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Abstract

Partially Premixed Combustion (PPC) is an internal combustion engine concept
that aims to yield low NOx and soot emission levels together with high engine
efficiency. PPC belongs to the class of low temperature combustion concepts
where the ignition delay is prolonged in order to promote the air-fuel-mixture
homogeneity in the combustion chamber at the start of combustion. A more
homogeneous combustion process in combination with high exhaust-gas recir-
culation (EGR) ratios gives lower combustion temperatures and thus decreased
NOx and soot formation. The ignition delay is mainly controlled by tempera-
ture, gas-mixture composition, fuel type and fuel-injection timing. It has been
shown that PPC run on gasoline fuel can provide sufficient ignition delays in con-
ventional compression-ignition engines. The PPC concept differs from conven-
tional direct-injection diesel combustion because of its increased sensitivity to
intake conditions, its decreased combustion-phasing controllability and its high
pressure-rise rates related to premixed combustion, this puts higher demands on
the engine control system.

This thesis investigates model predictive control (MPC) of PPC with the
use of in-cylinder pressure sensors. Online heat-release analysis is used for the
detection of the combustion phasing and the ignition delay that function as
combustion-feedback signals. It is shown that the heat-release analysis could be
automatically calibrated using nonlinear estimation methods, the heat-release
analysis is also a central part of a presented online pressure-prediction method
which can be used for combustion-timing optimization.

Low-order autoignition models are studied and compared for the purpose of
model-based control of the ignition-delay, the results show that simple math-
ematical models are sufficient when manipulating the intake-manifold condi-
tions. The results also show that the relation between the injection timing and
the ignition delay is not completely captured by these types of models when the
injection timing is close to top-dead-center.

Simultaneous control of the ignition delay and the combustion phasing us-
ing a dual-path EGR system, thermal management and fuel injection timings is
studied and a control design is presented and evaluated experimentally.
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Closed-loop control of the pressure-rise rate using a pilot fuel injection is also
studied and the multiple fuel-injection properties are characterized experimen-
tally. Experiments show that the main-fuel injection controls the combustion
timing and that the pilot-injection fuel could be used to decrease the main fuel
injection ignition delay and thus the pressure-rise rate. The controllability of the
pressure-rise rate was shown to be higher when the pilot injection was located
close to the main-fuel injection. A pressure-rise-rate controller is presented and
evaluated experimentally.

All experiments presented in this thesis were conducted on a Scania D13 pro-
duction engine with a modified gas-exchange system, the fuel used was a mixture
of 80 % gasoline and 20 % N-heptane (by volume).
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1
Introduction and Motivation

1.1 The Internal Combustion Engine

Ever since the internal combustion engine was introduced during the later half
of the 19th century it has been the most common source of power for vehicle
propulsion by far. In 2010, the world’s total vehicle population was estimated to
be above 1 billion and with a mean vehicle-production rate of 75 million vehicles
per year for the last 10 years, 2 billion vehicles is believed to be reached in the
years to come [Sperling and Gordon, 2009; International Organization of Motor
Vehicle Manufacturers, 2014]. While the internal combustion engine has been
and is a cornerstone of modern civilization it is also an emitter of toxic emissions
and greenhouse gases.

1.2 The Demand for Cleaner Exhaust

The emission legislations for vehicle internal combustion engines have become
more and more stringent ever since [Haagen-Smit, 1952], linked the smog prob-
lems in the Los Angeles Basin to the air pollutions originating from the automo-
tive combustion engines. The European NOx and soot particles (PM) emission
limits (Euro I-Euro VI) for heavy-duty engines during the past 20 years are pre-
sented in Fig. 1.1. In 2004, the transportation sector contributed to 13 % of the
global greenhouse-gas emissions [IPCC, 2007] and in Europe, the goal is to re-
duce the CO2 emission levels for passenger cars by 18 % by 2015 and 40 % by
2021 [EU, 2009]. The increasingly stringent emission regulations is today one of
the main driving factors for internal combustion engine research.

1.3 Low Temperature Combustion Concepts

During the past decades, new advanced combustion concepts have been inves-
tigated in the search for lower emission levels and higher engine efficiency.
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Chapter 1. Introduction and Motivation
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Figure 1.1 Euro I-VI emission legislation for heavy-duty engines [EU, 2007].

Low temperature combustion is a class of concepts which uses high ratios
of exhaust-gas recirculation (EGR), early fuel-injection timings and fuels with
higher octane numbers in order to prolong the auto-ignition reaction processes.
This enhances fuel- and air mixing and gives more homogeneous mixtures be-
fore the start of combustion. Homogeneous combustion has less soot formation
and since the cylinder mixture is diluted with EGR and is locally leaner, lower
in-cylinder temperatures are obtained, yielding lower NOx emission levels [Mus-
culus, 2006] and reduced heat transfer to the cylinder walls [Fridriksson et al.,
2001], which increases the thermodynamic efficiency.

Homogeneous charge compression ignition (HCCI) is a LTC concept where
a diluted homogeneous charge is inducted and ignited by compression, it was
first studied in two-stroke engines [Onishi et al., 1979; Ishibashi and Asai, 1979]
and was later shown to yield low emission levels in combination with high effi-
ciencies in the low-load operating regions of four-stroke engines [Epping et al.,
2002]. A challenge with the HCCI concept is the combustion-timing sensitivity
and controllability. Since the combustion event is mainly controlled by chemical
autoignition kinetics, as opposed to the conventional spray-driven compression-
ignition concept, the combustion timing could only be controlled by varying the
temperature and mixture composition during the compression stroke. Therefore,
alternative techniques for HCCI combustion-timing control are necessary, exam-
ples of such techniques are variable-valve timing [Agrell et al., 2003; Bengtsson
et al., 2006c], variable compression ratio [Haraldsson et al., 2002] and dual-fuel
operation [Olsson et al., 2001]. HCCI was also shown to have a limited operat-
ing range due to violent combustion rates at high-load operation [Olsson et al.,
2004].
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1.4 Control

LTC can also be obtained by modifying the conventional direct-injection
compression-ignition diesel-engine concept, for which the ignition delay could
be prolonged by injecting the fuel earlier during the compression stroke when
the cylinder mixture is cooler as investigated by [Takeda et al., 1995], or by inject-
ing the fuel later during the expansion stroke [Kimura et al., 1999]. It was shown
in [Akihama et al., 2001] that a high EGR ratio also could be a key component
when prolonging the ignition delay. With direct fuel injection, the combustion
timing is more easily controlled compared to HCCI if the ignition delay is suf-
ficiently short. In [Noehre et al. 2006], difficulties related to obtaining sufficient
ignition delay with diesel fuels at high-load conditions were investigated. The
gasoline partially premixed combustion (PPC) concept was introduced by [Hild-
ingsson, Kalghatgi et al., 2006], a concept where gasoline is directly injected into
a compression-ignition engine. With the use of EGR ratios around 50 %, lean air-
to-fuel ratios and pilot fuel injections that control the combustion rates, [Ma-
nente, 2010a] showed that it was possible to achieve gross indicated efficiencies
between 52 and 55 % from idle to 26 bar gross indicated mean effective pres-
sure while keeping NOx emissions below 0.40 g/kWh with filter smoke num-
bers (FSN) below 0.30. As PPC lies somewhere in between HCCI and conven-
tional compression-ignition combustion in terms of combustion controllability
and homogeneity, hopefully, the best properties of these two concepts could be
combined with PPC.

1.4 Control

Control theory is about making systems behave in a desired way, in the case of
the internal combustion engine, this is about obtaining durable and reliable per-
formance while fulfilling constraints on efficiency, pollutant and noise-emission
levels at a price that is competitive for mass production. The low temperature
combustion concepts have in common that they are more sensitive to temper-
ature and mixture conditions compared to conventional compression-ignition
engines, this puts higher demands upon engine controller design where the right
conditions have to be set more accurately for satisfactorily performance.

The work presented in this thesis handles the uncertainty in PPC with the use
of feedback. Control problems related to the gasoline partially premixed combus-
tion concept, such as ignition-delay control, efficiency optimization and the as-
surance of acceptable pressure-rise rates are studied. The controllers presented
all predict engine behavior based on model and sensor information in order to
set the desired operating conditions. Model-based control has the benefit of in-
corporating a priori physical and/or data-based system knowledge in the con-
troller design, if a component or quantity of the controlled system changes, a
model-based controller can be adapted more easily. Models for control need to
be compatible with the real-time constraints of the engine, the models studied
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Chapter 1. Introduction and Motivation

in the thesis are therefore of lower complexity compared to those used for engine
simulation. The model-calibration procedures used for controller design are also
presented in the thesis. Another defining feature of the work presented in this
thesis is the use of in-cylinder pressure sensors and high computational power,
something that is not available in the commercial vehicles of today, but might be
available in the vehicles of tomorrow.

1.5 Outline of the Thesis

The thesis starts with two introductory chapters that introduce the used models,
control principle and estimation methods. The research contributions are then
presented in the following five chapters.

Chapter 2 presents the heat-release model used for in-cylinder pressure pre-
diction and combustion-timing detection, low-order ignition-delay models and
a simplistic model of the intake manifold and the gas-system stationary behavior.

The principles of model linearization and model predictive control are pre-
sented in Chapter 3, these principles are used together in the controller design
in the following chapters. This chapter also introduces the estimation methods
used for EGR-ratio estimation and on-line calibration of the heat-release model
presented in Chapter 2.

Chapter 4 gives a description of the setup that was used in the experimental
work. Engine specifications, sensors, actuators and control system layout are pre-
sented. In Chapter 5, an extended Kalman filter and a particle filter are used for
on-line calibration of cylinder-wall temperature, the top-dead-center offset and
a convective heat-transfer coefficient for accurate heat-release analysis. Evalua-
tion results from simulation and experimental data are presented.

The three different ignition-delay models presented in Chapter 2 are eval-
uated in Chapter 6. Engine data are used to calibrate the models, and a com-
parison of model-prediction performance and computational complexity is pre-
sented together with the model-calibration procedure.

In Chapter 7, an ignition-delay model is used for model predictive control of
the ignition delay and the combustion phasing using the actuators in the gas-
exchange system and the fuel-injection system jointly.

A model-based single-injection pressure-prediction method is presented in
Chapter 8, the method is also incorporated as a part of an optimal-control
scheme. The prediction and controller performance are evaluated experimen-
tally.

In Chapter 9, pressure-rise rate control using a pilot-fuel injection is studied.
Experimental data with various pilot-fuel injection configurations are presented
together with a suggested controller design which is also evaluated experimen-
tally.

Finally, conclusions and future work are presented in Chapter 10.

12
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2
Modeling for Control and
Estimation

Models that aim to capture the engine behavior are applied in this thesis both
for controller design and for the estimation of unmeasured quantities such as
combustion timing and ignition delay. These models are presented in this chap-
ter. The model used for heat-release analysis is introduced in the first section, it
was both used for estimating the ignition delay and the combustion phasing in
Chapters 6-9 and for in-cylinder pressure prediction in Chapter 8. Automatic cal-
ibration of this model using nonlinear estimation is considered in Chapter 5. In
the following sections the ignition-delay models that were calibrated and com-
pared in Chapter 6 and used for control in Chapter 7 are presented together with
the gas-system model that was used for control and estimation in Chapter 7.

2.1 Heat-Release Analysis

Analyzing the measured in-cylinder pressure signal is probably one of the most
common ways of trying to understand the processes occurring inside the com-
bustion chamber. In order to better understand the physical processes behind
the pressure variations, models which relate volume change, combustion heat
release, heat transfer, gas composition, temperature and mass flows to the in-
cylinder pressure are necessary parts of the analysis. This kind of model-based
pressure-signal processing is also known as heat-release analysis.

A class of simpler models builds upon the first law of thermodynamics and
the ideal gas law in order to model the cylinder gases as a system of one or more
homogeneous zones without spatial resolution that exchange work and heat with
their boundaries. These models are popular both because of their simplicity but
also for their ability to predict measured pressure data. One of the earlier models
of this class was presented by [Rassweiler and Withrow, 1938], they divided the
pressure change as the sum of the effects from the polytropic volume change and
the combustion process in order to study the mass-fraction burnt. In [Matekunas
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2.1 Heat-Release Analysis

et al., 2000] this quantity was instead studied by computing the ratio of fired to
motored pressure curves.

A very popular and slightly more detailed model was presented by [Gatowski,
1984], here a model of heat transfer, thermodynamic properties and mass flow
to and from crevice volumes was also included. A simplified Gatowski model was
used in the work presented in this thesis, a description of this model is now given.

The Cylinder-Pressure Equation
By treating the in-cylinder gas during the closed part of the cycle as a thermo-
dynamic system with the combustion chamber as its boundary and applying the
ideal-gas state equation together with the first law of thermodynamics, the fol-
lowing differential equation for the in-cylinder pressure p with the crank angle
θ as the independent variable can be derived assuming constant engine speed
[Heywood, 1988],

d p

dθ
=− γ

V

dV

dθ
p + γ−1

V

(
dQc

dθ
− dQht

dθ

)
. (2.1)

The right hand side of Eq. (2.1) relates the pressure change to the cylinder volume
V , the combustion heat-release rate dQc /dθ, the heat-transfer rate dQht /dθ and
the ratio of specific heats γ = cp /cv . More detailed models that also take into
account crevice effects, radiation, boundary layers and multiple cylinder zones
as presented in [Heywood, 1988] were not considered here. By solving Eq. (2.1)
for dQc /dθ,

dQc

dθ
= γ

γ−1
p

dV

dθ
+ 1

γ−1
V

d p

dθ
+ dQht

dθ
, (2.2)

dQc /dθ can be computed and analyzed. The fraction of 10% burnt, θ10, which,
in this work, is considered to be the start of combustion and the fraction of 50%
burnt, θ50, which is considered to be the combustion timing, can be obtained
from the accumulated heat release Qc and the relation

x = 100
Qc (θx )

max
θ

Qc (θ)
. (2.3)

Pressure Sensor Model
The in-cylinder pressure was measured with piezo-electric sensors. This mea-
surement technique has high cut-off frequency, good linearity and handling of
the tough environment inside the combustion chamber. The signal given by
these sensors is usually given on the form

pmeas = kp +∆p, (2.4)

where pmeas is the measured in-cylinder pressure signal, p the actual pressure,
k and ∆p are the sensor conversion factor and offset. Methods for determining
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Chapter 2. Modeling for Control and Estimation

k and ∆p are presented by [Randolph, 1990]. In this work, k is known from sen-
sor calibration and ∆p is determined by referencing the cylinder pressure at in-
let valve closing (IVC) to the measured intake-manifold pressure pin. The mea-
sured pressure signal might also be corrupted by current leakage and thermal
shock [Johansson, 2006], compensation for such phenomena was not carried
out. High-frequency noise in pmeas that usually occurs during the combustion
event was in this work attenuated using a zero-phase digital filter.

Cylinder Geometry
The cylinder volume V was modelled as a crank-sliding mechanism on the form

V =Vc + Vd

2

(
R −cos(

π

180
θ)+1−

√
R2 − sin2(

π

180
θ)

)
(2.5)

where Vd , Vc are displacement and clearance volume, R is the ratio of the con-
necting rod to crankshaft length. Usually, there is an unknown top-dead-center
(TDC) crank-angle offset θ∆TDC, between the assumed volume curve and true
volume curve, an offset which has previously been shown to greatly degrade the
quality of the model in Eq. (2.1) [Amann, 1985]. Online estimation of θ∆TDC is
considered in Chapter 5.

Ratio of Specific Heats
The ratio of specific heats γ = cp /cv has been shown to have a great impact on
the model-output error of Eq. (2.1), [Klein, 2004]. Physically, it is determined by
the composition and the temperature, T , of the in-cylinder gases. In this work γ
was modelled in one of two different ways:

• By the use of NASA specific-heat polynomials [Heywood, 1988], the in-
cylinder gas temperature and composition. The temperature, T , was ap-
proximated from measured intake conditions at inlet-valve closing

T = pV TIVC

pIVCVIVC
(2.6)

and the gas composition during compression and expansion was given
from the measured EGR and air-to-fuel ratio. The gas composition is non-
trivial to determine during combustion, it was therefore chosen as an in-
terpolation between the unburnt- and burnt-gas composition. The species
considered were N2, O2, CO2, and H2O.

• By assuming the relation for adiabatic compression

pV γ =C (2.7)

during the compression stroke and then estimating γ and the constant C
from p and V with the use of least-squares minimization as presented in
[Tunestål, 2001].
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2.2 Load Definitions

Heat-Transfer Model
The convective heat-transfer rate was modeled using Newton’s law of cooling

dQht

dθ
= hc A

60Nspeed
(T −Tw ), (2.8)

with wall-surface temperature Tw , combustion-chamber area A, engine speed in
rpm Nspeed and the convection coefficient hc with the empirical expression

hc = 3.26B 0.2p0.8T −0.55ω0.8, (2.9)

derived from a Nusselt-Reynolds relation as presented by [Woschni, 1967]. Here,
B is the cylinder bore and ω the mean cylinder-gas velocity, given by

ω=C1Sp +C2
V TIVC

pIVCVIVC
(p −pm), (2.10)

where C1 and C2 are engine dependent empirical parameters, Sp is the mean
piston speed and pm is the assumed motored pressure curve, alternatives to this
model are presented in the works of [Annand, 1963] and [Hohenberger, 1979].
The problem of estimating the parameter C2 is considered in Chapter 5.

