
Preface

1 Background

Ideal fluid flow can be described by the Euler equations. These were formulated
by Euler in 1757 and are still the main equations used to model flow in an inviscid
fluid. For irrotational, inviscid, incompressible flow in a domainD = {(x, y, z) :
−h < y < η(x, z, t)}, where η is a free surface, the Euler equations are given by

Du

Dt
= −∇p+ F, (1.1)

∇ · u = 0, (1.2)

where u(x, y, z, t) = (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)) is the velocity,
p(x, y, z, t) is the pressure, F(x, y, z, t) is the force acting on the fluid and

D

Dt
=

∂

∂t
+ u · ∇,

is the material derivative. When the only forcing acting on the fluid is gravity we
let F ≡ (0, 0,−g), where g is the acceleration due to gravity. In addition u and
p must satisfy the boundary conditions

v = ηt + uηx + wηz on y = η, (1.3)
v = 0 on y = −h, (1.4)

p = pa − T

([
ηx√

1 + η2x + η2z

]
x

+

[
ηz√

1 + η2x + η2z

]
z

)
on y = η, (1.5)

where pa is the atmospheric pressure. Equations (1.3), (1.4) say that the boundary
of D is impermeable, while equation (1.5) says that the jump in pressure across
the surface η is proportional to the mean curvature of the surface. We will be
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considering the case when the fluid flow is irrotational, that is when ∇× u = 0.
Then there exists a velocity potential ϕ such that u = ∇ϕ. Equations (1.1)–(1.5)
then reduce to

ϕxx + ϕyy + ϕzz = 0 − h < y < η, (1.6)
ϕy = 0 on y = −h, (1.7)
ϕy = ηt + ηxϕx + ηzϕz on y = η, (1.8)

and

ϕt +
1

2
(ϕ2

x + ϕ2
y + ϕ2

z) + gη

− T

([
ηx√

1 + η2x + η2z

]
x

+

[
ηz√

1 + η2x + η2z

]
z

)
= B, on y = η,

(1.9)

where B is the Bernoulli constant. The above problem is an example of a par-
tial differential equation with nonlinear boundary conditions prescribed on a free
surface and it is well known that such problems are mathematically challenging.
Despite these difficulties there have been much progress over the last 250 years,
but there are still fundamental questions regarding these equations that remain
unanswered.

Steady waves are solutions of (1.6)–(1.9) of the special form ϕ(x, y, z, t) =
ϕ(x−c1t, y, z−c2t), η(x, z, t) = η(x−c1t, z−c2t), that is they are uniformly
translating in the horizontal direction (c1, c2). A steady wave with a localized
profile is called a solitary wave. One of the earliest documented observations of
such a wave is by John Scott Russel in 1834 [16] where he observed a localized wave
propagating in a channel outside Edinburgh. Many leading researchers of the time
tried to explain the observations made by Scott Russel, but it wasn’t until 1895 that
a satisfactory answer was given by Korteweg and de Vries [14]. In that paper they
considered wave motion independent of z and derived an approximate equation
for the wave profile:

ηt + ηηx + ηxxx = 0. (1.10)

Equation (1.10), which is now known as the KdV equation, possesses exact solitary
wave solutions of the form

η(x) = 3c · sech 2

(√
cx

2

)
, (1.11)
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where c is the wave speed in the x direction.
The KdV equation is an example of a model equation. Such equations can be

derived from the full water wave problem by considering a specific physical setting.
The KdV equation for example is valid in a certain shallow water regime. Model
equations have the benefit of being much simpler to analyze than the full water
wave problem but the downside is that the solutions are only approximate.

Before going into the details of each paper we will first explain the general
method employed in [Paper I, Paper II, Paper III].

1.1 The method of spatial dynamics

In a paper from 1982 [11] Kirchgässner studied a class of semilinear elliptic bound-
ary value problems in an infinite strip S = {(x, y) ∈ R2 : −1/2 < y < 1/2},
of the form

uxx + uyy + δa(y)u− f(δ, y, u) = 0,

u(x,±1
2) = 0,

where a, f are sufficiently smooth functions and δ ∈ R is a parameter. Kirchgäss-
ner reformulated the problem as a dynamical system where the unbounded spatial
coordinate x plays the role of time:

wx = A(δ)w + F (δ, w), (1.12)

with

w =

(
u
ux

)
, A(δ) =

(
0 1

− ∂2

∂y2
− δa 0

)
,

F (δ, w) =

(
0

f(δ, ·, u)

)
.

