determined by the total ratio of active time per clustardhe entire test
period.

The different features are overlapping, and to resolveitisise they were
given different priority—only allowing the feature of hight priority, f; to be
present at each time stgp Thereafterp(©|Dy) = p(©|fy) is determined. If no
feature is active, the(©|Dy) is approximated by thp(©;) estimate.

Prediction Performance on Test Data

Using the estimated mode clustesg;i, Ry },i = [1...M], and the estimated
posteriorp(©;| f*) from Trial B (C), the ensemble machine was run on the Trial
C (B) data. The parameter was set to B andN to 20 minutes. An example
of the distribution of the weighta for the three predictors can be seen in Fig.
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6.7 Example Ill: The DIAdvisor Data

Table 6.6 Selected features. corresponds to the maximum amplitude of glucose rate-
of-appearanceR, after digesting 10 g CHO, amblG = Gy — Gx_s

Feature Threshold Priority
Meal maxRa,..,Ra30) > € 1
Rising meanAGy_ 1, - . ,AGk) 2

G > 30 mg/(d} h)
Falling meanAGk_1o, . . . ,AG) 3
G < —18 mg/(dl h)
Meal and See above. 4

rising G
Meal maxRak — 30, ...,k) < € and 5
Onset maRak,....k+30) > ¢

6.16.

Table 6.7 summarizes a comparison of predictive performaner the dif-
ferent patient test data sets for the RMSE evaluation @jtend in Table 6.8
the evaluation in terms of Clarke Grid Analysis is given. Tdpimal switch-
ing approach, here defined as using the non-causal fittinggb{6EL0), is used
as a measure of optimal performance of a linear combinatigheodifferent

predictors.

Table 6.7 Performance evaluation for the 40 minute SW-BMA predicttmmpared to
the optimal switching and the individual predictors. Thetngds the Root Mean Square
Error (RMSE), normalized against the best individual pcemiM;, — M3 for each patient.

Merging Strategy

median RMSERMSHE,egt [min-max]
Trial B Trial C

SW-BMA
Optimal switching
2:nd best individual pred.
Worst individual pred.

1.03 [0.75-1.04]
0.97 [0.54-1.0]
1.16 [1.09-1.27]
1.44[1.25-1.73]

1.03[0.94-1.05]
0.94[0.73-1.0]
1.21[1.047].3
1.45[1.18-1.83]
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Figure 6.16 Example of the distribution of weights in the test data ugimg estimated
clusters and feature correlations (patient 0108, Trial B).

Table 6.8 Performance evaluation for the 40 minute SW-BMA predicttmmpared to
the optimal switching and the best individual predictor bg imount of data (%) in the
acceptable A/B zones vs. the dangerous D and E zones.

Merging Strategy Trial B Trial C
AB D E AB D E

SW-BMA 955 22 0 953 3.0 0.1
Optimal switching 96.2 17 0 969 13 O
Bestindividual pred. 948 26 0 950 34 O

6.8 Discussion

In Example | it was shown how the merged predictor could redbe impact of
the switching dynamics, resulting in performance beyomrdabtimal switching
strategy. Example Il outlined how the technique may be app the specific
example of diabetes glucose prediction under sudden cbkangae underly-
ing physiological dynamics. Also in this example, the mergeediction turned
out to be the best choice. In Example lll, applying the aldyoni to real-world
data, the SW-BMA has, for most patients, the same RMSE an#t€@rid per-
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formance as the best individual predictor. In one case, theged prediction
clearly outperformed also the best predictor (RMBMSEyest= 0.75). How-
ever, comparison to the optimal switcher indicates thaktiestill further room
forimprovement. To fill this gap, timely switching is mostpartant. To this pur-
pose, features with significant correlations to mode swighmay prove useful
in order to improve the likelihood that the best predictordmds used at each
time. Further research is needed to investigate and impghisy@spect.

6.9 Comparison to Other Merging Techniques

Compared to the strategy of pure switching between diffepeadictors, the
evaluation indicates that the proposed algorithm is mdsastto sudden changes
and in reducing the impact of modeling errors. Apart front,tirmmany appli-
cations, transition between different dynamic modes isaalgal process rather
than an abrupt switch, making the pure switching assumjnippropriate. The
proposed algorithm can handle such smooth transitionhskliding along a
trajectory in the weight plane of the different predictgrerhaps with a weaker
A if such properties are expected. Furthermore, any type edigtor may be
used, not restricting the user to a priori assumptions olitiaerlying process
structure.

In Tagaki-Sugeno (TS) system, a technique that also givfeswitching, the
underlying assumption is that the switching dynamics caoliserved directly
from the data. This assumption has been relaxed for the peapalgorithm ex-
tending the applicability beyond that of TS systems.

In [Raftery et al, 2010], another interesting approach to online Bayesian
Model Averaging is suggested for changing dynamics. Indbpisroach, the as-
sumed transition dynamics between the different modessedan a Markov
chain. However, in our approach no such assumptions on tieriying switch-
ing dynamics are postulated. Instead, switching is based@nt performance
in regards to the applicable norm, and possibly on estimetecklations be-
tween predictor modes and features of the data stR@r|Dy), see Eq. (6.13).
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6.10 Conclusions

A novel merging mechanisms for multiple predictor has beeppsed for time-
varying and uncertain conditions. The approach was evedua both artificial
and real-world data sets, incorporating modeling erroteénindividual predic-
tors, time-shifting dynamics and different cost criteria.

