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Abstract

Performance improvements are always needed in computer graphics. Better per-
formance frees up computational resources which can be used to increase the level
of realism in the rendered images. Despite a very rapid development of graph-
ics hardware, we are still far from the point where photo-realistic rendering can
be done in real time. Therefore, better algorithms must be developed in order to
advance the field.
In this thesis, we present several new algorithms targeted for the rasterization
pipeline, which is, at the time of writing, the de-facto standard rendering algo-
rithm used in graphics hardware. We focus on three areas in the pipeline. The
first is the rasterization step where we present efficient sampling strategies which
can improve performance, or enable new algorithms to be implemented. This in-
cludes an investigation of very inexpensive, but relatively high quality, sampling
schemes, an algorithm for conservative rasterization through area sampling, and an
algorithm for efficiently rasterizing multiple views which can be useful for holo-
graphic displays, and other multi-view displays.
The second area of focus is on compression algorithms. Compression is frequently
used in graphics hardware in order to minimize memory traffic and thereby in-
crease performance. We present efficient algorithms for high dynamic range tex-
ture compression, depth buffer compression, and color buffer compression. The
inner workings of buffer compression have been kept secret by hardware vendors,
and the only available information is available through patents. Therefore, we also
present surveys of the prior art in buffer compression.
The final area we focus on is programmable culling. Culling is an old concept in
computer graphics, and it is often necessary to include some form of culling to
make an algorithm truly efficient. However, current graphics hardware only has a
few fixed function culling algorithms implemented. This often makes it impossi-
ble, or impractical, to implement culling in new rendering algorithms that rely on
graphics hardware. We present a methodology for automatically deriving culling
algorithms from shader programs, and we show how this can be used to perform
culling both on a pixel level, and on a geometry or vertex level. In both cases, we
show that our automatic culling can greatly improve rendering performance for a
wide variety of scenes.
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1. INTRODUCTION

1 Introduction

Computer graphics is the science of generating, or rendering, images on a com-
puter. In essence, a screen has a limited number of picture elements, or pixels,
which can be set to any given color, and a graphics algorithm is merely a way to
determine which color to display at each pixel. Even though we may not think
about it, computer graphics has become part of our everyday life. The most ev-
ident use is in computer games and entertainment, but it is also heavily used for
special effects in the movies we watch, as well as in the graphic overlays on news
and sports TV-broadcasts. Another example of widespread use is mobile phones
and portable music and video players. In addition, computer graphics is used to
visualize measurements from medical equipment in order to help doctors make the
right diagnosis, for example.
A subfield of computer graphics that has been given particular attention is that of
three-dimensional graphics. Here, a two-dimensional image is rendered from a
three-dimensional model of a virtual scene or world, at a given viewpoint. Such
scene models are typically constructed from several objects, where each object is
built from triangles that approximate the object’s actual surface as shown in Fig-
ure 1. The triangles are given material properties that describe how light interacts
with the surface, and the task of the rendering algorithm is to determine how light
is transferred throughout the scene. The algorithm follows the light from a vir-
tual light source, such as the sun, and registers each surface the light hits before
it reaches the viewpoint, thereby giving color to a certain pixel. This is called the
light transport problem, and it turns out to be a very complex problem to solve.
The complexity of the light transport problem has divided three-dimensional com-
puter graphics into two branches: photo-realistic and real-time rendering. Photo-
realistic rendering focuses on image quality and spends a lot of resources on solv-
ing the light transport problem accurately. The rendering algorithms are often

Figure 1: Left: A three-dimensional model is constructed from vertices connected
to form triangles. Middle: When the triangles are rendered, the surface of the
model appears. Right: Finally, the triangles are given material properties in order
to create a more realistic image. These images are based on a free model from
www.artist-3d.com.
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Figure 2: Left: An image rendered with a simple light model, not including any
indirect lighting. Right: The same image rendered with a physically based lighting
model. Note that a great deal of the light in this scene actually comes from indirect
lighting. As a result, the rendered image to the right looks more realistic, and it
also makes it easier to perceive the depth and shape of the scene.

based on physics, and simulate how light interacts in the real world. They capture
effects such as indirect lighting, which occurs when light bounce off several sur-
faces before reaching the eye. Although this may sound like a very subtle effect,
it contributes greatly to the perceived realism, as can be seen in the images in Fig-
ure 2. In an ideal world, photo-realistic rendering would be used for all purposes,
but due to its complexity, it may take a single computer minutes, hours, or even
days to render a single image. Photo-realistic rendering is therefore used primarily
in the film industry, where a film is rendered during the course of months on big
clusters of computers.
The most typical example of the other subfield, real-time graphics, is games, which
have two requirements that make accurate photo-realism impractical. First, the
player is able to interact with the virtual world as the game is played, so we cannot
precompute a movie clip. Second, the images must be rendered in a high enough
pace so they are perceived as a fluid animation rather than separate images. This
typically requires around 60-100 images to be rendered each second. Therefore,
rendering performance always comes first in real-time graphics and quality comes
second. The rendering quality is made as high as possible without breaking the
performance requirements.
Real-time graphics has received enormous attention during the last few years, and
with the introduction of dedicated graphics hardware, performance has increased
thousandfold in the last decade. Each time computational power is increased, the
extra performance is used to improve image quality. However, consumers quickly
grow accustomed to that level of image quality, and we once again need to improve
performance in order to improve quality. This is a seemingly never ending cycle,
where we continue to improve on graphics performance with the long term goal of
bridging the gap between photo-realistic and real-time graphics. There is a general

2



2. THE RASTERIZATION PIPELINE
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Figure 3: Schematic overview of a modern rasterization pipeline, such as the ones
found in current GPUs. The boxes on the left side show which operations are
performed in order to render a triangle. As can be seen in the illustration, some of
these functional units access storage buffers through the memory system.

yearly performance growth that comes from better manufacturing technology of
the hardware silicon. However, this growth alone will not be enough to reach
photo-realistic quality in a foreseeable future, for complex scenes. In order to
reach that goal, we need to improve on current real-time rendering algorithms, and
that is the focus of this thesis.
In this thesis, we propose optimizations and improvements for the rasterization
algorithm, which is, at the time of writing, by far the most popular rendering algo-
rithm for real-time graphics. The improvements aim to increase performance with
no, or very little, visual loss in image quality. The primary focus is graphics hard-
ware, but our algorithms can also be useful for software rasterization frameworks.

2 The Rasterization Pipeline

Today, rasterization is the de-facto rendering algorithm used for real-time graphics
applications, e.g., games, but it is also frequently used in high-quality rendering
in the feature film industry. Rasterization is a very simple algorithm that can be
parallelized very efficiently, and this has made it a perfect candidate for hardware
implementation, which has in turn greatly contributed to its popularity. Another
desirable feature of the rasterization algorithm is that triangles are processed one

3
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at a time, independently of each other. Therefore, scene data can be streamed in
from removable media (such as, for example, a hard drive) and need not be stored
in memory. This is particularly important in high-quality film rendering, where
scenes often are very complex.
Figure 3 shows a schematic overview of a modern rasterization pipeline, as im-
plemented by most modern graphics hardware architectures. The left part of the
figure shows the functional units a triangle pass through in order to be rendered.
Some of the functional units access external memory buffers through the memory
system, also shown in the figure. A memory access is typically an expensive oper-
ation [34] when compared to computations or logic operations, and therefore it is
important to minimize the memory traffic as much as possible.

Primitive Assembly In the first step, the primitive assembly, a triangle is created
by fetching the three corresponding vertices from memory. A vertex is specified
by its attributes, which are typically position, normal, color, and texture coordi-
nates. However, due to the programmability of modern GPUs (graphics processing
units), the programmer is free to specify any attributes she or he like. In program-
ming terms, one could say that the attributes can be seen as function parameters
sent from the CPU to the GPU.

Vertex Shader After primitive assembly, the vertices of a triangle are sent to the
vertex shader unit [24] (also known as the vertex program unit). This unit is es-
sentially a microprocessor that executes a vertex shader program for all vertices of
the triangle. The vertex shader program is written by the application programmer
and can be customized to implement visual effects such as skinning, cloth simu-
lation, and collision detection. The only strict constraint on the vertex program is
that it must compute the (unprojected) screen position of each vertex of the trian-
gle. However, the vertex program can also be used to compute additional vertex
attributes. If that is the case, the attributes will continue down the pipeline, and
can be used in the later pixel shader unit.

Tessellation Tessellation is a recent addition to the graphics hardware rasteriza-
tion pipeline [13, 14, 46], although it has been used in software-based high-quality
rasterizers [9] for a very long time. The tessellator takes a base triangle, which
is simply the triangle we are currently rendering, and subdivides it into a number
of smaller micro triangles as shown in Figure 4. The tessellator then executes an
evaluation shader (sometimes also called a domain shader), which is very simi-
lar to the vertex shader in that it is used to alter the position of the newly created
vertices. A typical application of tessellation is shown in Figure 4. Two input tri-
angles are tessellated, and a height map is used to displace the position of the new
vertices, thus creating a landscape.
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Base triangles Displaced triangles Rendered imageMicro triangles

Figure 4: When tessellation is enabled, each base triangle is subdivided and several
new micro triangles are created. The evaluation shader then alters the position of
all the vertices which displaces the newly created triangles, and finally the triangles
are rasterized. In this example, a detailed landscape is created from only two input
triangles

Rasterization Once the vertices’ screen space positions have been determined,
the triangle is processed in the rasterization unit [26, 33, 35] which identifies the
pixels it overlaps. When an overlapping pixel is identified, a fragment is gener-
ated. A fragment is essentially a container for all data needed through the pipeline
in order to compute the final color of a point in the scene. The rasterizer computes
fragment attributes by interpolating the corresponding attributes of the three ver-
tices, and sends the fragment further down the pipeline. It should be noted that the
rasterization unit acts as a data amplifier as it takes triangles as input and outputs
fragments. Typically, a triangle covers more than one pixel thereby generating
several fragments, and in the extreme case a single triangle may cover the entire
screen.

Pixel Shader This unit is also sometimes referred to as the fragment shader or
fragment program unit, as it operates on fragments rather than pixels. However,
we will refer to it as the pixel shader in the remainder of this text since this is most
commonly used. Like the vertex shader unit, this is a microprocessor that executes
a user-defined program for every fragment which is generated in the rasterization
step. The pixel shader program’s primary task is to compute the final color of
each fragment as they are drawn to the screen, and it will thereby affect the vi-
sual appearance of the object. Some examples of effects that can be implemented
in a pixel shading program are lighting models, shadowing, reflection, volumet-
ric lighting effects and custom clipping. In order to render visually rich images,
the pixel shader algorithms often need to access texture maps containing surface
structures, reflection parameters, and similar data. The texture maps are stored as
images in external memory, and therefore the pixel shader unit is one of the main
consumers of memory bus bandwidth.
The vertex and pixel shader units are very similar in the way they operate. A vertex
or a fragment can be treated equally as they are both defined by a set of attributes.
This has led to the unified shader unit which, although it still operates as a separate
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vertex and pixel shader from the application programmer’s point of view, uses the
same physical hardware resource to execute both vertex and pixel shaders. This
approach uses hardware resources more efficiently, and also have the benefit that
it makes load balancing easier. If a scene has more vertices than fragments the
unified shader unit will spend more of its time executing vertex shader programs,
while in a system with separate shader units, the pixel shader unit would be idle,
waiting for the results from the vertex shader unit.

Depth Test and Blending Once the fragment has passed the pixel shader unit,
its final color and depth have been computed by the pixel shader program. Before
the pixel is colored, a depth test [16, 45] is performed to ensure that occluded
triangles never are drawn on top of, or bleed through, the triangles that occlude
them. This test requires a depth buffer, which is a memory buffer where the depth
of each pixel is stored. Whenever a fragment comes to the depth test, the fragment
depth is compared to the depth in the depth buffer. If the fragment depth is greater
than, or further away from the viewer than the value stored in the depth buffer
then the fragment is discarded since it is occluded by something. On the other
hand, if the fragment depth is less than (that is, closer to) the viewer than the value
stored in the depth buffer, the value in the depth buffer is updated with the depth
of the current fragment and the fragment color written to the color buffer in the
following blending stage. As the depth test relies on memory accesses, it also
consumes a relatively high amount of bandwidth. It should be noted that most
graphics hardware allows the exact behavior of the depth test to be configured to
allow a wide variety of algorithms to be implemented. However, the “less than”
test described here is by far the most commonly used.
Finally, fragments that pass the depth test are written to the color buffer. Instead
of simply overwriting the previous color, the application programmer may config-
ure the color blending [4] unit to mix the fragment color with the color previously
stored in the color buffer. The primary use of this unit is to render transparent tri-
angles, which is used, for instance, when rendering transparent objects or particle
systems. From a memory perspective, blending is very similar to depth testing
as both are read-modify-write operations. These steps therefore consume roughly
equal amounts of memory bandwidth. However, there are some exceptions to that
rule as high dynamic range rendering [37] increases color bandwidth, and shadow
rendering algorithms typically rely heavily on depth buffer bandwidth.

2.1 Discussion

Recent developments of graphics hardware have introduced more and more pro-
grammable steps into the pipeline, and therefore the graphics cards are starting
to look more and more like many-core systems. However, as the rasterization
pipeline is a fundamental part of the hardware design, only algorithms that fit
into this model can be efficiently implemented. A rather different approach is
taken by Intel with their currently unreleased product Larrabee [40], which is a

6



2. THE RASTERIZATION PIPELINE

pure many-core processor on which rendering algorithms will be implemented in
software with some fixed-function hardware for special case operations such as
texture filtering. This has the advantage that rasterization software can continually
be improved and customized as new algorithms or optimizations emerge, and it
also allows automatic load balancing since there are very little hardware resources
allocated for fixed functionality. Whether or not this new product will prove effi-
cient enough despite its programmability remains to be seen. However, there is an
apparent convergence between many-core systems and graphics hardware. This
makes the algorithms presented in this thesis more attractive as many of them can
be implemented entirely in software in a very near future.
So far, we have focused on the desirable features of the rasterization algorithm.
However, as previously mentioned, rasterization is really a brute force algorithm.
Although it is perhaps this aspect that has made it such a good candidate for hard-
ware implementation, it does not mean that a naive implementation will perform
well. Many improvements and optimizations have already been adopted by mod-
ern graphics hardware. They focus primarily on reducing computational complex-
ity and memory bandwidth usage. Reducing computational complexity is a pretty
straightforward optimization. With a given hardware budget there is only so many
computational units you can realize, and therefore you will be bound by some the-
oretical computational throughput, typically measured in FLOPS (floating point
operations per second). If you can reformulate your algorithms to use fewer com-
putations, you gain performance. An example is tiled rasterization [27] where you
first test if a tile, which is a block of for example 8×8 pixels, overlaps the triangle
being rasterized. If the tile overlaps the triangle, you need perform an overlap test
for each of the 64 pixels, but if it does not overlap you can proceed to the next
tile. Since it is less expensive to test if a tile overlaps a triangle than it is to test
64 pixels, you will gain computational performance on average. Another example
is to optimize the pixel shader program. Since each instruction in the pixel shader
program takes some time to execute, we can very easily gain performance if we
can remove instructions or substitute complex instructions for simpler alternatives.
The other target of optimizations is to reduce memory bandwidth usage and this
is typically done by improving coherency in memory lookups, by using caches
more efficiently, and by compressing memory contents. The general trend of com-
puter hardware is that computational throughput grows at a much faster rate than
memory bandwidth [34]. Fortunately, graphics-specialized hardware is much more
forgiving than normal processors in this regard since wider memory buses can be
used more efficiently, and memory latency can be hidden by processing several
pixels in parallel. However, memory throughput is still a great problem which has
received much attention in graphics hardware based research.
This thesis covers several novel algorithms targeted for the rasterization pipeline.
The focus is mainly on performance improvements both targeting computational
complexity and memory bandwidth. We also try to keep modifications to the
rasterization pipeline as small as possible in order to make our algorithms easy
to implement in existing hardware solutions. With the recent advance of more
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Figure 5: Left: Modifications to the rasterization algorithms focus on that partic-
ular unit. However, they can also indirectly affect units further down the pipeline.
Right: Rasterization finds all pixels that overlaps a given triangle. For each such
pixel, the rasterizer generates a fragment which contains all data necessary to pro-
cess that pixel, and sends the fragment further down the pipeline.

programmable hardware, we believe that the algorithms are of practical impor-
tance and could be implemented on next generation graphics cards with good re-
sults. The algorithms focus mainly on three areas: rasterization, compression, and
culling

3 Rasterization

As previously mentioned, rasterization determines which pixels overlap a triangle,
as shown in the right part of Figure 5. In the simplest form of rasterization, one
sample point is chosen to represent each pixel. Determining if a pixel overlaps
the triangle or not is done by testing if the sample point lies inside the triangle.
This test can be done using edge functions [35]. If a pixel overlaps the triangle, a
fragment is generated by interpolating all vertex attributes to compute their values
at the sample point. The fragment is then passed down the pipeline as shown to
the left in Figure 5. It should be noted that changes to the rasterizer may change
the data structure of a fragment. This may lead to indirect changes in the fragment
processing parts of the pipeline.
In a naive implementation, rasterization would perform the overlap test for all
pixels on the screen each time a triangle is rendered. This is not efficient, and
consequently many algorithms limit the number of pixels visited either by using
some overestimation of the triangle, such as for example its bounding box, or by
starting from a pixel overlapping the triangle and visiting all neighboring pixels
that also overlap the triangle. Some algorithms, such as recursive descent, work
by starting with the whole screen as an overestimation of the pixels the triangle
overlaps. The screen is then recursively subdivided into smaller and smaller boxes
until a box is not overlapping the triangle, or the box is the same size as a pixel.
Traditionally, the rasterization step is preceded by a clipping [32] and projection
step in order to clip the triangle by the view frustum and then project the clipped
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Figure 6: The right box is rendered with a single sample per pixel and the right
box is rendered using supersampling and 64 samples per pixel.

triangle on the screen. However, clipping algorithms are complex to realize in
hardware, and therefore a popular alternative is to use homogeneous rasterization
algorithms [26, 33] which directly rasterize the unprojected triangle.

3.1 Sampling

The sampling process is the core of any rasterization algorithm, and just like any
other sampling process it is subject to aliasing if the sampling frequency is not
high enough. Unfortunately, models built from triangles will have discrete silhou-
ette edges, which have infinite frequency content, so we can never avoid aliasing
completely with point sampling strategies. However, by using a high enough sam-
pling rate, we can create a result that is more or less visually indistinguishable from
the correct image. To do that, we over-sample the image by using more samples
than pixels in the final image. The image is then reconstructed through filtering
where the color of each pixel is computed as a weighted sum of the colors of the
samples within the filter kernel. This is called supersampling [41], and the effect is
illustrated in Figure 6. High-quality rendering typically use complex filter kernels
that covers more than one pixel, such as Gaussian filters. In real-time rendering
however, it is still very common to use simple box filters where the color of a pixel
is computed as the average of the samples in that pixel.
A disadvantage of supersampling is that it requires huge amounts of pixel process-
ing power. Processing n samples per pixel results in n times more computations
in the fragment processing part of the pipeline. Memory bandwidth is also greatly
increased, although caches will make the increase slightly sub-linear. An alter-
native sampling approach that eases this burden is multisampling. It is based on
the assumption that the majority of the high-frequency content in an image comes
from geometry (i.e., triangle edges) and not from shading. With that in mind,
several sampling points can be used to determine if a pixel lies within a triangle,
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RGSS Quincunx22

Figure 7: Sample placement is important for visual quality. The RGSS pattern is
for instance known to give higher visual quality than the 2× 2 pattern. Another
trick to increase quality is to share samples between pixels. In the Quincunx pat-
tern, the corner samples can be shared by four pixels. Therefore, the cost is two
samples per pixel rather than five as one might think.

but the pixel shader program only needs to be evaluated in a single point. The
color computed by the pixel shader can then be propagated to all samples that
were determined to overlap the triangle. The effect of multisampling is that pix-
els completely within one triangle will effectively only use a single sample while
pixels on triangle edges will get samples from multiple triangles thus smoothing
the edge. From a computational and memory bandwidth standpoint, the only dif-
ference between multisampling and supersamling is that the pixel shader program
is executed only once per pixel for multisampling. However, this is a huge advan-
tage as the pixel shader execution is the most costly part of the fragment pipeline.
Furthermore, the pixel shader program contains all texture lookups, which is often
the main consumer of memory bandwidth.
In the following, we describe three papers on rasterization (Papers I-III). Al-
though they cover very different areas, they can all be seen as different strategies
for sampling tailored for their respective contexts.

3.2 Multisampling

Even though multisampling helps reduce the most costly part of the supersam-
pling algorithm, it is still a very costly process as rasterization, depth testing, and
blending stages must process many more samples. Therefore, it is important to
place the sample points strategically to achieve the highest possible visual qual-
ity with as few samples as possible. For instance, the RGSS (rotated grid super
sampling) [41] pattern shown in Figure 7 has long been known to produce higher
quality images than the naive 2×2 pattern, also shown in that figure.
The reason why some patterns are visually more appealing than others have been
investigated by Naiman [31], who studied how the human eye perceives aliasing
of edges at different orientations. Perhaps not entirely surprisingly, it turns out that
humans are considerably more sensitive to aliasing of near horizontal and vertical
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edges. In between those extremities the sensitivity was relatively low with a peak
around 45 degrees. The result of Nainan’s study motivates why the 2× 2 pattern
from Figure 7 is considered a bad sampling pattern. For near-horizontal or verti-
cal edges, two sample points will trigger at almost the same time, and therefore
neighboring pixels will go from being completely outside a triangle to having two
sample points inside the triangle. Since RGSS is a rotated version of the 2× 2
pattern this effect will happen at edge orientations where we have considerably
lower visual sensitivity, and this explains why RGSS is a better pattern in practice.
Laine and Aila [23] have later quantified sample quality by using an error met-
ric based on the results of Naiman’s studies. It should be noted that this quality
metric goes in contrast to other sample placement strategies used in high quality
rendering [21, 41], which primarily focuses on reducing the variance of a sampled
signal. However, it is our belief that it is well suited for real-time rendering as we
can only afford very few samples, in which case reducing the perceptual aspects
will be more important than variance reduction. Furthermore, the edge studies
of Naiman goes hand in hand with the multisampling concept as it exclusively
focuses on reducing edge aliasing.
Besides sample placement, sample sharing is also a technique that can be used to
improve quality. The Quincunx pattern [10] in Figure 7 is a typical example of
sample sharing. When this pattern is replicated, the corner samples will share the
exact same positions for neighboring pixels and can therefore be reused.
In Paper I, we explore a family of very inexpensive sampling patterns that use
between 1.25 and 2 samples per pixel, and present the configurations that will
perform best according to the error metric defined by Laine and Aila. We consider
sampling patterns that are mirrored horizontally or vertically each time we move
one pixel in the horizontal and vertical direction, respectively. Such patterns can
share all sample points in pixel corners between four pixels, and all sample points
on pixel edges can be shared by two pixels. We performed an exhaustive search
of the possible configurations and manually selected the ones that we believed to
work well according to Naiman’s findings. We then ran an optimization process
based on Laine and Aila’s error metric to compute final positions and filter weights
for the samples. The optimization process is not exhaustive, which means that the
presented patterns may not be optimal. However, they perform well relative to
their cost as we show in our evaluation, and we believe that these patterns could
be very useful for low end-graphics, e.g., for use in mobile devices.

3.3 Conservative Rasterization

Conservative rasterization can be seen as a special case of sampling. Normally
when we rasterize, we only want each sample point to belong to a single trian-
gle, and therefore normal rasterization algorithms have consistent rules to assign
sample points that lie on triangle borders to one of the neighboring triangles. All
this is necessary to avoid flickering in edges where two triangles meet. Conser-
vative rasterization, however, considers the whole pixel region as the sampling
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Figure 8: Two forms of conservative rasterization. Overestimated rasterization,
shown to the left, visits all pixels that partly overlap the triangle. Underestimated
rasterization, shown to the right, visits only the pixels that lie completely within
the triangle.

area. As shown in Figure 8, there are two types of conservative rasterization. An
overestimating variant that visits all pixels regions touched by the triangle, and an
underestimating variant that only visits pixel regions completely within the trian-
gle. In this thesis, we focus primarily on the overestimated variant since it is most
practically useful.
Although conservative rasterization has little value for normal rendering, it has the
desirable feature that we can accurately detect and handle overlapping polygons.
This is particularly important in advanced shadowing algorithms [5, 42], culling
algorithms [25], and collision detection algorithms [15, 30]. Since the utility of
conservative rasterization has increased, Akenine-Möller and Aila [2] proposed
simple extensions to the rasterization unit to support conservative rasterization.
However, so far no graphics hardware vendors have thought this feature important
enough to implement in hardware. Therefore many algorithms have had to rely on
normal rasterization, thereby making it impossible to guarantee their correctness.
In Paper II, we present two novel algorithms for conservative rasterization. They
are designed to work on existing graphics hardware, and can be implemented en-
tirely in vertex and pixel shader programs. The first algorithm was inspired by
Akenine-Möller and Aila’s algorithm, but modified to fit into the current graphics
pipeline. In the vertex shader, we extend the vertices of each triangle so it over-
laps the sample point of at least all the pixels that conservative rasterization would
traverse. The extended triangle may overlap more pixels than is needed since the
shape traversed for overestimated rasterization is not necessarily triangular. We
discard the fragments generated for these excessive pixels by using an inexpensive
test that is implemented in the pixel shader program. This algorithm has the ad-
vantage that it does not increase the vertex or triangle count of the rendered scene.
However, for sliver triangles, a large amount of excessive fragments may be gen-
erated only to be discarded in the pixel shader program. It can therefore put a
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heavy load on the rasterization and fragment processing part of the pipeline. Our
evaluation suggests that lower end hardware favors this algorithm. However, this
depends on rendering resolution and how the hardware is load balanced for vertex
and fragment processing, respectively.
For the second algorithm, we use a different approach and directly generate poly-
gons that cover the centroid sample points of all the pixels that would be traversed
by a conservative rasterizer. Since graphics hardware can typically only render
triangles, we supply polygons in form of pre-tessellated triangles, where every
triangle vertex is duplicated three times. The vertex shader program can then com-
pute the polygons simply by moving the vertices into place. This algorithm has the
advantage of generating no unnecessary fragments during rasterization, and there-
fore do not require a fragment program at all. However, it puts a greater strain on
the vertex processing part of the pipeline, since three times as many vertices must
be processed. Our evaluation showed that this algorithm is likely to perform better
on high-end and modern hardware. Furthermore, the recent addition of geometry
programs have made it possible to execute the full algorithm on graphics hard-
ware, without having to send duplicated geometry from the CPU. However, even
though at least one recent project [42] has adopted this algorithm with that modi-
fication, there are, as of this date, no concrete numbers on how much performance
improvement one can expect from using geometry programs.

