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To my family

Scienti�c knowledge is a body of statementsof varying degrees of certainty � some most unsure,some nearly sure, but non absolutely certain.Richard P. Feynman
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AbstractPulsatile �ows in geometries of physiological relevance have been investigated.Atherosclerotic plaques are (initiated) near junctions and bifurcations in largerarteries. The �ow in these regions is characterized by �ow separation and un-steadiness, which indicates that local �ow conditions contribute to atherogenesis.Flows in curved and bifurcating pipes have been investigated over many years.However, details of dynamical patterns of pulsating �ow, near wall e�ects, anddi�erential di�usion e�ects are not well documented. The e�ect of wall elasticityon the �ow has been assumed to be small but no quati�cation data exist.There are same basic di�culties in studying physiological �ow: The geome-tries have large inter-individual variations. The mechanical properties of thevessels are unknown. Equally, the boundary conditions (temporal and spatialdistribution of the blood velocity) are not know. Additional di�culties arise dueto measuring di�culties both in-vivo and in-vitro. The �ow itself may be rathercomplex (time-dependent 3-D, transitional with locally strong e�ects of viscosityand unsteadiness, leading to variable phase lag between pressure gradient andthe local �ow).The aim of this study is to enhance understanding of the time-dependent,physiologically relevant, �ow �eld in bifurcations, and relate that to hypothesesof atherosclerotic disease. Additionally, an FSI-model has been developed withthe purpose to model �ow through elastic pipes, and to assess the e�ect of wallelasticity on the �ow.The investigations have shown clear patterns of wall shear stress (WSS) vari-ations. Local regions of temporal and spatial variations of the WSS was found atsites usually referred to as risk-sites of atherosclerosis, but also at locations oftenreferred to as �safe�.Some of the characteristics of the WSS are further related to changes in thesecondary �ow �eld. The secondary �ow shows similar characteristics for anincreased Reynolds number, although unsteady asymmetric patterns appear atpeak �ow, while a large Womersley number shows more simple secondary �owstructures.It is also shown that the e�ects of upstream geometrical variations on the �ow�eld itself, are important mainly over one stage of arterial bifurcation. On theother hand, blood components (modeled as passive scalars with di�erent values ofv



viSchmidt numbers) do exhibit upstream e�ects over a longer range.An important�nding is that Schmidt number e�ects may lead to redistribution of the di�erentscalars. The variations in the concentrations of the scalars are of the same orderas the local concentration themselves.The FSI-model developed combines an Immersed Boundary-Finite Di�erencecode with a shell model for the arterial wall. The shell model is solved on a(surface 2D) using a Finite Element Method (FEM) code. The structural solveris veri�ed against an analytical expression for bending of a thin-walled pipe. Thestudies with respect to the importance of arterial wall elasticity on the �ow, arenot yet completed.
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Chapter 1Introduction
1.1 Context & MotivationBiomechanics is a growing �eld of research with strong inter-disciplinary com-ponents. Tissue properties of bone, cartilage and soft tissue are analysed withdi�erent mathematical models, which often include nonlinear- and visco-elastice�ects (c.f. [20, 89, 216]). Bio-�uid mechanics include �ow past biological bodies,i.e. aerodynamics of birds or hydrodynamics of �sh, and internal �ows such asblood �ow or air�ow in the lungs [32, 49]. In the case of air�ow in the lungs, mod-eling can be used for estimation of drug distribution [219]. Some applications ofblood �ow simulations include the investigation of the �ow past prosthetic heartvalves [210], �ow through ventricular assisting devices [215], study of the �ow�eld and distribution of wall shear stress (WSS) near bifurcations [50�52], andthe study of �uid structure-interaction (FSI) between the blood and the �exibleblood vessel wall [26, 137].One has to emphasize that biological systems exhibit considerable individualvariations, which makes the study meaningful (and quanti�able) only in termsof statistical values (averages, RMS, PDF, etc). The inter-individual variationmakes it di�cult to identify and quantify particular physiological processes thatlead to a pathological state. For this reason one may use theoretical and experi-mental tools to analyse the importance of a hypothetical process. In that sense,the simpli�cations made in the modeling (as is also done here) are still adequateto qualitatively study certain physiological processes.This work presents numerical simulations of �ow through systems of bifur-cating vessels, as well as an FSI-model developed with the purpose of modelingthe interaction between the �ow through a vessel and its elastic wall. The overallobjective of the work presented is to investigate the �ow �eld and its relation todi�erent parameters that are considered to be relevant for blood �ow in arteries.In such environments the relevant parameters include compliance e�ects, e�ectsof other geometrical variations, and �ow parameter e�ects such as the Reynolds-1



2 CHAPTER 1. INTRODUCTIONand Womersley numbers. The �ow behavior and in particular the characteris-tics of the WSS are discussed in terms of their e�ect on atherogenesis (i.e. thepatho-physiological process leading to atherosclerosis).Cardiovascular diseases are the major cause of death (over 50%) in the west-ern world today, which can be largely attributed to atherosclerosis itself or closelyrelated diseases [114]. Atherosclerosis is a dynamic disease and it is the majorcontributor to the pathogenesis of myocardial and cerebral infarction [133]. Theprocess of development of an atherosclerotic plaque is not fully understood. How-ever, it has been found that it, at some early stage, involves the accumulationof lipoproteins in the intima (the most inner layer of the artery). One has alsoobserved that an in�ammatory process is present. This observation is based onthe presence of components of the immune system near the lesion (monocytes andT-lymphocytes that take up the lipid containing lipo-protein macro-molecules).The morphological changes in the wall of the artery lead to a �bro-fatty plaqueon the vessel wall, and when the disease process has continued long enough itleads to the obstruction of the lumen [114, 133]. The structure of the plaque isa fatty core covered by a �brous cap which eventually may burst and therebyinitiate thrombosis [39, 208]. The thrombus may then be transported (becomingan embolus) into smaller blood vessels where it may stop the blood �ow alto-gether. Thereby hindering oxygen rich blood from reaching downstream tissue.The result is hypoxia (lack of oxygen) or in the worst case necrosis (i.e. cell andtissue death). The disease usually starts in early life and fatty streaks, which arefound in the initial stage, have been detected even during fetal development [31].A more detailed description of the disease process will be given in a subsequentchapter.Charakida et al. [31] identify hypercholesterolemia, diabetes, hypertension,smoking, age and gender as conventional risk factors for atherosclerosis. How-ever, conventional risk factors correlate with less than 50 % of the incidences ofatherosclerotic disease. Other risk factors have also been suggested; for example,in�ammation or infection as initiator, obesity, genetic factors and nutrition. Also,psychological stress may in�uence the development of atherosclerosis [146]. Thelarge number of hypotheses is a good indicator for the lack of precise knowledgeand understanding of the underlying processes.The plaques (especially early ones) are usually found at speci�c locationslocus minori. Such locations are found only in larger arteries near bifurcationsand in signi�cant curvature in the arthery [8, 121, 133, 173, 205]. The wellde�ned localization of pathological manifestation of the disease, is the foundationof the theory that local �ow conditions are very important parameters for itsdevelopment. Atherosclerosis is thus a multi-factorial disease, probably a�ectedby both biochemistry and complex nonlinear biomechanics. The complexities of�ow in biological tissues make approximations necessary. Such simpli�cations areoften related to the properties of the blood and the tissue composing the arterialtree. In spite of the simpli�cations it is believed that it is possible to enhance the



1.2. OBJECTIVES & ACHIEVEMENTS 3understanding of atherogenesis and its possible relation to the surrounding �ow�eld.1.2 Objectives & AchievementsIn this work numerical simulations of the unsteady �ow (of blood) in 3D systemsof asymmetric bifurcations have been performed. Also, an FSI-modeling approachhas been developed with the aim of investigating �ow in a deforming vessel.The main objectives of the simulations have been as follows:
• To enhance the understanding of the pulsatile �ow properties in bifurcatingpipes.
• To investigate the e�ects of certain parameters (such as in�ow conditions,pulsation rate, geometrical properties) on the �ow �eld.
• To develop an FSI-modeling approach and to apply the model for assessingthe e�ect of a deformable wall on the �ow.
• Relate simulation �ndings to current hypotheses of atherogenesis.The achievements included in this thesis are:
• Detailed investigation of magnitude and direction of WSS at common sitesof atherosclerosis, including comparison with results found in literature.
• Investigation of the characteristics of temporal- and spatial-variations ofthe WSS.
• Investigation of dynamics of the secondary �ow �eld.
• Determination of the e�ects of Reynolds- and Womersley-numbers on thevelocity �eld (including secondary vortices) and wall shear stresses.
• Investigation of inlet boundary condition e�ects on the �ow �eld and onthe distribution of a passive scalar.
• Development of an FSI-solver, coupling a Finite Di�erence-Immersed Bound-ary approach for the �uid, with a Finite Element Method approach for thesolid.



4 CHAPTER 1. INTRODUCTION1.3 OutlineIn the following, a brief review of the anatomy and physiology of the arterysystem is given. Thereafter, a short introduction to a biological perspective onthe process of atherosclerosis is followed by a section where previously foundrelations between atherosclerosis and �uid �ow is given. After that a reviewof �uid mechanical aspects relevant for the typical �ows considered is included,followed by a description of computational tools used herein. At the end, asummary of results achieved and proposals for future work are followed by thepapers, which this thesis is based upon.



Chapter 2The Cardiovascular System& AtherosclerosisThis chapter describes the components of the cardiovascular system, which is themajor �ow environment of this work. It also describes theories and suggestionsthat try to explain and describe the processes that lead to atherosclerosis. Theemphasis is naturally on the �uid mechanical aspects of these theories. Thecontent of the following section is mainly taken from Levick [109], Pedley [140]and Tortora and Derrickson [189].2.1 The Heart & Blood VesselsThe cardiovascular system has several important functions critical and/or essen-tial for life. These include transport of oxygen, nutrients, carbon dioxide andother wastes, immune response, pH- and heat-regulation. All these functions in-volve blood �ow through the arteries and the heart, which is also the device thatprovides the mechanical energy to the system.The heart is a muscle that is located in the chest, between the parts of thelung, and between the sternum and the vertebral column. It is of roughly conedshape with the apex to the left, downwards, and its average weight is about 250g and 300 g for female and male adults, respectively. About two thirds of themass of the heart lies to the left of the centreline of the body.The heart contains four chambers, two atria and two ventricles; a sketch ofthe heart is found in Figure 2.2. The right atrium receives blood from two majorveins (i.e. v. cava superior and inferior) and it is separated from the left atriumby the inter-atrial septum and from the ventricle by the tricuspid valve (whichconsists of three cusps). The right ventricle is the origin of the pulmonary arterywhich is separated from the ventricle by the pulmonary valve. The two ventriculiare separated from each other by a thick wall of muscle, i.e. the inter-ventricularseptum. The left atrium receives oxygenated blood from the lungs through the5



6CHAPTER 2. THE CARDIOVASCULAR SYSTEM& ATHEROSCLEROSISfour pulmonary veins. It is separated from the left ventricle by the bicuspid ormitral valve (which has two cusps). The blood �ow from the left ventricle isregulated by the aortic valve. This valve opens and closes passively, dependingon the �ow conditions through it.Blood �ows through the systemic- and pulmonary-veins into the right andthe left atria, respectively. The atria are being more or less continuously �lledand when the pressures exceed the pressures in the ventricles, the tricuspid- andthe mitral-valves open and thereby letting the blood into the ventricles. The�lling period of the ventricles of the heart is called diastole. When the ventriclesbecome full of blood the atria contract and eject its content into the ventricles. Inthe same time as the myocardium (heart muscle) contracts, the atrio-ventricular(A�V) plane moves towards the apex and the tricuspid- and the mitral valves areclosed. A volume reduction will result in a quick increase in ventricular pressure,which leads to the opening of the aortic- and the pulmonary-valves. This isfollowed by a quick ejection of the blood; the ejection phase is called systole. Asthe ventricles relax, blood starts to re-circulate in the ascending aorta and in thepulmonary artery.As the pressure in the left ventricle decreases below the aortic pressure, the�ow near the walls changes direction immediately, whereas at the central parts ofthe aorta this happens with some delay. The closure of the aortic valve is quick,yet there is always some back-�ow. As part of the sclerotic process, one observesalso reduced elasticity of the blades of the aortic valve which leads to increasedback-�ow. Once the valve calci�es, the valve may be incompetent or leaky, andback-�ow may be present throughout diastole. Often there is also a reduction ofthe open area of the valve, which leads to larger pressure drop during systole,and which in turn implies larger load on the heart.A di�erence between the right- and the left-ventricles, is that the pressurethat is needed to eject blood through the aortic valve, on the left side, is muchlarger than for the pulmonary valve, on the right side. This is due to the largerresistance and higher pressure of the systemic system, also resulting in a thickermyocardium on the left side of the heart. The diastolic pressure in the pulmonaryartery is normally about 20 mmHg and in the aorta about 80 mmHg. The pressurein the left ventricle rises to about 120 mmHg, while in the pulmonary system itrises to about 25�30 mmHg during systole.The ventricles eject about 70 ml blood, leaving about 60 ml left behind.Ventricular systole lasts about 0.3 s, and the time it takes for the valves to openis about 10 ms, according to Rosenfeld et al. [120].The blood vessels consist of several di�erent layers with di�erent characteris-tics. The arteries1 are the blood vessels distributing blood from the heart to theother organs2, and are subject to high and oscillatory pressure. The veins are1Greek: ar = air, ter = to carry, were �rst believed to carry air [71, 189].2The discovery of the circulation system is traditionally referred to William Harvey [82],



2.1. THE HEART & BLOOD VESSELS 7the vessels distributing the blood back to the heart, and are subject to lower andalmost constant pressure.More speci�cally, arteries are, in adults, of radius in the range of about 1 cmto the order of 0.1 mm, where the aorta is the largest one carrying the bloodfrom the left ventricle of the heart. The ascending aorta is roughly straight forabout 3 cm and then it turns almost 1800, in a 3D way out of plane, continuingdown through the chest and abdomen. It has multiple branches that supplyblood to the di�erent organs before it bifurcates (in the pelvis) into the two iliacarteries [140, 189]. Most branches and bifurcations are asymmetric and varywhen it comes to branching angle. Usually the angles are closer to 900, than 00or 1800, for aortic bifurcations, while they more commonly are smaller in smallervessels [140]. Downstream of the aorta the total cross-sectional area of all arteriesincrease drastically, which implies smaller �ow rate.The vessel wall of arteries can be divided into three layers, tunica interna ortunica intima, tunica media and tunica externa (Figure 2.1). The tunica intimais the innermost layer closest to the blood in the lumen, and it consists of a layerof simple squamous epithelium called endothelium, a basement membrane anda layer of elastic tissue called internal elastic lamina. The endothelium is liningthe innermost vessel wall of all blood vessels and is usually the only cell layer indirect contact with the blood. The tunica media is the thickest of the three layersand has next to the internal elastic lamina a layer of elastic �bres and smoothmuscle �bres stretching around the vessel wall. It also has a layer of elastic tissuecovering the smooth muscles called external elastic lamina. The tunica media iscomposed in a large proportion of the very elastic extracellular protein elastinand in a smaller proportion of the strong but much sti�er extracellular proteincollagen [109]. The outermost layer of the vessel wall, the tunica externa consistsmainly of elastic- and collagen-�bres. The di�erent components give the vesselwall its non-trivial material characteristics [89].The smooth muscle cells can be stimulated to contract, which reduces thevessel radius (vasoconstriction). The basic tension in the artery wall can not onlyincrease, but it can be reduced by relaxing the smooth muscles (vasodilation).For steady �ow conditions (laminar in a straight pipe) the �ow can be relatedto the vessel radius to the power of four, which explains the e�ciency of theconstrictor/dilator e�ect as blood distributor. The largest arteries (> 1 cm indiameter) are called elastic arteries due to their high proportion of elastic �bresin the tunica media. They have the function of stretching during systole, dueto the pressure pulse caused by the heart's ejection of blood. The expandedwall is relaxed during diastole and the (elastic) potential energy of the wall istransformed into kinetic energy (of the blood), giving a more continuous �ow inthe arterial system, in contrast to the heart. It has also been shown that theinner vessel wall of arteries move in the longitudinal direction. Measurements bywho realised in 1628 that the blood was circulating.



8CHAPTER 2. THE CARDIOVASCULAR SYSTEM& ATHEROSCLEROSIS
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Figure 2.1: Sketch of the di�erent layers of an arterial wall; after Tortora andDerrickson [189].Cinthio et al. [35] on the common carotid artery show that the movement in thelongitudinal direction is of the same order as in the radial direction.The medium sized arteries, 0.1�10 mm, are usually called muscular arteriesbecause of their relatively high content of smooth muscle �bers in comparison tothe elastic arteries. The amount of smooth muscle �bers give them the propertiesof being constrictors and dilators, which enables a functional distribution of theblood to di�erent parts of the body. The small arteries or arterioles (10�100
µm) are the vessels just upstream of the capillaries. The larger arterioles aresimilar in composition to the muscular arteries, also being able to constrict anddilate. Arterioles close to the capillaries have a wall which consists of a layer ofendothelial cells over which a few smooth muscle �bers are scattered.The capillaries are connecting the arterioles to the vein system, they havea diameter of 4�10 µm. The body contains a huge amount of capillaries inorder to distribute oxygen and nutrients to practically all cells of the body; theorgans that are more oxygen and nutrients demanding naturally contains morecapillaries. The arterioles, capillaries and venules are usually referred to as themicro-circulation. The capillary wall only consists of the endothelial layer andthe basement membrane which make them suitable for their task to exchangeoxygen, nutrients and wastes with neighboring cells through the interstitial �uid.The short distance between the cells and the capillaries make di�usion vary rapid[109].Several capillaries unite forming the venules (10�100 µm) and similarly tothe arterioles the smallest venules are composed of the endothelium and a tunicamedia, composed of a few scattered smooth muscle cells. The larger venules alsoconsist of the tunica externa but without the elastic laminae. The veins (> 0.1
mm) connects the venules to the atria of the heart. The thin walls of the veinsconsist of the same layers as the arteries, although the two innermost layers aremuch thinner and contain only few smooth muscle cells and elastic �bers. The



2.2. PROPERTIES OF BLOOD 9tunica externa is the thickest layer of the veins. They are still distensible butare not made for resisting any higher pressure. The veins may even collapsecompletely at low blood pressures.2.2 Properties of BloodThe cardiovascular system consists of three parts that are dependent on eachother; those are the heart, the blood vessels and the blood itself. The bloodwhich is a liquid connective tissue has several di�erent functions; transportationof oxygen, carbon dioxide, nutrients and hormones to and from the cells of thebody. It also helps regulating pH and temperature, and act as part of the immuneresponse system through phagocytosis and with help of di�erent proteins [189].The blood has a pH between 7.35�7.45. An adult male has a blood volume ofabout 5�6 liters, while an adult female has about 4�5 liters, corresponding toabout 8 % of the total body weight.The blood consists of the blood plasma (55 %), which is the extracellular liquidwith dissolved and colloidal substances and the formed elements (45 %), cells.The plasma contains to 91.5 % water and 8.5 % solutes of which 7 % are proteins.The proteins are mainly albumins, and other proteins such as Low- and High-Density Lipoproteins (LDL, HDL), immuno-globulins, and �brinogens. Theseproteins are responsible to di�erent functions such as carriers of hormones, Caand fatty acids, immunresponse and blood clotting. Other solutes are electrolytes,nutrients, gases, enzymes, hormones and waste products. The formed elementsare divided into red blood cells, white blood cells and platelets, of which 99 %are red blood cells. The volume occupied by red blood cells divided by the totalblood volume, expressed in percent, is referred to as hematocrit. The hematocritfor an adult male ranges between 40�54 % and for a female between 38�46 %.The formed elements last over a period (depending on the type of cells) and arecontinually replaced by new cells mainly produced in the red bone marrow.The red blood cells, or erythrocytes, are cells without nucleus or organellescontaining the oxygen-carrying protein hemoglobin that gives the blood its redcolor. The cells are shaped like biconcave disks with a diameter of 7�8 µm, athickness of about 1 µm in the centre and 2�3 µm along the edge [140], andtheir strong and �exible plasma membrane give them the ability to deform andsqueeze through narrow capillaries. The shape also gives them large surface area,which is advantageous for gas di�usion. The blood contains about 5.4 million redblood cells per µl for males, and about 4.8 million for females. One red bloodcell contains about 280 million hemoglobin molecules, which each can bind fouroxygen molecules [189].White blood cells, or leukocytes, are of several di�erent types, which all havenuclei but no hemoglobin; the white blood cells are grouped according to theirmorphology and include neutrophils, eosinophils, basophils, lymphocytes and



10CHAPTER 2. THE CARDIOVASCULAR SYSTEM& ATHEROSCLEROSISmonocytes. The sizes range between 6�20 µm in diameter and they are alsodeformable. There are much fewer white blood cells than red blood cells, onlyabout 5000�10000 cells per µl. Each white blood cell act in di�erent ways as partof the body's defence system against infectious microbes, cancers etc. [189].Platelets, or thrombocytes, are the last kind of formed elements. A plateletis a disk shaped cell without nucleus, with a diameter ranging between 2�4 µm.Each µl of blood contains about 150000�400000 platelets. A function of plateletsis to help stop blood losses from a wound by forming a platelet plug, and byinducing coagulation (blood clotting).2.3 AtherosclerosisCardiovascular related diseases are responsible for more than 50 % of all deaths,including heart-attack and stroke, in the western world. Non-congenital etiologycan be attributed mainly to atherosclerosis3 [133]. In Sweden about two thirdsof all days of treatment at medical clinics are related to cardiovascular diagnosis[114].Atherosclerosis is primarily an intimal disease of large and medium-sized ar-teries. It is characterized by �bro-fatty plaques at certain local positions of thevessel wall, often obstructing the lumen (stenosis), accompanied by in�ammationand �brosis (scar tissue formation). The disease usually starts in early life andfatty streaks, which are initially found before atherosclerosis, have been detectedeven during fetal development [31, 205].Charakida et al. [31] identify hypercholesterolemia, diabetes, hypertension,smoking, age and gender as conventional risk factors for atherosclerosis, but con-ventional risk factors are correlated to less than 50 % of the incidences. Otherdiscussed more novel risk factors are, in�ammation/infection, obesity, geneticfactors and nutrition. Also psychological stress may in�uence the developmentof atherosclerosis [146]. It seems di�cult to correlate complicated plaques withsymptoms [125].Atherosclerosis is thus an evolving process, a dynamic multi-factorial disease,and a comprehensive analysis would probably demand both biochemistry andnonlinear biomechanics, in order to fully understand it.The process of development of the plaque is not fully understood in all its ele-ments, the last years much attention has been given to the in�ammation processin atherosclerosis, which seems to be a critical factor [133]. For natural reasonsit is di�cult to study the atherogenic process in humans, however, it has beenand is studied in animals [114].The early change in the arterial wall is composed by accumulation of lipopro-teins in the intima. Eventually an in�ammatory process is initiated, most prob-3sclerosis = hardening of tissues with loss of elasticity, i.e. hardening of the arterial wall[189].