The results show that the merged prediction has a predipéifermance in
comparison with the best individual predictor in each casd,indicates that the
concept may prove useful when dealing with several indiaidglucose) pre-
dictors of uncertain reliability— reducing the risk assed with definite a priori
model selection, or as a means to improve predictive quidlitye predictions
are diverse enough.

Further research will be undertaken to investigate howésténg features
correlated to expected predictor mode changes should baceed, and in re-
gards to the possibility of making the algorithm unsupegslis
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7

Conclusions and Future
Work

7.1 Conclusions

This thesis has investigated prediction of glucose ewaruti insulin-dependent
diabetes patients. To this purpose, minimum order lineatetsovere identified
by a subspace-based method in Chapter 4 for a data set dogtdihindividual
patient data records from the DIAdvisor project. Model itifigation of diabetic
data is obstructed as the two main inputs have opposingteffecthe glucose,
and in most cases act simultaneously. Furthermore, theoa griowledge of
the static gain of each input is not guaranteed to be incatpdrinto the model
when using the subspace method, nor is the expected intedjka response.
For this reason, the identification results were constrhinesatisfy physiologi-
cally qualitatively correct responses to the inputs, amchtlodels were corrected
in the sense that the pole closestte 1 was artificially moved to this point, with
corresponding corrections of the other pole in order to miné¢ the disturbance
of the characteristic polynomial of the model. The retrabwgodels were there-
after used for short-term prediction and assessed for pedoce. The results
were compared to previous published results, developedihg other modeling
and identification approaches, and proved competitiveitteie low complex-
ity. The estimated carbohydrate-to-insulin ratio, a needrften used in clinical
practice to optimize the insulin therapy, were comparetiédrtue ratio (amount
of digested carbohydrates divided by total administratddsdoses) with good
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correspondence. Some population stratifications, in tefnmsediction perfor-
mance, were also found between the multi-dose injectionttagump patient
cohorts.

Another problematic aspect to glucose dynamic modelingi@ewtification
was tackled in Chapter 5. The glucose measurements thatecagtrieved in
a frequent and automatic fashiare., the CGM measurements, are sampled in
the interstitial compartment—atissue that has a diffudikerelationship to the
compartment of primary interest—the circulatory bloodtegs This aspect is
often overlooked in glucose modeling, but significant laggf the glucose pre-
diction of those models may result, as indicated by the ex&n of the lagging
between the CGM signal and the corresponding referencellgbhaose mea-
surements in Chapter 3. This is unacceptable, as hypoghiaamay quickly
arise due to rapid glucose drops (see Chapter 3), and thedelsnaill, unless
perfectly matched, in many cases be unable to capture thasatjally dan-
gerous situations. To overcome this deficiency, a modelpopyaach where the
basic subspace identified model of Chapter 4 was augmentegtdrporate the
dynamics responsible for the sensor delay, was developgutoVe the concept,
an individual dataset with significant sensor lag, retriefrem the same data
set as above, was identified in this manner, and short-testagrandial predic-
tion was evaluated. The results show that the lag of the gkiestimate and
prediction were successfully reduced.

Diabetic glucose dynamics is known to comprise both shaitranre long
term time-variability. Merging different diversified mademay prove to be a
successful approach, as a means to improve performanc®bustmess under
such conditions. In Chapter 6, a novel merging algorithnetlds a Bayesian
setting was developed. The suggested method admits foswsifthing and in-
terpolation between the different models based on an ei@aituaf the different
predictors’ recent performance, using a sliding data wiwdend by looking
for data feature identified to be correlated to switchindfddént aspects of the
merging approach were investigated, using two simulated skries, and the
concept was thereafter successfully validated using 12 skt from the DIAd-
visor project.

7.2 Future Research

Generally, biomedical engineering has a wide spectrum sélwed problems in
both basic and applied science. This is certainly the casialmetology where
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7.2 Future Research

still many low hanging fruits are ripe to pick. A list of pobk direction for
future research could thus be made very long, but below, tileak has been
narrowed down to a few direction for future research endeelated to the
problems addressed in this thesis.

Constrained Identification The method applied in this thesis is heuristic and
does not guarantee that any model fulfils the constraint®seg. Further re-
search into constrained identification, e.g., inspiredh®yfossibility to incor-
porate constrains directly in the subspace identificatatine, may be an inter-
esting direction.

Sensor delay The concept of augmenting the model with a sensor model,
describing the sensor lag, needs to be further validateddrg iata examples.
Additionally, alternative, more complex models of the sendynamics, e.g.,
incorporating sensor drift, should be addressed.

Time-varying dynamics Time-variability is an important aspect of any time-
series, with major implications to the choice of modelingl gmarameter esti-
mation approach. The data sets analysed in this thesis wéteny enough to
evaluate long-term time-variability. However, the amboitg data sets collected
during the DAQ trial may prove useful in this regard, and cdug evaluated for
parameter consistency.

Population Stratification The diabetic population may be possible to strat-
ify into smaller patient cohorts. Finding such classifica could potentially
simplify parametrization of previously unmodelled pat&nf model behavior
could be linked to directly available, or easily measuradntarkers. Deeper
classification analysis of identified models may indicatehswelationships.

Ensemble Predictor In order to detect the optimal switching point as soon as
possible, the feature monitoring of the SW-BMA ensemblemap an interest-
ing functionality. However, finding and extracting reletvégatures is non-trivial
and no systematic approach is utilized.
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