3.4 Multi-viewpoint rasterization

Our final contribution to the family of rasterization algorithms is in the field of
multi-viewpoint rasterization. The most simple form of multi-viewpoint rendering
is stereoscopic rendering. Our brain uses the images of both eyes as an important
cue to perceive depth in a scene, and therefore it is only natural to render one view
for each eye as shown in Figure 9. The viewpoints in the virtual scene should
be separated by approximately the distance between the viewer’s eyes. Taking
the concept of stereoscopic rendering one step further, there are multi-viewpoint
displays which show different images from different viewing directions [12, 20]
without the need of peripheral equipment such as glasses. We do not only get a
stereoscopic effect from our eyes seeing different images, but can also move the
head to see the scene from different angles. The screen goes from being a flat
surface to being a window into a virtual three-dimensional world.
The technology for multi-view displays exists already today. However, a great
problem that remains is how to efficiently render multiple views. The naive ap-
proach is to render one view at a time, but this causes performance to scale lin-
early with the number of views. For high-quality multi-view images, we may need
between 32 and 64 views, translating to a performance loss of 32− 64×. How-
ever, as can be seen in Figure 9, there is a lot of coherence between multi-view
images, as the different views look very similar. This coherency can be exploited
in the rendering algorithm in order to improve performance. Although there has
been some research on this topic [1, 36, 43], there has been very few sugges-
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Right Eye Left Eye

Figure 9: A cross-eyes stereoscopic photography of an exhibition car. Note that
the two images look very similar, which indicates that they are strongly correlated.
An important key to efficient multi-view rendering is to use exploit this coherency
in order to improve performance. Original image from Wikimedia Commons.

tions that could be implemented in a standard rasterization pipeline without large
changes. One exception is the research of Halle [17], who presents an algorithm
for multi-viewpoint rasterization using existing graphics hardware. Unfortunately,
since current hardware is not well suited for multi-viewpoint rasterization, this al-
gorithm works best when rendering a very large number of views. Due to the lack
of efficient algorithms suited for a moderate or low number of views, the most
used solution at this time is to use the naive approach and render one view at a
time, resulting in a big performance reduction.
In Paper III, we present a novel multi-viewpoint rasterization algorithm that can
reduce both memory bandwidth usage and computational complexity. Further-
more, the algorithm is based on the current rasterization pipeline, and we therefore
believe that it could be adopted with relatively modest changes in hardware. The
algorithm exploits the coherency in multi-view images, and is based on the obser-
vation that a specific point on a specific triangle is likely to result in the same tex-
ture lookups and computations for all viewpoints. This assumption holds true for
all surfaces with materials which are view-independent, and gracefully degrades
the more view-dependent terms are added to the material. A wrinkled mirroring
surface, such as the ocean scene presented in our results, is more or less a worst
case scenario since it has very high frequency content which is completely view-
dependent.
Given our assumption, it makes sense to process one fragment of one triangle,
render that fragment to all views, and then continue. This is, however, hard to
implement in practice, since the triangle is projected differently for different view-
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points, which could lead to cracks or overdraw in some of the views. Instead, we
rasterize the triangle from all viewpoints in parallel, and sort the rasterization order
so that we always pick the view whose next fragment lies closest (on the surface
of the triangle) to the previously processed fragment. This means that we will not
process the exact same point for all views as in our assumption. However, the
assumption also holds well for a close neighborhood around the point.
We present two versions of the rasterization algorithm: one exact and one approx-
imate. The exact version will produce the exact same result as rendering one view
at a time, and consists of the sorted rasterization briefly described above. In itself
the sorting will greatly improve performance of the texture cache which is already
used in all modern graphics hardware. The sorted rasterization traverses fragments
which lie very close to each other on the surface of the triangle. Therefore, in the
ideal case, the texture lookups will always be in the cache for all but the first of the
views, and the texture bandwidth will be identical to single-view rendering. We
will never quite reach the ideal case, but our evaluation shows that our algorithm
gives close to constant texture bandwidth for between 2 and 16 viewpoints. The
ocean scene does not perform as well, but this is only to be expected since it is a
very hard case given our initial assumption.
Although our exact algorithm greatly reduces texture bandwidth, it still requires
that we execute the pixel shader for every pixel and every viewpoint, and this can
become very costly. In our approximate extension, we start from our exact algo-
rithm and add a cache that stores results of pixel shader evaluations. Each time we
process a fragment, we query the cache to see if we find one or more pixel shader
evaluations in “close enough” vicinity of the current fragment. If we find appropri-
ate cached results, we compute a color for the fragment by interpolation, and skip
the pixel shader execution altogether. Whereas the exact algorithm only relies on
our initial assumption to improve performance, this approximate extension relies
on the same assumption for the correctness of the image. Therefore, as we show in
our results, the performance of the approximate version will be the same for scenes
with and without view-dependency. However, the approximate version will treat
view-dependent effects as if we used single viewpoint rendering and therefore the
rendered images may not be correct. If the viewer can perceive this incorrectness
or not depends on the scene and spread of the viewpoints. The ocean scene, for
example, has a highly distorted reflection, and therefore the viewer may not notice
that it comes from a single viewpoint. If we use a flat mirroring surface instead,
the viewer would immediately notice the loss of depth perception. Since the ef-
fects of approximation depend so heavily on surface properties, it is important to
give the application programmer full control of when to use either the exact or ap-
proximate technique. The approximate algorithm can give substantial performance
gains when used appropriately. In a stereoscopic rendering system, we observed
that up to 95% of the fragments could be approximated for the secondary view.
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Figure 10: The top row shows a traditional GPU system without compression.
Data is sent directly to memory over the bus. The bottom row shows a GPU using
data compression. The GPU sends data to a compression unit and receives data
from a decompression unit, both realized on the same hardware chip as the GPU.
The compression unit compresses data before it is sent to memory, and the de-
compression unit decompresses data received from memory. Memory bandwidth
usage is reduced if the data is successfully compressed.

4 Compression

Data compression is an optimization which focuses entirely on reducing memory
bandwidth usage in a graphics system. An example of a GPU using data com-
pression is shown in Figure 10. As can be seen, there are two new units, one
that compresses and one that decompresses data, respectively. These units act
as a communications channel between the GPU and main memory, and are typi-
cally implemented in hardware on the same chip die as the GPU. Compressing and
decompressing data require computations, and one can therefore say that compres-
sion is a way of trading computational complexity for memory bandwidth.
In GPUs, the two dominating groups of compression algorithms are texture com-
pression and buffer compression. Although these are quite similar, there are some
key differences, of which the first is that buffers are continuously altered during
rasterization while textures typically remain static. This has the effect that buffer
compression and decompression must be a fairly symmetric operation since data
must be both compressed and decompressed in real time when rendering an im-
age. Texture compression on the other hand is an asymmetric process since tex-
tures are typically read-only during rendering. This means that the decompression
algorithm must be inexpensive and realizable in real time, but the compression al-
gorithm may be complex and slow to execute since the texture can be compressed
and stored on disk prior to rendering.
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Another difference that comes from the buffers being continuously altered is that
buffer compression is much more sensitive to data loss. In texture compression,
the image is compressed only once, and in addition, the application programmer
has control over which textures she or he wish to compress. Therefore, most
texture compression algorithms are lossy, and introduce some small error in the
compressed image which is usually not visually disturbing. If the compression
algorithm should produce a poor result for a particular image, the application pro-
grammer can just disable compression for that texture. Buffer compression on the
other hand is much less predictable since the number of times a region of the screen
is compressed and decompressed depends on the number of triangles rendered in
that region. Repeated compression and decompression, so called tandem compres-
sion, can greatly amplify small errors in each compression step. Therefore, it is
necessary to use lossless compression, or at least introduce some mechanism that
allows the application programmer to control the total error introduced through
compression. In any case, buffer compression algorithms always need a lossless
fall-back for the case when the maximum allowed error is reached.

4.1 Texture Compression

As can be seen in Figure 3, both the vertex and pixel shader share access to tex-
tures. It is therefore reasonable to assume that both the vertex and pixel shader
may benefit from texture compression. However, in most cases, the pixel shader is
more important since it will consume the vast majority of texture lookups.
As previously mentioned, texture compression is a highly asymmetric operation
where compression can be allowed to take orders of magnitude more time than the
decompression process. Although there are some cases which break this assump-
tion, such as generating a cube-map by rendering to a texture, these are usually
solved by disabling compression or treating texture as a buffer and use buffer com-
pression algorithms [44]. Another important feature for texture compression is that
a fixed bit rate is often crucial for efficiency. Typically, a texture image is divided
into tiles (blocks) of pixels, and each tile is given a predetermined bit budget. For
instance, the S3TC [19, 22] texture compression scheme divides the texture into
4×4 pixel tiles, and each tile is stored using 64 bits of data according to a prede-
termined format. The reason for using a fixed bit rate is that random access to the
texture must be supported. If fixed bit rate is used, it is easy to find the memory
position of a tile in constant time. If variable bit rate is used instead, finding a
tile requires searching from the beginning of the texture image, or looking up the
memory position of the tile in some data structure [18]. These approaches require
complex search algorithms to be implemented, and are typically less efficient than
the simple approach used in fixed bit rate. This is the reason why variable bit rate
has not been adopted in texture compression although it is known to give better
image quality than fixed bit rate approaches.
Traditionally, texture images are stored in RGB (red-green-blue) color space with
one value for each component. The value is typically in the range [0,1], where 0
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Base Exposure LDR HDR

Figure 11: These images show the difference between a low dynamic range (LDR)
and high dynamic range (HDR) image when the exposure is changed. To the left,
the image is shown with some base exposure. When the exposure of the LDR
image is changed the image looks the same, just darker overall. In the HDR im-
age, several new details, such as the column of light reflected in the water and the
structure of the clouds, appear when the exposure is changed. These images are
Copyright c©2004, Industrial Light & Magic, a division of Lucasfilm Entertain-
ment Company Ltd.

indicates that the color channel is turned off, and 1 indicates that the color channel
is at the maximum intensity that the screen can display. A problem with such im-
ages is that they are based on the properties of the screen, rather than true physical
properties of a scene. This is illustrated in Figure 11, which shows an image with
a widely varying range of the incoming luminance. There are some relatively dark
areas on the trees and the sun is an extremely bright light source. A traditional
LDR (low dynamic range) encoding of this image fails to accurately capture the
whole range of the incoming luminance, which can be seen when the exposure is
changed as in the middle image. If we use an alternative image encoding, called
HDR or high dynamic range [11], we can accurately represent the whole range of
incoming luminance. When we change the exposure of this image, as shown to
the right in the figure, we can see that the details in the bright parts of the images
have been captured.
As HDR images can represent a wider range of luminance, it is only fair to as-
sume that they require more memory space and bandwidth for rendering. Whereas
traditional textures are encoded with 8 bits per color channel, HDR textures are
typically stored using 16 or 32 bits floating-point values per color channel. De-
spite this, at the time of writing, there is no support for HDR texture compression
from graphics hardware vendors. This has perhaps hindered the development of
HDR rendering somewhat since an uncompressed HDR texture requires 12 times
the storage and memory bandwidth of a compressed LDR texture.
In Paper IV, we present the first texture compression format targeting HDR tex-
ture compression. Simultaneously Roimela et. al [38] also developed an HDR tex-
ture compression scheme, also published at the annual SIGGRAPH conference in
2006. These compression algorithms complement each other well as Roimela et. al
focused on inexpensive hardware while we used a more expensive decompression
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algorithm that gives better image quality. Just like S3TC, both formats compress
textures by six times. However, since the bit budget is larger for HDR images,
we found that our algorithm gives less visual compression artifacts than S3TC in
most cases. There have been several new algorithms on HDR texture compres-
sion [39, 47, 49], since we published our original algorithm, and although our
algorithm remains rather computationally expensive, we see that it still performs
very well in terms of visual quality when compared to its competitors. Recently,
Microsoft published some information on their upcoming Direct3D 11 API [14],
which contains a new HDR texture compression format called BC6. Unfortu-
nately, at the time of writing, there is still no public information about how this
format works, or how well it performs. We have also published an additional
paper on practical HDR texture compression [29] of further details and findings
which we were not able to fit into the original paper. That paper is not included in
this thesis.
The paper on HDR texture compression was a joint collaboration between myself,
Jacob Munkberg, Petrik Clarberg, and Tomas Akenine-Möller. I was not the pri-
mary author of this paper, but was active during the whole process. I contributed
to the conceptual design of the algorithm, to some of the exhaustive search algo-
rithms used for verification and some unreleased implementations. I also imple-
mented and evaluated the extended versions of the S3TC compression algorithm,
and co-authored in the writing and internal reviewing process of the paper.

4.2 Buffer Compression

The most distinctive feature of buffer compression, when compared to texture
compression, is that the contents of the buffer will constantly be modified whereas
the texture is mostly static. Furthermore, buffer compression is often transparent
to the application programmer, so she or he will not know if compression is en-
abled or not. Therefore, most buffer compression algorithms are lossless, since
lossy compression could cause an application to behave unexpectedly, or generate
errors that the programmer would not be aware of.
A shared requirement of both texture and buffer compression is that efficient ran-
dom access must be supported. For texture compression this is solved using fixed
bit rate, but this does not work for buffer compression since lossless compression
cannot be guaranteed with fixed bit rate unless the original bit rate is used. There-
fore, buffer compression uses variable bit rate encoding, and this is often realized
by using a number of fixed bit rate modes. In particular, there is always a fall-back
mode where tiles are stored in uncompressed form if all other compression modes
fail to represent the data without loss. However, there remains the problem of vari-
able bit rates and random memory access as described in Section 4.1. Variable
bit rate requires searching through data structures to find the memory position of
a tile, and this is not desirable. The most simple solution to this problem is to
reserve enough memory to store an uncompressed version of each tile, as shown
in Figure 12. This means that the compressed buffer will use the same amount of

19



INTRODUCTION

Tile 1 Tile 2 Tile 3 Tile 4

Tile 1 Tile 2 Tile 3 Tile 4

Uncompressed memory layout

Compressed memory layout

Figure 12: Buffer compression stores a data buffer tile by tile. For each tile suffi-
cient memory is reserved to hold the uncompressed tile data, as this makes random
accesses in the buffer efficient. A downside of this is that a compressed buffer will
require as much memory as an uncompressed. However, we can still reduce mem-
ory bandwidth as we do not have to read or write more than the compressed data.

memory as an uncompressed buffer. However, less memory bandwidth is used by
only writing and reading compressed data, and all the advantages of fixed bit rate
compression are kept.
Buffer compression approaches have long been kept secret internally by the graph-
ics hardware vendors, and very little information about them exists in academia.
Our first paper on buffer compression, Paper V, is based on information we ex-
tracted from patent applications of the main graphics hardware vendors. We present
in detail how a modern depth buffer architecture with compression and hierarchical
depth culling (HDC) works [16], and it is reasonable to assume that color buffer
architectures work in a very similar fashion. We also present a survey of the state
of the art in depth buffer compression algorithms, and propose a novel depth com-
pression algorithm of our own.
Our algorithm, just as most of the other depth compression algorithms, is based on
representing a tile of pixels by one or more prediction planes, and to store small
correction deltas which represent how much the actual pixel values deviate from
the prediction planes. In particular, we found that previous work had missed a
simple but efficient observation in the interpolation of the prediction plane, which
makes it sufficient to use one-bit correction deltas instead of the two bits previously
used. Although it is a simple observation, we save approximately one bit per pixel
which is a significant gain. Furthermore, we also improve on previous approaches
for coding multiple planes, and present robust one and two plane versions of our
algorithm. The evaluation shows that our algorithm performs better than previous
art, in particular for small tile sizes, such as 4×4 pixels. We therefore believe it is
well suited for use in mobile graphics devices.
In our follow-up research, Paper VI, we similarly present a survey of existing
color buffer compression algorithms, and present a compression algorithm of our
own. The compression algorithm is based on the LOCO-I algorithm [48], but
with modifications to make it more suitable for compressing small tiles, and on-
the-fly compression. This algorithm differs somewhat from the depth compression
approaches in that it is a variable bit rate entropy encoder. It is therefore not limited
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to a fixed number of “trial and error” modes, but will rather produce the number of
bits necessary to represent the tile. However, we still limited ourselves to a number
of fixed sizes in the results. The reason for this is that the compressed size of a
tile must be stored in an on-chip memory so that the GPU knows the number of
bytes to read. If we allow arbitrary sizes, this memory becomes very large, and
furthermore the width of the memory bus will limit which sizes that are practical
to read anyway.
In this paper we also present the concept of lossy buffer compression. This is a
sensitive subject since buffer compression so far has been transparent to the appli-
cation programmer. However, it makes sense to give the application programmer a
way to control the accepted compression loss, and we can easily solve backwards
capability problems by allowing no error by default. In the paper, we propose a
mechanism to track the total error of a tile, including possible errors introduced
through tandem compression, and guarantee that it never exceeds a given thresh-
old value. Although it would be nice to be able to track and control the maximum
pixel error, we noted that such a system is much too conservative for practical
use. We therefore settle for controlling the maximum allowed RMSE (root mean
square error) over a tile. Our results show great bandwidth reductions for lossy
compression, with an often negligible quality decrease. However, we found some
hard cases in which color leakage may lead to visual artifacts.
The paper on color buffer compression was co-authored with Jim Rasmusson and
Tomas Akenine-Möller. Although I was not the primary author of this paper, I
contributed significantly to it. Both Jim and myself were active in all parts of
writing the paper and implementation, although I was more involved in the imple-
mentation of the lossless codec, and Jim focused more on the lossy compression
aspect.

5 Culling

Generally speaking, culling in computer graphics is when we use a simple test to
determine if we need to run a complex computation or not. If the test indicates that
the computation will not contribute to the final image it can safely be skipped, and
consequently performance is improved. A typical example of this is view frustum
culling, shown in Figure 13. Here, a complex object is represented by a simple
bounding box. If the bounding box is not visible from the camera’s point of view,
then the same is true for the entire object. Using this simple test, we can quickly
skip rasterization of the whole object, and thereby gain performance. It should
be noted that culling algorithms often are conservative. That is, they may give
false negatives, such as the red object in Figure 13 which is incorrectly classified
as visible. However, they may never incorrectly cull something which is visible.
Whereas a false negative will only affect performance, incorrect culling may give
errors in the rendered image.
Current graphics hardware supports a number of fixed-function culling algorithms,
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Culled

Not culled

Not culled

Camera

Figure 13: An illustration of view frustum culling, where a bounding box is used
to represent each object in the scene. If the bounding box is not visible from the
camera, the object is culled. As can be seen for the red object, the algorithm may
falsely classify an invisible object as visible. However, a visible object will never
be culled, which is important since this could give errors in the rendered image.

such as view frustum culling [6], back-face culling [4], and hierarchical depth cull-
ing [16]. However, a great problem is that the graphics hardware becomes more
and more programmable while the culling algorithms have stayed the same. This
leads to a mismatch between culling and programmability. For example, if we
implement a new lighting algorithm in a pixel shader program, it would be nice
to add culling to improve its performance. However, in order to do so we must to
reformulate our new culling algorithm to fit into any of the aforementioned fixed
function-culling algorithms. This is not always possible, or is often so complex
that it leads to a decrease in performance when compared to not using culling.
In this thesis, we introduce the concept of programmable culling. By analyzing
the pixel and vertex shader programs it is possible to automatically generate a
cull shader program that can be executed for a set of pixels, or a set of vertices.
The cull shader program determines if the set of pixels or vertices can safely be
discarded without affecting the final image, and if such is the case we gain per-
formance by not having to execute the pixel or vertex shader. There are two main
benefits with our programmable culling approach which we believe makes it very
attractive. First, the absence of culling will not effect the final image, only the
performance. This means that if a hardware vendor chose not to implement pro-
grammable culling, or to only implement a subset of it to support some culling
algorithms, it will only affect performance and will not break applications that
rely on programmable culling. Second, our programmable culling fits well into
the current rasterization pipeline. It can therefore be implemented with minimal-
or even no changes in current APIs. This makes it both transparent to the applica-
tion programmer, and makes it simple to ensure backwards compatibility.
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Figure 14: Hierarchical depth culling (HDC) is done in the rasterization unit of
the pipeline. The hierarchical depth test is done once for every tile, and therefore
the HDC unit is placed between the tile rasterization and pixel rasterization steps.
Our PCU is a generalization of HDC culling, where culling is based on a program
rather than a fixed algorithm.

5.1 Programmable Pixel Culling

To date, the only standard pixel culling algorithm used in graphics hardware is hier-
archical depth culling (HDC). The hierarchical depth culling algorithm is designed
to rapidly cull tiles of pixels which are occluded by already drawn geometry. One
could say that it is an extra depth test that is performed on a per-tile level. Exactly
where in the pipeline the HDC algorithm is implemented is shown in Figure 14.
In order to perform this occlusion test, the HDC algorithm needs to keep track of
the maximum depth, Ztile

max, for each tile stored in the depth buffer. When a triangle
is rendered, the rasterizer computes the minimum depth of the triangle, Ztri

min over
the current tile, and if Ztri

min > Ztile
max then all the fragments in this tile will fail their

depth test, and the entire tile can be discarded early. The algorithm can easily be
generalized to support more types of depth test functions (such as greater than,
equal to, etc.) by keeping track of both the minimum and maximum depth value
for a tile.
In Paper VII, we present our programmable (pixel) culling unit, the PCU, which
can in some ways be seen as a generalization of hierarchical depth culling. Our
PCU essentially takes the place of the HDC unit in Figure 14, but instead of be-
ing limited to a fixed-function occlusion culling algorithm, we analyze the pixel
shader program for culling opportunities. In the pixel shader, there is a special
type of instruction called the kill instruction, which causes the current fragment
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to be discarded and not used in the final image. What we do is to find these kill
instructions and all instructions they depend on, and we can then automatically
generate a cull shader program which is executed once for each tile in the PCU.
The cull shader program is based on interval arithmetic [28], which is a form of
conservatively bounded arithmetic. This means that if you perform, for example,
an addition between two intervals x̂ and ŷ, then the result of x̂+ ŷ is a new interval
which is guaranteed to contain all x + y where x ∈ x̂ and y ∈ ŷ. Running the cull
shader using interval arithmetic will tell if the kill instruction is going to trigger
for all pixels in the tile, and in such cases we can discard the tile at an early stage
which avoids many unnecessary pixel shader evaluations. Although the PCU is
modeled as a separate unit in the pipeline, it is in fact just another program being
executed and it can therefore be included in a unified shader to make better use of
hardware resources.
In the paper, we present several example applications where culling has previously
not been practical, including the highly optimized game Quake 4. Our evalua-
tions show that significantly fewer pixel shader instructions have to be executed to
render an image when using the PCU, and this translates directly into improved
computational performance. Furthermore, we found that the memory bandwidth
usage also decreases slightly. This is because we cull tiles early on, and may there-
fore avoid texture, depth, and color buffer memory accesses. Although reducing
memory bandwidth was not our primary goal with the PCU, it is definitely a de-
sired bonus. On a variety of test scenes, we observed between a 1.5× and 2×
performance improvement in the pixel processing part of the pipeline, as well as a
memory bandwidth reduction of about 15%.

5.2 Programmable Vertex Culling

As mentioned in Section 2, a recent addition to the hardware accelerated raster-
ization pipeline is the tessellation step. Although this still remains largely un-
supported at the time of writing, Direct3D 11 has announced support for tessel-
lation [14]. Hence, it is only a matter of time before mainstream hardware will
support it. The tessellation process works as follows. A base triangle is sent to
the tessellation unit, and split into several micro triangles. An evaluation shader
program is then executed for each vertex of every micro triangle in order to com-
pute its final position. This program can be used to modify the appearance of the
tessellated surface, for instance by applying a displacement map [8]. Once the po-
sitions of all vertices of a micro triangle have been computed, the micro triangle is
passed further down the pipeline, where it is subject to view frustum and back-face
culling before being rasterized.
In Paper VIII, we present our solution for culling vertices in a pipeline using tes-
sellation. Note that the tessellation process is conceptually similar to rasterization.
Instead of splitting a tile into pixels, a triangle is split into micro triangles. How-
ever, we can still use the same basic approach as we used in our pixel culling paper.
Our goal is to be able to cull an entire base triangle without having to subdivide it
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Figure 15: Our programmable vertex culling is placed first in the tessellation unit.
If we determine if a base triangle can be culled, we can skip both tessellation of
all the micro triangles as well as the execution of the evaluation shader for all
generated vertices.

into micro triangles, and without executing the evaluation shader. This is done by
adding a new culling step to the pipeline as illustrated in Figure 15. If the culling
is successful, we can both skip the subdivision step, and the succeeding step of ex-
ecuting the evaluation shader program for every generated vertex. Using the same
approach as in our pixel culling paper, we analyze the evaluation shader program,
since it is this program that will determine the position of each vertex in the final
image. One thing that differs between the evaluation shader and pixel shader is
that there is no kill instruction for an evaluation shader (it does not make sense to
discard a single vertex). However, we do know that the tessellator is succeeded
by view frustum and back-face culling. This means that if we, for example, can
compute the bounding box of all micro triangles that will be generated through
tessellation, we can use that bounding box for view frustum culling. If the bound-
ing box is outside, we can ensure that all micro triangles will be outside the view
frustum as well, so we do not need to generate them.
Computing the bounding box of a tessellated triangle, which is further displaced
through an arbitrary evaluation shader, can be done using the same approach as
we used in our pixel culling paper. However, interval arithmetic makes the bounds
grow too much to be of any practical use in this context. Instead, we use a more
modern form of bounded arithmetic, called Taylor models [7]. Whereas interval
arithmetic has problems with higher order polynomials and surfaces, Taylor mod-
els handle them very well. Furthermore, Taylor models can track and eliminate
redundant or correlated terms in an equation, while interval arithmetic cannot.
In our evaluation, we note that it can be very beneficial to perform vertex culling
for highly tessellated scenes. Typically, we can avoid executing enough evalua-
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tion shader programs to indicate a speedup of a factor 1− 5× of this stage of the
pipeline. It should be noted that these figures do not include the possible perfor-
mance improvements that may arise due to that we can avoid tessellation and micro
triangle setup for culled base triangles. We were not able to estimate such perfor-
mance gains since those depend on how the tessellation and triangle setup units
are designed, as well as how the entire hardware system has been load-balanced.
This paper was co-authored with Jacob Munkberg and Tomas Akenine-Möller,
and most of the ideas arose from our joint discussions. Both Jacob and I worked
on all aspects of the paper. However, I was more involved in the implementation
of Taylor models, bounding shaders, and the culling system. Jacob was more
involved in implementing the fractional tessellation system, and the test scenes
such as the subdivision surface scenes. Both were involved in writing the paper,
benchmarking, and conceptual algorithm design.

6 Conclusions and Future Work

The algorithms presented in this thesis are mostly targeting improved rendering
performance, and in that category there is always more work to be done. In the
rasterization field, it would be interesting to see how our conservative rasterization
approach benefits from geometry shaders. Although there is already an implemen-
tation [42] based on geometry shaders, there are still no figures on how this affects
performance. We would also like to continue to improve on the multi-view rasteri-
zation work. It would be interesting to see if our multi-view rasterization approach
could be adapted to work in a tiling architecture (often referred to as “binning”)
used in some graphics hardware such as the upcoming Larrabee [40], Mali 200 [4]
and KYRO II [3]. Also, a limitation of the algorithm is that it only takes hori-
zontal view parallax into account. It would be interesting to investigate if one can
create a similar rasterization scheme that can handle full view parallax. This may
sound like a simple extension, but it is in practice very hard to go from our simple
one-dimensional sorting scheme to full two-dimensional sorting.
Although texture and buffer compression are fairly mature fields, the compression
algorithms can always be improved upon. Upcoming hardware will always change
the prerequisites for a compression algorithm, and in a near future we can imple-
ment our own compression algorithms as software programs. The general trend,
however, seems to be that more and more complex compression algorithms can
be allowed since computational performance generally grows faster than memory
bandwidth. The lossy buffer compression is a track that I think is worth looking
further into. In particular, it would be interesting to see if one can use a better error
control mechanism than we suggested in Paper VI, since this mechanism cannot
give any guarantees as to what the maximum error is. It is also interesting to see
how HDR compression schemes can be introduced to buffer compression with or
without lossy compression, and how we can unify the treatment of textures and
buffers in a graphics hardware system. Although these topics have been covered
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by Ström et al. [44] there is much work that remains to be done.
Finally, for our programmable culling approaches, there is still much work to
be done. As we have no access to the internals of high-end graphics hardware
pipelines, we have used a simulation framework written in software, and therefore
there may be several questions or issues raised if the algorithms were to be imple-
mented in an extremely parallel hardware system. Furthermore, when we wrote
the paper on vertex culling, we noted that interval arithmetic was not accurate
enough to represent bounds of displaced surfaces. This forced us to learn more
about bounded arithmetic, such as Taylor models, and we realized that it might
not be best to use a fixed choice of interval arithmetic for pixel culling and Taylor
models for vertex culling. Instead, it would be very interesting to design a “smart”
program analyzer that could use appropriate bounded arithmetic to ensure fairly
tight bounds while still generating cull shader programs with good performance.
Also, in our paper on pixel culling (Paper VII), we assumed that the actual hard-
ware was designed to execute interval instructions. It might be more realistic to
assume that the hardware operates on scalar instructions, and that the cull shader
generator creates the code to implement interval arithmetic. In this case, there may
be several interval arithmetic specific optimizations that can be made by analyzing
the original pixel shader program.
Hence, it is quite obvious that there still remains a lot of interesting graphics re-
search to be done in the future.
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ABSTRACT

To improve image quality in computer graphics, antialiasing tech-
niques such as supersampling and multisampling are used. We ex-
plore a family of inexpensive sampling schemes that cost as little as
1.25 samples per pixel and up to 2.0 samples per pixel. By placing
sample points in the corners or on the edges of the pixels, sharing can
occur between pixels, and this makes it possible to create inexpensive
sampling schemes. Using an evaluation and optimization framework,
we present optimized sampling patterns costing 1.25, 1.5, 1.75, and
2.0 samples per pixel.
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1. INTRODUCTION

1 Introduction

For computer generated imagery, it is most often desirable to use antialiasing algo-
rithms to improve the image quality. Aliasing effects occur due to undersampling
of a signal, where a high frequency signal appears in disguise as a lower frequency
signal. Antialiasing algorithms in screen space reduce these image artifacts by
raising the sampling rate and computing the color of a pixel as a weighted sum of
a number of associated sample points’ colors. Such algorithms are often divided
into two categories: supersampling and multisampling.
Supersampling includes all algorithms where the scene is sampled in more than
one point per pixel and the final image is computed from the samples. In multi-
sampling techniques, the scene is also sampled in more than one point per pixel,
but the results of fragment shader computations (e.g. texture color) is shared be-
tween the samples in a pixel.
When using multisampling or supersampling, the positions and weights of the dif-
ferent sample points play a major role in the final image quality. Work has already
been done to find the best sampling schemes for certain numbers of samples per
pixel but so far no one has studied those that only cost between 1.25 and 2 samples
per pixel. This family of sampling schemes is particularly interesting when design-
ing hardware with strict performance and memory limitations, such as graphics
hardware for mobile platforms [3].
The second author of this paper has written a technical report [1], where he pre-
sented a sampling scheme, called FLIPTRI, that costs only 1.25 samples per pixel
on average. The purpose of this paper is to present that scheme to a broader audi-
ence, as well as taking the idea one step further and explore all sampling schemes
that cost between 1.25 and 2.0 samples per pixel. We use the optimization and
evaluation framework by Laine and Aila [6] to evaluate the quality of the sampling
patterns and to compute optimized sample coordinates and weights.