2.3. ATHEROSCLEROSIS 11ably due to oxidized LDL (low density lipoproteins), resulting in endothelial ex-pression of adhesion molecules and induced chemo-attractant molecules. Leuko-cytes, mainly monocytes and T-lymphocytes, are entering the vessel wall and themonocytes are transformed into macrophages [160]. The macrophages take upthe lipid containing molecules and become, so called �foam cells�; �fatty streaks�can then be observed. Smooth muscle cells start to migrate from the media tothe intima and proliferate (cell reproduction) [133]. An extracellular matrix isbuild up and the fatty streaks evolve into fatty-�brous lesions. This is followedby �brosis, sometimes along with cell death, resulting in a relatively cell-free thin�brous capsule surrounding a lipid-rich core. The cell death is associated withtoxic substances derived from oxidized LDL, resulting in that the LDL up-takingmacrophages are a�ected initially. In addition to cell death, for instance, col-lagen destructive macrophages have been found in the �brous cap, which alsopromotes plaque rupture [114, 133]. When rupture of the cap takes place, thecore of the plaque is exposed, leading to platelet adhesion and activation, andthus to thrombus formation, which may lead to local (or remote embolus andthereby) ischemia or infarction [39, 208]. Gertz et al. [73], Richardsson et al.[157] and Falk et al. [54] describe di�erent reasons that may be behind plaquerupture.Other authors describing the process of atherogenesis are, for instance, Staryet al. [174] and Gotto et al. [1] for the di�erent stages in atherosclerosis, Nielsen[134] and Tarbell [184] for a review of the transport of LDL into the arterial wall,and Ross [159, 160] and Fan et al. [55] for more on the role of in�ammatoryresponse.Nichols and O'Rourke [133] list six points on how atherosclerosis may alterarterial blood �ow and hemodynamics, as follows:1. by growing on the lumen and creating localized stenosis;2. by causing the formation of a localized thrombus that further narrows oroccludes the arterial lumen;3. by formation of thrombus and possible detachment (embolus) which maylead to occlusion of smaller peripheral arteries;4. by growing into the media, causing destruction and atrophy of structuralelements and leading to the formation of aneurysm;5. by sti�ening the artery and altering wave re�ection on vessels upstream;6. by creating an abnormality in vascular mural tension that favours vasocon-striction.The plaques (especially early ones) are usually locally distributed in larger ar-teries, such as the internal carotid artery (around the carotid sinus), the coronary



12CHAPTER 2. THE CARDIOVASCULAR SYSTEM& ATHEROSCLEROSISarteries, in the femoral and iliac arteries, the renal arteries, and in the infra-renalpart of the abdominal aorta [8, 42, 133, 173, 205]. Figure 2.2 shows typical sitesof atherosclerosis. More speci�cally these are around bifurcations and in majorcurvatures [121]. The local distribution of the plaques is what has given rise tothe suspicion that local hemodynamic conditions are very important parametersbehind the disease process, and this is where the �uid mechanics enter into thesubject, which will be described more closely below.
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Figure 2.2: Sketch of the heart and blood vessels. The blue region shows wherethe blood is un-oxygenated and the pink color shows where the blood is oxy-genated. The black spots show sites where atherosclerosis is commonly found;after DeBakey et al. [42].



2.4. ARTERIES, ATHEROSCLEROSIS & FLUID MECHANICS 132.4 Arteries, Atherosclerosis & Fluid MechanicsThe relation between atherogenesis and the dynamics of the �ow �eld has beeninvestigated since many years, as hemodynamic has been suspected to in�uencethe pathogen process. It is not known through which mechanism hemodynamica�ects atherogenesis. However, there are many indications that suggest the im-portance of �uid mechanics for atherogenesis.The typical sites where plaques are found, the carotid artery sinus, the coro-nary arteries, the abdominal aorta, and the super�cial femoral arteries [42, 208]are characterized by disturbed �ow, �ow unsteadiness and non-uniformities nearjunctions, or vessel curvature.Several hypotheses have been proposed throughout the years. The �rst one topropose a hypothesis was probably Texon [187] who related the lateral pressuredi�erence in the region where separation occurs to the disease. The pressuredi�erence would cause a suction e�ect on the intima, which would lead to injury.However, the di�erence is too small to have such an e�ect.Fox and Hugh [60] performed blood �ow simulations and suggested thatboundary layer separation occurs at sites where atherosclerosis is regularly found,with the result of deposition of blood-borne platelets and cholesterol. Later onFry [67] did experimental studies on the descending thoracic aorta of mongreldogs. He put a plug in the blood vessels, partially occluding the lumen with thepurpose to increase the blood velocity locally in a controlled manner. The partof the lumen which was not plugged was open to the anterior endothelial cells.His results showed that as endothelial cells were exposed to a shear stress below
∼ 37.9 Pa, most of them remained normal in the absence of to much turbulence.Levels exceeding this limit showed rapid deterioration of the endothelial surface.These levels have now been shown to be too high to be relevant for a humanmodel.Caro et al. [27, 28, 57] showed in a more realistic aortic model a correlationbetween early atheroma and regions subject to low WSS, while the developmentof lesions seemed to be retarded in regions where the WSS is expected to behigh. They suggested that the process of atherosclerosis is associated with sheardependent mass transport.Friedman et al. [66] did numerical simulations of pulsatile blood �ow througha 2D symmetrical branch model, and found spatial and temporal variations inwall shear. The highest values were found at the convex corner on the outer wallof the branch and in the neighborhood of the �ow divider tip, while the lowestvalues were found at the outer wall of the daughter vessels a short distance distalto the corner. They found high shear, low shear and separation in those areas inthe branch where lesions usually occur. They also emphasized the importance oftransient �ow and its disadvantage to the arterial wall. In comparison to Fry's[67] 37.9 Pa they reported the largest calculated value of the WSS to be ∼ 3 Pa,but they also mentioned that their results �should not be a �rm basis on which



14CHAPTER 2. THE CARDIOVASCULAR SYSTEM& ATHEROSCLEROSISto discount high shear hypotheses of atherogenesis�, although it does not supportsuch theory.Friedman's group continued their work and did experimental measurementsin a cast of a human aortic bifurcation and found a negative correlation betweenintimal thickness and wall shear rate [65]. In [63] they compared measurements oncasts from di�erent human aortic bifurcations, and found variations su�cient tocause di�erent hemodynamic properties. Such geometric e�ects may be a reasonbehind the variability in location and rate of development of atherosclerosis. In[64] they present numerical simulations which agree to earlier results.Another study was presented by Bharadvaj et al. [14] who did measurementson a glass model with steady �ow at di�erent Reynolds numbers. They emphasizethe complex �ow �eld in a bifurcation due to the secondary �ow, and state thatzones susceptible to atherosclerotic disease experience low or reversed axial �ow,or low or oscillatory shear stress. Regions subject to higher shear stress areinstead free from disease. In [15] Bahradvaj et al. found peak values of WSSranging between 2.5 and 5.0 Pa. They also emphasize the presence of oscillatingshear stress and that this may disorient the cells of the endothelial layer, whichwill become more permeable to lipids present in the blood stream.Ku et al. [104] more strongly emphasize the e�ect of oscillatory shear stress.The measurements were performed under pulsatile �ow in a scale model of thehuman carotid bifurcation. The results were compared to intimal plaque thicknessat corresponding sites of cadavers. Diastolic measurements of WSS and velocitieswere found to be similar to steady state cases, whereas they oscillated in bothmagnitude and direction during systole. Along the inner wall maximum WSSwas found to be 4.1 Pa during systole, and 1.0 Pa during diastole. Here theWSS was uni-directional during systole. Along the outer wall, where the intimalplaque was thickest the instantaneous shear stress oscillated between -0.7 and 0.4
Pa. The conclusion was a strong correlation between intimal thickness and lowtime averaged WSS. They also discuss how low mean shear stress and oscillatoryshear stress contribute to an increased �uid residence time at the correspondingsites, which may result in a modi�ed mass transport of atherogenic substancesbetween the lumen and the wall, in correspondence to the discussions of Caro etal. [57] and Jou et al. [94].The most commonly discussed reason behind atherogenesis today is oscil-lating WSS. Gambillara et al. [72] exposed arteries from a pig to high- andlow-uni-directional shear stress as well as oscillating shear stress and found nochanges in the endothelial wall for the uni-directional shear stress, but for theoscillating. Their results may also imply that the shear stress may a�ect the anti-thrombogenic properties of the endothelium. Birchall et al. [16] show in theirresults a correlation between areas of low averaged shear stress and the formationof atherosclerosis. Other authors also found a correlation between major locationsof atherosclerosis and oscillatory shear stresses; c.f. Asakura et al. [2], Zarinset al. [213] and Soulis et al. [172], who found a range of shear stresses between



2.4. ARTERIES, ATHEROSCLEROSIS & FLUID MECHANICS 150.75�2.25 Pa. Gibson et al. [74], Moore et al. [93] and Lee et al. [107] found acorrelation between intimal thickness and oscillatory, or low time averaged shearstress.On the other hand, Lutz et al. [118] who measured the WSS distribution ina rigid plastic cast of a canine artery during steady �ow conditions, suggest acorrelation between high levels of shear stress, and unstable stress patterns, withsites prone to atherosclerosis. Barbee et al. [6] exposed endothelial cells for �owwith a shear stress of 1.2 Pa for 24 hours. The thickness of the intimal cell layeris shown to be signi�cantly reduced. DePaola et al. [45] propose that highlyelevated shear stress gradients can induce morphological and functional changesin the endothelium, in regions where the �ow is disturbed, and contribute toatherosclerosis.Friedman et al. [62] conclude from their experiments that the intimal thick-ness at sites exposed to large shear stresses increases quickly to a certain amount,after which it continues to grow slowly. On the other hand, at sites exposed tolow shear stresses the intima grows more slowly, but after longer exposure timesit overtakes the thickness of the sites exposed to large shear stress.Ku [208] suggests that most intimal thickening is where the WSS < 1.0 Pa.Regions of relatively high uni-directional WSS tend to be spared from plaquedevelopment [93, 124] and even be protected by biochemical actions due to stim-ulus [105, 141]. Lee et al. [107] also conclude that the intimal growth tends todecrease the regions of low wall shear stress, resulting in larger velocities and amore even shear stress distribution. The vessel wall therefore seems to try touphold a certain magnitude in WSS [173]. Ku [208] states in his review articlethat arteries do adapt to maintain a constant WSS of ∼ 1.5 Pa.For more comprehensive material on �uid mechanics in blood vessels and itsrelation to atherosclerosis, see [10, 23, 103, 185].2.4.1 Numerical simulations of arterial blood �owAlthough a great amount of both experimental and numerical investigations havebeen done on the subject there are still uncertainties in the behavior of the �ow�eld, due to the complexities that appear in a multi-bifurcating vessel with com-pliant walls. As computers have become more e�cient it has been possible toperform more accurate calculations that take more parameters into account. Adecade ago Friedman et al. [64] performed 2D steady state numerical simula-tions, and today almost everyone performs 3D simulations. Better computingpower resolves better the details of the �ow of the idealized problem. Since theboundary properties of the vessel and the in�ow/out�ow boundary conditionsare highly varying (and can even hardly replicate laboratory experiments), thereis a major di�culty in applying Computational Fluid Dynamical (CFD) toolsfor quantitative analysis of physiological �ows of ideal �uids. In addition, therheological properties of the blood cannot be handled without introducing rather



16CHAPTER 2. THE CARDIOVASCULAR SYSTEM& ATHEROSCLEROSIScrude models, that limit the validity of the results.The �ow �eld in the arteries is often simulated in di�erent models; either ofpatient speci�c character [16, 64, 116], or in more idealized bifurcation models[34, 96, 128, 142, 145, 181]. These attempts to replicate patient anatomy do notnecessarily yield more accurate results, due to natural inter-individual variationsand normal variation due to aging.A multi-factorial �ow as the one in the arterial system is di�cult to analyzein its whole, therefore several parameters are usually neglected or approximated.Steady state computations are often performed in order to save computationalcost, whereas transient computations often give more realistic results and are insome cases necessary.The investigated parameters vary, and one of them has been �exible walls ofthe blood vessels and its e�ect on the �ow �eld, as well as on the distributionof shear stresses and its relation to atherosclerosis. The approaches also varyconsiderably, Liu et al. [116] and Perktold et al. [142] investigated compliantvessel walls and found a reduction of WSS (up to 25 %, but generally < 10 %),while Pivkin et al. [145] investigated a moving vessel situated on the heart follow-ing the heart movement. Other parameters have been related to non-Newtoniane�ects of the blood �ow [33, 136, 142, 201], still many assume Newtonian �ow[11, 16, 181], as will be discussed in the following Chapter.Despite the di�erent approaches most authors conclude that the geometrice�ects are of great importance for the �ow �eld. As previously mentioned, forin vivo �ow the geometrical variations are intricate and it is therefore di�cult togeneralize one case and apply it to another person. Therefore, an idealized modelmay give as much input (or even more) as a more patient speci�c model. Also, alarge number of results from di�erent kinds of geometries are needed in order todraw more general conclusions.



Chapter 3Fluid Mechanical AspectsThis chapter describes the governing equations of the �ows considered, followedby descriptions of di�erent �ow characteristics related to pipe �ows and the pre-viously discussed physiological systems.3.1 Governing EquationsThe classic theoretical base of �uid mechanics is the continuum assumption. Mat-ter in general, whether �uid or solid, is built up of molecules or atoms with acertain empty space in between them. This is, however, generally not the com-mon everyday experience, which is that of a continuous media. In continuumtheory small scale molecular/atomic e�ects are neglected and a theory is built onthe large scales [106]. Continuum theory assumes that matter properties can beexpressed as the ensemble average over the molecules in an in�nitesimally smallcontrol volume, where each volume is in the neighborhood of other volumes [106].Such a limit exists if the control volume has a large enough number of moleculeson one hand, and that the molecules are in equilibrium. In many applications thisis a justi�ed assumption, but not always. A requirement for the continuum as-sumption to be justi�able is that the mean free path between molecules λ shouldbe much smaller than the smallest length scale of the �ow l [149]. This can alsobe expressed in terms of the Knudsen number, Kn << 1, where
Kn =

λ

l
(3.1)In the case of blood, the continuum assumption implies that the �ow struc-tures have to be much larger than the (blood) cells. In contrast to the smallmolecules, the Knudsen number for the blood cells may not be small. Addition-ally, it is not obvious that the blood cells are in an equilibrium in all parts ofthe blood vessel tree. At the smaller vessels the Kn based on the blood cells areof order unity or larger. Thereby, one may have di�culties in assuming contin-uum properties for the blood in smaller blood vessels. Even under more optimal17



18 CHAPTER 3. FLUID MECHANICAL ASPECTSconditions, the presence of cells also implies non-trivial rheological properties ofthe blood, which is brie�y discussed below. In addition to the assumption ofcontinuum, one often assumes that the �ow of blood is incompressible.The governing equations for an incompressible �ow consist of the conservationof mass and momentum. Conservation of energy is ensured since the �ow isassumed to be isothermal. For Newtonian �uids (as is assumed here) there isa linear relationship between the stress and the strain rate. For non-Newtonian�uids one has to add a model for the constitutive relationship. The system ofPDE's (as shown in the following sections) consists of four equations for the fourdependent variables; namely the velocity vector and the pressure. The steadystate system of PDE's is elliptic in character and therefore requires boundaryconditions (equal to the number of space dimensions) on all boundary points. Thetime-dependent system is classi�ed as partially parabolic (i.e. the momentumequations are parabolic in time, but this is not the property of the continuityequation.) The time-dependent problem requires the same type of boundaryconditions as the steady system. However, initial conditions have to be given aswell.The �ow at the Reynolds numbers under consideration is laminar or transi-tional and hence, there is no need for explicit turbulence modeling. On the otherhand transitional �ows may contain smaller length scales then the correspondinglaminar one, and therefore the computational grid should be �ne enough to beable to resolve such small scales.3.1.1 Rheological properties of bloodViscosity is de�ned as the property which relates an applied stress to the resultingstrain rate, where the strain rate is the rate of average decrease of the anglebetween two lines which are initially perpendicular in the unstrained state [204].The strain rate can also be written as
εij =

1

2

(

∂ui

∂xj
+
∂uj

∂xi

) (3.2)where tensor/indical-notation is used, i.e. ui is the velocity component in the i:thdirection.For a general �uid one has
σij = f (εij) (3.3)where f is a function of the rate of strain tensor. The relation is valid for all�ows, but an illustrative example is a �uid sheared between two plates at a lowReynolds number, shown in Figure 3.1. For regular �uids, such as water, someoils, and gases, the function f is linear, or the �uids are �Newtonian�.
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U1

X2

X1Figure 3.1: Shear �ow due to motion of the upper plate.The �ow shown in �gure 3.1 only has a constant streamwise velocity compo-nent, hence:
σ12 = µ

du1

dx2

(3.4)where µ is the (coe�cient of) dynamic viscosity.The dynamic viscosity, however, depends on temperature and pressure and istherefore a thermodynamic property. In cases like this, where the �ow is isother-mal and the �uid is assumed to be of Newtonian character, the constant viscosityassumption is valid [9]. When (3.3) is non-linear the �uid is non-Newtonian.Stokes [175] was the �rst who investigated the relation between stress andstrain rate, in analogy with the Hookean relation in solid mechanics. He proposedthree postulates as outlined by White [204] as:1. The �uid is continuous, and its stress tensor σij is at most a linear functionof the strain rate εij .2. The �uid is isotropic, i.e., its properties are independent of direction, andtherefore the deformation law is independent of the coordinate axes in whichit is expressed.3. When the strain rates are zero, the deformation law must reduce to thehydrostatic pressure condition, σij = −pδij , where δij is the Kroneckerdelta function.Based on these three postulates the following general formulation for the stressesof a Newtonian �ow may be obtained:
σij = −pδij + µ

(

∂ui

∂xj
+
∂uj

∂xi

)

+ δijλ
∂ui

∂xi
(3.5)where λ is the (coe�cient of) bulk viscosity. In the case of an incompressible�uid, the last term in (3.5) disappears and it is not treated any further. However,



20 CHAPTER 3. FLUID MECHANICAL ASPECTSmore information about the coe�cient of bulk viscosity is found in for example[106, 204].Blood is a suspension containing di�erent cells, with elastic characteristics,and molecules of largely varying sizes. Hence, blood should therefore be treated asa visco-elastic substance, a�ected by parameters such as plasma viscosity (prob-ably a�ected by macro-molecular orientation), local red blood cell concentrationand deformability and blood cell aggregation [133]. This reality gives the bloodits non-Newtonian properties and the blood can not generally be considered ashomogeneous. In smaller blood vessels where the size of the vessels are relativelysmall in comparison to the blood cells (i.e. large cell Knudsen number) the rhe-ological properties of the blood are highly di�erent from that in large vessels.Here, the non-Newtonian, or rheological, characteristics of the blood give the ef-fect of reduced apparent viscosity [56]. The apparent viscosity is de�ned as theviscosity computed from Poiseuille's law (shown later) when the �ow rate andpressure drop are measured [70].The concentration of blood cells is higher towards the center of the vessel, ascompared to near walls. This e�ect is the result of the motion of the cells subjectto the shear in the blood. The phenomenon is often referred to as the Fåhraeus-Lindquist e�ect. The distribution of the particles towards the axis of the pipe ispartly due to forces in a shear layer, as described by Sa�mann [161, 162]. At smallReynolds numbers this e�ect is fairly small, and therefore this simple explanationis not adequate [70, 113].

