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To my famaly

Scientific knowledge is a body of statements
of varying degrees of certainty — some most unsure,
some nearly sure, but non absolutely certain.
Richard P. Feynman
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Abstract

Pulsatile flows in geometries of physiological relevance have been investigated.
Atherosclerotic plaques are (initiated) near junctions and bifurcations in larger
arteries. The flow in these regions is characterized by flow separation and un-
steadiness, which indicates that local flow conditions contribute to atherogenesis.

Flows in curved and bifurcating pipes have been investigated over many years.
However, details of dynamical patterns of pulsating flow, near wall effects, and
differential diffusion effects are not well documented. The effect of wall elasticity
on the flow has been assumed to be small but no quatification data exist.

There are same basic difficulties in studying physiological flow: The geome-
tries have large inter-individual variations. The mechanical properties of the
vessels are unknown. Equally, the boundary conditions (temporal and spatial
distribution of the blood velocity) are not know. Additional difficulties arise due
to measuring difficulties both in-vivo and in-vitro. The flow itself may be rather
complex (time-dependent 3-D, transitional with locally strong effects of viscosity
and unsteadiness, leading to variable phase lag between pressure gradient and
the local flow).

The aim of this study is to enhance understanding of the time-dependent,
physiologically relevant, flow field in bifurcations, and relate that to hypotheses
of atherosclerotic disease. Additionally, an FSI-model has been developed with
the purpose to model flow through elastic pipes, and to assess the effect of wall
elasticity on the flow.

The investigations have shown clear patterns of wall shear stress (WSS) vari-
ations. Local regions of temporal and spatial variations of the WSS was found at
sites usually referred to as risk-sites of atherosclerosis, but also at locations often
referred to as “safe”.

Some of the characteristics of the WSS are further related to changes in the
secondary flow field. The secondary flow shows similar characteristics for an
increased Reynolds number, although unsteady asymmetric patterns appear at
peak flow, while a large Womersley number shows more simple secondary flow
structures.

It is also shown that the effects of upstream geometrical variations on the flow
field itself, are important mainly over one stage of arterial bifurcation. On the
other hand, blood components (modeled as passive scalars with different values of
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Schmidt numbers) do exhibit upstream effects over a longer range.An important
finding is that Schmidt number effects may lead to redistribution of the different
scalars. The variations in the concentrations of the scalars are of the same order
as the local concentration themselves.

The FSI-model developed combines an Immersed Boundary-Finite Difference
code with a shell model for the arterial wall. The shell model is solved on a
(surface 2D) using a Finite Element Method (FEM) code. The structural solver
is verified against an analytical expression for bending of a thin-walled pipe. The
studies with respect to the importance of arterial wall elasticity on the flow, are
not yet completed.
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III On the Secondary Flow Through Bifurcating Pipes, Philip Evegren,
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Chapter 1

Introduction

1.1 Context & Motivation

Biomechanics is a growing field of research with strong inter-disciplinary com-
ponents. Tissue properties of bone, cartilage and soft tissue are analysed with
different mathematical models, which often include nonlinear- and visco-elastic
effects (c.f. |20, 89, 216]). Bio-fluid mechanics include flow past biological bodies,
i.e. aerodynamics of birds or hydrodynamics of fish, and internal flows such as
blood flow or airflow in the lungs [32, 49]. In the case of airflow in the lungs, mod-
eling can be used for estimation of drug distribution [219]. Some applications of
blood flow simulations include the investigation of the flow past prosthetic heart
valves [210], flow through ventricular assisting devices |215], study of the flow
field and distribution of wall shear stress (WSS) near bifurcations [50-52|, and
the study of fluid structure-interaction (FSI) between the blood and the flexible
blood vessel wall [26, 137].

One has to emphasize that biological systems exhibit considerable individual
variations, which makes the study meaningful (and quantifiable) only in terms
of statistical values (averages, RMS, PDF, etc). The inter-individual variation
makes it difficult to identify and quantify particular physiological processes that
lead to a pathological state. For this reason one may use theoretical and experi-
mental tools to analyse the importance of a hypothetical process. In that sense,
the simplifications made in the modeling (as is also done here) are still adequate
to qualitatively study certain physiological processes.

This work presents numerical simulations of flow through systems of bifur-
cating vessels, as well as an FSI-model developed with the purpose of modeling
the interaction between the flow through a vessel and its elastic wall. The overall
objective of the work presented is to investigate the flow field and its relation to
different parameters that are considered to be relevant for blood flow in arteries.
In such environments the relevant parameters include compliance effects, effects
of other geometrical variations, and flow parameter effects such as the Reynolds-

1



2 CHAPTER 1. INTRODUCTION

and Womersley numbers. The flow behavior and in particular the characteris-
tics of the WSS are discussed in terms of their effect on atherogenesis (i.e. the
patho-physiological process leading to atherosclerosis).

Cardiovascular diseases are the major cause of death (over 50%) in the west-
ern world today, which can be largely attributed to atherosclerosis itself or closely
related diseases [114]. Atherosclerosis is a dynamic disease and it is the major
contributor to the pathogenesis of myocardial and cerebral infarction [133]. The
process of development of an atherosclerotic plaque is not fully understood. How-
ever, it has been found that it, at some early stage, involves the accumulation
of lipoproteins in the intima (the most inner layer of the artery). One has also
observed that an inflammatory process is present. This observation is based on
the presence of components of the immune system near the lesion (monocytes and
T-lymphocytes that take up the lipid containing lipo-protein macro-molecules).
The morphological changes in the wall of the artery lead to a fibro-fatty plaque
on the vessel wall, and when the disease process has continued long enough it
leads to the obstruction of the lumen [114, 133|. The structure of the plaque is
a fatty core covered by a fibrous cap which eventually may burst and thereby
initiate thrombosis |39, 208]. The thrombus may then be transported (becoming
an embolus) into smaller blood vessels where it may stop the blood flow alto-
gether. Thereby hindering oxygen rich blood from reaching downstream tissue.
The result is hypoxia (lack of oxygen) or in the worst case necrosis (i.e. cell and
tissue death). The disease usually starts in early life and fatty streaks, which are
found in the initial stage, have been detected even during fetal development [31].
A more detailed description of the disease process will be given in a subsequent
chapter.

Charakida et al. [31]| identify hypercholesterolemia, diabetes, hypertension,
smoking, age and gender as conventional risk factors for atherosclerosis. How-
ever, conventional risk factors correlate with less than 50 % of the incidences of
atherosclerotic disease. Other risk factors have also been suggested; for example,
inflammation or infection as initiator, obesity, genetic factors and nutrition. Also,
psychological stress may influence the development of atherosclerosis [146]. The
large number of hypotheses is a good indicator for the lack of precise knowledge
and understanding of the underlying processes.

The plaques (especially early ones) are usually found at specific locations
locus minori. Such locations are found only in larger arteries near bifurcations
and in significant curvature in the arthery [8, 121, 133, 173, 205|. The well
defined localization of pathological manifestation of the disease, is the foundation
of the theory that local flow conditions are very important parameters for its
development. Atherosclerosis is thus a multi-factorial disease, probably affected
by both biochemistry and complex nonlinear biomechanics. The complexities of
flow in biological tissues make approximations necessary. Such simplifications are
often related to the properties of the blood and the tissue composing the arterial
tree. In spite of the simplifications it is believed that it is possible to enhance the
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understanding of atherogenesis and its possible relation to the surrounding flow
field.

1.2 Objectives & Achievements

In this work numerical simulations of the unsteady flow (of blood) in 3D systems

of asymmetric bifurcations have been performed. Also, an FSI-modeling approach

has been developed with the aim of investigating flow in a deforming vessel.
The main objectives of the simulations have been as follows:

To enhance the understanding of the pulsatile flow properties in bifurcating
pipes.

To investigate the effects of certain parameters (such as inflow conditions,
pulsation rate, geometrical properties) on the flow field.

To develop an FSI-modeling approach and to apply the model for assessing
the effect of a deformable wall on the flow.

Relate simulation findings to current hypotheses of atherogenesis.

The achievements included in this thesis are:

e Detailed investigation of magnitude and direction of WSS at common sites
of atherosclerosis, including comparison with results found in literature.

e [nvestigation of the characteristics of temporal- and spatial-variations of
the WSS.

e Investigation of dynamics of the secondary flow field.

e Determination of the effects of Reynolds- and Womersley-numbers on the
velocity field (including secondary vortices) and wall shear stresses.

e Investigation of inlet boundary condition effects on the flow field and on
the distribution of a passive scalar.

e Development of an FSI-solver, coupling a Finite Difference-Immersed Bound-
ary approach for the fluid, with a Finite Element Method approach for the
solid.
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1.3 Outline

In the following, a brief review of the anatomy and physiology of the artery
system is given. Thereafter, a short introduction to a biological perspective on
the process of atherosclerosis is followed by a section where previously found
relations between atherosclerosis and fluid flow is given. After that a review
of fluid mechanical aspects relevant for the typical flows considered is included,
followed by a description of computational tools used herein. At the end, a
summary of results achieved and proposals for future work are followed by the
papers, which this thesis is based upon.



Chapter 2

The Cardiovascular System
& Atherosclerosis

This chapter describes the components of the cardiovascular system, which is the
major flow environment of this work. It also describes theories and suggestions
that try to explain and describe the processes that lead to atherosclerosis. The
emphasis is naturally on the fluid mechanical aspects of these theories. The
content of the following section is mainly taken from Levick [109], Pedley [140]
and Tortora and Derrickson [189).

2.1 The Heart & Blood Vessels

The cardiovascular system has several important functions critical and /or essen-
tial for life. These include transport of oxygen, nutrients, carbon dioxide and
other wastes, immune response, pH- and heat-regulation. All these functions in-
volve blood flow through the arteries and the heart, which is also the device that
provides the mechanical energy to the system.

The heart is a muscle that is located in the chest, between the parts of the
lung, and between the sternum and the vertebral column. It is of roughly coned
shape with the apex to the left, downwards, and its average weight is about 250
g and 300 g for female and male adults, respectively. About two thirds of the
mass of the heart lies to the left of the centreline of the body.

The heart contains four chambers, two atria and two ventricles; a sketch of
the heart is found in Figure 2.2. The right atrium receives blood from two major
veins (i.e. v. cava superior and inferior) and it is separated from the left atrium
by the inter-atrial septum and from the ventricle by the tricuspid valve (which
consists of three cusps). The right ventricle is the origin of the pulmonary artery
which is separated from the ventricle by the pulmonary valve. The two ventriculi
are separated from each other by a thick wall of muscle, i.e. the inter-ventricular
septum. The left atrium receives oxygenated blood from the lungs through the

5
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four pulmonary veins. It is separated from the left ventricle by the bicuspid or
mitral valve (which has two cusps). The blood flow from the left ventricle is
regulated by the aortic valve. This valve opens and closes passively, depending
on the flow conditions through it.

Blood flows through the systemic- and pulmonary-veins into the right and
the left atria, respectively. The atria are being more or less continuously filled
and when the pressures exceed the pressures in the ventricles, the tricuspid- and
the mitral-valves open and thereby letting the blood into the ventricles. The
filling period of the ventricles of the heart is called diastole. When the ventricles
become full of blood the atria contract and eject its content into the ventricles. In
the same time as the myocardium (heart muscle) contracts, the atrio-ventricular
(A-V) plane moves towards the apex and the tricuspid- and the mitral valves are
closed. A volume reduction will result in a quick increase in ventricular pressure,
which leads to the opening of the aortic- and the pulmonary-valves. This is
followed by a quick ejection of the blood; the ejection phase is called systole. As
the ventricles relax, blood starts to re-circulate in the ascending aorta and in the
pulmonary artery.

As the pressure in the left ventricle decreases below the aortic pressure, the
flow near the walls changes direction immediately, whereas at the central parts of
the aorta this happens with some delay. The closure of the aortic valve is quick,
yet there is always some back-flow. As part of the sclerotic process, one observes
also reduced elasticity of the blades of the aortic valve which leads to increased
back-flow. Once the valve calcifies, the valve may be incompetent or leaky, and
back-flow may be present throughout diastole. Often there is also a reduction of
the open area of the valve, which leads to larger pressure drop during systole,
and which in turn implies larger load on the heart.

A difference between the right- and the left-ventricles, is that the pressure
that is needed to eject blood through the aortic valve, on the left side, is much
larger than for the pulmonary valve, on the right side. This is due to the larger
resistance and higher pressure of the systemic system, also resulting in a thicker
myocardium on the left side of the heart. The diastolic pressure in the pulmonary
artery is normally about 20 mmHg and in the aorta about 80 mmHg. The pressure
in the left ventricle rises to about 120 mmHg, while in the pulmonary system it
rises to about 25-30 mmHg during systole.

The ventricles eject about 70 ml blood, leaving about 60 ml left behind.
Ventricular systole lasts about 0.3 s, and the time it takes for the valves to open
is about 10 ms, according to Rosenfeld et al. [120].

The blood vessels consist of several different layers with different characteris-
tics. The arteries' are the blood vessels distributing blood from the heart to the
other organs?, and are subject to high and oscillatory pressure. The veins are

'Greek: ar = air, ter = to carry, were first believed to carry air [71, 189).
2The discovery of the circulation system is traditionally referred to William Harvey [82],



2.1. THE HEART & BLOOD VESSELS 7

the vessels distributing the blood back to the heart, and are subject to lower and
almost constant pressure.

More specifically, arteries are, in adults, of radius in the range of about 1 cm
to the order of 0.1 mm, where the aorta is the largest one carrying the blood
from the left ventricle of the heart. The ascending aorta is roughly straight for
about 3 em and then it turns almost 180, in a 3D way out of plane, continuing
down through the chest and abdomen. It has multiple branches that supply
blood to the different organs before it bifurcates (in the pelvis) into the two iliac
arteries [140, 189]. Most branches and bifurcations are asymmetric and vary
when it comes to branching angle. Usually the angles are closer to 90°, than 0°
or 180°, for aortic bifurcations, while they more commonly are smaller in smaller
vessels [140]. Downstream of the aorta the total cross-sectional area of all arteries
increase drastically, which implies smaller flow rate.

The vessel wall of arteries can be divided into three layers, tunica interna or
tunica intima, tunica media and tunica externa (Figure 2.1). The tunica intima
is the innermost layer closest to the blood in the lumen, and it consists of a layer
of simple squamous epithelium called endothelium, a basement membrane and
a layer of elastic tissue called internal elastic lamina. The endothelium is lining
the innermost vessel wall of all blood vessels and is usually the only cell layer in
direct contact with the blood. The tunica media is the thickest of the three layers
and has next to the internal elastic lamina a layer of elastic fibres and smooth
muscle fibres stretching around the vessel wall. It also has a layer of elastic tissue
covering the smooth muscles called external elastic lamina. The tunica media is
composed in a large proportion of the very elastic extracellular protein elastin
and in a smaller proportion of the strong but much stiffer extracellular protein
collagen [109]. The outermost layer of the vessel wall, the tunica externa consists
mainly of elastic- and collagen-fibres. The different components give the vessel
wall its non-trivial material characteristics [89].

The smooth muscle cells can be stimulated to contract, which reduces the
vessel radius (vasoconstriction). The basic tension in the artery wall can not only
increase, but it can be reduced by relaxing the smooth muscles (vasodilation).
For steady flow conditions (laminar in a straight pipe) the flow can be related
to the vessel radius to the power of four, which explains the efficiency of the
constrictor/dilator effect as blood distributor. The largest arteries (> 1 ¢m in
diameter) are called elastic arteries due to their high proportion of elastic fibres
in the tunica media. They have the function of stretching during systole, due
to the pressure pulse caused by the heart’s ejection of blood. The expanded
wall is relaxed during diastole and the (elastic) potential energy of the wall is
transformed into kinetic energy (of the blood), giving a more continuous flow in
the arterial system, in contrast to the heart. It has also been shown that the
inner vessel wall of arteries move in the longitudinal direction. Measurements by

who realised in 1628 that the blood was circulating.
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Figure 2.1: Sketch of the different layers of an arterial wall; after Tortora and
Derrickson [189].

Cinthio et al. [35] on the common carotid artery show that the movement in the
longitudinal direction is of the same order as in the radial direction.

The medium sized arteries, 0.1-10 mm, are usually called muscular arteries
because of their relatively high content of smooth muscle fibers in comparison to
the elastic arteries. The amount of smooth muscle fibers give them the properties
of being constrictors and dilators, which enables a functional distribution of the
blood to different parts of the body. The small arteries or arterioles (10-100
um) are the vessels just upstream of the capillaries. The larger arterioles are
similar in composition to the muscular arteries, also being able to constrict and
dilate. Arterioles close to the capillaries have a wall which consists of a layer of
endothelial cells over which a few smooth muscle fibers are scattered.

The capillaries are connecting the arterioles to the vein system, they have
a diameter of 4-10 um. The body contains a huge amount of capillaries in
order to distribute oxygen and nutrients to practically all cells of the body; the
organs that are more oxygen and nutrients demanding naturally contains more
capillaries. The arterioles, capillaries and venules are usually referred to as the
micro-circulation. The capillary wall only consists of the endothelial layer and
the basement membrane which make them suitable for their task to exchange
oxygen, nutrients and wastes with neighboring cells through the interstitial fluid.
The short distance between the cells and the capillaries make diffusion vary rapid
[109].

Several capillaries unite forming the venules (10-100 pm) and similarly to
the arterioles the smallest venules are composed of the endothelium and a tunica
media, composed of a few scattered smooth muscle cells. The larger venules also
consist of the tunica externa but without the elastic laminae. The veins (> 0.1
mm) connects the venules to the atria of the heart. The thin walls of the veins
consist of the same layers as the arteries, although the two innermost layers are
much thinner and contain only few smooth muscle cells and elastic fibers. The
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tunica externa is the thickest layer of the veins. They are still distensible but
are not made for resisting any higher pressure. The veins may even collapse
completely at low blood pressures.

2.2 Properties of Blood

The cardiovascular system consists of three parts that are dependent on each
other; those are the heart, the blood vessels and the blood itself. The blood
which is a liquid connective tissue has several different functions; transportation
of oxygen, carbon dioxide, nutrients and hormones to and from the cells of the
body. It also helps regulating pH and temperature, and act as part of the immune
response system through phagocytosis and with help of different proteins [189].
The blood has a pH between 7.35-7.45. An adult male has a blood volume of
about 56 liters, while an adult female has about 4-5 liters, corresponding to
about 8 % of the total body weight.

The blood consists of the blood plasma (55 %), which is the extracellular liquid
with dissolved and colloidal substances and the formed elements (45 %), cells.
The plasma contains to 91.5 % water and 8.5 % solutes of which 7 % are proteins.
The proteins are mainly albumins, and other proteins such as Low- and High-
Density Lipoproteins (LDL, HDL), immuno-globulins, and fibrinogens. These
proteins are responsible to different functions such as carriers of hormones, Ca
and fatty acids, immunresponse and blood clotting. Other solutes are electrolytes,
nutrients, gases, enzymes, hormones and waste products. The formed elements
are divided into red blood cells, white blood cells and platelets, of which 99 %
are red blood cells. The volume occupied by red blood cells divided by the total
blood volume, expressed in percent, is referred to as hematocrit. The hematocrit
for an adult male ranges between 40-54 % and for a female between 38-46 %.
The formed elements last over a period (depending on the type of cells) and are
continually replaced by new cells mainly produced in the red bone marrow.

The red blood cells, or erythrocytes, are cells without nucleus or organelles
containing the oxygen-carrying protein hemoglobin that gives the blood its red
color. The cells are shaped like biconcave disks with a diameter of 7-8 um, a
thickness of about 1 pum in the centre and 2-3 pm along the edge [140], and
their strong and flexible plasma membrane give them the ability to deform and
squeeze through narrow capillaries. The shape also gives them large surface area,
which is advantageous for gas diffusion. The blood contains about 5.4 million red
blood cells per ul for males, and about 4.8 million for females. One red blood
cell contains about 280 million hemoglobin molecules, which each can bind four
oxygen molecules [189).

White blood cells, or leukocytes, are of several different types, which all have
nuclei but no hemoglobin; the white blood cells are grouped according to their
morphology and include neutrophils, eosinophils, basophils, lymphocytes and
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monocytes. The sizes range between 6-20 um in diameter and they are also
deformable. There are much fewer white blood cells than red blood cells, only
about 5000-10000 cells per ul. Each white blood cell act in different ways as part
of the body’s defence system against infectious microbes, cancers etc. [189].