In particular, there exists a critical value δ0 such that when δ is varied through δ0
the following change in the spectrum of A(δ) occurs. For δ < δ0, A(δ) has two
real eigenvalues that collide at the origin when δ = δ0 to form the algebraically
double eigenvalue 0. When δ > δ0 the eigenvalues again separate, but now onto
the imaginary axis. Moreover, the rest of the spectrum of A(δ) is bounded away
from the imaginary axis. This change in the spectrum is called a 02 resonance. The
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next step in Kirchgässner’s analysis was to perform a center-manifold reduction.
Consider a dynamical system of the form

wx = Lw + F (δ, w), (1.13)

with w belonging to some Hilbert space E. Suppose that the imaginary part of
the spectrum of L is finite and that the rest of the spectrum is bounded away from
the imaginary axis. Under some additional technical hypothesis (see for example
[Paper I, Theorem 1] for a full statement of the center-manifold theorem) it is
possible to express all “small” solutions of (1.13) in the form w1+h(δ, w1), where
w1 ∈ PE, h(δ, w1) ∈ (I − P )E, with P being the projection of E onto the
eigenspace of L corresponding to the imaginary part of the spectrum, and where
w1 satisfies the reduced equation

w1x = Lw1 + PF (δ, w1). (1.14)

Note here that due to the finiteness assumption on the imaginary part of the spec-
trum of L, equation (1.14) is finite dimensional. In Kirchgässner’s case the imagi-
nary part of the spectrum of A(δ0) consists of the algebraically double eigenvalue
0, so the corresponding reduced equation is two-dimensional. Under certain as-
sumptions on the nonlinear part f , Kirchgässner was able to prove that the reduced
equation possesses homoclinic solutions, that is, solutions whose orbits connect an
equilibrium to itself. Going back to the original variables, this correspond to so-
lutions u satisfying limx→±∞ u(x, y) = 0, that is solitary solutions.

Some years later Kirchgässner applied these ideas to the full two-dimensional
water wave problem [12]. He obtained a dynamical system of the form (1.13), and
found that the spectrum of the linear operator L depends on two dimensionless
parameters α, β. In fact he found that λ is an eigenvalue of L is and only if

λ

tan(λ)
= α− βλ2. (1.15)

If we in (1.15) let λ = is we obtain the usual dispersion relation for water waves.
Kirchgässner found several critical curves in the (β, α) plane where the number of
imaginary eigenvalues of L changes. He then continued to investigate a specific
region of the parameter plane associated with a 02 bifurcation. For parameters in
that region, the corresponding truncated reduced equation one gets after perform-
ing a center-manifold reduction is given by the steady KdV equation. This yields
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solitary wave solutions of the full Euler equations, where the wave profiles are up
to remainder terms of the form (1.11). Kirchgässner and several other researchers
continued to investigate what occurs in other regions of the (β, α) plane, see for
example [2, 3, 4, 10]. The method of spatial dynamics has also been extended to
more general setups, for instance to three dimensions in [8] and to the rotational
case in [9].

2 Main results

2.1 Paper 1

This paper is concerned with proving the existence of several types of internal
solitary waves, using the spatial dynamics approach. More specifically we consider
waves propagating on the interface between two fluids of different density, with
the lighter fluid on top of the heavier one. Furthermore we assume that the fluids
are inviscid, incompressible, irrotational, that the interfacial tension is positive
and that the fluids are bounded above by a rigid lid and below by a flat bottom.
Surface waves can be seen as a special case of internal waves, where the upper fluid
has density zero (air). When the governing equations are non-dimensionalized
four parameters α, β, ρ and h emerge. The parameters α and β play the same role
as in the surface wave case, while ρ and h are the ratios of the densities and the
surface depths respectively. We apply the method of spatial dynamics and find a
dynamical system of the form (1.13). Here we find that λ is an eigenvalue of L if
and only if

λ

(
ρ

tan(λ)
+

1

tan(hλ)