12.6%

28.7%

35.9%

48.0%

58.9%

67.4%

0.2 0.5 1 5 10 50 100 500 1000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Shear rate (1/s)

V
is

c
o
s
it
y

(k
g
/(

m
s
))

μ

Figure 3.2: Viscosity as function of strain rate for various hematocrit levels, i.e.the concentration of red blood cells, which is about 45 % in normal individuals(after Brooks et al. [25]).In larger vessels, as compared to blood cell diameter, blood is often consideredas homogeneous [70]. In these vessels the shear rates are usually large enoughin order to also consider the blood as a Newtonian �uid [133, 140]. However,



3.1. GOVERNING EQUATIONS 21it should not be forgotten that the �ow is pulsating, particularly in the largearteries, and the shear rates will therefore vary during the cycle.Brooks et al. [25] examined the dependence of viscosity on shear rate andhematocrit, and found that whole blood behaves in a Newtonian manner upto a hematocrit level of about 12%. For larger hematocrit levels the viscosityincreased, but as the shear rate increased the viscosity decreased again reaching anasymptotic value above shear rates of approximately 100 s−1, i.e. shear thinningcharacter (Figure 3.2).Soulis [172] et al. investigated non-Newtonian viscosity models for �ow throughthe left coronary artery and concluded that the Newtonian model is a good ap-proximation at medium- and high-shear rates.When the blood is considered as Newtonian and homogeneous, it has a densityof about ρ = 1.05 · 103 kg ·m−3 and an apparent dynamic viscosity of about fourtimes that of water (at 200C) µ = 0.004 kg · m−1s−1 [140]. The viscosity ofthe blood plasma alone is about 1.7 times that of water, i.e. µplasma ≈ 0.0017
kg · m−1s−1. The plasma is usually considered to behave in a Newtonian way[133]. In the plasma the largest component length scale is for the albumin andthe �brinogen molecules (the latter is about 50nm), which is only about onepercent of the size of the capillaries. Therefore, those molecules are generallybelieved not to a�ect the �ow in the way the much larger cells do [133, 200].3.1.2 Continuity equationThe continuity equation for a �uid reads

∂ρ

∂t
+
∂ρui

∂xi
= 0 (3.6)Thus, with the assumption of incompressibility the equation reduces to

∂ui

∂xi
= 0 (3.7)3.1.3 Momentum equationThe momentum equation can be expressed as

ρ
∂ui

∂t
+ ρuj

∂ui

∂xj
=
∂σij

∂xj
(3.8)where the terms on the left hand side is density times transient- and convective-acceleration. The term on the right hand side is the total force per unit volume.Taking the divergence of (3.5) one has

∂σij

∂xj
= − ∂p

∂xi
+ µ

∂2ui

∂xj∂xj
(3.9)



22 CHAPTER 3. FLUID MECHANICAL ASPECTSwhere the contributions of the stress tensor has been divided into its two compo-nents (i.e. the pressure and the viscous stress).The form of the momentum equations for a Newtonian incompressible �ow,usually referred to as the Navier-Stokes equations, is as follows.
ρ
∂ui

∂t
+ ρuj

∂ui

∂xj
= − ∂p

∂xi
+ µ

∂2ui

∂xj∂xj
(3.10)3.2 SimilarityThe Navier-Stokes equations (3.10) describe the balance of forces on a �uid ele-ment. These can be expressed, per unit volume, by words as:Transient inertia+ Convective inertia =Pressure on sides + Viscous forces on sides (3.11)It may be convenient to rewrite the equations on non-dimensional form, whichis done by introducing a characteristic velocity U , a characteristic (angular) fre-quency ω and a characteristic length scale D. Using these characteristic pa-rameters the equations will be non-dimensionalized by introducing the followingnon-dimensional terms.

x∗i = xi

D
u∗i = ui

U

p∗ = p
ρU2 t∗ = ωt

(3.12)The expressions in (3.12) are substituted into (3.10) and the resulting expres-sion is divided by ρU2

D
. What follows, after some algebraic manipulations is anexpression for the Navier-Stokes equations in non-dimensional form
ωD

U

∂u∗i
∂t∗

+ u∗j
∂u∗i
∂x∗j

= −∂p
∗

∂x∗i
+

ν

DU

∂2u∗i
∂x∗2j

(3.13)where ν = µ/ρ is the kinematic viscosity. The coe�cient of the �rst term isrecognized as a Strouhal number, 2π ·Stf = ωD
U

= Transient termConvective term. However, ina pulsating �ow (laminar in a straight pipe) the relation between transient forcesand viscous forces is more relevant. Therefore, traditionally, the non-dimensionalnumbers, Reynolds number, Re, and the Womersley number, α, are identi�ed.
Re = ρ

UD

µ
=

Convective inertiaViscous forces (3.14)
α =

D

2

√

ω

ν
=

(Transient inertiaViscous forces )1/2 (3.15)



3.2. SIMILARITY 23The Navier-Stokes equations can then be written as
4
α2

Re

∂u∗i
∂t∗

+ u∗j
∂u∗i
∂x∗j

= −∂p
∗

∂x∗i
+

1

Re

∂2u∗i
∂x∗2j

(3.16)The number 4 in the �rst term of (3.16) comes from the use of Womersley's [206]de�nition of α, based on the radius.If one has two geometrically similar bodies, i.e. similar relative measures ofthe body, but not necessarily similar in absolute size, and if the Reynolds- and theWomersley-numbers are similar for the two cases, the solution will be the same;this is due to the non-dimensional form of (3.16). Thus, a time dependent �owis governed by two dimensionless numbers. Two di�erent geometrically similar�ows with the same Reynolds- and Womersley-numbers then satisfy dynamicsimilarity.A large Womersley number, (3.15), indicates that the transient- or oscillatory-inertia forces dominate, and of course a low Womersley number indicates dom-inating viscous forces. The same is valid for the Reynolds number, but then asdescribed by (3.14), the convective inertial forces are related to the viscous forces.Di�erent levels of the Womersley- and the Reynolds-numbers in arteries are givenin Table 3.1. The e�ect of these numbers on the �ow �eld (of �ow in a straightpipe) was described by Reynolds [155] and Womersley [206] respectively; this willbe investigated more carefully in the following sections.Dog (20 kg) Man (70 kg)Blood Vessel Velocity (cm/s) Re α Velocity (cm/s) Re αAscending aorta 15.8 (89/0)a 870 (4900)b 16 18 (112/0)a 1500 (9400)b 21Abdominal aorta 12 (60/0) 370 (1870) 9 14 (75/0) 640 (3600) 12Renal artery 41 (74/26) 440 (800) 3 40 (73/26) 700 (1300) 4Femoral artery 10 (42/1) 130 (580) 4 12 (52/2) 200 (860) 4Superior vena cava 8 (20/0) 320 (790) 10 9 (23/0) 550 (1400) 15Inferior vena cava 19 (40/0) 800 (1800) 11 21 (46/0) 1400 (3000) 17Table 3.1: Flow data of di�erent blood vessels, after Bronzino [24]. a means
(systolic/diastolic) and b means (peak).



24 CHAPTER 3. FLUID MECHANICAL ASPECTS3.3 Pipe Flows3.3.1 Steady �ow in a straight pipeThe �ow through circular pipes is common in several �elds of engineering. Ap-plications may be cooling pipes in a nuclear reactor, �ow in heat exchangers,ventilation systems, cardiovascular �ow, etc. Viscous �ow in pipes is often re-ported to �rst have been studied by Hagen (1839) [79] and Poiseuille (1840/1841)[147, 148]. Hagen was an engineer and Poiseuille was a physician studying blood�ow. They obtained, by experiment, the famous relation now known as theHagen-Poiseuille law, which reads
Q = −πa

4

8µ

dp

dx
= −πa

4

8µ

∆p

L
(3.17)where a is the pipe radius. The pressure gradient is constant over the entire lengthof the pipe, which motivates the last equality in the expression. The expressionwas derived mathematically by Stokes in 1845 as an application of the Navier-Stokes equations. However, Stokes did not publish the results, because he wasunsure of the boundary condition at the tube wall. Instead the �rst derivationof the Poiseuille law from the Navier-Stokes equations is usually awarded toHagenbach 1860 [178].The continuity equation and the Navier-Stokes equations are written in cylin-der coordinates as
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+
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∂w
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1
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1
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2
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∂v

∂θ
+
∂2w
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) (3.21)where (x, r, θ) are in the axial-, radial-, and azimuthal-directions, with the velocitycomponents (u, v, w), respectively.



3.3. PIPE FLOWS 25The Poiseuille formula can be derived by, assuming laminar, steady and fullydeveloped �ow in a straight pipe. Then, v = w = 0, ∂
∂t

= 0, and ∂u
∂θ

= ∂u
∂x

= 0.Applying these conditions to (3.18)-(3.21) reveals through the continuity equationthat v = 0, the radial momentum equation gives that the pressure is constant overa cross-section. The �ow is therefore fully speci�ed by the momentum equationin the axial direction. After simpli�cation (3.19) is written as
dp

dx
=
µ

r

d

dr

(

r
du

dr

) (3.22)Integrating (3.22) twice and applying the boundary conditions u(r = a) = 0,where a is the pipe radius (at the wall), and du(r=0)
dr

= 0, the following expressionis obtained for the axial velocity:
u(r) = −dp

dx

1

4µ

(

a2 − r2
) (3.23)The volume �ow through the pipe is given by integrating (3.23) as

Q =

∫

udA =

∫ a

0

u(r)2πrdr = −πa
4

8µ

dp

dx
(3.24)and the relation is recognized.This expression is often found in text books on physiology when the �ow ofblood in blood vessels is to be described. The Poiseuille law should, however,be used with precaution. The expression is restricted to fully developed steadyand laminar �ow in a very long straight pipe with rigid walls. This situation isnaturally seldom found in a real biological application, where the �ow even maybe turbulent in the larger arteries, not least at pathological conditions such asa stenosis [19, 140]. Poiseuille's law may still give some valuable information,not least in the smaller blood vessels where the �ow is laminar. According to(3.17) the �ow is proportional to the radius to the power of four. This revealsthat the vasoconstriction/vasodilation function, that changes the vessel radius inorder to direct the blood to a particular site or increase blood pressure, of theblood vessels is very e�cient [71].3.3.2 Pulsating �ow in a straight pipeA Poiseuille �ow is based on steady �ow assumptions and naturally deviationsfrom the parabolic solution is to be expected in an unsteady �ow. In the case ofa large Womersley number in a straight pipe of laminar �ow, transient inertiale�ects are dominating over viscous e�ects. In the central part of the pipe, wherethe velocity is high, the transient forces are balanced by pressure forces, like in aninviscid case. In Poiseuille �ow the pressure forces are instead balanced by viscousforces in the central parts, as well as close to the pipe wall [71]. In pulsating



26 CHAPTER 3. FLUID MECHANICAL ASPECTS�ow the slowly moving �uid near the wall, i.e. with small momentum, respondsquicker to changes in the pressure gradient than the high velocity �uid in thecenter. The unsteady pro�le at large Womersley numbers is therefore expectedto be blunt in the central core of the pipe. This phenomenon has been describedby Womersley [206] and others [167], but the dimensionless group describing theoscillations is usually referred to as the Womersley number as above. However, itis sometimes also referred to as the Stokes number, St, due to the developmentof the Stokes layer in Stokes �ow. Note that this number should not be mixedwith the Stokes number as it is de�ned for a particle moving in a �uid. TheStokes layer thickness is given by δ = (2ν/ω)1/2. Comparing δ with α in (3.15),it follows that St = a/δ = α/
√

2. Hence, the Stokes number (and Womersleynumber) can be seen as a measure of pipe radius over Stokes layer thickness.Following Womersley's treatment we start from the momentum equation inthe axial direction in cylinder coordinates, (3.19). The same assumptions regard-ing the �ow as for Poiseuille are made, with the exception that the time derivativeis kept. The governing equation is now expressed as
ρ
∂u

∂t
= −∂p
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∂r

) (3.25)The pressure gradient may then be expressed as a Fourier series function ∂p
∂x

(t) =
∞
∑

i=−∞
cne

ωnt. However, since (3.25) is linear in u one may solve for only one termat a time, and then add up the individual solutions. Therefore, the pressuregradient is expressed as ∂p
∂x

= Aeiωt, which after some rearrangement yields
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eiωt (3.26)where u is the velocity in the axial direction. A is constant since at each pointin time the pressure gradient is assumed constant, in relation to Poiseuille �ow.Now, also u is expressed as a complex periodic function in the anzats u(r, t) =

B(r)eiωt, and after re-arranging one has
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µ
(3.27)This equation is a form of Bessel equation and has the following solution, wherethe boundary conditions B(a) = 0 and |B(0)| <∞ have been implemented.
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(

xi3/2
) is the Bessel function of order zero, a is the radius of the pipe.Now, a√ω

ν
= α is the Womersley number, and y = r

a
. The solution of (3.26) is
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u =

A

ρ

1

iω
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1 − J0
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αyi3/2
)

J0 (αi3/2)

}

eiωt (3.29)The real- and imaginary-parts of the pressure gradient, Aeiωt, correspond to thereal- and imaginary-parts of the solution, respectively. A more detailed treatmentof the solution procedure, as well as tables of Bessel functions, are given by Zamir[212]. McDonald [123] also presents the basic ideas and several informative �gureson this topic. The �rst term in (3.29) is just a constant, the second term (inbrackets) describes the cross-sectional distribution of the velocity, and the thirdexponential term describes the variation of velocity with time. Integrating (3.29)over the cross-section gives the �ow as function of time
Q(t) =
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u(r, t)2πrdr =
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αi3/2
)

J0 (αi3/2)

}

eiωt (3.30)where J1 is the Bessel function of �rst order and �rst kind. Womersley [206]shows that as α goes to zero the �ow goes towards the Poiseuille solution. As αincreases the solution quickly moves away from the Poiseuille solution, and �nallythe peak �ow goes asymptotically to some value of about 10 % of the Poiseuillesolution. Due to the inertia of the �uid, as α increases, the �ow will eventuallylag about 900 behind the pressure gradient, which is the driving force of the �ow.Integrating (3.30) over a period shows that the net �ow in this oscillating �ow iszero [212].Figures 3.3(a) and 3.3(b) show the characteristics of the axial velocity attwo di�erent Womersley numbers. The larger Womersley number pro�les showslightly decreased magnitude in the center, but with more �at distributions.There is also earlier and more back �ow near the walls, due to the larger ac-celeration.3.3.3 Flow in curved pipesIt is a well known fact that a curved pipe induces secondary motion. Dean [40, 41]describes the phenomenon theoretically for a laminar case with small curvatureratio a/Rc, where a is the radius of the pipe and Rc is the radius of curvature.As the �uid in a pipe follows a curved path, the �uid towards the center-line ofthe pipe with larger velocity experience larger inertial force (centrifugal force) ascompared to the �uid in the boundary layer near the wall. In order to counter-act the increased inertial force, a lateral pressure gradient is built up. However,because the pressure is approximately constant across transversal lines abovethe outer wall of curvature, and that the �ow in the wall boundary layer has lessmomentum than in the core, a force imbalance appears near the wall. Hence, nearthe wall the pressure force is larger than the inertial and viscous forces, which
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t/T=0.987(b) α = 11.75Figure 3.3: Velocity pro�les at di�erent Womersley numbers.induces a motion along the wall. These secondary streams meet at the inner wallof curvature where they merge and by continuity they result in a central streamtowards the outer wall. These vortices are then stretched by the downstream �ow.Curvature e�ects are found in both laminar and turbulent �ows, although it hasbeen reported that the in�uence of curvature is less pronounced in a turbulentcase [167].By taking the curl of the Navier-Stokes equations (3.10) one gets the vorticityequations:
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∂xj
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(3.31)These equations describe the transport of vorticity (ωi = εijk

∂uk

∂xj

) in the �ow�eld. The terms on the left are transient and convective transport of vortexlines, and the terms on the right describe intensi�cation of vorticity when thevortex lines are stretched, and di�usion of vorticity. The equations do not haveany source terms in incompressible �ow, and therefore the vorticity can not becreated by the �ow �eld itself, only transported within it. Instead the vorticityis again induced through the boundary conditions, here the wall, as previouslydescribed; cf. Batchelor [9].A steady fully developed �ow in a curved pipe can be described by introducinga curvlinear orthogonal coordinate system, according to Figure 3.4.The position vector is described by
r(x, r, θ) = XeX + Y eY + ZeZ

= ((Rc + rsinθ) sinφ, (Rc + rsinθ) cosφ, rcosθ) (3.32)where eX , eY , eZ are the cartesian base vectors, x = Rcφ is the axial component,
r is the radial component and θ is the azimuthal component. As described by
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Figure 3.4: Coordinate system for �ow through a curved pipe.Ramgard [151] the new set of base vectors are de�ned as
ei =

1
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(3.33)where hi =

∣
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∣

∣

∣
are the scale factors, and (s1, s2, s3) = (x, r, θ). Computingthe scale factors give hx = 1 + r

Rc
sinθ, hr = 1, and hθ = r. Here, the velocitycomponents in the (x, r, θ) direction are given by (u, v, w).Using these parameters one can express the velocity components, gradientsand divergence �elds of the continuity and the Navier-Stokes equations in thenew basis [151]. The equations are given in (3.34)-(3.37).
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= 0. The equations (3.34)�(3.37) are simpli�edand rewritten on a similar form as presented by Dean [40].
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, v = w = 0, and p/ρ = Cpx, where Cp is aconstant. By the assumption of small perturbations the following solution is pro-posed: u = Ap (a2 − r2) + u1, v = v1, w = w1, and p/ρ = Cpx+ p1/ρ; u1, v1, w1,and p1 are all small of order a/Rc. These assumptions, and ignoring all termslarger than order a/rc equations (3.38)�(3.41) become
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) (3.45)Ignoring small terms of (3.43), what is left is Cp = −4νAp, which is the relationbetween pressure gradient and axial velocity in a straight circular pipe. Equation(3.43) can then be simpli�ed into
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32 CHAPTER 3. FLUID MECHANICAL ASPECTSwhere the primed variables depend only on r, and substitute these into (3.44)�(3.46) four new quite similar expressions, but with primed variables, are obtained.By integrating those equations and using proper boundary conditions (cf. Dean[40] for details), and introducing the Reynolds number the following solutions areobtained.
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) (3.50)Here, U = u0/2 = Aa2/2, ζ = r/a, Re = Aa3/ν = 2Ua/ν, and u0 is the axial ve-locity at the center line. The solution is plotted in Figure 3.5, where the secondary�ow is illustrated with vectors and the axial �ow with countours. As shown inthe �gure the smaller curvature ratio solution has a more symmetric parabolicaxial velocity distribution, as compared to the �gure with larger curvature ratio.There the pro�le is skewed towards the outer wall of the bend.
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(b) a/Rc = 0.001Figure 3.5: Solution of the velocity �eld in a curved pipe accordig to Dean [40].The larger curvature ratio solution shows an axial velocity distribution moreskewed towards the outer wall of the bend. 2D velocity vectors show the secondary�ow.One can identify the components of the Dean number, De = Re
√
δ and

δ = a/Rc, in (3.48)�(3.50) as parameters that determines the solution. The Dean



3.3. PIPE FLOWS 33number is a measure of centrifugal forces over pressure forces, which are the forcesdetermining the secondary �ow. In this �rst order approximation p1 = 0, i.e. thepressure gradient is similar to what is found in Poiseuille �ow. As curved pipe�ow experience larger pressure drop than straight pipe �ow, this is incorrect anda higher order approximation is needed, which Dean also did in another work[41].Going back to equations (3.38)�(3.41), and assuming again that Rc >> a, sothat (Rc + rsinθ) can be replaced by Rc, the equations can be simpli�ed into
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) (3.54)These equations are recognized as the continuity- and Navier-Stokes-equationsin cylinder coordinates, with the addition of centrifugal force terms (the fourthterms on the left hand side of (3.53) and (3.54)). They clearly illustrate thee�ect of a bend pipe as compared to a straight. Dean [41] further introduces asecondary stream function and then makes the equations non-dimensional. Twodimensionless groups appear, G′ = Ga2/(µu0) and K = 2u2
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3/ (ν2Rc). u0 isthe center line velocity, and G is the axial pressure gradient. If the Reynoldsnumber Re = UD
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, which is one formof what is usually referred to as a Dean number. The Dean number de�ned aboveis related to K as
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K (3.55)It can be shown, by introducing a certain set of non-dimensional parameters,that for small enough Dean numbers (K < 576 or De < 16.97) the �ow isapproximately determined by the Dean number alone [199], which is rather small.A Reynolds number of Re = 2000 and a curvature ratio of δ = 0.1, which is notthat large, give a Dean number De ≈ 632. Still the classical Dean solutionspresent important phenomena, present at large Dean numbers as well. For areview over asymptotic solutions of these equations, as well as unsteady cases, cf.Pedley [140].