Cylinder-Wall Temperature
The cylinder-wall temperature Tw is physically determined by the heat transfer
from the in cylinder gases, and the heat transfer to the engine coolant with tem-
perature Tc . The cylinder wall and piston head is here modeled as a single mass
with conductive coefficient kc , thickness Lc , mass and specific heat mc and cp .
Assuming that the wall is in steady state and that the outer wall surface has fixed
temperature Tc gives the dynamical equation for Tw

dTw

dθ
=−2A(hc +kc /Lc )

60Nspeedmc cp
Tw + 2Ahc

mc cp 60Nspeed
(T +Tc ) , (2.11)

or on more compact form

dTw

dθ
= Aw (θ)Tw +Bw (θ) (T +Tc ) , (2.12)

this model was previously presented in [Roelle, et al., 2006; Widd, et al.,
2008,2012]. During the intake (exhaust) stroke T was assumed to take a con-
stant temperature equal to the measured intake (exhaust) temperature.

2.2 Load Definitions

The measured in-cylinder pressure was also used to compute the gross and net
indicated mean effective pressures, pIMEPg, pIMEPn, measures of the engine’s ca-
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pacity to do work, defined accordingly

pIMEPg = 1

Vd

∫ EVO

IVC
pdV , (2.13)

pIMEPn = 1

Vd

∮
pdV , (2.14)

where the first integral is taken over the closed part of the cycle and the second is
taken over the complete cycle. The gross mean effective pressure pIMEPg is more
commonly defined as

pIMEPg = 1

Vd

∫ BDC

BDC
pdV , (2.15)

where BDC denotes bottom dead center and the integral is taken over the com-
pression and expansion strokes, the difference between the two definitions is de-
termined by the engine valve timings and the manifold pressures.

2.3 Ignition Delay

The ignition delay, commonly defined as the time interval between the start of
injection and the start of combustion in a direct-injection combustion engine
depends on physical processes such as fuel atomization, vaporization and the
mixing of the fuel and air in the cylinder, it also depends on the chemical pro-
cesses of pre-combustion reactions [Heywood, 1988]. The ignition delay is a key
variable in PPC where it gives the fuel more time to mix with the gas mixture be-
fore the start of combustion. Here, the ignition delay τ is defined as the time in
milliseconds between the crank angle of the start of fuel injection θSOI and the
crank angle of 10 % heat released θ10,

τ= θ10 −θSOI

0.006Nspeed
. (2.16)

Where θSOI is defined as the timing of the injector-current pulse timing plus an
additional injector time delay.

Assuming that the chemically controlled part of τ, the auto-ignition time,
gives most contribution to the τ variability, models that correlate τ with the
cylinder-gas mixture state and composition were studied. As the ignition delay
gets longer the relative importance of the chemically controlled part increases,
however the opposite also holds, thus for short ignition delays the physical fac-
tors become more important, this would decrease the performance of these types
of models [Heywood, 1988].

Detailed reaction mechanisms for larger hydrocarbons consist of thousands
of species and tens of thousands of reactions [Lu, (2009)]. The model complex-
ity can be reduced by removing or lumping reactions of less importance, or by
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2.3 Ignition Delay

building empirical models that uses just enough species and reactions to repre-
sent experimental data. A widespread example of the latter is a global reaction
mechanism using only five representative species and eight reactions that was
developed by [Halstead et al, 1975, 1977] to model two-stage ignition in a rapid
compression machine.

The empirical modeling approach was adopted in this work where three dif-
ferent low-order models (M1, M2 and M3) with increasing complexity were con-
sidered.

M1
The first model is given by the following expression

τ= AeEa /RT̄ ([O2])α([CnHm])βp̄γSδp , (2.17)

where Ea is an apparent activation energy, R is the universal gas constant, A,α,β,
γ and δ are fuel dependent empirical parameters, p̄ and T̄ are the mean cylinder
pressure and temperature between θSOI and θ10, [O2] and [CnHm] are the mean
oxygen and global fuel concentration in the cylinder during the same time period
assuming that all the fuel has been injected, finally, Sp is the mean piston speed.

The unknown model parameters ϑM1 in this model are given by

ϑM1 = [A,Ea ,α,β,γ,δ]T . (2.18)

Similar models were presented by [Heywood, 1988] and were used by [Kempinski
and Rife, 1981] and also by [Donald and Eyzat, 1978] to parameterize the ignition
delay for different fuels and engines.

M2
The second model is a crank-angle resolved extension of M1 where it is assumed
that the combustion starts when the integral in Eq. (2.19) reaches the threshold
value of 1 ∫ θSOI+τ

θSOI

Ae−Ea /(RT )[O2]α[CnHm]βpγSδp dθ = 1. (2.19)

The unknown model parameters ϑM2 in this model are given by

ϑM2 = [A,Ea ,α,β,γ,δ]T . (2.20)

This model was previously presented by [Thurns, 1996] and [Chmela et al., 2007]
among others.

M3
The third model is a two-stage reaction model with empirically determined re-
action rates as presented in [Westbrook and Dryer, 1981]. In the first reaction,
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Eq. (2.21), the fuel CnHm is reacting with O2 to form CO and CnHm. CO and O2

are then turned into CO2 in the second reaction, Eq. (2.22).

CnHm + (
n

2
+ m

4
)O2

k1→ nCO+ m

2
H2O (2.21)

CO+ 1

2
O2

k2→ CO2 (2.22)

The reaction rates are modeled using the differential equations

d [CnHm]

d t
=−k1[CnHm]β[O2]α, (2.23)

d [O2]

d t
=−(

n

2
+ m

4
)k1[CnHm]β[O2]α−k2[CO][O2]1/2, (2.24)

d [CO]

d t
= nk1[CnHm]β[O2]α−k2[CO][O2]1/2, (2.25)

d [CO2]

d t
= k2[CO][O2]1/2, (2.26)

with initial conditions given by the cylinder oxygen concentration and injected
fuel amount. The reaction-rate parameters ki are empirical expressions on the
form

ki = Ai e−E i
a /RT Sδi

p . (2.27)

Finally, the heat-release rate of the reactions is computed from

dQc

d t
=V (Q1k1[CnHm]β[O2]α+k2Q2[CO][O2]1/2), (2.28)

where Q1 and Q2 are the lower heating value per mole of fuel and CO in Eqs.
(2.21) and (2.22). The combustion is assumed to start when Qc has reached 10 %
of the expected total heat released Qtot

c . The unknown model parameters ϑM3 in
this model are given by

ϑM3 = [A1, A2,E 1
a ,E 2

a ,α,β,δ1,δ2]T . (2.29)

2.4 Gas System

The gas system configuration considered in this work is displayed in Fig. 4.1. Sim-
ple, static models determined from experimental data were used in order to to re-
late the changes in gas-system valve positions to changes in TIVC and the oxygen
concentration in the cylinder at IVC, [O2]IVC. In Fig. 2.1, TIVC and [O2]IVC are dis-
played as functions of the positions of the long and short-route EGR valves θLR,
θSR and the positions of the hot-route valve θHot prior to the intake manifold. The
cool-path valve position θCool were changed by setting

θCool = cos−1(1−cos(θHot)) (2.30)
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in order to keep an approximately constant total valve-opening area. This ap-
proach was previously used by [Widd et al., 2009]. The oxygen concentration
[O2]IVC was computed according to

[O2]IVC =χair
O2

120ṁair

6MairVd Nspeed
+χex

O2
120ṁEGR

6MexVd Nspeed
+ mres

MexVd
, (2.31)

where ṁair is the measured engine air flow, Mair , Mex, χair
O2

and χex
O2

are the molar
masses and oxygen molar fractions of air and the exhaust gases, the latter was
computed using exhaust λ sensor measurements. A Kalman filter [Kalman, 1960]
was used to estimate the EGR mass flow ṁEGR using the following dynamic model
for the intake-manifold (IM) pressure

d pIM

d t
= RTIM

VIM
(ṁair +ṁEGR −ṁcyl)+

pIM

TIM

dTIM

d t
, (2.32)

by assuming that the mass flow to the cylinders ṁcyl is given by

ṁcyl = ηvol
6Nspeed

120

pIMVd

RTIM
, (2.33)

where ηvol is the volumetric efficiency, and using the measured engine air flow
ṁair, intake manifold pressure pIM and temperature TIM. A similar technique for
estimating ṁEGR is presented in [Lee, Park et al., 2013]. The residual-gas mass
mEGR was computed using the state in the exhaust manifold (EM) at exhaust
valve opening (EVO),

mr es = pEMVEVO

RTEM
. (2.34)

The approach of modeling the relation between the gas-system valve positions
and the intake-manifold temperature and oxygen concentration presented above
is of course an oversimplification. A more convincing model should include pres-
sure differences over valves, turbocharger effects, flow temperatures and the in-
fluence of λ on the EGR composition. However, the simple approach introduced
above seemed to work sufficiently well in the operating range investigated in the
following chapters. Examples of more elaborate gas-system models can be found
in [Guzzela and Onder, 2009].

2.5 Model Validation

Measures are needed in order to evaluate the model performance, a measure
used in this thesis is the R2 statistic which is defined as

R2 = 1−SSerr/SStot, (2.35)
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Figure 2.1 TIVC and [O2]IVC as functions of θLR, θSR and θHot at two different
loads at 1200 rpm. These experimentally obtained functions were used to model
the relation between the gas-exchange valve positions and the intake manifold
conditions. Note that the gain from the short-route EGR valve decreases with load,
this is partly because of the decreased pressure difference between the exhaust
and the intake due to the increased turbocharger boost.

[Casella and Berger, 2002], where SSerr is the sum-of-squares of the model error.
SStot is the sum-of-squares of the sampled data to be predicted. The root-mean-
square error (RMSE) was also used and is defined as the standard deviation of the
difference between the observed data x and the model output x̂,

RMSE(x̂) =
√

E(x̂ −x)2. (2.36)
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3
Control and Estimation
Methods

This chapter gives an overview of the control and the estimation methods used
in the thesis.

3.1 Control

Linearization
The model-based controllers presented in Chapters 7, 8 and 9 all follow the prin-
ciple of model predictive control which is an optimal-control design for linear
systems. The combustion models presented in Chapter 2 are however nonlinear.
In order to enable linear controller design, a linearization at the current operat-
ing point can be done. Given a nonlinear dicrete-time model on the form

x(k +1) = f (x(k),u(k)), (3.1)

y = h(x(k)),

a linear-model approximation

∆x(k +1) = A∆x(k)+B∆u(k), (3.2)

∆y(k) =C∆x(k),

is obtained from the partial derivatives

A = ∂ f (x(k),u(k))

∂x(k)
(x0,u0), B = ∂ f (x(k),u(k))

∂u(k)
(x0,u0), (3.3)

C = ∂h(x(k),u(k))

∂x(k)
(x0,u0),
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where ∆x(k), ∆u(k) and ∆y(k) are deviations from the linearization point x0, u0,
y0. Linearization was used both in Chapter 7 in order to linearize the ignition-
delay model and also in Chapters 5 and 8 to linearize the continuous-time heat-
release model presented in Chapter 2. Since the linear approximation is only a
good close to the point of linearization, the linearization procedure was always
redone every engine cycle w.r.t. the current operating conditions.

Model Predictive Control
The following review is based on [Maciejowski, 2002].

Model predictive control (MPC) is a finite-horizon optimal-control principle
where the future input sequence U = {u(k), ...,u(k+Hc)} from sample k to k+Hc

is computed as the minimizer of the cost function J iteratively at every sample k

J =
k+Hp∑

i=k
Y (i )+

k+Hc∑
i=k

U(i )+ρεε2. (3.4)

The cost function J consists of output costs Y (i ) over a prediction horizon Hp

and input costs U(i ) over the control horizon Hc respectively. The output cost at
sample i , Y (i ),

Y (i ) =
p∑

j=1
ωy j (ry j (i )− y j (i ))2, (3.5)

is the sum of the squared set-point deviations ry j (i )− y j (i ) for each output y j

with corresponding set point ry j scaled with the cost weight ωy j . The input cost
at sample i , U(i ),

U(i ) =
m∑

j=1
ωu j u j (i )2 +ω∆u j∆u j (i )2, (3.6)

is the square sum of both absolute input values u j and changes ∆u j with corre-
sponding weights ωu j , ω∆u j . The positive cost weights ωx are controller-design
parameters that determines the controller priorities. The minimization of J is
done subject to the linear-system dynamics in Eq. (3.1), system initial condition
x(k) = x0 and input, output and state constraints over the horizons

εη
y
mi n + ymi n ≤ y(i ) ≤ ymax +εηy

max, (3.7)

εηx
mi n +xmi n ≤ x(i ) ≤ xmax +εηx

max,

εηu
mi n +umi n ≤ u(i ) ≤ umax +εηu

max,

εη∆u
mi n +∆umi n ≤∆u(i ) ≤∆umax +εη∆u

max,

where ε ≥ 0. The positive constant ε and the positive vectors η determines the
costs for constraint violation, when η= 0 the corresponding constraint cannot be
violated but when η> 0, the constraint (when η= 0) can be violated for an addi-
tional cost in J , η> 0 was used in Chapter 9 when the pressure-rise rate was con-
trolled, this was done in order to ensure feasible solutions. Minimizing J subject
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to the equality constraints imposed by the system dynamics and the inequality
constraint in Eq. (3.7) is a quadratic-programming (QP) problem for which there
exist sufficiently fast solvers for online computations. More details on the MPC
implementation are presented in Chapter 7 and 9. Once the optimization prob-
lem is solved at cycle k, the first input u∗(k) of the minimizing sequence U∗ is
actuated to the system and the procedure is repeated at the next sample k +1.

MPC, receding-horizon control or dynamic programming as it has also
been called has previously been applied to a wide range of problems includ-
ing chemical-process control [Maciejowski, 2002], supply-chain management
[Cho, Thoney et al., 2003] and finance [Herbert, 2005]. MPC has also been used
for controlling HCCI and PPC engines, examples are presented in [Bengtsson,
Strandh et al., 2006a,b, 2007; Widd et al., 2009; Lewander et al., 2008].

The MPC framework was chosen in this work because of its ability to handle
input and output constraints. The investigated control problems in this thesis
have constraints on valve positions (Chapter 7), the maximum in-cylinder pres-
sure level and in-cylinder pressure-rise rate, see Chapters 8, 9. With active con-
straints a MPC controller obtains nonlinear properties that are not obtainable
with standard linear controller designs such as LQR or PID [Maciejowski, 2002].
The MPC design procedure is also handy when the system is large, as in Chap-
ter 9, the tuning of the cost function weights ωx is an intuitive way of setting the
controller priorities. The MPC framework is also well suited for engine control
since the control objective is not always of a regulating nature for instance when
the piston work is to be maximized subject to cylinder pressure constraints, see
Chapter 8.

3.2 State-Estimation Methods

Given the probabilistic formulation of a dynamic system with state xk , measure-
ment yk and input uk ,

xk+1 ∼ p(xk+1|xk ,uk ), (3.8)

yk ∼ p(yk |xk ), x0 ∼ p(x0),

where p(x|y) denotes the conditioned probability density function of x given y .
The state-estimation problem amounts to estimate the state xk given the mea-
surement yk or in other words to evaluate the probability density function of xk

given the observations yk

p(xk |yk ). (3.9)
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The Kalman Filter
For the case when the system in Eq. (3.8) is linear with additive Gaussian noise

xk+1 = Axk +Buk + vk (3.10)

yk =C xk +ek

vk ∼ N (0,Q),ek ∼ N (0,R), the estimation problem has an analytic solution and
the famous Kalman Filter (KF) [Kalman, 1960] provides an algorithm for itera-
tively estimating xk , see Algorithm 1. The Kalman filter was used in Chapter 9 for

Algorithm 1 Kalman Filter

1: Initialize x̂0 and P
2: while k > 0 do
3: x̂k|k−1 = Ax̂k−1|k−1 +Buk−1

4: Pk|k−1 = APk|k−1 AT +Q
5: ek = yk −C x̂k|k−1

6: Sk =C Pk|k−1C T +R
7: Kk = Pk|k−1C T S−1

k
8: x̂k|k = x̂k|k−1 +Kk ek

9: Pk|k = (I −KkC )Pk|k−1

10: end while

filtering the cycle-to-cycle variation of the pressure-rise rate and the combustion
phasing and in Chapter 7 to estimate the oxygen concentration at IVC [O2]IVC.
Unfortunately, if the system Eq. (3.8) is nonlinear on the form

xk+1 = f (xk ,uk )+ vk , (3.11)

yk = h(xk )+ek ,

the Kalman Filter is not directly applicable for estimating xk , fortunately, there
are well-established methods for nonlinear estimation problems. The extended
Kalman filter (EKF) and the particle filter (PF) are examples that were used in
Chapter 5 for automatic calibration of the heat-release analysis model presented
in Chapter 2.

The Extended Kalman Filter
The EKF provides an approximate solution to the estimation problem by lineariz-
ing Eq. (3.11) at the current estimate in order to apply the iterative KF procedure
used for linear systems [Julier and Uhlmann, 2004]. The procedure is presented
in Algorithm 2.