2 Previous Work

The first attempts to produce inexpensive antialiasing in graphics hardware were
simple solutions that performed poorly in many cases. This includes, for example,
the Kyro hardware described by Akeine-Möller and Haines [2] that uses com-
pletely horizontal or vertical sampling schemes (Figures 1b and 1c) to perform
supersampling with two samples per pixel. Placing the samples diagonally instead
(Figure 1d) gives a slight visual improvement. The 2× 2 box pattern (Figure 1e)
was also implemented on Kyro, as well as on GeForce 3, 4 and FX [5] and prob-
ably on most of the other consumer level hardware. The popularity of 2× 2 box
pattern is obviously due to its simple implementation. However, it should be noted
that the Rotated Grid Supersampling (RGSS) pattern (Figure 1f) delivers much
better quality with equal cost.
RGSS is a scheme of the more general N-rooks family presented by Shirley [9].
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a. b. c.

e. f. g. h.

d.

Figure 1: A collection of sampling schemes. From top left to bottom right: a)
Centroid sampling, b) Kyro horizontal, c) Kyro vertical, d) Diagonal, e) 2×2 box
pattern, f) Rotated Grid Supersampling (RGSS), g) Quincunx, h) FLIPQUAD.

Assuming that the pixel is divided into an n×n uniform grid, an N-rooks pattern
satisfies the criterion that no two sample points are placed on same row or column.
This is analogous to placing n rooks on an n× n chessboard without letting any
two rooks capture each other. Sampling schemes fulfilling the N-rooks criterion
perform well for near-horizontal and near-vertical edges.
An inexpensive multisampling scheme exploiting sample sharing between adja-
cent pixels is the Quincunx scheme [4] used in NVIDIA graphics hardware (Fig-
ure 1g). It resembles the five on a six-sided die and is horizontally and vertically
symmetric. Therefore, it can be repeated for every pixel and the sampled colors
from the sample points in the corners can be shared by four pixels resulting in a
total cost of two samples per pixel. A weakness of the Quincunx pattern is that it
does not fulfill the N-rooks criterion. The weights are 0.125 for the corner samples,
and 0.5 for the center sample.
The FLIPQUAD [3] scheme, shown in Figure 1h, is an example of a multisampling
scheme based on the N-rooks criterion. All of the sample points can be shared
with neighboring pixels when the pattern is horizontally and vertically reflected
for different pixels as shown in Figure 2a. Therefore the cost is only two samples
per pixel.
Naiman [8] has presented a study where several test subjects were instructed to
identify the more jagged edge from a set with two edges rendered at different
resolutions. The result of this study can be interpreted as an estimate of the im-
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3. NOTATION

a. b.

Figure 2: The a) FLIPQUAD and b) FLIPTRI sampling patterns repeated and
reflected over 4×4 pixels. For illustration purposes, shaded regions are added to
emphasize the sample points that are used for reconstructing the pixels.

portance of antialiasing for lines with different slopes. It suggests that people are
most sensitive to lines nearly horizontal or vertical and to lines with a slope near
45◦. To that end, we suggest that one uses the N-queens sample point positioning
strategy, where the sample point positions fulfill the N-rooks criteria with an ad-
ditional requirement that no two sample points are allowed on the same diagonal.
Both RGSS and FLIPQUAD fulfill this condition, which indicates that they should
perform well on edges near 45◦ as well.
Laine and Aila [6] define an error metric, E2, for evaluating and optimizing sam-
pling patterns. The metric takes into account the slope-specific acuity factors in the
study by Naiman [8] and uses a high-quality reconstruction filter [7] for comput-
ing the reference value for the final color of each pixel. The error is evaluated by
sweeping a set of lines with different slopes over the sampling pattern and compar-
ing the values given by a sampling pattern to the exact reference value. To correct
for human perceptual ability, the slope-specific supersampling errors are weighed
based on the acuity measurements in Naiman’s study. After this, the maximum
error among the different slopes is chosen. This error metric allows us to perform
various computer driven searches for best patterns fulfilling a set of restrictions.

3 Notation

We use the same P(s, r, n)-notation as Laine and Aila [6] to describe a specific
class of sampling patterns. The s parameter represents the number of pixel-sized
sample point sets that form the periodically repeating pattern, r is the number of
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Sample point position Cost
Corner 0.25
Edge 0.5
Pixel 1

Table 1: Cost of differently placed sample points in the reflected P(4, 1+, n) class

pixels used by the reconstruction filter, and n is the average number of samples
taken for each pixel. As a special case, notation r+ means that the reconstruc-
tion filter may also use samples from sample points located on the boundary of
the reconstruction region. For instance, if r is 1+, the reconstruction filter uses
samples from sample points in and on the border of a single pixel. In this study
we are only concerned with the P(4, 1+, n) family of sampling patterns where
n ∈ {1.25,1.5,1.75,2.0}. Note that the FLIPQUAD scheme belongs to this class.

4 The FLIPTRI Sampling Scheme

In this section, we present the FLIPTRI sampling scheme, which previously only
has been described in a technical report [1]. The FLIPQUAD scheme assumed
that the sampling pattern for a pixel is reflected through the pixel edges in order
to ensure that sample sharing between pixels can occur. We continue to use that
approach, and note that if a sample point is placed in the corner of a pixel, then
the cost of that sample point is 0.25 samples per pixel, since the corner is shared
by four pixels. Sample points on pixel edges are, in general, shared by two pixels,
and so the cost is 0.5 samples per pixel. Finally, a sample point placed inside the
pixel costs one sample per pixel. Table 1 summarizes these costs. At this point,
it is simple to verify the costs for a given scheme. For FLIPQUAD, the cost is
4×0.5 = 2, and for Quincunx it is 1+4×0.25 = 2 samples per pixel.
To the best of our knowledge, all previously presented supersampling schemes
cost at least two samples per pixel. In that sense, the FLIPTRI scheme is quite
radical since it costs less than that. This is achieved by placing one sample point at
a corner, and two sample points on different edges, as shown in Figure 2b, giving
the scheme a total cost of 0.25+2×0.5 = 1.25 samples per pixel. As can be seen,
by placing the edge sample points on the edges that do not share the corner sample
point, the N-rooks property is fulfilled. Due to Naiman’s study [8], one can expect
that a similar and slightly better scheme can be obtained by offsetting the sample
points positioned on the edges. This way, the error can be moved to angles for
which the eye is less sensitive.
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5 Sampling patterns

Here, we further explore the design space of inexpensive sampling patterns in
order to verify the efficiency of the FLIPTRI and FLIPQUAD patterns, but also
to produce and evaluate new sampling schemes that cost 1.5 and 1.75 samples per
pixel.

5.1 Initial Pattern Generation

Given the costs for different sample point placements (corner, edge or center) in
Table 1, it is quite straightforward to write a computer program that generates all
possible unique configurations of placements for P(4, 1+, n) sampling patterns. At
this point, we are not interested in the actual coordinates and weights of the sample
points but only in deciding if the sample point is placed in a specific corner, on a
specific edge or somewhere inside the pixel.
The set of unique configurations of sample point placements is small when n≤ 2.
Therefore we could use a brute-force algorithm that generates all possible place-
ment configurations with the specified cost and discards a configuration if it is a
rotated (90◦, 180◦ or 270◦) and/or reflected version of an already generated candi-
date.

5.2 Pattern Ranking and Optimization

The number of placement configurations with unique properties, in our target fam-
ilies, are only 94 in total and were therefore quite easily manageable. Once gen-
erated, we manually examined each configuration and removed those that would
clearly not perform well. For example, patterns with all sample points placed along
a single edge could be safely removed from further consideration.
The patterns passing this preliminary culling phase were processed by the error
metric-based optimizer by Laine and Aila [6] to find an optimal set of weights and
coordinates for the sample points and also an estimation of the E2 error for a given
pattern. The error was used to rank the patterns in each category.

6 Results

We present a summary of the most interesting sampling schemes, that we found,
in Figure 3, and more exact pattern descriptions in Appendix A. In the cases where
two patterns in the same class had similar errors, but different reconstruction costs
(number of samples used to compute the final color), both alternatives are pre-
sented.
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A: P(4,1+,1.25) B: P(4,1+,1.5) C: P(4,1+,1.5) D: P(4,1+,1.75) E: P(4,1+,1.75) F: P(4,1+,2)

E
2
=0.554 E

2
=0.531 E

2
=0.527 E

2
=0.497 E

2
=0.488 E

2
=0.359

Figure 3: The figure shows the best schemes in terms of the error metric E2 in each
class. The area of each circle is proportional to the weight of the corresponding
sample point. For n = 1.5 and n = 1.75, two patterns were found with similar
error measures, but with different number of samples used during reconstruction.
Schemes A and F are versions of the FLIPTRI and FLIPQUAD schemes respec-
tively, that have been optimized using the E2 error metric (see section 5.2)

Centroid sampling A (FLIPTRI) B C

D E F (FLIPQUAD) Reference

Figure 4: A thin polygon rendered using the sampling schemes, A through F, from
Figure 3. The upper left polygon uses a single sample point per pixel while the
reference polygon is supersampled with 1024 jittered grid sample points and uses
a 4×4 pixel Mitchell-Netravali reconstruction filter.

6.1 Evaluation

We have evaluated our results both visually and experimentally. For the visual
evaluation we simply implemented supersampling using the sampling patterns in
Figure 3 and rasterized a number of test images. Figure 4 shows the results of
drawing a thin polygon with the respective schemes as well as using centroid sam-
pling and a high quality supersampling pattern for reference. Figure 5 shows a
more complex test image.
We have also performed experimental evaluation by rasterizing two synthetic an-
imations. One showing a rotating triangle and the other showing a translating
circle. The animations were rasterized using each of our schemes and we compute
the per-pixel deviation, as compared to a reference animation. The reference filter
was identical to the references used in Figure 4 and 5 but with 256 sample points
for performance reasons. Since the evaluation result of the two animations were
almost identical, we only present figures for the translation animation in this paper.
It should be noted that this measurement does not take any psychovisual aspects
into account, but can still be used as a rough measurement of quality. We can use
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Reference A (FLIPTRI) B C

D E F (FLIPQUAD) Quincunx

Figure 5: A spiral test image rendered using the sampling schemes, A through
F, from Figure 3. The reference image is supersampled with 1024 jittered grid
sample points and uses a 4× 4 pixel Michell-Netravali reconstruction filter. An
image rendered using the Quincunx pattern is also included for comparison.

the deviations to compute the Root Mean Square Error (RMSE) as

RMSE =

√√√√1
n

255

∑
i=0

C(i)i2 (1)

Where C(i) is the number of pixels with a given deviation, i, from the reference
animation. The normalization constant n is the total number of pixels in the anima-
tion. In Figure 6 and 7, we present plots of the C(i)i2/n values of different patterns.
The plots can be seen as the scheme’s penalized histogram of the pixel deviations,
and the area below each curve is approximately equal to the Mean Square Error
(MSE).
For Figure 6, we settle for comparing our own sampling schemes, since there are
no other sampling schemes with similar costs. It should be noted that FLIPTRI
(scheme A) actually has a worst case deviation higher than that of the centroid
sampling scheme. This is because of the placement of sample points in the scheme.
Looking at the very center of Figure 2b, we see that the sample point in the cor-
ner will be further away from its nearest neighbors than in the case of centroid
sampling. It is this distance that causes the greater maximum deviations.
In Figure 7, we compare FLIPQUAD (scheme F) with other sample patterns cost-
ing 2 samples per pixel. The behavior of FLIPQUAD is clearly preferable to both
Quincunx and normal super sampling using two diagonal samples. The Quincunx
plot has a behavior that is very similar to the centroid sampling curve, but the four
extra “low-pass” sampling points removes a substantial part of the larger errors.
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Figure 6: Histogram of the squared pixel error. This figure shows a comparison
between the 1.25, 1.5 and 1.75 sample shemes. Sampling with a single centroid
sample is also included for reference. The RMSE contribution is computed as
C(i)i2/n

Finally, we present a summary of the errors in Table 2. We see that even though the
E2 metric does not match the RMSE metric, we still get similar performance with
the exception of FLIPTRI and scheme C. We have already motivated the behavior
of FLIPTRI. Scheme C is given an unusually low RMSE when we compare it to
schemes B and D, but this is not very surprising if we look at the design of the sam-
ple schemes. Scheme C has an additional sample point which lowers the RMSE
but does not significantly affect the perceptually important nearly horizontal and
nearly vertical edges.

7 Conclusion and Future Work

In this paper, we have generated a family of inexpensive sampling schemes. It is
difficult to compare and evaluate sampling schemes, so we present visual results
along with comparisons using the RMSE metric.
Our evaluation shows that the modified FLIPQUAD pattern clearly stands out in

42



7. CONCLUSION AND FUTURE WORK

0 20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Diagonal

Quincunx

Scheme F ( FLIPQUAD)

Pixel Deviation

RM
SE

 C
o

n
tr

ib
u

ti
o

n

Figure 7: Histogram of the squared pixel error. This figure shows how scheme f
(FLIPQUAD) compares to Quincunx and the Diagonal sample scheme from Fig-
ure 1d.

terms of quality. It is also along with FLIPTRI the most cost efficient filter, in
terms of quality/cost, as far as the E2 metric is concerned. However, in the case of
FLIPTRI, we have to sacrifice the performance of certain edges yielding relatively
bad worst case performance. Our other schemes, costing 1.5 and 1.75, samples per
pixel also have very low cost and eliminates any chance of a worse performance
than normal centroid sampling. In fact they are very close to Quincunx in terms of
performance, with respect to both the E2 and RMSE metrics.
It should also be noted that extra degrees of freedom, in the sample patterns, help in
cases not taken into account by the E2 model. An example of such a case is shown
in Figure 4 where the tip of the triangle is thinner than one pixel and therefore
do not fall within the assumptions of the E2 metric. The tip is broken into a few
disjoint pieces for the more inexpensive schemes, A-C, while the more expensive
schemes, D-F, gives a better visual result.
An open issue with the suggested sampling schemes is where to locate the shader
sample point to allow sharing data between sample points in order to avoid texture
blurring. For FLIPQUAD this problem has already been addressed [3], but the
placement for the other schemes, such as FLIPTRI, are less obvious. It would also
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E2 RMSE max dev.
Centroid sampling 1.256 9.810 131
Diagonal 0.692 6.500 126
Scheme A (FLIPTRI) 0.554 7.548 159
Scheme B 0.531 5.139 114
Scheme C 0.527 4.830 107
Scheme D 0.497 5.000 107
Scheme E 0.488 4.574 108
Quincunx 0.484 4.400 95
Scheme F (FLIPQUAD) 0.359 3.759 76

Table 2: The errors of our sampling schemes, using different metrics. The “Diag-
onal” scheme is the diagonal super sampling scheme from Figure 1d.

be interesting to explore the P(4, 4+, n) family for small values of n since they
potentially provide higher quality.

A Sample positions and weights

The following table lists the sample point coordinates and weights for the sam-
pling patterns in Figure 3. Each row contains the description of one sample point:
x, y, weight. The origin (x = 0, y = 0) is located at the center of the pixel. The
width and height of a pixel are both 1.0, i.e., the borders are at x = ±0.5 and
y =±0.5.

A: P(4, 1+, 1.25)
-0.500, 0.500, 0.299
-0.133, -0.500, 0.360
0.500, -0.064, 0.341

B: P(4, 1+, 1.5)
-0.500, 0.073, 0.335
-0.030, -0.500, 0.331
0.313, 0.500, 0.334

C: P(4, 1+, 1.5)
-0.500, 0.022, 0.306
-0.500, -0.500, 0.068
0.083, 0.500, 0.338
0.500, -0.500, 0.288

D: P(4, 1+, 1.75)
-0.500, -0.500, 0.280
-0.063, 0.318, 0.397
0.500, -0.050, 0.323

E: P(4, 1+, 1.75)
-0.500, -0.500, 0.158
-0.500, 0.045, 0.156
0.004, 0.500, 0.380
0.500, -0.222, 0.306

F: P(4, 1+, 2)
-0.500, 0.143, 0.250
0.500, -0.143, 0.250
0.143, 0.500, 0.250

-0.143, -0.500, 0.250
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1. INTRODUCTION

1 Introduction

Over the past few years, general-purpose computation using GPUs has received
much attention in the research community. The stream-based rasterization ar-
chitecture provides for much faster performance growth than that of CPUs, and
therein lies the attraction in implementing an algorithm on the GPU: if not now,
then at some point in time, your algorithm is likely to run faster on the GPU than
on a CPU.
However, some algorithms do not return exact results when the GPU’s standard
rasterization is used. Examples include algorithms for collision detection [2, 5],
occlusion culling [3], and visibility testing for shadow acceleration [4]. The ac-
curacy of these algorithms can be improved by increasing rendering resolution.
However, one can never guarantee a fully correct result. This is similar to the an-
tialiasing problem: you can never avoid sampling artifacts by just increasing the
number of samples; you can only reduce the problems at the cost of performance.
A simple example of when standard rasterization does not compute the desired
result is shown in Figure 1a, where one green and one blue triangle have been
rasterized. These triangles overlap geometrically, but the standard rasterization
process does not detect this fact. With conservative rasterization, the overlap is
always properly detected, no matter what resolution is used. This property can
enable load balancing between the CPU and the GPU. For example, for collision
detection, a lower resolution would resultin less work for the GPU and more work
for the CPU, which performs exact intersection tests. See Figure 1b for the results
of using conservative rasterization.
There already exists a simple algorithm for conservative rasterization [1]. How-
ever, this algorithm is designed for hardware implementation. In this chapter we
present an alternative that is adapted for implementation using vertex and fragment
programs on the GPU.

2 Problem Definition

In this section, we define what we mean by conservative rasterization of a polygon.
First, we define a pixel cell as the rectangular region around a pixel in a pixel grid.
There are two variants of conservative rasterization, namely, overestimated and
underestimated [1]:

• An overestimated conservative rasterization of a polygon includes all pix-
els for which the intersection between the pixel cell and the polygon is
nonempty.

• An underestimated conservative rasterization of a polygon includes only the
pixels whose pixel cell lies completely inside the polygon.
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(a) (b)

Figure 1: Comparing Standard and Conservative Rasterization: A blue and a green
triangle rasterized at 16× 16 pixels resolution using additive blending. (a) Stan-
dard rasterization. (b) Overestimating conservative rasterization. Note that the
small overlap of the triangles is missed with standard rasterization and correctly
detected using conservative rasterization.

Here, we are mainly concerned with the overestimated variant, because that one is
usually the most useful. If not specified further, we mean the overestimated variant
when writing “onservative rasterization.”
As can be seen, the definitions are based only on the pixel cell and are therefore
independent of the number of sample points for a pixel. To that end, we choose
not to consider render targets that use multisampling, because this would be just a
waste of resources. It would also further complicate our implementation.
The solution to both of these problems can be seen as a modification of the polygon
before the rasterization process. Overestimated conservative rasterization can be
seen as the image-processing operation dilation of the polygon by the pixel cell.
Similarly, underestimated conservative rasterization is the erosion of the polygon
by the pixel cell. Therefore, we transform the rectangle-polygon overlap test of
conservative rasterization into a point-in-region test.
The dilation is obtained by locking the center of a pixel-cell-size rectangle to
the polygon edges and sweeping it along them while adding all the pixel cells
it touches to the dilated triangle. Alternatively, for a convex polygon, the dilation
can be computed as the convex hull of a set of pixel cells positioned at each of
the vertices of the polygon. This is the equivalent of moving the vertices of the
polygon in each of the four possible directions from the center of a pixel cell to
its corners and then computing the convex hull. Because the four vectors from the
center of a pixel cell to each corner are important in any algorithm for conserva-
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2. PROBLEM DEFINITION

Figure 2: Overestimated and Underestimated Rasterization: (a) Overestimated ras-
terization. (b) Underestimated rasterization. Solid lines show the input triangle.
The dashed lines, dots, and shaded area indicate the bounding polygon’s edges,
vertices, and area.

tive rasterization, we call them the semidiagonals. This type of vertex movement
is shown by the red lines in Figure 2a, which also shows the bounding polygon for
a triangle.
The erosion is obtained by sweeping the pixel-cell-size rectangle in the same man-
ner as for dilation, but instead we erase all the pixel cells it touches. We note that
for a general convex polygon, the number of vertices may be decreased due to this
operation. In the case of a triangle, the result will always be a smaller triangle or
an “empty” polygon. The erosion of a triangle is illustrated in Figure 2b.
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3 Two Conservative Algorithms

We present two algorithms for conservative rasterization that have different perfor-
mance characteristics. The first algorithm computes the optimal bounding polygon
in a vertex program. It is therefore optimal in terms of fill rate, but it is also costly
in terms of geometry processing and data setup, because every vertex must be repli-
cated. The second algorithm computes a bounding triangle – a bounding polygon
explicitly limited to only three vertices – in a vertex program and then trims it in a
fragment program. This makes it less expensive in terms of geometry processing,
because constructing the bounding triangle can be seen as repositioning each of
the vertices of the input triangle. However, the bounding triangle is a poor fit for
triangles with acute angles; therefore, the algorithm is more costly in terms of fill
rate.
To simplify the implementation of both algorithms, we assume that no edges re-
sulting from clipping by the near or far clip planes lie inside the view frustum.
Edges resulting from such clipping operations are troublesome to detect, and they
are very rarely used for any important purpose in this context.

3.1 Clip Space

We describe both algorithms in window space, for clarity, but in practice it is im-
possible to work in window space, because the vertex program is executed before
the clipping and perspective projection. Fortunately, our reasoning maps very sim-
ply to clip space. For the moment, let us ignore the z component of the vertices
(which is used only to interpolate a depth-buffer value). Doing so allows us to
describe a line through each edge of the input triangle as a plane in homogeneous
(xc,yc,wc)-space. The plane is defined by the two vertices on the edge of the input
triangle, as well as the position of the viewer, which is the origin, (0,0,0). Because
all of the planes pass through the origin, we get plane equations of the form

a · xc +b · yc + c ·wc = 0⇔ a(x ·wc)+b(y ·wc)+ c ·wc = 0⇒ a · x+b · y+ c = 0.

The planes are equivalent to lines in two dimensions. In many of our computations,
we use the normal of an edge, which is defined by (a,b) from the plane equation.

3.2 The First Algorithm

In this algorithm we compute the optimal bounding polygon for conservative ras-
terization, shown in Figure 2a. Computing the convex hull, from the problem
definition section, sounds like a complex task to perform in a vertex program.
However, it comes down to three simple cases, as illustrated in Figure 3. Given
two edges e1 and e2 connected in a vertex v, the three cases are the following:
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Figure 3: Computing an Optimal Bounding Polygon

• If the normals of e1 and e2 lie in the same quadrant, the convex hull is
defined by the point found by moving the vertex v by the semidiagonal in
that quadrant (Figure 3a).

• If the normals of e1 and e2 lie in neighboring quadrants, the convex hull is
defined by two points. The points are found by moving v by the semidiago-
nals in those quadrants (Figure 3b).

• If the normals of e1 and e2 lie in opposite quadrants, the convex hull is
defined by three points. Two points are found as in the previous case, and
the last point is found by moving v by the semidiagonal of the quadrant
between the opposite quadrants (in the winding order)(Figure 3c).

Implementation

We implement the algorithm as a vertex program that creates output vertices ac-
cording to the three cases. Because we cannot create vertices in the vertex pro-
gram, we must assume the worst-case scenario from Figure 3c. To create a polygon
from a triangle, we must send three instances of each vertex of the input triangle
to the hardware and then draw the bounding polygon as a triangle fan with a total
of nine vertices. The simpler cases from Figure 3, resulting in only one or two
vertices, are handled by collapsing two or three instances of a vertex to the same
position and thereby generating degenerate triangles. For each instance of every
vertex, we must also send the positions of the previous and next vertices in the
input triangle, as well as a local index in the range [0,2]. The positions and indices
are needed to compute which case and which semidiagonal to use when computing
the new vertex position.
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The core of the vertex program consists of code that selects one of the three cases
and creates an appropriate output vertex, as shown in Listing II.1.

/ / semiDiagonal[0 ,1] = Normalized semidiagonals in the same
/ / quadrants as the edge ’ s normals .
/ / vtxPos = The position of the current vertex .
/ / hPixel = dimensions of half a pixel ce l l

f loat dp = dot ( semiDiagonal [0] , semiDiagonal [1 ] ) ;
float2 diag ;
i f (dp > 0) {

/ / The normals are in the same quadrant −> One vertex
diag = semiDiagonal [0] ;

}
else i f (dp < 0) {

/ / The normals are in neighboring quadrants −> Two vert ices
diag = ( In . index == 0 ? semiDiagonal [0] : semiDiagonal [1 ] ) ;

}
else {

/ / The normals are in opposite quadrants −> Three vert ices
i f ( In . index == 1) {

/ / Special "quadrant between two quadrants case"
diag = float2 ( semiDiagonal [0 ] .x ∗ semiDiagonal [0 ] .y ∗

semiDiagonal [1 ] .x ,
semiDiagonal [0 ] .y ∗ semiDiagonal [1 ] .x ∗
semiDiagonal [1 ] .y ) ;

}
else

diag = ( In . index == 0 ? semiDiagonal [0] : semiDiagonal [1 ] ) ;
}

vtxPos .xy += hPixel . xy ∗ diag ∗ vtxPos .w;

Listing II.1: Vertex Program Implementing the First Algorithm

In cases with input triangles that have vertices behind the eye, we can get pro-
jection problems that force tessellation edges out of the bounding polygon in its
visible regions. To solve this problem, we perform basic near-plane clipping of the
current edge. If orthographic projection is used, or if no polygon will intersect the
near clip plane, we skip this operation.

3.3 The Second Algorithm

The weakness of the first algorithm is that it requires multiple output vertices for
each input vertex. An approach that avoids this problem is to compute a bound-
ing triangle for every input triangle, instead of computing the optimal bounding
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(a) (b) (c) (d)

Figure 4: Objects Rasterized in Different Ways: (a) An object rasterized with
the first algorithm. (b) The object rasterized using bounding triangles only. (c)
Overdraw for the first algorithm. (d) Overdraw for the second algorithm.