34 CHAPTER 3. FLUID MECHANICAL ASPECTSSince Dean, several investigations of curved pipe �ow and the resulting sec-ondary �ow have been carried out. For example, Horlock [87] investigated thesecondary �ow through a pipe with sinusoidal shaped centerline. He found thatin such a geometry the secondary �ow may be enhanced or weakened along thepipe. The secondary �ow could also be reduced by a consecutive bend, yet the�ow �eld could not be fully restored. Barua [7] examined curved tubes at alarge Dean number and found fair agreement between theory and experiments.Lyne [119] took unsteadiness into account and found that for a large Womersleynumber the secondary �ow in the interior of the pipe is in the opposite directionto that predicted for a steady pressure gradient. The �ow along the wall fromoutside to inside in the Stokes layer, returns through the more central parts ofthe Stokes layer. This draws the �uid in the core around in the opposite directionas compared to the steady state solution. Smith [170] described �ows at di�erent(secondary) Reynolds-, Womersley-, and Dean-numbers. He examined limits ofthese numbers, such as purely steady, purely oscillatory and intermediate limits.A proposal was given for a path of development from steady to pulsating �ow,in which the secondary �ow �rst is steady, then undergoes an unsteady period,and �nally becomes steady again. He also suggests the existence of a line inthe Womersley-, Dean-number parameter space which separates outward movingsecondary �ow from partly inward moving.Dennis [44] found that for a large enough Dean number a two vortex solutionexists. Talbot and Gong [182] did experiments on the entrance �ow into a curvedpipe. They found two vortex pairs in parallel at about the same height at oneinstant in time, and separation was found where the boundary layers merge atthe inner side. Chang and Tarbell [30] did numerical simulations of Talbot andGongs experiments, and also computations for two more physiological pulses.They observed the presence of complex vortical structures.Snyder et al. [171] show that downstream development of the skewed axialvelocity component can not be characterized by a single dimensionless parameter.In loosely coiled pipes (δ < 1/140) the growth of axial skew depends strongly onthe pipe curvature through the Dean number, while in more tightly coiled pipesthe skewness does not depend on curvature. Instead a formula depending onReynolds number, pipe radius and entrance length is presented. Hamakiotes etal. [81] examined the e�ect of the Womersley- and the Reynolds- number onthe �ow through a curved pipe. At small Re Dean vortices (single) appear forall times at all α. For larger Re Lyne-type vortices were observed and alwaysappeared during the acceleration part of the period.Rindt et al. [158] used �nite elements for computing the entrance region insinusoidally varying �ow. A reversed axial �ow region was found along the innerwall, and the axial pro�le was a�ected and skewed towards the outer wall. Alarge value of the Womersley parameter resulted in a steady secondary �ow �eldand Lyne-type vortices. Also, a more physiological �ow rate was used and theyfound that the in�uence of the diastolic phase on �ow phenomena in the systolic



3.3. PIPE FLOWS 35phase is of minor importance.Sudo et al. [176] did measurements and numerical simulations on the oscil-lating �ows through a curved channel at various Dean- and Womersley-numbers.They found �ve categories for the secondary �ow: 1) Dean circulation type, 2)deformed Dean circulation, 3) intermediate circulation between Dean and Lyne,4) deformed Lyne circulation, and 5) Lyne circulation. Tada et al. [180] did nu-merical simulations of pulsatile �ow at various Womersley- and Dean-numbers,as well as various β (amplitude ratio or ratio between through �ow and oscil-latory �ow). They classi�ed the secondary �ow patterns into three base groups(all combinations may also appear): viscosity dominated type, inertia dominatedtype and convection dominated type. When the amplitude ratio of the volumetric�ow rate was equal to one, four to six vortices of the secondary �ow appeared ata large Dean number. Lyne-type �ow patterns disappeared for β ≥ 0.5. Komaiand Tanishita [102] simulated fully developed �ow through a curved tube usinga physiological pulse at a Dean-number De = 393, and various Womersley num-bers and curvature ratios. They found that the secondary �ow did not dissipatebefore the next period which gave e�ect on the �ow of the next period. At smallintermittency parameter (ratio of systolic time/period time) additional vorticeswere formed near the inner wall.Boiron et al. [17] examined numerically and experimentally the starting e�ecton the secondary �ow in a bend at various Womersley- and Dean-numbers. Thevelocity pro�les and secondary �ow patterns, and their dependence on the initialhydrodynamic conditions were examined.Siggers and Waters [168] investigated the character of the secondary �ow ina curved pipe with pulsatile �ow. For a sinusoidal pressure gradient they identi-�ed three classes of stable solutions that are either periodic symmetric, periodicasymmetric or asymmetric solutions, depending on the secondary Reynolds num-ber. The transition between solutions is dependent on the curvature. When theDean number increases a solution can go through an unstable phase to �nd a newstable solution.Thus, complex vortical structures appear more often in pulsating �ows thanthe regular Dean vortex structure. These �ows are also relevant in physiologicalsystems and measurements have been done by several researchers. Clark andSchultz [36] show skewed velocity pro�les in the axial direction from measure-ments in the aorta. Similar results was shown by Nerem et. al. [129], frommeasurements in the aorta of a horse. Motomiya and Karino [127] also showpatterns of secondary motion.



36 CHAPTER 3. FLUID MECHANICAL ASPECTS3.3.4 Flow in bifurcationsThe �ow through a pipe bifurcation has much of the characteristics in commonwith the �ow through a bent pipe. In the case of a 90-degree bifurcation thestreamlines are bent in a similar way as in a 90-degree curved pipe. Thereforesimilar secondary �ow features in the daughter branch are expected as in a devel-oping �ow through a curved pipe. However, the �ow �eld is also, to some extent,subject to e�ects from the other branches.Figure 3.6 shows a sketch of the �ow �eld in a bifurcating pipe. Vortex con-taining separation bubbles and secondary counter rotating vortices are expectedin this kind of bifurcation. The region to the opposite side of the daughter branchmay not be separated as soon as the region inside the daughter branch, however, askewed distribution of axial velocity towards the daughter branch is still expected.
Regions prone to separation

Figure 3.6: Sketch of expected regions of separation and secondary counter ro-tating vortices; partly after Pedley [140].The cardiovascular system naturally contains a large amount of bifurcationsof which most are asymmetric; asymmetry due to di�erent cross-sectional areasof daughter vessels, di�erent branching angles, and di�erent �ow conditions [140].The only well known symmetric bifurcation is where the aorta bifurcates into thetwo iliac arteries [132, 140, 189]. Therefore, a deep understanding of the e�ectsof bifurcations, symmetric or asymmetric, is essential. Data about the secondary�ow through bifurcations, such as a T-junction, is sparse. In a biomechanicalcontext focus has often been on WSS distributions rather than what in the �ow�eld is the cause of the characteristics of the WSS.Balshazy et al. [5] did numerical simulations of �ow through two di�erentbifurcations, one with sharp edges and one with blended edges of a more physio-logical character. The model with blended edges showed reduced skewness of the



3.3. PIPE FLOWS 37�ow pro�les in the daughter branches, smaller secondary velocity components,and regions of reversed �ow in the vicinity of the carina. Comer et al. [38] madea detailed description of the steady �ow through a three generation symmetricbifurcation tree at Reynolds numbers 500 − 2000. They also considered particledistribution in the geometry in a second paper [37]. Zhang et al. [214] studieda 3D three generation symmetric bifurcating �ow at Re ranging between 200-1600 for steady �ow with either parabolic or uniform inlet velocity distribution.They found skewed velocity pro�les, as well as unbalanced mass �ow rate ratiosbetween the branches.Tadjafar [181] studied the in�uence of local geometric parameters on the �ow.Investigated parameters were bifurcation area ratio, bifurcation angle, inlet �ow
Re (steady), and asymmetric outlet pressure boundary conditions. It was foundthat the area ratio had the greatest in�uence on the �ow within the physiologicallyrelevant regime.Moyle et al. [128] investigated the e�ect of adding secondary �ow to the in-let velocity pro�les on the WSS and on an oscillatory shear index (OSI). Thetest was done for three realistic models of a carotid bifurcation, where curvatureand helical pitch was added to the entrance vessels. They found that the e�ectsof secondary �ow on the WSS break down within a few diameters of the inlet.Fresconi [61] investigated secondary �ow �elds in a multiple (3 generation) sym-metric bifurcation model of an airway at 6 < Re < 350 and Womersley numbers
0 < α < 1. They found that for the larger Re the secondary �ow did not haveenough time to develop before the subsequent bifurcation. They also found that�ow patterns in the oscillatory case were similar to the steady state cases at thecorresponding Re, which is not very surprising due to the small α [139].Samagio and Vlachos [164] performed steady numerical simulations of the�ow through a rectangular T-junction and found regions of secondary �ow. Tworecirculation zones were also found, one in the main branch, opposite to the trail-ing edge of the daughter branch, and one in the daughter branch at the innerwall. The axial velocity pro�le was skewed towards the daughter branch. Schinasand Mathioulakis [166] investigated pulsating �ow in a 90-degree bifurcation ofa square duct using LDV. They examined separation dynamics, and during ac-celeration the �ow was attached, but close to peak �ow separation was initiatedat both branches. Nikolaidis and Mathioulakis [135] did measurements in a 90-degree bifurcation under pulsating conditions, also in a square duct, at di�erentReynolds- and Womersley-numbers. During acceleration phase all recirculationzones and vortices were washed out and new Dean vortices were created. At oneinstant, at α = 9.42 and Re = 412, four vortices were found. An example ofa multiple vortex structure in pulsating �ow through a 90-degree bifurcation at
Re = 1450, and α = 6.75 is shown in Figure 3.7. Two vortex pairs of di�erentstructure are found in (a) and (b), respectively.
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Figure 3.7: Multiple vortices at di�erent times in pulsating �ow; (a) near peak�ow phase; and (b) at inlet �ow deceleration phase.3.3.5 Entrance �owAnother cause of secondary �ow is an entrance region. Due to the no-slip condi-tion at the wall the velocity there is small and, hence, the �ow rate is larger at thecentral parts of the pipe. For a straight pipe, a parabolic pro�le develops if the�ow is laminar. Every branch (if it is large enough) a�ects the �ow downstreamof it, since the �ow is strongly disturbed, and if the distance to the next branchis not too large, one would not observe a fully developed pro�le.The inlet length is usually referred to the distance (in a steady �ow) fromthe entry section to where the center line velocity is less than 1 % from thecorresponding velocity in a parabolic pro�le; this de�nition was proposed byBoussinesq in 1891, who suggested the relation L/D = 0.065Re, where D is thetube diameter and Re the Reynolds number [47]. Other authors have suggestedother relations, and Lew and Fung [110] conclude that, L/D = 0.08Re, is quitegood for Reynolds numbers greater than 50. They also show that as the Reynoldsnumber goes to 0 the inlet length goes to about L/D = 0.65. Durst et al. [47]propose the relation L/D = [(0.619)1.6 + (0.0567Re)1.6]
1/1.6. On the other hand,Schlichting [167] reports an inlet length of x/D = 50-100 for laminar steady �owand x/D = 25-40 for turbulent �ows.For an unsteady �ow the boundary layer is a�ected by both convective andtransient accelerations. Fung [71] suggests that when δ1 = δ2, where δ1 =

6.5
(

ν
ω

)1/2 is boundary layer thickness due to inertial forces, associated with tran-sient accelerations, and δ2 = 4 (νx/U)1/2 is the boundary layer thickness associ-ated with convective accelerations, L = 2.64U
ω
; U is a characteristic velocity and
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ω is the angular frequency. For x < L, δ1 > δ2 and transient accelerations tendto dominate, whereas when x > L, δ1 < δ2 and convective accelerations tend todominate.3.3.6 Pressure wave in tubes with extensible wallsThe pressure wave induced by the heart ejection of blood into the aorta, travelsalong the aortic wall and is also transmitted and re�ected at each bifurcation.This pulse increases the radius of the vessel and also works as a help pump bystoring potential energy, which is then converted to kinetic energy when the vesselradius decrease again during diastole. This is due to the elastic �bres, as was dis-cussed in a previous Chapter. At simpli�ed conditions the propagating wave canbe described by a wave equation, cf. [71, 112, 140, 212] for more comprehensiveanalyses. The ratio between peak velocity and the vessel wall wave speed is about
umax/c = 0.20−0.25 in the thoracic aorta of a normal dog, and is expected to besimilar for humans. The ratio decreases as the arteries become smaller [140]. Ithas to be pointed out that the propagation speed depends primarily on the me-chanical properties of the arteries. The more severe atherosclerosis is, the sti�erare the walls and the higher the speed of pressure wave propagation. Arterialcompliance and the sti�ness depend on mean blood pressure, aging and rate ofventricular ejection. The aging usually implies sti�ening due to arteriosclerosis,and the visco-elastic properties of the vessel wall in�uence the dependence onrate of ejection. Usually the pressure pulse travels at a speed of about 4�5 m/sin young people, while in elderly it travels at a speed of about 10�15 m/s [109].3.3.7 Transition to turbulence in pipe �owsTable 3.1 presents characteristic data from the cardiovascular system of both adog and a human. For a man the Reynolds number ranges between 200 in thefemoral artery, to 9400 in the ascending aorta at peak �ow. Osborne Reynolds[155, 156] found in his experiments (published 1883), when he introduced dye intothe entrance of a circular pipe, that at low speed Re < 1900 the �ow remainedlaminar and the dye did not mix by convection. However, when the �ow veloc-ity was increased to a Re over approximately 2000, depending on the entranceconditions, the dye was mixed and convected over the whole cross section. Lessinitial disturbances have been shown to raise the transitional Reynolds numbersigni�cantly. Schlichting [167] reports that a transition Reynolds number as highas approximately 40·103 has been obtained in steady �ow. Fully developed turbu-lence is otherwise generally considered to be found around Re = 3000 [149], butas stated the local properties are very signi�cant for when to expect transition.White [204] presents a list of parameters in�uencing transition to turbulent�ow. The following may be relevant here (with point four added):



40 CHAPTER 3. FLUID MECHANICAL ASPECTS1. Pressure gradient2. Free-stream turbulence3. Wall roughness4. Inlet conditionsThe pressure gradient is favourable during the accelerating phase of the pulsewhich reduces the risk of early transition, however, at the decelerating phase thepressure gradient will temporarily be adverse. Initial disturbances that mighttrigger transition may exist in the case of arterial �ow, since the heart is notstanding still, and since the �uid has little time to settle before it is being ejectedfrom the heart. Also, the �ow passes through the aortic valve, which may inducesome secondary motion. However, as the �ow is accelerating during the �rst halfof systole, disturbances will be damped to some extent.Lefebvre et al. [108] reports transition at Re ≈ 106, in accelerating �ows,where the Reynolds number is based on instantaneous velocity and pipe diameter.However, during the decelerating part of the pulse Nerem et al. [130, 131] notedhigh frequency disturbances in the aorta of dogs. They found that at a peakReynolds number of Re = 250α (for 5 < α < 20) there is an approximate lineseparating the laminar �ow from disturbed �ow (eventually turbulent); where
α is the Womersley number based on the radius of the aorta. This may beexpected due to that the small disturbances need a certain amount of time inorder to develop. For larger species, including humans, turbulent �ow, or at leasttransitional �ow, may be expected in larger arteries (Table 3.1).One instability mechanism present in a periodic �ow, is naturally the pointof in�ection of the velocity pro�le during deceleration, if it is strong enough; fastdeceleration has been shown to decrease the critical Reynolds number drastically[80, 140].When it comes to pulsatile �ow in circular pipes at transitional Reynoldsnumbers, there are several experimental and numerical studies. Yellin [209] in-vestigated pulsatile �ow in a pipe. He found that classical stability concepts, suchas point of in�ection and Reynolds number requires modi�cation in a pulsating�ow. He recognizes three other criteria for transition: a source of disturbance,relaxation time (i.e. time period of small velocity), and distance from the �uidunder observation to the source of disturbance. Flows with a low frequency and alarge amplitude of the oscillating component shows a reduced disturbance growthrate as compared to a steady �ow of similar steady component. He suggests thatsystolic acceleration may be laminar despite the large systolic velocity, whereasdiastolic deceleration probably produces disturbed but not turbulent �ow.Sarpkaya [165] examined pulsating pipe �ow. He found that pulsating �ow ismore stable than steady Poiseuille �ow. The critical Reynolds number is deter-mined by the Womersley number and the ratio of pulsating velocity amplitude



3.3. PIPE FLOWS 41over total mean velocity. Despite points of in�ection disturbances may not grow.For a certain velocity ratio the critical Reynolds number is decreasing for in-creasing Womersley numbers between 4�7.8, i.e. in contrast to Nerem [131].For increasing oscillations amplitude the critical Reynolds number is increasingto a certain limit, whereafter it rapidly decreases again. An α = 6.5 has amaximum critical Re of approximately 3300. The critical Reynolds number fornon-harmonic oscillations were smaller.Hino et al. [85] did experiments on the transition to turbulence in purelyoscillating pipe �ows at 105 ≤ Re ≤ 5830, based on oscillating mean velocityamplitude, and for Womersley numbers 1.9 ≤ α ≤ 8.75. They identi�ed threedi�erent regimes, 1) weakly turbulent �ow, 2) conditionally turbulent �ow, and3) fully turbulent �ow. The critical Reynolds number of the �rst transition de-creased as the Womersley number increased. In the conditionally turbulent �ow,transition was identi�ed during the decelerating part of the pulse, while it relam-inarized during the next accelerating part; also at Re = 5830 if the Womersleynumber was large enough.Eckmann et al. [48] did measurements of oscillating �ow in a straight circularpipe, at 9 < α < 33 and 389 < Re < 47 · 103. They report laminar �ow for
Re < 23 · 103 and 8.9 ≤ α ≤ 32.2 (where the velocity scale of the Reynoldsnumber is based on the stroke distance d = VT/πa

2, as U = ωd. If the velocityinstead is based on distance over period time the Re should be divided by π, i.e.
Re < 7.3 · 103.). At measured Re > 23 · 103 the core remained laminar while theStokes layer became unstable during the deceleration phase.Lodahl et al. [117] examined combined oscillatory and steady (pulsatile) �owthrough a circular pipe. The investigated ranges were 0 ≤ Re ≤ 1.6 · 105, 0 ≤
Rew ≤ 7 · 106, and 4.2 ≤ α ≤ 75, where Rew = aUm/ν is the oscillatory �owboundary layer Reynolds number, and Re is the Reynolds number based on thesteady �ow component. Um is the peak of the oscillatory �ow and a = Um/ω. Rewis related to RewD

, which is based on pipe radius as RewD
=

√
4α2Rew. Transitionwas detected at Re > 2000, depending on Rew and α, and it was found that the�ow can be laminarized by the superimposed oscillatory �ow component. For thepure oscillatory �ow below α = 10, transition came at smaller Rew for smaller

α. At very large α, Rew reaches the asymptotic value Rew = 1.5 · 105, whichis a known value from plane oscillatory �ow. The critical Re increases as Rewincreases to a certain limit, whereafter the oscillatory �ow has become turbulentitself. Then, the combined �ow also becomes transitional. However, although asmaller α has a larger critical Rew, the large α has a larger critical Re, but theoscillatory component needs to be of an optimal magnitude. The simple relationby Nerem [131] thus seems to neglect important parameter dependencies.Tuzi et al. [192] obtained qualitatively similar results as Lodahl et al. [117]by doing numerical simulations, although their transitional Re is larger, which issuggested as depending on the small perturbations in the numerical simulationsas compared to the experiments. They also found that as turbulence is present,



42 CHAPTER 3. FLUID MECHANICAL ASPECTSthe dynamics are similar to the steady case. A log-law layer can be found inboth the pure oscillating and the pulsating case. They suggest a classi�cationof the �ow into four di�erent regimes: 1) �laminar regime�, 2) small amplitudeperturbation regime called the �disturbed laminar regime�, 3) the �ow whereturbulent bursts are found during the decelerating phase of the cycle, calledthe �intermittently turbulent regime�, and 4) turbulence throughout the wholecycle called the �fully turbulent regime�. They introduced wall imperfectionsof sinusoidal variation and amplitude ε/δ = 0.005, where δ is the Stokes layerthickness. The wall imperfections should trigger transition, and lower the critical
Re to numbers obtained in laboratory experiments (as mentioned above that wasnot really obtained). It was found that the di�erent wall imperfections in�uencedthe small amplitude perturbations at laminar �ow, but had no in�uence on thetransition process, and the turbulence structure, at Re far above the criticalvalue.A review of pulsatile pipe �ows is given by Carpinlioglu et al. [29].Geometrical variations (leading to adverse pressure gradients) may have amore severe impact on transition into turbulence, especially at pathological con-strictions, such as a stenosis, which may drastically increase the velocity, inducingKelvin-Helmholtz like instabilities [19].White [202] and Taylor [186] experimentally showed that curvature has astabilizing e�ect on the �ow �eld. They showed that transition into turbulence,for �ow in a curved pipe, was delayed to a Reynolds number approximately threetimes higher than that described by Osborne Reynolds [155]; thus, secondary �owseems to have a stabilizing e�ect on the �ow �eld.