Platelets, or thrombocytes, are the last kind of formed elements. A platelet
is a disk shaped cell without nucleus, with a diameter ranging between 2-4 um.
Each ul of blood contains about 150000-400000 platelets. A function of platelets
is to help stop blood losses from a wound by forming a platelet plug, and by
inducing coagulation (blood clotting).

2.3 Atherosclerosis

Cardiovascular related diseases are responsible for more than 50 % of all deaths,
including heart-attack and stroke, in the western world. Non-congenital etiology
can be attributed mainly to atherosclerosis® [133]. In Sweden about two thirds
of all days of treatment at medical clinics are related to cardiovascular diagnosis
[114].

Atherosclerosis is primarily an intimal disease of large and medium-sized ar-
teries. It is characterized by fibro-fatty plaques at certain local positions of the
vessel wall, often obstructing the lumen (stenosis), accompanied by inflammation
and fibrosis (scar tissue formation). The disease usually starts in early life and
fatty streaks, which are initially found before atherosclerosis, have been detected
even during fetal development [31, 205].

Charakida et al. [31] identify hypercholesterolemia, diabetes, hypertension,
smoking, age and gender as conventional risk factors for atherosclerosis, but con-
ventional risk factors are correlated to less than 50 % of the incidences. Other
discussed more novel risk factors are, inflammation/infection, obesity, genetic
factors and nutrition. Also psychological stress may influence the development
of atherosclerosis [146]. It seems difficult to correlate complicated plaques with
symptoms [125].

Atherosclerosis is thus an evolving process, a dynamic multi-factorial disease,
and a comprehensive analysis would probably demand both biochemistry and
nonlinear biomechanics, in order to fully understand it.

The process of development of the plaque is not fully understood in all its ele-
ments, the last years much attention has been given to the inflammation process
in atherosclerosis, which seems to be a critical factor [133]. For natural reasons
it is difficult to study the atherogenic process in humans, however, it has been
and is studied in animals [114].

The early change in the arterial wall is composed by accumulation of lipopro-
teins in the intima. Eventually an inflammatory process is initiated, most prob-

3sclerosis = hardening of tissues with loss of elasticity, i.e. hardening of the arterial wall
[189].
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ably due to oxidized LDL (low density lipoproteins), resulting in endothelial ex-
pression of adhesion molecules and induced chemo-attractant molecules. Leuko-
cytes, mainly monocytes and T-lymphocytes, are entering the vessel wall and the
monocytes are transformed into macrophages [160]. The macrophages take up
the lipid containing molecules and become, so called “foam cells”; “fatty streaks”
can then be observed. Smooth muscle cells start to migrate from the media to
the intima and proliferate (cell reproduction) [133|. An extracellular matrix is
build up and the fatty streaks evolve into fatty-fibrous lesions. This is followed
by fibrosis, sometimes along with cell death, resulting in a relatively cell-free thin
fibrous capsule surrounding a lipid-rich core. The cell death is associated with
toxic substances derived from oxidized LDL, resulting in that the LDL up-taking
macrophages are affected initially. In addition to cell death, for instance, col-
lagen destructive macrophages have been found in the fibrous cap, which also
promotes plaque rupture [114, 133]. When rupture of the cap takes place, the
core of the plaque is exposed, leading to platelet adhesion and activation, and
thus to thrombus formation, which may lead to local (or remote embolus and
thereby) ischemia or infarction [39, 208]. Gertz et al. [73|, Richardsson et al.
[157] and Falk et al. [54] describe different reasons that may be behind plaque
rupture.

Other authors describing the process of atherogenesis are, for instance, Stary
et al. [174] and Gotto et al. [1] for the different stages in atherosclerosis, Nielsen
[134] and Tarbell [184] for a review of the transport of LDL into the arterial wall,
and Ross [159, 160] and Fan et al. [55] for more on the role of inflammatory
response.

Nichols and O’Rourke [133] list six points on how atherosclerosis may alter
arterial blood flow and hemodynamics, as follows:

1. by growing on the lumen and creating localized stenosis;

2. by causing the formation of a localized thrombus that further narrows or
occludes the arterial lumen;

3. by formation of thrombus and possible detachment (embolus) which may
lead to occlusion of smaller peripheral arteries;

4. by growing into the media, causing destruction and atrophy of structural
elements and leading to the formation of aneurysm:;

5. by stiffening the artery and altering wave reflection on vessels upstream;

6. by creating an abnormality in vascular mural tension that favours vasocon-
striction.

The plaques (especially early ones) are usually locally distributed in larger ar-
teries, such as the internal carotid artery (around the carotid sinus), the coronary
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arteries, in the femoral and iliac arteries, the renal arteries, and in the infra-renal
part of the abdominal aorta |8, 42, 133, 173, 205|. Figure 2.2 shows typical sites
of atherosclerosis. More specifically these are around bifurcations and in major
curvatures [121]. The local distribution of the plaques is what has given rise to
the suspicion that local hemodynamic conditions are very important parameters
behind the disease process, and this is where the fluid mechanics enter into the
subject, which will be described more closely below.
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Figure 2.2: Sketch of the heart and blood vessels. The blue region shows where
the blood is un-oxygenated and the pink color shows where the blood is oxy-
genated. The black spots show sites where atherosclerosis is commonly found;
after DeBakey et al. [42].
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2.4 Arteries, Atherosclerosis & Fluid Mechanics

The relation between atherogenesis and the dynamics of the flow field has been
investigated since many years, as hemodynamic has been suspected to influence
the pathogen process. It is not known through which mechanism hemodynamic
affects atherogenesis. However, there are many indications that suggest the im-
portance of fluid mechanics for atherogenesis.

The typical sites where plaques are found, the carotid artery sinus, the coro-
nary arteries, the abdominal aorta, and the superficial femoral arteries [42, 208|
are characterized by disturbed flow, flow unsteadiness and non-uniformities near
junctions, or vessel curvature.

Several hypotheses have been proposed throughout the years. The first one to
propose a hypothesis was probably Texon [187] who related the lateral pressure
difference in the region where separation occurs to the disease. The pressure
difference would cause a suction effect on the intima, which would lead to injury.
However, the difference is too small to have such an effect.

Fox and Hugh [60] performed blood flow simulations and suggested that
boundary layer separation occurs at sites where atherosclerosis is regularly found,
with the result of deposition of blood-borne platelets and cholesterol. Later on
Fry |67] did experimental studies on the descending thoracic aorta of mongrel
dogs. He put a plug in the blood vessels, partially occluding the lumen with the
purpose to increase the blood velocity locally in a controlled manner. The part
of the lumen which was not plugged was open to the anterior endothelial cells.
His results showed that as endothelial cells were exposed to a shear stress below
~ 37.9 Pa, most of them remained normal in the absence of to much turbulence.
Levels exceeding this limit showed rapid deterioration of the endothelial surface.
These levels have now been shown to be too high to be relevant for a human
model.

Caro et al. [27, 28, 57| showed in a more realistic aortic model a correlation
between early atheroma and regions subject to low WSS, while the development
of lesions seemed to be retarded in regions where the WSS is expected to be
high. They suggested that the process of atherosclerosis is associated with shear
dependent mass transport.

Friedman et al. [66] did numerical simulations of pulsatile blood flow through
a 2D symmetrical branch model, and found spatial and temporal variations in
wall shear. The highest values were found at the convex corner on the outer wall
of the branch and in the neighborhood of the flow divider tip, while the lowest
values were found at the outer wall of the daughter vessels a short distance distal
to the corner. They found high shear, low shear and separation in those areas in
the branch where lesions usually occur. They also emphasized the importance of
transient flow and its disadvantage to the arterial wall. In comparison to Fry’s
[67] 37.9 Pa they reported the largest calculated value of the WSS to be ~ 3 Pa,
but they also mentioned that their results “should not be a firm basis on which
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to discount high shear hypotheses of atherogenesis”, although it does not support
such theory.

Friedman’s group continued their work and did experimental measurements
in a cast of a human aortic bifurcation and found a negative correlation between
intimal thickness and wall shear rate [65]. In [63] they compared measurements on
casts from different human aortic bifurcations, and found variations sufficient to
cause different hemodynamic properties. Such geometric effects may be a reason
behind the variability in location and rate of development of atherosclerosis. In
[64] they present numerical simulations which agree to earlier results.

Another study was presented by Bharadvaj et al. [14] who did measurements
on a glass model with steady flow at different Reynolds numbers. They emphasize
the complex flow field in a bifurcation due to the secondary flow, and state that
zones susceptible to atherosclerotic disease experience low or reversed axial flow,
or low or oscillatory shear stress. Regions subject to higher shear stress are
instead free from disease. In [15] Bahradvaj et al. found peak values of WSS
ranging between 2.5 and 5.0 Pa. They also emphasize the presence of oscillating
shear stress and that this may disorient the cells of the endothelial layer, which
will become more permeable to lipids present in the blood stream.

Ku et al. [104] more strongly emphasize the effect of oscillatory shear stress.
The measurements were performed under pulsatile flow in a scale model of the
human carotid bifurcation. The results were compared to intimal plaque thickness
at corresponding sites of cadavers. Diastolic measurements of WSS and velocities
were found to be similar to steady state cases, whereas they oscillated in both
magnitude and direction during systole. Along the inner wall maximum WSS
was found to be 4.1 Pa during systole, and 1.0 Pa during diastole. Here the
WSS was uni-directional during systole. Along the outer wall, where the intimal
plaque was thickest the instantaneous shear stress oscillated between -0.7 and 0.4
Pa. The conclusion was a strong correlation between intimal thickness and low
time averaged WSS. They also discuss how low mean shear stress and oscillatory
shear stress contribute to an increased fluid residence time at the corresponding
sites, which may result in a modified mass transport of atherogenic substances
between the lumen and the wall, in correspondence to the discussions of Caro et
al. [57] and Jou et al. [94].

The most commonly discussed reason behind atherogenesis today is oscil-
lating WSS. Gambillara et al. [72] exposed arteries from a pig to high- and
low-uni-directional shear stress as well as oscillating shear stress and found no
changes in the endothelial wall for the uni-directional shear stress, but for the
oscillating. Their results may also imply that the shear stress may affect the anti-
thrombogenic properties of the endothelium. Birchall et al. [16] show in their
results a correlation between areas of low averaged shear stress and the formation
of atherosclerosis. Other authors also found a correlation between major locations
of atherosclerosis and oscillatory shear stresses; c.f. Asakura et al. [2]|, Zarins
et al. [213] and Soulis et al. [172], who found a range of shear stresses between
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0.75-2.25 Pa. Gibson et al. [74], Moore et al. [93] and Lee et al. [107] found a
correlation between intimal thickness and oscillatory, or low time averaged shear
stress.

On the other hand, Lutz et al. [118] who measured the WSS distribution in
a rigid plastic cast of a canine artery during steady flow conditions, suggest a
correlation between high levels of shear stress, and unstable stress patterns, with
sites prone to atherosclerosis. Barbee et al. [6] exposed endothelial cells for flow
with a shear stress of 1.2 Pa for 24 hours. The thickness of the intimal cell layer
is shown to be significantly reduced. DePaola et al. [45] propose that highly
elevated shear stress gradients can induce morphological and functional changes
in the endothelium, in regions where the flow is disturbed, and contribute to
atherosclerosis.

Friedman et al. [62| conclude from their experiments that the intimal thick-
ness at sites exposed to large shear stresses increases quickly to a certain amount,
after which it continues to grow slowly. On the other hand, at sites exposed to
low shear stresses the intima grows more slowly, but after longer exposure times
it overtakes the thickness of the sites exposed to large shear stress.

Ku [|208] suggests that most intimal thickening is where the WSS < 1.0 Pa.
Regions of relatively high uni-directional WSS tend to be spared from plaque
development |93, 124] and even be protected by biochemical actions due to stim-
ulus [105, 141]. Lee et al. [107]| also conclude that the intimal growth tends to
decrease the regions of low wall shear stress, resulting in larger velocities and a
more even shear stress distribution. The vessel wall therefore seems to try to
uphold a certain magnitude in WSS [173]. Ku [208] states in his review article
that arteries do adapt to maintain a constant WSS of ~ 1.5 Pa.

For more comprehensive material on fluid mechanics in blood vessels and its
relation to atherosclerosis, see [10, 23, 103, 185].

2.4.1 Numerical simulations of arterial blood flow

Although a great amount of both experimental and numerical investigations have
been done on the subject there are still uncertainties in the behavior of the flow
field, due to the complexities that appear in a multi-bifurcating vessel with com-
pliant walls. As computers have become more efficient it has been possible to
perform more accurate calculations that take more parameters into account. A
decade ago Friedman et al. [64] performed 2D steady state numerical simula-
tions, and today almost everyone performs 3D simulations. Better computing
power resolves better the details of the flow of the idealized problem. Since the
boundary properties of the vessel and the inflow/outflow boundary conditions
are highly varying (and can even hardly replicate laboratory experiments), there
is a major difficulty in applying Computational Fluid Dynamical (CFD) tools
for quantitative analysis of physiological flows of ideal fluids. In addition, the
rheological properties of the blood cannot be handled without introducing rather
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crude models, that limit the validity of the results.

The flow field in the arteries is often simulated in different models; either of
patient specific character [16, 64, 116], or in more idealized bifurcation models
[34, 96, 128, 142, 145, 181|. These attempts to replicate patient anatomy do not
necessarily yield more accurate results, due to natural inter-individual variations
and normal variation due to aging.

A multi-factorial flow as the one in the arterial system is difficult to analyze
in its whole, therefore several parameters are usually neglected or approximated.
Steady state computations are often performed in order to save computational
cost, whereas transient computations often give more realistic results and are in
some cases necessary.

The investigated parameters vary, and one of them has been flexible walls of
the blood vessels and its effect on the flow field, as well as on the distribution
of shear stresses and its relation to atherosclerosis. The approaches also vary
considerably, Liu et al. [116] and Perktold et al. [142| investigated compliant
vessel walls and found a reduction of WSS (up to 25 %, but generally < 10 %),
while Pivkin et al. [145] investigated a moving vessel situated on the heart follow-
ing the heart movement. Other parameters have been related to non-Newtonian
effects of the blood flow [33, 136, 142, 201|, still many assume Newtonian flow
[11, 16, 181], as will be discussed in the following Chapter.

Despite the different approaches most authors conclude that the geometric
effects are of great importance for the flow field. As previously mentioned, for
in vivo flow the geometrical variations are intricate and it is therefore difficult to
generalize one case and apply it to another person. Therefore, an idealized model
may give as much input (or even more) as a more patient specific model. Also, a
large number of results from different kinds of geometries are needed in order to
draw more general conclusions.



Chapter 3

Fluid Mechanical Aspects

This chapter describes the governing equations of the flows considered, followed
by descriptions of different flow characteristics related to pipe flows and the pre-
viously discussed physiological systems.

3.1 Governing Equations

The classic theoretical base of fluid mechanics is the continuum assumption. Mat-
ter in general, whether fluid or solid, is built up of molecules or atoms with a
certain empty space in between them. This is, however, generally not the com-
mon everyday experience, which is that of a continuous media. In continuum
theory small scale molecular /atomic effects are neglected and a theory is built on
the large scales [106]. Continuum theory assumes that matter properties can be
expressed as the ensemble average over the molecules in an infinitesimally small
control volume, where each volume is in the neighborhood of other volumes [106].
Such a limit exists if the control volume has a large enough number of molecules
on one hand, and that the molecules are in equilibrium. In many applications this
is a justified assumption, but not always. A requirement for the continuum as-
sumption to be justifiable is that the mean free path between molecules A should
be much smaller than the smallest length scale of the flow [ [149]. This can also
be expressed in terms of the Knudsen number, Kn << 1, where

A

In the case of blood, the continuum assumption implies that the flow struc-
tures have to be much larger than the (blood) cells. In contrast to the small
molecules, the Knudsen number for the blood cells may not be small. Addition-
ally, it is not obvious that the blood cells are in an equilibrium in all parts of
the blood vessel tree. At the smaller vessels the Kn based on the blood cells are
of order unity or larger. Thereby, one may have difficulties in assuming contin-
uum properties for the blood in smaller blood vessels. Even under more optimal
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conditions, the presence of cells also implies non-trivial rheological properties of
the blood, which is briefly discussed below. In addition to the assumption of
continuum, one often assumes that the flow of blood is incompressible.

The governing equations for an incompressible flow consist of the conservation
of mass and momentum. Conservation of energy is ensured since the flow is
assumed to be isothermal. For Newtonian fluids (as is assumed here) there is
a linear relationship between the stress and the strain rate. For non-Newtonian
fluids one has to add a model for the constitutive relationship. The system of
PDE’s (as shown in the following sections) consists of four equations for the four
dependent variables; namely the velocity vector and the pressure. The steady
state system of PDE’s is elliptic in character and therefore requires boundary
conditions (equal to the number of space dimensions) on all boundary points. The
time-dependent system is classified as partially parabolic (i.e. the momentum
equations are parabolic in time, but this is not the property of the continuity
equation.) The time-dependent problem requires the same type of boundary
conditions as the steady system. However, initial conditions have to be given as
well.

The flow at the Reynolds numbers under consideration is laminar or transi-
tional and hence, there is no need for explicit turbulence modeling. On the other
hand transitional flows may contain smaller length scales then the corresponding
laminar one, and therefore the computational grid should be fine enough to be
able to resolve such small scales.

3.1.1 Rheological properties of blood

Viscosity is defined as the property which relates an applied stress to the resulting
strain rate, where the strain rate is the rate of average decrease of the angle
between two lines which are initially perpendicular in the unstrained state [204].
The strain rate can also be written as

1 8u2 an

where tensor/indical-notation is used, i.e. u; is the velocity component in the i:th
direction.
For a general fluid one has

oij = f (€5) (3-3)

where f is a function of the rate of strain tensor. The relation is valid for all
flows, but an illustrative example is a fluid sheared between two plates at a low
Reynolds number, shown in Figure 3.1. For regular fluids, such as water, some
oils, and gases, the function f is linear, or the fluids are “Newtonian”.
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Figure 3.1: Shear flow due to motion of the upper plate.

The flow shown in figure 3.1 only has a constant streamwise velocity compo-

nent, hence:
d’LLl

Mdl’g
where p is the (coefficient of) dynamic viscosity.

The dynamic viscosity, however, depends on temperature and pressure and is
therefore a thermodynamic property. In cases like this, where the flow is isother-
mal and the fluid is assumed to be of Newtonian character, the constant viscosity
assumption is valid [9]. When (3.3) is non-linear the fluid is non-Newtonian.

Stokes [175] was the first who investigated the relation between stress and
strain rate, in analogy with the Hookean relation in solid mechanics. He proposed
three postulates as outlined by White [204] as:

(3.4)

012 =

1. The fluid is continuous, and its stress tensor o;; is at most a linear function
of the strain rate €;;.

2. The fluid is isotropic, i.e., its properties are independent of direction, and
therefore the deformation law is independent of the coordinate axes in which
it is expressed.

3. When the strain rates are zero, the deformation law must reduce to the
hydrostatic pressure condition, o;; = —pd;;, where 9;; is the Kronecker
delta function.

Based on these three postulates the following general formulation for the stresses
of a Newtonian flow may be obtained:

Ou;  Ou;j Ou,
Oij = —p&-j + M (81‘] + axz> + 52/\8—]:Z (35)

where A is the (coefficient of) bulk viscosity. In the case of an incompressible
fluid, the last term in (3.5) disappears and it is not treated any further. However,
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more information about the coefficient of bulk viscosity is found in for example
[106, 204].

Blood is a suspension containing different cells, with elastic characteristics,
and molecules of largely varying sizes. Hence, blood should therefore be treated as
a visco-elastic substance, affected by parameters such as plasma viscosity (prob-
ably affected by macro-molecular orientation), local red blood cell concentration
and deformability and blood cell aggregation [133]. This reality gives the blood
its non-Newtonian properties and the blood can not generally be considered as
homogeneous. In smaller blood vessels where the size of the vessels are relatively
small in comparison to the blood cells (i.e. large cell Knudsen number) the rhe-
ological properties of the blood are highly different from that in large vessels.
Here, the non-Newtonian, or rheological, characteristics of the blood give the ef-
fect of reduced apparent viscosity |56]. The apparent viscosity is defined as the
viscosity computed from Poiseuille’s law (shown later) when the flow rate and
pressure drop are measured [70].