)
= α− βλ2,

and we find several critical curves in the (β, α) plane where the number of imag-
inary eigenvalues of L changes. These curves are qualitatively the same as the the
ones Kirchgässner found in [12]; the difference is that they now depend on the
additional parameters ρ and h. We consider three regions of the (β, α)-plane to
investigate further, which we within this subsection refer to as regions I , II and
III (see [Paper I, Figure ??]). For each parameter region we perform a center-
manifold reduction, which yields three different reduced equations. When dis-
regarding higher order terms, the reduced equation in region I is given by the
Kawahara equation:

ηxxxx − 2(1 + δ)ηxx + η − d(ρ− 1

h2
)η2 = 0, (2.1)
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where d is a positive constant and δ < 0 is a parameter. This equation possesses
homoclinic solutions that correspond to multi-throughed internal solitary waves
of depression when ρ − 1/h2 < 0 and of elevation when ρ − 1/h2 > 0. In the
critical case when ρ ≈ 1/h2 one has to include a cubic term in equation (2.1).
We prove in [Paper I] that in this case we still have solutions that correspond to
solitary internal waves of either depression or of elevation. Region I was studied
in the surface wave setting by Buffoni, Groves and Toland in [3], where they found
solitary waves of depression and we can recover their results by choosing ρ = 0.

For parameters in region II the leading order part of the reduced equation is
given by the nonlinear Schrödinger equation:

ηxx + sgn(δ)c1η + 2c3η|η|2 = 0.

Here c1 is found to be negative, while c3 can be either positive or negative. When
c3 > 0 the equation is called focusing and there exists a family of bright solitary
wave solutions. When c3 < 0 the equation is said to be defocusing and in this case
we find dark solitary wave solutions. In comparison, the corresponding parameter
region for surface waves was studied in [10] and there the coefficient of the cubic
term is always positive. The fact that c3 can take negative values in the internal
wave case is due to the dependence of c3 on the extra parameters ρ and h.

Finally, region III corresponds to the region Kirchgässner studied in [12]. We
also find that the leading order part of the reduced equation is given by the the
KdV-equation, however the equation we find possesses solitary wave solutions of
elevation when ρ > 1/h2 and of depression when ρ < 1/h2. When ρ − 1/h2

is small we include higher order terms in the reduced equation and show that it
possesses both solitary waves of elevation and of depression. Kirrmann [13] also
studied this parameter region and we recover his results.

2.2 Paper II

Here we consider the following setup. A ferrofluid surrounds a current-carrying
wire. The current in the wire gives rise to a magnetic field which stabilizes the
setup. One may then consider waves on the surface of the ferrofluid cylinder, that
propagate under the influence of the magnetic force and surface tension. As in
[Paper I] we prove the existence of solitary waves by using the spatial dynamics
approach. We obtain a dynamical system of the form (1.13) and find that the
spectrum of L depends on two parameters γ and β. More precisely we find that
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λ is an eigenvalue of L if and only if

λJ0(λ) = (γ − βλ2)J1(λ), (2.2)

where J0, J1 are Bessel functions. We see that even though the physical setup of
[Paper II] is quite different from the water wave problem, equation (2.2) is still of
the same form as (1.15). In particular we find that the same type of bifurcations
can occur. Again there are three interesting regions in the (β, γ) plane for which
we are able to obtain homoclinic solutions and the corresponding reduced equa-
tions are the Kawahara, nonlinear Schrödinger and KdV equation, respectively.
Recall that there were critical cases in [Paper I] for which the coefficients of the
quadratic terms in the Kawahara and KdV equations were equal to 0. Such critical
cases occur for the ferrofluid setup as well, and in fact there are additional cases to
consider. For example, the Kawahara equation is given by

ηxxxx − 2(1 + δ)ηxx + η − 3c1η
2 = 0, (2.3)

where c1 ∝ (3m′
1(1)−8). The functionm1 is called the magnetization of the fer-

rofluid and it describes how the ferrofluid is affected by the magnetic field. When
m′

1(1) is close to 8/3 we need to include cubic terms in (2.3). However, we find
that the coefficient of the cubic terms is proportional to 1264−75m′′

1(1). Hence,
form′′

1(1) close to 1264/75we would need to include a quintic term in (2.3). This
pattern seems to repeat itself with coefficients of higher order terms depending on
higher order derivatives of m1. However, we still have existence of solitary waves
for these critical cases, see [Paper II, Theorem 5.2]. A similar situation occurs for
the KdV equation, while the NLS equation always seems to be of focusing type.
So in particular we do not find any dark solitary waves propagating on the surface
of the ferrofluid jet.