Chapter 4Fluid-Structure InteractionFluid-Structure Interaction (FSI) is the name for problems where a �uid domain
Ωf and a solid domain Ωs interacts through their common boundary, Γf on the�uid side and Γs on the solid side. The �uid a�ects the solid by the stressit imposes on its boundary, i.e. it creates a traction boundary condition for thesolid. This causes the solid to deform Ωs and Ωf (depending on the computationalapproach used), and the �uid domain gets new wall boundary conditions to adaptto. These kinds of problems are found in various �elds of science and engineer-ing. In aero-elasticity the �uid induce forces on the solid, such as wings [97],bridges [21], buildings [22], and hard disk drives [100] that causes structural mo-tion and deformation. In some cases that may lead to aerodynamic �utter, andeven structural failure. In the human body, FSI is utilized in the sensory partsof the auditory systems (so called hair cells), in the peristaltic motion of theintestinum and the axons of the nerve cells. In these physiological systems, FSIis an important bene�cial factor. Also, the expansion of the arteries during sys-tole in young individuals is physiological, and it helps maintaining lower bloodpressure. During systole arteries experience deformations in both the radial- andaxial-directions due to the �ow [35]. Veins, on the other hand, in particularin the upper part of the body, may collapse as the back-pressure becomes low[140, 189]. Calo et al. [26] used FSI for estimation of drug delivery in di�erentcoronary artery models. Fukui et al. [69] studied the e�ect of longitudinal andaxial wall motion on the distribution of WSS. Kock et al. [101] used FSI forstudying plaque rupture in carotid arteries. Valencia et al. [193] studied stenotic�ows using an FSI-formulation. Oscuii et al. [137] studied the e�ect of wallsti�ness on �ow and WSS, also using FSI-modeling.The �eld equations governing the �uid �ow and deformation of a solid areclosely related. Historically, the two �elds have been developed in parallel, withthe Finite Element Method (FEM) being used in structural �ow analyses, anddi�erent discretization methods (e.g. FEM, Finite Di�erences, �nite-volumes)have been used in �uid analyses. In recent years, due to the needs in many43



44 CHAPTER 4. FLUID-STRUCTURE INTERACTIONengineering �elds there have been several attempts to merge the two approaches.In the following a review of some of these approaches will be given followed by adescription of the FSI-implementation used here.4.1 Computational ApproachesThe di�erent computational approaches used are often categorized into di�erentcategories of solution procedure (Note that this categorization terminology is notunique [218].). In the monolithic approach the �uid- and the solid-systems ofequations, including interaction boundary conditions, are solved for simultane-ously [88, 92], whereas in the partitioned approach the systems of equations aresolved for sequentially [95, 144, 195, 207]. In the monolithic approach one obtainsthe solution for each time step immediately, however, the system of equations maybe large and so is the computational time. Recently, it has been argued that themonolithic approach is still competitive, even for large scale problems [43, 84].Also, by using the monolithic approach, in contrast to the partitioned approach,the most common solvers for �uid- and structural-mechanics can not be used.Thus, in general the monolithic approach is considered more stable and accurate,while the partitioned approach gives more �exibility [88].In the partitioned approach it is possible to use di�erent time steps for the�uid and solid, respectively, that may be optimized for computational cost andcapturing the di�erent time scales of the two domains [144]. The partitionedapproach is often referred to as weakly- or strongly-coupled. Weak coupling isusually referred to as where the �uid and the solid are only solved for once pertime step. Strong coupling, on the other hand, is when an iterative procedureis made for each time step, where �nally both the �uid and the solid solver hasconverged to the speci�ed accuracy [195, 207].The algorithm developed here is illustrated in Figure 4.1, which is a weakcoupling approach. A strong coupling procedure would add additional innerloops of steps 1 through 8. Then after the solid deformation, the �ow �eld wouldbe computed again, giving rise to a modi�ed �ow �eld, which is applied to thestructural solver, but where the old displacements are used again as initial data.The sub-iterations are continued until convergence, whereafter a step forward intime is taken.The weak method often requires a smaller time step for numerical stabilityas compared to the strong coupling approach [122]. Many authors prefer thestrong coupling due to its often better stability characteristics. However, underthe right conditions the weak coupling approach is also usable. Recently, Beulenet al. [13] found satisfying convergence characteristics for weakly coupled FSI for�ow through pipes.The treatment of the �uid- and the solid-domains, and their interaction, canalso be done using di�erent approaches. Traditionally, �uid domains are treated



4.1. COMPUTATIONAL APPROACHES 45

Figure 4.1: Solution procedure.using Eulerian (�xed) meshes, while the solid mesh is Lagrangian, i.e. it deformswith the material deformation. Di�erent ways of combining Lagrangian deform-ing meshes and an Eulerian description of the �uid have been proposed. Twoapproaches are the Arbitrary Lagrangian-Eulerian (ALE) formulation and theImmersed Boundary (IB) family of formulations; the latter one has been usedhere.In the ALE formulation mesh-motion is taken into account in the Euleriandescription of mass- and momentum-conservation, i.e. a more arbitrary descrip-tion is considered [86]. In an FSI-context the �uid domain deforms according tothe deformation of the structural domain [46].The boundary between �uid and solid is well de�ned using the ALE formula-tion, however, at large deformations and rotations the �uid mesh elements maybecome badly shaped, resulting in reduced accuracy. One possibility is thento re-discretize the mesh, which naturally takes computational time. Also, theinterpolation to the new mesh may cause new errors.Van Loon et al. [194] compared the performance of an ALE formulationand some di�erent �ctitious domain methods. They solved both �uid and solidequations using �nite element formulations. The ALE formulation was preferredas long as no remeshing was required, due to the high precision, since in their casethe �uid and solid mesh-nodes coincided at the boundary-interface. However, asdeformations, displacements, or rotations of the solid body become large, theysuggest that a �ctitious domain method might be a good choice, since mesh



46 CHAPTER 4. FLUID-STRUCTURE INTERACTIONgeneration is only required prior to computation, and the �uid and solid meshescan be generated separately.Another way of relating the �uid- and solid-domains is by using a variantfrom the Immersed Boundary (IB) family of methods. The basic idea is that the�uid domain is represented by a �xed Eulerian mesh, wherein the solid domainis represented by a set of source terms that simulate an arbitrary wall boundary,by forcing the wanted boundary condition. When the right boundary conditionis obtained at the right position the solution has converged. In the context ofFSI, another mesh of Lagrangian movable character is created which representsthe solid body and deforms according to theories of solid mechanics. Again, thedeformations, and deformation velocities are transferred to the �uid solver, wherethe boundary sources are moved accordingly.Di�erent ways of treating the immersed (or virtual) boundary have been pro-posed through the years. Peskin [143] proposed probably the �rst IB methodwith application to a deforming (2-D) heart valve. The geometry is determinedby a Lagrangian arbitrary mesh on which forces are speci�ed. The forces aredistributed to the �uid mesh using an approximate Dirac δ-distribution that isslightly spread out on the �uid mesh, since the boundary at most times does notcoincide with a �uid mesh-node.Goldstein et al. [77] used the ideas of Peskin [143], but suggested to computethe force �eld on the boundary using a feedback loop, similar to a PI-regulatorfrom control theory, instead of Peskin's more complex idea of lines of tension andtheir deformation that determines the force. The draw-back of the control theoryapproach is that one needs to determine the coe�cients of the two terms of theregulator.Glowinski et al. [75, 76] suggested another way of specifying the geometricalboundary on a simple mesh using Lagrange multipliers. The method is called a��ctitious domain method� and they obtained second order accuracy.Saiki et al. [163] used the method of Goldstein et al. [77] of using a feedbackforcing term added to the momentum equation, in order to model the IB-interface.However, they use a high order �nite di�erence method for the Eulerian �xedmesh, instead of the spectral method used by Goldstein et al., which suppresssome numerical oscillations.Mohd-Yusof [126] estimated the force terms needed to model the IB by ap-plying the Navier-Stokes equations at the boundary, where the velocity time-derivative is estimated using the wanted and the present velocities.Fadlun et al. [53] compared the force term computational methods of Gold-stein et al. [77] and Mohd-Yusof [126], and found the latter more e�cient becausea larger CFL-number could be used. They also combined the IB-method withLES modeling. Three di�erent methods for transferring the force to the �uidmesh were used: 1) stepwise geometry, the nearest cell is assumed to be theboundary, 2) volume fraction weighting of the force, and 3) linear interpolationto nearest cell where the boundary is supposed to have the right velocity. The



4.2. GAUSSIAN IMMERSED BOUNDARY METHOD 47force is then computed in a similar way as Mohd-Yusof [126]. The third approachgives the best results and is estimated to second order accurate.Kim et al. [99] used the methodology of Fadlun et al. [53], however, in contrastto Fadlun they only added momentum inside the body or on the boundary of thebody. They also added mass sources/sinks in order to correct continuity errorsover the immersed boundary, which is shown to be signi�cant for the method.Silva et al. [169] used a similar method as Fadlun et al. [53] for estimating theforce �eld on the boundary, however, here the di�erent components of distance
< 2∆x from the IB are interpolated from surrounding points in the �uid domain.For points on the IB, cells inside the IB-domain were also taken into account. Themethod is called �the physical virtual method�. Zhang et al. [217] proposed an�Immersed �nite element method�, using �nite elements for both the Eulerian �uidmesh, and the deformation of the Lagrangian mesh. The forces were distributedonto the �uid mesh using an approximate Dirac delta function.Other methods, similar to those discussed above, have been introduced byBertrand et al. [12], Tseng et al. [190], Wang et al. [198], Ikeno et al. [90], andVos et al. [197], also in the context of FSI [3, 98, 198, 211, 220].A disadvantage of IB-methods is that the boundary of the solid does not co-incide with nodes of the �uid mesh cells (when using a staggered �uid mesh coin-cidence of all variables is naturally impossible). Therefore, interpolation betweenthe Cartesian and the boundary mesh is necessary. Also, the highest resolutionof the �uid mesh is needed near a solid boundary at high Re. In the case of de-forming boundaries, re-meshing would possibly be needed, and in that case oneof the advantages with the method is gone. However, higher order methods, upto fourth order, have been suggested, such as the �immersed interface methods�by Li et al. [111], Linnick et al. [115] and Bon�gli [18], where the �nite di�erencescheme is corrected near the IB.Other alternatives to IB and ALE are, for instance, high order wall treat-ment, using cell blocking and interpolation or extrapolation of variables [78], oroverlapping grid techniques, where interpolation takes place in overlap regions[191].4.2 Gaussian Immersed Boundary MethodThe IB-method developed here has partially been described by Revstedt et al.[153, 154].The IB is represented by a 2D Lagrangian surface mesh. This mesh geometri-cally describes the surface of a 3D body. The �uid may �ow inside or around thisobject. The �uid �ow is handled using a Finite Di�erence scheme on a Cartesian3D mesh; the FD-solver is further described in Chapter 5.As described above the basic idea, using an IB-method, is to model the bodyby introducing source terms into the �ow �eld. These momentum source terms



48 CHAPTER 4. FLUID-STRUCTURE INTERACTIONforce the �ow �eld to ful�ll the preset boundary conditions; a moving or steadywall. Since the IB-mesh and the �uid mesh generally do not coincide some methodis needed to estimate the actual velocity at the boundary surface, as well asdistributing the resulting force �eld.The solution procedure, excluding the structural solver, can be divided intothe following steps.1. Compute the �ow �eld of the �uid mesh, including boundary conditions.2. Determine the three velocity components at the IB-nodes.3. Compute the IB-forces based on the velocity defect between wanted andactual velocity.4. Distribute the force �eld onto the �uid mesh.5. Solve the �ow �eld with the new forces, and go back to 2.The process is iterated until su�cient convergence for each time step.The velocity components at the IB-nodes are estimated using the same Gaus-sian distributed weights, as when the IB-forces are distributed back onto the �uidmesh. A velocity component ub at the IB-node at location xi = Xi can, usingtheory of distributions, be expressed as
ub (Xi, t) =

∫

Ωf

u (xi, t) δ (xi −Xi) dV (4.1)where xi are the coordinates, and u (xi, t) is a velocity component of the �uiddomain Ωf . δ(xi) is the Dirac δ-distribution in three dimensions, with the prop-erties
∫ ∞

−∞
δ (xi) dV = 1 (4.2)

δ (xi) =

{

0 , xi 6= 0
∞ , xi = 0

(4.3)Expression (4.1) holds if u (xi, t) is a continuous function over Ωf , whichit is not, since we are dealing with a discretized domain. Instead, one mayuse a Gaussian distribution with a su�ciently large standard deviation, σ, thatspreads the distribution function over a few cells of the �uid mesh. The Gaussiandistribution is expressed as
G (Xi) =
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√
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G (Xi) dV = 1 (4.5)



4.2. GAUSSIAN IMMERSED BOUNDARY METHOD 49where ξ = x1 −X1, η = x2 −X2, and ζ = x3 −X3.In the limit σ → 0, G (Xi) = 0 if xi 6= Xi, and G (Xi) = ∞ if xi = Xi. Thus,the Gaussian distribution can be seen as an approximation to the δ-distribution.In discrete form, using the Gaussian distribution a velocity component ub isdetermined as
ub (Xi, t) =
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∑

l=h−1

j+1
∑

m=j−1

k+1
∑

n=k−1

G (Xi) u
(

xl
1, x

m
2 , x

n
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) (4.6)Here l,m, n represent indices of cells in the mesh near Xi in directions x, y, z.Point (h, j, k) corresponds to the �uid cell most near the IB-node Xi. Hence, thesummation is done over the two nearest neighbors in each direction of the point

(h, j, k). The sum is normalized in order to satisfy the condition of (4.5). Figure4.2 illustrates the active nodes of summation in a plane. Note that staggering isnot considered in the illustration.

Figure 4.2: Immersed Boundary surface crossing the �uid mesh. Active �uidmesh-nodes are indicated by a square.The next step is to estimate the force needed in order to satisfy the boundarycondition. The discretized Navier-Stokes equations, including forcing terms maybe written as
un+1

i − un
i

∆t
= RHSn

i + fn
i (4.7)where RHSi consists of the convective-, pressure-, and di�usive-terms, and where

n indicates the old value from the previous iteration. A certain velocity vi iswanted at the boundary. As RHSi is already known, the fi that is needed inorder to obtain the vi on the boundary at the next point in �time� (or pseudo-time,since several subiterations are done for each time step) is
fn+1

i = −RHSn
i +

vn+1
i − un

i

∆t
(4.8)Here, the RHS-term has been dropped, since it does not improve convergencemuch, and instead a coe�cient has been added before the time derivative, as well



50 CHAPTER 4. FLUID-STRUCTURE INTERACTIONas the force from the previous iteration. The force correcting the velocity defectis then given by
fn+1

i = fn
i + α

vn+1
i − un

i

∆t
(4.9)where α = βRe. Re is the Reynolds number, and β is a relaxation term thatis set for best performance. A large β gives faster adaptation to the boundarycondition, but more oscillations. Increasing β to much leads to divergence, sinceeven the smallest velocity defect causes large force terms, as compared to theother terms of the Navier-Stokes equations.After the force has been estimated for each node it is transferred back tothe same cells of the �uid mesh that the velocity was taken from, using thesame Gauss distributed weights as in (4.6). However, since the IB-mesh is ratherdense, many �uid cells will have contributions from more than one IB-node.Therefore, the force terms of the �uid mesh (Ff ) are �nally divided by the amountof contributions N , i.e. the force is expressed as

F (xi, t) =
1

N

N
∑

s=1

Ff (xi, t) (4.10)This force is then used for solving the system of equtaions of the �uid domain.The process is repeated several times for each time step, as described above.The method of Gaussian weighted averaging gives a �rst order accurate so-lution, as shown by Revstedt et al. [154]. They also used a Lagrangian inter-polation method for estimating the velocity at the IB-nodes. The results showapproximately second order accuracy, however, the Gaussian average gave fasterand more stable convergence, and the di�erences when comparing some relevantparameters were small. Therefore, the Gaussian method has been used here.Revstedt [153] also introduced a multi-grid method into the IB-force solver. Hefound substantial convergence acceleration for steady �ows, and �ows with rapidchanges in the boundary conditions. For time dependent �ows with stationaryboundaries, the multi-grid solver only gave e�ect during the initial phase of thesimulation. Here, a multi-grid solver has not been taken into account.4.3 Solid Mechanics of Kirchho� PlatesThe second part of the FSI-solver is the structural solver, which is here imple-mented using the Finite Element Method (FEM). This section describes the solidmechanics theory used, and the derivation of the governing equations in weakform, used in the �nite element formulation later. The FEM is further describedin Chapter 5.Since the aim with the implementation of the structural solver is to modelFSI in and around pipes of small wall-thickness to radius ratio, such as in blood



4.3. SOLID MECHANICS OF KIRCHHOFF PLATES 51vessels, the geometry is assumed to behave as a thin shell. In the �nite elementformulation the shell is built up of a set of Kirchho� plates, which also have anin-plane stress state in the center-plane of each plate.4.3.1 Governing equationsIn Kirchho�'s plate theory (see Ottosen et al. [138] and Sundström [177]) thetotal deformation is determined by the deformation of the center plane of a plateof thickness ts. Material points laying on a normal to the center plane, continue tolay on a normal line after deformation. Shear deformation is therefore neglected.A coordinate system is introduced with the x�y-plane in the center plane andthe z-axis normal to this surface. Figure 4.3 illustrates the plate with introducedvertical forces and moments. The plate is assumed to be loaded in the normaldirection with the load ps, and the resulting de�ection ws is positive in the positive
z-direction. The superscript s means that the variable is referred to the solid,where similar letters are used for the �uid domain.