The concentration of blood cells is higher towards the center of the vessel, as
compared to near walls. This effect is the result of the motion of the cells subject
to the shear in the blood. The phenomenon is often referred to as the Fahraeus-
Lindquist effect. The distribution of the particles towards the axis of the pipe is
partly due to forces in a shear layer, as described by Saffmann [161, 162]. At small
Reynolds numbers this effect is fairly small, and therefore this simple explanation
is not adequate [70, 113].
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Figure 3.2: Viscosity as function of strain rate for various hematocrit levels, i.e.
the concentration of red blood cells, which is about 45 % in normal individuals
(after Brooks et al. [25]).

In larger vessels, as compared to blood cell diameter, blood is often considered
as homogeneous [70]. In these vessels the shear rates are usually large enough
in order to also consider the blood as a Newtonian fluid [133, 140]. However,
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it should not be forgotten that the flow is pulsating, particularly in the large
arteries, and the shear rates will therefore vary during the cycle.

Brooks et al. [25] examined the dependence of viscosity on shear rate and
hematocrit, and found that whole blood behaves in a Newtonian manner up
to a hematocrit level of about 12%. For larger hematocrit levels the viscosity
increased, but as the shear rate increased the viscosity decreased again reaching an
asymptotic value above shear rates of approximately 100 s~!, i.e. shear thinning
character (Figure 3.2).

Soulis [172] et al. investigated non-Newtonian viscosity models for flow through
the left coronary artery and concluded that the Newtonian model is a good ap-
proximation at medium- and high-shear rates.

When the blood is considered as Newtonian and homogeneous, it has a density
of about p = 1.05-10% kg - m~3 and an apparent dynamic viscosity of about four
times that of water (at 20°C) u = 0.004 kg - m~ts™! [140]. The viscosity of
the blood plasma alone is about 1.7 times that of water, i.e. fipgsme =~ 0.0017
kg - m~'s™'. The plasma is usually considered to behave in a Newtonian way
[133]. In the plasma the largest component length scale is for the albumin and
the fibrinogen molecules (the latter is about 50nm), which is only about one
percent of the size of the capillaries. Therefore, those molecules are generally
believed not to affect the flow in the way the much larger cells do [133, 200].

3.1.2 Continuity equation
The continuity equation for a fluid reads

dp  Opu;

=0 (3.6)
Thus, with the assumption of incompressibility the equation reduces to

3uz~
5 =0 (3.7)

3.1.3 Momentum equation

The momentum equation can be expressed as

Oui o 0% _ 04
Pot TP, T ou

(3.8)

where the terms on the left hand side is density times transient- and convective-
acceleration. The term on the right hand side is the total force per unit volume.
Taking the divergence of (3.5) one has

8O'Z'j (9p 82 U;
c%cj 3x2 8xj 8xj

(3.9)



22 CHAPTER 3. FLUID MECHANICAL ASPECTS

where the contributions of the stress tensor has been divided into its two compo-
nents (i.e. the pressure and the viscous stress).

The form of the momentum equations for a Newtonian incompressible flow,
usually referred to as the Navier-Stokes equations, is as follows.

ou; Ou; op 0%u;

p% +pUJ8[L'j - _&El +M85L’]81’]

(3.10)

3.2 Similarity

The Navier-Stokes equations (3.10) describe the balance of forces on a fluid ele-
ment. These can be expressed, per unit volume, by words as:

Transient inertia + Convective inertia =
(3.11)
Pressure on sides + Viscous forces on sides

It may be convenient to rewrite the equations on non-dimensional form, which
is done by introducing a characteristic velocity U, a characteristic (angular) fre-
quency w and a characteristic length scale D. Using these characteristic pa-
rameters the equations will be non-dimensionalized by introducing the following
non-dimensional terms.

T; * __ Ug
i =D W=7y
(3.12)

* __ _DP *

The expressions in (3.12) are substituted into (3.10) and the resulting expres-

sion is divided by %. What follows, after some algebraic manipulations is an
expression for the Navier-Stokes equations in non-dimensional form

wD Ou; ou} op* v Ou;

O _ 3.13
U ot "oz~ “ox; | DU 027 (3.13)

where v = p/p is the kinematic viscosity. The coefficient of the first term is

recognized as a Strouhal number, 27 - St; = 92 = Transient term  y,wover, in
U — Convective term

a pulsating flow (laminar in a straight pipe) the relation between transient forces
and viscous forces is more relevant. Therefore, traditionally, the non-dimensional

numbers, Reynolds number, Re, and the Womersley number, «, are identified.

UD B Convective inertia

Re = = 3.14
c=r 1 Viscous forces (3:14)
D jw Transient inertia 1/2 ( 5 15)
a{ = — —_— = .
2\ v Viscous forces
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The Navier-Stokes equations can then be written as
a? out ou* op* 1 0*u!
4—— — = — —_— 3.16
Reor 1 o} ox} " Re ox3? (3.16)

The number 4 in the first term of (3.16) comes from the use of Womersley’s [206]
definition of «, based on the radius.

If one has two geometrically similar bodies, i.e. similar relative measures of
the body, but not necessarily similar in absolute size, and if the Reynolds- and the
Womersley-numbers are similar for the two cases, the solution will be the same;
this is due to the non-dimensional form of (3.16). Thus, a time dependent flow
is governed by two dimensionless numbers. Two different geometrically similar
flows with the same Reynolds- and Womersley-numbers then satisfy dynamic
similarity.

A large Womersley number, (3.15), indicates that the transient- or oscillatory-
inertia forces dominate, and of course a low Womersley number indicates dom-
inating viscous forces. The same is valid for the Reynolds number, but then as
described by (3.14), the convective inertial forces are related to the viscous forces.
Different levels of the Womersley- and the Reynolds-numbers in arteries are given
in Table 3.1. The effect of these numbers on the flow field (of flow in a straight
pipe) was described by Reynolds [155] and Womersley [206] respectively; this will
be investigated more carefully in the following sections.

Dog (20 kg) Man (70 kg)

[ Blood Vessel [ Velocity (cm/s) | Re | o | Velocity (cm/s) | Re [ o |
Ascending aorta 15.8 (89/0)° | 870 (4900)° | 16 | 18 (112/0)® | 1500 (9400)° | 2L
Abdominal aorta 12 (60/0) 370 (1870) | 9 14 (75/0) 640 (3600) | 12
Renal artery A1 (74/26) 10 (800) | 3 10 (73/26) 700 (1300) | 4
Femoral artery 10 (42/1) 130 (580) 4 12 (52/2) 200 (860) 4
Superior vena cava 8 (20/0) 320 (790) 10 9 (23/0) 550 (1400) 15
Tnferior vena cava 19 (40/0) 800 (1800) | 11 21 (46/0) 1400 (3000) | 17

Table 3.1: Flow data of different blood vessels, after Bronzino [24]. * means

(systolic/diastolic) and ® means (peak).
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3.3 Pipe Flows

3.3.1 Steady flow in a straight pipe

The flow through circular pipes is common in several fields of engineering. Ap-
plications may be cooling pipes in a nuclear reactor, flow in heat exchangers,
ventilation systems, cardiovascular flow, etc. Viscous flow in pipes is often re-
ported to first have been studied by Hagen (1839) [79] and Poiseuille (1840/1841)
[147, 148|. Hagen was an engineer and Poiseuille was a physician studying blood
flow. They obtained, by experiment, the famous relation now known as the
Hagen-Poiseuille law, which reads

- Tecdr_ T4 op (3.17)

where a is the pipe radius. The pressure gradient is constant over the entire length
of the pipe, which motivates the last equality in the expression. The expression
was derived mathematically by Stokes in 1845 as an application of the Navier-
Stokes equations. However, Stokes did not publish the results, because he was
unsure of the boundary condition at the tube wall. Instead the first derivation
of the Poiseuille law from the Navier-Stokes equations is usually awarded to
Hagenbach 1860 [178].

The continuity equation and the Navier-Stokes equations are written in cylin-

der coordinates as 5 18 9
vl vy (3.18)

ar v e Tar

ou ou  wou ou 1@ , (82u 10u 10°u 0*u

o or T roe Vs T pon w+;a+ﬁw+@) (3.19)

v v wow_wr oo

ot U@T r 00 r “ax_
10p Pv 1ov  w 10*% 20w 0%
it e, 2y vl 20 90 2
p@r+y(0r2+rﬁr T2+T2892 r289+81’2) (3.20)

ot or 1 00 r or
1 0p Pw 10w w 10%w 200 Fw

- —— —t— =4+ —=—+ ==+ — 3.21

pr 00 V<8r2+7“8r r2+r28«92+r28«9+3x2 (3:21)

where (x,r, 0) are in the axial-, radial-, and azimuthal-directions, with the velocity

components (u, v, w), respectively.
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The Poiseuille formula can be derived by, assuming laminar, steady and fully

. . . N R ou _ du _
developed flow in a straight pipe. Then, v =w =0, 5; =0, and 5 = 2% = 0.
Applying these conditions to (3.18)-(3.21) reveals through the continuity equation
that v = 0, the radial momentum equation gives that the pressure is constant over
a cross-section. The flow is therefore fully specified by the momentum equation

in the axial direction. After simplification (3.19) is written as

dp pd du

L_EZ (2 22

dx  rdr <T dr) (322)
Integrating (3.22) twice and applying the boundary conditions u(r = a) = 0,

where a is the pipe radius (at the wall), and 240=9

5— = 0, the following expression
is obtained for the axial velocity:

dp 1

u(r) = “drip (a®> —17) (3.23)

The volume flow through the pipe is given by integrating (3.23) as

“ ma* dp
Q= /udA = /0 u(r)2mrdr = S dz (3.24)
and the relation is recognized.

This expression is often found in text books on physiology when the flow of
blood in blood vessels is to be described. The Poiseuille law should, however,
be used with precaution. The expression is restricted to fully developed steady
and laminar flow in a very long straight pipe with rigid walls. This situation is
naturally seldom found in a real biological application, where the flow even may
be turbulent in the larger arteries, not least at pathological conditions such as
a stenosis [19, 140]. Poiseuille’s law may still give some valuable information,
not least in the smaller blood vessels where the flow is laminar. According to
(3.17) the flow is proportional to the radius to the power of four. This reveals
that the vasoconstriction/vasodilation function, that changes the vessel radius in
order to direct the blood to a particular site or increase blood pressure, of the
blood vessels is very efficient [71].

3.3.2 Pulsating flow in a straight pipe

A Poiseuille flow is based on steady flow assumptions and naturally deviations
from the parabolic solution is to be expected in an unsteady flow. In the case of
a large Womersley number in a straight pipe of laminar flow, transient inertial
effects are dominating over viscous effects. In the central part of the pipe, where
the velocity is high, the transient forces are balanced by pressure forces, like in an
inviscid case. In Poiseuille flow the pressure forces are instead balanced by viscous
forces in the central parts, as well as close to the pipe wall [71]. In pulsating
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flow the slowly moving fluid near the wall, i.e. with small momentum, responds
quicker to changes in the pressure gradient than the high velocity fluid in the
center. The unsteady profile at large Womersley numbers is therefore expected
to be blunt in the central core of the pipe. This phenomenon has been described
by Womersley [206] and others [167], but the dimensionless group describing the
oscillations is usually referred to as the Womersley number as above. However, it
is sometimes also referred to as the Stokes number, St, due to the development
of the Stokes layer in Stokes flow. Note that this number should not be mixed
with the Stokes number as it is defined for a particle moving in a fluid. The
Stokes layer thickness is given by & = (2v/w)"/?. Comparing § with « in (3.15),
it follows that St = a/d = a/v/2. Hence, the Stokes number (and Womersley
number) can be seen as a measure of pipe radius over Stokes layer thickness.

Following Womersley’s treatment we start from the momentum equation in
the axial direction in cylinder coordinates, (3.19). The same assumptions regard-
ing the flow as for Poiseuille are made, with the exception that the time derivative
is kept. The governing equation is now expressed as

ou  Op Pu  10u
P50~ Ton TH (a— ;a) (3.25)

The pressure gradient may then be expressed as a Fourier series function %(t) =

o0

> cpe“rt. However, since (3.25) is linear in u one may solve for only one term
1=—00
at a time, and then add up the individual solutions. Therefore, the pressure

gradient is expressed as % = Ae™!, which after some rearrangement yields

Pu  10u  10u A .
e — S = et (3.26)
or?  rodr vt i
where u is the velocity in the axial direction. A is constant since at each point
in time the pressure gradient is assumed constant, in relation to Poiseuille flow.
Now, also u is expressed as a complex periodic function in the anzats u(r,t) =
B(r)e™!, and after re-arranging one has
d*B 1dB #w A
— +—-——+ —B = —— (3.27)
dr? ~ rdr v 1
This equation is a form of Bessel equation and has the following solution, where
the boundary conditions B(a) = 0 and |B(0)| < oo have been implemented.

LA AT
B==5 {1 7 (a\/%i?’/?)} (3.28)

where Jy (24%/2) is the Bessel function of order zero, a is the radius of the pipe.

Now, a,/® = «a is the Womersley number, and y = =. The solution of (3.26) is

a
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then written as

p iw

3/2
u:éi{l—M}em (3.29)

Jo (ai3/?)
The real- and imaginary-parts of the pressure gradient, Ae™!, correspond to the
real- and imaginary-parts of the solution, respectively. A more detailed treatment
of the solution procedure, as well as tables of Bessel functions, are given by Zamir
[212]. McDonald [123] also presents the basic ideas and several informative figures
on this topic. The first term in (3.29) is just a constant, the second term (in
brackets) describes the cross-sectional distribution of the velocity, and the third
exponential term describes the variation of velocity with time. Integrating (3.29)

over the cross-section gives the flow as function of time

a A 2 9 :3/2 J 13/2 )
Q(t) = u(r, t)2nrdr = Ly § ! (az ) et 3.30
0

p iw Ba? Jy (aid/?)

where J; is the Bessel function of first order and first kind. Womersley [206]
shows that as « goes to zero the flow goes towards the Poiseuille solution. As «
increases the solution quickly moves away from the Poiseuille solution, and finally
the peak flow goes asymptotically to some value of about 10 % of the Poiseuille
solution. Due to the inertia of the fluid, as a increases, the flow will eventually
lag about 90° behind the pressure gradient, which is the driving force of the flow.
Integrating (3.30) over a period shows that the net flow in this oscillating flow is
zero [212].

Figures 3.3(a) and 3.3(b) show the characteristics of the axial velocity at
two different Womersley numbers. The larger Womersley number profiles show
slightly decreased magnitude in the center, but with more flat distributions.
There is also earlier and more back flow near the walls, due to the larger ac-
celeration.

3.3.3 Flow in curved pipes

It is a well known fact that a curved pipe induces secondary motion. Dean [40, 41]
describes the phenomenon theoretically for a laminar case with small curvature
ratio a/R., where a is the radius of the pipe and R, is the radius of curvature.
As the fluid in a pipe follows a curved path, the fluid towards the center-line of
the pipe with larger velocity experience larger inertial force (centrifugal force) as
compared to the fluid in the boundary layer near the wall. In order to counter-
act the increased inertial force, a lateral pressure gradient is built up. However,
because the pressure is approximately constant across transversal lines above
the outer wall of curvature, and that the flow in the wall boundary layer has less
momentum than in the core, a force imbalance appears near the wall. Hence, near
the wall the pressure force is larger than the inertial and viscous forces, which
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Figure 3.3: Velocity profiles at different Womersley numbers.

induces a motion along the wall. These secondary streams meet at the inner wall
of curvature where they merge and by continuity they result in a central stream
towards the outer wall. These vortices are then stretched by the downstream flow.
Curvature effects are found in both laminar and turbulent flows, although it has
been reported that the influence of curvature is less pronounced in a turbulent
case [167].
By taking the curl of the Navier-Stokes equations (3.10) one gets the vorticity
equations:
c%)i c%)i 3uz (92(,02'

B Yo, “ian, T Buon,

(3.31)

These equations describe the transport of vorticity (wi = eijk%) in the flow
J

field. The terms on the left are transient and convective transport of vortex
lines, and the terms on the right describe intensification of vorticity when the
vortex lines are stretched, and diffusion of vorticity. The equations do not have
any source terms in incompressible flow, and therefore the vorticity can not be
created by the flow field itself, only transported within it. Instead the vorticity
is again induced through the boundary conditions, here the wall, as previously
described; cf. Batchelor [9].

A steady fully developed flow in a curved pipe can be described by introducing
a curvlinear orthogonal coordinate system, according to Figure 3.4.

The position vector is described by

r(z,r,0) = Xex +Yey + Zey
= ((R. + rsind) sing, (R. + rsind) cosp, rcosd) (3.32)

where ey, ey, ez are the cartesian base vectors, x = R.¢ is the axial component,
r is the radial component and 6 is the azimuthal component. As described by
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Figure 3.4: Coordinate system for flow through a curved pipe.

Ramgard [151] the new set of base vectors are defined as

1 0or
hi 88i

€ =

(3.33)

or

where h; = 6—&’ are the scale factors, and (s1,s9,s3) = (z,7,6). Computing

the scale factors give h, = 1+ z-sin, h, = 1, and hy = r. Here, the velocity
components in the (z,r, ) d1rect1on are given by (u, v, w).

Using these parameters one can express the velocity components, gradients
and divergence fields of the continuity and the Navier-Stokes equations in the
new basis [151]. The equations are given in (3.34)-(3.37).

R, @+@+18w+v+03in9+w0088
(R. +rsinf) dx ~ Or  r 00 R. + rsinf

=0 (3.34)

%—1— R, %ju 8_u+g8_u+u(vsin9+w0039)
dt " (R.+rsind) 0x  or 00 R. + rsind

1 R. dp R? Pu  *u 1 0%
=\ B e\ o) TH — 352 T2t 3am
p | R+ rsinf ox (R. + rsind)” Ox or r2 06

U 10u 1 { Oou  cost 0u]
I S sinf— +

(R. + rsme)Q + ror * (R + rsinf) or r 00
2R, ow ov
+ m [0039% + szne%] H (3.35)
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(R, + rsinf)* 0x (R, + rsind)’

The following analysis is based on Dean’s [40, 41| papers, although the nota-
tion is taken from Ward-Smith [199]. The flow is now considered to be steady
and fully developed, i.e. 2 =2 = 0. The equations (3.34)(3.37) are simplified
and rewritten on a similar form as presented by Dean [40].

ov 10w v wsinf + wcosH B

o 798 7 R.trsing (3.38)
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If one then assumes that a/R. << 1 the motion may be considered as a per-
turbation of Poiseuille flow. For Poiseuille flow we have, as shown before, u =
A, (a* —r?), where A, = _%ﬁ7 v=w =0, and p/p = Cpx, where C, is a
constant. By the assumption of small perturbations the following solution is pro-
posed: u = A, (a*> —1?) +uy, v = vy, w = wy, and p/p = Cpx + p1/p; u1, vy, W1,
and p; are all small of order a/R.. These assumptions, and ignoring all terms
larger than order a/r. equations (3.38)—(3.41) become

01}1 1 awl U1 B

rsinf\ 0O P
—2A,rv; = — <1 "R ) g (C'pa:—l— _1)

p
? 19 18 .
v |(g 7o * o) (e =) £

o 1\ (A, (a®—1r?) sind 10 A,(a*—r?) cosb

* (0r - 7") ( R. M R. (3.43)
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Ignoring small terms of (3.43), what is left is C,, = —4v A, which is the relation
between pressure gradient and axial velocity in a straight circular pipe. Equation
(3.43) can then be simplified into

0 (m 6vArsind Puy 10w 1 0%y
i (5) - (G e ) o

If one then writes the variables as

—2Arv, =

uy = u (r)sind
vy = v (r)sind
wy = w (r)cosh (3.47)

br_ p sind
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where the primed variables depend only on r, and substitute these into (3.44)—
(3.46) four new quite similar expressions, but with primed variables, are obtained.
By integrating those equations and using proper boundary conditions (cf. Dean
[40] for details), and introducing the Reynolds number the following solutions are
obtained.

2

4o 30 g T ingtio - 1
i =2(1-¢%) |1 4R6<8m0+ 11520chsm«9{19 21¢* +9¢ Cﬁ}]
(3.48)
R
/U = 144620 sinf (1 —¢*)? (4= ¢?) (3.49)
w/U = jﬁ% cost (1 — ¢2) (4 — 23¢2 +7¢%) (3.50)

Here, U = uo/2 = Aa®?/2, ( =r/a, Re = Aa®/v = 2Ua/v, and uy is the axial ve-
locity at the center line. The solution is plotted in Figure 3.5, where the secondary
flow is illustrated with vectors and the axial flow with countours. As shown in
the figure the smaller curvature ratio solution has a more symmetric parabolic
axial velocity distribution, as compared to the figure with larger curvature ratio.
There the profile is skewed towards the outer wall of the bend.
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Figure 3.5: Solution of the velocity field in a curved pipe accordig to Dean [40)].
The larger curvature ratio solution shows an axial velocity distribution more
skewed towards the outer wall of the bend. 2D velocity vectors show the secondary
flow.