The Particle Filter
The PF is a sequential Monte Carlo sampling method that aims to approximate
the conditional distribution, Eq. (3.9), numerically. The PF presented below was
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Algorithm 2 Extended Kalman Filter

1: Initialize x̂0 and P
2: while k > 0 do
3: x̂k|k−1 = f (x̂k−1|k−1|uk−1)

4: Pk|k−1 = Ak−1Pk|k−1 AT
k−1 +Qk−1, Ak−1 = ∂ f

∂x |x̂k−1|k−1,uk−1 .
5: ek = yk −h(x̂k|k−1)
6: Sk =Ck Pk|k−1C T

k +Rk , Ck = ∂h
∂x |x̂k|k−1,uk−1

7: Kk = Pk|k−1C T
k S−1

k
8: x̂k|k = x̂k|k−1 +Kk ek

9: Pk|k = (I −KkCk )Pk|k−1

10: end while

first introduced by [Gordon et al., 1993]. The particle filter consists of a set of
Np sampled particles xi

k with corresponding weights ωi , together they provide a
point-mass distribution approximation

p(xk |yk ) ≈
Np∑
i=1

ωi
kδ(xk −xi

k ) (3.12)

The PF performs the sampling procedure using a sequential Monte Carlo tech-
nique where particles are sequentially generated by sampling xk+1 given the old
particles xi

k using a proposal distribution q(xk+1|xi
k ). After each time step, the

weights are updated in order to represent the desired probability density func-
tion in Eq. (3.9). When choosing q(xk+1|xi

k ) = p(xk+1|xk ,uk ), the update rule for

the weights becomes ωi
k+1 = ωi

k p(yk+1|xk+1). To avoid particle depletion which
means that only a few weights contributes to Eq. (3.12), the particles have to be
resampled according to the weight distribution, this procedure puts more parti-
cles into areas of high probability and discards particles in regions of low proba-
bility. The resampling step is often done if the ratio between Np and the number
of effective particles Neff

Neff =
1∑N

i=1(ωi )2
. (3.13)

becomes too low. This type of PF is called a bootstrap PF and is presented in
Algorithm 3.
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Algorithm 3 Particle Filter

1: Draw Np particles, xi
0 from the initial distribution p(x0) and initial the

weights ωi
0 = 1/Np .

2: while k > 0 do
3: Update the particles xi

k+1 by sampling p(xk+1|xi
k ,uk )

4: Update the weights according to ωi
k+1 =ωi

k p(yk+1|xk+1) and normalize.
5: if Neff < xfracNp then
6: Draw new particles from the distribution defined by {ωi

k }i=1..Np .

7: Set the weights ωi
k = 1/Np

8: end if
9: end while
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4
Experimental Setup

Engine Specifications
A Scania D13 heavy-duty diesel engine with specifications shown in Table 4.1 was
used in the experiments presented in the thesis. The engine speed was controlled
with a 355 kW AC motor that worked both as an engine motor and brake. The
engine had a modified gas-exchange system with water-cooled short and long-
route EGR paths a fast thermal management system prior to the intake manifold
and was boosted with a fixed-geometry turbocharger, see Fig 4.1.

Engine Control System, Sensors and Actuators
The entire engine control system was programmed with LabVIEW which is a
graphical programming environment developed by National Instruments. The
real-time system consisted of a NI PXIe-8135 embedded controller (2.3 GHz
quad-core processor), NI PXI-7854/7854 R (Multifunction reconfigurable I/O
with Virtex 5-LX110/LX30 FPGA). The FPGA was considered as a configurable
hardware that worked as a flexible AO / DIO, it was also used for AD acquisition,
triggered by the crank-angle encoder. The ADC sampled the analog signals with
a 16-bit resolution. The user interface was run on a separate host PC with a Win-

Table 4.1 Engine Specifications

Total Displaced volume 12.74 dm3

Number of Cylinders 6

Stroke 160 mm

Bore 130 mm

Connecting Rod 255 mm

Compression ratio 18:1

Number of Valves 4
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Figure 4.1 The Scania D13 gas-system setup, the valve angles θCool and θHot
were used to control the inlet-manifold gas temperature while the valve angles
θSR and θLR were used to dilute the intake air with EGR.

dows 7 operating system which communicated with the real-time system over
TCP/IP.

Sensors The in-cylinder pressure was measured with water-cooled Kistler
7061B pressure sensors and was sampled with the Leine-Linde crank angle
encoder pulse every 0.2 crank angle degree. Inlet- and exhaust manifold and
pressures were measured with Keller PAA-23S absolute pressure sensors, tem-
peratures were measured with K-type thermocouples. The NOx and HC emission
levels were measured with a Horiba measurement system (MEXA-9100E) while
the soot levels were measured with an AVL micro soot-sensor measurement unit.
The fuel- and air flow was measured by a mini CORI-FLOW M15 coriolis-effect
mass-flow meter and a hot-film air-mass flow meter respectively, both were
Bronkhorst High-Tech B.V products. A lambda sensor was located in the exhaust
manifold for air-fuel ratio measurement.

Actuators The fuel-injection system was a production xtra high pressure injec-
tion (XPI) common-rail injection system for the Scania D13 engines. The actu-
ators of the fuel-injection were the common-rail inlet-metering valve position
and the injector current signals that determine fuel-injection timing, duration
and distribution. The actuators in the gas-exchange system were the short and
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long-route EGR valves θSR and θLR and the valves in the thermal management
system θHot and θCool, see Fig. 4.1. The common-rail pressure, injection timings,
durations and valve positions were controlled from the real-time system using
Drivven drivers.

Real-Time Computation The real-time heat-release analysis and controller
computations were run in LabVIEW MathScript RT Module nodes inside timed
loops on the real-time system. All computations were done using floating point
arithmetic. PID controllers were implemented using the LabVIEW PID advanced
VI and QP problems were solved using the LabVIEW quadratic programming VI.

Fuel The fuel used in the experiments was a mix of 80 volume % gasoline and
20 volume % N-heptane. This ratio was chosen based on previous results done
by [Manente, 2010c] which showed that an octane number of 80 could be used
for a wide operating range.
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5
Online Heat-Release-Model
Calibration

5.1 Introduction

Simple heat-release models like the one introduced in Chapter 2 have proven to
be important tools for engine diagnostics, research studies, control and simula-
tion. These models all have a set of unknown parameters that have to be tuned
for satisfactorily performance. The tuning of these parameters can be done man-
ually using experience of how each component of the model should behave and
how physical estimated heat release rates should look like, this is however a time-
consuming work that has to be redone from time to time.

The development of automatic calibration methods has been an active re-
search area for the past decades, where automatic methods for calibrating pres-
sure sensor offset [Tunestål et al., 2001; Brunt and Pond, 1997], polytropic coef-
ficients [Manente, et al., 2008; Randolph, 1990], volume-curve offset [Stas, 2004;
Tunestål, 2001] and compression ratio [Klein et al., 2004] have been presented.
In [Klein, 2008], an offline method for calibration of a large set of parameters
simultaneously was presented and studied in detail. It was concluded by [Eriks-
son, 1998], that all model parameters might not be simultaneously identifiable,
this indicates that a calibration problem involving a large set of parameters is not
easily solved.

In this chapter, a calibration problem which considers a subset of the model
parameters in the simplified Gatowski model, presented in Chapter 2, is formu-
lated as a nonlinear estimation problem where unknown states in a dynamic
system are to be estimated given a statistical physics-based model and sen-
sor measurements. The estimation problem is then solved using the extended
Kalman filter and the bootstrap particle filter presented in Chapter 3. These fil-
ters lend themselves nicely for real-time applications because of their sequential
processing of measured data and the increased amount of available computa-
tional power in today’s computers which makes these methods more viable. The
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outline of this chapter is to first present the estimation-problem formulation and
then filter performance results w.r.t. simulation and experimental data.

5.2 Problem Formulation

Given the heat-release model

dQc

dθ
= γ

γ−1
p

dV

dθ
+ 1

γ−1
V

d p

dθ
+ dQht

dθ
, (5.1)

where γ is determined from NASA polynomials and dQht /dθ is given by the
Woschni heat-transfer model in Eqs. (2.8-2.10), let us consider the problem
where the TDC offset θ∆T DC , the convective heat-transfer coefficient C2 and the
cylinder-wall temperature Tw are all unknown parameters to be estimated. The
parameter C2 was chosen because it was previously shown to be the more impor-
tant heat-transfer-rate parameter, [Klein, 2008]. Now, if these parameters are set
correctly, the accumulated heat release should be zero before the start of com-
bustion and constant at the level given by the burnt fuel energy after the com-
bustion. Measurement noise, model uncertainty and cycle-to-cycle variation will
of course introduce stochastic errors to this assumption, therefore, the accumu-
lated heat release given the correct parameters is modeled according to

Qc (θ) =
{
ε1 θ ≤ θSOC ,
Qtot +d +ε2 θ ≥ θEOC ,

(5.2)

where ε1 ∼ N (0,σ2
1) and ε2 ∼ N (0,σ2

2) are i.i.d normally distributed noise pro-
cesses, with standard deviations σi . The variable d ∼ N (0,σ2

d ) is a random offset
accounting for variations in the injected fuel energy. A realization of the model
output given the correct variables can be viewed in Fig. 5.1.

The Nonlinear State-Space Model with Gaussian Noise
In order to estimate the unknown model parameters C2, θ∆T DC and Tw on a
cycle-to-cycle basis using a statistical framework, the parameters are assumed
to be driven by a Gaussian-noise process vk which represents their assumed un-
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Figure 5.1 A realization of the statistical model in Eq. (5.2), the dashed line rep-
resents the expected accumulated heat release before and after combustion with-
out the stochastic variations, the solid line represents an actual accumulated heat
release with an offset d and noise ε1, ε2, here σ2

1 = 0, σ2
2 = 2500.

certainty over time, this gives the complete model

 C k+1
2

θk+1
∆T DC

T k+1
w

=

1 0 0

0 1 0

0 0 Φ


 C k

2

θk
∆T DC

T k
w

+

 0

0

Γ1T +Γ2Tc

+ vk (5.3)

dQc

dθ
= γ

γ−1
p

dV

dθ
+ 1

γ−1
V

d p

dθ
+ dQht

dθ
,

Qc (θ) =


∫

dQc +ε1 θ ≤ θSOC ,∫
dQc θSOC ≤ θ ≤ θEOC ,

Qtot +d +ε2 θ ≥ θEOC ,

where

vk ∼ N (0,Σ1), (5.4)

Φ= e
∮

Aw (θ)dθ, (5.5)

Γ1T +Γ2Tc =
∮

e
∫ ϑ
θBDC

Aw (ϑ)dϑBw (θ)(T +Tc )dθ (5.6)
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here k denotes cycle index and the covariance matrix Σ1 is a measure of the
model uncertainty. An initial distribution is also assumed according to(

C 0
2 θ0

∆T DC T 0
w

)T ∼ N (µ0,Σ0) (5.7)

where µ0 is an initial parameter guess with corresponding covariance Σ0. The
model in Eqs. (5.3-5.7) is now on the form

xk+1 = f (xk ,uk )+ vk , (5.8)

yk = h(xk )+ek , x0 =µ0 +e0,

which has been studied extensively in the context of nonlinear estimation theory
where xk is to be estimated given measurements yk and the assumed model in
Eq. (5.8).

5.3 Observability

Before trying to do state estimation given a system on the form Eq. (5.8) it is cru-
cial to study the system observability which is a well-established concept in lin-
ear system theory that was introduced by [Kalman, 1959]. The observability is
a measure of how well the system state xk can be inferred by knowledge of the
systems outputs yk . In order to apply the concept of observability, to the system
in Eqs. (5.3-5.7), a linearization (following the procedure in Chapter 3) was per-
formed at the operating point presented in Table 5.1. This gave the linear system

∆xk+1 = A∆xk +B∆uk , (5.9)

∆yk =C∆xk .

Since A was found to be close to I3x3, the observability could be studied by in-
vestigating C to see how sensitive ∆yk (Qc ) is to deviations in the state variables,
∆xk . A rescaled C is presented in Fig. 5.2. It can be seen that changes in θ∆T DC

has an asymmetric effect on Qc around TDC, changes in C2 determines the final
accumulated level of Qc together with Tw which also affects Q during the com-
pression stroke. It is clear that the system is observable since the rows of C are
linearly independent, however, positively correlated variations in C2 and Tw are
obviously less observable than negatively correlated ones. Similar results were
presented in [Johansson, 2006].

5.4 Filter Configuration

In the EKF (see Algorithm 2), the ∂ f /∂x and ∂h/∂x matrices were obtained
through numerical differentiation of Eq. (5.3). The probability density functions
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Figure 5.2 Computed C when linearizing Eqs. (5.3-5.7) around the operating
point presented in Table 5.1. Clearly, the different states affect Qc differently,
θ∆T DC affects Qc asymmetrically around TDC while C2 determines the accumu-
lated heat release level together with Tw which also affects Qc during the com-
pression stroke.

p(xk+1|xi
k ,uk ) and p(yk+1|xk+1) are given directly by Eq. (5.3). The "measure-

ment" or the expected Qc given the correct parameter values is given by the deter-
ministic part of Eq. (5.2). In order to reduce the computational costs, Eq. (5.2) was
downsampled from a resolution of 0.2 CAD to 50 samples before and 50 samples
after combustion. Computational times per iteration below 1 ms was obtained
for the EKF with compiled Matlab code, in order to have comparable runtimes
with the PF (see Algorithm 3), the number of particles Np was here chosen to
be 250 which gave runtimes below 5 ms. The particle number Np is of course
a trade-off between performance and computational complexity, this trade-off
was not investigated here. The PF resampling was initiated when the number of
effective particles Neff was below 0.25Np .

5.5 Simulation Results

In order to evaluate the filters w.r.t. convergence and sensitivity to the statistical
assumptions and model-parameter errors, the filters were tested against simu-
lated pressure traces generated from the model

d p

dθ
=− γ

V

dV

dθ
p + γ−1

V

(
dQc

dθ
− dQht

dθ

)
, p(θIVC) = p0, (5.10)
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5.5 Simulation Results

Table 5.1 Operating point for filter evaluation, the combustion rate dQc /dθ was
chosen as a Gaussian function with a standard deviation of 5 CAD.

Boundary Conditions Combustion Properties

pi n [bar] 1.3 θ50 [CAD] 5

Ti n [K] 303 θDOC [CAD] 20

λ [-] 2 dQc /dθ
Qtot

[-] N (5,5)

rEGR [-] 0 Qtot [J] 4×103

Tex [K] 400

Cylinder Geometry Heat Transfer Parameters

rc [-] 16 C1 [-] 2.28

Vd [m3] 2.1×103 C2 [m/(sK)] 0.0032

B [mm] 130 Tw [K] 465

L [mm] 160 Tc [K] 333

IVC [CAD] -151 mc cp [J/K] 1150

EVC [CAD] 146 kc [J/(mK)] 45

θ∆T DC [CAD] 0 Lc [m] 0.025

using a Matlab ODE-solver (ode23s) with the conditions and parameter values
presented in Table 5.1 and the following noise densities

σ1 = 25, σ2 = 25, σd = 100, (5.11)

Σ0 =
9/4 0 0

0 2.5×10−7 0
0 0 625

 , Σ1 =
0.0625 0 0

0 1×10−8 0
0 0 6.25

 .

Filter Convergence
In order to investigate the filter convergence, the EKF and the PF were initiated
with the correct model parameters according to Table 5.1 apart from the incorrect
initial filter states

x1
0 = (

1, 0.0095, 595
)T

, x2
0 = (−1, 0.002, 336

)T
, (5.12)

the correct state being

x∗ = (
0, 0.0032, 465

)T
. (5.13)

The results can be viewed in Fig. 5.3 where the mean convergence and standard
deviation from 25 realizations are presented for the different initial conditions,
x1

0 (dashed) and x2
0 (solid). Note that the cycle-axis scale is different for the two

filters.

37



Chapter 5. Online Heat-Release-Model Calibration

0 20 40 60 80
−1

−0.5

0

0.5

1

cycle

θ T
D

C
 [C

A
D

]

EKF

0 50 100 150 200
−2

−1

0

1

2

cycle

θ T
D

C
 [C

A
D

]

PF

10 20 30 40 50 60 70 80
0

0.005

0.01

cycle

C
2 [m

/(
sK

)]

50 100 150 200
0

0.005

0.01

cycle

C
2 [m

/(
sK

)]

10 20 30 40 50 60 70 80
200

300

400

500

600

cycle

T
w

al
l [K

]

50 100 150 200
200

300

400

500

600

cycle

T
w

al
l [K

]

Figure 5.3 Filter convergence with the different initial conditions x1
0 (dashed)

and x2
0 (solid), note the different cycle-axis for the different filters. It can be seen

that the filters converge to the correct state and that the EKF has a higher conver-
gence rate, it is believed that this is due to the directed search of the EKF. Also, note
that θ∆T DC changes quite rapidly initially, this indicates a relatively high model
sensitivity to θ∆T DC errors.

The sample RMSE (see Chapter 2) for the estimate x̂k , at cycle k,

RMSE(x̂k ) =
√∑N

i=1(x̂k −x∗)2

N
, (5.14)

is displayed as the black lines in Fig. 5.4 for the 25 realizations. It can be seen
that the filters converge to the correct state and that the EKF has a higher con-
vergence rate, it is believed that this is due to the directed search of the EKF. The
convergence rate of the PF could probably be improved by using more particles.
Also note that θ∆T DC changes quite rapidly initially, this indicates a relatively high
model sensitivity to θ∆T DC errors.

Model Noise Sensitivity
The convergence sensitivity to the assumed model noise was investigated by
scaling the filter Σ1 a factor of 16, the resulting RMSE is presented in as the red
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Figure 5.4 Filter RMSE when assuming the correct process noise (black) and an
increased assumed process noise (red). An increased assumed process-noise level
clearly increases the filter convergence-rate, but seems to increase the steady state
RMSE.

lines in Fig. 5.4. The result shows that the increased assumed model noise level
gives a higher convergence rate, but a slightly higher steady-state error.

Heat Release Noise Sensitivity
The assumed Qc noise levels were also varied as σ1, σ2 and σd were all scaled
a factor of 4. The resulting RMSE is shown as the red lines in Fig. 5.5 together
with the standard-case RMSE in black. An increased assumed Qc noise level
clearly decreases the convergence rate. The sensitivity to the assumed σd was
also tested, σd was set to 0 while σ2 was set to

p
252 +1002, the result is shown in

Fig 5.6 where convergence with the modified noise model is shown in red. Only
assuming additive Gaussian noise before and after combustion clearly gives poor
convergence when there is a variation in the injected fuel energy, the EKF oscil-
lates greatly initially and also has higher steady-state RMSE.