2.3 Paper III

In [Paper III] we turn our attention to three-dimensional steady internal waves.
More specifically, we consider waves that are uniformly translating in the direction
X , have a bounded profile in some direction x and are periodic in some other di-
rection z. In the paper we prove the existence of such waves, using again the
method of spatial dynamics. The idea of applying the method of spatial dynamics
to the three-dimensional water wave problem is due to Groves and Mielke [8]. In
that paper they consider the situation described above, but for surface waves, with
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x aligned in the direction X and z being orthogonal to X . This was continued
by Groves and Haragus [7], where they consider the general case of arbitrary di-
rections x and z. The dispersion relation for the three-dimensional setting is a lot
more complicated than in the two-dimensional one. Indeed, as was pointed out
in [7] all known bifurcations in Hamiltonian systems theory can occur by varying
the different parameters involved. In [Paper III] we find the same type of disper-
sion relation for internal waves, with the two additional parameters ρ and h. Just
like in [Paper I], these extra parameters do not yield any new bifurcation scenarios,
however they may affect the solution set associated with a specific bifurcation.

We prove the existence of two types of waves: doubly periodic waves and waves
that are periodic in z with a bright or dark solitary wave profile in x-direction.
Doubly periodic waves are waves that are periodic in both x and z. Such waves
were found in [7] using the Lyapunov-center theorem. However, those waves are
best described as oblique line waves, that is they only depend upon one horizon-
tal coordinate. In [Paper III] we use a different approach involving a variational
Lyapunov-Schmidt reduction, which yields truly doubly periodic waves. For the
other case the situation is similar to what occurred for parameter values in region
II in [Paper I]. Just like in that case we perform a center-manifold reduction and
find that the truncated reduced equation is a focusing or defocusing NLS equa-
tion. This means that the corresponding waves can have either a bright or dark
solitary wave profile in the x direction, while being periodic in z. In comparison,
the corresponding surface waves found in [7] always have a bright solitary wave
profile in the direction x.

2.4 Paper IV

The Green-Nagdhi system of equations is a model that can be used to describe
long waves, that is waves with wavelengths that are large in comparison with the
water depth. In this paper we study a class of model equations that was suggested
by one of the coauthors and his collaborators in [5] as an improvement of the
Green-Naghdi system of equations for interfacial flow. The equations are of the
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form

∂tζ + ∂xw = 0,

∂t

(
h1 + γh2
h1h2

w +QF
γ,δ[ζ]w

)
+ (γ + δ)∂xζ

+
1

2
∂x

(
h21 − γh22
(h1h2)2

w2

)
= ∂x

(
RF

γ,δ[ζ, w]
) (2.4)

where h1 = 1 − ζ, h2 = δ−1 + ζ, w = h1h2(u2 − γu1)/(h1 + γh2), ζ is the
deformation of the interface, δ is the ratio of the water depths, γ is the ratio of
the densities,QF

γ,δ[ζ]w = QF
2 [h2](h

−1
2 w) + γQF

1 [h1](h
−1
1 w) andRF

γ,δ[ζ, w] =

RF
2 [h2, h

−1
2 w]− γRF

1 [h1, h
−1
1 w], with

QF
i [hi]ui = −1

3
h−1
i ∂xFi

{
h3i ∂xFi{ui}

}
,

RF
i [hi, ui] = uih

−1
i ∂xFi

{
h3i ∂xFi{ui}

}
+

1

2

(
hi∂xFi{ui}

)2
.

The operators Fi, i = 1, 2 are Fourier multipliers satisfying certain admissibility
conditions. By choosing Fi ≡ 1 we obtain the original Green-Naghdi system of
equations for interfacial flow, and by choosing

F1(k) =

√
3

|k| tanh(|k|)
− 3

|k|2
, F2(k) =

√
3

δ−1|k| tanh(δ−1|k|)
− 3

δ−2|k|2
,

the system (2.4) has the same frequency dispersion as the Euler equations.
The main result of [Paper IV] is that the system (2.4) possesses solitary wave

solutions. In order to prove this we use a variational formulation of the prob-
lem, together with a penalization argument and concentration-compactness. This
strategy was for example used in [1, 6].