Figure 4.3: Plate with vertical forces, and moments.The forces and moments per unit length are estimated as
Vxz =
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xzdz (4.11)

Vyz =

∫ ts/2

−ts/2

σs
yzdz (4.12)

Nxx =

∫ ts/2

−ts/2

σs
xxdz (4.13)

Nyy =

∫ ts/2

−ts/2

σs
yydz (4.14)



52 CHAPTER 4. FLUID-STRUCTURE INTERACTION
Nxy =
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Mxy = Myx =

∫ ts/2

−ts/2

zσs
xydz (4.18)Here a static description is made. Time derivatives will be added later.Since the plate is assumed to be loaded in the transverse plane only, horizontalequilibrium requires Nxx = Nyy = Nxy = 0. Vertical equilibrium then requires

∂Vxz

∂x
+
∂Vyz

∂y
+ ps = 0 (4.19)Moment equilibrium around lines parallell to the x- and y-axes, and where smallquantities are neglected give
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∂x
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∂y
= Vxz (4.21)Di�erentiate (4.20) with respect to y and (4.21) with respect to x, and elimi-nate Vxz and Vyz. Combining the equations and cancelling small terms give
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∂2Myy

∂y2
+ ps = 0 (4.22)Consider a small displacement of one side of the plate, see Figure 4.4. As-suming neglected shear deformations, small deformations, and thereof small an-gles, and doing it similarly in the y-direction, the displacements in the x- and

y-directions are
us = us

0 − z
dws

dx
(4.23)

vs = vs
0 − z

dws

dy
(4.24)where us

0 (x, y), and vs
0 (x, y) are the displacements of the center plane in the x-and y-directions, respectively, due to bending, and ws = ws(x, y) is assumed to
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Figure 4.4: A plate subject to bending.be independent of z. Assuming small deformations [106], the in�nitesimal straintensor is determined as
εsij =

1

2

(

∂us
i

∂xj
+
∂us

j

∂xi

) (4.25)Expressing the components of (4.25), using (4.23) and (4.24), one has
εsxx =

∂us
0

∂x
− z

∂2w

∂x2
(4.26)

εsyy =
∂vs

0

∂y
− z

∂2w

∂y2
(4.27)

εsxy =
∂us

0

∂y
+
∂vs

0

∂x
− 2z

∂2w

∂x∂y
(4.28)

εszz = εsxz = εsyz = 0, due to the previous assumptions.It is further assumed that Hooks law is valid as constitutive relation of thematerial, as well as that the assumption of plane stress is applicable. The last as-sumption is valid because the plate is thin and σs
xz and σs

yz are small as comparedto the other components, and therefore neglected. The constitutive equation isexpressed as
σs

ij = Cijklε
s
ij (4.29)The fourth order tensor Cijkl is for a linearly isotropic elastic solid reduced to twoindependent terms, λs and µs

l , which are the Lame's constants [106]. The stresstensor can then instead be expressed as
σs

ij = λsεskkδij + 2µs
l ε

s
ij (4.30)The Lames constants are related to the more frequently used Young's modulus

Es, and the Poisson ratio νs as
Es =

µs (3λs + 2µs)

λs + µs
(4.31)
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νs =

λs

2 (λs + µs)
(4.32)Assuming plane stress and using Es and νs, the constitutive relation can beexpressed in matrix form as σs = Dεs, which corresponds to





σs
xx

σs
yy

σs
xy



 =
Es

1 − νs2





1 νs 0
νs 1 0
0 0 1/2 (1 − νs)









εsxx

εsyy

εsxy



 (4.33)Under these assumptions it can be shown that there is no straining of themid-plane, and therefore all terms on the RHS of (4.26)�(4.28), except the lastterm in each equation, are equal to zero. It can also be shown that the bendingis driven by the vertical force, while the in-plane strain of the center plane, ifpresent, is driven by the horizontal forces. Thus, the inplane deformation of thecenter plane, and the deformation due to bending are uncoupled, which makesit possible to superpose an independent plane stress deformation onto the centerplane, as will be done here later.Taking the center plane no-straining property into account and substituting(4.26)�(4.28) into (4.33), and the resulting stresses into (4.16)�(4.18), integratingand substituting into (4.22), one has
∂4ws

∂x4
+ 2

∂4ws

∂x2∂y2
+
∂4ws

∂y4
=

12 (1 − νs2)

Ests3
ps (4.34)This is a biharmonic equation that governs the deformation due to the normalload ps. The expression

Ests3

12 (1 − νs2)
(4.35)is often referred to as the bending sti�ness, due to its correspondence to thebending sti�ness of a beam (EI).Now, the forces in the center plane will be considered. Force equilibrium of acontinuum gives

∂σs
ij

∂xj

+ bsi = 0 (4.36)Again, the plane stress assumption is made, so that σs
xz = σs

yz = σs
zz = 0, andthat nothing depends on the z-coordinate. Therefore, forces are located in the

x-y�plane, or more speci�cally in the center plane of the Kirchho� plate. Onceagain in�nitesimal deformations are assumed, as well as an isotropic- and elastic-material, and therefore (4.25) and (4.33) are valid also here. Thus, combiningthese equations would give a second order di�erential equation of the deformationcomponents us and vs.



4.3. SOLID MECHANICS OF KIRCHHOFF PLATES 554.3.2 Weak formulationThe governing equations may be written on a weak form. The advantage of writ-ing the equations on weak form is that the order of spatial derivatives is reduced,i.e. the requirements on the approximation functions in the FEM-formulationare weaker. A consequence of this, as will be seen below, is that the test functionneeds to be di�erentiated instead. The weak form makes discontinuities easierto handle, and in combination with the Galerkin method the weak form yieldsa symmetric set of matrices in the �nite element formulation, similar to when avariational approach is used [138, 152].Now starting with (4.36) for the inplane motion. An arbitrary vector testor weight function vi is multiplied to the expression (4.36), followed by integra-tion over the volume V . As a dynamic problem will be considered here, timederivatives corresponding to acceleration and damping force are added to theexpression. One thus has
∫

V

vi

∂σs
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∂xj
dV +

∫

V

vib
s
idV =

∫

V

viρ
s∂

2us
i

∂t2
dV +

∫

V

viµ
s∂u

s
i

∂t
dV (4.37)where µs is the damping coe�cient of the material of interest, and bsi are bodyforces.Due to the fact that for the general variables φ and qi

∂

∂xi
(φqi) = φ

∂qi
∂xi

+ qi
∂φ

∂xi
(4.38)in combination with Gauss theorem, where S is the surface of the volume V and

ni is the normal to the surface,
∫

V

∂φ

∂xi

dV =

∫

S

φnidS (4.39)the Green-Gauss theorem is given by
∫

V

φ
∂qi
∂xi
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∫

S

φqinidS −
∫
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∂φ

∂xi
dV (4.40)Applying (4.40) to (4.37) one has

∫
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∫
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∂t2
dV +

∫

V

viµ
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∂t
dV =

∫

V

vibidV +

∫

S

viσ
s
ijnjdS (4.41)As the problem here considered thin plates of constant thickness ts, and wherethe variables are independent of z, one can integrate over the thickness of the



56 CHAPTER 4. FLUID-STRUCTURE INTERACTIONplate, i.e. from −ts/2 to ts/2, and have the expression in two dimensions. Sincethe traction vector tsi = σs
ijnj , the expression for the plate center-case is

∫

S

σs
ij

∂vi

∂xj

tsdS +

∫

S

viρ
s∂
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i

∂t2
tsdS +

∫
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s∂u
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∂t
tsdS =

∫
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s
i t

sdS +

∮

L

vit
s
i t

sdL(4.42)where L is the boundary around the center of the plate. The last term in (4.42)describes the natural- or Neumann-boundary conditions of the domain. TheEssential- or Dirichlet-boundary conditions are applied later in the �nite elementformulation.A similar procedure is applied to the plate bending equation (4.22), which ismultiplied by the arbitrary test function v = v(x, y) and integrated over the platesurface S. Time derivatives are added as well, however, the time derivative termsrelated to (4.20)�(4.21) are considered small in comparison to the time derivativeterms related to (4.19), and therefore neglected. The angular velocities are stillcomputed in the �nite element solution, as spatial derivatives of ws.
∫
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∂y
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∫
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∫
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∫

V

vρs∂
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∫
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vµs∂w
s

∂t
dV (4.43)The time derivative terms are integrated over the volume, since vertical equilib-rium requires integration over the thickness of the plate for the temporal terms.By using the Green-Gauss theorem (4.40) twise and the relations (4.11),(4.12), (4.16)�(4.18), (4.20), (4.21), (4.43) can be expressed as (see Ottosen et al.[138] for details)
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vpdS (4.44)where dφ
dn

= ∂φ
∂xi
ni, and n and m are the normal and tangential unit vectors,respectively. The natural boundary conditions are therefore given by Mnn and

Vnz + dMnm

dm
.



4.4. COUPLING 574.4 CouplingThe solution algorithm of the method chosen here can be divided into four parts:1. solid solver2. coupling: transfer of boundary data to �uid boundary3. �uid solver4. coupling: transfer of boundary data to solid boundaryThe boundary conditions that are subject to the transfer process are theIB-motion, determined by the solid deformation, and the forces on the wall de-termined by the �uid �ow. Mathematically the boundary conditions can beexpressed as
ti = σs

ijnj = σijnj , ti ∈ Γs, σij ∈ Γf (4.45)
∂us

i

∂t
= ui, us

i ∈ Γs, ui ∈ Γf (4.46)where σij is the �uid stress tensor, nj is the boundary normal into the �uid do-main, tsi is the traction vector on the solid boundary, σs
ij is the solid stress tensor,

us
i is the displacement of the solid boundary, and ui is the velocity boundarycondition that the �uid near the wall must adapt to.As the structural mesh is coarser than the IB-mesh, the velocities obtainedby the solid solver need to be interpolated to the IB-nodes. First an algorithmidenti�es which IB-node belongs to which �nite element. Then the velocity datafrom the �nite elements is linearly interpolated to all IB-nodes belonging to eachparticular �nite element, respectively. Hence, vn+1, is updated for all nodes andsolved for.The forces to be transferred to the solid boundary are determined from theforce source terms Fi. The rationale is that the force needed to uphold thewall boundary condition, is the force a solid wall would experience. Therefore,the shortest distance h between two adjacent �nite element nodes is estimated.Thereafter, all force (source) terms of the �uid mesh, in a sphere with radius
r < h/2 around each �nite element node, are integrated . This directly gives thecontribution of all three force components to the boundary forces of each �niteelement node. Hence, the force experienced by a �nite element node is expressedas

F s
i =

∫

r<h/2

FidV (4.47)where F s
i is the force component i used as load force in the solid solver.



58 CHAPTER 4. FLUID-STRUCTURE INTERACTION



Chapter 5Numerical MethodsThe governing equations of �uid mechanics are non-linear and the range of �owsthat they describe is very wide and highly di�erent (e.g. laminar or turbulent,steady or unsteady, etc.) The system of PDE's has a closed analytical solutiononly for a few simple cases and where the non-linearity e�ects are negligible.Examples of these kind of �ows are Stokes �ow, Couette �ow and Poiseuille �ow.These �ows are not considered here, but are easily found in any undergraduatetext on �uid mechanics [203]. At the �ow regimes that are considered here, thenon-linear e�ects are important and hence no analytical solutions can be found.Numerical methods can handle non-linear problems almost as easily as lin-ear ones. Numerical schemes for solving the Navier-Stokes equations under verydi�erent conditions are available and nowadays these methods are e�cient. Theimprovement of computational power enables one to obtain results with betterresolution, and enabling a better assessment of the accuracy of the numericalcomputations. However, there are inherent uncertainties associated with �owcomputations. A major issue is always setting relevant (or accurate) boundaryconditions. In particular if the numerical results are to be compared to ex-perimental data, the boundary conditions have to be the same as those in theexperiments. Otherwise, such comparisons are of qualitative value and this is thereason for the large number of �validation� projects. Nevertheless, one can statethat there are generally �valid� computational codes, though the level of accuracymay depend on the particular case and the level of detail in the discrete approx-imations. Another issue is related to modeling of certain phenomena such asturbulence, rheological properties of the �uid, etc. These models introduce newerrors (modeling errors) that should not be mixed with the other two mentioned�rst (i.e. the discretization errors and the uncertainties in boundary conditions).The uncertainties in the computational set-up lead to the need of experimentalsupport to the computations. In addition to direct comparison with experiments,it is important that one carries out multiple computations to assess the sensitivityof the results to di�erent parameters; numerical (resolution), geometrical (shapeand size) and physical (Re, α, and boundary conditions).59



60 CHAPTER 5. NUMERICAL METHODS5.1 Computational Fluid Dynamics, CFDIn numerical simulations, or as it is being referred to in the context of �uid me-chanics, Computational Fluid Dynamics (CFD), the governing equations of �uidmechanics, the Navier-Stokes equations and the continuity equation, are solvednumerically. Thus, the system of PDE's is discretized in space (and time) on adiscrete number of points. Thereby the continuous system of partial di�erentialequations becomes a system of algebraic equations of �nite size. The number ofdependent variables in the algebraic system equals the number of points in spacetimes the number of dependent variables in the original system. The algebraicequations are solved through an appropriate computational algorithm.The major components of the most common CFD-approaches are:
• The computational domain is divided into a large number of small volumes.The size of the computational volumes determine the spatial resolution ofthe computed results. The shape of the small volumes may vary. Mostoften one uses hexahedral or tetrahedral shaped (control) volumes. Othershapes can equally be used. The total set of control volumes form a mesh(or grid). If only spatial discretisation is done, one obtains a set of ordinarydi�erential equation (in time), which has to be integrated. Alternatively,one also discretize with respect to time.
• The derivatives in space (and time) of all variables are then discretized onthe grid using an approximation scheme of a certain order. Higher orderschemes require that a larger number of grid points are involved. This formsa discrete system of equations.
• The discrete system of equations is then solved with an appropriate numer-ical scheme.The most common discretization schemes used in engineering are Finite Vol-umes (FVM), Finite Elements (FEM), and Finite Di�erences (FD). All theseapproaches have been used in this work and are described shortly in the follow-ing.



5.2. DISCRETIZING THE FLOW EQUATIONS 615.2 Discretizing the Flow EquationsThe Navier-Stokes equations and the continuity equation are discretized by either�nite-di�erences or �nite-volumes. In some cases (Cartesian grids and certaincentral di�erences) these two schemes are identical.5.2.1 Finite di�erence methodFor the �uid part of the FSI-solver a Finite Di�erence (FD) scheme has beenused in combination with an Immersed Boundary (IB) solver. The IB-methodhas been described in Chapter 4.In the FD-method the derivatives of the continuity- (3.7), and the Navier-Stokes-equations (3.10), are discretized directly on a structured mesh; here a�xed Cartesian mesh is used. The discretization process results in an algebraicsystem of equations, which is then solved using a suitable method.The solver uses a staggered grid-formulation. The velocity components arespeci�ed on the cell-surfaces with normals in the direction of each velocity com-ponent, respectively. The same staggered grid formulation is used for the dis-tribution of forces. The pressure term is speci�ed in the cell center. Figure 5.1illustrates the locations of the di�erent components in each cell. A staggered gridavoids un-physical pressure oscillations in the solution [58]. A Cartesian grid hasthe advantages that it is rather easy to apply discretization schemes, it is easierto achieve high accuracy, and that the computational cost is lower as compared toa curvelinear or unstructured grid [58]. A disadvantage is that it may be di�cultto represent complex boundaries accurately.

Figure 5.1: Discretized components on staggered grid.



62 CHAPTER 5. NUMERICAL METHODSDiscretization schemesA three level second order backward (implicit) scheme is used for the time deriva-tives [4], and given by
∂φ

∂t
≈ 3φn+1 − 4φn + φn−1

2∆t
(5.1)For the di�usive terms a fourth order central di�erence scheme is employed,the pressure gradient is discretized using a fourth order forward di�erence scheme.The convective terms are discretized using a third-order upwind scheme, as pro-posed by Rai and Moin [150], and given by

ui
∂φ

∂x
≈
{

ui
2φi+1+3φi−6φi−1+φi−2

6h
, ui > 0

ui
2φi−1−3φi+6φi+1−φi+2

6h
, ui < 0

(5.2)SolverThe solver is using a multi-grid approach and a Gauss-Seidel scheme as smoother.Pressure corrections are obtained from a Poisson equation, also relaxed using aGauss-Seidel iteration scheme. The grids used for the multi-grid acceleration aresuccessively �ner, where the cell size for each generation of grids is reduced byone half.As Revstedt and Fuchs [154] showed the combined FD-IB solver is mainlylimited in accuracy by the IB-part of the solution proceedure, where also themethod used here was shown to be �rst order accurate.Directly applying a high order discretization scheme may lead to a less robustand less e�cient solver. Instead, introducing a single step defect correction algo-rithm, where lower order discretizations are combined with higher order, improvesthe accuracy to that of the higher order schemes. Here the high order schemesare given in the previous section, while the lower order schemes are a �rst or-der forward scheme for the pressure term, �rst order upwind for the convectiveterms, and a second order central scheme for the di�usive terms. The defectcorrection approach takes advantage of the accuracy of the high order schemesand the stability of the more di�usive �rst order schemes. It also converges fasteras compared to applying a high order scheme directly [78].The problem to be solved is
Lφ = f (5.3)where L is the operator representing the derivatives of the Navier-Stokes equa-tions, φ is the solution and f a source term. Given φn, one solves for φn+1 as

Lloφ
n+1 = f + Lloφ

n − Lhoφ
n (5.4)where Lho denotes the high order discretized derivatives of the Navier-Stokesequations. The superscript n gives the iteration number and φ = φ(u, v, w, p).The iteration process is repeated until the di�erence Lloφ

n+1−Lloφ
n is su�ciently



5.2. DISCRETIZING THE FLOW EQUATIONS 63small. Then the solution for the high order discretization problem Lhoφ = f isachieved. For more on defect correction, see Gullbrand et al. [78].5.2.2 Finite volume methodUsing the �nite volume method the governing equations are integrated over eachelement. The momentum equations become then:
∫
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dV (5.5)Applying Gauss divergence theorem to (5.5) yields
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V is the volume of each element, S is the surface enclosing the volume and ni isthe outward pointing normal.In a similar manner the continuity equation is given by

∫

S

uinidS = 0 (5.7)The equations are then discretized into the following two expressions, where su-perscript f shows that a parameter is taken from a face of the element.
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f = 0 (5.9)
Velem is the element volume, and Nfaces is the number of faces enclosing an ele-ment.Here a collocated grid scheme is used. Thereby all dependent variables andparameters are given at the same location (5.8) and (5.9).The discretization in time may be of di�erent types; here an implicit secondorder accurate scheme is used, which is given in equation (5.16). The discreteset of algebraric equation has to be solved in each time step. The marching intime leads �nally to a temporally resolved solution. Di�erent approaches maybe adopted when solving the non-linear problem in each time-step. One maysolve all the linearized equations at once, or using a Newton method in the non-linear case [58]. Another (so called segregated) approach is to solve each of



64 CHAPTER 5. NUMERICAL METHODSthe governing equations in turn. This approach may require re-visiting some ofthe equations before adequate accuracy (to ensure convergence of the iterativeprocess) is attained. Here, a segregated solution method is used (in each time-step), which means that the governing equations are solved sequentially. Furtherdetails are given below.Convection and pressure termsThe convection terms, as shown in (5.8), contain cell face parameters and interpo-lation is therefore needed. The software o�ers di�erent kinds of upwind schemesfor this task. Here a second order upwind scheme is chosen (or in some cases theQuick scheme [59]), and it is given by
φf = φ+ ∇φ · r (5.10)where φ and ∇φ are cell centre values from the upstream cell, and r is thedisplacement vector from the upstream cell centroid to the face centroid.The gradient of parameter φ can according to the divergence theorem bewritten as

∇φ = lim
∆V →0

1

∆V

∫
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φndS (5.11)which in discrete form yields
∇φ =
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f (5.12)where φf
ave is the average of φ from the two cells adjacent to the face. This is thegeneral method used for computing gradients in the FVM-solver used [59].The QUICK scheme is based on a weighted average of a second order upwindscheme and a second order central scheme. If φ is wanted on face e, between cell

E and P and downstream of cell P and W , we have
φe = θ

[

SE

SE+SP
φP + SP

SE+SP
φE
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+

(1 − θ)
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SW +2SP

SW +SP
φP − SP

SW +SP
φW

]

(5.13)where Si is the length of element i and θ is a constant varying between 0�1. When
θ = 1 (5.13) corresponds to a second order central di�erence scheme, and when
θ = 0 it corresponds to a second order upwind scheme. In the software θ variesdepending on the characteristics of the solution.



5.2. DISCRETIZING THE FLOW EQUATIONS 65Di�usion termsFor the di�usion terms a central di�erence scheme has been used, which is secondorder accurate. The face value of, say, parameter φf is given by
φf =

1

2
(φ0 + φ1) +

1

2
(∇φ0 · r0 + ∇φ1 · r1) (5.14)where the indices 0 and 1 are the two cells sharing the face f and r is the vectorfrom the cell centroid to the face centroid.Temporal termsThe temporal terms are discretized using a second order backward scheme. If theequation for one variable φ is written as

∂φ

∂t
= F (φ) (5.15)the discretized form can be written as

3φn+1 − 4φn + φn−1

2∆t
= F (φ) (5.16)where n + 1 is the value at t + ∆t, n at t and n − 1 at t − ∆t. The time levelused for the spatial terms, i.e. in F (φ), decides whether the method is explicit orimplicit. Here an implicit formulation has been chosen, so the equation can bewritten as

φi = 4/3φn − 1/3φn−1 + 2/3∆tF
(

φi
) (5.17)This equation is then being solved iteratively, and once convergence is reached φiis set equal to φn+1. Implicit formulation gives an unconditionally stable methodwith respect to time step size, however, we are still limited by physical constraints.The CFL number is de�ned as CFL = uloc∆t

∆x
, where uloc is the local speed atthe particular element of interest, ∆t is the time step size and ∆x is the elementsize. For a CFL number above one the propagation length uloc∆t is larger thanthe element length ∆x, which means that the numerics might miss informationabout the �ow.Another restriction is the limitation of the grid to resolve a periodic motionof period T . If uloc is the local �ow speed and ∆x the distance between two gridpoints, the smallest period that can be resolved is T = 2∆x

uloc
, since at least threepoints are needed in order to resolve a sinusoidal �uctuation. A time step smallerthan T is then required in order to resolve this frequency.