The filters thus behaves according to standard Kalman-filter theory, an in-
creased assumed model-noise level makes state changes more probable. In the
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Figure 5.5 Filter RMSE when assuming the correct heat-release noise (black)
and an increased assumed heat-release noise level (red), 16Σ1. An increased as-
sumed heat-release noise level clearly decreases the filter-convergence rate.

EKF, the sensor equation is contributing more to the state estimate in relation to
the model dynamics and in the particle filter a larger particle spread is made each
sample which makes convergence faster. When the assumed heat-release noise
is increased, the correction for heat-release deviation from the assumed correct
shape is not as large since larger model errors are more likely. Having a noise
model that incorporates a fluctuating injected-fuel energy level is also shown to
be important since it then makes constant Qc after combustion more probable,
this makes the filters more robust to variations in the total injected fuel amount.

5.6 Sensitivity to Model-Parameter Errors

The filter sensitivity to erroneous model parameters was also investigated. The
sensitivity was studied w.r.t. constant errors in pi n , Ti n ,λ, rc , Tc and Qtot. The sta-
tionary parameter-estimate biases due to model-parameter errors are presented
in Table 5.2, together with the investigated parameter-error magnitude. The re-
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Figure 5.6 Filter RMSE when assuming the correct heat-release-noise level
(black) and a modified heat-release-noise level (red) where σd = 0 and σ2 =√

252 +1002. Only assuming additive Gaussian noise on Qc before and after com-
bustion clearly gives poor convergence when there is a variation in the injected
fuel energy, the EKF oscillates greatly initially and also has higher steady-state
RMSE.

sults show that the filter estimates are very sensitive to errors in pi n and rc and
not as sensitive to errors in the other parameters. A positive error in pi n or rc gives
an increase in the assumed motored pressure pm while T is decreased, both ef-
fects contribute to a decrease in dQht /dθ. The filter-parameter sensitivity could
be decreased somewhat by increasing the assumed Qc noise level. This is indi-
cated by the numbers in parenthesis, they stationary parameter-estimate bias
when the assumed Qc noise standard deviation was scaled a factor of 4. Overall,
the results indicate that the PF was less sensitive to model errors, compared to
the EKF.

5.7 Experimental Results

The filters were tested against experimental data with a known θ∆T DC of 1 CAD
obtained from the operating point presented in Table 5.3. The filter convergence
can be seen in Fig 5.7 when initiated at the states in Eq. (5.12) with the following
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Table 5.2 Filter sensitivity to model-parameter errors. The filters are more sensi-
tive to errors in pi n and rc and not as sensitive to errors in the other parameters.
The PF was overall less sensitive to model errors compared to the EKF. The filter-
parameter sensitivity could be decreased somewhat by increasing the assumed Qc
noise levels which is indicated by the numbers in parenthesis, here, the assumed
Qc noise standard deviation was scaled a factor of 4. The units for θ∆T DC , C2 and
Tw are CAD, m/(sK) and K.

EKF PF

pi n error, 1.3±0.065 bar

θ∆T DC = 0±0.48 (0.38) θ∆T DC = 0± 0.3 (0.33)

C2 = 0.0032±0.003 (0.0024) C2 = 0.0032±0.0014 (0.0012)

Tw = 497±198 (151) Tw = 497±100 (95)

Ti n error, 303±20 K

θ∆T DC = 0±0.17 (0.14) θ∆T DC = 0± 0.12 (0.12)

C2 = 0.0032±0.0003 (0.0001) C2 = 0.0032±0.00015 (0.0001)

Tw = 497±65 (45) Tw = 497±40 (25)

λ error, 2±0.2

θ∆T DC = 0±0.07 (0.09) θ∆T DC = 0± 0.05 (0.07)

C2 = 0.0032±0.00045 (0.0004) C2 = 0.0032±0.0004 (0.0003)

Tw = 497±12 (10) Tw = 497±7.5 (7.5)

rc error, 1.6±0.8

θ∆T DC = 0±0.65 (0.55) θ∆T DC = 0± 0.5 (0.51)

C2 = 0.0032±0.003 (0.003) C2 = 0.0032±0.0017 (0.0012)

Tw = 497±179 (138) Tw = 497±90 (70)

Tc error, 333±20 K

θ∆T DC = 0±0.01 (0.0) θ∆T DC = 0± 0.02 (0.025)

C2 = 0.0032±0.00005 (0) C2 = 0.0032±0 (0.0001)

Tw = 497±7 (4) Tw = 497±9 (10)

Qtot error, 4×103 ±200 J

θ∆T DC = 0±0.15 (0.1) θ∆T DC = 0± 0.13 (0.12)

C2 = 0.0032±0.001 (0.0011) C2 = 0.0032±0.0012 (0.0013)

Tw = 497±30 (17) Tw = 497±0 (7)
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5.8 Summary

Table 5.3 Operating point for experimenal evaluation.

Nspeed [rpm] 1200 Inlet temperature [C] 40

pIMEPn [bar] 10 λ [-] 1.8

Rail pressure [bar] 800 Injected fuel energy [J/cycle] 4680

manually tuned noise model

σ1 = 100, σ2 = 100, σd = 400, (5.15)

Σ0 =
9/4 0 0

0 2.5×10−7 0
0 0 625

 , Σ1 =
0.0625 0 0

0 1×10−8 0
0 0 0.1

 . (5.16)

The chosen noise model gave an acceptable trade-off between convergence rate
and steady-state estimate variance. The Tw noise level was here set low so that Tw

would follow the dynamical model whilst θ∆T DC and C2 could be set in order to
adjust for a probable Qc output. The initial Qc output (black, dashed) is presented
in Fig. 5.8 together with the final filter Qc outputs (red, black) and the known
Qtot

c level (blue), computed from fuel-flow measurements. The filters converged
at the same rate in around 200 cycles, and managed to detect a significant top-
dead-center offset. The filters converged to slightly different final values as can
be seen in Fig. 5.7 where the EKF converges to a slightly higher C2 value. The PF
converged closer to the estimated final Qc value, see Fig. 5.8.

5.8 Summary

The EKF and the PF both seem to be feasible options for online estimation of the
studied heat-release model parameters. The simulation results show that both
filters were consistent in converging to the correct state. The relation between
the assumed model and heat-release noise levels determined the convergence
rate and the steady state RMSE, these could be viewed as filter tuning parame-
ters. Assuming a noise model with a variation on the accumulated heat release
showed to be crucial when there is a known variation in the total burnt fuel en-
ergy, see Fig. 5.6.

The filter model-error sensitivity analysis presented in Table 5.2 indicated
that the filters were more sensitive to errors on pressure-sensor offset and com-
pression ratio than to other parameter errors and that the sensitivity was depen-
dent on the assumed noise model.

The filters also showed consistent convergence from different initial states
with experimental data and manually tuned filter parameters, see Figs. 5.7
and 5.8.
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Figure 5.7 Filter convergence with 400 cycles of experimental data from the op-
erating point presented in Table 5.3, the EKF (black) and the PF (red) have com-
parable performance but do converge to slightly different states estimates. Both
filters manage to detect a significant top-dead-center offset of approximately 1
CAD.

For the choice of 250 particles the PF is slower than the EKF (see 5.3), but was
less sensitive to model-parameter errors and with comparable RMSE in station-
arity. The PF performance can of course be improved by increasing the particle
amount, however 250 particles were chosen here so that the filters would have
similar computation times. A deeper analysis of the trade-off between the num-
ber of particles, the resampling criterion and the PF performance was not carried
out and is considered to be future work. The investigation presented in this chap-
ter should rather be viewed as a feasibility check than a fair comparison between
the filters.

It would of course be straightforward to extend this framework for the esti-
mation of additional model parameters. Additional sensor information, for in-
stance wall-temperature measurements could be included. The statistical model
for Qc could also be further developed, for instance by making monotonic Qc

more probable or by testing more realistic heat-release noise models, that could
be obtained from experimental heat-release data.
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Figure 5.8 Filter Qc -output convergence, from the cycles presented in Fig. 5.7,
the EKF (black) and the PF (red) converges to slightly different accumulated heat-
release levels from the initial Qc outputs (black, dashed). The blue line indicates
the estimated true Qc level after combustion, computed from fuel flow measure-
ments.
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6
Ignition-Delay Model
Evaluation

6.1 Introduction

Since the ignition delay, τ, is an important quantity in low temperature combus-
tion concepts it is of interest to investigate its behavior from a controller-design
perspective. By the use of an in-cylinder pressure sensor, the ignition delay could
be controlled in closed-loop. In order to design model-based controllers for this
purpose, accurate models of the ignition-delay behavior are needed, however,
there is also a need for models with complexity suitable for real-time computa-
tions, with easily measurable quantities as inputs. In this chapter, the three dif-
ferent low-order physics-based correlation models M1, M2 and M3,

M1 : τ= AeEa /RT̄ [O2]
α

[CnHm]
β

p̄γSδp , (6.1)

M2 :
∫ θSOI+τ

θSOI

Ae−Ea /RT [O2]α[CnHm]βpγSγp dθ = 1, (6.2)

M3 :



d [CnHm]

d t
=−k1[CnHm]β[O2]α,

d [O2]

d t
=−(

n

2
+ m

4
)k1[CnHm]β[O2]α−k2[CO][O2]1/2,

d [CO]

d t
= nk1[CnHm]β[O2]α−k2[CO][O2]1/2,

d [CO2]

d t
= k2[CO][O2]1/2,

ki = Ai e−E i
a /RT Sδi

p ,

dQc

d t
=V (Q1k1[CnHm]β[O2]α+k2Q2[CO][O2]1/2),

(6.3)
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6.2 Ignition-Delay Experiments

Table 6.1 Operating points used for model calibration and evaluation.

L1S1 L2S1 L1S2 L2S2
Engine Speed [rpm] 1200 1200 1500 1500

pIMEPg [bar] 5 10 5 10

Intake Temperature [C] 20-40 22-60 22-50 38-85

Cylinder [O2] at IVC [mol/m3] 7.5 – 9.5 9.5 – 11.5 7.5 – 10 8.5-13

Injection Timing [CAD] -25 - (-5) -10 - 2 -25 - 5 -15 – 0

that were presented in Chapter 2 are evaluated for the purpose of model-based
τ controller design. Assuming that variations in the chemically controlled part
of τ, the auto-ignition time, gives rise to the variability in τ, the models relate
the cylinder-gas temperature T , pressure p, cylinder-gas composition and Nspeed

to τ. The evaluation is done by studying how well the models, when calibrated,
could predict experimental τ behavior when injection timing, inlet temperature
and oxygen concentration were varied in the lower load and speed range of the
engine. The complexity of linearizing the different models for linear controller
design is also investigated. The purpose of the evaluation of these models was to
understand what level of model complexity is needed for good predictability of
experimental data and if increased model complexity yields significant improve-
ment that would allow for better model-based controller performance.

6.2 Ignition-Delay Experiments

Ignition-delay experiments were conducted at four operating points given from
the possible combinations of pIMEPg at 5, 10 bar and Nspeed at 1200, 1500 rpm,
see Table 6.1. A suitable injection timing was found at each operating point with
no EGR and both thermal-management valves open at 45 degrees each. Let us
denote these conditions the initial setting for each operating point. To investigate
the ignition-delay response to different engine inputs, the injection timing, the
thermal-management valves and the EGR valves were each changed manually
in steps over the whole accessible range around the initial setting during a total
of 12000 cycles at each operating point. The thermal-management valve angles
θHot and θCool were changed by setting

θCool = cos−1(1−cos(θHot)), (6.4)

the inlet temperature was then changed by varying θHot in order to keep an ap-
proximately constant total valve-opening area. The long-route EGR was used to
change the EGR level at the higher load operating points while the short-route
EGR was used at the lower load operating points. The resulting engine data can
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Figure 6.1 Experiment data at operating point L1S1, top left: τ [ms], top right:
Tinlet [C ], bottom left: θSOI [CAD ATDC] and bottom right: [O2]IVC [mol/m3].

be viewed in Figs. 6.1-6.4 where the inlet temperature Tinlet, cylinder oxygen con-
centration at IVC [O2]IVC, injection timing θSOI and τ for one of the six cylinders
are plotted.

Half of the cycles τID were then used for model calibration and the other
half τVAL for model validation, this approach of evaluating model performance
is called cross validation [Geisser, 1993].

6.3 Parameter Identification and Model Evaluation

In order to identify suitable model parameters ϑM1−3, a sum-of-squares model-
error cost function JM x (τID,ϑM x ) was minimized for each model with respect to
the model parameters ϑM1−3 given the identification data set τID.

The procedures used for finding the minimizer ϑ∗
M x for the different models

are now presented.

Model 1
If logarithms are applied to both sides of Eq. (6.1), the problem of minimizing

JM1(ϑM1) = || ln(τID)− ln(τM1)||22 (6.5)
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Figure 6.2 Experiment data at operating point L2S1.

w.r.t. ϑM1 is on linear regression form. By introducing the parameters y = ln(τM1)
andΦ,

Φ=


1

1

RT̄1
ln([O2]1) ln([CnHm]1) ln(p̄1) ln(S̄p1 )

...
...

...
...

...
...

1
1

RT̄N
ln([O2]N ) ln([CnHm]N ) ln(p̄N ) ln(S̄pN )

 (6.6)

the minimizer ϑ∗ = (
ln(A∗) E∗

a α∗ β∗ γ∗ δ∗
)T

of JM1(ϑM1) is given by

ϑ∗ = (ΦTΦ)−1ΦT y. (6.7)

The theory of solving linear-regression problems in the least-squares sense is de-
scribed in more detailed in [Johansson, 1993].

Model 2
For the second model, the parameters were found by minimizing

JM2(ϑM2) =∑
i

(
∫ θSOI+τID

θSOI

Ae−Ea /(RTi )[O2]αi [CnHm]βi pγ

i S̄p
δ

i d t −1)2 (6.8)
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Figure 6.3 Experiment data at operating point L1S2.

where i is the cycle index. This problem is not of linear regression type and there
is no closed form expression for the minimizer, therefore, one has to rely on nu-
merical optimization algorithms. Here JM2 was solved using Matlab’s Optimiza-
tion Toolbox and the lsqcurvefit function which minimizes JM2 by evaluating the
model output for arbitrary model parameters and then applies a trust-region-
reflective least-squares algorithm [Coleman, 1996]. In order to avoid local min-
ima, the optimization procedure was restarted with different initial parameters.

Model 3
The reaction-rate parameters of the third model were found using the same nu-
merical procedure as for M2. In order to identify the model parameters, the sys-
tem of chemical reactions was simulated by approximating the derivatives in
Eq. (6.3) using the forward-Euler method with a sufficiently small step size h,
in this work h = 0.01 ms was used. The model parameters were then found by
minimizing

JM3(ϑM3) =∑
i

(QM3
c,i (θID

10 )−0.1Qtot
c,i )2. (6.9)

Where QM3
c (θID

10,i ) is the model output heat released at θID
10 , and Qtot

c,i is the esti-
mated total heat released at cycle i , computed from the measured engine fuel-
mass flow.
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Figure 6.4 Experiment data at operating point L2S2, note the unintentionally
early θSOI after cycle 11000, it was decided to be keep these cycles in the τVAL

data set.

6.4 Model-Evaluation Results

Evaluation Procedure
The above presented models were evaluated by how well they could explain the
variation in the validation-data set, τVAL, in two different ways:

• The models were evaluated by how well they could predict the ignition de-
lay in each operating point separately, i.e., by how well a model calibrated
by identification data from an operating point could predict data from the
same operating point. During the model calibration the speed dependence
were removed from the models (δ = 0), the load dependence was also re-
moved by setting β= 0 in M1-2 and β= 1 in M3. M1 and M2 were investi-
gated with and without the pressure dependence, i.e with γ free and = 0.

• The models were evaluated by how well they could predict the ignition-
delay behavior for all operating points, i.e, by how well a model calibrated
by data from the complete identification data set could predict data from
all operating points in the validation-data set. Now β and δwere set as free
parameters in the parameter-identification procedure.
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Figure 6.5 Model R2 w.r.t. validation data, for M1, M2 and M3 for each operating
point. Including p in the M1 and M2 does not give any improvement. Increasing
model complexity from M1 to M2 and M3 does not necessarily yield higher R2. It
can also be seen that the R2 scores are overall lower at the higher load operating
points.

The reason for evaluating the models in these two ways was to investigate if there
is an incentive for using multiple models with fewer parameters instead of hav-
ing one model with more parameters that covers all operating points. The model
performance was evaluated by using the R2 statistic

R2 = 1−SSerr/SStot, (6.10)

where SSerr is the sum-of-squares of the model τ output error, SStot is the sum-
of-squares of the sampled data that is to be predicted, the ignition delay in the
validation-data set τVAL. Since the model application is linear-model-based con-
troller design, the models are to be linearized at any given engine operating point.
It is thus more important for the models to predict the τ variation magnitude
rather than the τ absolute value, therefore, the mean value of the predicted τ and
τVAL was subtracted before computing R2.