Figure 5: An Input Triangle and Its Optimal Bounding Polygon: The bounding
triangle is shown by the dashed line. Its axis-aligned bounding box is shown by
the orange dashed line. The shaded area is the optimal bounding polygon.

polygon, which may have as many as nine vertices. However, the bounding tri-
angle is a bad approximation for triangles with acute angles. As a result, we get
an overly conservative rasterization, as shown in Figure 4. The poor fit makes the
bounding triangles practically useless. To work around this problem, we use an
alternative interpretation of a simple test for conservative rasterization [1]. The
bounding polygon (as used in Section 3.2) can be computed as the intersection of
the bounding triangle and the axis-aligned bounding box (AABB) of itself. The
AABB of the bounding polygon can easily be computed from the input triangle.
Figure 5 illustrates this process.
In our second algorithm, we compute the bounding triangle in a vertex program
and then use a fragment program to discard all fragments that do not overlap the
AABB.
We can find the three edges of the bounding triangle by computing the normal of
the line through each edge of the input triangle and then moving that line by the
worst-case semidiagonal. The worst-case semidiagonal is always the one found in
the same quadrant as the line normal.
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After computing the translated lines, we compute the intersection points of ad-
jacent edges to get the vertices of the bounding triangle. At this point, we can
make good use of the clip-space representation. Because each line is represented
as a plane through the origin, we can compute the intersection of two planes with
normals n1 = (x1,y1,w1) and n2 = (x2,y2,w2) as n1× n2. Note that the result is
a direction rather than a point, but all points in the given direction will project to
the same point in window space. This also ensures that the w component of the
computed vertex receives the correct sign.

Implementation

Because the bounding triangle moves every vertex of the input triangle to a new
position, we need to send only three vertices for every input triangle. However,
along with each vertex, we also send the positions of the previous and next vertices,
as texture coordinates, so we can compute the edges. For the edges, we use planes
rather than lines. A parametric representation of the lines, in the form of a point
and a direction, would simplify the operation of moving the line at the cost of
more problems when computing intersection. Because we represent our lines as
equations of the form:

(a,b) · x+ c = 0,

we must derive how to modify the line equation to represent a movement by a
vector v. It can be done by modifying the c component of the line equation as:

cmoved = c− v · (a,b).

If we further note that the problem of finding a semidiagonal is symmetric with
respect to 90-degree rotations, we can use a fixed semidiagonal in the first quadrant
along with the component-wise absolute values of the line normal to move the line.
The code in Listing II.2 shows the core of the bounding triangle computation.

/ / hPixel = dimensions of half a pixel ce l l

/ / Compute equations of the planes through the two edges
float3 plane [2] ;
plane [0] = cross ( currentPos .xyw − prevPos .xyw, prevPos .xyw) ;
plane [1] = cross (nextPos .xyw − currentPos .xyw, currentPos .xyw) ;

/ / Move the planes by the appropriate semidiagonal
plane [0 ] . z −= dot ( hPixel . xy , abs ( plane [0 ] .xy ) ) ;
plane [1 ] . z −= dot ( hPixel . xy , abs ( plane [1 ] .xy ) ) ;

/ / Compute the intersect ion point of the planes .
float4 finalPos ;
finalPos .xyw = cross ( plane [0] , plane [1 ] ) ;

Listing II.2: Cg Code for Computing the Bounding Triangle
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We compute the screen-space AABB for the optimal bounding polygon in our
vertex program. We iterate over the edges of the input triangle and modify the
current AABB candidate to include that edge. The result is an AABB for the input
triangle. Extending its size by a pixel cell gives us the AABB for the optimal
bounding polygon. To guarantee the correct result, we must clip the input triangle
by the near clip plane to avoid back projection. The clipping can be removed under
the same circumstances as for the previous algorithm.
We send both the AABB of the bounding polygon and the clip-space position to a
fragment program, where we perform perspective division on the clip-space posi-
tion and discard the fragment if it lies outside the AABB. The fragment program
is implemented by the following code snippet:

/ / Compute the device coordinates of the current pixel
float2 pos = In . clipSpace .xy / In . clipSpace .w;

/ / Discard fragment i f outside the AABB. In .AABB contains min values
/ / in the xy components and max values in the zw components
discard (pos .xy < In .AABB.xy | | pos . xy > In .AABB.zw) ;

3.4 Underestimated Conservative Rasterization

So far, we have covered algorithms only for overestimated conservative rasteri-
zation. However, we have briefly implied that the optimal bounding polygon for
underestimated rasterization is a triangle or an “empty” polygon. The bounding
triangle for underestimated rasterization can be computed just like the bounding
triangle for overestimated rasterization: simply swap the minus for a plus when
computing a new c component for the lines. The case of the empty polygon is
automatically addressed because the bounding triangle will change winding order
and be culled by the graphics hardware.

4 Robustness Issues

Both our algorithms have issues that, although not equivalent, suggest the same
type of solution. The first algorithm is robust in terms of floating-point errors
but may generate front-facing triangles when the bounding polygon is tessellated,
even though the input primitive was back-facing. The second algorithm generates
bounding triangles with the correct orientation, but it suffers from precision issues
in the intersection computations when near-degenerate input triangles are used.
Note that degenerate triangles may be the result of projection (with a very large
angle between view direction and polygon), rather than a bad input.
To solve these problems, we first assume that the input data contains no degenerate
triangles. We introduce a value, ε , small enough that we consider all errors caused
by ε to fall in the same category as other floating-point precision errors. If the
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Figure 6: Finding the Farthest Depth Value: A view frustum, with pixel cells (blue
lines) and a triangle (orange), as seen from above. The dashed line is the plane
of the triangle, and the orange arrow indicates its normal. The range of possible
depth values is also shown for the rasterized pixels. The direction of the normal
can be used to find the position in a pixel cell that has the farthest depth value. In
this case, the normal is pointing to the right, and so the farthest depth value is at
the right side of the pixel cell.

signed distance from the plane of the triangle to the viewpoint is less than ε , we
consider the input triangle to be back-facing and output the vertices expected for
standard rasterization. This hides the problems because it allows the hardware-
culling unit to remove the back-facing polygons.

5 Conservative Depth

When performing conservative rasterization, you often want to compute conserva-
tive depth values as well. By conservative depth, we mean either the maximum or
the minimum depth values, zmax and zmin, in each pixel cell. For example, consider
a simple collision- detection scenario [2] with two objects A and B. If any part
of object A is occluded by object B and any part of object B is occluded by ob-
ject A, we say that the objects potentially collide. To perform the first half of this
test using our overestimating conservative rasterizer, we would first render object
B to the depth buffer using a computed zmin as the depth. We would then render
object A with depth writes disabled and occlusion queries enabled, and using a
computed zmax as depth. If any fragments of object A were discarded during ras-
terization, the objects potentially collide. This result could be used to initiate an
exact intersection point computation on the CPU.
When an attribute is interpolated over a plane covering an entire pixel cell, the
extreme values will always be in one of the corners of the cell. We therefore
compute zmax and zmin based on the plane of the triangle, rather than the exact
triangle representation. Although this is just an approximation, it is conservatively
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correct. It will always compute a zmax greater than or equal to the exact solution
and a zmin less than or equal to it. This is illustrated in Figure 6.
The depth computation is implemented in our fragment program. A ray is sent
from the eye through one of the corners of the current pixel cell. If zmax is desired,
we send the ray through the corner found in the direction of the triangle normal; the
zmin depth value can be found in the opposite corner. We compute the intersection
point between the ray and the plane of the triangle and use its coordinates to get
the depth value. In some cases, the ray may not intersect the plane (or have an
intersection point behind the viewer). When this happens, we simply return the
maximum depth value.
We can compute the depth value from an intersection point in two ways. We
can compute interpolation parameters for the input triangle in the vertex program
and then use the intersection point coordinates to interpolate the z (depth) com-
ponent. This works, but it is computationally expensive and requires many in-
terpolation attributes to transfer the (constant) interpolation base from the vertex
program to the fragment program. If the projection matrix is simple, as produced
by glFrustum, for instance, it will be of the form:

... ... ... ...

... ... ... ...

0 0 − f ar+near
f ar−near − 2 f ar×near

f ar−near
0 0 −1 0


In this case we can use a second, simpler way of computing the depth value. Un-
der the assumption that the input is a normal point with we = 1 (the eye-space w
component is one), we can compute the zw (window-depth) component of an in-
tersection point from the wc (clip-space w) component. For a depth range [n, f ],
we compute zw as:

zw =
(

f +n
2

)
+
(

f −n
2

)((
f ar +near
f ar−near

)
− 2 f ar×near

( f ar−near)wc

)

6 Results and Conclusions

We have implemented two GPU-accelerated algorithms for conservative rasteri-
zation. Both algorithms have strong and weak points, and it is therefore hard to
pick a clear winner. As previously stated, the first algorithm is costly in terms of
geometry processing, while the second algorithm requires more fill rate. However,
the distinction is not that simple. The overdraw complexity of the second algo-
rithm depends both on the acuity of the triangles in a mesh and on the rendering
resolution, which controls how far an edge is moved. The extra overdraw caused
by the second algorithm therefore depends on the mesh tessellation in proportion
to the rendering resolution. Our initial benchmarks in Figure 7 show that the first
algorithm seems to be more efficient on high-end hardware (such as GeForce 6800
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Figure 7: Benchmarked Results: Benchmarks on a GeForce 6800 Series GPU and
a GeForce FX 5600. Tests were performed at low (128× 128 pixels) and high
(1024×1024 pixels) resolution. The graph shows the relative performance of the
first algorithm compared to the second.

Series GPUs). Older GPUs (such as the GeForceFX 5600) quickly become vertex
limited; therefore, the second algorithm is more suitable.
It is likely that the first algorithm will be the better choice in the future. The
vertex processing power of graphics hardware is currently growing faster than the
fragment processing power. And with future features such as geometry shaders,
we could make a better implementation of the first algorithm.
We can probably enhance the performance of both of our algorithms by doing
silhouette edge detection on the CPU and computing bounding polygons only for
silhouette edges, or for triangles with at least one silhouette edge. This would
benefit the GPU load of both of our algorithms, at the expense of more CPU work.
Our algorithms will always come with a performance penalty when compared to
standard rasterization. However, because we can always guarantee that the result
is conservatively correct, it is possible that the working resolution can be signifi-
cantly lowered. In contrast, standard rasterization will sometimes generate incor-
rect results, which for many applications is completely undesirable.
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ABSTRACT

Autostereoscopic displays with multiple views provide a true three-
dimensional experience, and full systems for 3D TV have been de-
signed and built. However, these displays have received relatively lit-
tle attention in the context of real-time computer graphics. We present
a novel rasterization architecture that rasterizes each triangle to multi-
ple views simultaneously. When determining which tile in which view
to rasterize next, we use an efficiency measure that estimates which
tile is expected to get the most hits in the texture cache. Once that tile
has been rasterized, the efficiency measure is updated, and a new tile
and view are selected. Our traversal algorithm provides significant
reductions in the amount of texture fetches, and bandwidth gains on
the order of a magnitude have been observed. We also present an ap-
proximate rasterization algorithm that avoids pixel shader evaluations
for a substantial amount (up to 95%) of fragments and still maintains
high image quality.
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1. INTRODUCTION

1 Introduction

The next revolution for television is likely to be 3D TV [18], where a multi-
view autostereoscopic display [10, 16] is used to create a greatly enhanced three-
dimensional experience. Such displays can be viewed from several different view-
points, and thus provide motion parallax. Furthermore, the viewers can see stereo-
scopic images at each viewpoint, which means that binocular parallax is achieved.
Displays capable of providing binocular parallax without the need for special
glasses are called autostereoscopic. This is in contrast to ordinary displays, where
a 3D scene is projected to a flat 2D surface.
Analogously, for real-time graphics, the next revolution might very well be the
use of autostereoscopic multi-view displays for rendering. Possible uses are sci-
entific & medical visualization, user interfaces & window managers, advertising,
and games, to name a few. Another area of potential great impact is stereo dis-
plays for mobile phones, and companies such as Casio and Samsung have already
announced such displays.
Stereo is the simplest case of multi-view rendering, and APIs such as OpenGL [27],
have had support for this since 1992. To accelerate rendering for stereo, a few
approximate techniques have been suggested [25, 30]. Furthermore, efficient al-
gorithms for stereo volume rendering [2, 13] and ray tracing [1] have been pro-
posed. The PixelView hardware architecture [29] is used to compute and visualize
a four-dimensional ray buffer, which is essentially a lumigraph or light field. The
drawback is the expensive computation of the ray buffer, which makes supporting
animated scenes difficult.
Surprisingly, to the best of our knowledge, only one research paper exists on
rasterization for multiple viewpoints. Halle [12] presents a method for multiple
viewpoint rendering on existing graphics hardware, by rendering polygons as a
multitude of lines in epipolar plane images. His system and ours can be seen as
complementary, since his algorithm works well for hundreds of views, but breaks
down for few views (<10). Our algorithms, on the other hand, have been designed
for few views (≤ 16). Another difference is that we target a new hardware imple-
mentation, instead of using existing hardware.
The inherent difficulty in rendering from multiple views is that rasterization for n
views tends to cost n times as much as a single view. For example, for stereo ren-
dering the cost is expected to be twice as expensive as rendering a single view [4].
Rendering to a display with, say, 16 views [18] would put an enormous amount
of pressure on even the most powerful graphics cards of today. However, since
the different viewpoints are relatively close to each other, the coherency between
images from different views can potentially be exploited for much more efficient
rendering, and this is the main purpose of our multi-view rasterization architecture.
Our architecture is orthogonal to a wide range of bandwidth reducing algorithms,
such as texture compression [7, 17], texture caching [11, 14], prefetching [15],
color compression [20], depth compression & Z-max-culling [21], Z-min-culling [6],
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and delay streams [3]. In addition to using such techniques, our architecture di-
rectly exploits the inherent coherency when rendering from multiple views (in-
cluding stereo) by using a novel triangle traversal algorithm. Our results show that
our architecture can provide significant reductions in the amount of texture fetches
when rendering exact images. We also present an algorithm that approximates
pixel shader evaluations from nearby views. This algorithm generates high qual-
ity images, and avoids execution of entire pixel shaders for a large amount of the
fragments.

2 Motivation

Here we will argue that texturing is very likely to be the dominating cost in terms
of memory accesses, now and in the future. For this, we use some simple formulae
for predicting bandwidth usage for rasterization. Given a scene with average depth
complexity d, the average overdraw, o(d), is estimated as [9]:

o(d) = 1+
1
2

+
1
3

+ · · ·+ 1
d

. (1)

Without using any bandwidth reducing algorithms, the bandwidth required by a
single pixel is [6]:

b = d×Zr +o(d)× (Zw +Cw +Tr), (2)

where Zr and Zw are the cost, in bytes, for reading and writing a depth buffer
value, respectively. Furthermore, Cw is the cost for writing to the color buffer
(assuming no blending is done, since the term Cr is missing) and Tr is the total cost
for accessing textures for a fragment. Standard values for these are: Zr = Zw =
Cw = 4 bytes and a texel is often stored in 4 bytes. Trilinear mipmapping [33]
is commonly used for reducing aliasing, and this requires eight texel accesses,
which makes Tr =8×4=32 bytes for a filtered color from one texture. If a texture
cache [11] with miss rate, m, is used, and we have a multi-view display system
with n views, Equation 2 becomes:

b(n) = n× [d×Zr +o(d)× (Zw +Cw +m×Tr)]
= n× [d×Zr +o(d)×Zw︸ ︷︷ ︸

depth buffer, Bd

+ o(d)×Cw︸ ︷︷ ︸
color buffer, Bc

+o(d)×m×Tr︸ ︷︷ ︸
texture read, Bt

]

= n× [Bd +Bc +Bt ] (3)

Now, we analyze the different terms in this equation by looking at two existing
example shaders (not written by the authors). First, we assume the scene has a
depth complexity of d = 4 (⇒ o ≈ 2). This is quite reasonable, since occlusion
culling algorithms and spatial data structures (e.g. portals) efficiently reduce depth
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complexity to such low numbers, or even lower. For example, the recent game
S.T.A.L.K.E.R [28] has a target depth complexity of d = 2.5. Using d = 4, the
depth buffer term will be Bd ≈ 4×4+2×4 = 24 bytes and the color buffer term
becomes Bc ≈ 2×4 = 8 bytes. Furthermore, we assume a texture cache miss rate
of 25% (m = 0.25). This figure comes from Hakura and Gupta [11], who found
that each texel is used by an average of four fragments when trilinear mipmapping
is used. We have observed roughly the same behavior in our tests scenes.

Example I: Pelzer’s ocean shader [24] uses seven accesses to textures using
trilinear mipmapping. The texture bandwidth alone will thus be Bt = 2× 0.25×
7× (8×4)≈ 112 bytes. 2

Example II: Uralsky [31] presents an adaptive soft shadow algorithm, which
uses more samples in penumbra regions. Eight points are first used to sample the
shadow map, and if all samples agree, the point is considered as either in umbra
or fully lit. Otherwise, 56 more samples are used. With percentage-closer filter-
ing [26] using four samples per texture lookup, we get, Bt = 8× (4× 4) = 128
bytes in non-penumbra regions, while in penumbra, Bt = 64×(4×4)=1024 bytes.
Assuming only 10% of the pixels are in penumbra, the estimated cost becomes
Bt = 2×0.25× (0.9×128+0.1×1024)≈ 109 bytes. 2

Compared to Bc =8 and Bd =24, it is apparent that texture memory bandwidth is
substantially larger (Bt = 112 and Bt = 109). This term can also easily grow much
larger. For example, current hardware allows for essentially unlimited texture ac-
cesses per fragment, and with anisotropic texture filtering the cost rises further.
In addition to this, both Bd and Bc can be reduced using lossless compression [21,
20]. Morein reports that depth buffer compression reduces memory accesses to the
depth buffer by about 50%. Bd can also be further reduced using Z-min-culling [6]
and Z-max-culling [21]. The advantage of buffer compression and culling is that
they work transparently—the user do not need to do anything for this to work.
For texture compression, however, the user must first compress the images, and
feed them to the rasterizer. Both Example I and II contain textures that cannot be
compressed, since they are created on the fly. Furthermore, none of the ordinary
textures were compressed in the example code.
Texturing can easily become the largest cost in terms of memory bandwidth, as
argued above. This fact is central when designing our traversal algorithm (Sec-
tion 4). In computer cinematography, pixel shaders can be as long as several thou-
sand lines of code [23], and this trend of making longer and longer pixel shaders
can be seen in real-time rendering as well. This means that many applications are
often pixel-shader bound. Thus, in a multi-view rasterization architecture, it may
also be desirable to reduce the number of pixel shader evaluations, which is the
topic of Section 4.3.
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BRUTEFORCE-MULTIVIEWRASTERIZATION()
1 for i← 1 to n // loop over all views
2 create Mi // create projection matrix
3 for j← 1 to t // loop over all triangles
4 RASTERIZETRIANGLE(Mi,∆ j)
5 end
6 end

NEW-MULTIVIEWRASTERIZATION()
1 create all Mi, i ∈ [1, . . . ,n] // create projection matrices
2 for j← 1 to t // loop over all triangles
3 RASTERIZETRIANGLETOALLVIEWS(M1, . . . ,Mn,∆ j)
4 end

Figure 1: Hi-level pseudo code for brute-force multi-view rasterization (top), and
for our new multi-view rasterization algorithm (bottom). Assume rendering is
done to n views, and that the scene consists of triangles, ∆ j, j ∈ [1, . . . , t]. Note
that the core of our algorithm lies in the RASTERIZETRIANGLETOALLVIEWS()
function.

3 Background: Multi-View Rasterization

This section briefly describes a brute-force architecture for multi-view rasteriza-
tion and multi-view projection.

3.1 Brute-Force Multi-View Rasterization

Here, we describe a brute-force approach to multi-view rasterization. This is used
when rendering stereo in OpenGL and DirectX, and therefore we assume that this
is the norm in multi-view rasterization. The basic idea is to first render the en-
tire scene for the left view, and save the resulting color buffer. In a second pass,
the scene is rendered for the right view, using another projection matrix. The re-
sulting color buffers form a stereo image pair. Extending this to n ≥ 2 views is
straightforward.
Pseudo code for brute-force multi-view rasterization is given in the top part of
Figure 1, where it is assumed that we have a scene consisting of t triangles, ∆ j,
j ∈ [1, . . . , t].
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Figure 2: Off-axis projections for three views. As can be seen, all views share
the same z-axis. We use the term “view divergence” for the distance between two
views’ viewpoints.

3.2 Multi-View Projection

We concentrate on projections with only horizontal parallax, since the great ma-
jority of existing autostereoscopic multi-view displays can only provide parallax
along one axis. In this case, off-axis projection matrices are used. In Figure 2,
this type of projection is illustrated for three views. Note that the distance between
two views’ camera viewpoints is denoted view divergence. In the following, we
assume that n views are used, and we use an index, i ∈ [1, . . . ,n], to identify a
particular view. Furthermore, we have a vertex, v, in object space, that should
be transformed into homogeneous screen space for each view. These transformed
vertices are denoted pi, i ∈ [1, . . . ,n]. For each view, a different object-space to
homogeneous screen-space matrix, Mi, must be created. Since parallax is limited
to the x-direction, only the components of the first row of the Mi are different—the
remaining three rows are constant across all views. Thus, the y, z, and w compo-
nents of pi = (pi

x, pi
y, pi

z, pi
w)T = Miv will be exactly the same. We will use this

fact when designing our traversal algorithm (next section). This could also be ex-
ploited for implementing an efficient vertex shader unit for a multi-view rendering
architecture, but that is beyond the scope of this paper.

4 New Multi-View Rendering Algorithms

Since it is likely that texturing (Bt ) is the largest consumer of memory bandwidth,
our strategy is to devise a traversal algorithm that reduces the n×Bt -term of Equa-
tion 3 as much as possible. Our hypothesis is that this should be possible if the
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View 1 View 2
u

v

View 1 View 1+2View 2

PB space

Figure 3: The two views in a stereo system. A single scanline is highlighted for
both the left and right view. In the bottom row of the figure, we show the PB space
for view 1 and view 2, where the green and red samples in PB space correspond to
the samples along the selected scanlines. To the right, the texture sample locations
from the two views are placed on top of each other. With respect to the texture
cache, the best order to traverse the pixels in the two views is the order in which
the samples occur along the PB traversal direction (fat line in PB space). The
reason that the PB traversal directions in the two views are identical, is the multi-
view projection, described in Section 3.2.

texture cache can be exploited by all views simultaneously. Ideally, all views use
exactly the same texels, and that would reduce n×Bt to Bt , which is a substantial
improvement. Obviously, the best case will not occur, but very good results can
be obtained as we will see. To make this possible, our approach is to rasterize a
triangle to all views before starting on the next triangle. Since the same texture is
applied to a particular triangle for all views, one can expect to get more hits in the
texture cache with this approach compared to the brute-force variant (Section 3.1).
The number of texture cache hits will also vary depending on how a triangle for
the different views is traversed. Therefore, the core of our architecture lies in the
function RASTERIZETRIANGLETOALLVIEWS (Figure 1), and in the following
two subsections, we describe two variants of that algorithm. The general idea of
our traversal algorithms is to traverse a small part (e.g., a tile or even just a pixel)
of a triangle for a given view, and then determine which view to traverse next. To
do this, we maintain an efficiency measure, E i, for each view. With respect to the
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texture cache, the efficiency measure estimates which view is the best to continue
traversing. Thus, E i guides the traversal order of the different views.
We start by describing our algorithm for scanline-based traversal, and then show
how it can be generalized to tiled traversal. In Section 4.3, we extend the traversal
algorithm so that pixel shader evaluations can be approximated from one view
to other views. Finally, in Section 4.4, our architecture is augmented in order to
generate effects, such as depth of field, which require many samples.

4.1 Scanline-Based Multi-View Traversal

As many different parameters are often interpolated in perspective over a triangle,
it is beneficial to compute normalized, perspective-correct barycentric coordinates
(PBs), t = (tu, tv) once per fragment, and then use these to interpolate the param-
eters in a subsequent step. The PBs can be expressed using rational basis func-
tions [19], and we will refer to the coordinate space of the PBs as PB space. Note
that each view and pixel has its own PB, ti = (t i

u, t
i
v), where i is the view number.

The goal of our algorithm is to provide for substantial optimization of texture cache
performance by roughly sorting the rasterized pixels by their respective PBs, and
thereby sorting all texture accesses. In order to motivate this statement, we assume
that a pixel shader program is used to compute the color of a fragment. The color
will be a function, color = f (ti,Si), of the PB, t i, and some state, Si, consisting of
constants for view i. If we assume that the shader contains no view dependencies,
then all states, Si, will be equal and we can write color = f (ti,S), meaning that the
only varying parameter will be the PBs. Since pixel shader programs are purely
deterministic, the exact same PB will yield the same texture accesses. Therefore,
it is reasonable to assume that roughly sorted PBs will give roughly sorted texture
accesses. This applies to all texture accesses, including nested or dependant ac-
cesses, as long as they do not depend on the view. Note in particular that a shader
containing view-independent texture access followed by view-dependent shading
computations will be efficiently handled by our algorithm. An example of this is
a shader that applies a bump map to a surface in order to perturb the normal, and
after that, specular shading is computed based on the normal.
The rationale for our traversal algorithm is illustrated in Figure 3. For simplicity,
only a stereo system is shown, but the reasoning applies to any number of views.
We focus on a single scanline at a time. As can be seen, evenly spaced sample
points in screen space are unevenly distributed in the PB space due to perspective.
Using multi-view projection, the sample points for both views are located on a
straight line in PB space. The direction of this line is denoted the PB traversal
direction.
To guide the traversal, we define a signed efficiency measure, E i, for each view, i,
as:

E i = d · ti, (4)

where d = (du,dv) is the PB traversal direction, which is computed as the differ-
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ence between two PBs located on the same scanline. Thus, E i is the projection of
ti onto the PB traversal direction.
In order to sort the pixel traversal order, we simply chose to traverse the pixel,
and view, with the smallest efficiency measure E i. When a pixel has been visited
for view, i, the ti for the next pixel for that view is computed, and the efficiency
measure, E i, is updated. The next view to traverse in is selected as before, and so
on, until all pixels on the scanline have been visited for all views. Then, the next
scanline is processed until the entire triangle has been traversed. An optimization
of Equation 4 is presented in Section 5.
Below, pseudo code for our new traversal algorithm is shown. A single scanline is
only considered since every scanline is handled in the same way.

TRAVERSESCANLINE(scanlinecoord y)

1 compute coordinate, xi, for the leftmost pixel inside triangle
for each view on scanline y

2 compute li =no. of pixels on current scanline for all views i
3 compute ti for all views, i, for the leftmost pixel, (xi,y)
4 compute d, and compute E i = d · ti for all views, i
5 while (pixels left on scanline for at least one view)
6 find view, k, with smallest Ek and lk > 0
7 visit pixel (xk,y) using tk for view k
8 xk = xk +1, lk = lk−1
9 update tk and Ek

10 end

In the algorithm presented above, we have used only the perspective-correct barycen-
tric coordinates (PBs) to guide the traversal order. This does not take mipmapping
into account. It would be very hard to optimize for mipmapping as it depends on
a view-dependent level-of-detail parameter, λ i, which is usually computed from
the pixel shader program state using finite differences. It may be possible to opti-
mize for mipmapping in the simple case of linear texture mapping, but it is next to
impossible to generalize this to dependent accesses. Furthermore, we believe it is
not worth complicating our algorithm further for an expectedly slight increase in
performance.

4.2 Tiled Multi-View Traversal

While scanline-based traversal works fine, there are many advantages of using
a tiled traversal algorithm, where a tile of w× h pixels is visited before moving
on to the next tile. For example, it has been shown that texture caching works
even better [11], that simple forms of culling [6, 21] can be implemented, and that
depth buffer and color buffer compression [20, 21] can be employed. These types
of algorithms are difficult or impossible to use with scanline-based traversal.
Fortunately, our scanline-based traversal algorithm can be extended to work on
a per tile basis. This is done by imagining that the pixels in Figure 3 are tiles

72



4. NEW MULTI-VIEW RENDERING ALGORITHMS

u

v

View 1 View 2

PB space

A0

B0
C0

D0

E0

A1

B1

C1

D1
F0

Figure 4: Tiled traversal, shown in PB space, for a row of tiles overlapping a
triangle (not shown). The PB traversal direction is the gray line. Our algorithm
visits the tiles in the following order: A0, A1, B0, B1, C0, D0, C1, E0, D1, and finally
F0. This is the order in which the tiles appear on the PB traversal direction.

rather than pixels. A rectangular tile in screen space projects, in general, to a
convex quadrilateral in PB space. In Figure 4, a triangle is assumed to have been
rasterized, and for a particular row of tiles, the projection of the tiles are shown in
PB space. As can be seen, the projected tiles overlap the same area in PB space for
the two views, and therefore the texture cache hit ratio can be expected to be high.
This is especially true if the tiles are traversed in the order in which they appear
along the PB traversal direction, as we suggest in our algorithm in Section 4.1.
Practically, this amounts to two computational and algorithmic differences com-
pared to scanline-based traversal. First, we compute the efficiency measure, E i,
and perform sorting for the each tile rather than each pixel. As reference point for
the computations, we use the center of the tile, but any point inside the tile would
do. The second difference is that the traversal algorithm is designed so that all tiles
(overlapping a triangle), on a row of tiles, are visited before moving on to the next
row of tiles.