66 CHAPTER 5. NUMERICAL METHODSSolverThe non-linear part of the equations are linearized, resulting in a system of linearequations with one equation for each cell in the domain. A Gauss-Seidel solver(smoother) is then used in conjunction with a multi-grid method to solve thesystem of equations. One may use a non-linear solver in conjunction with themulti-grid solver by using the so called Full Approximation Storage (FAS) [68].5.2.3 Gauss-Seidel methodThe Gauss-Seidel method is an iterative way of solving system of equations.Applied to a general system Ax = b the Gauss-Seidel scheme can be written as
xk+1

i =
1

aii

(

bi −
i−1
∑

j=1

aijx
k+1
j −

n
∑

j=i+1

aijx
k
j

) (5.18)where super-script k refers to the previous iteration level and k+1 to the same level,for those terms that have already been estimated [83]. The method requires thatthe matrix of the system of equations is diagonally dominant. Tannehill et al.[183] describe the solution procedure as:1. Make initial guess for all unknowns (not needed for one value, which isgiven from the other values).2. Solve each equation for the unknown, whose coe�cient is largest in magni-tude, using guessed values initially and the most recently computed valuesthereafter.3. Repeat this procedure iteratively until su�cient convergence is attained.5.2.4 Multi-grid methodThe multi-grid method is used to accelerate the solver, which otherwise becomesvery slow at a large number of elements. The Gauss-Seidel scheme e�cientlyreduces the local high frequency errors in the solution, while the more global lowfrequency errors are reduced at a rate inversely related to the number of cells[59, 83, 91]. Therefore, such an iterative scheme is often referred to, and used as,a smoother.The idea with the multi-grid technique is that the solution, usually aftersome smoothing iterations, still contains low frequency errors. The residual isthen mapped (restriction) to and used in the smoothing on a coarser grid, wherethe previous low frequency error now, relative to the larger element size, is a highfrequency error. The Gauss-Seidel scheme is then used at the coarser level toeliminate these errors. The process continues for a su�cient amount of coarser



5.2. DISCRETIZING THE FLOW EQUATIONS 67grids. When the coarsest grid is reached the solution on that is mapped back(prolongation) to a �ner grid, where more relaxation takes place, again using theGauss-Seidel scheme. When we �nally end up at the initial grid again a convergedsolution is hopefully reached, otherwise another sequence is initiated [59, 183].The process is described mathematically as follows: The discretized equationis given by
Aφe + b = 0 (5.19)where A is the coe�cient matrix, φe is the exact solution and b are constants.The approximate solution φ will contain a residual d and is given by
Aφ+ b = d (5.20)A correction ψ to φ yields φe = φ+ ψ, and with (5.19) and (5.20) we have

A(φ+ ψ) + b = 0
Aψ + Aφ+ b = 0
Aψ + d = 0

(5.21)The correction is then given by the initial coe�cient matrix A, and the residualis given after the initial sweeps, that reduced high frequency errors. In order tosolve for the correction term, containing more low frequency errors, the residualis interpolated to a coarser level (restriction), where now the relation is expressedas
Acψc +Rd = 0 (5.22)where Ac is the coe�cient matrix of the coarser level, ψc will be the solutionon the coarser level after smoothing, and R is the restriction operator. Aftera su�cient amount of coarse grid levels, the process changes direction and thesolution on the coarser level is transferred to a �ner level (prolongation), whichcan be expressed as
φnew = φ+ Pψc (5.23)where P is the prolongation operator, and where some more smoothing take place.There are several di�erent commonly used cycles of the multi-grid process. Twoof them are the V and the W cycle, which are shown in Figure 5.2.In the case of a non-linear problem the Full Approximation Storage (FAS)approach is considered instead, where also the approximate solution needs to berestricted onto coarser grids [58].
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Figure 5.2: Examples of multigrid cycles; the V-cycle to the left and the W-cycleto the right. After Heath [83].5.2.5 Pressure-velocity coupling using PISODue to the usage of a segregated approach the computed dependent variables donot satisfy both the momentum- and the continuity-equations, just after updat-ing the momentum equations. In order to compensate for this error, a pressure-correction scheme is used. The momentum equations are �rst solved using anestimated pressure, and if the resulting velocity �eld does not satisfy continu-ity, pressure is also updated so that the continuity equation is satis�ed, whilethe approximation of the momentum equation remains un-a�ected [183]. Theprocedure is initiated with the predictor step as
ρ

∆t
(u∗i − un

i ) = H (u∗i ) − ∆ip
n (5.24)where pn and un

i are the values at the previous time level, or the initial pressureand velocity �eld, respectively. The operator H is the convective and di�usiveterms in discretized form, and ∆i is the gradient in discretized form. Generally,continuity will not be satis�ed after this predictor step, so this is followed by acorrector step, which reads
ρ

∆t
(u∗∗i − un

i ) = H (u∗i ) − ∆ip
∗ (5.25)In this step continuity, ∆iu

∗∗
i , is required, and both the pressure p∗ and the revisedvelocity u∗∗i is sought. Now, taking the divergence of (5.25) we have
∆2

i p
∗ = ∆iH (u∗i ) +

ρ

∆t
∆iu

n
i (5.26)which is a discretized Poisson equation. Solving this equation yields p∗, whichthen is put into (5.25) and which gives u∗∗i . By de�nition this satis�es the continu-ity equation. Several re-corrector steps may then also be performed by doing thesame correction procedure again, depending on the requirements on convergence.



5.3. FINITE ELEMENT METHOD FOR SOLID DEFORMATION 69It should be pointed out that di�erent versions of pressure-velocity couplingschemes exist, depending on the �ow character that is often used to guide inmaking an assumption on the behavior of the pressure-velocity correction.5.3 Finite Element Method for Solid DeformationThe equations governing the structural deformations were given in Chapter 4,and are repeated here, for convenience, in their weak forms as
∫

S

σs
ij

∂vi

∂xj
tsdS +

∫

S

viρ
s∂

2us
i

∂t2
tsdS +

∫

S

viµ
s∂u

s
i

∂t
tsdS = F s

horizontal (5.27)
∫

S

(

∂2v

∂x2
Mxx +

∂2v

∂y2
Myy + 2

∂2v

∂x∂y
Mxy

)

dS −
∫

V

vρs∂
2ws

∂t2
dV

−
∫

V

vµs∂w
s

∂t
dV = F s

vertical (5.28)where F s
horizontal and F s

vertical act in the tangential plane, and normal, to theelement in question, respectively.In the Finite Element Method (FEM) the �eld variables are approximatedusing some kind of piecewise approximation function, usually polynomials, overeach element. The order of the polynomial is determined by the element shape,the number of nodes of the element, and the number of degrees of freedom pernode. Also, the order of the polynomial determines, if it is complete, the orderof accuracy of the discretization. For an incomplete polynomial, i.e. where notall terms of a speci�c order are included, the truncation error is determined bythe lowest order term. The polynomial is chosen so that each point inside eachelement can be expressed as a function of the values of the nodes, respectively.Here, the FEM has been used for solving the structural deformation of thecylindrical geometry, whereas an FD approach (described later) has been usedfor the �uid part of the FSI-problem considered.The idea of the �nite element formulation is to �nd a solution of a problem thatminimizes the total potential energy functional, using a variational formulation,or to �nd a weight function v that minimizes the integral of the residual of theapproximate solution of a system of equations. The latter approach is termedthe Weighted Residual approach, and it has been used here.The weight function can be expressed as a linear combination of base func-tions, v =
∑N

i=1 ciψi, where N is the number of base functions used. The Galerkinmethod states that the weight function that minimizes the integral of the resid-ual of the system of equations has the same set of base functions as the base



70 CHAPTER 5. NUMERICAL METHODSwhich is used for the approximation of the �eld variables. Mathematically thiscan generally be expressed in one dimension as
∫ b

a

ψiedx = 0, i = 1, ..., N (5.29)where ψi is the base also chosen for the approximation function, and e is theerror of the di�erential equation. It is now rather obvious why the weak formu-lation is very convenient for formulating the �nite element description. For otherminimization methods, see Ottosen et al. [138] or Rao [152].With that given, the rest of the process of building the �nite element descrip-tion chosen, and computing the solution follows as:1. De�ne the element, the degrees of freedom and the approximating polyno-mials for the in-plane-, as well as the bending-descriptions.2. Substitute the approximation into each weak formulation of the problem,respectively, and build the system matrices.3. Assemble the local matrices into the global system matrices after coordinatetransformation.4. Apply the Essential or Dirichlet boundary conditions to the global systemmatrices.5. Solve the resulting system of (ordinary di�erential) equations.As the �nite element method uses a set of ��nite elements� to describe ageometry, the thin walled geometry here has been chosen to be described by a setof Kirchho� plates, including center in-plane deformation for shear forces. Thesolid mechanics theory of Kirchho� plates was described in a previous chapter.For simplicity, simple triangular elements have been chosen for approximation.A sketch of a triangular element with its degrees of freedom for the in-plane, andbending descriptions, is shown in Figure 5.3. The formulation is �rst describedfor the in-plane motion, followed by the description of the bending motion.5.3.1 Plane stress of triangular elementA coordinate system is de�ned as shown in Figure 5.3, this is a local coordi-nate system valid for all �nite elements, related to the global coordinate systemthrough a matrix of direction cosines [152]. For the in-plane formulation there arethree nodes and two degrees of freedom per node, i.e. six unknowns. Therefore,2D linear approximation polynomials, with six unknown constants, are used andwritten as
us(x, y) = α1 + α2x+ α3y (5.30)
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Figure 5.3: Triangular element.
vs(x, y) = α4 + α5x+ α6y (5.31)The six degrees of freedom qi are given by:

us
1 = q1 vs

1 = q2 (5.32)
us

2 = q3 vs
2 = q4 (5.33)

us
3 = q5 vs

1 = q6 (5.34)where the subscript of us now referrers to the local node number. Each node is alsogiven a unique global node number, that is used later for the global assemblingprocess.The expressions of (5.30)�(5.34) can now be written in matrix form as
U =

(

us(x, y)
vs(x, y)

)

= ΥΘ (5.35)Hence, Υ is the matrix of the base functions
Υ =

(

1 x y 0 0 0
0 0 0 1 x y

) (5.36)and Θ is the vector of unknown coe�cients
Θ =







α1...
α6






(5.37)



72 CHAPTER 5. NUMERICAL METHODSUsing the fact that in the nodes one has (5.32)�(5.34), so that
q = ΛΘ (5.38)where

Λ =





Υ1

Υ2

Υ3



 (5.39)
q =







q1...
q6






(5.40)and where the subscript on Υ states the local nodenumber, one has

U =

(

us(x, y)
vs(x, y)

)

= ΥΛ−1q = Nq (5.41)
N is the matrix of shape functions, i.e. the polynomial approximations ofthe �eld variables over the element are now related to the unknown degrees offreedom of each node.The strain tensor is given by (4.25). By reducing to two dimensions the strainrelations may be expressed as

εs =





εxx

εyy

εxy



 =





∂us/∂x
∂vs/∂y

∂us/∂y + ∂vs/∂x



 (5.42)Using (5.41) and performing the derivations on the shape functions the straincan be expressed as
ε2D = Bq (5.43)where B contains the di�erentiated shape functions.Further, σs = Dεs = DBq, where D is given in (4.33), and the use of theGalerkin formulation suggests that the arbitrary test functions are expressed as

vi = Nc, where c is arbitrary. Using these relations in (4.42), where c will cancel,give
k(e)1 = ts

∫∫

Se

BTDBdS (5.44)
m(e)1 = tsρs

∫∫

Se

NTNdS (5.45)
c(e)1 = tsµs

∫∫

Se

NTNdS (5.46)



5.3. FINITE ELEMENT METHOD FOR SOLID DEFORMATION 73The force terms on the RHS of (4.42) do not need to be considered. Instead ofhaving a traction �eld and/or a body force �eld and integrate those functions overthe boundary and domain, to distribute the forces to the nodes, the force vectoris estimated directly at each node, respectively. This procedure is describedin Chapter 4, and indicated in (5.27). From a three dimensional perspectiveall nodes are boundary nodes, and one then would have only boundary forces.Although, viewing the axial-azimuthal plane in two dimensions, the top andbottom of the cylinder are boundaries, while the other nodes are internal. Thenthe force �eld can be seen as consisting of both boundary- and body-forces. Inpractise this does not matter, the resulting force �eld is here the same given by(4.47).5.3.2 Triangular plate bending elementWhen it comes to the bending part of the problem the process of obtaining the�nite element description is rather similar to what was described in the previoussection. The largest di�erence is that a higher order polynomial is used, as thereare more degrees of freedom, and as there are higher order derivatives in thegoverning equations (compare (4.42) and (4.44)).There are three degrees of freedom in each node, which give nine degrees offreedom in total per element; these are also shown in Figure 5.3. The polynomialtherefore has nine constants and is given by
ws(x, y) = α1 + α2x+ α3y + α4x

2 + α5xy + α6y
2 + α7x

3 + α8

(

x2y + xy2
)

+ α9y
3(5.47)The base of the eighth term assures completeness and symmetry of the expression.As before the expression above can be written on matrix form as ΥbΘb. Thesubscript b referres to the bending part of the FEM-formulation.

Υb =
(

1 x y x2 xy y2 x3 (x2y + xy2) y3
) (5.48)

Θb =







α1...
α9






(5.49)The degrees of freedom are further expressed as

ws
1 = q1

∂ws
1

∂y
= θx1

= q2 −∂w
s
1

∂x
= θy1

= q3 (5.50)
ws

2 = q4
∂ws

2

∂y
= θx2

= q5 −∂w
s
2

∂x
= θy2

= q6 (5.51)
ws

3 = q7
∂ws

3

∂y
= θx3

= q8 −∂w
s
3

∂x
= θy3

= q9 (5.52)



74 CHAPTER 5. NUMERICAL METHODSwhere the angular deformations θx and θy are rotations around the x- and y-axes, respectively. The negative sign before the rotations around the y-axis is tomake sure that a positive movement in the x-direction corresponds to a positivedisplacement of ws. The angular deformations may be referred to as generalizeddeformations, and similarly their corresponding moments may be referred to asgeneralized forces. The subscript number referrers to the local node number.The procedure of (5.38)�(5.41) also applies to the formulation of the bendingof the plate; only that the matrices with subscript b are used where it applies.The corresponding expression for (5.41) is here (where the out of plane horizontaldeformation due to bending is neglected)
ws(x, y) = ΥbΛ

−1

b
qb = Nbqb (5.53)Further, since there are no resulting in-plane forces in the bending part of thedescription, (4.26)�(4.28) can be written as

εsb = z
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−∂2w
∂x2

−∂2w
∂y2

−2 ∂2w
∂x∂y






(5.54)Substituing (5.53) into (5.54) and doing the di�erentiations, the strains maybe expressed as

εsb = zBbqb (5.55)where Bb contains the di�erentiated shape functions.Further, substituting (5.55) into (4.33), one gets expressions for the stresses.These are then integrated using (4.16)�(4.18), before they can be put into (5.28).The test function v is here written as v = cbNb, and again cb cancels.Substituting these expressions into (5.28) the expressions for the sti�ness,mass, and damping matrices are
k(e)2 =

ts3

12
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DBbdS (5.56)

m(e)2 = ρs
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V e
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b
NbdV = ρsts
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NbdS (5.57)

c(e)2 = µs

∫∫∫

V e

NT

b
NbdV = µsts

∫∫

Se

NT

b
NbdS (5.58)As before the RHS terms of (4.44) are neglected, and instead the force �eldis computed from (4.47).All integrations are analytically evaluated before implemented into the code.



5.3. FINITE ELEMENT METHOD FOR SOLID DEFORMATION 755.3.3 AssemblingWhen the FEM-formulations for both in-plane- and bending-deformations aresettled, the two contributions are assembled into total element matrices.The local sti�ness matrix of (5.56) can be expressed as
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(5.59)with corresponding deformations

us

(e)1
= q =

















us
1

vs
1

us
2

vs
2

us
3

vs
3

















(5.60)
Similarly for the bending part
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(5.61)with corresponding deformations
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(5.62)



76 CHAPTER 5. NUMERICAL METHODSThe two contributions are then assembled into a total element matrix as
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(5.63)where, for example, 01x2 corresponds to a zero matrix of 1 row and 2 columns.Deformations corresponding to (5.63) are
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(5.64)
The rows and columns of (5.63) that contain only zeros correspond to θz,which must be included since each plate is a part of a three dimensional shell.As the matrix is transformed into the global coordinate system this variable willnot be zero.Each node are given a global node-number which determines the position inthe global matrix. Before the matrix-components of (5.63) are put into the globalsti�ness matrix K the local matrix is transformed into the global coordinates as

k(e) = λT
totk

(e)tot

18x18
λtot (5.65)
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λtot =
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(5.67)The non-zero elements of the matrix λ6x6 are the direction-cosines betweenthe local- (x, y, z) and the global-(X, Y, Z)-coordinate systems.The above assembling procedure also applies to the mass- and damping-matrices.When all local matrices have been assembled into global matrices the resultingsystem of equations, is a system of ordinary di�erential equations with respectto time as
M
∂2u

∂t2
+ C

∂u

∂t
+ Ku = F (5.68)where M,C,K are the global mass-, damping-, and sti�ness-matrices, respec-tively. u is the global deformation vector, and F is the global force vector com-puted from (4.47). Finally, before solving the system of equations the Dirichlet(or essential) boundary conditions are forced to the solution by speci�cation di-rectly in the system matrices.5.3.4 System of equations solverThe system of ordinary equations (5.68) is re-written as a system of �rst ordertime derivatives, and then solved using a combined implicit Euler- and a Gauss-Seidel-scheme (5.18). The implicit (or backward) Euler scheme is given by

yn+1 = yn + ∆tf (tn+1, yn+1) (5.69)
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Chapter 6Summary of ResultsThis work consists of results partially from computations on di�erent systems ofbifurcating pipes, and partially from the evaluation of an Fluid-Structure Inter-action (FSI) code. The aim with the FSI-code is to model �ow of blood in elasticarteries.All studies performed have a physiological perspective, since such �ows (ex-cept the cylinder case) are found in the arterial system of the human body. Suchphysiological �ows are characterized by pulsation and three-dimensional e�ectssuch as �ow separation, strong secondary motion in the cross-sectional plane, andlarge temporal- and spatial-variations in the Wall Shear-Stress (WSS). Addition-ally, the �ows are intermittently in the transitional regime, which adds to thecomplexity.6.1 Wall Shear Stress PatternsAs the disease of atherosclerosis often is found in the vicinity of bifurcations andin curvatures [8, 42, 121, 133, 173, 205], where the �ow is rather unsteady, it hasbeen hypothesized that the mechanical forces due to the �ow are involved in theatherosclerotic process. These forces are mainly discussed in terms of the wallshear stress (WSS) [2, 14, 16, 66, 67, 118]. Therefore the dynamics of the WSShave been studied.The results show large temporal and spatial derivatives of the WSS-components(τxr, τθr) in the vicinity of the bifurcation. Figures 6.1(a) and 6.1(b) show peaksof the derivatives of τxr in the �rst part of the daughter vessel, after a 90-degreebifurcation (see Paper 2).The outer wall of streamline curvature in the 90-degree bifurcation is oftenreferred to as more �safe�, since the �ow is more uniform there [14, 15, 72].However, these results show that due to the pulsating character of the �ow, thereare temporal variations there as well, including large derivatives of the WSS,as shown for the time derivative in Figure 6.2. It must be remembered that79
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(a) ∂τxr

∂t
at t/T = 0.228. (b) ∂τxr

∂x
at t/T = 0.228.Figure 6.1: Derivatives of axial WSS-component at peak velocity.atherosclerotic plaques are found also at such locations, although less frequently[42]. Large temporal- and spatial-derivatives of the WSS were found at increasedReynolds- and Womersley-numbers as well.