Individual Operating Points
The R2 scores for each model when trained and validated for every operating
point individually are presented in Figure 6.5, the red and blue bars indicate R2

when p was included and excluded from M1 and M2. It can be seen that includ-
ing p does not improve the model performance, it rather decreases the perfor-
mance slightly. Increasing model complexity from M1 to M2 increases perfor-
mance at L1S2 and L2S2 but not at L2S1 and L1S1. Going from M2 to M3 improves
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Figure 6.6 Model-predicted ignition delays together with τVAL from operating
point L1S1. It can be seen that the models do not follow the data well after cycle
200 and 1000. M1 has overall comparable performance with M2 and M3.

model performance in all operating points but L1S2. It can also be seen that the
R2 scores are overall lower at the higher load operating points. For a more quali-
tative analysis, the model outputs are displayed together with τVAL in Figs. 6.6-6.9
where the grey dots are τVAL and the blue, red and black lines are model outputs
from M1, M2 and M3, without pressure dependence in M1 and M2. In Fig. 6.6,
the model outputs do not follow τVAL well around cycles 200 and 1100, this is
when the injection timing is being retarded (see Fig. 6.3, cycles 6000, 6900), the
same behavior is found in Fig. 6.7 from cycle 1 to 800, in Fig. 6.8, cycle 200 and
Fig. 6.9, cycles 500, 1500. As the injection timing is delayed, closer to top-dead
center, the estimated cylinder-gas temperature during τ increases which causes
the models to predict a decreased τ, however τVAL instead starts to increase. This
is a result of model incapability of anticipating the point where a retarded θ50

starts to give an increased τ, a similar model error can be seen in Fig. 6.2, cycle
1400 where a positive θSOI gave a much increased τ. The models are overall bet-
ter at predicting τVAL during variations in TIVC, [O2]IVC and θSOI for early θSOI.
The similar model ouputs in Figs. 6.6-6.9 indicate that controller designs based
on the different models would yield comparable performance.

All operating points
Then, the models were calibrated by the complete identification-data set in order
to see how well one model could predict the overall τ behavior. Nowβ and δwere
set free in the parameter identification procedure for model M1-2, β and δ1 were
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Figure 6.7 Model-predicted ignition delays together with τVAL from operating
point L2S1.
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Figure 6.8 Model-predicted ignition delays together with τVAL from operating
point L1S2.
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Figure 6.9 Model-predicted ignition delays together with τVAL from operating
point L2S2.

set free in the parameter identification for M3. In Fig. 6.10, R2 is presented for the
various different models, the blue bars represent R2 without p dependence in the
model and the red bars with p dependence in M1-2. The yellow bars represent R2

when using the individual operating point models presented in the previous sec-
tion. Increased prediction performance can be obtained by switching between
the different models instead of using one model for all operating points. In Fig.
6.11, the model-predicted τ is presented together with τVAL, it can be seen that
M1 has comparable performance with M2 and M3.

6.5 Linearization for Control Purposes

For the purpose of using these models in model-based controller algorithms, it
is of interest to linearize them w.r.t. to the system inputs TIVC, [O2]IVC and θSOI at
an arbitrary operating point

X 0 = (
T 0

IVC [O2]0
IVC θ0

SOI

)T
. (6.11)

This yields a linear cycle-to-cycle model on the form

τk+1 = τk +
∂τ(X 0)

∂TIVC
∆TIVCk +

∂τ(X 0)

∂[O2]IVC
∆[O2]IVCk +

∂τ(X 0)

∂∆SOI
∆θSOIk , (6.12)
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Figure 6.10 Model R2 w.r.t. validation data. The yellow top indicates the R2

increase when using the individual operation-point models on the complete
identification-data set. Here, there is a slight improvement using p in M1-M2. In-
creasing the model complexity from M1 to M2 and M3 increases performance,
also using individual operating point models gives an increased performance.
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Figure 6.11 Model-predicted ignition delays together τVAL all operating points.
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6.6 Discussion

Table 6.2 Estimated complexity in arithmetic operations where addition, sub-
traction and multiplication are all considered to be one operation. N is the num-
ber of samples between θSOI and θ10, τ/h is the ratio of the ignition delay and the
step size used in the forward-Euler approximation, from the authors experience h
should be smaller than 0.05 ms. * = number of operations assuming a crank angle
resolution of 0.2 CAD, and 10 CAD ignition delay. ** = using (τ/h = 300).

Model Arithmetic Operations Example

M1 7N (750)∗

M2 43N (2150)∗

M3 105τ/h (31500)∗∗

where ∆ is the forward-shift operator. The linearization of M1, M2 and M3 could
be carried out by approximating the partial derivatives numerically

∂τ(X 0)

∂Xk
≈ τ(X 0 +∆Xk )−τ(X 0)

∆Xk
. (6.13)

The computational complexity of Eg. (6.13) in terms of arithmetic operations for
the different models are presented in Table 6.2. Addition, subtraction, multiplica-
tion and taking powers are here all considered to be one operation. In Table 6.2, N
is the number of samples between θSOI and θ10, τ/h is the ratio of the ignition de-
lay and the step size h used in the forward-Euler approximation while simulating
M3, from the author’s experience h should be smaller than 0.05 ms. The values
in Table 6.2 are by no means proved to be the most efficient implementation of
Eq. (6.13), nevertheless, they originate from the author’s implementation used in
this work. The results show that M1 and M2 are superior in terms of complexity,
at least if Eq. (6.13) should be computed every cycle in a controller algorithm.

6.6 Discussion

The models could not accurately detect the point when delaying θSOI close to
TDC started to give an increased τ. If this was caused by errors in the estimated
cylinder-gas state, errors in the heat-release analysis or by the fact that the mod-
els were too simple to capture the τ variation is not known. The models per-
formed better when θSOI was varied earlier in the compression stroke and when
TIVC and [O2]IVC were varied. This implies that it will be easier to obtain good
model-based controller performance when controlling τ using TIVC, [O2]IVC and
early θSOI when using these types of models. When comparing model perfor-
mance, the results were unambiguous, in some cases it was worthwhile to in-
crease model complexity (see L1S1, L2S2, Fig. 8.10). When studying Figs. 6.6-6.9,
it could be seen that the model performance did not differ significantly in most
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cases. When taking into account for the computational cost of linearization, M1
is superior to M2 and M3 (see Table 6.2). The fact that M1 also has an explicit
expression (Eq. (6.7)) for calibration, this model seems to be the best choice for
model-based controller design among the three investigated models.

When studying performance for all operating points simultaneously (see Fig.
6.11), the model performance increased with complexity, it was also clear that it
was more beneficial to use four different models with one model for each oper-
ating point rather than having one global model.

Effects from cylinder-wall temperature, fuel vaporization, atomization and
fuel-spray interaction with the combustion chamber walls were not included in
these models. If carefully modelled, these effects could probably improve model
performance where the above presented models fail, however, information from
these effects were not easily accessible from the sensors available and therefore
it would have been difficult to validate the assumptions of these effects.
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7
Simultaneous Control of
Ignition Delay and
Combustion Phasing

7.1 Introduction

In low temperature combustion concepts such as partially premixed combus-
tion, the ignition delay τ (Eq. 2.16) should be large enough in order to ensure suf-
ficient fuel and air mixing before the start of combustion. It is also necessary that
the combustion timing θ50 (Eq. 2.3) is sufficiently well phased for high thermal
efficiency. Since the ignition delay and combustion timing are intimately cou-
pled, the decoupling of these two quantities gives rise to an interesting multiple
input, multiple output control problem where the control of the air system and
the fuel injection system have to be combined. In a multi-cylinder engine this
problem becomes underdetermined or uncontrollable with more outputs than
inputs. In this chapter a model-based cycle-to-cycle closed-loop controller of the
ignition delay and the combustion phasing is presented and experimentally eval-
uated. The controller design is based on the principle of model predictive control
(MPC) which is a suitable design for multiple input/output systems with actuator
constraints. Ignition delay and combustion phasing were extracted from cooled
in-cylinder pressure sensors and controlled by manipulating injection timings,
gas mixture temperature and exhaust-gas recirculation (EGR) ratio using a dual
EGR-path system and a fast thermal-management (FTM) system, see Fig. 4.1.

7.2 Modeling

A physics based-correlation model was used to model the ignition-delay be-
havior whilst a calibrated static model was used to model the gains from the
gas-system valve positions to the intake-manifold composition and temperature.
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This section covers the description of these models and how they were used for
controller design.

Ignition-Delay Model
The model M1, without the p dependence, presented in Chapter 2 was used to
model τ,

τ= AeEa /RT̄ [O2]
α

, (7.1)

where T was computed using the adiabatic compression relation

T = TIVC(
VIVC

V
)γ−1, (7.2)

with γ given from Eq. (2.7). The oxygen concentration was computed as follows

[O2] = [O2]IVC

V
VIVC, (7.3)

where [O2]IVC is the in-cylinder gas concentration at inlet-valve closing, consist-
ing of oxygen coming from the air-mass flow, the EGR-mass flow and the residual
gases, see Eq. (2.31). This gives the expression for τ, assuming constant engine
speed

τ= Aexp(
Ea

R

∫ θSOI+τ
θSOI

TIVC

(
VIVC

V (θ)

)γ−1

dθ∫ θSOI+τ
θSOI

dθ

)


∫ θSOI+τ
θSOI

[O2]IVC

V (θ)
VIVCdθ∫ θSOI+τ

θSOI
dθ


α

. (7.4)

Model parameters for this model were found using the procedure presented in
Chapter 6 at the operating points in Table 6.1.

Differentiation and Linearization Since Eq. (7.4) is an implicit relation in τ,
the partial derivatives of τ with respect to θSOI, TIVC and [O2]IVC were approxi-
mated numerically while keeping τ in the right hand side of Eq. (7.4) constant

dτ

dθSOI
≈ τ(θSOI +∆θSOI/2)−τ(θSOI −∆θSOI/2)

∆θSOI
, (7.5)

dτ

dTIVC
≈ τ(TIVC +∆TIVC/2)−τ(TIVC −∆TIVC/2)

∆TIVC
,

dτ

d [O2]IVC
≈ τ([O2]IVC +∆[O2]IVC/2)−τ([O2]IVC −∆[O2]IVC/2)

∆[O2]IVC
.

The partial derivatives in Eq. (7.5) makes it possible to approximate the cycle-to-
cycle relation from changes ∆TIVC, ∆θSOI, ∆[O2]IVC to changes in τ and θ50 with
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the linear system of equations

τk+1
i = τk

i +
( dτi

dθi
SOI

dτi

dTIVC

dτi

d [O2]IVC

)T


∆θk

SOIi

∆T k
IVC

∆[O2]k
IVC

 , (7.6)

θk+1
50i

= θk
50i

+∆θk
SOIi

+ dθ

d t

( dτi

dθi
SOI

dτi

dTIVC

dτi

d [O2]IVC

)T


∆θk

SOIi

∆T k
IVC

∆[O2]k
IVC

 ,

where k is the cycle index and i the cylinder index, dθ/d t is crank angles per
millisecond at the current engine speed and is needed here since τ and θ50 have
different units.

Gas-System Model
The partial derivatives dTIVC/dθHot, d [O2]IVC/dθLR and d [O2]IVC/dθSR are then
estimated from the slopes in Fig. 2.1, from this the relation between the gas-
system valve positions and system outputs τ and θ50 can be established and the
cycle-to-cycle model can be rewritten according to

τk+1
i = τk

i +
( dτi

dθi
SOI

dτi

dθHot

dτi

dθSR

dτi

dθLR

)T


∆θk

SOIi

∆θk
Hot,

∆θk
SR

∆θk
LR

 , (7.7)

θk+1
50i = θk

50i +
(

dθ50i

dθSOIi

dθ50i

dθHot

dθ50i

dθSR

dθ50i

dθLR

)T


∆θk

SOIi

∆θk
Hot

∆θk
SR

∆θk
LR

 .

The complete linear state-space model can be written on more compact form

(
θk+1

50

τk+1

)
= A

(
θk

50

τk

)
+B


∆θk

SOI

∆θk
Hot

∆θk
SR

∆θk
LR

 (7.8)
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where(
θk+1

50

τk+1

)
=

(
θk

50,1 ... θk
50,6 τk

1 ... τk
6

)T
, (7.9)

∆θk
SOI =

(
∆θk

SOI,1 ... ∆θk
SOI,6

)T
, (7.10)

B =



dθ50,1

dθSOI,1
· · · 0

dθ50,1

dθHot

dθ50,1

dθSR

dθ50,1

dθLR
...

. . .
...

...
...

...

0 · · · dθ50,6

dθSOI,6

dθ50,6

dθHot

dθ50,6

dθSR

dθ50,6

dθLR
dτ1

dθSOI,1
... 0

dτ1

dθHot

dτ1

dθSR

dτ1

dθLR
...

. . .
...

...
...

...

0 · · · dτ6

dθSOI,6

dτ6

dθHot

dτ6

dθSR

dτ6

dθLR



, (7.11)

A = I12x12. (7.12)

The rank of the controllability matrix of this linear system is not full, (this is eas-
ily realized since A is the identity matrix) which means that all outputs cannot be
controlled independently. The control strategy used here was to let θ50 be con-
trolled accurately with θSOI while the mean τ was controlled with θHot, θSR, θLR,
of course, the reversed approach also could be chosen.

7.3 MPC

Since the system in Eq. (7.8) is linear with multiple inputs and outputs with in-
teraction and input constraints, the MPC framework was chosen, see Chapter 3
for a brief description. For this control problem, the cost function J was defined
accordingly

J =
Hp∑

k=1
ω1||rθ50(k)−θ50(k)||22 +ω2||rτ(k)−τ(k)||22 (7.13)

+ ∑
k∈kHc

ω3||∆θSOI(k)||22 +ω4∆θHot(k)2 +ω5∆θSR(k)2

+ω6∆θLR(k)2 +ω7θSR(k)2 +ω8θLR(k)2,

where the k is the cycle index, and || · ||2 is the Euclidian norm in R6.
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Table 7.1 The chosen MPC weights and constraints.

ω1 ω2 ω3 ω4

102 104 0.1 10−2

ω5 ω6 ω7 ω8

600 400 3000 3000

3 ≤ θSR ≤ 40 20 ≤ θLR ≤ 50 5 ≤ θHot ≤ 85 −40 ≤ θSOI ≤ 10

The two terms in the first sum penalize θ50 and τ set-point tracking error
where rθ50 and rτ are the set points. The first four terms in the second sum pe-
nalize control action and the last two terms penalize the absolute value of θSR

and θLR. Since the EGR-valve opening area decreases the turbine enthalpy and
therefore decreases gas-exchange efficiency, it could be worthwhile to penalize
the absolute EGR-valve positions, ωi are all positive cost weights which decide
the controller priorities.

The minimization of Eq. (7.13) is done subject to the modeled system dynam-
ics in Eq. (7.8) and the absolute constraints on the inputs

lb ≤


θSOI

θHot

θSR

θLR

≤ ub . (7.14)

MPC Design and Implementation
In order for the controller to overlook the slowest time constants of the gas system
Hp was set equal to 50 cycles. The inputs were allowed to change unequidistantly
at samples k ∈ kHc over the control horizon in order to decrease the number
of variables in the optimization problem, thus allowing for shorter computation
times, see Fig. 7.1. The relation between the weights ω1−2 and ω3−6 determines
the trade-off between θ50 and τ tracking performance and controller sensitivity
to cycle-to-cycle variation and model error. The weightsω4−6 determine how fast
the valve positions are allowed to change. Since there are physical limitations in
their change rates and how fast they affect the intake gas state, these weights have
to be chosen accordingly. Choosingω7−8 is a trade-off between the ability to sup-
ply EGR for an increased ignition delay and gas-exchange efficiency. Choosing
the input bounds lb and ub for the EGR valve positions was an interesting prob-
lem, in order to stay in the high-gain region, the bounds were chosen so that the
[O2]IVC slope was non-zero (see Figure 2.1), the other bounds was chosen to ful-
fill physical limits. The chosen weights and constraints are presented in Table 7.1.
Minimizing Eq. (7.13) subject to the constraints in Eqs. (7.14-7.8) is a quadratic
program (QP) and was solved in LabVIEW using the built-in QP active-set solver
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VI. In order to shorten the computational time, the solver was allowed to use the
previous solution and active set as initial guess. Early termination was also used
in order to allow the solver to finish within 50 ms, these are well known meth-
ods for speeding up MPC execution [Wang and Boyd, 2010]. Average computa-
tional time for differentiating Eq. (7.4) and constructing the QP matrices was 10
ms while it took 25 ms on average to solve the QP. This was done every two en-
gine revolutions after the pressure traces of the latest cycle for each cylinder were
sampled. Solution trajectories with the weights in Table 7.1 are presented in Fig.
7.1. The dashed black lines in the upper part of Fig. 7.1 are the set points rτ and
rθ50 . The cylinder numbers are indicated in the legend below the figure, cylinder
1 being the leftmost cylinder in Fig. 4.1.

7.4 Results

Experimental results at stationary conditions and during load and speed changes
are presented in this section. At stationary conditions, θ50 and τ were set to track
set-point step changes. During load and speed changes the controller objective
was to maintain constant θ50 and τ according to a predefined set point. The load
was changed by varying the injection durations while keeping the common-rail
pressure constant at 800 bar. During the load changes, pIMEPn and the common-
rail pressure level were controlled using PID controllers and pre-calibrated feed-
forward signals. Engine-speed ramps were performed by changing the engine-
brake motor-speed set point.