4.3 Approximate Pixel Shader Evaluation

In this section, we present an extension for tiled traversal algorithm (Section 4.2),
which adds approximated pixel shader evaluation. The general idea, inspired by
the work of Cohen-Or et al. [8], is that exact pixel shader evaluation is done for a
particular view, e, and when rasterizing to a nearby view, a, the pixel shader eval-
uations from view e are reused if possible. In Section 4.1, we motivated that if the
pixel shader program contains no view dependencies, then it will be a determinis-
tic function, color = f (ti,S), of the PB, ti, of a pixel. We used this to motivate that
for a given PB coordinate, the shader will always issue the same texture accesses.
However, it is also true that the shader will always return the same color given the
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Exact view Approximated view

pe

qe

re
ta

Figure 5: Illustration of how a fragment (red circle) with perspective-correct
barycentric coordinates ta, in an approximated view, can be mapped onto a screen-
space position in the exact view. The color of two nearby fragments in the exact
view are interpolated to compute the color of the fragment in the approximated
view.

same PB as input. This implies that we should be able to reuse the results of the
pixel shader programs.
In the following, we present an algorithm that exploits this assumption to provide
approximate pixel shader evaluations, and our results show that we can obtain
high-quality renderings. Since the approximation may produce incorrect results
for view-dependent shaders, we suggest that the application programmer should
have fine-grained control over this feature in order to turn it off/on as desired.
We initially divide our views into sets where the view divergences of the cameras
in each set are considered small enough. When a triangle is rasterized, we select
an exact view from each set. This can be done by either setting a fixed exact view,
or by choosing the view that maximizes the triangle’s projected area. We refer to
the remaining views in the set as approximated views.
Figure 5 illustrates our approximate pixel shader technique. When evaluating the
pixel shader for the exact view, we execute the full pixel shader, which may depend
on the camera position. Hence, the exact view will render the triangle without
any approximations. Looking at a single fragment in an approximated view, we
will use its perspective-corrected barycentric coordinates (PBs), ta = (ta

u , ta
v ), to

compute the position of the fragment in the exact view’s homogeneous screen
space. Assume the homogeneous coordinates of the triangle’s vertices in the exact
view are denoted pe, qe, and re. Now, to find out which pixel in the exact view
that correspond to ta in an approximated view, we can use interpolation of the
homogeneous screen-space coordinates as shown below:

c = (cx,cy,cz,cw)T = (1− ta
u − ta

v )pe + ta
u qe + ta

v re. (5)

The screen-space x-coordinate in the exact view is found by homogenization: x =
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cx/cw, and the y-coordinate is implicitly known from the scanline being processed
due to the findings in Section 3.2. The position, (x,y), will rarely map exactly to a
sample point of a fragment in the exact view, but we can compute the color1 of the
approximated fragment by interpolating between the neighboring fragments in the
exact view.
In order to approximate the pixel shader evaluation, we introduce a shader output
cache, shown in Figure 6, which holds the pixel shader outputs (color and possibly
depth) for a number of tiles rendered in the exact view. When a new triangle is
being rasterized, we start by clearing the shader output cache to ensure that we
only use fragment outputs of the same triangle during approximation. Each time a
tile is being rasterized for the exact view, we allocate and clear the next tile-sized
entry in the shader output cache. The next entry is selected in a cyclic fashion,
so that the least recently traversed tile is retired from the cache. The pixel shader
outputs of the fragments in the current tile are then simply written to that cache
entry.
Each time we render a fragment in an approximated view, we compute the corre-
sponding fragment position in the exact view as outlined above. The fragments to
the left and right of the true fragment position are queried in the cache, and if both
fragments are found, we compute the approximated pixel shader output by linear
interpolation. If only one of the fragments exists, we simply set the approximated
output to the value of that fragment.2 Finally, if none of the fragments are found,
we execute the full pixel shader to compute the exact output.
Our main reason for choosing two shaded fragments and weighting them to form
an approximated fragment is that we can use existing hardware interpolators to
do the computations. This makes the implementation very inexpensive, and in
Section 6, we show that this approximation generates high-quality results for view-
independent shaders. However, there is a more precise way of performing the
filtering. Instead of projecting the center of the pixel, we project the endpoints of
a filter kernel into the exact view. This is shown in Figure 7. When the horizontal
parallax difference between the exact view and the approximated view is relatively
large, the projected endpoints may span more than two pixels. To obtain a higher
quality of the approximated fragments, a larger filter (e.g., tent, or Gaussian) is
applied to all the pixels in the span. Note that this technique is also approximate.
The approximation method requires that the pixels in the different views are tra-
versed in an ordered fashion, so the shader output cache is filled with the appro-
priate results before it is being queried. This is exactly what our algorithms (de-
scribed in Section 4.1 & 4.2) do, and hence the approximation works well when
used together with our traversal algorithms. However, in order to make sure that
the shader output cache is filled before we start processing approximated views,
we must delay the approximated views slightly. In our implementation we do this

1If the pixel shader also computes the depth of the fragment, our algorithm can be used to approxi-
mate the depth as well.

2Alternatively, one could choose to execute the full pixel shader for such fragments. This would
increase the quality slightly.
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Figure 6: To support approximate pixel shader evaluation, a shader output cache
and an approximation unit (AU) are introduced into the rasterization pipeline. Be-
fore the pixel shader is executed for an approximated view, the AU checks with
the shader output cache whether the fragment color can be computed from existing
fragment colors in the cache. If so, the pixel shader unit is bypassed. Otherwise,
the pixel shader is executed as usual.

by computing the efficiency measure, E i, for a tile located k− 1 tiles away along
the currently traversed row of tiles, where k is the number of entries in the shader
output cache. For exact views, we compute the efficiency measure as usual. This
will cause our sorted traversal algorithm of Section 4.1 to pre-load the cache.

Discussion One possibility we explored was to augment existing depth and color
buffer caches and use them to do the job of the shader output cache. This requires
a small extension of one bit per cache entry in order to be able to flag if a color or
depth value was written while rasterizing the current triangle. We found that this
approach works satisfactory for opaque geometry. However, we cannot perform
any approximations when blending is enabled, because using the blended values
for approximation may cause distortion of geometry seen through a transparent tri-
angle. Blending is popular for particle effects, and crucial to multi-pass techniques
in general. Therefore, we think that it is important to be able to support blending
in our approximate algorithm as well.
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ta

Approximated viewExact view filter kernel

Figure 7: Higher quality filtering is obtained by projecting the blue end points of
the filter kernel in the approximated view into the exact view. These projected
points span a number of pixels (dark gray), which are weighted using the filter
kernel to form the approximated fragment.

4.4 Accumulative Color Rendering

A very simple and worthwhile extension of our architecture is to allow all views to
access a single common color buffer, while each view has its own depth and stencil
buffers. This allows for acceleration of some forms of multi-sampling effects, such
as, depth of field for a single view. Recall that we compute the traversal order
based on a texture-cache efficiency measure in our architecture. Therefore, the
rendering order will be correct in the multiple depth buffers, but we cannot make
any assumptions about the rendering order in the common color buffer. However,
many multi-sampling algorithms can be described on an order-independent form:

m =
n

∑
i=1

wici,

where n is the number of samples, ci is the color of a sample, wi is the weight of
the sample (typically wi = 1/n), and m is the color of the multi-sampled fragment.
This equation can be implemented by using additive blending for the summation,
and the factor wi can be included in the pixel shader.
If the programmer is aware of that a multi-view rasterizer is being used, he/she can
accelerate multi-sampling in the cases mentioned above. For instance, if we have
hardware capable of handling four views, an image with depth of field using 4×4
samples can be rendered as follows:

RENDERSCENEDEPTHOFFIELD()

1 for y← 1 to 4
2 create all Mi, i ∈ [1,4]
3 disable color writes
4 RASTERIZESCENETOALLVIEWS(M1, . . . ,M4)
5 enable color writes
6 enable additive blending
7 enable pixel shader that includes the wi = 1/16 scaling term
8 RASTERIZESCENETOALLVIEWS(M1, . . . ,M4)
9 end
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It is important to initialize the depth buffer (line 3 & 4) prior to color rendering,
otherwise incorrect results will be obtained using additive blending. Note that this
is also the case when using a single-view architecture, and so is not a disadvan-
tage that stems from our architecture. An alternative approach is to render into
16 different color buffers, and combine the result in a post-process. However,
our approach yields much better color buffer cache performance, since the trian-
gles rendered simultaneously are coherent in screen space, and the post-processing
stage is avoided.
In the pseudo code above, a deferred shading approach is used. Alternatively, the
result could be blended directly into an accumulation buffer, but we have found
that this uses more bandwidth. It is also worth pointing out that a brute-force
implementation of depth of field using n samples per pixel sends the geometry n
times to the graphics hardware. Our implementation sends the geometry 2n/v,
where v is the number of views (e.g. 16) the system can handle at a time.

5 Implementation

To benchmark and verify our algorithms, we have implemented a subset of OpenGL
2.0 in a functional simulator in C++. The core of the traversal algorithm and the
approximation technique were implemented in less than 300 lines of code.
In our implementation, the efficiency measure E i that is used to select the next tile
to rasterize is computed in a less expensive way, compared to directly evaluating
Equation 4. Since E i is only used to sort the points, ti, we can evaluate this expres-
sion along the axis that corresponds to the largest of abs(du) and abs(dv). Thus, E i

is simply the component of ti that corresponds to this axis, and the computation of
E i is therefore almost for free.
Clipping a triangle against the view frustum may result in at most seven triangles.
Since the projection matrices are different for each view, the number of resulting
triangles may not be the same for all views. Hence, it is important to traverse
unclipped triangles. We have adapted McCool et al’s. [19] traversal algorithm in
homogeneous space, so that we traverse tiles along the horizontal viewport direc-
tion. In order to do so, we first find a screen space axis-aligned bounding box
for each triangle, using binary search and a box-triangle overlap test [5]. We then
traverse the bounding box using a simple horizontal sweep. A more advanced
traversal algorithm would yield higher performance, but this is outside the scope
of this paper. The efficiency of the traversal algorithm will not affect bandwidth
utilization in our simulator, since we detect tiles not overlapping the triangle and
discard them.
In terms of culling, some special cases may occur. For instance, triangles can be
backface culled or outside the view frustum in one view, while remaining visible
in others. This is easily solved if our algorithms are robustly implemented. A
culled triangle can simply be given a scanline width of zero pixels, which will
make sure it is never rasterized. For our approximate algorithm, a culled triangle
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will not generate any fragments, which means that the shader output cache will
not be filled, and approximation will not be done. Thus, the visual result is not
compromised.
It should be noted that it may be difficult to compute the PB traversal direction and
efficiency measure in the context of a tiled rasterizer. We have favored simple code,
and compute the PB traversal direction from the start and end points of a row of
tiles. We also evaluate the efficiency measure in the center of each tile, regardless
of whether it lies inside the triangle or not. This implementation suffers from a
weakness that appear when a row of tiles cross the “horizon” of the plane that pass
through the current triangle. When crossing this horizon, the PBs behave similarly
to an 1/x function in the vicinity of the origin. This results in sign changes in
the efficiency measure, and ultimately in incorrect sorting. However, it should
be noted that this is a very rare occurrence. Furthermore, it will only affect the
texture cache efficiency, and not the correctness of the result. In the future, we
would like to investigate if there is an elegant way to extend our implementation
so that correct sorting is guaranteed even in these extreme cases.

6 Results

In this section, we present the results for our exact and approximate algorithms
(Section 4.2 and 4.3, respectively). The results were obtained from our functional
simulator, using the test scenes summarized in the top row of Figure 8.
The Quake3 scene is a game level using multi-texturing with one texture map
combined with a light map for every pixel. A potentially visible set is used during
rendering, so the overdraw factor is similar to that of most modern games.
For our Soft Shadows test scene, we implemented Uralsky’s soft shadow map-
ping algorithm [31] in combination with bump-mapped and gloss-mapped per-
pixel Phong shading. This scene is meant to model a modern or next-generation
graphics engine, targeted for real-time graphics, which makes heavy use of com-
plex shaders containing many texture accesses.
The Ocean scene is our implementation of Pelzer’s ocean shader [24]. This scene
is a nightmare scenario for our algorithms, as it contains bump-mapped reflections
and refractions, both view-dependent and highly diverging due to the bump map-
ping and high view divergence of the cameras. Thus, this scene was designed to
contradict all assumptions made in our algorithms.
All scenes have an animated camera, and statistics were gathered for at least 200
frames. The Ocean scene also has an animated water surface. We chose to render
at a resolution of 640× 480 pixels per view, which is reasonable considering the
current 3D display technology. For example, Philips has built a 3D display capable
of either nine views at 533× 400 pixels, or seven views at 686× 400 pixels [32].
We have investigated the behavior of our algorithms with respect to rendering res-
olution, and conclude that they both behave robustly. Both total bandwidth and
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Figure 8: The first row shows a summary of the test scenes rendered at 640×480
pixels. The bandwidth (BW) figures, located on top of each bar, is the BW in
megabytes (MB) per frame for a single view using a conventional rasterizer, as
described in the text. Each bar is divided into texturing BW (gray), depth buffer
BW (white), and color buffer BW (black). The second and third rows show total
BW and texture BW per frame as a function of the number of views for each frame.

texturing bandwidth increase slightly sub-linearly with increasing resolution. This
effect is due to all caches getting slightly more cache hits at higher resolutions, and
the compression ratios of color and depth buffers were either constant or became
slightly better. Similar behavior was observed for a brute-force architecture.
Even though there are computations that can be shared among different views in
the vertex-processing units, we focus our evaluation only on the rasterizer stage,
since it is very likely that it will become the bottleneck. In the following, we re-
fer to a conventional rasterizer (CR) as a modern rasterizer architecture with the
following bandwidth reducing algorithms: fast depth clears, depth buffer compres-
sion, depth buffer caching, Z-max culling, texture caching, color buffer compres-
sion and color buffer caching. A multi-view rasterization architecture that is im-
plemented by rendering the scene n times using a single CR is called a brute-force
(BF) multi-view architecture (see also Section 3.1).
For all architectures, we use a fully associative 6 kB texture cache with least-
recently used (LRU) replacement policy. Since our architecture rasterizes to all
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views simultaneously, it needs an increasing amount of depth and color buffer
cache with an increasing number of views. For all our tests, our architecture uses
n× 512 bytes for the depth buffer caches, and n× 512 bytes for the color buffer
caches. Thus, a stereo system will use 8 kB cache memory in total.
For a fair comparison, we ensure that our architecture and the BF architecture use
exactly the same amount of cache memory. The extra 1 kB of cache memory that
we need per view, can be spent on either the depth and color buffer caches, or
on the texture cache in a BF architecture. We call these architectures BF DC and
BF TX respectively. In all our tests, we have observed that the total amount of
bandwidth is reduced most if the texture cache is increased. We have therefore
chosen to omit the BF DC architecture from the results.
We present statistics gathered from our test scenes in Figure 8. As can be seen
in those diagrams, both our exact and our approximate rasterization algorithms
perform far better than the brute-force architecture. For the Quake3 scene, the
majority of bandwidth usage is spent on the color and depth buffer. However,
our algorithm provides major reductions in terms of texture bandwidth. In fact, it
remains almost constant over an increasing number of views. The same holds for
the Soft Shadow scene, but the results are even better since the texture bandwidth
is more dominating compared to the Quake3 scene.
In the case of the Ocean scene, our algorithm performs worse than BF TX when the
number of views is greater than eight. This is not very surprising considering that
the scene was designed as a worst case for our algorithm. The scene contains very
little view coherency in the texture accesses, and the BF TX architecture will have
a much bigger texture cache at 16 views. We think that the results are very good
considering the circumstances, and substantial bandwidth reduction is achieved up
to four views. In fact, our algorithm performs better even for 16 views, if we render
four passes with a four-view architecture. It should be noted that all benchmarks
once again turned completely to our favor simply by increasing the texture cache
size to 12 kB. This means that for every scene, there is a texture cache size “knee”
that makes our algorithm perform extremely well. The same applies to a BF TX
architecture: when the texture cache size is decreased, performance will degrade
gracefully. We have also included bandwidth measurements for a version of the
Ocean scene that used a shared camera position for the shaders (Figure 8), and
these indicate how disadvantageous the view dependencies of this scene are.
It should be noted that even though the bandwidth measurements for our approxi-
mate algorithm is only marginally better than the exact algorithm, the approximate
algorithm completely avoids a very large amount of pixel shader program exe-
cutions. Hence, computational resources are released and can be used for other
tasks. Our tests show that about 95% of the pixels, in the approximated view in a
stereo system, can be approximated. When the number of views increases, fewer
pixels can be approximated due to increased view divergence, and with 16 views,
our approximation ratio has dropped to approximately 80%. See Figure 9 for a
visualization of the approximation in a five-view system. A major advantage of
our approximate algorithm is that it always generates correct borders of the tri-

81



PAPER III: AN EFFICIENT MULTI-VIEW RASTERIZATION ARCHITECTURE

Figure 9: Visualization of approximation in the Quake3 scene. Green pixels have
been approximated from the exact central view.

angles and correct depth—only the content “inside” a triangle can be subject to
approximation.
It is also important to measure image quality of our approximate algorithm. For
the Quake3 scene, the peak-signal-to-noise-ratio (PSNR) was about 40 dB for the
entire animation. This is considered high even for still image compression. When
the number of views increased, the PSNR remained relatively constant. This was
not expected by us, since using linear interpolation for approximation gives worse
results for a larger view divergence between an exact view and an approximated
view. However, fewer pixels can be approximated when the view divergence is
high between the approximated and exact view, and hence the quality increases.
The Soft Shadows and Ocean scene are harder cases for the approximation algo-
rithm since they both contain view dependencies. The Soft Shadows scene con-
tain view dependencies in the form of specular highlights, and the Ocean scene
has nested view-dependent texture lookups (bump-mapped reflections and refrac-
tions). For those scenes, we must use a unified camera position for shading when
the approximate algorithm is used. Otherwise visible seams may appear between
approximated pixels and “exact” pixels. In our Soft Shadows scene, the unified
camera position is hardly visible, and the PSNR is between 36 and 40 dB. In our
Ocean scene, the differences are easily spotted when comparing to the exact solu-
tion, but the approximated version still looks good.As previously stated, we believe
the application programmer should be given the appropriate control over when ap-
proximation should be used. Approximation could be turned off for surfaces with
view-dependent shaders, or be controlled by a user-tweakable setting for quality
or performance. In some applications, such as games, it may be more reasonable
to use approximation. However, when a graphics hardware architecture is used for
scientific computing, e.g. fluid dynamics on the GPU, the application programmer
would probably want to turn off approximation, and only use our exact algorithm,
which would still give a performance advantage.
Interestingly, for our approximate algorithm, we observed that compression of the
color buffer works better than for our exact algorithm. On average, the compres-
sion ratio improved by 5–10%, most likely because of the slight low-pass effect
introduced by the approximation filter.
To summarize, our results show that our multi-view rasterization architecture gives
substantial reductions in terms of total bandwidth usage. The texture bandwidth re-
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Figure 10: The Sponza atrium rendered with a depth of field (DOF) effect. The
diagram shows bandwidth measurements in gigabytes per frame as a function of
the number of views supported by the rasterizer. The curve named “Theoreti-
cal optimum” shows the best possible performance for our architecture at a given
number of supported views. In short, we assume that the texture and color buffer
bandwidth are zero for all views but one during each render pass. The BF DC
architecture has been included because it performs better than the BF TX archite-
cure in this particular benchmark. This is due to the two-pass nature of the DOF
algorithm, and since the scene does not use any complicated shaders.

mains close to constant with an increasing number of views, and texture bandwidth
reductions on the order of a magnitude are possible. Furthermore, our approximate
technique can render high-quality images without executing the pixel shader for up
to 95% of the fragments.

6.1 Accumulative Color Rendering

Figure 10 shows our final test scene, which is a depth of field (DOF) rendering
of the Sponza atrium, using multi-texturing with decal textures and global illu-
mination light maps. In contrast to the Ocean scene, which was designed as a
nightmare scenario, this test hits the very sweet spot of our algorithm. Here, we
benchmark the performance of accumulative color rendering (Section 4.4). The
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tests were made using the same configurations of the rasterizer as in the previous
benchmarks. However, this time we rendered a 16×16 samples DOF, where each
configuration rendered the scene in as few passes as possible. For instance, a 16-
view multi-view rasterization architecture would need to render 16 passes, while
a 4-view system would need 4× 16 = 64 passes. The BF algorithms always re-
quire all 256 passes. Our results in Figure 10 show a major reduction, not only
in texture bandwidth, but also in color buffer bandwidth. This is to be expected,
since all color buffer cache memory can be spent on a single color buffer, and since
a projected primitive will be relatively coherent in screen space across all views
when rasterizing to the same buffer. It is worth noting that the performance of our
architecture is very close to its theoretical limit.

6.2 Small triangles

In this section, we will shed some light on how our architecture performs when
rendering very small triangles. As we perform sorting on a per-tile level, the be-
havior of our algorithm will approach an architecture that renders a triangle to all
views without any sorting at all (called “Tri-by-Tri” below) when rendering small
triangles. In order to test sub-pixel triangle rendering, i.e., where the average num-
ber of pixels per triangle (ppt) is less than one, we rendered the Quake3 scene at
low resolution using various four-view systems. In the following table, we present
the texture bandwidth relative to the BF TX architecture:

80×60, 0.8 ppt 640×480, 48 ppt
BF TX 100% 100%
Tri-by-Tri 31.3% 88.8%
Our 28.5% 27.3%

As can be seen, our algorithm handles small triangles very robustly. A view-
independent texture access will be very coherent for a small triangle no matter
what point in the triangle we choose to sample from, and drawing a triangle to all
views will provide sufficient sorting of the texture accesses. Our opinion is that
the Tri-by-Tri algorithm is much less robust since it fails horribly when the trian-
gle area increase. Large triangles are still frequently used in games, architectural
environments & particle systems, and it is therefore crucial to be able to handle
them as well.

7 Discussion

Our multi-view rasterization architecture has been designed with the current tech-
nological development in mind: computing power grows at a much faster rate than
memory bandwidth, and DRAM capacity is expected to double every year [22].
Hence our focus has been on reducing usage of memory bandwidth at a cost of
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duplicating the depth and stencil buffers. The BF architecture would only need to
duplicate the color buffer, if the depth and stencil buffers are cleared between the
rendering of different views.
From a cost/performance perspective, a reasonable solution would be to implement
a multi-view rasterizer with our approximate pixel shader technique and our tiled
traversal for two, three, or four views. A multi-pass approach can be used when
rendering to more views than supported by the architecture. For example, a system
for four views can be used to render to 12 different views by rendering the scene
three times.
Our traversal algorithm requires the ability to change the view which is currently
being rasterized to. The same pixel shader program is used for all views, so switch-
ing views only amounts to changing the current active view. This can be done by
enumerating all views, and changing the currently active index. This index points
to view-dependent information, such as view parameters, and it also points to out-
put buffers, for example. Therefore, we are confident that view switching can be
efficiently implemented in hardware.

8 Conclusion and Future Work

We have presented a novel multi-view rasteriziation architecture, and shown that it
is possible to exploit a substantial amount of the inherent coherency in this context.
It is our hope that our work will renew interest in multi-view image generation
research, a field that has received relatively little attention. Furthermore, it is our
belief that our architecture may accelerate the acceptance of multi-view displays
for real-time graphics.
With our current architecture, it is apparent that the bottlenecks from texturing and
complex pixel shaders have moved to color and depth buffer bandwidth usage. For
future work, we would therefore like to investigate whether these buffers can be
compressed simultaneously for all views. This can lead to higher compression
ratios. Some kind of differential encoding might be a fruitful avenue for this type
of problem. Currently, we are making an attempt at augmenting our algorithms so
that parallax in more directions can be obtained. This would allow us to have, for
example, 2×2 viewpoints, and thus achieve both horizontal and vertical parallax.
The parameter space (texture cache size, tile size, etc) involved in our architecture
is large, and in future work, we want to explore various configurations in more
detail.
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ABSTRACT

In this paper, we break new ground by presenting algorithms for
fixed-rate compression of high dynamic range textures at low bit rates.
First, the S3TC low dynamic range texture compression scheme is ex-
tended in order to enable compression of HDR data. Second, we intro-
duce a novel robust algorithm that offers superior image quality. Our
algorithm can be efficiently implemented in hardware, and supports
textures with a dynamic range of over 109:1. At a fixed rate of 8 bits
per pixel, we obtain results virtually indistinguishable from uncom-
pressed HDR textures at 48 bits per pixel. Our research can have a
big impact on graphics hardware and real-time rendering, since HDR
texturing suddenly becomes affordable.
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1. INTRODUCTION

1 Introduction

The use of high dynamic range (HDR) images in rendering [6, 7, 18, 27] has
changed computer graphics forever. Prior to this, only low dynamic range (LDR)
images were used, usually storing 8 bits per color component, i.e., 24 bits per
pixel (bpp) for RGB. Such images can only represent a limited amount of the
information present in real scenes, where luminance values spanning many orders
of magnitude are common. To accurately represent the full dynamic range of an
HDR image, each color component can be stored as a 16-bit floating-point number.
In this case, an uncompressed HDR RGB image needs 48 bpp.
In 2001, HDR images were first used in real-time rendering [4], and over the past
years, we have observed a rapidly increasing use of HDR images in this context.
Game developers have embraced this relatively new technique, and several recent
games use HDR images as textures. Examples include Unreal Engine 3, Far Cry,
Project Gotham Racing 3, and Half-Life 2: Lost Coast.
The disadvantage of using HDR textures in real-time graphics is that the tex-
ture bandwidth usage increases dramatically, which can easily limit performance.
With anisotropic filtering or complex pixel shaders, it can become even worse.
A common approach to reduce the problem is texture compression, introduced in
1996 [1, 11, 23]. By storing textures in compressed form in external memory, and
sending compressed data over the bus, the bandwidth is significantly reduced. The
data is decompressed in real time using special-purpose hardware when it is ac-
cessed by the pixel shader. Several formats use as little as 4 bpp. Compared to
24 bpp RGB, such techniques can potentially reduce the texture bandwidth to only
16.7% of the original.
Texels in textures can be accessed in any order during rasterization. A fixed-rate
texture compression (TC) system is desirable, as it allows random addressing with-
out complex lookup mechanisms. Hence, JPEG and similar algorithms do not im-
mediately qualify as reasonable alternatives for TC, since they use an adaptive bit
rate over the image. The fixed bit rate also implies that all realistic TC algorithms
are lossy. Other characteristics of a TC system are that the decompression should
preferably be fast and relatively inexpensive to implement in hardware. However,
we expect that increasingly complex decompression schemes can be accepted by
the graphics hardware industry, since the available bandwidth grows at a much
slower pace than the computing power [15]. A difference between LDR and HDR
TC is that for HDR images, we do not know in advance what range of luminance
values will be displayed. Hence, the image quality must remain high over a much
larger range of luminance.
We present novel HDR TC schemes, which are inexpensive to implement in hard-
ware. Our algorithms compresses tiles of 4× 4 pixels to only 8 bpp. The com-
pressed images are of very high quality over the entire range of input values, and
are essentially indistinguishable from uncompressed 48 bpp data. An example of
a compressed image is shown in Figure 1.
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Figure 1: Example of a high dynamic range image, here shown at three different
exposures, compressed with our algorithm to a fixed rate of 8 bits per pixel. Our
algorithm gives excellent image quality over a large dynamic range, and is fast to
decompress in hardware.