Figure 6.2: ∂τxr

∂t
at t/T = 0.355.6.2 Secondary FlowsThe characteristics of the WSS described above are due to the dynamics of thesurrounding �ow, which has also been investigated.The �ow through a 90-degree bifurcation shows similar characteristics as the�ow through a 90-degree bent pipe, since the streamlines are curved similarly.These characteristics are secondary vortical �ows, as well as possibly regions ofseparation. The typical vortical pattern in steady �ows in bent pipes is a pair ofDean vortices, induced by the centrifugal e�ect. However, in the case of pulsatileor sinusoidal �ows in curved pipes, other secondary patterns are found, such



6.2. SECONDARY FLOWS 81as multiple vortex structures and secondary motion in the opposite direction ascompared to the classical Dean vortices [30, 44, 119, 170, 176, 180]. Similarly,di�erent patterns than the regular Dean vortices are expected in the case ofpulsatile �ow through a 90-degree bifurcation, which may also explain some ofthe WSS-patterns previously found.The results show that the �ow �eld goes through di�erent stages as the drivingpressure varies. An increased Reynolds number (Re = 5800) keeps the secondarystructure as long as transition into turbulence can be avoided, while a higherWomersley number (α = 11.75) changes the structure of the secondary �ow.Figure 6.3 shows the evolution of the axial �ow for the base case (Re = 1450 and
α = 6.75). The axial velocity is represented by contours, where the bold line isthe zero contour. The interaction of separation with the secondary �ow is foundin Figure 6.3. In Figure 6.4 the secondary velocity vectors show multiple-vortexsolutions for the base case ((a) and (b)), and for the high Re case (d). In (d) asimilar double vortex pattern is found as in (a), although earlier in time, whereasthe high α-case (c) only has a single vortex pattern, even though t/T is larger.

Figure 6.3: Axial contours of the axial velocity in a cross-plane after a 90-degreebifurcation; the bold line is the zero contour.Further, the formation of multiple secondary vortices is found to cause changesto the separation pattern, and the secondary �ow is found to in�uence the WSSvariations.
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Figure 6.4: Secondary velocity vectors in a cross-plane after a 90-degree bifurca-tion.6.3 Numerical AccuracyThe accuracy of a numerical solution depends on the errors that are associatedwith each of the steps in solving the problem: The accuracy of models used todescribe the �ow physics, the accuracy of the boundary conditions, the accuracyof the discretizations (grid, boundary, temporal and spatial discretization) and�nally, the level of convergence of the iterative procedure. Since the accuracy ofeach step is not known a priori, most accuracy studies are done a posteriori. Theaccuracy of the models themselves can be estimated by experiments, given thatthe accuracy of the rest of the steps listed above is known.In order to obtain a reliable solution it is important to verify that the discretesolution is a good approximation of the di�erential problem (so called discretiza-tion convergence). Comparing the solution on di�erent grids allows one, if thegrids are �ne enough, to estimate the error both in approximating the di�erentialproblem (i.e. the truncation error), and the error in approximating the di�eren-tial solution (convergence error). The issues regarding the numerical accuracy ofthe results are discussed in each paper.Another important issue necessary for obtaining an accurate solution is thatthe iterative process of solving the system equations has converged to small



6.3. NUMERICAL ACCURACY 83enough levels. Di�erent convergence criteria have been tested in order to as-sess its e�ect on the solution.After discretization and linearization the algebraic system of equations for avariable φ is described as
aPφp =

∑

nb

anbφnb + b (6.1)where aP is the coe�cient of the cell center, anb are the in�uence coe�cients ofthe neighboring cells, and b is contributions from sources and boundary condi-tions. The residual for the momentum equations is de�ned as the sum over allcomputational cells P of the imbalance of (6.1). It is then scaled and given by(6.2).
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(6.2)For the continuity equation the scaled residual is de�ned as

R =
RiterationN

Riteration5

(6.3)where
Riteration =

∑

P

|Rate Of Mass Creation In Cell P| (6.4)In (6.3) RiterationN is (6.4) at iterationN and Riteration5 is the largest value of (6.4)in the �rst �ve iterations. In Figures 6.5 and 6.6 results for the residual conver-gence criteria of 10−3, 10−4, 10−5 and 10−6 are compared. The computations wereperformed on a tetrahedral mesh, at a constant inlet Reynolds number of 1000, inthe bifurcation model. Results are presented along two lines at x/D = 1.97 intothe 90-degree daughter branch. One line crosses the pipe in the vertical direction(Figure 6.5) and the other line is perpendicular to this at the height of the centreof the daughter pipe (Figure 6.6).
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(b) v/vpeakFigure 6.6: Velocity pro�les at di�erent convergence criteria of a transverse linein the daughter branch.The Figures 6.5 and 6.6 show that a convergence criteria, according to theresidual de�nition in (6.2) and (6.3), of at least 10−4 is required for enoughconvergence. In the (FVM) calculations showing the results a convergence criteriaof at least 10−4 has been used, and for each time step convergence up to eightdigits or more, of each parameter, has been noted (using double precision).6.4 Resolution at High Reynolds NumberIn the high Reynolds number calculations (Re = 5800) typically some relativelyfast oscillations are found. In order to determine that these �uctuations areactually resolved, it is necessary to compare them to which frequencies that arepossible to resolve, with the chosen spatial and temporal resolution.



6.4. RESOLUTION AT HIGH REYNOLDS NUMBER 85The temporal variation is investigated at certain locations of the domain. Thepoints with most �uctuations are located in the separated region of the daughterbranch after the 90-degree bifurcation. The three velocity components at one ofthese points (P1 in Paper 1) are shown in Figure 6.7, along with the frequencyspectrum of the �uctuations of each component, respectively.Before transforming the velocity time histories, using an FFT-algorithm, thelarge scale motion related directly to the velocity pulse is �ltered out, leaving onlythe �uctuating component. The time resolution is ∆t = 0.0005 s, which meansthat, according to the Nyqvist sampling theorem [179], frequencies up to f = 1
2∆tare resolved. That corresponds to a Strouhal number of Stf = fD

vinlet
= 38.8, given

D = 0.0085m, being the local pipe diameter. However, the spatial resolution alsolimits what frequencies that can be resolved. A sinusoidal �uctuation requiresthree nodes in order to be resolved [58]. As seen in Figure 6.7 the frequenciesare of order Stf < 1, and since D/∆x ≈ 17, the �uctuations are considered wellresolved.
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Figure 6.7: Velocity time history for all velocity components at Re = 5800 (left),and frequency spectra (right). The data is taken from a point in the separatedregion after the 90-degree bifurcation (P1 in Paper 1).



86 CHAPTER 6. SUMMARY OF RESULTS6.5 Propagation of Flow Patterns and ScalarsAs the �ow in systems of bifurcations often goes through several generationsof branches, it is relevant to investigate the e�ects of upstream �ow conditionson the downstream �ow, i.e. how far down dynamical characteristics propagatethrough the system before they are di�used, or before the �ow is dominated byother e�ects.In order to determine that for pulsatile �ow, computations have been per-formed in a three generation asymmetric model of bifurcations (see Paper 4).The �rst bifurcation is a 90-degree bifurcation followed by symmetric bifurcationswith 30-degree bifurcation angles. Additionally, di�erent inlet modules were at-tached to the inlet in order to mimic di�erent upstream curvature e�ects, and todetermine the sensitivity to those. Also, passive scalars in the range of Sc = 0.72�
6280 were introduced at the inlet. The �ow computations were performed at apeak Re = 3000 and α = 8.26.A skewed velocity distribution is found downstream of the 90-degree bifurca-tion as expected. The inlet-modules a�ect the early and the late phases in thecycle, whereas in the middle phase of the cycle, separation due to the curvaturejust before the inlet seems to stop upstream e�ects from propagating downstream.Two generations down the upstream asymmetric e�ects do not seem to in�uencethe �ow anymore. The velocity decreases for each generation as the total cross-sectional are increases, which gives more time for di�usion. Instead inertial e�ectscaused by the latest curvature dominate the �ow �eld.The scalar transport is clearly a�ected by the geometrical asymmetry, as wellas the di�erent inlet-modules. Figure 6.8 shows the scalar di�erential distribu-tion between the scalars of the largest- and the smallest-Schmidt numbers (Sc).Di�erences are found in the boundary layers, where the small Sc-scalar's concen-tration is larger. One can also see that the di�erent inlet boundary conditions(Cases 1�4) causes di�erent distributions throughout the cross-section. Cases 1�3show a negative di�erential di�usion in the daughter vessel near the lower wall,while Case 4 and the steady case show positive di�erences there.In the main branch Cases 1 and 2 show negative values to the left. Case3 instead has positive concentration di�erences, whereas Case 4 has a positiveconcentration di�erence to the left, and a negative to the right of the main branch.The concentration di�erence for the steady case is more symmetric, and does notrepresent a pulsating �ow very well. Thus, substances of di�erent di�usivity willbe distributed di�erently in the domain depending on the in�ow conditions, andtherefore substances of di�erent Sc in blood �ow will be a�ected similarly. Thedi�erences in concentrations between these Sc are up to approximately half thelevel of concentration of the large Sc scalar concentration. Thus, the e�ect of Scis signi�cant leading to non-uniform concentration of the substances in the bloodin the arterial system.
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Figure 6.8: Di�erence between scalars of Sc = 6280 and Sc = 0.72 at t/T = 0.24.
In the lateral plane of the daughter branch (see Paper 4) the scalar distributionis very uneven over the cross-section, as shown in Figure 6.9. The separationnear the inner curvature, and the centrifugal e�ects, distribute the scalar almostexclusively to the outer wall of curvature. That is despite the even distribution atthe inlet. The di�erent inlet conditions are shown to give the e�ect of skewness tothe concentration distributions. Case 1 and the steady �ow case show symmetricscalar distributions as expected. The steady case has a more �at and spreadout high concentration �eld, as compared to Case 1. The other three cases showskewed concentration pro�les. Cases 2 and 4 have scalars skewed towards thelower right wall, where the scalar of Case 4 is also more spread over the crosssection. Case 3, on the other hand, has a scalar skewed towards the lower leftwall.
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Figure 6.9: Scalar distribution in a lateral plane of the 90-degree daughter branchat t/T = 0.24 and Sc = 6280.6.6 Fluid-Structure InteractionAs described above, a Finite Di�erence (FD) based Immersed-Boundary (IB)method is combined with a structural Finite Element Method (FEM) solver.The aim was to be able to model blood �ow in elastic arteries, and investigatethese e�ects on relevant parameters.In order to validate the structural solver the results are compared to an an-alytical expression for the deformation of a thin cylindrical shell subject to axi-symmetric radial loading.A cylindrical shell subject to an axisymmetric load, as shown in Figure. 6.10,will through the approximations of thin-walled structures experience a radialdeformation according to
ws =

Pe−βx

8β3Db

(sinβx+ cosβx) (6.5)
β =

(

Est

4R2Db

)1/4 (6.6)
Db =

Est3

12 (1 − νs2)
(6.7)where P is the applied force continuously distributed around the cylinder, R isthe cylinder radius, Db is the �exural rigidity of the shell. The derivation of this
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Figure 6.10: Cylinder with applied axisymmetric load.analytical expression is described by Timoschenko et al. [188] and Vinson [196],amongst others. The formula is symmetrically applied around the circle of theapplied load.Figure 6.11(a) shows the displaced geometry for the �nest grid, and Figure6.11(b) shows the deformations along a line for several di�erent grids, as well asthe analytical expression. The element sizes are speci�ed by the legends in the�gure. It is clear that the solution converges towards the analytical expression, foran increased number of cells, although the numerical solution has some di�cultiesin capturing the negative displacements just beside the peak. The cylinder has alength over diameter ratio L/D = 3.3, and a thickness ts/D = 0.01. The Poissonratio is νs = 0.3 and Young's modulus Es = 5 · 109 N/m2.In Figure 6.12 the error is plotted against the grid size. As the error isproportional to the leading term of the truncation error, i.e. the element size tothe power of the order of the method in use, one would expect a convergencerate of 2. That is because linear (and higher order) polynomials have been usedfor approximation. However, that is only true if one has reached the asymptoticregime (small enough ∆x), so that the higher order terms of the truncation arenegligibly small [58]. The slope in the logarithmic plot is ≈ 0.9, which points to�rst order accuracy in practise.In the solution procedure the structural deformation is computed for each�uid time-step ∆t = 0.01. However, the time-step of the solid solver is ∆t =

0.0001, and therefore for each �uid time step 100 time steps are computed for thestructural solver. The reason is that a �rst order method in time (implicit Eulermethod) is used.For each time step the solid system of equations solution algorithm is brokenat ‖qn − qn−1‖max < 5 · 10−4, where qn−1 is the solution of the previous iterationand qn is the present iteration.These settings were found to give reasonable results for external �ow arounda cylinder (not included in the thesis), however, the studies with respect to theimportance of arterial wall elasticity on the �ow, are not yet completed.
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(a) Deformation of cylinder due to radially applied load.
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Chapter 7Future WorkThe studies presented in this thesis have shown that derivatives of the WSS aresigni�cant, also at locations referred to as more �safe�. The WSS is a�ected bythe secondary �ow that shows character changes both with the Reynolds- andthe Womersley-numbers. Also, the e�ect of bifurcations and curvature is shownto be very signi�cant for the distribution of scalars, a�ecting them di�erentlydepending on the Schmidt number. For improved modeling of physiological �ows,and understanding of hemodynamically relevant characteristics, suggestions are:
• The e�ects of variations in Re and α on the secondary �ow have been stud-ied. That study may be extended by investigating the e�ect of variationsin curvature ratio and bifurcation angle on the characteristics of secondary�ow (vortical structures), and on WSS variations. These cases are not muchinvestigated for pulsating �ow in bifurcations in literature.
• Atheroslcerosis has been related to mass transport of di�erent blood com-ponents over the cross-section. As the disease appears at locations, such asnear bifurcations and in large curvature, the e�ect of the �ow on the dis-tribution of di�erent components may be signi�cant. As shown above thee�ect of the �ow on passive scalars of di�erent di�usivity is signi�cant. Asit is found that di�erent Re and α a�ects the character of the �ow (di�erentsecondary vortical structures), these parameters most probably a�ect thedistribution of the scalars. Such comparison would be interesting since thedisease is found at various parameter values of Re and α.
• The blood is often considered as being Newtonian, also here, despite itsnon-Newtonian character. Most often these e�ects are found to be rathersmall, however, in some cases they are reported to be of signi�cance. Thereare various constitutive models that can be implemented, such as Bingham,Casson, Quemada. Another approach would be to simulate the blood cellsin the plasma using multiphase models. This would show actual signi�canceof non-Newtonian e�ects in the �ows considered here.93
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• The e�ects of extensible walls on �ow parameters, such as wall shear stress,are often considered to be small. However, modeling them, using an FSI-model would reveal how small they are here. The wall extension may alsoin�uence the secondary �ow patterns, and therefore also the distribution ofdi�erent blood components.



Chapter 8Summary of Papers
Paper IPhilip Evegren & Laszlo Fuchs, �Pulsatile Flow in Branching Arter-ies�, Presented at the 3:rd IC-SCCE conference, Athens, 2008.The role of �uid mechanics in relation to the patho-physiological process ofatherosclerosis has been investigated over many years. One has observed thatmorphological manifestations of the disease are found at some well de�ned lo-cations: certain vessel bifurcations and curvature. The �ow in these regions ischaracterized by separation and unsteadiness. There are several hypotheses re-lating the �ow to atheroslcerosis, which include �ow separation, the level of wallshear stress and its spatial and temporal variations. Currently there are no theo-ries that can explain the process since the di�erent components in the process arenot fully known nor understood. The problems are related to the complexity ofthe biological systems involved, and even the �uid mechanical aspects (related tothe mechanical e�ects on the vessel wall and the transport of biological active sub-stances) are not well documented or understood. This paper is aimed at sheddingsome light on the transitional �ow near a bifurcation and on the e�ects of somerelevant parameters (Reynolds number and Womersley number). The results in-dicate the presence of local regions of strong temporal- and spatial-variations ofwall shear stress, even at locations often referred to as �safe�. Increased Reynoldsnumber yields transitional behavior close to a separated region, while other partsof the domain show no such behavior. On the other hand an increased Womersleynumber delays �ow separation.The candidate computed the results and was the main author of the paper.95



96 CHAPTER 8. SUMMARY OF PAPERSPaper IIPhilip Evegren, Laszlo Fuchs & Johan Revstedt, �Wall Shear StressVariations in a 90-degree Bifurcation in 3D Pulsating Flows�, on re-vision for publication in Medical Engineering & PhysicsThe exact role of �uid mechanics in the patho-physiological process of atheroscle-rosis has been a research topic over many years, yet without clear conclusiveresult. One has observed that morphological manifestations of the disease arefound at some well de�ned locations: certain vessel bifurcations and in curvatures.The �ow in these regions is characterized by unsteadiness and often separation.Currently there are no complete theories that can explain the process since thedi�erent components in the process are not fully understood. Here we carry outdetailed computations of the unsteady �ow in an arterial segment typical to loca-tion of early appearance of arterial lesions. We study the wall shear stress (WSS)�eld variations near a junction with the purpose of identifying �uid-mechanicalparameters that can be related to sites of atheroslcerosis. The results show thatregions associated with atherosclerosis experience highly elevated temporal- andspatial-derivatives of the WSS, also at less commonly known locations. Thus,large derivatives in time and space do not seem unique for the most commonareas of atherosclerosis. Di�erences in WSS character between these locationsare identi�ed as di�erences in the time period of back �ow as well as di�erencesin the magnitude of the WSS derivatives. The data is presented in a way thatfacilitates understanding of the variations in WSS.The candidate computed the results and was the main author of the paper.



97Paper IIIPhilip Evegren, Laszlo Fuchs & Johan Revstedt, �On the SecondaryFlow Through Bifurcating Pipes�, submitted to Physics of Fluids.The �ow through curved and bifurcating pipes induces secondary motion whichhas been subject to investigation over long time due to the general interest insuch �ows. In contrast to the �ow in a straight pipe curvature leads to theformation of secondary �ow which is often unsteady. Streamline curvature occursalso in bifurcating pipes leading to some corresponding secondary, unsteady �ow.This paper presents a detailed description on the unsteady �ow in the daughterbranch after a 90-degree bifurcation at a range of Reynolds- and Womerlsey-numbers. The results show the presence of Dean vortices and additionally newvortical patterns not reported in the literature. Both the streamwise (axial) andthe secondary �ow components change character at larger Womersley numbers,leading to less complex secondary �ow. Also, at larger Reynolds numbers, �owinstabilities are observed. The secondary �ow may lead to the formation ofunsteady separation bubbles. This in turn yields peaks in the wall shear stresscomponents. Such wall shear stress variations have often been related in theliterature to the processes that may lead to atherosclerosis.The candidate computed the results and was the main author of the paper.



98 CHAPTER 8. SUMMARY OF PAPERSPaper IVPhilip Evegren, Johan Revstedt & Laszlo Fuchs, �Pulsating Flow &Mass Transfer in an Asymmetric System of Bifurcations�, submittedto Computers and Fluids.Pulsating �ow through bifurcations are of general interest. In the human bodysuch �ows are also very common; for example in blood vessels and the respiratorytract. The characteristics of the �ow in arteries have been related to the processof atherogenesis, based on the observation that the initial manifestation of theprocess is observed at certain common locations, i.e. near bifurcations in vesselsof certain size. In-spite of these observations there is no direct understandingbetween the �ow itself and the pathological process. In fact, the �ow itself israther complex since it is unsteady and transitional. The �ow causes temporaland spatial variations in the Wall Shear Stress (WSS) which is believed to bean important contributing factor for atherosclerosis. The paper considers bothunsteady- and steady-�ow through a three generation system of (non-symmetric)bifurcations. The geometry consists of a 90-degree bifurcation followed by twosets of consecutive symmetric bifurcations. The aim of the paper is to investigatethe e�ects of the bifurcations on the �ow and mass transport in such a geomet-rical con�guration that is often found in physiological situations. Additionally,the e�ects of di�erent inlet velocity conditions have been considered. The di�er-ent inlet conditions are aimed at studying the sensitivity to variations of in�owconditions; variations found under normal physiological conditions. The resultsshow that the geometrical asymmetry a�ects the velocity distribution even aftera second bifurcation downstream. Two generations down this asymmetry doesnot have a signi�cant e�ect anymore. The di�erent inlet conditions a�ect the�ow to the next generation of branches during di�erent pahses of the �ow cycle.At peak �ow and further downstream in the system the e�ects are negligible. Itis also found that over a cycle the mass �ow distribution through the di�erentbranches, given the same outlet pressure level, can be a�ected by the inlet veloc-ity conditions. The distribution of a passive scalar is not uniform but dependson the inlet conditions and strongly on the Schmidt number (i.e. molecular dif-fusion). Schmidt number e�ect can account for as much as 50% deviation in theconcentration of scalars with di�erent molecular di�usivities.The candidate computed the results and was the main author of the paper.
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