Set Point Tracking
In Fig. 7.2, system inputs and outputs are displayed during 1500 cycles when
step changes in rθ50 were made. The weights (see Table 7.1) were set so that the
tracking of θ50 was done by changing the injection timings, τwas then controlled
by the gas system in the mean sense. When the combustion phasing is retarded
around cycle 950, τ is decreased due to increased temperature at θSOI. This forces
the hot valve to close while the EGR valves open, the controller tries to find the
lowest possible θSR in stationarity for higher turbine enthalpy. A zoom-in around
cycle 950 can be seen in Fig. 7.3. In Fig. 7.4, system inputs and outputs are dis-
played during 2000 cycles for which step changes in rτ were made. The tracking
of rτ were done by varying the EGR and FTM valve positions. When rτ increases,
the EGR valves and the cool FTM valve open. The short-route EGR valve opens
too much initially which gives a slight overshoot in the mean τ. A zoom-in around
cycle 550 is presented in Fig. 7.5, here it can be seen that the injection timings are
varied to keep θ50 constant and it is kept within 0.6 CAD deviation while τ reaches
its new set point after 50 cycles.
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Figure 7.1 Solution trajectories using the weights in 7.1. The inputs are allowed
to change at predefined cycle indices over Hc . The weights were chosen to priori-
tize the combustion-phasing tracking, while letting the slower gas system control
the mean ignition delay. Note that the grid over which the injection timings are
allowed to change is denser initially than for the gas system valves, this is because
the control action of the injection timings is much faster than for the valve posi-
tions.
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Figure 7.2 System inputs and outputs during 1500 cycles when steps in rθ50
were

made. θHot is plotted in red and θCool in blue, the black dashed lines in the upper
graphs are the θ50 and τ set points while the dash-dotted lines are θLR/θSR con-
straints. The weights were set so that the tracking of θ50 was done by changing the
injection timings, the mean τ was then controlled by the gas system.
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Figure 7.3 A zoom in around cycle 960 in Fig. 7.2, θ50 reaches its new set point
after 5 cycles, there is also an internal delay from the set point to the controller of
about 5 cycles. The gas system manages to adjust for the τ decrease in 60 cycles.
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Figure 7.4 System inputs and outputs during 2000 cycles for which steps in rτ
are made. The tracking of rτ were done by varying the EGR and FTM valve posi-
tions while the injection timings are varied to keep θ50 constant. Around cycle
1750 the ignition delay of cylinder 5 is suddenly shortened 0.5 ms for 2 cycles
without any preceding changes in the actuating signals, the reason for this sud-
den change is unknown.
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Figure 7.5 A zoom in around cycle 550 in Fig. 7.4, τ reaches its new set point after
50 cycles. The injection timings kept θ50 within 0.6 CAD during the step.
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Load Step Changes
In Fig. 7.6, system inputs and outputs are displayed during 1000 cycles for which
steps between 6 and 10 bar in rpIMEPn are made, pIMEPn reaches its new set point
in 20 cycles after every step change. As pIMEPn is increased, τ is decreased due to
increased cylinder temperatures and richer cylinder mixtures [Heywood, 1988],
this forces the EGR valves to open. The FTM system is limited to the cold-flow
upper limit during the experiment for the higher pIMEPn values, θSOI manages to
keep θ50 within 1 CAD deviation.

Speed Ramp Changes
In Figure 7.7, system inputs and outputs are displayed during 2000 cycles for
which the engine speed was varied between 1200 and 1500 rpm. As the speed is
increased, τ decreases, probably due to increased cylinder-gas turbulence levels
[Heywood, 1988], this forces the EGR valves to open. The FTM system is limited
to the cold-flow limit during the higher speeds, θSOI manages to keep θ50 within
1 CAD deviation from the set-point value.

7.5 Discussion and Conclusions

The controller was successful in tracking τ and θ50 set points both during sta-
tionary conditions and load and speed variations. It was found that the MPC tun-
ing procedure was a trade-off between speed and sensitivity to model-errors and
cycle-to-cycle variation. If the control action weights were to be decreased, the
control action would increase but it was then more likely that the system outputs
would overshoot during set-point changes, something that is probably caused by
insufficient model prediction performance. In this work, the controller was tuned
to give slow but reliable performance, the slow behavior can be seen in Fig. 7.4
where the gas system slowly increases τ.

The gas-system model used in this work was limited since only the static rela-
tion between valve positions and the inlet manifold gas state in a small operating
range was included in the model. A dynamic model of the valve actuators and
the gas system which includes turbocharger effects could give the controller in-
formation on how fast the control action would affect the system behavior which
in turn could yield better performance. Incorporating a more detailed physics-
based gas-system model into this controller framework is considered to be future
work. The MPC framework yielded a simple way of prioritizing system output
behavior, it also took system interaction effects into account. Input constraints
and the cost of using EGR was also incorporated in the controller. Comparable
controller performance could probably be obtained by using decentralized con-
trollers for instance by letting θ50 be controller by the injection timings locally
and then let the mean τ be controlled by the gas-system valve positions, simi-
lar to what was presented in [Karlsson et al., 2008]. This would demand less on-
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Figure 7.6 System inputs and outputs during 1000 cycles for which steps in
rpIMEPn are made. In addition to the signals displayed in the previous figures,
pIMEPn is plotted together with its set point in the lower left figure, the injection
durations θDOI are presented in the lower right figure.
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Figure 7.7 System inputs and outputs are displayed during 2000 cycles for which
the engine speed is being varied. Both EGR-valve positions are now plotted to-
gether in the mid-left figure.
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line computations, however, the framework presented here is more general. The
model could also be extended to cover load control by means of injected fuel
amount and its effect on τ, then, this would also be included in the prediction
to yield better performance during load transients. The MPC framework could of
course also be extended to cover high-level performance measures such as emis-
sion levels and efficiency instead of set-point tracking, this would however an
extended engine model with more states.

A sufficient ignition delay was here considered to be a marker for a low tem-
perature combustion mode with favorable emission properties. In future work
this controller design will be evaluated with emission measurements to conclude
that this hypothesis holds or if supplementary control actions need to be taken
in order to fulfill emission constraints.
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8
Pressure Prediction and
Efficiency Optimization
using Heat-Release Analysis

8.1 Introduction

During the compression and expansion strokes, the in-cylinder pressure changes
with crank angle as a result of volume change, combustion and heat transfer.
Both the combustion rate and phasing relative to top-dead center (TDC) affects
the in-cylinder pressure and in turn the engine-work output [Heywood, 1988].
Ideally, the combustion phasing should be set to minimize the specific fuel con-
sumption such that constraints on cylinder pressure, noise and emissions are
fulfilled. Assuming that such a combustion phasing exists, it would vary with op-
erating conditions, moreover, the injection timing for ideal combustion timing
would also vary with operating conditions [Kiencke and Nielsen, 2012; Eriks-
son and Nielsen, 2014]. Traditionally, the way to decide injection timing is to
experimentally calibrate the most favorable injection timing for each operating
point and then use this setting in open-loop operation. This might however be
sensitive to drift, especially in more sensitive combustion modes as shown by
[Olsson et al., 2000], the approach also demands extensive experimental work.
Combustion-timing closed-loop control strategies could be divided into two sub-
groups, those that aim to control the combustion timing to follow a predefined
combustion-timing set point. Or those that aim to optimize engine performance
subject to the combustion timing. Examples of the former were investigated by
[Bengtsson et al., 2004], where quantities such as crank angle for 50 % heat re-
leased, θ50, crank angle for maximum pressure and crank angle for maximum
heat-release rate among others were used as feedback signals that indicate com-
bustion timing. Closed-loop tracking of θ50 was obtained using physics-based
auto-ignition models in [Blom et al., 2008; Widd et al., 2008; Shaver et al., 2004]
and [Willems et al. 2010], to mention a few. [Nakayama et al., 2008] designed
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a model-based feed-forward set-point controller. However, the problem of de-
ciding the optimal combustion-timing set point still remains unsolved by using
these controllers alone. In [Karlsson et al., 2010] it was showed that dynamical
black-box models that relate injection timing to indicated mean effective pres-
sure, max pressure derivative and NOx emissions could be identified and used
for model predictive control in order to minimize the specific fuel consumption
subject to emission and pressure constraints. An extremum-seeking controller
was designed by [Lewander, Widd et al. 2012] to find the combustion timing for
the lowest specific fuel consumption with the use of θ50 feedback control in a
CI engine, similar controllers were investigated by [Hellström et al 2013], and
[Killingsworth et al. 2009] in SI and HCCI engines respectively.

This chapter presents a model-based cycle-to-cycle combustion-timing con-
troller that aims to maximize the gross indicated mean effective pressure subject
to cylinder-pressure constraints.

8.2 The Combustion-Timing Controller

The controller computation of the injection timing for the next engine cycle,
given the current-cycle cylinder pressure can be summarized in three steps.

I Estimation of the heat-release rate of the current cycle, using Eq. (2.2).

II Prediction of the cylinder pressure due to a crank angle shifts of the esti-
mated heat release rate.

III Computation of a shift in injection timing by solving an optimization prob-
lem based on the predicted cylinder pressure obtained in step II.

Steps II and III are presented in the following sections.

Pressure Prediction
After estimating dQc /dθ using Eq. (2.2), the objective is to predict the pressure
change due to a change in the combustion timing. It is assumed that the pressure
change due to a change in combustion timing in the next cycle is equivalent to
the effect of a static crank-angle shift of the heat-release rate in the current cycle
dQ0

c /dθ. This assumption relies on weak cycle-to-cycle dynamics of the combus-
tion event and that the heat-release rate shape is not changing too much with
smaller changes in combustion timing. First, dQ0

c /dθ is shifted back and forth
with crank angle ∆θ

dQ+
c

dθ
= dQ0

c (θ+∆θ)

dθ
, (8.1)

dQ−
c

dθ
= dQ0

c (θ−∆θ)

dθ
.
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Pressure traces p+ and p−corresponding to dQ+
c /dθ and dQ−

c /dθ are then com-
puted by first linearizing Eq. (8.2) w.r.t. p at the current cycle pressure p0, heat-
release rate dQ0

c /dθ and Tw

d p

dθ
=− γ

V

dV

dθ
p + γ−1

V

(
dQc

dθ
−hc A

(
pV TIVC

pIVCVIVC
−Tw

))
. (8.2)

here γ was computed using Eq. (2.7). Denoting the nonlinear term in the heat
transfer model

µ(p,θ) = (γ−1)
hc ATIVC

pIVCVIVC
p, (8.3)

the linearized system is given by Eq. (8.4) where ∆p is the first order deviation
from p0

d∆p

dθ
=− γ

V

dV

dθ
+ dµ(p0,θ)

d p
∆p + γ−1

V

d∆Qc

dθ
, (8.4)

p+ and p− are then given by ∆p +p0 where ∆p is computed with Eq. (8.4) where

d∆Qc

dθ
= dQ+

c

dθ
− dQ0

c

dθ
, (8.5)

d∆Qc

dθ
= dQ−

c

dθ
− dQ0

c

dθ
.

The reason for linearizing the system is that ∆p is given by the expression

∆p(θ) =
∫ θ

θIVC

Φ(θ,ϑ)Γ(ϑ)
d∆Qc (ϑ)

dϑ
dϑ (8.6)

where

Φ(θ,ϑ) = exp

(
−

∫ θ

ϑ

dµ(p0,τ)

d p
dτ

)(
V (ϑ

V (θ)

)γ
, (8.7)

Γ(ϑ) = γ−1

V (ϑ)
,

which makes ∆p cheap to compute.

Injection-Timing Shift Optimization
With the computed predicted pressures p+ and p−, quantities such as indicated
gross mean effective pressure pIMEPg (from now on denoted pIMEP, for ease of no-
tation), max pressure pmax and max pressure derivative d pmax can be predicted
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Algorithm 4 Controller Algorithm

1: while k > 0 do

2: Estimate dQ0
c /dθ using the measured p0 at cycle k and Eq. (2.2).

3: Shift dQ0
c /dθ according to to Eq. (8.1).

4: Compute p+ and p− using Eq. (8.6).

5: Compute the gradients in Eq. (8.9), and solve Eq. (8.11).

6: Set θk+1
SOI = θk

SOI +∆θ∗SOI.

7: end while

p+
IMEP = 1/Vd

∫ VEVO

VIVC

p+dV , (8.8)

p−
IMEP = 1/Vd

∫ VEVO

VIVC

p−dV ,

p+
max = max

θ
p+,

p−
max = max

θ
p−,

d p+
max = max

θ
d p+,

d p−
max = max

θ
d p−.

Moreover, the estimated derivatives of these quantities with respect to the com-
bustion timing crank angle shift ∆θ can be computed

d pIMEP

d∆θ
= p+

IMEP −p−
IMEP

2∆θ
, (8.9)

d pmax

d∆θ
= p+

max −p−
max

2∆θ
,

d(d pmax)

d∆θ
= d p+

max −d p−
max

2∆θ
.

With the gradients in Eq. (8.9) a simple prediction model for pIMEP, pmax and
d pmax in the next cycle with respect to ∆θ is given by

 pIMEP

pmax

d pmax

=

 p0
IMEP

p0
max

d p0
max

+



d pIMEP

d∆θ
d pmax

d∆θ
d(d pmax)

d∆θ

∆θ. (8.10)
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With this model, an optimization problem for finding the wanted ∆θ can be for-
mulated

minimize
∆θ

−pIMEP +β(∆θ)2 (8.11)

subject to:

 pIMEP

pmax

d pmax

=

 p0
IMEP

p0
max

d p0
max

+



d pIMEP

d∆θ
d pmax

d∆θ
d(d pmax)

d∆θ

∆θ,

 pmax

d pmax

|∆θ|

≤
 lpmax

ld pmax

l∆θ

 ,

where β is a positive cost weight for changing the combustion timing and lpmax ,
ld pmax and l∆θ are upper limits on pmax, d pmax and the absolute value of∆θ. Now
by solving Eq. (8.11), an optimal combustion-timing shift can be computed. The
solution to Eq. (8.11) without the boundary constraints is given by

∆θ∗ = 1

2β

d pIMEP

d∆θ
, (8.12)

the changes ∆θlpmax
and ∆θld pmax

that will reach the constraint boundaries lpmax

and ld pmax are computed as

∆θlpmax
= lpmax −p0

max

d pmax/d∆θ
, (8.13)

∆θld pmax
= ld pmax −d p0

max

d(d pmax)/d∆θ
.

If one assumes that both pmax and d pmax are monotonically decreasing with ∆θ
(which was normally the case for the experiments done by the authors when
θ50 > 0), the solution to Eq. (8.11), ∆θ∗, is simply the largest value among ∆θ∗,
∆θlpmax

and ∆θld pmax
, saturated within the limits of l∆θ. The optimization prob-

lem can be rephrased as a problem in ∆θSOI if ∆θ/∆θSOI is known, in this work it
was assumed to be equal to 1. Now all the steps of the controller algorithm have
been defined and are summarized in Algorithm 4.

8.3 Results

Open-loop Experiments
In order to investigate the pressure response to combustion timing and evaluate
the pressure-prediction method, θSOI with a single injection was swept for three
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Table 8.1 The data used in the prediction- and controller evaluation were ob-
tained from the operating points presented in this table.

Operating Points 1 2 3
Engine Speed [rpm] 1200 1200 1500

Injection Duration [ms] 10 16 10

Injection Pressure [bar] 800 800 800

Inlet Pressure [bar] 1.1 1.35-1.4 1.16

Inlet Temperature [◦C] 29-31 40-43 34

λ [-] 2.93 1.72 3.33

EGR Ratio [-] 0 0 0

different speed/load combinations. Each sweep consisted of 2000 cycles where
θSOI was incremented in steps of one from approximately -25 to 5 CAD ATDC.
The investigated operation points are presented in Table 8.1.

Thermodynamic Efficiency In Figs. 8.1-8.3, the estimated thermodynamic effi-
ciency ηth

ηth = Vd pIMEPg

max(Qc )
. (8.14)

is plotted against θ50 for the three operating points. In the figures, ‘+’ are the sam-
pled data points, the solid red line is the estimated ηth sample mean as a function
of θ50 and the solid black lines are showing the estimated two sample standard
deviation distance from ηth . These lines were obtained by assuming a Gaussian
process regression model using the GPML toolbox, see [Rasmussen and Williams,
2006]. The reason for studying ηth instead of pIMEPg is to compensate for varia-
tions in rail pressure and for assumed variations in injected fuel mass due vari-
ation in the difference between the injector pressure and in-cylinder pressure
with θSOI. Another reason was that the fuel flow was not measured during the ex-
periments due to limitations of the test rig at the time of the experiment, this is
another reason for studying the estimated ηth . The heat-transfer model used was
given by

dQht

dθ
= hc A

60Nspeed
(T −Tw ), (8.15)

hc =αB 0.2p0.8T −0.55ω0.8,

and α was tuned to give a flat Qc before and after the combustion event, with a
reasonable magnitude in Qht , this gave C1 = 1,C2 = 0.06 and α = 5. In Figs 8.1-
8.3, it can be seen that as the combustion timing was advanced, the estimated
thermodynamic efficiency increased, and then after a certain θ50 it started to de-
crease. This happened more clearly for the lower loads in Figs. 8.1 and 8.3 where
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Figure 8.1 Estimated thermodynamic efficiency against combustion timing
with 10 ms injection duration at 1200 rpm, ‘+’ are the sampled data points, the
solid red line is the estimated ηth sample mean as a function of θ50 and the solid
black lines are showing the estimated two sample standard deviation distance
from the mean ηth .
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Figure 8.2 Estimated thermodynamic efficiency against combustion timing
with 16 ms injection duration at 1200 rpm.
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Figure 8.3 Estimated thermodynamic efficiency against combustion timing
with 10 ms injection duration at 1500 rpm.

the peak occurred in the intervals θ50 ∈ [4,5] and θ50 ∈ [−1,4]. In Fig. 8.2, the peak
was not as evident but seemed to be before TDC. In Fig. 8.2 and 8.3 it can be seen
that ηth peaks for slightly negative θ50 while it is known that the peak usually oc-
curs for positive θ50. This could be the result of an underestimated heat-transfer
rate.

∆θ50/∆θSOI In Fig. 8.4, θ50 is plotted as a function of θSOI for the three sweeps.
The measured tangent ∆θ50/∆θSOI seems to be fairly constant for most θSOI. For
the lower load operating points ∆θ50/∆θSOI was lower at early injection timings
and higher at late injection timings.