One can identify the components of the Dean number, De = Rev/d and
d =a/R., in (3.48)—(3.50) as parameters that determines the solution. The Dean
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number is a measure of centrifugal forces over pressure forces, which are the forces
determining the secondary flow. In this first order approximation p; = 0, i.e. the
pressure gradient is similar to what is found in Poiseuille flow. As curved pipe
flow experience larger pressure drop than straight pipe flow, this is incorrect and
a higher order approximation is needed, which Dean also did in another work
[41].

Going back to equations (3.38)—(3.41), and assuming again that R. >> a, so
that (R, + rsinf) can be replaced by R., the equations can be simplified into
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These equations are recognized as the continuity- and Navier-Stokes-equations
in cylinder coordinates, with the addition of centrifugal force terms (the fourth
terms on the left hand side of (3.53) and (3.54)). They clearly illustrate the
effect of a bend pipe as compared to a straight. Dean [41]| further introduces a
secondary stream function and then makes the equations non-dimensional. Two
dimensionless groups appear, G’ = Ga?/(uuy) and K = 2u2a®/ (V*R.). wuy is
the center line velocity, and G is the axial pressure gradient. If the Reynolds

number Re = ?, where U is the mean flow velocity and D the diameter, is

approximately similar to Re = -2, the parameter K = 2aRe" , which is one form

of what is usually referred to as a Dean number. The Dean number defined above

is related to K as .
De=—VK 3.55
75V (355
It can be shown, by introducing a certain set of non-dimensional parameters,
that for small enough Dean numbers (K < 576 or De < 16.97) the flow is
approximately determined by the Dean number alone [199], which is rather small.
A Reynolds number of Re = 2000 and a curvature ratio of 6 = 0.1, which is not
that large, give a Dean number De =~ 632. Still the classical Dean solutions
present important phenomena, present at large Dean numbers as well. For a
review over asymptotic solutions of these equations, as well as unsteady cases, cf.

Pedley [140].
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Since Dean, several investigations of curved pipe flow and the resulting sec-
ondary flow have been carried out. For example, Horlock [87| investigated the
secondary flow through a pipe with sinusoidal shaped centerline. He found that
in such a geometry the secondary flow may be enhanced or weakened along the
pipe. The secondary flow could also be reduced by a consecutive bend, yet the
flow field could not be fully restored. Barua [7] examined curved tubes at a
large Dean number and found fair agreement between theory and experiments.
Lyne [119] took unsteadiness into account and found that for a large Womersley
number the secondary flow in the interior of the pipe is in the opposite direction
to that predicted for a steady pressure gradient. The flow along the wall from
outside to inside in the Stokes layer, returns through the more central parts of
the Stokes layer. This draws the fluid in the core around in the opposite direction
as compared to the steady state solution. Smith [170] described flows at different
(secondary) Reynolds-, Womersley-, and Dean-numbers. He examined limits of
these numbers, such as purely steady, purely oscillatory and intermediate limits.
A proposal was given for a path of development from steady to pulsating flow,
in which the secondary flow first is steady, then undergoes an unsteady period,
and finally becomes steady again. He also suggests the existence of a line in
the Womersley-, Dean-number parameter space which separates outward moving
secondary flow from partly inward moving.

Dennis [44] found that for a large enough Dean number a two vortex solution
exists. Talbot and Gong [182] did experiments on the entrance flow into a curved
pipe. They found two vortex pairs in parallel at about the same height at one
instant in time, and separation was found where the boundary layers merge at
the inner side. Chang and Tarbell [30] did numerical simulations of Talbot and
Gongs experiments, and also computations for two more physiological pulses.
They observed the presence of complex vortical structures.

Snyder et al. [171] show that downstream development of the skewed axial
velocity component can not be characterized by a single dimensionless parameter.
In loosely coiled pipes (§ < 1/140) the growth of axial skew depends strongly on
the pipe curvature through the Dean number, while in more tightly coiled pipes
the skewness does not depend on curvature. Instead a formula depending on
Reynolds number, pipe radius and entrance length is presented. Hamakiotes et
al. |81] examined the effect of the Womersley- and the Reynolds- number on
the flow through a curved pipe. At small Re Dean vortices (single) appear for
all times at all a. For larger Re Lyne-type vortices were observed and always
appeared during the acceleration part of the period.

Rindt et al. [158] used finite elements for computing the entrance region in
sinusoidally varying flow. A reversed axial flow region was found along the inner
wall, and the axial profile was affected and skewed towards the outer wall. A
large value of the Womersley parameter resulted in a steady secondary flow field
and Lyne-type vortices. Also, a more physiological flow rate was used and they
found that the influence of the diastolic phase on flow phenomena in the systolic
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phase is of minor importance.

Sudo et al. [176] did measurements and numerical simulations on the oscil-
lating flows through a curved channel at various Dean- and Womersley-numbers.
They found five categories for the secondary flow: 1) Dean circulation type, 2)
deformed Dean circulation, 3) intermediate circulation between Dean and Lyne,
4) deformed Lyne circulation, and 5) Lyne circulation. Tada et al. [180] did nu-
merical simulations of pulsatile flow at various Womersley- and Dean-numbers,
as well as various § (amplitude ratio or ratio between through flow and oscil-
latory flow). They classified the secondary flow patterns into three base groups
(all combinations may also appear): viscosity dominated type, inertia dominated
type and convection dominated type. When the amplitude ratio of the volumetric
flow rate was equal to one, four to six vortices of the secondary flow appeared at
a large Dean number. Lyne-type flow patterns disappeared for 3 > 0.5. Komai
and Tanishita [102] simulated fully developed flow through a curved tube using
a physiological pulse at a Dean-number De = 393, and various Womersley num-
bers and curvature ratios. They found that the secondary flow did not dissipate
before the next period which gave effect on the flow of the next period. At small
intermittency parameter (ratio of systolic time/period time) additional vortices
were formed near the inner wall.

Boiron et al. [17] examined numerically and experimentally the starting effect
on the secondary flow in a bend at various Womersley- and Dean-numbers. The
velocity profiles and secondary flow patterns, and their dependence on the initial
hydrodynamic conditions were examined.

Siggers and Waters [168] investigated the character of the secondary flow in
a curved pipe with pulsatile flow. For a sinusoidal pressure gradient they identi-
fied three classes of stable solutions that are either periodic symmetric, periodic
asymmetric or asymmetric solutions, depending on the secondary Reynolds num-
ber. The transition between solutions is dependent on the curvature. When the
Dean number increases a solution can go through an unstable phase to find a new
stable solution.

Thus, complex vortical structures appear more often in pulsating flows than
the regular Dean vortex structure. These flows are also relevant in physiological
systems and measurements have been done by several researchers. Clark and
Schultz [36] show skewed velocity profiles in the axial direction from measure-
ments in the aorta. Similar results was shown by Nerem et. al. [129], from
measurements in the aorta of a horse. Motomiya and Karino [127] also show
patterns of secondary motion.
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3.3.4 Flow in bifurcations

The flow through a pipe bifurcation has much of the characteristics in common
with the flow through a bent pipe. In the case of a 90-degree bifurcation the
streamlines are bent in a similar way as in a 90-degree curved pipe. Therefore
similar secondary flow features in the daughter branch are expected as in a devel-
oping flow through a curved pipe. However, the flow field is also, to some extent,
subject to effects from the other branches.

Figure 3.6 shows a sketch of the flow field in a bifurcating pipe. Vortex con-
taining separation bubbles and secondary counter rotating vortices are expected
in this kind of bifurcation. The region to the opposite side of the daughter branch
may not be separated as soon as the region inside the daughter branch, however, a
skewed distribution of axial velocity towards the daughter branch is still expected.

Regions prone to separation

=

Figure 3.6: Sketch of expected regions of separation and secondary counter ro-
tating vortices; partly after Pedley [140].

The cardiovascular system naturally contains a large amount of bifurcations
of which most are asymmetric; asymmetry due to different cross-sectional areas
of daughter vessels, different branching angles, and different flow conditions [140).
The only well known symmetric bifurcation is where the aorta bifurcates into the
two iliac arteries [132, 140, 189|. Therefore, a deep understanding of the effects
of bifurcations, symmetric or asymmetric, is essential. Data about the secondary
flow through bifurcations, such as a T-junction, is sparse. In a biomechanical
context focus has often been on WSS distributions rather than what in the flow
field is the cause of the characteristics of the WSS.

Balshazy et al. [5] did numerical simulations of flow through two different
bifurcations, one with sharp edges and one with blended edges of a more physio-
logical character. The model with blended edges showed reduced skewness of the
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flow profiles in the daughter branches, smaller secondary velocity components,
and regions of reversed flow in the vicinity of the carina. Comer et al. [38] made
a detailed description of the steady flow through a three generation symmetric
bifurcation tree at Reynolds numbers 500 — 2000. They also considered particle
distribution in the geometry in a second paper [37]. Zhang et al. [214] studied
a 3D three generation symmetric bifurcating flow at Re ranging between 200-
1600 for steady flow with either parabolic or uniform inlet velocity distribution.
They found skewed velocity profiles, as well as unbalanced mass flow rate ratios
between the branches.

Tadjafar [181] studied the influence of local geometric parameters on the flow.
Investigated parameters were bifurcation area ratio, bifurcation angle, inlet flow
Re (steady), and asymmetric outlet pressure boundary conditions. It was found
that the area ratio had the greatest influence on the flow within the physiologically
relevant regime.

Moyle et al. [128] investigated the effect of adding secondary flow to the in-
let velocity profiles on the WSS and on an oscillatory shear index (OSI). The
test was done for three realistic models of a carotid bifurcation, where curvature
and helical pitch was added to the entrance vessels. They found that the effects
of secondary flow on the WSS break down within a few diameters of the inlet.
Fresconi [61] investigated secondary flow fields in a multiple (3 generation) sym-
metric bifurcation model of an airway at 6 < Re < 350 and Womersley numbers
0 < a < 1. They found that for the larger Re the secondary flow did not have
enough time to develop before the subsequent bifurcation. They also found that
flow patterns in the oscillatory case were similar to the steady state cases at the
corresponding Re, which is not very surprising due to the small « [139).

Samagio and Vlachos [164| performed steady numerical simulations of the
flow through a rectangular T-junction and found regions of secondary flow. Two
recirculation zones were also found, one in the main branch, opposite to the trail-
ing edge of the daughter branch, and one in the daughter branch at the inner
wall. The axial velocity profile was skewed towards the daughter branch. Schinas
and Mathioulakis [166] investigated pulsating flow in a 90-degree bifurcation of
a square duct using LDV. They examined separation dynamics, and during ac-
celeration the flow was attached, but close to peak flow separation was initiated
at both branches. Nikolaidis and Mathioulakis [135] did measurements in a 90-
degree bifurcation under pulsating conditions, also in a square duct, at different
Reynolds- and Womersley-numbers. During acceleration phase all recirculation
zones and vortices were washed out and new Dean vortices were created. At one
instant, at a = 9.42 and Re = 412, four vortices were found. An example of
a multiple vortex structure in pulsating flow through a 90-degree bifurcation at
Re = 1450, and a = 6.75 is shown in Figure 3.7. Two vortex pairs of different
structure are found in (a) and (b), respectively.
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(a)tT=0.217

Figure 3.7: Multiple vortices at different times in pulsating flow; (a) near peak
flow phase; and (b) at inlet flow deceleration phase.

3.3.5 Entrance flow

Another cause of secondary flow is an entrance region. Due to the no-slip condi-
tion at the wall the velocity there is small and, hence, the flow rate is larger at the
central parts of the pipe. For a straight pipe, a parabolic profile develops if the
flow is laminar. Every branch (if it is large enough) affects the flow downstream
of it, since the flow is strongly disturbed, and if the distance to the next branch
is not too large, one would not observe a fully developed profile.

The inlet length is usually referred to the distance (in a steady flow) from
the entry section to where the center line velocity is less than 1 % from the
corresponding velocity in a parabolic profile; this definition was proposed by
Boussinesq in 1891, who suggested the relation L/D = 0.065Re, where D is the
tube diameter and Re the Reynolds number [47]. Other authors have suggested
other relations, and Lew and Fung [110] conclude that, L/D = 0.08Re, is quite
good for Reynolds numbers greater than 50. They also show that as the Reynolds
number goes to 0 the inlet length goes to about L/D = 0.65. Durst et al. [47]
propose the relation L/D = [(0.619)6 + (0.0567Re)]"/"®. On the other hand,
Schlichting [167] reports an inlet length of x/D = 50-100 for laminar steady flow
and x/D = 25-40 for turbulent flows.

For an unsteady flow the boundary layer is affected by both convective and
transient accelerations. Fung [71| suggests that when §; = &9, where §; =

6.5 (5)1/ % is boundary layer thickness due to inertial forces, associated with tran-

sient accelerations, and &, = 4 (va/U)"? is the boundary layer thickness associ-
ated with convective accelerations, L = 2.64%; U is a characteristic velocity and
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w is the angular frequency. For x < L, §; > o and transient accelerations tend
to dominate, whereas when x > L, §; < o and convective accelerations tend to
dominate.

3.3.6 Pressure wave in tubes with extensible walls

The pressure wave induced by the heart ejection of blood into the aorta, travels
along the aortic wall and is also transmitted and reflected at each bifurcation.
This pulse increases the radius of the vessel and also works as a help pump by
storing potential energy, which is then converted to kinetic energy when the vessel
radius decrease again during diastole. This is due to the elastic fibres, as was dis-
cussed in a previous Chapter. At simplified conditions the propagating wave can
be described by a wave equation, cf. |71, 112, 140, 212] for more comprehensive
analyses. The ratio between peak velocity and the vessel wall wave speed is about
Umaz/c = 0.20 — 0.25 in the thoracic aorta of a normal dog, and is expected to be
similar for humans. The ratio decreases as the arteries become smaller [140]. It
has to be pointed out that the propagation speed depends primarily on the me-
chanical properties of the arteries. The more severe atherosclerosis is, the stiffer
are the walls and the higher the speed of pressure wave propagation. Arterial
compliance and the stiffness depend on mean blood pressure, aging and rate of
ventricular ejection. The aging usually implies stiffening due to arteriosclerosis,
and the visco-elastic properties of the vessel wall influence the dependence on
rate of ejection. Usually the pressure pulse travels at a speed of about 4-5 m/s
in young people, while in elderly it travels at a speed of about 10-15 m/s [109].

3.3.7 Transition to turbulence in pipe flows

Table 3.1 presents characteristic data from the cardiovascular system of both a
dog and a human. For a man the Reynolds number ranges between 200 in the
femoral artery, to 9400 in the ascending aorta at peak flow. Osborne Reynolds
[155, 156] found in his experiments (published 1883), when he introduced dye into
the entrance of a circular pipe, that at low speed Re < 1900 the flow remained
laminar and the dye did not mix by convection. However, when the flow veloc-
ity was increased to a Re over approximately 2000, depending on the entrance
conditions, the dye was mixed and convected over the whole cross section. Less
initial disturbances have been shown to raise the transitional Reynolds number
significantly. Schlichting [167] reports that a transition Reynolds number as high
as approximately 40-10% has been obtained in steady flow. Fully developed turbu-
lence is otherwise generally considered to be found around Re = 3000 [149], but
as stated the local properties are very significant for when to expect transition.

White [204] presents a list of parameters influencing transition to turbulent
flow. The following may be relevant here (with point four added):
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1. Pressure gradient

2. Free-stream turbulence
3. Wall roughness

4. Inlet conditions

The pressure gradient is favourable during the accelerating phase of the pulse
which reduces the risk of early transition, however, at the decelerating phase the
pressure gradient will temporarily be adverse. Initial disturbances that might
trigger transition may exist in the case of arterial flow, since the heart is not
standing still, and since the fluid has little time to settle before it is being ejected
from the heart. Also, the flow passes through the aortic valve, which may induce
some secondary motion. However, as the flow is accelerating during the first half
of systole, disturbances will be damped to some extent.

Lefebvre et al. [108] reports transition at Re = 10° in accelerating flows,
where the Reynolds number is based on instantaneous velocity and pipe diameter.
However, during the decelerating part of the pulse Nerem et al. {130, 131] noted
high frequency disturbances in the aorta of dogs. They found that at a peak
Reynolds number of Re = 250« (for 5 < a < 20) there is an approximate line
separating the laminar flow from disturbed flow (eventually turbulent); where
a is the Womersley number based on the radius of the aorta. This may be
expected due to that the small disturbances need a certain amount of time in
order to develop. For larger species, including humans, turbulent flow, or at least
transitional flow, may be expected in larger arteries (Table 3.1).

One instability mechanism present in a periodic flow, is naturally the point
of inflection of the velocity profile during deceleration, if it is strong enough; fast
deceleration has been shown to decrease the critical Reynolds number drastically
[80, 140].

When it comes to pulsatile flow in circular pipes at transitional Reynolds
numbers, there are several experimental and numerical studies. Yellin [209] in-
vestigated pulsatile flow in a pipe. He found that classical stability concepts, such
as point of inflection and Reynolds number requires modification in a pulsating
flow. He recognizes three other criteria for transition: a source of disturbance,
relaxation time (i.e. time period of small velocity), and distance from the fluid
under observation to the source of disturbance. Flows with a low frequency and a
large amplitude of the oscillating component shows a reduced disturbance growth
rate as compared to a steady flow of similar steady component. He suggests that
systolic acceleration may be laminar despite the large systolic velocity, whereas
diastolic deceleration probably produces disturbed but not turbulent flow.

Sarpkaya [165] examined pulsating pipe flow. He found that pulsating flow is
more stable than steady Poiseuille flow. The critical Reynolds number is deter-
mined by the Womersley number and the ratio of pulsating velocity amplitude
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over total mean velocity. Despite points of inflection disturbances may not grow.
For a certain velocity ratio the critical Reynolds number is decreasing for in-
creasing Womersley numbers between 4-7.8, i.e. in contrast to Nerem [131].
For increasing oscillations amplitude the critical Reynolds number is increasing
to a certain limit, whereafter it rapidly decreases again. An « = 6.5 has a
maximum critical Re of approximately 3300. The critical Reynolds number for
non-harmonic oscillations were smaller.

Hino et al. [85] did experiments on the transition to turbulence in purely
oscillating pipe flows at 105 < Re < 5830, based on oscillating mean velocity
amplitude, and for Womersley numbers 1.9 < a < 8.75. They identified three
different regimes, 1) weakly turbulent flow, 2) conditionally turbulent flow, and
3) fully turbulent flow. The critical Reynolds number of the first transition de-
creased as the Womersley number increased. In the conditionally turbulent flow,
transition was identified during the decelerating part of the pulse, while it relam-
inarized during the next accelerating part; also at Re = 5830 if the Womersley
number was large enough.

Eckmann et al. [48] did measurements of oscillating flow in a straight circular
pipe, at 9 < a < 33 and 389 < Re < 47 -10%. They report laminar flow for
Re < 23-10% and 8.9 < a < 32.2 (where the velocity scale of the Reynolds
number is based on the stroke distance d = Vr/ma?, as U = wd. If the velocity
instead is based on distance over period time the Re should be divided by 7, i.e.
Re < 7.3-10%.). At measured Re > 23-10° the core remained laminar while the
Stokes layer became unstable during the deceleration phase.

Lodahl et al. [117| examined combined oscillatory and steady (pulsatile) flow
through a circular pipe. The investigated ranges were 0 < Re < 1.6 -10%, 0 <
Re, < 7-10% and 4.2 < a < 75, where Re, = alU,,/v is the oscillatory flow
boundary layer Reynolds number, and Re is the Reynolds number based on the
steady flow component. U, is the peak of the oscillatory flow and @ = U, /w. Re,,
is related to Re,,,,, which is based on pipe radius as Re,,, = v/4a?Re,,. Transition
was detected at Re > 2000, depending on Re,, and «, and it was found that the
flow can be laminarized by the superimposed oscillatory flow component. For the
pure oscillatory flow below a = 10, transition came at smaller Re,, for smaller
a. At very large «, Re, reaches the asymptotic value Re, = 1.5-10°, which
is a known value from plane oscillatory flow. The critical Re increases as Re,,
increases to a certain limit, whereafter the oscillatory flow has become turbulent
itself. Then, the combined flow also becomes transitional. However, although a
smaller a has a larger critical Re,, the large o has a larger critical Re, but the
oscillatory component needs to be of an optimal magnitude. The simple relation
by Nerem [131] thus seems to neglect important parameter dependencies.