2 Related Work

Here, we first present research in LDR texture compression (TC) for graphics hard-
ware that is relevant to our work. For a more complete overview, consult Fenney’s
paper [9]. Second, some attention is given to existing HDR compression systems.

LDR Texture Compression Vector quantization (VQ) techniques have been
used by Beers et al. [1] for TC. They presented compression ratios as low as one
or two bpp. However, VQ requires an access in a look-up table, which is not desir-
able in a graphics hardware pipeline. The S3TC texture compression scheme [10]
has become a de facto standard for real-time rendering. Since we build upon this
scheme, it is described in more detail in Section 4.
Fenney [9] presents a system where two low-resolution images are stored for each
tile. During decompression, these images are bilinearly magnified and the color of
a pixel is obtained as a linear blend between the magnified images. Another TC
scheme assumes that the whole mipmap pyramid is to be compressed [16]. Box fil-
tering is used, and the luminance of a 4×4 tile is decomposed using Haar wavelets.
The chrominance is subsampled, and then compressed. The compression ratio is
4.6 bpp.
In a TC system called iPACKMAN [22], 4×4 tiles of pixels are used, and each tile
encodes two base colors in RGB444 and a choice of modifier values. The color of
a pixel is determined from one of the base colors by adding a modifier value.

HDR Image and Video Compression To store an HDR image in the RGBE
format, Ward [24] uses 32 bits per pixel, where 24 bits are used for RGB, and
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the remaining 8 bits for an exponent, E, shared by all three color components. A
straightforward extension would be to compress the RGB channels using S3TC to
4 bits per pixel, and store the exponent uncompressed as a separate 8 bpp texture,
resulting in a 12 bits per pixel format supported by current graphics hardware.
However, RGBE has a dynamic range of 76 orders of magnitude and is not a com-
pact representation of HDR data known to reside in a limited range. Furthermore,
as both the RGB and the exponent channel contain luminance information, chromi-
nance and luminance transitions are not separated, and artifacts similar to the ones
in Figure 13 are likely to occur. Ward also developed the LogLuv format [28],
where the RGB input is separated into luminance and chrominance information.
The logarithm of the luminance is stored in 16 bits, while the chrominance is stored
in another 16 bits, resulting in 32 bits per pixel. A variant using 24 bpp was also
presented.
Ward and Simmons [26] use the possibility of storing an extra 64 kB in the JPEG
image format. The file contains a tone mapped image, which can be decompressed
using standard JPEG decompressors. In the 64 kB of data, a ratio image of the
luminance in the original and the tone mapped image is stored. A loader incapable
of handling the format will display a tone mapped image, while capable loaders
will obtain the full dynamic range. Xu et al. [29] use the wavelet transform and
adaptive arithmetic coding of JPEG 2000 to compress HDR images. They first
compute the logarithm of the RGB values, and then use existing JPEG 2000 algo-
rithms to encode the image. Impressive compression ratios and a high quality is
obtained. Mantiuk et al. [14] present an algorithm for compression of HDR video.
They quantize the luminance using a non-linear function in order to distribute the
error according to the luminance response curve of the human visual system. Then,
they use an MPEG4-based coder, which is augmented to suppress errors around
sharp edges. These three algorithms use adaptive bit rates, and thus cannot provide
random access easily.
There is a wide range of tone mapping operators (cf. [18]), which perform a type of
compression. However, the dynamic range is irretrievably lost in the HDR to LDR
conversion, and these algorithms are therefore not directly applicable for TC. Li
et al. [12] developed a technique called companding, where a tone mapped image
can be reconstructed back into an HDR image with high quality. This technique is
not suitable for TC since it applies a global transform to the entire image, which
makes random access extremely slow, if at all feasible. Still, inspiration can be
obtained from these sources.
In the spirit of Torborg and Kajiya [23], we implemented a fixed-rate HDR DCT
encoder, but on hardware-friendly 4× 4 tiles at 8 bits per pixel. The resulting
images showed severe ringing artifacts near sharp luminance edges and moder-
ate error values. The decompressor is also substantially more complex than the
algorithms we present below.
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3 Color Spaces and Error Measures

In this section, we discuss different color spaces, and develop a small variation
of an existing color space, which is advantageous in terms of hardware decom-
pression and image quality. Furthermore, we discuss error metrics in Section 3.2,
where we also suggest a new simple error metric.

3.1 Color Spaces

The main difficulty in compressing HDR textures is that the dynamic range of
the color components can be very large. In natural images, a dynamic range of
100,000:1 is not uncommon, i.e., a factor 105 difference between the brightest and
the darkest pixels. A 24-bit RGB image, on the other hand, has a maximum range
of 255:1. Our goal is to support about the same dynamic range as the OpenEXR
format [2], which is based on the hardware-supported half data type, i.e., 16-bit
floating-point numbers. The range of representable numbers with full precision
is roughly 6.1 · 10−5 to 6.5 · 104, giving a dynamic range of 109:1. We aim to
support this range directly in our format, as a texture may undergo complex image
operations where lower precision is not sufficient. Furthermore, the dynamic range
of the test images used in this paper is between 102.6 and 107.3. An alternative is
to use a tighter range and a per-texture scaling factor. This is a trivial extension,
which would increase the quality for images with lower dynamic ranges. However,
this requires global per-texture data, which we have opted to avoid. We leave this
for future work.
To get consistently good quality over the large range, we need a color space that
provides a more compact representation of HDR data than the standard RGB
space. Taking the logarithm of the RGB values gives a nearly constant relative
error over the entire range of exposures [25]. Assume we want to encode a range
of 109:1 in 1% steps. In this log[RGB] space, we would need k = 2083 steps,
given by 1.01k = 109, or roughly 11 bits precision per color channel. Because of
the high correlation between the RGB color components [19], we need to store all
three with high accuracy. As we will see in Section 4, we found it difficult to reach
the desired image quality and robustness when using the log[RGB] space.
In image and video compression, it is common to decorrelate the color chan-
nels by transforming the RGB values into a luminance/chrominance-based color
space [17]. The motivation is that the luminance is perceptually more important
than the chrominance, or chroma for short, and more effort can be spent on en-
coding the luminance accurately. Similar techniques have been proposed for HDR
image compression. For example, the LogLuv encoding [28] stores a log represen-
tation of the luminance and CIE (u′,v′) chrominance. Xu et al. [29] apply the same
transform as in JPEG, which is designed for LDR data, but on the logarithm of the
RGB components. The OpenEXR format supports a simple form of compression
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based on a luminance/chroma space with the luminance computed as:

Y = wrR+wgG+wbB, (1)

and two chroma channels, U and V , defined as:

U =
R−Y

Y
, V =

B−Y
Y

. (2)

Lossy compression is obtained by subsampling the chroma components by a factor
two horizontally and vertically.
Inspired by previous work, we define a simple color space denoted logY ūv̄, based
on log-luminance and two chroma components. Given the luminance Y computed
using Equation 1, the transform from RGB is given by:

(Ȳ , ū, v̄) =
(

log2 Y,wb
B
Y

,wr
R
Y

)
. (3)

We use the Rec. 601 [17] weights (0.299, 0.587, 0.114) for wr, wg and wb. With
non-zero, positive input RGB values in the range [2−16,216], the log-luminance Ȳ
is in the range [−16,16], and the chroma components are in the range [0,1] with
ū+ v̄≤ 1.
In our color space, the HDR luminance information is concentrated to the Ȳ com-
ponent, which needs to be accurately represented, while the (ū, v̄) components
only contain chrominance information normalized for luminance. These can be
represented with significantly less accuracy.

3.2 Error Measures

In order to evaluate the performance of various compression algorithms, we need
an image quality metric that provides a meaningful indication of image fidelity. For
LDR images, a vast amount of research in such metrics has been conducted [3].
Perceptually-based metrics have been developed, which attempt to predict the
observed image quality by modeling the response of the human visual system
(HVS). The prime example is the visible differences predictor (VDP) introduced
by Daly [5].
Error measures for HDR images are not as thoroughly researched, and there is
no well-established metric. The image must be tone-mapped before VDP or any
other standard image quality metric, designed for LDR data, can be applied. The
choice of tone mapping operator will bias the result, which is unfortunate. In our
application, another difficulty is that we do not know how the HDR textures will
be used or what the display conditions will be like. For example, a texture in a 3D
engine can undergo a number of complex operations, such as lighting, blending
and multi-texturing, which change its appearance.
Xu et al. [29] compute the root-mean-square error (RMSE) of the compressed
image in the log[RGB] color space. Their motivation is that the logarithm is a
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conservative approximation of the HVS luminance response curve. However, we
argue that this error measure can be misleading in terms of visual quality. The
reason is that an error in a small component tends to over-amplify the error measure
even if the small component’s contribution to the final pixel color is small. For
example, consider a mostly red pixel, r = (1000,1,1), which is compressed to
r∗ = (1000,1,8). The log[RGB] RMSE is then log2 8− log2 1 = 3, but the log-
luminance RMSE, to which the HVS is most sensitive, is only 0.004. Still, we
include the log[RGB] RMSE error because it reflects the relative, per-component
error of the compressed image. It is therefore well suited to describe the expected
error of the aforementioned image operations: blending, lighting etc.
To account for all normal viewing conditions, we propose a simple error metric,
which we call multi-exposure peak-signal-to-noise ratio, or mPSNR for short. The
HDR image is tone mapped to a number of different exposures, uniformly dis-
tributed over the dynamic range of the image. See Figure 2 for an example. For
each exposure, we compute the mean square error (MSE) on the resulting LDR
image, and then compute the peak-signal-to-noise ratio (PSNR) using the mean of
all MSEs. As a tone mapping operator, we use a simple gamma-adjustment after
exposure compensation. The tone mapped LDR image, T (I), of the HDR image,
I, is given by:

T (I) =
[
255(2cI)1/γ

]255

0
, (4)

where c is the exposure compensation in f-stops, γ is the display gamma, and [·]255
0

indicates clamping to the integer interval [0,255]. The mean square error over all
exposures and over all pixels is computed as:

MSE =
1

n×w×h ∑
c

∑
x,y

(
∆R2

xy +∆G2
xy +∆B2

xy
)
, (5)

where n is the number of exposures, c, and w× h is the image resolution. The
error in the red component (similar for green and blue) at pixel (x,y) is ∆Rxy =
TR(I)− TR(C), where I is the original image, and C is the compressed image.
Finally, mPSNR is computed as:

mPSNR = 10log10

(
3×2552

MSE

)
. (6)

The obtained mPSNR over all exposures gives us a prediction of the error in the
compressed HDR image. The PSNR measure has traditionally been popular for
evaluating the performance of TC schemes, and although no other HDR texture
compression techniques exist, the use of mPSNR makes our results more easily
interpreted.
Recently, Mantiuk et al. [13] have presented a number of modifications to the
visual differences predictor, making it possible to predict the perceived differences
over the entire dynamic range in real scenes. This novel HDR VDP takes into
account a number of complex effects such as the non-linear response and local
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-8 -6 -4 -2 0 +2 +4 +6 +8 

49.1 44.9 41.7 39.2 37.7 37.1 38.4 38.0 35.7

Figure 2: In our multi-exposure PSNR error measure, the image is tone mapped to
a number of different exposures to account for all normal viewing conditions, and
the PSNR is computed from the average MSE. In this case, the mPSNR is 39 dB.
The top row shows the standard PSNRs, and the bottom row shows the exposure
compensation, c.

adaptation of the HVS. However, their current implementation only works on the
luminance, and does not take the chroma error into account.
As there is no established standard for evaluating HDR image quality, we have
chosen to use a variety of error metrics. We present results for our algorithm using
the mPSNR, the log[RGB] root-mean-square error, and the HDR VDP.

4 HDR S3 Texture Compression

The S3 texture compression (S3TC) method [10] is probably the most popular
scheme for compressing LDR textures. It is used in DirectX and there are exten-
sions for it in OpenGL as well. S3TC uses tiles of 4×4 pixels that are compressed
to 64 bits, giving a compression rate of 4 bpp. Two base colors are stored in 16
bits (RGB565) each, and every pixel stores a two-bit index into a local color map
consisting of the two base colors and two additional colors in between the base
colors. This means that all colors lie on a straight line in RGB space.
A natural suggestion for an HDR TC scheme is to adapt the existing S3TC algo-
rithm to handle HDR data. Due to the increased amount of information, we double
the rate to 8 bpp. We also apply the following changes. First, we transform the
linear RGB data into a more compact color space. Second, we raise the quantiza-
tion resolution and the number of per-pixel index bits. In graphics hardware, the
memory is accessed in bursts of 2n bits, e.g., 256 bits. To simplify addressing,
it is desirable to fetch 2m pixels per burst, which gives 2n−m bits per pixel (e.g.,
4,8,16,...). Hence, keeping a tile size of 4×4 pixels is a reasonable choice, as one
tile fits nicely into 128 bits on an 8 bpp budget. In addition, a small tile size limits
the variance across the tile and keeps the complexity of the decompressor low.
The input data consists of three floating-point values per pixel. Performing the
compression directly in linear RGB space, or in linear YUV space, produces ex-
tremely poor results. This is due to the large dynamic range. Better results are
obtained in the log[RGB] and the logY ūv̄ color spaces (Section 3.1). Our tests
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show that 4-bit per-pixel indices are needed to accurately capture the luminance
variations. We call the resulting algorithms S3TC RGB (using log[RGB]), and
S3TC YUV (using logY ūv̄). The following bit allocations performed best in our
tests:

Color space Base colors Per-pixel indices
log[RGB] 2× (11+11+10) = 64 16×4 = 64
logY ūv̄ 2× (12+10+10) = 64 16×4 = 64

Even though these S3TC-based approaches produce usable results in some cases,
they lack the robustness needed for a general HDR TC format. Some of the short-
comings of S3TC RGB and S3TC YUV are clearly illustrated in Figure 13. As
can be seen in the enlarged images, both algorithms produce serious block arti-
facts, and blurring of some edges. This tends to happen where there is a chroma
and a luminance transition in the same tile, and there is little or no correlation be-
tween these. The reason is that all colors must be located on a straight line in the
respective 3D color space for the algorithms to perform well. In Figure 13, we also
show the results of our new HDR texture compression scheme. As can be seen,
the image quality is much higher. More importantly, our algorithm is more robust,
and rarely generates tiles of poor quality.

5 New HDR Texture Compression Scheme

In the previous section, we have seen that building a per-tile color map from a
straight line in some 3D color space does not produce acceptable results for S3TC-
based algorithms. To deal with the artifacts, we decouple the luminance from the
chrominance and encode them separately in the logY ūv̄ space defined in Equa-
tion 3. By doing this, difficult tiles can be handled much better. In the following,
we describe how the luminance and chrominance can be accurately represented on
an 8 bpp budget, i.e., 128 bits per tile.

5.1 Luminance Encoding

In the logY ūv̄ color space, the log-luminance values Ȳ are in the range [−16,16].
First, we find the minimum and maximum values, Ȳmin and Ȳmax, in a tile. Inspired
by S3TC, we then quantize these linearly and store per-pixel indices indicating
which luminance step between Ȳmin and Ȳmax that is to be used for each pixel.
As we have seen, we need approximately 16 steps, i.e., 4-bit per-pixel indices, for
an accurate representation of HDR luminance data. If we use 12-bit quantization
of Ȳmin and Ȳmax as in S3TC YUV, a total of 2×12+16×4 = 88 bits are consumed,
and only 40 bits are left for the chroma encoding. This is not enough. By searching
in a range around the quantized base values, it is very often possible to find a
combination that gives a significantly reduced error. Thus, we manage to encode
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Ymax

Ymin

Ymax

Ymin
Uniform mode Non-uniform mode

Figure 3: The two luminance quantization modes. The non-uniform mode is used
for better handling tiles with sharp luminance transitions, such as edges.

the base luminances with only 8 bits each without any noticeable artifacts, even on
slow gradients.
Another approach would be to use spatial subsampling of the luminance. Re-
cent work on HDR displays by Seetzen et al. [20, 21] suggests that the human
eye’s spatial HDR resolution is lower than its LDR resolution. However, the tech-
niques developed for direct display of HDR images are not directly applicable to
our problem as they require high-precision per-pixel LDR data to modulate the
subsampled HDR luminance. We have tried various hierarchical schemes, but the
low bit budget made it difficult to obtain the required per-pixel precision. Second,
our compression scheme is designed for textures, hence we cannot make any as-
sumptions on how the images will be displayed on screen. The quality should be
reasonable even for close-up zooms. Therefore, we opted for the straightforward
solution of storing per-pixel HDR luminance.
The most difficult tiles contain sharp edges, e.g., the edge around the sun in an
outdoor photograph. Such tiles can have a very large dynamic range, but at the
same time, both the darker and the brighter areas must be represented accurately.
For this, a uniform quantization between the min/max luminances is not ideal. To
better handle such tiles, we add a mode using non-uniform steps between the Ȳmin
and Ȳmax values. Smaller quantization steps are used near the base luminances,
and larger steps in the middle. Thus, two different luminance ranges that are far
apart can be accurately represented in the same tile. In our test images (Figure 10),
the non-uniform mode is used for 11% of the tiles, and for these tiles, the log-
luminance RMSE is decreased by 12.0% on average. The two quantization modes
are illustrated in Figure 3.
To choose between the two modes, we use the mutual ordering1 of Ȳmin and Ȳmax.
In decoding, if Ȳmin ≤ Ȳmax, then the uniform mode is used. Otherwise, Ȳmin and
Ȳmax are reversed, and we use the non-uniform mode. Hence, no additional mode
bit is necessary, and the luminance encoding uses a total of 2×8+16×4 = 80 bits,

1Similar ordering techniques are used in the S3TC LDR texture compression format.
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Figure 4: The bit allocation we use for encoding the luminance and chrominance
of a 4×4 tile in 128 bits (8 bpp).
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Figure 5: Illustration of the flip trick. By mirroring the coordinates for a base color,
we exploit our triangular chrominance space in order to obtain another bit.

leaving 48 bits for the chrominance. The bit allocation is illustrated in Figure 4.

5.2 Chrominance Line

Our first approach to chrominance compression on a 48-bit budget, is to use a line
in the (ū, v̄) chroma plane. Similar to the luminance encoding, each tile stores a
number of indices to points uniformly distributed along the line.
In order to fit the chroma line in only 48 bits, we sub-sample the chrominance by
a factor two, either horizontally or vertically, similar to what is used in DV encod-
ing [17]. The sub-sampling mode that minimizes the error is chosen. To simplify
the following description, we define a block as being either 1× 2 (horizontal) or
2× 1 (vertical) sub-sampled pixels. The start and end points of the chroma line,
each with 2×8 bits resolution, and eight 2-bit per-block indices, gives a total cost
of 4×8+8×2 = 48 bits per tile.
In our color space, the normalized chroma points (ūi, v̄i), i ∈ [0,7], are always
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Original Chroma line Shape transforms

Figure 6: A region where a line in chroma space is not sufficient for capturing the
complex color. With shape transforms, we get a much closer resemblance to the
true color, although minor imperfections exist due to the sub-sampling.

located in the lower triangle of the chroma plane. If we restrict the encoding of the
end points of the line to this area, we can get two extra bits by a flip trick described
in Figure 5. If a chrominance value c = (ūi, v̄i) is in the upper (invalid) triangle,
this indicates that the extra bit is set to one, and the true chroma value is given by
c′ = (1− ūi,1− v̄i), otherwise the bit is set to zero. We can use one of these extra
bits to indicate whether to use horizontal or vertical sub-sampling. The other bit is
left unused.

5.3 Chroma Shape Transforms

A line in chroma space can only represent two chrominances and the gradient
between them. This approximation fails for tiles with complex chroma variations
or sharp color edges. Figure 6 shows an example of such a case. One solution
would be to encode ū and v̄ separately, but this does not easily fit in 48 bits.
To better handle difficult tiles, we introduce shape transforms; a set of shapes, each
with four discrete points, designed to capture chroma information. In the classic
game Tetris, the optimal placement of a shape in a grid is found by rotating and
translating it in 2D. The same idea is applied to the chrominances of a tile. We al-
low arbitrary rotation, translation, and uniform scaling of our shapes to make them
match the eight sub-sampled chrominance values of a tile as closely as possible.
The transformation of the shape can be retrieved by storing only two points.
During compression, we select the shape that most closely covers the chroma in-
formation of the tile, and store its index along with two base chrominances (start
& end) and per-block indices. This allows each block in the tile to select one of
the discrete positions of the shape. The shape fitting is illustrated in Figure 7 on
one of the difficult tiles from the image in Figure 6. Using one of the transformed
shapes, we get much closer to the actual chroma information.
The space of possible shapes is very large. In order to find a selection of shapes
that perform well, we have analyzed the chrominance content in a set of images
(a total of 500,000 tiles), different from our test images. First, clustering was
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v

u
Line fit Shape transform fit

Figure 7: In tiles with difficult chrominance, such as in this example taken from
Figure 6, a line in chroma space has difficulties representing the (ū, v̄) points accu-
rately (left). Our algorithm based on shape transforms generates superior chroma
representations, as it is often possible to find a shape that closely matches the
chrominance points (right).

done to reduce the chroma values of a tile to four chroma points. Second, we
normalized the chroma points for scale and rotation, and then iteratively merged
the two closest candidates until the desired number of shapes remained. Figure 8
shows our selection of shapes after a slight manual adjustment of the positions. See
Appendix B for the exact coordinates. Shapes A through C handle simple color
gradients, while D–H are optimized for tiles with complex chrominance. Also,
by including the uniform line (shape A), we make the chrominance line algorithm
(Section 5.2) a subset of the shape transforms approach. Note that the set of shapes
is fixed, so no global per-texture data is needed.
Compared to the chrominance line, shape transforms need three bits per tile to
indicate which of the eight shapes to use. We exploit the unused bit from the
chrominance line, and the other two extra bits are taken from the quantization

Shape A B C D E F G H
Freq(%) 5.8 10.8 6.3 18.3 17.4 16.8 6.6 18.0

Figure 8: The set of shapes we use for the shape transform algorithm and their
frequencies for our test images. The points corresponding to base colors are illus-
trated with solid black circles.
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of the start and end points. We lower the (ū, v̄) quantization from 8 + 8 bits to
8 + 7 bits. Recall from Section 3.1, that in the logY ūv̄ to RGB transform, the R
and B components are given as R = v̄Y/wr and B = ūY/wb, with wr = 0.299 and
wb = 0.114. As wb is about three times smaller than wr, it makes the reconstructed
color more sensitive for quantization errors in the ū component, and therefore more
bits are spent there.
With these modifications, shape transforms with eight shapes fit in precisely 48
bits. The total bit allocation for luminance and chrominance is illustrated in Fig-
ure 4. We evaluated both the chrominance line and the shape transform approach,
combined with the luminance encoding of Section 5.1, on our test images. On aver-
age, the mPSNR was about 0.5 dB higher using shape transforms, and the resulting
images are more visually pleasing, especially in areas with difficult chrominance.
The shape fitting step of our new algorithm is implemented by first clustering the
eight sub-sampled input points to four groups. Then we apply Procrustes analy-
sis [8] to find the best orientation of each shape to the clustered data set, and the
shape with the lowest error is chosen. This is an approximate, but robust and effi-
cient approach. We achieved somewhat lower errors by using an extensive search
for the optimal shape transform, but this is computationally much more expensive.

6 Hardware Decompressor

In this section, we present a decompressor unit for hardware implementation of
our algorithm. We first describe how the chrominance, (ū, v̄), is decompressed for
a single pixel. In the second part of this section, we describe the color space trans-
formation back to RGB-space. A presentation of log-luminance decompression
is omitted, since it is very similar to S3TC LDR decompression. The differences
are that the log-luminance is one-dimensional (instead of three-dimensional), and
more bits are used for the quantized base values and per-pixel indices. In addi-
tion, we also have the non-uniform quantization, but this only amounts to using
different constants in the interpolation.
The decompression of chrominance is more complex than for luminance, and in
Figure 9, one possible implementation is shown. To use shape transforms, a coor-
dinate frame must be derived from the chroma endpoints, (ū0, v̄0) and (ū1, v̄1), of
the shape. In our case, the first axis is defined by d = (du,dv) = (ū1− ū0, v̄1− v̄0).
The other axis is d⊥ = (−dv,du), which is orthogonal to d. The coordinates of a
point in a shape are described by two values α and β , which are both fixed-point
numbers in the interval [0,1], using only five bits each. The chrominance of a
point, with coordinates α and β , is derived as:(

ū
v̄

)
= αd+βd⊥+

(
ū0
v̄0

)
=
(

αdu−βdv + ū0
βdu +αdv + v̄0

)
. (7)

The diagram in Figure 9 implements the equation above. As can be seen, the hard-
ware is relatively simple. The α and β constants units contain only the constants

105



PAPER IV: HIGH DYNAMIC RANGE TEXTURE COMPRESSION FOR GRAPHICS
HARDWARE

u1

v1

u0

v0

du=u1-u0

dv=v1-v0

>1?

>1?

control
logic

which pixel to decode, 4 bits

color index
2 bits

α
con-

stants

con-
stants

β

shape
index
3 bits 5 bits

α

β

−β

u

v

horiz/vert
subsample bit

chroma
indices

t0

t1

t0 t1

FLIP

2 8

Figure 9: Decompression of chrominance, (ū, v̄), for a single pixel. The indata is
the 48 bits for chrominance (left part of the figure), and a 4-bit value indicating
which pixel in a tile to decode. The outdata is (ū, v̄) for one pixel. The green box
contains the logic to implement the flip trick, where inverters have been used to
compute the 1− x terms.

which define the different chrominance shapes. Only five bits per value are used,
and hence the four multipliers compute the product of a 5-bit value and an 8 or
9-bit value. Note that (ū, v̄) are represented using fixed-points numbers, so integer
arithmetic can be used for the entire chroma decompressor.
At this point, we assume that Ȳ , ū and v̄ have been computed for a certain pixel in
a tile. Next, we describe our transform back to linear RGB space. This is done by
first computing the floating-point luminance: Y = 2Ȳ . After that, the red, green,
and blue components can be derived from Equation 3 as:

(R,G,B) =
(

1
wr

v̄Y,
1

wg
(1− ū− v̄)Y,

1
wb

ūY
)

. (8)

Since the weights, (wr,wg,wb) = (0.299,0.587,0.114), are constant, their recip-
rocals can be precomputed. We propose using the hardware-friendly constants:

(1/w′r,1/w′g,1/w′b) =
1

16
(54,27,144). (9)

This corresponds to

(w′r,w
′
g,w
′
b)≈ (0.296,0.593,0.111). (10)
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Using our alternative weights makes the multiplications much simpler. This comes
with a non-noticeable degradation in image quality.
In summary, our color space transform involves one power function, two fixed-
point additions, three fixed-point multiplications, and three floating-point times
fixed-point multiplications. The majority of color space transforms include at least
a 3× 3 matrix/vector multiplication, and in the case of HDR data, we have seen
that between 1–3 power functions are also used. Ward’s LogLuv involves even
more operations. Our transform involves significantly fewer arithmetic operations
compared to other color space transforms, and this is a major advantage of our
decompressor.
The implementation shown above can be considered quite inexpensive, at least
when compared to using other color spaces. Still, when compared to popular LDR
TC schemes [10, 22], our decompressor is rather complex. However, we have at-
tempted to make it simpler by designing a hardware-friendly color space, avoided
using too many complex arithmetic operations, and simplified constants. In addi-
tion, we believe that in the near future, graphics hardware designers will have to
look into more complex circuitry in order to reduce bandwidth, and the technolog-
ical trend shows that this is the way to go [15].