Pressure Prediction The pressure-prediction performance was tested using the
experimental data. In Fig. 8.5. The middle pressure curve in black is the mean
cycle pressure p0 for a specific injection timing, to the left and to the right of
this curve, plotted as blue and red solid curves are the mean cycle pressures p+,
p− for injection timings shifted ±1 CAD relative to the injection timing of p0.
The blue and red dashed lines are the predicted pressure curves p̂+, p̂− when the
injection timing is shifted±1 CAD. In Fig. 8.6, the pressure differences p+−p0 and
p−−p0 from Fig. 8.5 are plotted in blue and red together with the corresponding
prediction errors p+− p̂+(dashed, blue) and p−− p̂− (dashed, red). In Figs. 8.7-
8.9, the changes of the mean cycle pressure due to injection timing changes p±−
p0 are displayed together with the prediction errors p±− p̂± (as in Figure 8.6) for
all injection timings in experiments 1, 2 and 3, blue (red) representing a delayed
(advanced) injection timing pressure change p+−p0 (p−−p0).

The prediction error is smaller when the injection timing is close to TDC for
all operating points and is gradually increased when the combustion timing is
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Figure 8.4 θ50 against θSOI for the θSOI sweeps in Figs. 8.1-8.3
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Figure 8.5 Mean cycle pressure p0 (middle, black) for a specific injection timing
from operating point 3. Mean cycle pressures p+, p− (solid blue, red) from adja-
cent injection timings and the predicted pressures p̂+, p̂− (dashed blue, red) for
the same injection timings.
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Figure 8.6 The pressure differences p+−p0 (blue solid) and p−−p0 (red solid)
together with the prediction errors p+− p̂+ (blue dashed), p−− p̂− (red dashed)
for the pressure curves in Figure 8.5.

advanced or delayed. The prediction error also changes sign somewhere around
TDC. For the red lines, this means that the prediction goes from being smaller
than the true pressure change to being larger than the true pressure when the
injection timing is advanced, the opposite goes for the blue lines. The pressure-
prediction performance was evaluated using the R2 statistic, see Chapter 2. In
Figure 8.10, the R2 prediction performance is displayed as a function of θ50, R2

was computed accordingly

R2 = 1−
∑

i (p̂+
i −p+

i )2 +∑
i (p̂−

i −p−
i )2∑

i (p0
i −p+

i )2 +∑
i (p0

i −p−
i )2

, (8.16)

where pi is the measured mean cycle pressure at the given θ50, p+
i and p−

i are the
measured pressure mean when θSOI is shifted one crank angle forward and back-
ward respectively. p̂+

i and p̂−
i are the predicted pressure changes, index i denotes

the sample i of the pressure curve. The pressure-prediction method seemed to
work fairly well in the interval θ50 ∈ [0,6] where R2 ≥ 0.9, but, R2 started to de-
crease outside this interval and more steeply for the low-load operating points.
The performance was in general better for the high-load operating point.

Closed-loop Experiments
This section demonstrates the previously presented controller-design concept,
tuning for best performance was not carried out.

Convergence andβ - Sensitivity The controller was run at each of the above in-
vestigated operating points, in order to test controller convergence, β was varied
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Figure 8.7 Operating point 1. The blue (red) pressures correspond to the mea-
sured mean cycle pressure change p+−p0 (p−−p0) due to a positive (negative)
injection timing change of magnitude 1, while the dashed blue (red) lines corre-
spond to the mean pressure prediction error for the same injection timing change.
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Figure 8.8 Same description as for Figure 8.7 but for operating point 2.
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Figure 8.9 Same description as for Figure 8.7 but for operating point 3.
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Figure 8.10 R2 against θ50 for the three sweeps in Figs. 8.7-8.9. The pressure-
prediction method seemed to work fairly well in the interval θ50 ∈ [0,6] where
R2 ≥ 0.9, but, R2 started to decrease outside this interval and more steeply for the
low-load operating points.
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Figure 8.11 Controller convergence at operating point 1 where the solid lines
correspond to β = 0.05 and the dashed lines to β = 0.2, here the point of conver-
gence is θ∗50 = 5.8, θ∗SOI =−7.

together with different initial injection timings θ0
SOI. The result can be viewed in

Figs. 8.11-8.13, here θ0
SOI = {20,10,0} [BTDC] andβ= {0.05,0.2}. In Figs. 8.11-8.13,

the controller consistently converges to the same θ50 independently of the start-
ing point and the controller parameter β clearly influences the convergence rate
of the controller where a larger β gives a slower convergence. In Fig. 8.12 the sta-
tionary behavior of the controller becomes oscillatory for β = 0.05. In the same
figure it also seems as the controller converges fast for β= 0.2 and θ0

50 =−2, this
was caused by an unintended active pmax constraint, this did not affect the sta-
tionary behavior since the estimated d pIMEP/d∆θ was zero in the convergence
point.

Model Parameter Sensitivity The point of convergence θ∗50 depends on the pa-
rameter values in Eq. (8.2) and especially the parameters of the heat-transfer
model. In order to investigate the convergence-point sensitivity, model param-
eter α (see Eq. 8.3) and TDC offset were varied. The result can be viewed in Figs.
8.14 and 8.15 where α was varied stepwise from 1 to 6 and TDC offset was varied
stepwise from 2 to -2 crank angle degrees. In Fig. 8.14, it is shown the magnitude
of the heat-transfer rate clearly affected the convergence point of the controller,
with increased heat-transfer rate, the controller chose a later convergence point
and the converse was true for a decreased heat-transfer rate. A twice increased
heat-transfer rate retarded the injection timing as much as 3 CAD. In Fig. 8.15,
it can be seen that an offset in TDC of 2 degrees approximately gives a 2 degree
offset in the point of convergence in any direction.
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Figure 8.12 Controller convergence at operating point 2 where the solid lines
correspond to β = 0.05 and the dashed lines to β = 0.2. Here the point of conver-
gence is θ∗50 = 6.4,θ∗SOI =−9.5. (In the lower dashed θ50 trajectory, the fast conver-
gence was due to an unintended active max pressure constraint, this however did
not affect the point of convergence since the estimated d pIMEP/d∆θ was zero in
the convergence point).
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Figure 8.13 Controller convergence at operating point 3 where the solid lines
correspond to β = 0.05 and the dashed lines to β = 0.2. Here the point of conver-
gence is θ∗50 = 5.6, θ∗SOI =−9.6.
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Figure 8.14 Heat-transfer sensitivity. Here the scaling factor α was varied step-
wise from 1 to 6, which changes the point of convergence. This experiment was
done at operating point 1.
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Figure 8.15 TDC-offset sensitivity. Here TDC offset is changed stepwise from 2
to -2 CAD. This experiment was done at operating point 1.
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Figure 8.16 In the upper part of the figure, max pressure (solid) is displayed to-
gether with the max pressure constraint (dashed), the corresponding θ50 is dis-
played in the lower figure.

Pressure Constraint Tests
The controller performance subject to constraint variation was also investigated,
the result can be viewed in Figs 8.16 and 8.17 where the upper bound on pmax

was varied from 120 to 80 bar and back and the upper bound on d pmax was var-
ied from 40 to 20 bar per crank-angle degree. The controller managed to fulfill
the constraint by initially taking a larger positive step in θSOI and then slowly ad-
vancing θ50, reaching the constraint level from below.

8.4 Discussion

Pressure Prediction Performance
The pressure-prediction method seemed to work fairly well in the interval θ50 ∈
[0,6] where R2 ≥ 0.9, however R2 started to decrease outside this interval, one
explanation for the decrease is the relation between ∆SOI and θ50. In the model it
was assumed that∆θ/∆θSOI = 1, but when the injection timing was early (≈−25),
the ignition delay started to increase which gave ∆θ/∆θSOI < 1. For late injection
timings (≈−5), the ignition delay also started to increase which gives∆θ/∆θSOI >
1. This explains why the R2 curve is more flat for the high load experiment in Fig.
8.10 where the ignition delay was not changing significantly and ∆θ/∆θSOI was
almost constant (see Fig. 8.4).
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Figure 8.17 In the upper part of the figure, max pressure derivative (solid) is dis-
played together with the max pressure derivative constraint (dashed), the corre-
sponding θ50 is displayed in the lower figure.

Closed-loop Operation
Convergence It was clear from Figs 8.11-8.13 that one can view 1/β as the con-
troller gain and it was found by studying Fig. 8.12 that the choice ofβ is a trade-off
between convergence speed and stationary cycle-to-cycle variation. If β is cho-
sen too small, the pIMEP term becomes much bigger thanβ(∆θ)2 in the cost func-
tion of Eq. (8.11), this then makes small derivatives d pIMEP/d∆θ to cause large
controller steps ∆θSOI which then lead to the unwanted controller behavior. For
best performance, β should be increased with load as d pIMEP/d∆θ will increase.

The points of convergence in Figs. 8.11-8.13 did not in all cases coincide with
the experimentally found most efficient point which was the main goal of the
controller, one could view α as a controller trade-off parameter that weighs the
effects on efficiency from increased in-cylinder pressure against the increased
heat-transfer rate caused by the increased in-cylinder temperature when the
combustion timing is advanced, the point where these effects cancel out, gives
be the convergence point of the controller.

Pressure Constraints The controller could also be used to fulfill constraints on
pmax and d pmax which can be seen in Figs. 8.16 and 8.17. However, with active
constraints the controller was found to be a bit more sensitive to the cycle-to-
cycle variation of pmax and d pmax. If this cycle-to-cycle variation caused any
constraint to be violated when close to the constraint level, the controller de-
layed the injection timing in order to fulfill the constraint, this increased cycle-
to-cycle variation. It could therefore be wise to increase β to decrease cycle-to-
cycle variation if active constraints are expected. The controller also had a spe-

90



8.5 Conclusions

cific behavior when the constraint was violated as seen in Fig. 8.16 at cycle 340,
the controller delays θSOI greatly and then slowly tries to find a more efficient
combustion timing until it reaches the allowed pmax limit, this is happening be-
cause when the constraint is changed and the controller is forced to delay the
injection timing, d pmax/d∆θ is somewhat underestimated due to the increased
ignition delay which explains why the controller takes a too large step in order to
fulfill the constraint.

8.5 Conclusions

The controller was consistent in finding a convergence point independently of
the initial condition and the controller parameter β, choosing β was found to be
a trade-off between convergence speed and steady state cycle-to-cycle variation.
The controller was also able to fulfill constraints on pmax and d pmax, with active
constraints the cycle-to-cycle variation was found to be increased.

The convergence point was sensitive to the modeled heat-transfer rate mag-
nitude and did not coincide with the experimentally found most efficient point,
this fact suggests that a fine-tuned heat-transfer model would allow the con-
troller to converge closer to the true most efficient combustion-timing point, this
would demand an extensive amount of model-calibration work. Another possi-
bility would be to extend this controller with a data-based gradient method that
uses measured pIMEP to estimate d pIMEP/d∆θ. It was also found that the pres-
sure prediction performance was relying on the assumption of ∆θ/∆θSOI which
depend on θSOI. In this work it was set constant equal to 1. An adaptive method
for estimation of this quantity, alternatively an ignition-delay model would thus
probably improve the pressure-prediction performance.
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9
Combustion Control Using
Multiple Fuel Injections

9.1 Introduction

It was discovered in [Manente et al., 2009] that the long ignition delays in single-
injection PPC give rise to very high pressure-rise rate due to violent HCCI-like
combustion rates. High pressure-rise rates is an indicator for high audible-noise
levels and could also cause mechanical engine damage, therefore, the pressure-
rise rate has to be kept below certain levels in order to ensure silent and safe oper-
ation. Previous research by [Tsurushima, 2009] implies that pressure oscillations
commonly resulting from violent combustion rates are able to break insulating
thermal-boundary layers which increases heat-transfer flux to the cylinder walls.
A remedy to the problem of high pressure-rise rates in PPC is to introduce a pilot-
fuel injection, e.g. by having an early pilot injection with less than half of the fuel
and a main injection containing the majority of the fuel amount. The pilot in-
jection sets a lean mixture environment that decreases the ignition delay of the
main injection and therefore decreases the combustion rates. This technique is
also used in conventional diesel engines both to improve low-load performance
[MacMillan et al., 2009; Osuka et al., 1994] and to decrease emissions and engine-
noise levels [Eriksson and Nielsen, 2014; Kiencke and Nielsen, 2000].

Both optical OH-chemiluminescence experiments [Tanov et al., 2014] and
computational fluid dynamics (CFD) simulation research [Solsjö, 2014] have
been performed to better understand multiple-injections light-duty PPC, find-
ings suggest that multiple injections can be used to create stratified mixtures with
different air-fuel ratios where very lean mixtures created by pilot injections burns
more slowly but assist the ignition of the fuel-richer mixtures created by the main
injection.

With the increased amount of fuel-injection events, the amount of calibra-
tion work for optimized engine performance for different loads and speeds grows
exponentially, [Meyer, 2011]. Therefore, it is of course very appealing to find fuel-
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injection controllers that automatically find fuel-injection timings and fuel dis-
tribution among the multiple injections. Previous work on pilot-injection com-
bustion control in low-temperature combustion concepts has been presented by
[Ott et al., 2013; Eichmeier et al., 2012; Ekholm et al., 2008; Kokjohn et al., 2009].

This chapter presents experimental PPC results that reflects engine output
characteristics w.r.t. double-injection parameters. The experimental results are
then used for design of a model predictive controller that is able to track com-
bustion phasing while guaranteeing an upper bound on the mean maximum
pressure-rise rate. Controller implementation and experimental performance
during engine load and speed variations are also presented.

Maximum Pressure-Rise Rate d pmax

The maximum pressure rise rate d pmax is in this work defined as

d pmax = max
θ

d p

dθ
. (9.1)

Due to the high cycle-to-cycle variation of d pmax it has to be filtered in order to
be used as a feedback variable. The measured d pm

max was therefore modelled as
d pmax, corrupted with additive Gaussian noise with standard deviation σ

d pm
max = d pmax +e, e ∼ N (0,σ2). (9.2)

A Kalman filter was then used to recover d pmax from d pm
max, a more detailed pre-

sentation of this procedure is given in Section 9.3.

Fuel-Injection Variables
The start of the main and pilot injection θm

SOI, θ
p
SOI are here defined as the crank-

angle of the injector-current rising flanks. The fuel-injection durations θm
DOI, θ

p
DOI

are defined as the difference in milliseconds between the injector-current pulse
width and a threshold value τth that is the minimum current-pulse duration for
which fuel flows into the cylinder, here it was assumed that τth = 0.25 ms, see Fig.
9.1. Instead of studying θm

SOI, θ
p
SOI, θ

m
DOI and θp

DOI explicitly, the pilot ratio rp

rp = θ
p
DOI

θ
p
DOI +θm

DOI

, (9.3)

the injection separation dSOI

dSOI = θm
SOI −θp

SOI, (9.4)

the main injection timing θm
SOI and the total injection duration θtot

DOI were studied

θtot
SOI = θm

DOI +θp
DOI. (9.5)
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Figure 9.1 Injector-current signal with a pilot and a main injection together with
the definitions of θx

SOI, θx
DOI, and τth .

This variable change was done because at a given operating point, θtot
SOI and θm

SOI
would be determined by the desired load and combustion phasing, rp and dSOI

are then free parameters whose influence on engine output parameters are stud-
ied in the following sections.

9.2 Experimental Characterization

In order to investigate the engine-output properties w.r.t. different double-
injection configurations, rp and dSOI were varied while keeping θ50 and the in-
dicated gross mean effective pressure pIMEPg constant using θm

SOI and θtot
DOI at the

operating points (OP) presented in Table 9.1. At each operating point d pmax, the
indicated thermal efficiency, ηth , NOx, HC and soot emission levels were mea-
sured in steady state during 1000 cycles. The gains from θm

SOI and θp
SOI to θ50 were

also investigated. The results of these experiments and its implications for con-
troller design are presented and discussed in the following sections.

Maximum Pressure Rise Rate d pmax

In Figs. 9.2 and 9.3 the measured d pmax is presented as level curves of a linear
interpolations between the operation points in Table 9.1. It is clear that rp can be
used to control d pmax since d pmax decreases with rp . The d pmax controllability
is also shown to be higher for small dSOI. A possible explanation for the observed
trends is that the air-fuel mixture that is set up by the pilot injection decreases
the ignition delay of the main-injection fuel charge, making the combustion of
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Table 9.1 The investigated operating points. The notion x : y : z means that the
corresponding parameter was swept from x to z in steps of y , every combination
of rp and dSOI were tested.

OP 1 OP 2

pIMEPg [bar] 5 10

Nspeed [rpm] 1200 1200

λ [-] 2.5 1.8

rEGR [rpm] 15 25

θ50 [CAD] 6 10

rp [-] 0 : 0.125 : 0.5 0 : 0.075 : 0.3

dSOI [CAD] 0 : 12.5 : 50 0 : 12.5 : 50

r
p
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Figure 9.2 Maximum pressure-rise rate contour plot versus dSOI and rp at 5 bar
pIMEPg. It is clear that rp can be used to control d pmax since d pmax decreases
with rp . The d pmax controllability is also shown to be higher for small dSOI.
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Figure 9.3 Maximum pressure-rise rate contour plot versus dSOI and rp at 10 bar
pIMEPg.

this charge less violent. This effect then becomes stronger for larger pilot-fuel
amounts and weakens as the pilot charge is more dilute at θm

SOI as dSOI increases.
The ignition delay of the main injection, τm , is presented in Figs. 9.4 and 9.5, τm

was computed accordingly

τm = θ10 −θm
SOI [ms]. (9.6)

It can be seen that τm and d pmax correlate in OP 1 and 2, however, the correlation
is not as strong in OP 1 for large dSOI where τm stays low with increasing d pmax. A
hypothetical explanation is that the increased d pmax is caused by the increased
ignition delay of the pilot charge which creates a more violent burning rate.