Tuzi et al. [192] obtained qualitatively similar results as Lodahl et al. [117]
by doing numerical simulations, although their transitional Re is larger, which is
suggested as depending on the small perturbations in the numerical simulations
as compared to the experiments. They also found that as turbulence is present,
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the dynamics are similar to the steady case. A log-law layer can be found in
both the pure oscillating and the pulsating case. They suggest a classification
of the flow into four different regimes: 1) “laminar regime”, 2) small amplitude
perturbation regime called the “disturbed laminar regime”, 3) the flow where
turbulent bursts are found during the decelerating phase of the cycle, called
the “intermittently turbulent regime”, and 4) turbulence throughout the whole
cycle called the “fully turbulent regime”. They introduced wall imperfections
of sinusoidal variation and amplitude €¢/6 = 0.005, where § is the Stokes layer
thickness. The wall imperfections should trigger transition, and lower the critical
Re to numbers obtained in laboratory experiments (as mentioned above that was
not really obtained). It was found that the different wall imperfections influenced
the small amplitude perturbations at laminar flow, but had no influence on the
transition process, and the turbulence structure, at Re far above the critical
value.

A review of pulsatile pipe flows is given by Carpinlioglu et al. [29].

Geometrical variations (leading to adverse pressure gradients) may have a
more severe impact on transition into turbulence, especially at pathological con-
strictions, such as a stenosis, which may drastically increase the velocity, inducing
Kelvin-Helmholtz like instabilities [19].

White [202] and Taylor [186] experimentally showed that curvature has a
stabilizing effect on the flow field. They showed that transition into turbulence,
for flow in a curved pipe, was delayed to a Reynolds number approximately three
times higher than that described by Osborne Reynolds [155]; thus, secondary flow
seems to have a stabilizing effect on the flow field.



Chapter 4

Fluid-Structure Interaction

Fluid-Structure Interaction (FSI) is the name for problems where a fluid domain
)/ and a solid domain Q° interacts through their common boundary, I'/ on the
fluid side and I'* on the solid side. The fluid affects the solid by the stress
it imposes on its boundary, i.e. it creates a traction boundary condition for the
solid. This causes the solid to deform * and Q/ (depending on the computational
approach used), and the fluid domain gets new wall boundary conditions to adapt
to.

These kinds of problems are found in various fields of science and engineer-
ing. In aero-elasticity the fluid induce forces on the solid, such as wings [97],
bridges [21], buildings [22], and hard disk drives [100] that causes structural mo-
tion and deformation. In some cases that may lead to aerodynamic flutter, and
even structural failure. In the human body, FSI is utilized in the sensory parts
of the auditory systems (so called hair cells), in the peristaltic motion of the
intestinum and the axons of the nerve cells. In these physiological systems, FSI
is an important beneficial factor. Also, the expansion of the arteries during sys-
tole in young individuals is physiological, and it helps maintaining lower blood
pressure. During systole arteries experience deformations in both the radial- and
axial-directions due to the flow [35]. Veins, on the other hand, in particular
in the upper part of the body, may collapse as the back-pressure becomes low
[140, 189]. Calo et al. [26] used FSI for estimation of drug delivery in different
coronary artery models. Fukui et al. [69] studied the effect of longitudinal and
axial wall motion on the distribution of WSS. Kock et al. [101] used FSI for
studying plaque rupture in carotid arteries. Valencia et al. [193| studied stenotic
flows using an FSI-formulation. Oscuii et al. [137] studied the effect of wall
stiffness on flow and WSS, also using FSI-modeling.

The field equations governing the fluid flow and deformation of a solid are
closely related. Historically, the two fields have been developed in parallel, with
the Finite Element Method (FEM) being used in structural flow analyses, and
different discretization methods (e.g. FEM, Finite Differences, finite-volumes)
have been used in fluid analyses. In recent years, due to the needs in many

43
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engineering fields there have been several attempts to merge the two approaches.
In the following a review of some of these approaches will be given followed by a
description of the FSI-implementation used here.

4.1 Computational Approaches

The different computational approaches used are often categorized into different
categories of solution procedure (Note that this categorization terminology is not
unique [218].). In the monolithic approach the fluid- and the solid-systems of
equations, including interaction boundary conditions, are solved for simultane-
ously [88, 92|, whereas in the partitioned approach the systems of equations are
solved for sequentially [95, 144, 195, 207]. In the monolithic approach one obtains
the solution for each time step immediately, however, the system of equations may
be large and so is the computational time. Recently, it has been argued that the
monolithic approach is still competitive, even for large scale problems [43, 84]|.
Also, by using the monolithic approach, in contrast to the partitioned approach,
the most common solvers for fluid- and structural-mechanics can not be used.
Thus, in general the monolithic approach is considered more stable and accurate,
while the partitioned approach gives more flexibility [88].

In the partitioned approach it is possible to use different time steps for the
fluid and solid, respectively, that may be optimized for computational cost and
capturing the different time scales of the two domains [144]. The partitioned
approach is often referred to as weakly- or strongly-coupled. Weak coupling is
usually referred to as where the fluid and the solid are only solved for once per
time step. Strong coupling, on the other hand, is when an iterative procedure
is made for each time step, where finally both the fluid and the solid solver has
converged to the specified accuracy [195, 207].

The algorithm developed here is illustrated in Figure 4.1, which is a weak
coupling approach. A strong coupling procedure would add additional inner
loops of steps 1 through 8. Then after the solid deformation, the flow field would
be computed again, giving rise to a modified flow field, which is applied to the
structural solver, but where the old displacements are used again as initial data.
The sub-iterations are continued until convergence, whereafter a step forward in
time is taken.

The weak method often requires a smaller time step for numerical stability
as compared to the strong coupling approach [122]. Many authors prefer the
strong coupling due to its often better stability characteristics. However, under
the right conditions the weak coupling approach is also usable. Recently, Beulen
et al. [13] found satisfying convergence characteristics for weakly coupled FSI for
flow through pipes.

The treatment of the fluid- and the solid-domains, and their interaction, can
also be done using different approaches. Traditionally, fluid domains are treated
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A

1 | Solve flow equations

2 Interpolate velocity to IB-nodes [+——

3 Compute force on IB-nodes

Iterate until sufficient
convergence

4 Interpolate forces to FD-mesh

5 | Solve flow equations

Next time step

6 | calculate forces around FEM-nodes

7 | Solve solid equations using FEM

8 | Interpolate deformation to IB-nodes

Figure 4.1: Solution procedure.

using Eulerian (fixed) meshes, while the solid mesh is Lagrangian, i.e. it deforms
with the material deformation. Different ways of combining Lagrangian deform-
ing meshes and an Eulerian description of the fluid have been proposed. Two
approaches are the Arbitrary Lagrangian-Eulerian (ALE) formulation and the
Immersed Boundary (IB) family of formulations; the latter one has been used
here.

In the ALE formulation mesh-motion is taken into account in the Eulerian
description of mass- and momentum-conservation, i.e. a more arbitrary descrip-
tion is considered [86]. In an FSI-context the fluid domain deforms according to
the deformation of the structural domain [46].

The boundary between fluid and solid is well defined using the ALE formula-
tion, however, at large deformations and rotations the fluid mesh elements may
become badly shaped, resulting in reduced accuracy. One possibility is then
to re-discretize the mesh, which naturally takes computational time. Also, the
interpolation to the new mesh may cause new errors.

Van Loon et al. [194] compared the performance of an ALE formulation
and some different fictitious domain methods. They solved both fluid and solid
equations using finite element formulations. The ALE formulation was preferred
as long as no remeshing was required, due to the high precision, since in their case
the fluid and solid mesh-nodes coincided at the boundary-interface. However, as
deformations, displacements, or rotations of the solid body become large, they
suggest that a fictitious domain method might be a good choice, since mesh
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generation is only required prior to computation, and the fluid and solid meshes
can be generated separately.

Another way of relating the fluid- and solid-domains is by using a variant
from the Immersed Boundary (IB) family of methods. The basic idea is that the
fluid domain is represented by a fixed Eulerian mesh, wherein the solid domain
is represented by a set of source terms that simulate an arbitrary wall boundary,
by forcing the wanted boundary condition. When the right boundary condition
is obtained at the right position the solution has converged. In the context of
FSI, another mesh of Lagrangian movable character is created which represents
the solid body and deforms according to theories of solid mechanics. Again, the
deformations, and deformation velocities are transferred to the fluid solver, where
the boundary sources are moved accordingly.

Different ways of treating the immersed (or virtual) boundary have been pro-
posed through the years. Peskin [143] proposed probably the first IB method
with application to a deforming (2-D) heart valve. The geometry is determined
by a Lagrangian arbitrary mesh on which forces are specified. The forces are
distributed to the fluid mesh using an approximate Dirac J-distribution that is
slightly spread out on the fluid mesh, since the boundary at most times does not
coincide with a fluid mesh-node.

Goldstein et al. [77] used the ideas of Peskin [143], but suggested to compute
the force field on the boundary using a feedback loop, similar to a Pl-regulator
from control theory, instead of Peskin’s more complex idea of lines of tension and
their deformation that determines the force. The draw-back of the control theory
approach is that one needs to determine the coefficients of the two terms of the
regulator.

Glowinski et al. [75, 76| suggested another way of specifying the geometrical
boundary on a simple mesh using Lagrange multipliers. The method is called a
“fictitious domain method” and they obtained second order accuracy.

Saiki et al. [163] used the method of Goldstein et al. [77] of using a feedback
forcing term added to the momentum equation, in order to model the IB-interface.
However, they use a high order finite difference method for the Eulerian fixed
mesh, instead of the spectral method used by Goldstein et al., which suppress
some numerical oscillations.

Mohd-Yusof [126] estimated the force terms needed to model the IB by ap-
plying the Navier-Stokes equations at the boundary, where the velocity time-
derivative is estimated using the wanted and the present velocities.

Fadlun et al. [53] compared the force term computational methods of Gold-
stein et al. [77] and Mohd-Yusof [126], and found the latter more efficient because
a larger CFL-number could be used. They also combined the IB-method with
LES modeling. Three different methods for transferring the force to the fluid
mesh were used: 1) stepwise geometry, the nearest cell is assumed to be the
boundary, 2) volume fraction weighting of the force, and 3) linear interpolation
to nearest cell where the boundary is supposed to have the right velocity. The
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force is then computed in a similar way as Mohd-Yusof [126]. The third approach
gives the best results and is estimated to second order accurate.

Kim et al. [99] used the methodology of Fadlun et al. [53|, however, in contrast
to Fadlun they only added momentum inside the body or on the boundary of the
body. They also added mass sources/sinks in order to correct continuity errors
over the immersed boundary, which is shown to be significant for the method.
Silva et al. [169] used a similar method as Fadlun et al. [53] for estimating the
force field on the boundary, however, here the different components of distance
< 2Ax from the IB are interpolated from surrounding points in the fluid domain.
For points on the IB, cells inside the IB-domain were also taken into account. The
method is called “the physical virtual method”. Zhang et al. [217] proposed an
“Immersed finite element method”, using finite elements for both the Eulerian fluid
mesh, and the deformation of the Lagrangian mesh. The forces were distributed
onto the fluid mesh using an approximate Dirac delta function.

Other methods, similar to those discussed above, have been introduced by
Bertrand et al. [12], Tseng et al. [190], Wang et al. [198], Ikeno et al. [90], and
Vos et al. [197], also in the context of FSI [3, 98, 198, 211, 220].

A disadvantage of IB-methods is that the boundary of the solid does not co-
incide with nodes of the fluid mesh cells (when using a staggered fluid mesh coin-
cidence of all variables is naturally impossible). Therefore, interpolation between
the Cartesian and the boundary mesh is necessary. Also, the highest resolution
of the fluid mesh is needed near a solid boundary at high Re. In the case of de-
forming boundaries, re-meshing would possibly be needed, and in that case one
of the advantages with the method is gone. However, higher order methods, up
to fourth order, have been suggested, such as the “immersed interface methods”
by Li et al. [111], Linnick et al. [115] and Bonfigli [18], where the finite difference
scheme is corrected near the IB.

Other alternatives to IB and ALE are, for instance, high order wall treat-
ment, using cell blocking and interpolation or extrapolation of variables [78|, or
overlapping grid techniques, where interpolation takes place in overlap regions
[191].

4.2 Gaussian Immersed Boundary Method

The IB-method developed here has partially been described by Revstedt et al.
[153, 154].

The IB is represented by a 2D Lagrangian surface mesh. This mesh geometri-
cally describes the surface of a 3D body. The fluid may flow inside or around this
object. The fluid flow is handled using a Finite Difference scheme on a Cartesian
3D mesh; the FD-solver is further described in Chapter 5.

As described above the basic idea, using an IB-method, is to model the body
by introducing source terms into the flow field. These momentum source terms
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force the flow field to fulfill the preset boundary conditions; a moving or steady
wall. Since the IB-mesh and the fluid mesh generally do not coincide some method
is needed to estimate the actual velocity at the boundary surface, as well as
distributing the resulting force field.

The solution procedure, excluding the structural solver, can be divided into
the following steps.

1. Compute the flow field of the fluid mesh, including boundary conditions.
2. Determine the three velocity components at the IB-nodes.

3. Compute the IB-forces based on the velocity defect between wanted and
actual velocity.

4. Distribute the force field onto the fluid mesh.
5. Solve the flow field with the new forces, and go back to 2.

The process is iterated until sufficient convergence for each time step.

The velocity components at the IB-nodes are estimated using the same Gaus-
sian distributed weights, as when the IB-forces are distributed back onto the fluid
mesh. A velocity component u; at the IB-node at location z; = X, can, using
theory of distributions, be expressed as

up (X, t) = /u (x;,t) 6 (x; — X;)dV (4.1)

where x; are the coordinates, and u (x;,t) is a velocity component of the fluid
domain Q/. §(z;) is the Dirac -distribution in three dimensions, with the prop-
erties

/ TS dV =1 (4.2)

0 , Ly 7£ 0
0 (z;) = { 0 1= 0 (4.3)

Expression (4.1) holds if u (z;,t) is a continuous function over Qf, which
it is not, since we are dealing with a discretized domain. Instead, one may
use a Gaussian distribution with a sufficiently large standard deviation, o, that
spreads the distribution function over a few cells of the fluid mesh. The Gaussian
distribution is expressed as

G(X) = ——eap (_ (&+n+ CQ)) (4.4)

(U 27r)3 20

/Z /Z /Z G(X)dv =1 (45)
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where £ =21 — X1, n = x5 — X, and ( = x3 — X3.
In the limit 0 — 0, G (X;) = 0 if 2; # X, and G (X;) = o0 if 2; = X;. Thus,
the Gaussian distribution can be seen as an approximation to the J-distribution.
In discrete form, using the Gaussian distribution a velocity component wu;, is
determined as

h+1  j+1 k+1

b (Xiyt) = Z Z Z xl,xQ,x?),t) (4.6)

l=h—1m=j—1n=k—1

Here [, m,n represent indices of cells in the mesh near X; in directions z,y, z
Point (h, j, k) corresponds to the fluid cell most near the IB-node X;. Hence, the
summation is done over the two nearest neighbors in each direction of the point
(h,J, k). The sum is normalized in order to satisfy the condition of (4.5). Figure
4.2 illustrates the active nodes of summation in a plane. Note that staggering is
not considered in the illustration.

o Immersed Boundary node
® Fluid mesh node

[ IB-active fluid mesh node

Figure 4.2: Immersed Boundary surface crossing the fluid mesh. Active fluid
mesh-nodes are indicated by a square.

The next step is to estimate the force needed in order to satisfy the boundary
condition. The discretized Navier-Stokes equations, including forcing terms may

be written as

un""l —ul

- = RHST + . (4.7)

where RH S; consists of the convective-, pressure-, and diffusive-terms, and where
n indicates the old value from the previous iteration. A certain velocity v; is
wanted at the boundary. As RHS; is already known, the f; that is needed in
order to obtain the v; on the boundary at the next point in “time” (or pseudo-time,
since several subiterations are done for each time step) is

n+1 n
ntl _ n Uz‘ — Uy 4
fi —RHS] 7At (4.8)

Here, the RH S-term has been dropped, since it does not improve convergence
much, and instead a coefficient has been added before the time derivative, as well
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as the force from the previous iteration. The force correcting the velocity defect

is then given by
n+1 n
—u

n+1 n Ui 7
. pr— . _— 4.
fi '+ a ; (4.9)

where o = BRe. Re is the Reynolds number, and [ is a relaxation term that
is set for best performance. A large [ gives faster adaptation to the boundary
condition, but more oscillations. Increasing 3 to much leads to divergence, since
even the smallest velocity defect causes large force terms, as compared to the
other terms of the Navier-Stokes equations.

After the force has been estimated for each node it is transferred back to
the same cells of the fluid mesh that the velocity was taken from, using the
same Gauss distributed weights as in (4.6). However, since the IB-mesh is rather
dense, many fluid cells will have contributions from more than one IB-node.
Therefore, the force terms of the fluid mesh (F}) are finally divided by the amount
of contributions N, i.e. the force is expressed as

N

F 2, t) = % S°Fy (1,1 (4.10)

s=1

This force is then used for solving the system of equtaions of the fluid domain.
The process is repeated several times for each time step, as described above.
The method of Gaussian weighted averaging gives a first order accurate so-
lution, as shown by Revstedt et al. [154]. They also used a Lagrangian inter-
polation method for estimating the velocity at the IB-nodes. The results show
approximately second order accuracy, however, the Gaussian average gave faster
and more stable convergence, and the differences when comparing some relevant
parameters were small. Therefore, the Gaussian method has been used here.
Revstedt [153] also introduced a multi-grid method into the IB-force solver. He
found substantial convergence acceleration for steady flows, and flows with rapid
changes in the boundary conditions. For time dependent flows with stationary
boundaries, the multi-grid solver only gave effect during the initial phase of the
simulation. Here, a multi-grid solver has not been taken into account.

4.3 Solid Mechanics of Kirchhoff Plates

The second part of the FSI-solver is the structural solver, which is here imple-
mented using the Finite Element Method (FEM). This section describes the solid
mechanics theory used, and the derivation of the governing equations in weak
form, used in the finite element formulation later. The FEM is further described
in Chapter 5.

Since the aim with the implementation of the structural solver is to model
FSI in and around pipes of small wall-thickness to radius ratio, such as in blood
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vessels, the geometry is assumed to behave as a thin shell. In the finite element
formulation the shell is built up of a set of Kirchhoff plates, which also have an
in-plane stress state in the center-plane of each plate.

4.3.1 Governing equations

In Kirchhoff’s plate theory (see Ottosen et al. [138] and Sundstrém [177]) the
total deformation is determined by the deformation of the center plane of a plate
of thickness t*. Material points laying on a normal to the center plane, continue to
lay on a normal line after deformation. Shear deformation is therefore neglected.

A coordinate system is introduced with the x—y-plane in the center plane and
the z-axis normal to this surface. Figure 4.3 illustrates the plate with introduced
vertical forces and moments. The plate is assumed to be loaded in the normal
direction with the load p®, and the resulting deflection w? is positive in the positive
z-direction. The superscript * means that the variable is referred to the solid,
where similar letters are used for the fluid domain.

Ve
z /M\\
—
y V rdxd M\\'
X p'dxdy o
Ml‘\ + A

M, +—22d
M, I = oy @
dx
v,
Mo+ M g v+
2 ¢
. Idz
Mg dy ‘
M+ dx Gl
” v+ Ve gy

Figure 4.3: Plate with vertical forces, and moments.