The first step is to identify solitary wave solutions as solutions of the con-
strained minimization problem argminζ∈Vq,R

E(ζ), with

Vq,R = {ζ ∈ Hν(R) : ∥ζ∥Hν(R) < R, (γ + δ) ∥ζ∥2L2(R) = q},
where q > 0, R > 0, ν > 1/2, and

E(ζ) =
∫ ∞

−∞

ζ2

1− ζ
+

1

3
(1− ζ)3(∂xF1{

ζ

1− ζ
})2

+
ζ2

δ−1 + ζ
+

1

3
(1 + ζ)2(∂xF2{

ζ

δ−1 + ζ
})2 dx.
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The functional E is not coercive and since we are working on an unbounded do-
main we do not have the Rellich–Kondrachov theorem at our disposal. This pre-
vents us from using direct methods to obtain a minimizer. Instead we first con-
sider the problem of minimizing the penalized functional EP,ϱ(ζ) = ϱ(∥ζ∥2Hρ

P
)+

EP (ζ), over the set

VP,q,R = {ζ ∈ Hν
P : (γ + δ) ∥ζ∥2L2

P
= q and ∥ζ∥Hν

P
< 2R},

where EP is the same functional as E but where the integration is over [−P/2, P/2],
ϱ : [0, (2R)2) 7→ [0,∞) is a penalization function such that ϱ(t) = 0 for
0 ≤ t ≤ R2 and ϱ(t) → ∞, as t → (2R)2. The penalization function makes
EP,ϱ coercive, and the fact that we are now working in Hν

P allows us to use the
Rellich–Kondrachov theorem. It is then an easy task to show that there exists a
minimizer ζP ∈ VP,q,2R of EP,ϱ. A key result then tells us that such minimizers
must satisfy ∥ζP ∥Hν

P
. q, so by choosing q sufficiently small we may assume

that the minimizers of EP,ϱ belong to VP,q,R, which means that they are in fact
minimizers of EP .

Using the minimizers of the periodic problem we can construct a special min-
imizing sequence {ζn} for the problem on the real line. This sequence has the
following properties:

(γ + δ) ∥ζn∥2L2 = q, ∥ζn∥2Hν ≤ Mq,

and
lim
n→∞

E(ζn) = Iq := inf
ζ∈Vq,R

E(ζ) < q(1−mq
2
3 ),

for some constants M,m > 0. This special minimizing sequence is used to show
that the map q 7→ Iq is subadditive, and as we shall see this is an important detail.

The final part of the existence proof consists of applying Lions’ concentration
compactness principle [15].

Theorem 1 (Concentration-compactness). Any sequence {en}n∈N ⊂ L1(R) of
non-negative functions such that

lim
n→∞

∫
R
en dx = I > 0

admits a subsequence, denoted again {en}n∈N, for which one of the following phe-
nomena occurs.
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• (Vanishing) For each r > 0, one has

lim
n→∞

(
sup
x∈R

∫ x+r

x−r
en dx

)
= 0.

• (Dichotomy) There are real sequences {xn}n∈N, {Mn}n∈N, {Nn}n∈N ⊂ R
and I∗ ∈ (0, I) such that Mn, Nn → ∞,Mn/Nn → 0, and∫ xn+Mn

xn−Mn

en dx → I∗ and
∫ xn+Nn

xn−Nn

en dx → I∗

as n → ∞.

• (Concentration) There exists a sequence {xn}n∈N ⊂ R with the property that
for each ϵ > 0, there exists r > 0 with∫ xn+r

xn−r
en dx ≥ I − ϵ

for all n ∈ N.

In our case en is the integrand of E(ζn), where {ζn} is a minimizing sequence.
The idea is to exclude the cases of vanishing and dichotomy and then use the
concentration property to prove the existence of a minimizer of E . The main
work lies in excluding the dichotomy case, see [Paper IV, Lemma 40], and this is
were the subadditivity of Iq is used.

Apart from the existence result we also describe how the solitary wave solutions
obtained behave in the long wave regime. More precisely we show that

sup
ζ∈Dq,R

inf
x0∈R

∥∥∥q− 2
3 ζ(q−

1
3 ·)− ξKdV (· − x0)

∥∥∥
H1(R)

= O(q
1
6 ),

where

ξKdV (x) =
α0(γ + δ)

δ2 − γ
sech 2

(
1

2

√
3α0(γ + δ)

γ + δ−1
x

)
,

is a solitary wave solution of the KdV equation, andDq,R is the set of minimizers
of E over Vq,R.
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