Thermodynamic Efficiency
The thermodynamic efficiency ηth is here defined as the ratio between the indi-
cated gross mean effective pressure pIMEPg and the fuel mean effective pressure
pFuelMEP

ηth = pIMEPg

pFuelMEP
, (9.7)

pFuelMEP = QLHV m f

Vd
, (9.8)

where m f is the injected fuel amount and QLHV the lower heating value of the
fuel. Note that this definition of ηth includes the combustion efficiency. The re-
sults presented in Figs. 9.6, 9.7 show that ηth has a slight maxima when having
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Figure 9.4 Main-injection ignition delay contour plot versus dSOI and rp at 5
bar pIMEPg. The main-injection ignition delay correlates with d pmax presented in
Figs. 9.2 and 9.3.
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Figure 9.5 Main-injection ignition delay contour plot versus dSOI and rp at 10
bar pIMEPg.
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Figure 9.6 Thermodynamic efficiency contour plot versus dSOI and rp at 5 bar
pIMEPg. The results show that ηth has a slight increase when having a pilot injec-
tion close to the main injection, another visible trend is that ηth drops when dSOI
increases and that this effect is stronger when rp is higher.

a pilot injection close to the main injection, this is more significant for OP 1 in
Fig. 9.6. Another visible trend is that ηth drops when dSOI increases and that this
effect is stronger when rp is higher. This indicates that it could be more efficient
to have a pilot injection but that this effect is reversed when the pilot is advanced.

HC

The measured HC emission levels are presented in Figs. 9.8 and 9.9. The HC emis-
sion levels increase steeply as dSOI and rp are simultaneously increased, the ex-
planation for this could be that the pilot fuel is injected into the crevice regions
outside of the combustion chamber and does not burn completely, it could also
be that the pilot-fuel mixture becomes too lean to burn due to the increased mix-
ing period. The decrease in combustion efficiency indicated by the HC emission-
level increase could also explain the efficiency drop seen in Figs. 9.6 and 9.7.

NOx

The measured NOx emission levels are presented in Figs. 9.10 and 9.11 where it
can be seen that the NOx level mainly depends on rp and decreases with an in-
creased rp . A hypothetical explanation for this is the increase in τm with a de-
creased rp . This gives more violent combustion with increased temperatures,
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Figure 9.7 Thermodynamic efficiency contour plot versus dSOI and rp at 10 bar
pIMEPg.
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Figure 9.8 HC emission-level contour plot versus dSOI and rp at 5 bar pIMEPg.
The HC emission levels increase steeply as dSOI and rp are simultaneously in-
creased, the explanation for this could be that the pilot fuel is injected into the
crevice regions outside of the combustion chamber and does not burn completely,
the decrease in combustion efficiency indicated by the HC emission increase
could also explain the efficiency drop seen in Figs. 9.6 and 9.7
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Figure 9.9 HC emission-level contour plot versus dSOI and rp at 10 bar pIMEPg.

with leaner charge mixtures at the start of combustion it gives increased NOx

formation.

Soot
In Figs. 9.12 and 9.13 it is shown that the soot levels increase with rp and more so
when dSOI is small, the reason for this is probably that the ignition delays for the
fuel injections are minimized at these operating points which makes the charge
burns more rich and this increases soot formation. Similar NOx and Soot emis-
sion trends were presented by [Manente et al., 2010b, 2009].

Combustion-Phasing Controllability
The controllability of the combustion phasing θ50 was investigated by varying
θm

SOI and θp
SOI for the operating points presented in Table 9.1. For each operating

point and rp and dSOI combination, θm,p
SOI was varied individually as square waves

with amplitudes of 1 CAD and periods of 25 cycles during 500 cycles. The gains
from θ

m,p
SOI to θ50 were estimated from these experiments and are presented in

Figs. 9.14, 9.15, 9.16 and 9.17.
It is clear from the results that it is θm

SOI that controls θ50 and that the control-

lability somewhat decreases with rp , while the gain from θ
p
SOI is insignificant. A

hypothetical explanation is that the stratification from the main injection that ig-
nites the charge and that the pilot injection charge affects the combustion timing
more when rp is increased, the same trend was shown by [Hagesawa and Yanigi-
hara, 2003; Manente et al., 2009].
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Figure 9.10 NOx emission-level contour plot versus dSOI and rp at 5 bar pIMEPg.
It can be seen that NOx mainly depends on rp and decreases with an increased rp .
A hypothetical explanation for this is the increase in τm which gives more violent
combustion with increased temperatures, with leaner charge mixtures at the start
of combustion this gives increased NOx formation.
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Figure 9.11 NOx emission-level contour plot versus dSOI and rp at 10 bar
pIMEPg.
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Figure 9.12 Soot emission-level contour plot versus dSOI and rp at 5 bar pIMEPg.
It is shown that the soot levels increase with rp and more so when dSOI is small,
the reason for this is probably that the ignition delays for the fuel injections are
minimized at these operating points which makes the charge burns more rich and
this increases soot formation.
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Figure 9.13 Soot emission-level contour plot versus dSOI and rp at 10 bar
pIMEPg.
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Figure 9.14 The estimated gain from θm
SOI contour plot versus dSOI and rp at 5

bar pIMEPg. The gain from θm
SOI is high for all injection configuration but is signif-

icantly decreased as the pilot ratio is increased.
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Figure 9.15 The estimated gain from θ
p
SOI contour plot versus dSOI and rp at 5

bar pIMEPg. The gain from θm
SOI is essentially zero for all injection configurations,

when comparing this result to Fig. 9.14, it is clear that it is θm
SOI that controls θ50.
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Figure 9.16 The estimated gain from θm
SOI contour plot versus dSOI and rp at 10

bar IMEPg.
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Figure 9.17 The estimated gain from θ
p
SOI contour plot versus dSOI and rp at 10

bar pIMEPg.
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Summary
The findings in the preceding experimental results are summarized accordingly

• rp can be used to control d pmax, the controllability decreases with dSOI.

• ηth increases slightly with rp , the opposite holds with large dSOI, this is
probably linked to the increased HC-emission levels.

• rp is a trade-off between NOx and soot emission levels.

• θ50 is controlled by θm
SOI.

9.3 Controller Design

The goal of the controller design is to find a controller that simultaneously keeps
θ50 at a predefined value while d pmax is maintained below an upper bound. The
experimental results above show that d pmax can be controlled with rp while θ50

is controlled with θm
SOI. To maintain high controllability of d pmax, dSOI should

be kept low, in this work dSOI was therefore chosen constant, dSOI = 20. In order
to maximize the ignition delay τm which is a key parameter in PPC it was also
decided to try to keep rp low while fulfilling the constraint on d pmax. The engine
load was then controlled with θtot

DOI, in a separate closed loop. In order to build
a state-space model and apply model-based controller design, the state vector x
and input vector u are introduced accordingly

x(k) = (
θ50(k), d pmax(k), rp (k)

)T
, (9.9)

u(k) = (
∆θm

SOI(k), ∆rp (k)
)T

,

where k denotes the cycle index and ∆ is the forward-difference operator, rp is
here introduced as a state in order to keep track of its absolute value. A simple
linear cycle-to-cycle state-space model could then be formulated accordingly

x(k +1) = Ax(k)+Bu(k)+ v(k),

y(k) =C x(k)+e(k),
(9.10)

the assumption of a static relation between u and x gives A = I3x3, B contains the
gains from u(k) to x(k)

B =
B11 B12

B21 B22

0 1

 . (9.11)

From the experimental results in Figs. 9.14, 9.15, 9.16 and 9.17 it was found that
B11 = 1. The gain B12 =−3 was found by studying Figs. 9.4 and 9.5. When advanc-
ing θ50, τm increases and θ50 is moved closed to TDC which gives more violent
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combustion and an increased d pmax, it was found that B21 was quite dependent
on the operating point as well as θ50, however, a constant value of −0.5 was cho-
sen. The d pmax experiments presented in Figs. 9.2 and 9.3 gave B22 = −25. The
observation matrix C is given by I3x3 since the first two states could be estimated
directly using the pressure-sensor information. In order to incorporate model
uncertainty and measurement noise, zero-mean white-noise processes ωk and
ek were introduced with variance matrices Qv and Qe

Qv = E(v(k)v(k)T ), (9.12)

Qe = E(e(k)e(k)T ).

Model Predictive Control
Since the system (9.10) to be controlled has multiple inputs and outputs with in-
teraction effects and constraints, the model predictive control (MPC) framework
was chosen as a solution to the controller-design problem. For the control prob-
lem studied in this article the MPC optimization problem was formulated as

minimize
u

J =
Hp∑

k=1
ω1||θ50(k)− rθ50 (k)||22 +ω2||θm

SOI(k)||22 +ω3||rp (k)||22 (9.13)

+
Hc∑

k=1
ω4||∆θSOI(k)||22 +ω5||∆rp (k)||22 +γε2,

subject to x(k +1) = Ax(k)+Bu(k), for k = 1, . . . , Hc ,

x(k +1) = Ax(k), for k = Hc +1, . . . , Hp −1,

x(k −1) = x0,

0 ≤ rp (k) ≤ r b
p ,

d pmax(k) ≤ d pb
max +ε,

ε≥ 0,

where rθ50 (k) is the θ50 set point, r b
p and d pb

max are upper bounds for rp and
d pmax which was set to 0.3 and 8 bar/CAD. The variable ε is a cost-variable that
penalizes violation of the state inequality constraint, it was introduced in order
to ensure feasible solutions. The positive weights ωi and γ sets the priority of
the controller and were manually tuned in order to obtain adequate closed-loop
response times subject to overshoot and actuator cycle-to-cycle variation, the
weights used in the results section are presented in Table 9.2. The horizons were
chosen according to Hp = 16 and Hc = 8. Average computational times for solv-
ing (9.13) were on average 1-5 ms for one cylinder. The computations were done
every two engine revolutions after the pressure traces of the latest cycle for each
cylinder was sampled.
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Table 9.2 The chosen MPC weights.

ω1 ω2 ω3 ω4 ω4 γ

100 0.01 25 6000 8000 1

Kalman Filter
This section only considers the first two state equations of Eq. (9.10), the system-
matrices presented here are therefore truncated accordingly in the following
equations.

In order to estimate x from y , u and the model (9.10), a stationary Kalman
filter was used. The Kalman filter state estimate x̂ was updated recursively ac-
cording to

x̂(k +1) = Ax̂(k)+Bu(k)+K (y(k)−C x̂(k)) (9.14)

where the Kalman K gain is given by the steady-state solution of Algorithm 1 in
Chapter 3 and P is the positive-definite solution to the Riccati equation

K = APC T (Qv +C PC T )−1, (9.15)

P = APAT +Qv − APC T (Qe +C PC T )−1C PAT .

The covariance matrices used

Qe =
(
25 0
0 800

)
, Qv =

(
10 0
0 50

)
, (9.16)

were chosen to get sufficient attenuation of measurement noise.

9.4 Controller Evaluation

With the controller design presented above, the controller performance was
tested experimentally during set-point changes in θ50 and IMEPg, during
changes in the d pmax upper bound and during changes in Nspeed.

The load, pIMEPg, was changed by varying θtot
DOI while keeping the common-

rail pressure constant at 800 bar. During the load changes, pIMEPg and the
common-rail pressure level was controlled using manually tuned PI controllers
and pre-calibrated feedforward signals. The Nspeed changes were performed by
changing the used engine-brake motor-speed set point.

Input and output data for one cylinder are presented during a sequence of
θ50 set-point changes in Fig. 9.18. In the upper diagrams x̂ is presented in black
together with y which is presented in grey. As θ50 is advanced, rp is forced to
increase in order to fulfil the specified d pmax constraint of 8 bar/CAD, when θ50
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Figure 9.18 Input and output data during a sequence of θ50 set-point changes.
In the upper diagrams x̂ is presented in black together with y which is presented
in grey. As θ50 is advanced, rp is forced to increase in order to fulfil the specified
d pmax constraint of 8 bar/CAD, when θ50 is retarded, rp is decreased due to its
absolute-value cost in order to maximize τm .

is delayed, rp is decreased due to its absolute-value cost in order to maximize
τm . The response time for θ50 is in the range of 3 cycles while the response time
of the decrease in rp is around 20 cycles. In Fig. 9.19, input and output data are
presented during step changes in the d pmax upper bound. The response time of
d pmax during a negative upper-bound step change is around 2 cycles while the
response time of d pmax during an positive upper-bound step change is around
10 cycles, θm

SOI have to adjust for variations in θ50 caused by the changes in rp .
System response during pIMEPg set-point changes are presented in Fig. 9.20, the
response time for pIMEPg is around 20 cycles, and as θtot

DOI varies, θm
SOI is adjusted

in order keep θ50 constant, rp is only doing minor adjustments in order to keep
d pmax below the upper limit, the variation in rp indicates that d pmax is not so
sensitive to changes in θtot

DOI at this operating point. Input signal oscillations can
be observed around cycles 200 and 500. In Fig 9.21, system response to Nspeed

transients are presented, here rp has to increase and θm
SOI advance in order to

fulfil the constraint and set-point level when Nspeed increases. It can also be seen
that the d pmax noise level decreases with speed.
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Figure 9.19 Input and output data during step changes in the d pmax upper
bound. The response time of d pmax during a negative upper-bound step change
is around 2 cycles while the response time of d pmax during an positive upper-
bound step change is around 10 cycles, θm

SOI have to adjust for variations in θ50
caused by the changes in rp .

9.5 Discussion and Conclusions

The results indicate that the designed controller was successful in maintaining
an upper bound for d pmax using rp while keeping θ50 at a predefined value, both
in steady state and during load and speed transients. There are some significant
cycle-to-cycle variation in the system inputs in steady state for some of the ex-
periments, see Figs. 9.21, 9.20, this variation could be decreased by increasing
the control-action weights in Eq. (9.13).

The pressure-rise rate d pmax is in this paper treated as a noisy signal whose
mean value is to be controlled below a an upper bound, the validity of this treat-
ment could of course be questioned since d pmax levels above the upper bound
will occur even if the mean d pmax level is kept below. A more sophisticated de-
sign would be to choose the upper bound based on the statistical distribution of
d pmax and in this way control the frequency or probability of the d pmax bound-
ary violations, similar to what was presented by [Jones and Frey, 2015].

It is possible that comparable performance could be obtained with a simpler
controller structure, for instance by formulating the d pmax boundary problem
as a set-point problem as presented in [Ott et al., 2013], this would however de-
mand more ad-hoc logic, and the framework would not be as general and easily
expandable if more states and inputs were to be added to the control problem.
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Figure 9.20 Input and output data during pIMEPg set-point changes. The re-

sponse time for pIMEPg is around 20 cycles, and as θtot
DOI varies, θm

SOI is adjusted
in order keep θ50 constant, rp is only doing minor adjustments in order to keep
d pmax below the upper limit, the variation in rp indicates that d pmax is not so
sensitive to changes in θtot

DOI at this operating point. Some input signal oscillations
can be observed around cycles 200 and 500.

Future work consists of investigating higher engine loads and the controller
compatibility with a gas system controller that sets the engine intake conditions
and thus the ignition delay, it would also be interesting to generalize the control
problem to incorporate more than two injections, triple-injection strategies has
previously been used in PPC [Manente et al., 2010a].
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Figure 9.21 Input and output data during Nspeed set-point changes, rp has to
increase and θm

SOI advance in order to fulfil the constraint and set-point level when
Nspeed increases. It can also be seen that the d pmax noise level decreases with
speed.
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10
Conclusions and Future
Work

10.1 Conclusions

Pressure-sensor based closed-loop control seems to be a viable solution for
PPC feedback control. Pressure-sensor information enables on-line heat-release
analysis, an analysis method that could be calibrated online using nonlinear esti-
mation methods as shown in Chapter 5. Heat-release analysis was also shown to
be able to predict pressure variations due to injection timing shifts. The ignition-
delay response to intake temperature and composition variations could be mod-
elled using simple mathematical models. It was shown to be more difficult to
model the relation between the start of combustion and ignition delay close to
top-dead center. Ignition delay and combustion phasing could be controlled
simultaneously by performing coordinated control action in the gas-exchange
system and the fuel-injection system. Pressure-rise rate could be controlled in
closed loop by configuring the pilot and main injection fuel distribution where
combustion phasing was mainly affected by the main-injection timing which
simplified the controller design. In general, MPC was found to be a handy frame-
work for formulating the wanted engine behavior as an optimization problem.

10.2 Future Work

The following list contains possible future work that builds on the material pre-
sented in the thesis.

Chapter 5
• Make a deeper analysis of the PF performance w.r.t. particle number and

restarting criteria.
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• Find more realistic probability-distribution functions for Qc by studying
heat-release analysis data.

Chapter 7

• Include a more detailed gas-system model for additional online optimiza-
tion of the gas-exchange efficiency.

• Include efficiency and emission levels in the MPC cost function instead of
set-point tracking error.

• Compare performance with decentralized-control schemes.

Chapter 8

• A problem with the presented controller was that the convergence point
was dependant on unknown heat-transfer model parameters. Evaluation
of the controller performance together with the adaptive heat-release-
analysis calibration methods in Chapter 5 could therefore be carried out.

• Combine the pressure-prediction method with an ignition-delay model for
improved performance.

General

• High-resolution pressure sensors are not implemented on the heavy-duty
production engines of today. Cheaper sensor alternatives, for example, ion-
current sensors, could be compared to the currently used sensors for PPC
closed-loop control.

• This thesis only studies a limited load region of the engine, in order to fully
investigate the PPC control problem, this load range have to be broadened
to also cover low- and high load operating points and transient operation
between the two.
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