The forces and moments per unit length are estimated as

/2

Vi, = / o dz (4.11)
—t5/2
/2

V. = / o8 dz (4.12)
—t5/2
/2

Nm:/ o5.dz (4.13)
52
/2

Nyy:/ o,,dz (4.14)
—t5/2
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Nyy = /t;/; oy, dz (4.15)

M, = v zos, dz (4.16)
_t5/2

M, = t;/; z0,,dz (4.17)

M,, = M,, = /_tt/j2 20, dz (4.18)

Here a static description is made. Time derivatives will be added later.
Since the plate is assumed to be loaded in the transverse plane only, horizontal
equilibrium requires Ny, = N, = N,, = 0. Vertical equilibrium then requires

oV, N V.
ox oy

+p° =0 (4.19)

Moment equilibrium around lines parallell to the z- and y-axes, and where small
quantities are neglected give

oM,  OM,,
= 4.2
ox * dy Ve (4.20)
OMy,  OM,,
— V., 421
ox Jy (421)

Differentiate (4.20) with respect to y and (4.21) with respect to z, and elimi-
nate V,, and V.. Combining the equations and cancelling small terms give
O*M,, . 232]\/[@ N 0*M,,
Ox? 0xdy Oy?

+p° =0 (4.22)

Consider a small displacement of one side of the plate, see Figure 4.4. As-
suming neglected shear deformations, small deformations, and thereof small an-
gles, and doing it similarly in the y-direction, the displacements in the x- and
y-directions are

d S

u=uy— 2 ;; (4.23)
dw?

vi=0 — 2 4.24

where v (x,y), and v§ (z,y) are the displacements of the center plane in the z-
and y-directions, respectively, due to bending, and w® = w*(x,y) is assumed to
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Figure 4.4: A plate subject to bending.

be independent of z. Assuming small deformations [106], the infinitesimal strain
tensor is determined as 9
1 [ouf u;
s== : 4.25
%73 (axj * 3@-) (4.25)

Expressing the components of (4.25), using (4.23) and (4.24), one has

ouy  *w
= — 20— 4.26
Ca ox : 02 ( )
oy Q*w
= — 2 4.27
=5 " g (1.27)
ouy  ov§ 0*w
= — 4.28
Cay Ay + ox Zaxﬁy (4.28)
€, = €, = €,, = 0, due to the previous assumptions.

It is further assumed that Hooks law is valid as constitutive relation of the
material, as well as that the assumption of plane stress is applicable. The last as-
sumption is valid because the plate is thin and o3, and o;, are small as compared
to the other components, and therefore neglected. The constitutive equation is
expressed as
The fourth order tensor Cj;; is for a linearly isotropic elastic solid reduced to two
independent terms, A\* and pf, which are the Lame’s constants [106]. The stress

tensor can then instead be expressed as
o5 = N€p0ij + 2pj€; (4.30)

The Lames constants are related to the more frequently used Young’s modulus
E?¢, and the Poisson ratio v® as

83)\5 25
o G

4.31
)\s + Ius ( )



54 CHAPTER 4. FLUID-STRUCTURE INTERACTION

AS
V= ——— 4.32
2 (X + p) (4.32)
Assuming plane stress and using E° and v®, the constitutive relation can be
expressed in matrix form as 0% = De®, which corresponds to

[opue B 1 v 0 (S
os, | = T 72| 0 €4y (4.33)
—v
oy 0 0 1/2(1—-v*) €y

Under these assumptions it can be shown that there is no straining of the
mid-plane, and therefore all terms on the RHS of (4.26)—(4.28), except the last
term in each equation, are equal to zero. It can also be shown that the bending
is driven by the vertical force, while the in-plane strain of the center plane, if
present, is driven by the horizontal forces. Thus, the inplane deformation of the
center plane, and the deformation due to bending are uncoupled, which makes
it possible to superpose an independent plane stress deformation onto the center
plane, as will be done here later.

Taking the center plane no-straining property into account and substituting
(4.26)—(4.28) into (4.33), and the resulting stresses into (4.16)—(4.18), integrating
and substituting into (4.22), one has

Ntw® Ntw? Mws 12(1 — v%?)
+2 + =
ox?t ox?oy?  oy* Ests3

s (4.34)

This is a biharmonic equation that governs the deformation due to the normal
load p®. The expression
Ests3

Ta=7 (4.35)

is often referred to as the bending stiffness, due to its correspondence to the
bending stiffness of a beam (ET).

Now, the forces in the center plane will be considered. Force equilibrium of a
continuum gives

oo,

J s

—J 4 p =0 4.36
G b (4.30
Again, the plane stress assumption is made, so that o3, = 0,, = 07, = 0, and

that nothing depends on the z-coordinate. Therefore, forces are located in the
z-y—plane, or more specifically in the center plane of the Kirchhoff plate. Once
again infinitesimal deformations are assumed, as well as an isotropic- and elastic-
material, and therefore (4.25) and (4.33) are valid also here. Thus, combining
these equations would give a second order differential equation of the deformation
components u° and v?.



4.3. SOLID MECHANICS OF KIRCHHOFF PLATES 55

4.3.2 Weak formulation

The governing equations may be written on a weak form. The advantage of writ-
ing the equations on weak form is that the order of spatial derivatives is reduced,
i.e. the requirements on the approximation functions in the FEM-formulation
are weaker. A consequence of this, as will be seen below, is that the test function
needs to be differentiated instead. The weak form makes discontinuities easier
to handle, and in combination with the Galerkin method the weak form yields
a symmetric set of matrices in the finite element formulation, similar to when a
variational approach is used [138, 152].

Now starting with (4.36) for the inplane motion. An arbitrary vector test
or weight function v; is multiplied to the expression (4.36), followed by integra-
tion over the volume V. As a dynamic problem will be considered here, time
derivatives corresponding to acceleration and damping force are added to the
expression. One thus has

Oo;; 0*us ou?
) v B —_ 8 7 8 7 4.
/vl aag'dV—l—/vzblaﬂf /vlp 5 dV+/vZu 5 dV (4.37)

J
\4 Vv |4 |4

where p® is the damping coefficient of the material of interest, and 0] are body
forces.
Due to the fact that for the general variables ¢ and g;

9] _0g; o
oz (6qi) = %xi + ¢ o

(4.38)

in combination with Gauss theorem, where S is the surface of the volume V' and
n; is the normal to the surface,

99
al'i

AV = [ ¢ndS (4.39)
[5i=]

the Green-Gauss theorem is given by

Jq; _ 0
[ogtar = [ oamas - [azZav (4.40)
1% S

|4

Applying (4.40) to (4.37) one has

s (%i 882uf Sauf s

\% \% \% \% S

As the problem here considered thin plates of constant thickness ¢°, and where
the variables are independent of z, one can integrate over the thickness of the
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plate, i.e. from —t°/2 to ¢°/2, and have the expression in two dimensions. Since
the traction vector ¢j = o;n;, the expression for the plate center-case is

avl s saQUf s sauzs s 5458 548
/ i o, -t dS—I—/vZ-p BTE t d5+/viu 5 t°dS = /Uibit as + ]{Uitit dL
S S S S

L

(4.42)
where L is the boundary around the center of the plate. The last term in (4.42)
describes the natural- or Neumann-boundary conditions of the domain. The
Essential- or Dirichlet-boundary conditions are applied later in the finite element
formulation.

A similar procedure is applied to the plate bending equation (4.22), which is
multiplied by the arbitrary test function v = v(z, y) and integrated over the plate
surface S. Time derivatives are added as well, however, the time derivative terms
related to (4.20)—(4.21) are considered small in comparison to the time derivative
terms related to (4.19), and therefore neglected. The angular velocities are still
computed in the finite element solution, as spatial derivatives of w?®.

8 0 OM,,

0 OM,,
Yor oz 45+ / o 3y ox

0 8Myy PPw?® ow®
= ¥ 5 4.4
—l—/ 3y oy dS+/vpdS /vp 5 dV—ir/vu T (4.43)

S S \4 Vv

s

The time derivative terms are integrated over the volume, since vertical equilib-
rium requires integration over the thickness of the plate for the temporal terms.

By using the Green-Gauss theorem (4.40) twise and the relations (4.11),
(4.12), (4.16)—(4.18), (4.20), (4.21), (4.43) can be expressed as (see Ottosen et al.
[138] for details)

0%v 82 *v Pw ow?®

— M, + —M 2—— — — s
/(01’2 0 5 My, + 920y xy) dsS /vp BIE dV /v,u pr dV
S v v

M

40 npdr - ]{ o (V4 P g / opdS  (4.44)
dn dm

L L S

where % = gg‘f n;, and n and m are the normal and tangential unit vectors,

respectively. The natural boundary conditions are therefore given by M, and
Vi + L.
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4.4 Coupling

The solution algorithm of the method chosen here can be divided into four parts:
1. solid solver
2. coupling: transfer of boundary data to fluid boundary
3. fluid solver
4. coupling: transfer of boundary data to solid boundary

The boundary conditions that are subject to the transfer process are the
IB-motion, determined by the solid deformation, and the forces on the wall de-
termined by the fluid flow. Mathematically the boundary conditions can be
expressed as

t; = O'Z-SjTLj = 0N, t; € FS, 05 € Ff (445)
ou;
ot

=, ulel® wu el (4.46)

where o;; is the fluid stress tensor, n; is the boundary normal into the fluid do-
main, ¢ is the traction vector on the solid boundary, o7; is the solid stress tensor,
u$ is the displacement of the solid boundary, and w; is the velocity boundary
condition that the fluid near the wall must adapt to.

As the structural mesh is coarser than the IB-mesh, the velocities obtained
by the solid solver need to be interpolated to the IB-nodes. First an algorithm
identifies which IB-node belongs to which finite element. Then the velocity data
from the finite elements is linearly interpolated to all IB-nodes belonging to each
particular finite element, respectively. Hence, v"*!, is updated for all nodes and
solved for.

The forces to be transferred to the solid boundary are determined from the
force source terms F;. The rationale is that the force needed to uphold the
wall boundary condition, is the force a solid wall would experience. Therefore,
the shortest distance h between two adjacent finite element nodes is estimated.
Thereafter, all force (source) terms of the fluid mesh, in a sphere with radius
r < h/2 around each finite element node, are integrated . This directly gives the
contribution of all three force components to the boundary forces of each finite
element node. Hence, the force experienced by a finite element node is expressed
as

Ff = / FdV (4.47)

r<h/2

where F is the force component ¢ used as load force in the solid solver.
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Chapter 5

Numerical Methods

The governing equations of fluid mechanics are non-linear and the range of flows
that they describe is very wide and highly different (e.g. laminar or turbulent,
steady or unsteady, etc.) The system of PDE’s has a closed analytical solution
only for a few simple cases and where the non-linearity effects are negligible.
Examples of these kind of flows are Stokes flow, Couette flow and Poiseuille flow.
These flows are not considered here, but are easily found in any undergraduate
text on fluid mechanics [203]. At the flow regimes that are considered here, the
non-linear effects are important and hence no analytical solutions can be found.

Numerical methods can handle non-linear problems almost as easily as lin-
ear ones. Numerical schemes for solving the Navier-Stokes equations under very
different conditions are available and nowadays these methods are efficient. The
improvement of computational power enables one to obtain results with better
resolution, and enabling a better assessment of the accuracy of the numerical
computations. However, there are inherent uncertainties associated with flow
computations. A major issue is always setting relevant (or accurate) boundary
conditions. In particular if the numerical results are to be compared to ex-
perimental data, the boundary conditions have to be the same as those in the
experiments. Otherwise, such comparisons are of qualitative value and this is the
reason for the large number of “validation” projects. Nevertheless, one can state
that there are generally “valid” computational codes, though the level of accuracy
may depend on the particular case and the level of detail in the discrete approx-
imations. Another issue is related to modeling of certain phenomena such as
turbulence, rheological properties of the fluid, etc. These models introduce new
errors (modeling errors) that should not be mixed with the other two mentioned
first (i.e. the discretization errors and the uncertainties in boundary conditions).

The uncertainties in the computational set-up lead to the need of experimental
support to the computations. In addition to direct comparison with experiments,
it is important that one carries out multiple computations to assess the sensitivity
of the results to different parameters; numerical (resolution), geometrical (shape
and size) and physical (Re, «, and boundary conditions).

29
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5.1 Computational Fluid Dynamics, CFD

In numerical simulations, or as it is being referred to in the context of fluid me-
chanics, Computational Fluid Dynamics (CFD), the governing equations of fluid
mechanics, the Navier-Stokes equations and the continuity equation, are solved
numerically. Thus, the system of PDE’s is discretized in space (and time) on a
discrete number of points. Thereby the continuous system of partial differential
equations becomes a system of algebraic equations of finite size. The number of
dependent variables in the algebraic system equals the number of points in space
times the number of dependent variables in the original system. The algebraic
equations are solved through an appropriate computational algorithm.

The major components of the most common CFD-approaches are:

e The computational domain is divided into a large number of small volumes.
The size of the computational volumes determine the spatial resolution of
the computed results. The shape of the small volumes may vary. Most
often one uses hexahedral or tetrahedral shaped (control) volumes. Other
shapes can equally be used. The total set of control volumes form a mesh
(or grid). If only spatial discretisation is done, one obtains a set of ordinary
differential equation (in time), which has to be integrated. Alternatively,
one also discretize with respect to time.

e The derivatives in space (and time) of all variables are then discretized on
the grid using an approximation scheme of a certain order. Higher order
schemes require that a larger number of grid points are involved. This forms
a discrete system of equations.

e The discrete system of equations is then solved with an appropriate numer-
ical scheme.

The most common discretization schemes used in engineering are Finite Vol-
umes (FVM), Finite Elements (FEM), and Finite Differences (FD). All these
approaches have been used in this work and are described shortly in the follow-
ing.



5.2. DISCRETIZING THE FLOW EQUATIONS 61
5.2 Discretizing the Flow Equations

The Navier-Stokes equations and the continuity equation are discretized by either
finite-differences or finite-volumes. In some cases (Cartesian grids and certain
central differences) these two schemes are identical.

5.2.1 Finite difference method

For the fluid part of the FSI-solver a Finite Difference (FD) scheme has been
used in combination with an Immersed Boundary (IB) solver. The IB-method
has been described in Chapter 4.

In the FD-method the derivatives of the continuity- (3.7), and the Navier-
Stokes-equations (3.10), are discretized directly on a structured mesh; here a
fixed Cartesian mesh is used. The discretization process results in an algebraic
system of equations, which is then solved using a suitable method.

The solver uses a staggered grid-formulation. The velocity components are
specified on the cell-surfaces with normals in the direction of each velocity com-
ponent, respectively. The same staggered grid formulation is used for the dis-
tribution of forces. The pressure term is specified in the cell center. Figure 5.1
illustrates the locations of the different components in each cell. A staggered grid
avoids un-physical pressure oscillations in the solution [58]. A Cartesian grid has
the advantages that it is rather easy to apply discretization schemes, it is easier
to achieve high accuracy, and that the computational cost is lower as compared to
a curvelinear or unstructured grid [58]. A disadvantage is that it may be difficult
to represent complex boundaries accurately.

TW’ F-

14 U,Fx

L L

X

Figure 5.1: Discretized components on staggered grid.
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Discretization schemes

A three level second order backward (implicit) scheme is used for the time deriva-
tives [4], and given by
8¢ ~ 3¢n+1 _ 4¢n + ¢n—1
ot~ 2At
For the diffusive terms a fourth order central difference scheme is employed,
the pressure gradient is discretized using a fourth order forward difference scheme.
The convective terms are discretized using a third-order upwind scheme, as pro-
posed by Rai and Moin [150], and given by

8¢ { u; 2¢i+1+3¢i*6¢i71+¢i—27 w; > 0

~ 6h
(7 ~ 20 1—30; +6d;1 1 —b;
or U Pi—1 ¢z‘é’h¢z+l ¢z+2’ u; < 0

(5.1)

(5.2)

Solver

The solver is using a multi-grid approach and a Gauss-Seidel scheme as smoother.
Pressure corrections are obtained from a Poisson equation, also relaxed using a
Gauss-Seidel iteration scheme. The grids used for the multi-grid acceleration are
successively finer, where the cell size for each generation of grids is reduced by
one half.

As Revstedt and Fuchs [154] showed the combined FD-IB solver is mainly
limited in accuracy by the IB-part of the solution proceedure, where also the
method used here was shown to be first order accurate.

Directly applying a high order discretization scheme may lead to a less robust
and less efficient solver. Instead, introducing a single step defect correction algo-
rithm, where lower order discretizations are combined with higher order, improves
the accuracy to that of the higher order schemes. Here the high order schemes
are given in the previous section, while the lower order schemes are a first or-
der forward scheme for the pressure term, first order upwind for the convective
terms, and a second order central scheme for the diffusive terms. The defect
correction approach takes advantage of the accuracy of the high order schemes
and the stability of the more diffusive first order schemes. It also converges faster
as compared to applying a high order scheme directly [78].

The problem to be solved is

Lé=f (5.3)
where L is the operator representing the derivatives of the Navier-Stokes equa-
tions, ¢ is the solution and f a source term. Given ¢", one solves for ¢"*! as

Llo¢nJrl = f + Llo¢n - Lho¢n (54)

where Lj, denotes the high order discretized derivatives of the Navier-Stokes
equations. The superscript ™ gives the iteration number and ¢ = ¢(u, v, w, p).
The iteration process is repeated until the difference L;,¢" "1 — L;,¢™ is sufficiently
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small. Then the solution for the high order discretization problem L;,¢ = f is
achieved. For more on defect correction, see Gullbrand et al. [78§].

5.2.2 Finite volume method

Using the finite volume method the governing equations are integrated over each
element. The momentum equations become then:

ou; 0 Op %,
d — wudV = — d .
% v % %
Applying Gauss divergence theorem to (5.5) yields
8ui
P o puun;dS = — pnldS + u n]dS (5.6)
% S S

V' is the volume of each element, S is the surface enclosing the volume and n; is
the outward pointing normal.
In a similar manner the continuity equation is given by

S

The equations are then discretized into the following two expressions, where su-
perscript / shows that a parameter is taken from a face of the element.

Nfaces Nfaces Nfaces

8u2 Uy
Py Vetem + Z pululnl s = — Z p'nl St + Z “a nlst (5.8)

Nfaces

> ulnlsi =0 (5.9)

Vetem 1s the element volume, and Ny, is the number of faces enclosing an ele-
ment.

Here a collocated grid scheme is used. Thereby all dependent variables and
parameters are given at the same location (5.8) and (5.9).

The discretization in time may be of different types; here an implicit second
order accurate scheme is used, which is given in equation (5.16). The discrete
set of algebraric equation has to be solved in each time step. The marching in
time leads finally to a temporally resolved solution. Different approaches may
be adopted when solving the non-linear problem in each time-step. One may
solve all the linearized equations at once, or using a Newton method in the non-
linear case [58]. Another (so called segregated) approach is to solve each of
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the governing equations in turn. This approach may require re-visiting some of
the equations before adequate accuracy (to ensure convergence of the iterative
process) is attained. Here, a segregated solution method is used (in each time-
step), which means that the governing equations are solved sequentially. Further
details are given below.

Convection and pressure terms

The convection terms, as shown in (5.8), contain cell face parameters and interpo-
lation is therefore needed. The software offers different kinds of upwind schemes
for this task. Here a second order upwind scheme is chosen (or in some cases the
Quick scheme [59]), and it is given by

¢f=p+Vo-r (5.10)

where ¢ and V¢ are cell centre values from the upstream cell, and r is the
displacement vector from the upstream cell centroid to the face centroid.

The gradient of parameter ¢ can according to the divergence theorem be
written as

) 1
Vo = Al\l/IEOA—V /gfmds (5.11)
S

which in discrete form yields

Nfaces
1
V¢ = W Z ¢£vesf (512)
etem f:1

where ¢/ _ is the average of ¢ from the two cells adjacent to the face. This is the
general method used for computing gradients in the FVM-solver used [59].

The QUICK scheme is based on a weighted average of a second order upwind
scheme and a second order central scheme. If ¢ is wanted on face e, between cell

E and P and downstream of cell P and W, we have

Pe =0 [SE%SP ¢p + SESESP ¢E:| +
(5.13)

Sw+2S8 S
(1-9) [svvvwrspp op = SWfSP¢W]

where S; is the length of element ¢ and 6 is a constant varying between 0-1. When
6 =1 (5.13) corresponds to a second order central difference scheme, and when
6 = 0 it corresponds to a second order upwind scheme. In the software 6 varies
depending on the characteristics of the solution.
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Diffusion terms

For the diffusion terms a central difference scheme has been used, which is second
order accurate. The face value of, say, parameter ¢/ is given by

6 =5 o+ 60) + 5 (Von 10+ V6, ) (5.14)

where the indices 0 and 1 are the two cells sharing the face f and r is the vector
from the cell centroid to the face centroid.