7 Results

To evaluate the algorithms, we use a collection of both synthetic images and real
photographs, as shown in Figure 10. Many of these are well-known and widely
used in HDR research. In the following, we refer to our algorithm as the combina-
tion of our luminance encoding (Section 5.1) and shape transforms (Section 5.3).
The results using mPSNR, log[RGB] RMSE, and HDR VDP are presented in Fig-
ure 11. After that follows visual comparisons.
In terms of the mPSNR measure, our algorithm performs substantially better over
the entire set of images, with an average improvement of about 3 dB over the
S3TC-based approaches. The mPSNR measure simulates the most common use
of an HDR image in a real-time application, where the image is tone mapped and
displayed under various exposures, either as a decal or as an environment map. The
range of exposures used in mPSNR is automatically determined by computing the
min and max luminance over each image, and mapping this range to exposures that
give a nearly black, and a nearly white LDR image respectively. See Appendix A
for the exact numbers.
The log[RGB] RMSE measures the relative error per component over the entire
dynamic range of the image. In this metric, the differences between the algorithms
are not as obvious. However, our algorithm gives slightly lower error on average.
The HDR VDP chart in Figure 11 shows just noticeable luminance differences.
The 75%-value indicates that an artifact will be visible with a probability of 0.75,
and the value presented in the chart is the percentage of pixels above this threshold.
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Our test suite consists of a variety of both luminance-calibrated and relative lumi-
nance HDR images. To compare them, we multiply each image with a luminance
factor so that all HDR VDP tests are performed for a global adaptation level of ap-
proximately 300 cd/m2. Although we quantize the base luminances to only 8 bits,
our algorithm shows near-optimal results, except for image (a). VDP difference
images for image (i) are shown in Figure 12. Increasing the global adaptation level
increases the detection rates slightly, but the relationship between the algorithms
remains.
Our algorithm is the clear winner both in terms of robustness and perceived visual
quality, as can be seen in Figure 13. In general, luminance artifacts are more easily
detectable, and both S3TC YUV and our algorithm handle these cases better due

a. StarField b. Bonita c. Desk d. Room

e. Tubes f. Memorial g. Cathedral h. GreenSlats

i. DockDome j. StageEnv k. DraftOffice l. DaniBelgium

m. BigFogMap n. Office o. AtriumNight p. MtTamWest

Figure 10: The HDR test images we use for evaluating our algorithms. The figure
shows cropped versions of the actual test images. (e), (k), and (n) are synthetic.
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Figure 11: These diagrams show the performance of our algorithm compared to the
S3TC RGB and S3TC YUV algorithms for each of the images (a)–(p) in Figure 10.
The mPSNR measure gives consistently better values (left), while the log[RGB]
RMSE (middle) is lower on nearly all of the test images. The HDR VDP luminance
measure (right) indicates a perceivable error very close to 0.0% for most images
with our algorithm, clearly superior to both S3TC-based algorithms.

Original S3TC RGB S3TC YUV Our algorithm

Figure 12: HDR VDP difference images. Green indicates areas with 75% chance
of detecting an artifact, and red indicates areas with 95% detection probability.

to the luminance focus of the logY ūv̄ color space. However, the limitation of
S3TC YUV to a line in 3D makes it unstable in many cases. The only errors
we have seen using our algorithm are slight chrominance leaks due to the sub-
sampling, and artifacts in some images with high exposures, originating from the
quantization of the base chrominances. Such a scenario is illustrated in Figure 14.
Overall, our algorithm is much more robust since it generates significantly fewer
tiles with visible errors, and this is a major strength.
It is very important that a TC format developed for real-time graphics handle
mipmapping well. Figure 15 shows the average error from all our test images
for the first 7 mipmap levels. The average errors grow at smaller mipmap lev-
els due to the concentration of information in each tile, but our algorithm is still
very robust and compares favorably to the S3TC-based techniques. In both error
measures, our approach is consistently much better.
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Original ST3C RGB
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Figure 13: This figure shows magnified parts of the test images (c), (d), (h), and
(i), compressed with our algorithm and the two S3TC-based methods. In difficult
parts of the images, the S3TC algorithms sometimes produce quite obvious arti-
facts, while this rarely happens with our algorithm due to its separated encoding
of luminance and chrominance.

Original ST3C RGB

ST3C YUV Our algorithm

Figure 14: A difficult scenario for our algorithm is an over-exposed image (c) with
sharp color transitions. S3TC YUV does, however, handle this case even worse.
Surprisingly, S3TC RGB performs very well here.

8 Conclusions

In this work, we have presented the first low bit rate HDR texture compression
system suitable for graphics hardware. In order to accurately represent the wide
dynamic range in HDR images, we opted for a fixed rate of 8 bpp. Although it
would have been desirable to further reduce the bandwidth, we found it hard to
achieve an acceptable image quality at 4 bpp, while preserving the full dynamic
range. For future work, it would be interesting to incorporate an alpha channel in
the 8 bpp budget.
Our algorithm performs very well, both visually and in the chosen error metrics.
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Figure 15: Here, the average mPSNR and log[RGB] RMSE values are presented
for various mipmap levels of our test images, where 0 is the original image and
higher numbers are sub-sampled versions.

However, more research in meaningful error measures for HDR images is needed.
The HDR VDP by Mantiuk et al. [13] is a promising approach, and it would be
interesting to extend it to handle chroma as well. We hope that our work will
further accelerate the use of HDR images in real-time rendering, and provide a
basis for future research in HDR texture compression.
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A mPSNR Parameters

In this appendix, we summarize the parameters used when computing the mPSNR
quality measure for the images in Figure 10 (a–p). For all mPSNR computations,
we have computed the mean square error (MSE) only for the integers between the
start and stop exposures (as shown in the table below). For example, if the start
exposure is −10, and the stop exposure is +5, then we compute the MSE for all
exposures in the set: {−10,−9, . . . ,+4,+5}.
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Test image a b c d e f g h
Start exposure -9 -8 -8 -9 -3 -9 -4 0
Stop exposure +4 +2 +5 +3 +7 +3 +7 8
Test image i j k l m n o p
Start exposure -6 -12 -7 -6 -8 -6 -12 -4
Stop exposure +3 +1 +2 +5 +2 +3 +1 +5

B Shape Transform Coordinates

Below we present coordinates, (α,β ), for each of the template shapes in Figure 8.

Shape p1 p2 p3 p4
A (0, 0) (11/32, 0) (21/32, 0) (1, 0)
B (0, 0) (1/4, 0) (3/4, 0) (1, 0)
C (0, 0) (1/8, 0) (1/4, 0) (1, 0)
D (0, 0) (1/2, 0) (3/4, 1/4) (1, 0)
E (0, 0) (1/2, 0) (1/2, 1/2) (1, 0)
F (0, 0) (11/32, 11/32) (21/32, 11/32) (1, 0)
G (0, 0) (0, 1/2) (1, 1/2) (1, 0)
H (0, 0) (1/4, 1/4) (1/2, 0) (1, 0)
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ABSTRACT

Depth buffer performance is crucial to modern graphics hardware.
This has led to a large number of algorithms for reducing the depth
buffer bandwidth. Unfortunately, these have mostly remained doc-
umented only in the form of patents. Therefore, we present a sur-
vey on the design space of efficient depth buffer implementations. In
addition, we describe our novel depth buffer compression algorithm,
which gives very high compression ratios.
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1. INTRODUCTION

1 Introduction

The depth buffer was originally invented by Ed Catmull, but first mentioned by
Sutherland et al. [9] in 1974. At that time it was considered a naive brute force
solution, but now it is the de-facto standard in essentially all commercial graphics
hardware, primarily due to rapid increase in memory capacity and low memory
cost.
A naive implementation requires huge amounts of memory bandwidth. Further-
more, it is not efficient to read depth values one by one, since a wide memory bus
or burst accesses can greatly increase the available memory bandwidth. Because
of this, several improvements to the depth buffer algorithm have been made. These
include: the tiled depth buffer, depth caching, tile tables [7], fast z-clears [4], z-min
culling [1], z-max culling [3, 4], and depth buffer compression [7]. A schematic
illustration of a modern architecture implementing all these features is shown in
Figure 1.
Many of the depth buffer algorithms mentioned above have never been thoroughly
described, and only exist in textual form as patents. In this paper, we attempt to
remedy this by presenting a survey of the modern depth buffer architecture, and
the current depth compression algorithms. This is done in Section 2 & 3, which
can be considered previous work. In Section 4 & 5, we present our novel depth
compression algorithm, and thoroughly evaluate it by comparing it to our own
implementations of the algorithms from Section 3.

2 Architecture Overview

A schematic overview implementing several different algorithms for reducing depth
buffer bandwidth usage is shown in Figure 1. Next, we describe how the depth
buffer collaborates with the other parts of a graphics hardware architecture.
The purpose of the rasterizer is to identify which pixels lie within the triangle
currently being rendered. In order to maximize memory coherency for the rest of
the architecture, it is often beneficial to first identify which tiles (a collection of
n×m pixels) that overlap the triangle. When the rasterizer finds a tile that partially
overlaps the triangle, it distributes the pixels in that tile over a number of pixel
pipelines. The purpose of each pixel pipeline is to compute the depth and color of
a pixel. Each pixel pipeline contains a depth test unit responsible for discarding
pixels that are occluded by previously drawn geometry.
Tiled depth buffering in its most simple form works by letting the rasterizer read
a complete tile of depth values from the depth buffer and temporarily store it in
on-chip memory. The depth test in the pixel pipelines can then simply compare
the depth value of the currently generated pixel with the value in the locally stored
tile. In order to increase overall performance, it is often motivated to cache more
than one tile of depth buffer values in on-chip memory. A costly memory access
can be skipped altogether if a tile already exists in the cache. The tiled architecture
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Figure 1: A modern depth buffer architecture. Only the tile cache is needed to
implement tiled depth buffering. The rest of the architecture is dedicated to band-
width and performance optimizations. For a detailed description see Section 2.

decrease the number of memory accesses, while increasing the size of each access.
This is desirable since bursting makes it more efficient to write big chunks of
localized data.
There are several techniques to improve the performance of a tiled depth buffer.
A common factor for most of them is that they require some form of “header”
information for each tile. Therefore, it is customary to use a tile table where the
header information is kept separately from the depth buffer data. Ideally, the entire
tile table is kept in on-chip memory, but it is more likely that it is stored in external
memory and accessed through a cache. The cache is then typically organized in
super-tiles (a tile consisting of tiles) in order to increase the size of each memory
access to the tile table. Each tile table entry typically contains a number of “flag”
bits, and potentially the minimum and maximum depth values of the corresponding
tile.
The maximum and minimum depth values stored in the tile table can be used as
a base for different culling algorithms. Culling mainly comes in two forms: z-
max [3, 4] and z-min [1]. Z-max culling uses a conservative test to detect when all
pixels in a tile are guaranteed to fail the depth test. In such a case, we can discard
the tile already in the rasterizer stage of the pipeline, yielding higher performance.
We can also avoid reading the depth buffer, since we already know that all depth
tests will fail. Similarly, Z-min culling performs a conservative test to determine if
all pixels in a tile are guaranteed to pass the depth tests. If this holds true, and the
tile is entirely covered by the triangle currently being rendered, then we know that
all depth values will be overwritten. Therefore we can simply clear an entry in the
depth cache, and need not read the depth buffer.

120



3. DEPTH BUFFER COMPRESSION - STATE OF THE ART

The flag bits in the tile table are used primarily to flag different modes of depth
buffer compression. A modern depth buffer architecture usually implements one
or several compression algorithms, or compressors. A compressor will, in general,
try to compress the tile to a fixed bit rate, and fails if it cannot represent the tile
in the given number of bits without information loss. When writing a depth tile to
memory, we select the compressor with the lowest bit rate, that succeeds in com-
pressing the tile. The flags in the tile table are updated with an identifier unique to
that compressor, and the compressed data is written to memory. We must write the
tile in its uncompressed form if all available compressors fail, and it is therefore
still necessary to allocate enough external memory to hold an uncompressed depth
buffer. When a tile is read from memory, we simply read the compressor identifier
from the tile table, and decompress the data using the corresponding decompres-
sion algorithm.
The main reason that depth compression algorithms can fail is that the depth com-
pression must be lossless. The compression occurs each time a depth tile is written
to memory, which happens on a highly unpredictable basis. Lossy compression
amplifies the error each time a tile is compressed, and this could easily make the
resulting image unrecognizable. Hence, lossy compression must be avoided.

3 Depth Buffer Compression - State of the Art

In this section, we describe existing compression algorithms. It should be empha-
sized that we have extracted the information below from patents, and that there
may be variations of the algorithms that perform better, but such knowledge usu-
ally stays in the companies. However, we still believe that the general discussion
of the algorithms is valuable.
A reasonable assumption is that each depth value is stored in 24 bits.1 In general,
the depth is assumed to hold a floating-point value in the range [0.0,1.0] after the
projection matrix has been applied. For hardware implementation, 0.0 is mapped
to the 24-bit integer 0, and 1.0 is mapped to 224−1. Hence, integer arithmetic can
be used.
We define the term compression probability as the fraction of tiles that can be com-
pressed by a given algorithm. It should be noted that the compression probability
depends on the geometry being rendered, and can therefore only be determined
experimentally.

3.1 Fast z-clears

Fast z-clears [5] is a method that can be viewed as a simple form of compression
algorithm. A flag combination in the tile table entry is reserved specifically for
cleared tiles. When the hardware is instructed to clear the entire depth buffer, it
will instead fill the tile table with entries that are flagged as cleared tiles. This

1Generalizing to other bit rates is straightforward.
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Figure 2: Computing the second order differentials. a) Original tile, b) First order
column differentials, c) Second order column differentials, d) Second order row
differentials.

means that the actual clearing process is greatly sped up, but it also has a positive
effect when rendering geometry, since we need not read a depth tile that is flagged
as cleared.
Fast z-clears is a popular compression algorithm since it gives good compression
ratios and is very easy to implement.

3.2 Differential Differential Pulse Code Modulation

Differential differential pulse code modulation (DDPCM) [2] is a compression
scheme, which exploits that the z-values are linearly interpolated in screen space.
This algorithm is based on computing the second order depth differentials as shown
in Figure 2. First, first-order differentials are computed columnwise. The proce-
dure is repeated once again to compute the second-order columnwise differentials.
Finally, the row-order differentials are computed for the two top rows, and we
get the representation shown in Figure 2d. If a tile is completely covered by a
single triangle, the second-order differentials will be zero, due to the linear inter-
polation. In practice, however, the second-order differential is a number in the
set {−1,0,+1} if depth values are interpolated at a higher precision than they are
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stored in, which often is the case.
DeRoo et al. [2] propose a compression scheme for 8×8 pixel tiles that use 32 bits
for storing a reference value, 2× 33 bits for x and y differentials, and 61× 2 bits
for storing the second order differential of each remaining pixel in the tile. This
gives a total of 220 bits per tile in the best case (when a tile is entirely covered by a
single triangle). A reasonable assumption would be that we read 256 bits from the
memory, which would give a 8 : 1 compression when using a 32-bit depth buffer.
Most of the other compression algorithms are designed for a 24-bit depth format,
so we extend this format to 24 bit depth for the sake of consistency. In this case,
we could sacrifice some precision by storing the differentials as 2× 23 bits, and
get a total of 192 bits per tile, which gives the same compression ratio as for the
32 bit mode.
In the scheme described above, two bits per pixel are used to represent the second
order differential. However, we only need to represent the values: {−1,0,+1}.
This leaves one bit-combination that can be used to flag when the second-order
differential is outside the representable range. In that case, we can store a fixed
number of second-order differentials in a higher resolution, and pick the next in
order each time an escape code occurs. This can increase the compression proba-
bility somewhat at the cost of a higher bit rate.
DeRoo et al. also briefly describe an extension of the DDPCM algorithm that is
capable of handling some cases of tiles containing two different planes separated
by a single edge. They compute the second order differentials from two different
reference points, the upper left and lower left pixels of the tile. From these two
representations, one break point is determined along every column, such that pixels
before and after the break point belong to different planes. The break points are
then used to combine the two representations to a single representation. A 24-bit
version of this mode would require 24×6+2×57+8×4 = 290 bits of storage.
The biggest drawback of the suggested two plane mode is that compression only
works when the two reference points lie in different planes. This will only be true
in half of the cases, if we assume that all orientation and positioning of the edge
separating the two plane is equally probable.

3.3 Anchor encoding

Van Dyke and Margeson [10] suggest a compression technique quite similar to the
DDPCM scheme. The approach is based on 4× 4 pixel tiles (although it could
be generalized) and is illustrated in Figure 3. First, a fixed anchor pixel, denoted
z in the figure, is selected. The depth value of the anchor pixel is always stored
at full 24-bit resolution. Two more depth values, ∆x and ∆y, are stored relatively
to the depth value of the anchor pixel, each with 15 bits of resolution. These
three values form a plane, which can be used to predict the depth values of the
remaining pixels. Compression is achieved by storing the difference between the
predicted, and actual depth value, for the remaining pixel. The scheme uses 5 bits
of resolution for each pixel, resulting in a total of 119 bits (128 with a fast clear
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Figure 3: Anchor encoding of a 4× 4 tile. The depth values of the z, ∆x and ∆y
pixels form a plane. Compression is achieved by using the plane as a predictor,
and storing an offset, d, for each pixel. Only 5 bits are used to store the offsets.

flag and a constant stencil value for the whole tile).
The anchor encoding mode behaves quite similar to the one plane mode of the
DDPCM algorithm. The extra bits of per-pixel resolution provide for some extra
numerical stability, but unfortunately do not seem to provide a significant increase
in terms of compression ratio.

3.4 Plane Encoding

The previously described algorithms use a plane to predict the depth value of a
pixel, and then correct the prediction using additional information. Another ap-
proach is to skip the correction factors and only store parameterized prediction
planes. This only works when the prediction planes are stored in the same resolu-
tion that is used for the interpolation.
Orenstein et al. [8] present such a compression scheme, where a single plane is
stored per 4× 4 pixel tile. They use a representation on the form Z(x,y) = C0 +
xCx +yCy with 40 bits of precision for each constant. A total of 120 bits is needed,
leaving 8 bits for a stencil value. Exactly how the constants are computed, is not
detailed. However, it is likely that they are obtained directly from the interpolation
unit of the rasterizer. Computing high resolution plane constants from a set of low
resolution depth values is not trivial.
A similar scheme is suggested by Van Hook [11], but they assume that the same
precision (16, 24 or 32 bits) is used for storing and interpolating the depth values.
The compression scheme can be seen as an extension of Orenstein’s scheme, since
it is able to handle several planes. It requires communication between the raster-
izer and the compression algorithm. A counter is maintained for every tile cache
entry. The counter is incremented whenever rasterization of a new triangle gener-
ates pixels in the tile, and each generated pixel will be tagged with that value as an
identifier, as shown in Figure 4. The counter is usually given a limited resolution
(4 bits is suggested) and if the counter overflows, no compression can be made.
When a cache entry is compressed and written to memory, the first pixel with a
particular ID number is found. This pixel is used as a reference point for the plane
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Figure 4: Van Hook’s plane encoding uses ID numbers and the rasterizer to gener-
ate a mask indicating which pixels belong to a certain triangle. The compression
is done by finding the first pixel with a particular ID and searching a window of
nearby pixels, shown in gray, to compute a plane representation for all pixels with
that ID.

equation. The x and y differentials are found by searching the pixels in a small
window around the reference point. Van Hook shows empirically that a window
such as the one shown in Figure 4 is sufficient to be able to compute plane equa-
tions in 96% of the cases that could be handled with an infinite size window (tests
are only performed on a simple torus scene though). The suggested compression
modes stores a number of planes (2,4, or 8 with 24 bits per component) and an
identifier for each pixel, indicating to which plane that pixel belongs (1,2 or 3 bits
depending on the number of planes), resulting in compression ratios varying from
6 : 1 to 2 : 1. The compression procedure will automatically collapse any pixel ID
numbers that is not currently in use. ID numbers may go to waste as depth values
are overwritten when the depth test succeeds. Therefore, collapsing is important
in order to avoid overflow of the ID counter. When decompressing a tile, the ID
counter is initialized to the number of planes that is indicated by the compression
mode.
The strength of the Van Hook scheme is that it can handle a large number of tri-
angles overlapping a single tile, which is an important feature when working with
large tiles. A drawback is that we must also store the 4-bit ID numbers, and the
counter, in the depth tile cache. This will increase the cache size by 4/24 = 16.6%,
if we use a 4-bit ID number per pixel. Another weakness is that the depth interpo-
lation must be done at the same resolution as the depth values are stored in.

3.5 Depth Offset Compression

Morein and Natale’s [6] depth offset compression scheme is illustrated in Figure 5.
Although the patent is written in a more general fashion, the figure illustrates its
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Figure 5: The depth offset scheme compresses the depth data by storing depth
values in the gray regions as offsets relative to either the z-min or z-max value.

primary use. The depth offset compression scheme assumes that the depth values
in a tile often lie in a narrow interval near either the z-min value or the z-max value.
We can compress such data by storing an n-bit offset value for every depth value,
where n is some pre-determined number (typically 8 or 12) of bits. The most sig-
nificant bit indicates whether the depth value is encoded as an offset relative to
the z-min or z-max value, and the remaining bits represents the offset. The com-
pression fails if the depth offset value of any pixel in a tile cannot be represented
without loss in the given number of bits.
This algorithm is particularly useful if we already store the z-min and z-max values
in the tile table for culling purposes. Otherwise we must store the z-min and z-max
values in the compressed data, which increases the bit rate somewhat.
Orenstein et al. [8] also present a compression algorithm that is essentially a subset
of Morein and Natale’s algorithm. It is intended to complement the plane encoding
algorithm described in Section 3.4, but can also be implemented independently.
The depth value of a reference pixel is stored along with offsets for the remaining
pixels in the tile. This mode can be favorable in some cases if the z-min and z-max
values are not available.
The advantage of depth offset compression is that compression is very inexpen-
sive. It does not work very well at high compression ratios, but gives excellent
compression probabilities at low compression rates. This makes it an excellent
complementary algorithm to use for tiles that cannot be handled with specialized
plane compression algorithms (Sections 3.2-3.4).

4 New Compression Algorithms

In this section, we present two modes of a new compression scheme. As most
other schemes, we try to achieve compression by representing each tile as number
of planes and predict the depth values of the pixels using these planes.
In the majority of cases, depth values are interpolated at a higher resolution than
is used for storage, and this is what we assume for our algorithm. We believe
that this is an important feature, especially in the case of homogeneous rasterizers
where exact screen space interpolation can be difficult. Allowing higher precision
interpolation allows for some extra robustness.
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(a) (b)

Figure 6: The leftmost image shows the points used to compute our prediction
plane. The rightmost image shows in what order we traverse the pixels of a tile.

In the following we will motivate that we only need the integer differentials, and
a one bit per pixel correction term, in order to be able to reconstruct a rasterized
plane. During the rasterization process, the depth value of a pixel is given through
linear interpolation. Given an origin (x0,y0,z0) and the screen space differentials
( ∆z

∆x ,
∆z
∆x ), we can write the interpolation equations as:

z(x,y) = z0 +(x− x0)
∆z
∆x

+(y− y0)
∆z
∆y

. (1)

The equation can be incrementally evaluated by stepping in the x-direction (similar
for y) by computing:

z(x+1,y) = z(x,y)+
∆z
∆x

. (2)

We can rewrite the differential of Equation 2 as a quotient and remainder part, as
shown below:

∆z
∆x

=
⌊

∆z
∆x

⌋
+

r
∆x

. (3)

Equation 2 can then be stepped through incrementally by adding the quotient,
b ∆z

∆xc, in each step, and by keeping track of the accumulated remainder, r
∆x . When

the accumulated remainder exceeds one, it is propagated to the result. What
this amounts to in terms of compression is that we can store the propagation of
the remainder in one bit per pixel, as long as we are able find the differentials
(b ∆z

∆xc,b ∆z
∆yc). This reasoning has much in common with Bresenham’s line algo-

rithm.

4.1 One plane mode

For our one plane mode, we assume that the entire tile is covered by a single plane.
We choose the upper left corner as a reference pixel and compute the differentials
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Figure 7: The different steps of the one plane compression algorithm, applied to a
compressible example tile.

( ∆z
∆x ,

∆z
∆y ) directly from the neighbors in the x- and y-directions, as shown in Fig-

ure 6a. The result will be the integer terms,(b ∆z
∆xc,b ∆z

∆yc), of the differentials, each
with a potential correction term of one baked into it.
We then traverse the tile in the pattern shown in Figure 6b, and compute the cor-
rection terms based on either the x or y direction differentials (y direction when
traversing the leftmost column, and x direction when traversing along a row). If
the first non-zero correction term of a row or column is one, we flag that the corre-
sponding differential as correct. Accordingly, if the first non-zero element is minus
one, we flag that the differential contains a correction term. The flags are sticky,
and can therefore only be set once. We also perform tests to make sure that each
correction value is representable with one bit. If the test fails, the tile cannot be
compressed.
After the previous step, we will have a representation like the one shown in Fig-
ure 7b. Just as in the figure, we can get correction terms of -1 for the differentials
that contain an embedded correction term. Thus, we want to subtract one from the
differential (e.g. ∆z

∆x ), and to compensate for this, we add one to all the per-pixel
correction terms. Adding one to the correction terms is trivial since they can only
be -1 or 0. We can just invert the last bit of the correction terms and interpret them
as a one bit number. We get the corrected representation of Figure 7c.
In order to optimize our format, we wish to align the size of a compressed tile to the
nearest power of two. In order to do so, we sacrifice some accuracy when storing
the differentials, and reference point. Since the compression must be lossless, the
effect is that the compression probability is slightly decreased, since the lower
accuracy means that fewer tiles can be compressed successfully. Interestingly,
storing the reference point at a lower resolution works quite well if we assume that
the most significant bits are set to one. This is due to the non-linear distribution
of the depth values. For instance, assume we use the projection model of OpenGL
and have the near and far clip planes set to 1 and 100 respectively, then 21 bits will
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Figure 8: This figure illustrates the two plane compression algorithm. a) Shows
the original tile with depth values from two different planes. The line indicates
the edge separating the two planes. b & c) We execute the one plane algorithm of
Section 4.1 for each corner of the tile. In this figure, we only show the two correct
corners for clarity. Note that the correction terms take on unrepresentable values
when we cross the separating edge. We use this to detect the breakpoints, shown
in gray. d) In a final step, we stitch together the two solutions from (b) and (c), and
make sure to correct the differentials so that all correction terms are either 0 or 1.
The breakpoints are marked as a gray line.

be enough to cover 93% of the representable depth range. In contrast, 21 bits can
only represent 12.5% of the range representable by a 24 bit number. We propose
the following formats for our one plane mode

tile point deltas correction total
4×4 21 14×2 1×15 64
8×8 24 20×2 1×63 127

4.2 Two plane mode

We also aim to compress tiles that contain two planes separated by a single edge.
See Figure 8a for an example. In order to do so, we must first extend our one plane
algorithm slightly. When we compute the correction terms, we already perform
tests to determine if the correction term can be represented with one bit. If this
is not the case, then we call the pixel a break point, as defined in Section 3.2,
and store its horizontal coordinate. We only store the first such break point along
each row. If a break point is found while traversing along a column, rather than a
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row, then all remaining rows are given a break point coordinate of zero. Figure 8b
shows the break points and correction terms resulting from the tile in Figure 8a. As
shown in the figure, we can use the break points to identify all pixels that belong
to a specific plane.
We must also extend the one plane mode so that it can operate from any of the cor-
ners as reference point. This is a simple matter of reflecting the traversal scheme,
from Figure 6, horizontally and/or vertically until the reference point is where we
want it to be.
We can now use the extended one plane algorithm to compress tiles containing
two planes. Since we have limited the algorithm to tiles with only a single sep-
arating edge, it is possible to find two diagonally placed corners of the tile that
lie on opposite sides of the edge. There are only two configurations of diagonally
placed corners, which makes the problem quite simple. The basic idea is to run
the extended one plane algorithm for all four corners of the tile, and then find the
configuration of diagonal corners for which the break points match. We then stitch
together the correction terms of both corners, by using the break point coordinates.
The result is shown in Figure 8d.
It should be noted that we need to impose a further restriction on the break points.
Assume that we wish to recreate the depth value of a certain pixel, p, then we
must be able to recreate the depth values of the pixels that lie “before” p in our
fixed traversal order. In practice, this is not a problem since we are able to chose
the other configuration of diagonal corners. However, we must perform an extra
test. The break points must be either in falling or rising order, depending on which
configuration of diagonal corners is used. As it turns out, we can actually use this
to our advantage when designing the bit allocations for a tile. Since we know that
the break points are in rising or falling order, we can use fewer bits for storing
them. In our 4×4 tile mode, we use this to store the break points in just 7 bits. We
do not use this in the 8×8 tile mode, as the logic would become too complicated.
Instead, we store the break points using log2(9

8) = 26 bits, or with 4 bits per break
point when possible.
We employ the same kind of bit length optimizations as for the one plane mode.
In addition, we need one bit, d, to indicate which diagonal configuration is used,
and some bits for the break points, bp. Suggestions for bit allocations are shown
in the following table.

tile d point deltas bp correction total
4×4 1 23×2 15×4 7 1×15 128
8×8 1 22+21 15×4 26 1×63 192
8×8 1 24×2 24×4 32 1×63 240
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Figure 9: The left column shows a summary of the benchmark scenes. The dia-
grams in the right column show the average compression for all three scenes as a
function of rendering resolution, for 4× 4 and 8× 8 pixel tiles. Finally, we show
the depth buffer bandwidth of 4× 4 tiles, relative to the bandwidth of a Raw 8x8
depth buffer. It should be noted that this diagram does not take tile table bandwidth
into account.
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5 Evaluation

In this section, we compare the performance, in terms of bandwidth, of all depth
compression algorithms described in this paper. The tests were performed using
our functional simulator, implementing a tiled rasterizer that traverses triangles a
horizontal row of tiles at a time. We matched the tile size of the rasterizer to the
tile size of each depth buffer implementation in order to maximize performance
for all compression algorithms. Furthermore, we assumed a 64 bit wide memory
bus, and accordingly, all our implementations of compressors have been optimized
to make the size of all memory accesses aligned to 64 bits.
The depth buffer system in our functional simulator implements all features de-
scribed in Section 2. We used a depth tile cache of approximately 2 kB, and full
precision z-min and z-max culling. Our tests show that compression rates are only
marginally affected by the cache size.2 Similarly, the z-min and z-max culling
avoids a given fraction of the depth tile fetches, independent of compression algo-
rithm. Therefore, it should affect all algorithms equally, and not affect the trend of
the results.
Most of the compression algorithms have two operational modes. Therefore, we
have chosen this as our target. Furthermore, two modes fit well into a two bit tile-
table assuming we also need to flag for uncompressed tiles and for fast z clears. It
is our opinion that using fast clears makes for a fair comparison of the algorithms.
All algorithms can easily handle cleared tiles, which means that our compressors
would be favored if this mode was excluded since they have the lowest bit rate.
We evaluate the following compression configurations

• Raw 4x4/8x8: No compression.