Temporal terms

The temporal terms are discretized using a second order backward scheme. If the
equation for one variable ¢ is written as

dp
() (5.15)

the discretized form can be written as

3¢n+1 _ 4¢n + ¢n71 B
2At B

where n + 1 is the value at t + At, n at t and n — 1 at t — At. The time level
used for the spatial terms, i.e. in F'(¢), decides whether the method is explicit or
implicit. Here an implicit formulation has been chosen, so the equation can be
written as

F(¢) (5.16)

@' =4/3¢" — 1/3¢" " + 2/3ALF (¢') (5.17)

This equation is then being solved iteratively, and once convergence is reached ¢
is set equal to ¢" 1. Implicit formulation gives an unconditionally stable method
with respect to time step size, however, we are still limited by physical constraints.
The CFL number is defined as CFL = %, where . is the local speed at
the particular element of interest, At is the time step size and Ax is the element
size. For a C'F'L number above one the propagation length w;, At is larger than
the element length Az, which means that the numerics might miss information
about the flow.

Another restriction is the limitation of the grid to resolve a periodic motion
of period T'. If u,. is the local flow speed and Az the distance between two grid
points, the smallest period that can be resolved is T' = ilA—g”, since at least three
points are needed in order to resolve a sinusoidal fluctuation. A time step smaller

than T is then required in order to resolve this frequency.
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Solver

The non-linear part of the equations are linearized, resulting in a system of linear
equations with one equation for each cell in the domain. A Gauss-Seidel solver
(smoother) is then used in conjunction with a multi-grid method to solve the
system of equations. One may use a non-linear solver in conjunction with the
multi-grid solver by using the so called Full Approximation Storage (FAS) [68].

5.2.3 Gauss-Seidel method

The Gauss-Seidel method is an iterative way of solving system of equations.
Applied to a general system Az = b the Gauss-Seidel scheme can be written as

i—1 n
1
o = — (bi — E aija:;‘fﬂ - E aijx§> (5.18)
1 le

j=i+1

where super-script * refers to the previous iteration level and **! to the same level,
for those terms that have already been estimated [83]. The method requires that
the matrix of the system of equations is diagonally dominant. Tannehill et al.
[183] describe the solution procedure as:

1. Make initial guess for all unknowns (not needed for one value, which is
given from the other values).

2. Solve each equation for the unknown, whose coefficient is largest in magni-
tude, using guessed values initially and the most recently computed values
thereafter.

3. Repeat this procedure iteratively until sufficient convergence is attained.

5.2.4 Multi-grid method

The multi-grid method is used to accelerate the solver, which otherwise becomes
very slow at a large number of elements. The Gauss-Seidel scheme efficiently
reduces the local high frequency errors in the solution, while the more global low
frequency errors are reduced at a rate inversely related to the number of cells
[59, 83, 91]. Therefore, such an iterative scheme is often referred to, and used as,
a smoother.

The idea with the multi-grid technique is that the solution, usually after
some smoothing iterations, still contains low frequency errors. The residual is
then mapped (restriction) to and used in the smoothing on a coarser grid, where
the previous low frequency error now, relative to the larger element size, is a high
frequency error. The Gauss-Seidel scheme is then used at the coarser level to
eliminate these errors. The process continues for a sufficient amount of coarser
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grids. When the coarsest grid is reached the solution on that is mapped back
(prolongation) to a finer grid, where more relaxation takes place, again using the
Gauss-Seidel scheme. When we finally end up at the initial grid again a converged
solution is hopefully reached, otherwise another sequence is initiated [59, 183].

The process is described mathematically as follows: The discretized equation
is given by

Ape+b=0 (5.19)

where A is the coefficient matrix, ¢, is the exact solution and b are constants.
The approximate solution ¢ will contain a residual d and is given by

Ap+b=d (5.20)

A correction ¥ to ¢ yields ¢, = ¢ + ¢, and with (5.19) and (5.20) we have

Alp+1Y)+b=0
AYp+ Ap+b=0 (5.21)
Ap+d=0

The correction is then given by the initial coefficient matrix A, and the residual
is given after the initial sweeps, that reduced high frequency errors. In order to
solve for the correction term, containing more low frequency errors, the residual
is interpolated to a coarser level (restriction), where now the relation is expressed
as

A% + Rd = 0 (5.22)

where A¢ is the coefficient matrix of the coarser level, ¢¢ will be the solution
on the coarser level after smoothing, and R is the restriction operator. After
a sufficient amount of coarse grid levels, the process changes direction and the
solution on the coarser level is transferred to a finer level (prolongation), which
can be expressed as

where P is the prolongation operator, and where some more smoothing take place.
There are several different commonly used cycles of the multi-grid process. Two
of them are the V and the W cycle, which are shown in Figure 5.2.

In the case of a non-linear problem the Full Approximation Storage (FAS)
approach is considered instead, where also the approximate solution needs to be
restricted onto coarser grids [58].
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fine

Grid levels

coarse

V-cycle W-cycle

Figure 5.2: Examples of multigrid cycles; the V-cycle to the left and the W-cycle
to the right. After Heath [83].

5.2.5 Pressure-velocity coupling using PISO

Due to the usage of a segregated approach the computed dependent variables do
not satisfy both the momentum- and the continuity-equations, just after updat-
ing the momentum equations. In order to compensate for this error, a pressure-
correction scheme is used. The momentum equations are first solved using an
estimated pressure, and if the resulting velocity field does not satisfy continu-
ity, pressure is also updated so that the continuity equation is satisfied, while
the approximation of the momentum equation remains un-affected [183|. The
procedure is initiated with the predictor step as

L () —uf) = H () = A" (5.24)
where p" and u]' are the values at the previous time level, or the initial pressure
and velocity field, respectively. The operator H is the convective and diffusive
terms in discretized form, and A; is the gradient in discretized form. Generally,
continuity will not be satisfied after this predictor step, so this is followed by a
corrector step, which reads

p kK * >k
Az (u* —ul) = H (u]) — Aip (5.25)
In this step continuity, A;u;*, is required, and both the pressure p* and the revised
velocity u!* is sought. Now, taking the divergence of (5.25) we have

A2p* = AH (uf) + 2 Al (5.26)

At
which is a discretized Poisson equation. Solving this equation yields p*, which
then is put into (5.25) and which gives u*. By definition this satisfies the continu-
ity equation. Several re-corrector steps may then also be performed by doing the
same correction procedure again, depending on the requirements on convergence.
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It should be pointed out that different versions of pressure-velocity coupling
schemes exist, depending on the flow character that is often used to guide in
making an assumption on the behavior of the pressure-velocity correction.

5.3 Finite Element Method for Solid Deformation

The equations governing the structural deformations were given in Chapter 4,
and are repeated here, for convenience, in their weak forms as

o, o2 ot

v, 0%us ous
/ A [ / 0Pt 434S+ / vt it dS = F o (5.27)
S S S

2 2 2 2,8
/(@MIH O ng, + 2.0 Mxy) dS—/vpsa v
|4

o0x2 8—3/2 8xay o
S
Sow?® .
—/U,u ot AV = Foertiea (5.28)
14

where Fp . .. and F, ., . act in the tangential plane, and normal, to the
element in question, respectively.

In the Finite Element Method (FEM) the field variables are approximated
using some kind of piecewise approximation function, usually polynomials, over
each element. The order of the polynomial is determined by the element shape,
the number of nodes of the element, and the number of degrees of freedom per
node. Also, the order of the polynomial determines, if it is complete, the order
of accuracy of the discretization. For an incomplete polynomial, i.e. where not
all terms of a specific order are included, the truncation error is determined by
the lowest order term. The polynomial is chosen so that each point inside each
element can be expressed as a function of the values of the nodes, respectively.

Here, the FEM has been used for solving the structural deformation of the
cylindrical geometry, whereas an FD approach (described later) has been used
for the fluid part of the FSI-problem considered.

The idea of the finite element formulation is to find a solution of a problem that
minimizes the total potential energy functional, using a variational formulation,
or to find a weight function v that minimizes the integral of the residual of the
approximate solution of a system of equations. The latter approach is termed
the Weighted Residual approach, and it has been used here.

The weight function can be expressed as a linear combination of base func-
tions, v = Zf\il c;;, where N is the number of base functions used. The Galerkin
method states that the weight function that minimizes the integral of the resid-
ual of the system of equations has the same set of base functions as the base
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which is used for the approximation of the field variables. Mathematically this
can generally be expressed in one dimension as

b
/ Yiedz =0, i=1,.,N (5.29)

where 1); is the base also chosen for the approximation function, and e is the
error of the differential equation. It is now rather obvious why the weak formu-
lation is very convenient for formulating the finite element description. For other
minimization methods, see Ottosen et al. [138] or Rao [152].

With that given, the rest of the process of building the finite element descrip-
tion chosen, and computing the solution follows as:

1. Define the element, the degrees of freedom and the approximating polyno-
mials for the in-plane-, as well as the bending-descriptions.

2. Substitute the approximation into each weak formulation of the problem,
respectively, and build the system matrices.

3. Assemble the local matrices into the global system matrices after coordinate
transformation.

4. Apply the Essential or Dirichlet boundary conditions to the global system
matrices.

5. Solve the resulting system of (ordinary differential) equations.

As the finite element method uses a set of “finite elements” to describe a
geometry, the thin walled geometry here has been chosen to be described by a set
of Kirchhoff plates, including center in-plane deformation for shear forces. The
solid mechanics theory of Kirchhoff plates was described in a previous chapter.

For simplicity, simple triangular elements have been chosen for approximation.
A sketch of a triangular element with its degrees of freedom for the in-plane, and
bending descriptions, is shown in Figure 5.3. The formulation is first described
for the in-plane motion, followed by the description of the bending motion.

5.3.1 Plane stress of triangular element

A coordinate system is defined as shown in Figure 5.3, this is a local coordi-
nate system valid for all finite elements, related to the global coordinate system
through a matrix of direction cosines [152]. For the in-plane formulation there are
three nodes and two degrees of freedom per node, i.e. six unknowns. Therefore,
2D linear approximation polynomials, with six unknown constants, are used and
written as

u’(z,y) = a; + aer + azy (5.30)
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g=u
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Figure 5.3: Triangular element.
vi(z,y) = oy + asT + agy (5.31)
The six degrees of freedom ¢; are given by:
ui=q Ui =g (5.32)
Uy =qs V3= qu (5.33)
u3=qs Vi =(s (5.34)

where the subscript of u® now referrers to the local node number. Each node is also
given a unique global node number, that is used later for the global assembling
process.

The expressions of (5.30)—(5.34) can now be written in matrix form as

U= ( w(z,y) ) - YO (5.35)

v*(z,y)
Hence, Y is the matrix of the base functions
T:(éggggg) (5.36)
and O is the vector of unknown coefficients
aq
e = : (5.37)

Qg
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Using the fact that in the nodes one has (5.32)—(5.34), so that

q=AO (5.38)
where
T,
A= T, (5.39)
Ts
q1
q= : (5.40)
de

and where the subscript on Y states the local nodenumber, one has

U= ( Zgigy’; ) — YA 'q=Nq (5.41)
N is the matrix of shape functions, i.e. the polynomial approximations of
the field variables over the element are now related to the unknown degrees of
freedom of each node.
The strain tensor is given by (4.25). By reducing to two dimensions the strain
relations may be expressed as

€x ou® |Ox
=1 € | = ov® [0y (5.42)
€y ou® /0y + Ov®/Ox

Using (5.41) and performing the derivations on the shape functions the strain
can be expressed as
eap = Bq (5.43)

where B contains the differentiated shape functions.
Further, 0% = De® = DBq, where D is given in (4.33), and the use of the
Galerkin formulation suggests that the arbitrary test functions are expressed as
= Nc, where c is arbitrary. Using these relations in (4.42), where ¢ will cancel,

give
=5 / / BTDBdS (5.44)

m(®1 = / NTNdS (5.45)

/ / NTNds (5.46)
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The force terms on the RHS of (4.42) do not need to be considered. Instead of
having a traction field and /or a body force field and integrate those functions over
the boundary and domain, to distribute the forces to the nodes, the force vector
is estimated directly at each node, respectively. This procedure is described
in Chapter 4, and indicated in (5.27). From a three dimensional perspective
all nodes are boundary nodes, and one then would have only boundary forces.
Although, viewing the axial-azimuthal plane in two dimensions, the top and
bottom of the cylinder are boundaries, while the other nodes are internal. Then
the force field can be seen as consisting of both boundary- and body-forces. In
practise this does not matter, the resulting force field is here the same given by

(4.47).

5.3.2 Triangular plate bending element

When it comes to the bending part of the problem the process of obtaining the
finite element description is rather similar to what was described in the previous
section. The largest difference is that a higher order polynomial is used, as there
are more degrees of freedom, and as there are higher order derivatives in the
governing equations (compare (4.42) and (4.44)).

There are three degrees of freedom in each node, which give nine degrees of
freedom in total per element; these are also shown in Figure 5.3. The polynomial
therefore has nine constants and is given by

w(z,y) = o + o + azy + aux® + aszy + agy’ + ara’ + as (7Y + 2y°) + agy®

(5.47)

The base of the eighth term assures completeness and symmetry of the expression.

As before the expression above can be written on matrix form as Y,©y. The
subscript , referres to the bending part of the FEM-formulation.

Yo=(1 2z y 2® zy y* * (2Py+ay?) *) (5.48)
Qg

Oy = : (5.49)
Qg

The degrees of freedom are further expressed as

s ows ows
wi=q = O, =G — 8951 =0, =q (5.50)
s ows ows
wy=q1 = O, =q5 — 8; =0y, = ¢ (5.51)
ow;

w3 = qr ows _ 0y = qs =0y = Qo (5.52)

Ox
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where the angular deformations 6, and 0, are rotations around the z- and y-
axes, respectively. The negative sign before the rotations around the y-axis is to
make sure that a positive movement in the z-direction corresponds to a positive
displacement of w®. The angular deformations may be referred to as generalized
deformations, and similarly their corresponding moments may be referred to as
generalized forces. The subscript number referrers to the local node number.

The procedure of (5.38)—(5.41) also applies to the formulation of the bending
of the plate; only that the matrices with subscript , are used where it applies.
The corresponding expression for (5.41) is here (where the out of plane horizontal
deformation due to bending is neglected)

w®(z,y) = ToAy qp = Npap (5.53)

Further, since there are no resulting in-plane forces in the bending part of the
description, (4.26)—(4.28) can be written as

_ 9w
022
b= oy (5.54)
€, = z 0y? .
—9 Pw
oxdy

Substituing (5.53) into (5.54) and doing the differentiations, the strains may
be expressed as
Ez = szqb (555)

where By, contains the differentiated shape functions.
Further, substituting (5.55) into (4.33), one gets expressions for the stresses.
These are then integrated using (4.16)—(4.18), before they can be put into (5.28).
The test function v is here written as v = ¢, Ny, and again cp, cancels.
Substituting these expressions into (5.28) the expressions for the stiffness,
mass, and damping matrices are

12

m©2 = / / NENpdV = pt* / / N{ENpdS (5.57)
Ve Se

c®2 = ° / / NINLdV = pt* / / Ny NpdsS (5.58)
Ve Se

As before the RHS terms of (4.44) are neglected, and instead the force field
is computed from (4.47).
All integrations are analytically evaluated before implemented into the code.

tSS
k(©2 = / / BIDB.,dS (5.56)
Se
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5.3.3 Assembling

When the FEM-formulations for both in-plane- and bending-deformations are
settled, the two contributions are assembled into total element matrices.

The local stiffness matrix of (5.56) can be expressed as

WO, RS, G,

k(e)l _ kgel)l k(e)l k‘(e)l (559)

6x6 242 22042 23242
(e)1 (e)1 (e
31242 32242 33242

with corresponding deformations

—q= (5.60)

Similarly for the bending part

Ko, ko, ke,
ko = | k7, K, kG (5.61)

O ke e H
e)o e)a e)a
k313a:3 k323a:3 k333a:3

with corresponding deformations

Ulo), =db = 0z, (5.62)
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The two contributions are then assembled into a total element matrix as

K 0g 094 k@; 0203 0241 k%ﬁ; 0203 0241

112422
03902 kgel);z?) 0311 03902 kgz);z?) 0311 03902 kg??ig) 0311

01:32 01:33 Olzrl 01:32 01:33 Olzrl 01:32 01:33 Olzrl
kéel);ﬂ 02903 0211 ké;);ﬂ 02903 0211 ké?;ﬂ 02903 0211

(e)to e e e
k18)tc1t8 = 03902 kél);z?) Ole 03902 kég);z?) Ole 03902 kég)?i?) Ole
01:v2 01:v3 Olzrl 01:v2 01:v3 Olzrl 01:v2 01:v3 Olzrl
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(5.63)
where, for example, 0, corresponds to a zero matrix of 1 row and 2 columns.
Deformations corresponding to (5.63) are

s . ’LU2
(e)total 0932

(5.64)

The rows and columns of (5.63) that contain only zeros correspond to 6,,
which must be included since each plate is a part of a three dimensional shell.
As the matrix is transformed into the global coordinate system this variable will
not be zero.

Each node are given a global node-number which determines the position in
the global matrix. Before the matrix-components of (5.63) are put into the global
stiffness matrix K the local matrix is transformed into the global coordinates as

k(© = A k{9 N (5.65)
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where
)\6906 06x6 06906
Aot = | O6z6  Aez6  Oguo (5.66)

O6z6 0606 A6z

la:X myX n,x 0 0 0
lxy Myy Ny 0 0 0
. lmZ Myz MNzz 0 0 0
0 0 0 lyy my n.y
0 0 0 Ly myz nag |

The non-zero elements of the matrix Mg, are the direction-cosines between
the local- (z,y, z) and the global-(X,Y, Z)-coordinate systems.

The above assembling procedure also applies to the mass- and damping-
matrices.

When all local matrices have been assembled into global matrices the resulting
system of equations, is a system of ordinary differential equations with respect
to time as

0*u ou

9 +C BT +Ku=F (5.68)
where M, C, K are the global mass-, damping-, and stiffness-matrices, respec-
tively. u is the global deformation vector, and F is the global force vector com-
puted from (4.47). Finally, before solving the system of equations the Dirichlet
(or essential) boundary conditions are forced to the solution by specification di-

rectly in the system matrices.

5.3.4 System of equations solver

The system of ordinary equations (5.68) is re-written as a system of first order
time derivatives, and then solved using a combined implicit Euler- and a Gauss-
Seidel-scheme (5.18). The implicit (or backward) Euler scheme is given by

Yn+1 = Yn + Atf (tn-i-la yn—l—l) (569)
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Chapter 6

Summary of Results

This work consists of results partially from computations on different systems of
bifurcating pipes, and partially from the evaluation of an Fluid-Structure Inter-
action (FSI) code. The aim with the FSI-code is to model flow of blood in elastic
arteries.

All studies performed have a physiological perspective, since such flows (ex-
cept the cylinder case) are found in the arterial system of the human body. Such
physiological flows are characterized by pulsation and three-dimensional effects
such as flow separation, strong secondary motion in the cross-sectional plane, and
large temporal- and spatial-variations in the Wall Shear-Stress (WSS). Addition-
ally, the flows are intermittently in the transitional regime, which adds to the
complexity.

6.1 Wall Shear Stress Patterns

As the disease of atherosclerosis often is found in the vicinity of bifurcations and
in curvatures [8, 42, 121, 133, 173, 205], where the flow is rather unsteady, it has
been hypothesized that the mechanical forces due to the flow are involved in the
atherosclerotic process. These forces are mainly discussed in terms of the wall
shear stress (WSS) |2, 14, 16, 66, 67, 118]. Therefore the dynamics of the WSS
have been studied.

The results show large temporal and spatial derivatives of the WSS-components
(Ters Tor) in the vicinity of the bifurcation. Figures 6.1(a) and 6.1(b) show peaks
of the derivatives of 7., in the first part of the daughter vessel, after a 90-degree
bifurcation (see Paper 2).

The outer wall of streamline curvature in the 90-degree bifurcation is often
referred to as more “safe”, since the flow is more uniform there [14, 15, 72|.
However, these results show that due to the pulsating character of the flow, there
are temporal variations there as well, including large derivatives of the WSS,
as shown for the time derivative in Figure 6.2. It must be remembered that
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(a) 2Z== at t/T = 0.228. (b) %= at t/T = 0.228.
Figure 6.1: Derivatives of axial WSS-component at peak velocity.
atherosclerotic plaques are found also at such locations, although less frequently

[42]. Large temporal- and spatial-derivatives of the WSS were found at increased
Reynolds- and Womersley-numbers as well.

dr_/dt
X

Figure 6.2: 222 at t/T = 0.355.

6.2 Secondary Flows

The characteristics of the WSS described above are due to the dynamics of the
surrounding flow, which has also been investigated.

The flow through a 90-degree bifurcation shows similar characteristics as the
flow through a 90-degree bent pipe, since the streamlines are curved similarly.
These characteristics are secondary vortical flows, as well as possibly regions of
separation. The typical vortical pattern in steady flows in bent pipes is a pair of
Dean vortices, induced by the centrifugal effect. However, in the case of pulsatile
or sinusoidal flows in curved pipes, other secondary patterns are found, such
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as multiple vortex structures and secondary motion in the opposite direction as
compared to the classical Dean vortices |30, 44, 119, 170, 176, 180]. Similarly,
different patterns than the regular Dean vortices are expected in the case of
pulsatile flow through a 90-degree bifurcation, which may also explain some of
the WSS-patterns previously found.

The results show that the flow field goes through different stages as the driving
pressure varies. An increased Reynolds number (Re = 5800) keeps the secondary
structure as long as transition into turbulence can be avoided, while a higher
Womersley number (o = 11.75) changes the structure of the secondary flow.
Figure 6.3 shows the evolution of the axial flow for the base case (Re = 1450 and
a = 6.75). The axial velocity is represented by contours, where the bold line is
the zero contour. The interaction of separation with the secondary flow is found
in Figure 6.3. In Figure 6.4 the secondary velocity vectors show multiple-vortex
solutions for the base case ((a) and (b)), and for the high Re case (d). In (d) a
similar double vortex pattern is found as in (a), although earlier in time, whereas
the high a-case (c) only has a single vortex pattern, even though ¢/7T is larger.

(c)¥T=0.174

(d) UT=0.217 () UT=0.264 (f) YT=0.284
Figure 6.3: Axial contours of the axial velocity in a cross-plane after a 90-degree
bifurcation; the bold line is the zero contour.

Further, the formation of multiple secondary vortices is found to cause changes
to the separation pattern, and the secondary flow is found to influence the WSS
variations.
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Figure 6.4: Secondary velocity vectors in a cross-plane after a 90-degree bifurca-
tion.

6.3 Numerical Accuracy

The accuracy of a numerical solution depends on the errors that are associated
with each of the steps in solving the problem: The accuracy of models used to
describe the flow physics, the accuracy of the boundary conditions, the accuracy
of the discretizations (grid, boundary, temporal and spatial discretization) and
finally, the level of convergence of the iterative procedure. Since the accuracy of
each step is not known a priori, most accuracy studies are done a posteriori. The
accuracy of the models themselves can be estimated by experiments, given that
the accuracy of the rest of the steps listed above is known.

In order to obtain a reliable solution it is important to verify that the discrete
solution is a good approximation of the differential problem (so called discretiza-
tion convergence). Comparing the solution on different grids allows one, if the
grids are fine enough, to estimate the error both in approximating the differential
problem (i.e. the truncation error), and the error in approximating the differen-
tial solution (convergence error). The issues regarding the numerical accuracy of
the results are discussed in each paper.

Another important issue necessary for obtaining an accurate solution is that
the iterative process of solving the system equations has converged to small
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enough levels. Different convergence criteria have been tested in order to as-
sess its effect on the solution.

After discretization and linearization the algebraic system of equations for a
variable ¢ is described as

aP¢p = Z APy + b (61)
nb

where ap is the coefficient of the cell center, a,; are the influence coefficients of
the neighboring cells, and b is contributions from sources and boundary condi-
tions. The residual for the momentum equations is defined as the sum over all
computational cells P of the imbalance of (6.1). It is then scaled and given by
(6.2).

Y1 AnpPp + b — apdp

P |nb
fr= S Jardr] (6:2)

P

For the continuity equation the scaled residual is defined as

Ri eration
R — —terationN (6.3)

RiterationS

where

Riteration = Z |[Rate Of Mass Creation In Cell P| (6.4)
3

In (6.3) Riterationn 18 (6.4) at iteration N and Rjierqtions is the largest value of (6.4)
in the first five iterations. In Figures 6.5 and 6.6 results for the residual conver-
gence criteria of 1072, 107%, 107 and 1075 are compared. The computations were
performed on a tetrahedral mesh, at a constant inlet Reynolds number of 1000, in
the bifurcation model. Results are presented along two lines at /D = 1.97 into
the 90-degree daughter branch. One line crosses the pipe in the vertical direction
(Figure 6.5) and the other line is perpendicular to this at the height of the centre
of the daughter pipe (Figure 6.6).
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Figure 6.5: Velocity profiles at different convergence criteria of a veritcal line in
the daughter branch.
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Figure 6.6: Velocity profiles at different convergence criteria of a transverse line
in the daughter branch.

The Figures 6.5 and 6.6 show that a convergence criteria, according to the
residual definition in (6.2) and (6.3), of at least 10~* is required for enough
convergence. In the (FVM) calculations showing the results a convergence criteria
of at least 10~* has been used, and for each time step convergence up to eight
digits or more, of each parameter, has been noted (using double precision).

6.4 Resolution at High Reynolds Number

In the high Reynolds number calculations (Re = 5800) typically some relatively
fast oscillations are found. In order to determine that these fluctuations are
actually resolved, it is necessary to compare them to which frequencies that are
possible to resolve, with the chosen spatial and temporal resolution.
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The temporal variation is investigated at certain locations of the domain. The
points with most fluctuations are located in the separated region of the daughter
branch after the 90-degree bifurcation. The three velocity components at one of
these points (P1 in Paper 1) are shown in Figure 6.7, along with the frequency
spectrum of the fluctuations of each component, respectively.

Before transforming the velocity time histories, using an FFT-algorithm, the
large scale motion related directly to the velocity pulse is filtered out, leaving only
the fluctuating component. The time resolution is At = 0.0005 s, which means

that, according to the Nyqvist sampling theorem [179], frequencies up to f = %At
are resolved. That corresponds to a Strouhal number of Sty = Uf ll) - = 38.8, given

D = 0.0085 m, being the local pipe diameter. However, the spatial resolution also
limits what frequencies that can be resolved. A sinusoidal fluctuation requires
three nodes in order to be resolved [58]. As seen in Figure 6.7 the frequencies
are of order Sty < 1, and since D/Ax =~ 17, the fluctuations are considered well
resolved.
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Figure 6.7: Velocity time history for all velocity components at Re = 5800 (left),
and frequency spectra (right). The data is taken from a point in the separated
region after the 90-degree bifurcation (P1 in Paper 1).
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6.5 Propagation of Flow Patterns and Scalars

As the flow in systems of bifurcations often goes through several generations
of branches, it is relevant to investigate the effects of upstream flow conditions
on the downstream flow, i.e. how far down dynamical characteristics propagate
through the system before they are diffused, or before the flow is dominated by
other effects.

In order to determine that for pulsatile flow, computations have been per-
formed in a three generation asymmetric model of bifurcations (see Paper 4).
The first bifurcation is a 90-degree bifurcation followed by symmetric bifurcations
with 30-degree bifurcation angles. Additionally, different inlet modules were at-
tached to the inlet in order to mimic different upstream curvature effects, and to
determine the sensitivity to those. Also, passive scalars in the range of Sc¢ = 0.72—
6280 were introduced at the inlet. The flow computations were performed at a
peak Re = 3000 and o = 8.26.

A skewed velocity distribution is found downstream of the 90-degree bifurca-
tion as expected. The inlet-modules affect the early and the late phases in the
cycle, whereas in the middle phase of the cycle, separation due to the curvature
just before the inlet seems to stop upstream effects from propagating downstream.
Two generations down the upstream asymmetric effects do not seem to influence
the flow anymore. The velocity decreases for each generation as the total cross-
sectional are increases, which gives more time for diffusion. Instead inertial effects
caused by the latest curvature dominate the flow field.

The scalar transport is clearly affected by the geometrical asymmetry, as well
as the different inlet-modules. Figure 6.8 shows the scalar differential distribu-
tion between the scalars of the largest- and the smallest-Schmidt numbers (Sc).
Differences are found in the boundary layers, where the small Sc-scalar’s concen-
tration is larger. One can also see that the different inlet boundary conditions
(Cases 1-4) causes different distributions throughout the cross-section. Cases 1-3
show a negative differential diffusion in the daughter vessel near the lower wall,
while Case 4 and the steady case show positive differences there.

In the main branch Cases 1 and 2 show negative values to the left. Case
3 instead has positive concentration differences, whereas Case 4 has a positive
concentration difference to the left, and a negative to the right of the main branch.
The concentration difference for the steady case is more symmetric, and does not
represent a pulsating flow very well. Thus, substances of different diffusivity will
be distributed differently in the domain depending on the inflow conditions, and
therefore substances of different Sc in blood flow will be affected similarly. The
differences in concentrations between these Sc are up to approximately half the
level of concentration of the large Sc scalar concentration. Thus, the effect of Sc
is significant leading to non-uniform concentration of the substances in the blood
in the arterial system.
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Figure 6.8: Difference between scalars of S¢ = 6280 and Sc = 0.72 at t/T = 0.24.

In the lateral plane of the daughter branch (see Paper 4) the scalar distribution
is very uneven over the cross-section, as shown in Figure 6.9. The separation
near the inner curvature, and the centrifugal effects, distribute the scalar almost
exclusively to the outer wall of curvature. That is despite the even distribution at
the inlet. The different inlet conditions are shown to give the effect of skewness to
the concentration distributions. Case 1 and the steady flow case show symmetric
scalar distributions as expected. The steady case has a more flat and spread
out high concentration field, as compared to Case 1. The other three cases show
skewed concentration profiles. Cases 2 and 4 have scalars skewed towards the
lower right wall, where the scalar of Case 4 is also more spread over the cross
section. Case 3, on the other hand, has a scalar skewed towards the lower left

wall.
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Figure 6.9: Scalar distribution in a lateral plane of the 90-degree daughter branch
at t/T = 0.24 and Sc = 6280.

6.6 Fluid-Structure Interaction

As described above, a Finite Difference (FD) based Immersed-Boundary (IB)
method is combined with a structural Finite Element Method (FEM) solver.
The aim was to be able to model blood flow in elastic arteries, and investigate
these effects on relevant parameters.

In order to validate the structural solver the results are compared to an an-
alytical expression for the deformation of a thin cylindrical shell subject to axi-
symmetric radial loading.

A cylindrical shell subject to an axisymmetric load, as shown in Figure. 6.10,
will through the approximations of thin-walled structures experience a radial
deformation according to

— Bz
S = % (sinfx + cosfx) (6.5)
ey \ V4
8= ( ! RZZt)b) (6.6)
Est3
b 12 (1 — v (6.7)

where P is the applied force continuously distributed around the cylinder, R is
the cylinder radius, Dy is the flexural rigidity of the shell. The derivation of this
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e
Figure 6.10: Cylinder with applied axisymmetric load.

analytical expression is described by Timoschenko et al. [188] and Vinson [196],
amongst others. The formula is symmetrically applied around the circle of the
applied load.

Figure 6.11(a) shows the displaced geometry for the finest grid, and Figure
6.11(b) shows the deformations along a line for several different grids, as well as
the analytical expression. The element sizes are specified by the legends in the
figure. It is clear that the solution converges towards the analytical expression, for
an increased number of cells, although the numerical solution has some difficulties
in capturing the negative displacements just beside the peak. The cylinder has a
length over diameter ratio L/D = 3.3, and a thickness ¢*/D = 0.01. The Poisson
ratio is v* = 0.3 and Young’s modulus £* = 5 - 10° N/m?.

In Figure 6.12 the error is plotted against the grid size. As the error is
proportional to the leading term of the truncation error, i.e. the element size to
the power of the order of the method in use, one would expect a convergence
rate of 2. That is because linear (and higher order) polynomials have been used
for approximation. However, that is only true if one has reached the asymptotic
regime (small enough Az), so that the higher order terms of the truncation are
negligibly small [58]. The slope in the logarithmic plot is &~ 0.9, which points to
first order accuracy in practise.

In the solution procedure the structural deformation is computed for each
fluid time-step At = 0.01. However, the time-step of the solid solver is At =
0.0001, and therefore for each fluid time step 100 time steps are computed for the
structural solver. The reason is that a first order method in time (implicit Euler
method) is used.

For each time step the solid system of equations solution algorithm is broken
at ||¢" — ¢" M|, 0w < D - 107% where ¢"! is the solution of the previous iteration
and ¢" is the present iteration.

These settings were found to give reasonable results for external flow around
a cylinder (not included in the thesis), however, the studies with respect to the
importance of arterial wall elasticity on the flow, are not yet completed.
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Figure 6.11: Deformation due to axially symmetric radial load of cylindrical shell.
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Chapter 7

Future Work

The studies presented in this thesis have shown that derivatives of the WSS are
significant, also at locations referred to as more “safe”. The WSS is affected by
the secondary flow that shows character changes both with the Reynolds- and
the Womersley-numbers. Also, the effect of bifurcations and curvature is shown
to be very significant for the distribution of scalars, affecting them differently
depending on the Schmidt number. For improved modeling of physiological flows,
and understanding of hemodynamically relevant characteristics, suggestions are:

e The effects of variations in Re and « on the secondary flow have been stud-
ied. That study may be extended by investigating the effect of variations
in curvature ratio and bifurcation angle on the characteristics of secondary
flow (vortical structures), and on WSS variations. These cases are not much
investigated for pulsating flow in bifurcations in literature.

e Atheroslcerosis has been related to mass transport of different blood com-
ponents over the cross-section. As the disease appears at locations, such as
near bifurcations and in large curvature, the effect of the flow on the dis-
tribution of different components may be significant. As shown above the
effect of the flow on passive scalars of different diffusivity is significant. As
it is found that different Re and « affects the character of the flow (different
secondary vortical structures), these parameters most probably affect the
distribution of the scalars. Such comparison would be interesting since the
disease is found at various parameter values of Re and .

e The blood is often considered as being Newtonian, also here, despite its
non-Newtonian character. Most often these effects are found to be rather
small, however, in some cases they are reported to be of significance. There
are various constitutive models that can be implemented, such as Bingham,
Casson, Quemada. Another approach would be to simulate the blood cells
in the plasma using multiphase models. This would show actual significance
of non-Newtonian effects in the flows considered here.
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e The effects of extensible walls on flow parameters, such as wall shear stress,
are often considered to be small. However, modeling them, using an FSI-
model would reveal how small they are here. The wall extension may also
influence the secondary flow patterns, and therefore also the distribution of
different blood components.



Chapter 8

Summary of Papers

Paper 1

Philip Evegren € Laszlo Fuchs, “Pulsatile Flow in Branching Arter-
ies”, Presented at the 3:rd IC-SCCE conference, Athens, 2008.

The role of fluid mechanics in relation to the patho-physiological process of
atherosclerosis has been investigated over many years. One has observed that
morphological manifestations of the disease are found at some well defined lo-
cations: certain vessel bifurcations and curvature. The flow in these regions is
characterized by separation and unsteadiness. There are several hypotheses re-
lating the flow to atheroslcerosis, which include flow separation, the level of wall
shear stress and its spatial and temporal variations. Currently there are no theo-
ries that can explain the process since the different components in the process are
not fully known nor understood. The problems are related to the complexity of
the biological systems involved, and even the fluid mechanical aspects (related to
the mechanical effects on the vessel wall and the transport of biological active sub-
stances) are not well documented or understood. This paper is aimed at shedding
some light on the transitional flow near a bifurcation and on the effects of some
relevant parameters (Reynolds number and Womersley number). The results in-
dicate the presence of local regions of strong temporal- and spatial-variations of
wall shear stress, even at locations often referred to as “safe”. Increased Reynolds
number yields transitional behavior close to a separated region, while other parts
of the domain show no such behavior. On the other hand an increased Womersley
number delays flow separation.

The candidate computed the results and was the main author of the paper.

95



96 CHAPTER 8. SUMMARY OF PAPERS

Paper 11

Philip Evegren, Laszlo Fuchs € Johan Revstedt, “Wall Shear Stress
Variations in a 90-degree Bifurcation in 3D Pulsating Flows”, on re-
viston for publication in Medical Engineering ¢ Physics

The exact role of fluid mechanics in the patho-physiological process of atheroscle-
rosis has been a research topic over many years, yet without clear conclusive
result. One has observed that morphological manifestations of the disease are
found at some well defined locations: certain vessel bifurcations and in curvatures.
The flow in these regions is characterized by unsteadiness and often separation.
Currently there are no complete theories that can explain the process since the
different components in the process are not fully understood. Here we carry out
detailed computations of the unsteady flow in an arterial segment typical to loca-
tion of early appearance of arterial lesions. We study the wall shear stress (WSS)
field variations near a junction with the purpose of identifying fluid-mechanical
parameters that can be related to sites of atheroslcerosis. The results show that
regions associated with atherosclerosis experience highly elevated temporal- and
spatial-derivatives of the WSS, also at less commonly known locations. Thus,
large derivatives in time and space do not seem unique for the most common
areas of atherosclerosis. Differences in WSS character between these locations
are identified as differences in the time period of back flow as well as differences
in the magnitude of the WSS derivatives. The data is presented in a way that
facilitates understanding of the variations in WSS.

The candidate computed the results and was the main author of the paper.
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Paper 111

Philip Evegren, Laszlo Fuchs € Johan Revstedt, “On the Secondary
Flow Through Bifurcating Pipes”, submatted to Physics of Fluids.

The flow through curved and bifurcating pipes induces secondary motion which
has been subject to investigation over long time due to the general interest in
such flows. In contrast to the flow in a straight pipe curvature leads to the
formation of secondary flow which is often unsteady. Streamline curvature occurs
also in bifurcating pipes leading to some corresponding secondary, unsteady flow.
This paper presents a detailed description on the unsteady flow in the daughter
branch after a 90-degree bifurcation at a range of Reynolds- and Womerlsey-
numbers. The results show the presence of Dean vortices and additionally new
vortical patterns not reported in the literature. Both the streamwise (axial) and
the secondary flow components change character at larger Womersley numbers,
leading to less complex secondary flow. Also, at larger Reynolds numbers, flow
instabilities are observed. The secondary flow may lead to the formation of
unsteady separation bubbles. This in turn yields peaks in the wall shear stress
components. Such wall shear stress variations have often been related in the
literature to the processes that may lead to atherosclerosis.

The candidate computed the results and was the main author of the paper.
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Paper 1V

Philip Evegren, Johan Revstedt ¢ Laszlo Fuchs, “Pulsating Flow &
Mass Transfer in an Asymmetric System of Bifurcations”, submitted
to Computers and Fluids.

Pulsating flow through bifurcations are of general interest. In the human body
such flows are also very common; for example in blood vessels and the respiratory
tract. The characteristics of the flow in arteries have been related to the process
of atherogenesis, based on the observation that the initial manifestation of the
process is observed at certain common locations, i.e. near bifurcations in vessels
of certain size. In-spite of these observations there is no direct understanding
between the flow itself and the pathological process. In fact, the flow itself is
rather complex since it is unsteady and transitional. The flow causes temporal
and spatial variations in the Wall Shear Stress (WSS) which is believed to be
an important contributing factor for atherosclerosis. The paper considers both
unsteady- and steady-flow through a three generation system of (non-symmetric)
bifurcations. The geometry consists of a 90-degree bifurcation followed by two
sets of consecutive symmetric bifurcations. The aim of the paper is to investigate
the effects of the bifurcations on the flow and mass transport in such a geomet-
rical configuration that is often found in physiological situations. Additionally,
the effects of different inlet velocity conditions have been considered. The differ-
ent inlet conditions are aimed at studying the sensitivity to variations of inflow
conditions; variations found under normal physiological conditions. The results
show that the geometrical asymmetry affects the velocity distribution even after
a second bifurcation downstream. Two generations down this asymmetry does
not have a significant effect anymore. The different inlet conditions affect the
flow to the next generation of branches during different pahses of the flow cycle.
At peak flow and further downstream in the system the effects are negligible. It
is also found that over a cycle the mass flow distribution through the different
branches, given the same outlet pressure level, can be affected by the inlet veloc-
ity conditions. The distribution of a passive scalar is not uniform but depends
on the inlet conditions and strongly on the Schmidt number (i.e. molecular dif-
fusion). Schmidt number effect can account for as much as 50% deviation in the
concentration of scalars with different molecular diffusivities.

The candidate computed the results and was the main author of the paper.
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