• DDPCM: The one and two-plane mode (not using “escape codes”) of the
DDPCM compression scheme from Section 3.2, 8× 8 pixel tiles. Bit rate:
3/5 bpp (bits per pixel)

• Anchor: The anchor encoding scheme (Section 3.3), 4×4 pixel tiles. Note
that this is the only compression scheme in the test that only uses one com-
pression mode. One bit-combination in the tile table was left unused. Bit
rate: 8 bpp.

• Plane encoding: Van Hook’s plane encoding mode from section 3.4, 8×8
pixel tiles. Only the two and four plane modes were used, since we only
allow 2 compression modes. This algorithm was given a slight favor in form
of a 16.6% bigger depth tile cache. Bit rate: 4/7 bpp.

• Plane & depth offset: The plane (Section 3.4) and depth offset (Section 3.5)
encoding modes of Orenstein et al, 4× 4 pixel tiles. Bit rate: 8/16 bpp, 8
bits for the plane mode and 16 bits for the depth offset mode.

2The efficiency of all algorithms increased slightly, and equally, with a bigger cache. We tested
cache sizes of 0.5, 1, 2 and 4 kb

132



6. CONCLUSIONS

• Depth Offset 4x4/8x8: Morein and Natale’s depth offset compression mode
from Section 3.5. We used two compression modes, one using 12 bit offsets,
and one with 16 bit offsets. Bit rate: 12/16 bits per pixel for both 4×4 and
8×8 tiles.

• Our 4x4/8x8: Our compression scheme, described in Section 4. For the
8× 8 tile mode, we used the 192 bit version of the two plane mode in this
evaluation. Bit rate: 4/8 bits per pixel for 4× 4 tiles and 2/3 bits per pixel
for 8×8 tiles.

Our benchmarks were performed on three different test scenes, depicted in Fig-
ure 9. Each test scene features an animated camera with static geometry. Further-
more, we rendered each scene at four different resolutions: 160×120, 320×240,
640×480, and 1280×1024 pixels. Varying the resolution is a simple way of sim-
ulating different levels of tessellation. As can be seen in Figure 9, we cover scenes
with great diversity in the average triangle area.
In the bottom half of Figure 9, we show the compression ratio of each algorithm,
grouped into algorithms for 4× 4 and 8× 8 pixel tiles. We also present the com-
pression of the 4×4 tile algorithms, as compared to the bandwidth of the Raw 8x8
mode. It should be noted that this relative comparison only takes the depth buffer
bandwidth into account. Thus, the bandwidth to the tile table will increase as the
tile size decreases. How much of an effect this will have on the total bandwidth,
will depend on the format of the tile table, and on the efficiency of the culling.
For 8×8 pixel tiles, our algorithm is the clear winner among the algorithms sup-
porting high resolution interpolation, but it cannot quite compete with Van Hook’s
plane encoding algorithm. This is not very surprising considering that the plane
encoding algorithm is favored by a slightly bigger depth tile cache, and avoids cor-
rection terms by imposing the restriction that depth values must be interpolated in
the same resolution that is used for storage.
For 4× 4 pixel tiles, the advantages of our algorithm becomes really clear. It
is capable of bringing the two-plane flexibility that is only seen in the 8× 8 tile
algorithms down to 4× 4 tiles, and still keeps a reasonably low bit rate. A two
plane mode for 4× 4 tiles is equal to having the flexibility of eight planes (with
some restrictions) in an 8× 8 pixel tile. This shows up in the evaluation, as our
4×4 tile compression modes have the best compression ratio at all resolutions.

6 Conclusions

We hope that our survey of previously existing depth buffer compression schemes
will provide a valuable source for the graphics hardware community, as these algo-
rithms have not been presented in an academic paper before. As we have shown,
our new compression algorithm provides competitive compression for both 4× 4
and 8×8 pixel tiles at various resolutions. We have avoided an exhaustive evalua-
tion of whether 4×4 or 8×8 tiles provide better performance, since this is a very
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difficult undertaking which depends on several other parameters. Our work here
has been mostly on an algorithmic level, and therefore, we leave more detailed
hardware implementations for future work. We are certain that this is important,
since such implementations may reveal other advantages and disadvantages of the
algorithms. Furthermore, we would like to examine how to best deal with depth
buffer compression of anti-aliased depth data.
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ABSTRACT

In this paper, we first present a survey of existing color buffer com-
pression algorithms. After that, we introduce a new scheme based on
an exactly reversible color transform, simple prediction, and Golomb-
Rice encoding. In addition to this, we introduce an error control mech-
anism, which can be used for approximate (lossy) color buffer com-
pression. In this way, the introduced error is kept under strict control.
To the best of our knowledge, this has not been explored before in the
literature. Our results indicate superior compression ratios compared
to existing algorithms, and we believe that approximate compression
can be important for mobile GPUs.

Proceedings of Graphics Hardware, pages 41–48, 2007.





1. INTRODUCTION

1 Introduction

The expected yearly performance increase in terms of bandwidth and latency of
DRAM is about 25% and 5%, respectively. At the same time, the expected in-
crease in computing capability of a processor is about 71% every year [13]. Due
to this, the gap between memory speeds and computational resources is steadily
increasing. For desktop computer GPUs this is mitigated to some extent by wider
and wider DRAM buses, a "luxury" that is basically not available for mobile de-
vices. Hence, compression techniques aimed at saving memory bandwidth for
GPUs are becoming increasingly important, especially for mobile GPUs. Exam-
ples include vertex compression, texture compression, depth buffer compression,
and color buffer compression.
In this paper, we focus on color buffer compression and decompression. The pur-
pose of our work is to provide the reader with a state-of-the-art report of existing
algorithms, which are currently only available in the form of patents, and to intro-
duce new algorithms.
In terms of new algorithms, we start by introducing a new exact algorithm, which
first uses a reversible color transform, and then applies Golomb-Rice coding after
using a simple predictor. Second, we experiment with approximate color buffer
compression. The motivation here is that we can accept, for example, lossy video
compression (e.g., MPEG), and approximate rendering using precomputed radi-
ance transfer with spherical harmonics or wavelets. Even just after executing the
pixel shader, conversion from floating point to 8-bit integers is done, and this is
actually a type of lossy compression (truncation). In addition, most texture com-
pression schemes are also lossy. Hence, one could ask whether and how this can
be applied to color buffers as well.
This may sound dangerous, but we show that it is possible by developing error-
bounded algorithms to keep the visual artifacts under precise control, and to avoid
so called tandem compression artifacts, which may arise due to several passes of
sequential lossy compression. We emphasize that approximate, i.e., lossy, color
buffer compression is not always desired. For example, in GPGPU computations
for fluid simulation, exact results is of uttermost importance, and in such cases,
we suggest that the programmer can turn off this feature. However, for a GPU in
a mobile phone, where it is important to reduce memory accesses over external
buses [3], it can be very convenient to enable approximate compression as this can
increase the use time on a battery charge at a cost of slight image degradation.
The major advantage of approximate compression is that higher compression can
be obtained, which reduces memory bandwidth usage compared to lossless, i.e.,
exact, color buffer compression.

2 State-of-the-art Color Buffer Compression

In this section we summarize the color buffer compression algorithms we have
found in patent databases. A summary of existing depth buffer compression schemes
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is already available [5]. The reader is referred to Section 2 of this paper for an
overview of the depth buffer architecture, which is almost identical to the color
buffer architecture. This paper describes the general methodology for selecting
and tracking what compressor to use for a specific tile, and how to handle tiles that
cannot be compressed.

2.1 Multi-Sampling Compression

In this section, we present an algorithm for compression of color buffers with
multi-sampling. In the following, we assume that n samples are used per pixel.
Elder explains that due to multi-sampling, samples inside a pixel often share the
exact same color, and this is an opportunity for compression [4]. If all samples
inside a pixel share the same color, then it suffices to flag this mode, and store only
one color instead of n colors. Another common case is when a triangle edge cuts
through a pixel. In such a case, we can store two colors, and a one-bit index per
sample to “point” at one of these colors. Elder also suggests that this compressed
format is used inside the GPU as well. This has a number of benefits, such as using
fewer operations when blending and during reconstruction of the final pixel color.
The RealityEngine [2] used a similar coverage mask approach internally in their
fragment pipelines. However, the depth and color-values were decompressed prior
to frame buffer operations, and consequently some of the performance benefits
were lost.

2.2 Color Plane Compression

Another example of exploiting multi-sampling color redundancy is the method
described by Molnar et al. [11]. In a first step, they collapse pixels with identical
sample colors, similarly to Elder’s work [4]. When using four samples per pixel,
this by itself gives sufficient compression to reach their predetermined bit-budget.
However, in the case of two samples per pixel, they need to compress the data by
an additional factor of two.
To this end, they introduce a plane compression mode. A predictor plane is com-
puted from three collapsed reference pixels, as shown in Figure 1. This plane is
stored with varying accuracy, and the remaining pixels are stored as differences
between the actual pixel value, and the value predicted by the plane at that pixel.
Bit allocations for the plane and delta values are detailed in Figure 1. The obser-
vant reader may note that these allocations only use 127 bits. The remaining bit
is used to flag that a tile is in cleared state, which saves some bandwidth when
clearing the color buffer.
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Flag: 1 bit (set to 0)
: 24 bits (R8G8B8)
dx: 16 bits (R6G5B5)
dy: 18 bits (R6G6B6)
Pixel Deltas: 12 bits (R4G4B4)
Alpha: 8 bit
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dx: 12 bits (R4G4B4)
dy: 14 bits (R5G5B4)
Pixel Deltas: 15 bits (R5G5B5)
Alpha: 1 bit

Figure 1: Color plane compression. For this example, two samples (gray circles)
per pixel are used, and these are collapsed (black circles). Each tile of 2×4 pixels
are encoded together. A prediction plane is computed from the three reference
pixels (indicated by p, dx, and dy), and the remaining pixels are stored as deltas
between the prediction from the reference plane and the actual color of the pixel.
The tables to the right show two suggested bit-allocations.

cmin cmax{ {
Representable range Representable range

Figure 2: Color offset compression, when using the min and max colors as ref-
erences. Note that the width of the representable color intervals vary with the
number of bits allocated for the per pixel offsets.

2.3 Offset Compression

Some of the methods targeting depth buffer compression can also be used for color
buffer compression. A good example of this is the offset compression method
proposed by Morein and Natale [12].
The method compresses a tile by identifying a number of reference values. All
pixels in the tile are then coded as an index to a reference value, and component-
wise color offsets from that reference value. A typical implementation is to chose
the minimum and maximum colors as reference values, similarly to depth offset
compression. We can then represent the color range shown in Figure 2.
It should be noted that depth offset compression has one advantage over color
offset compression, which is that the min and max depth values are already stored
in on-chip memory for Zmax- and Zmin-culling, so we do not have to store the
reference values explicitly. This makes offset compression slightly less efficient
for color data than for depth data.
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2.4 Entropy Coded Pixel Differences

Van Hook suggests compression schemes based on entropy coding of pixel differ-
ences [6]. First, he computes the componentwise pixel differences. Although the
exact procedure is not specified, the patent indicates that different traversal orders
may affect the magnitude of the pixel differences (and in the end the efficiency of
the algorithm). This indicates that the pixel differences actually are the differences
between the current pixel and the previously traversed pixel. The suggested im-
plementation uses either horizontal or vertical scanline traversal of the tile, based
on what gives the best compression.
It is well known that differences between adjacent pixels often have small mag-
nitudes due to the continuous nature of images. Van Hook therefore proposes a
variable bit length coding of the differences, which he refers to as exponent encod-
ing. The general idea is to represent a value as s(2x− y), where y ∈ [0,2x−1− 1],
and s is a sign bit. In order to compress this value, x + 1 is stored using unary
encoding, which simply amounts to storing x+1 bits set to one followed by a ter-
minating zero-bit. For example, x + 1 = 4 is encoded as 11110b. Normal binary
encoding is used for s and y. The reason for encoding x+1 instead of x is that the
encoding is not capable of representing a zero value. This special case is flagged
when x+1 is set to zero.
To illustrate the exponent coding with an example, assume we want to encode the
value ±5 =±(23−3). The unary encoding of x+1 is again 11110b. The y-value
will be in the range [0,22−1], so it can be represented using two bits with binary
encoding, which gives us 11b. Finally, we need to store the sign bit s in one bit.
The final encoded value therefore becomes 11110s11b.
Exponent coding requires a very large amount of bits for values with large mag-
nitudes. Van Hook therefore suggests using exponent coding only for difference
values in the range [−32,32], remaining values are encoded using 16 bits, the first
8 bits must be set to 11111110b to separate the exponent coded, and binary coded
values. The full encoding is shown in the following table.

Code Representable value
0b 0
10sb ±1
110sb ±2
1110sxb ±[3,4]
11110sxxb ±[5,8]
111110sxxxb ±[9,16]
1111110sxxxxb ±[17,32]
11111110xxxxxxxxb 8-bit absolute value

A strong feature of this scheme is that it allows for adaptive bit rate inside a tile.
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3 A New Exact Color Buffer Compression Algorithm

In this section, we present a new exact, i.e., lossless, color buffer compression
method. The algorithm operates on tiles, which are typically 8×8 pixels.
Note that the color buffer needs to be sent to the display in uncompressed form.
Hence, there is a direct benefit from having color buffer decompression imple-
mented in the display controller, or in any of the hardware processing blocks prior
the display controller. For example, most mobile phones already have some type
of display processing block which provides features like scaling, overlay, color
depth transform, etc. A color buffer decompressor would fit there as well.

3.1 Reversible Color Transforms

Our new algorithms share the fact that they operate in a luminance-chrominance
color space instead of the standard RGB color space. It is well-known in image
and video compression that this typically enables more efficient compression due
to the decorrelation of the RGB channels.
In addition, it also enables the use of slightly different compression schemes for
the luminance and the chrominance components [14]. This could potentially be
useful since rendered gaming scenes often provide most details and dynamics in
the luminance component.
Since we need lossless compression, the color space transform needs to be exactly
reversible. We have chosen the reversible color transform RGB to Y cocg introduced
by Malvar and Sullivan [10]. Transforming from RGB to Y cocg is done as shown
below:

co = R−B

t = B+(co >> 1)
cg = G− t

Y = t +(cg >> 1). (1)

Transforming back is as simple:

t = Y − (cg >> 1)
G = cg + t

B = t− (co >> 1)
R = B+ co. (2)

Note that if the RGB-components are stored using n bits each, the Y -component
will require n bits, and the chrominance components n+1 bits. So the price to pay
for having a lossless reversible color transform is a small data expansion of two
bits. Malvar and Sullivan also showed that this transform in certain video contexts
can provide better compression ratios compared to RGB and Y crcb. Note also that
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Predictor
Color 

Transform
EncoderPixels Compressed Stream

x x̂ ε

Figure 3: Overview of our compression algorithm.

the commonly used standard Y crcb transform is not, in general, reversible without
loss.
An alternative color transform to Y cocg would be the exactly reversible component
transformation (RCT) from the JPEG2000 standardization [9]. We have empiri-
cally concluded that, for our algorithm, these color transforms are roughly equal
in terms of efficiency. Our experiments also showed that the use of these color
transforms improved the compression rate of our algorithm by about 10% com-
pared to an implementation in RGB space. We therefore think that using a color
transform is well motivated.

3.2 The Algorithm

Our lossless compression algorithm is inspired by the LOCO-I algorithm [17]. In
our implementation, we work on 8×8 pixel tiles, but it should be straightforward
to apply it to other tile sizes as well. The flow of our algorithm is illustrated in
Figure 3. In a first step, we predict the color of each pixel based on neighbors
which will be decompressed prior to the current pixel. The predicted colors are
then subtracted from the actual colors to produce error residuals. Just like the
differences used by Van Hook, these residuals are generally of small magnitude,
and we entropy encode them using Golomb-Rice coding. Next, we describe the
details of these steps.

We use the same predictor as Weinberger et. al [17]. The color,
x̂, of a pixel is predicted as specified by Equation 3 below, and
based on the colors of its three neighbors shown in the figure to
the right. Note that the two first cases of the equation perform
a very limited form of edge detection, in which case the color
is predicted based on just one of the neighbors.

x1

x3 x2

x̂

x̂ =

 min(x1,x2), x3 ≥ max(x1,x2)
max(x1,x2), x3 ≤ min(x1,x2)
x1 + x2− x3, otherwise.

(3)

For the pixels along the lower and left edge of a tile, we only have access to one
of the neighbors. In that case, we simply use the color of that neighbor as the
predicted color. In addition, we use the constant zero to predict the value of the
lower left pixel in the tile. The effect is that the first error residual will be given
the same value as the lower left pixel.
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Given these predicted values, we compute error residuals and wish to encode
them using as few bits as possible. The residuals are generally of small magni-
tude, mixed with relatively unfrequent large values. These latter values are typ-
ically found for discontinuity edges, or where the behavior of the predictor does
not match the structure of the image. We encode the residuals using a Golomb-
Rice [15] coder, which is a variable bit-rate coding method similar to the exponent
coding described in Section 2.4.
In Golomb-Rice encoding, we encode a residual value, ε = x− x̂, by dividing it
with a constant 2k. The result is a quotient q and a remainder r. The quotient q
is stored using unary coding, and the remainder r is stored using normal, binary
coding using k bits. To illustrate with an example, let us assume that we want to en-
code the values 3,0,9,1 and assume we have selected the constant k = 1. After the
division we get the following (q,r)-pairs: (1,1),(0,0),(4,1),(0,1). As mentioned
in Section 2.4, unary coding represents a value by as many ones as the magni-
tude of the value followed by a terminating zero. The encoded values therefore
becomes (10b,1b),(0b,0b),(11110b,1b),(0b,1b) which is 13 bits in total.
In our compression algorithm, we compute the optimal Golomb-Rice parameter
k for each 2× 2 pixel sub-tile using an exhaustive search. We also detect the
special case, when the quotients of all values in the sub-tile is zero. This gives us
the opportunity of removing the terminating zero-bit, which would otherwise be
introduced by the unary coding.
We empirically examined the frequencies of different values of k, and when the
special case was used. Our results indicate that k is relatively evenly distributed
in the range [0,6] while the special mode was almost only used in the case k = 0,
which is equivalent to that the whole sub-tile consists only of zero values. With
this in mind, we encode each 2×2 sub-tile as a 3-bit header in which we store the
value of k. If k = 7 the whole sub-tile is zero and we store no more data, and in
the other cases the header is followed by the Golomb-Rice coded componentwise
residuals.
We present the results of our lossless compression algorithm in Section 5.

Discussion Using exhaustive search to find the best Golomb parameter may
seem too expensive for a real-time compression algorithm. However, we want
to point out that the search is limited to 8 unique cases that can be evaluated in
parallel. Furthermore, it is very inexpensive to evaluate the size of a value after it
has been Golomb encoded. This requires just one shift and one addition.
One might also argue that the cost of a variable bit rate compressor is too high
for practical use, but we believe it is realizable. Trying to encode a full 2048 bit
vector in a single cycle is too expensive, but if we limit ourselves to compressing
one sub-tile per cycle we get a more manageable 0-128 bits to write. A tile would
then take a total of 16 clock cycles to compress, a delay that could most likely
be hidden using pre-fetching [7]. To put this figure in perspective, the expected
memory latency reported in the CUDA programming guide [1] is 200-300 cycles.
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c LC c~ LC ĉ

Figure 4: Illustration of tandem compression. Left to right: first a triangle is writ-
ten to a tile. For one pixel, we track its original color, c. After lossy compression
(LC), we obtain an approximation, c̃. However, when a second triangle is written
to the tile, c̃ may be compressed again, with another loss of information, so we get
yet another color, ĉ.

4 Error-bounded Approximate Compression

The obvious reason to use lossy (approximate) compression algorithms is that you
are allowed to throw away information in the compressed signal, and this can make
for substantially higher compression ratios. If done well, the visual impact can be
marginal. Since a rather big amount of power is required to drive the capacitances
of the buses to off-chip memory, battery-driven mobile devices, in particular, will
benefit from lossy buffer compression. It should be noted that for both mobile
devices and for desktop GPUs, we may also get higher performance due to better
utilization of the memory bandwidth resources.
As argued in the introduction, lossy techniques are used in many different algo-
rithms for graphics, video, and imaging. The prime example is probably digital
TV, where we put up with pretty poor approximations in the encoded video stream.
It is therefore a bit surprising that there has been no documented attempts to use
approximate compression for the color buffer.
The reason for this might be that it is possible to get unbounded1 errors. This
can occur when lossy compression (LC) is applied several times, e.g., once per
triangle written to a tile. See Figure 4, where the concept of tandem compression
is illustrated. To counteract this, we need an error-bounded algorithm with precise
control of the accumulated error. This is the topic of the next subsection.
Note that buffer compression & decompression must be symmetric, i.e., execute in
about the same amount of time, since these procedures run in real time inside the
GPU. This means that the majority of all (lossy) texture compression schemes im-
mediately disqualify, since compression often takes several seconds or even min-
utes.

1Here, we used the term “unbounded” to indicate a maximum error in a value. Assuming eight bits,
this happens when an original value of 255 is compressed into 0, for example.
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4.1 The Error Control Mechanisms

To guarantee that the introduced error stays within bounds, we need to gauge and
track the accumulated error in the image being rendered.

Our approach is to calculate and update an accumulated
error measure, τaccum, per tile, as illustrated to the right.
As an example, we could use the accumulated mean
square error. This measure is stored together with the
compressed tile parameters. For even more precise con-
trol, more than one error measure can be tracked and
stored. For example, it may make sense to track and store
a maximum error level, which is normally a more con-
servative error metric than the mean square error metric.
When the accumulated tile error measure has reached a
configurable upper limit (threshold), τthresh, the compres-
sion stage reverts to lossless compression only in the fol-
lowing compression steps.
This can be done by having a conditional lossy compres-
sion stage, meaning that each time an error is about to be
introduced, e.g., due to when sub-sampling or quantiza-
tion, we test if the updated accumulated error measure ex-
ceeds a configurable threshold τthresh. If it is still less than
the threshold, we use the approximation. Otherwise, we
revert to lossless compression (and do not update τaccum).

τ new   

τ thresh  ? Yes

No

Calculate 
τ new

Read 
τ accum

For each tile:

Lossy
compress

Lossless
compress

τ accum  +=
τ new

Store new
τ accum

τ accum +
>

Note also that if we have reverted to lossless compression,
we can go back to lossy compression if all pixels are written to inside a tile.
Our approach is conservative, in that the error (in the error metric used) never
grows larger than the thresholds. Hence, the introduced errors are bounded, which
effectively reduces the visual quality impact (given the configured error thresholds
are low enough).

4.2 A Lossy Algorithm

We have chosen to track and store the accumulated root mean square error (RMSE)
error per tile, τrmse

accum. This measure is quantized to 16 levels and stored together
with the compressed parameters as 4 bits per tile. Note that the choice of this error
metric also bounds the maximum error in a tile. Assume the threshold is τrmse

thresh,
and that we have n pixels in a tile. Some simple calculations gives:

τmax
thresh =

√
n× τrmse

thresh. (4)

As an example, if τrmse
thresh = 2 with 8×8 pixel tiles, we have τmax

thresh = 8×2 = 16. In
a practical implementation it may make more sense to use MSE instead of RMSE,
since this avoids the expensive square root. However, that also doubles the number
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of bits for the accumulated error. Another useful error metric is the sum of absolute
differences (SAD).
When it comes to the actual approximation, we have taken a gentle approach and
use only (conditional) 2×2 subsampling of the chrominance components. Higher
compression rates can of course be obtained with more “brutal” subsampling,
quantization, and other lossy methods.
Since the human visual system (HVS) is more susceptible to errors introduced
in the luminance than the chrominance components, we use lossless compression
for the luminance and lossy compression for the chrominance components respec-
tively. This results in a good compromise between high visual quality and high
compression ratios.
It should be noted here the benefits of utilizing an exactly reversible color trans-
form. This enables the possibility to mix lossless and lossy compression freely in
the same compression block. For example, it enables us to have lossless compres-
sion of the luminance components and simultaneously have lossy compression of
the chrominance components2. When the error threshold is reached, we can revert
to lossless-only chrominance compression to effectively stop further error build-
up. Furthermore, if a non-exact color transform is used, that would introduce
further errors, and the error accumulation mechanism would have to deal with that
as well. With our approach, that can be avoided altogether.
Decompression is done in the opposite direction. The sub-sampled chrominance
components are up-sampled by simply copying the sub-sampled component to the
corresponding components in the 2×2 quad.

5 Results

We have evaluated our compression algorithms using a software based simulation
framework, which implements a tile-based triangle rasterizer with a modern color
buffer architecture. It also simulates tile caching, using a 1 kB fully associative
cache, and implements the color compression algorithms described in this paper.
In addition, we used a logging OpenGL driver to record the rendering calls from
actual games. This means that our results include the full, incremental, rasteriza-
tion process of the games. They are not just compressed screenshots.
To benchmark the color compression algorithms, we used the four test scenes
shown in Figure 5. The first scene is designed to stress high contrast colors, and
the following two scenes are relatively colorful scenes taken from Quake 3 maps.3

The final scene features complex particle effects with blending, and is taken from
the game Quake 4. It should be noted that this scene use blending based on the
alpha value stored in the color buffer. Therefore, we compress the full RGBA
components for this scene, while we only compress the RGB components for the

2Chrominance errors can spread into the luminance channels due to tandem compression.
3The maps have been taken from the Quake 3 add-on “Urban Terror”.
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Ducks Square

Plane 1.13:1 1.43:1
Color Offset 1.90:1 2.06:1
Entropy Coding 2.09:1 2.60:1
Our 2.64:1 2.87:1

Car Quake4

Plane 1.40:1 1.47:1
Color Offset 2.15:1 2.30:1
Entropy Coding 2.66:1 2.93:1
Our 3.36:1 3.05:1

Figure 5: Evaluation of the compression algorithms: the table shows compres-
sion ratios for our test scenes ("Ducks", "Square", "Car", and "Quake4") using ex-
act compression algorithms. We computed the compression ratios as the average
compression ratio for rendering resolutions 320×240, 640×480 and 1280×1024
pixels. The algorithms scaled similarly with varying resolutions.

remaining scenes. This shows that all algorithms are suitable for compressing al-
pha data as well.
Note that we will refer to each compression algorithm by the names we used in
Section 2. See the titles of each subsection.

5.1 Exact Compression

The effective compression ratios of the different exact algorithms are presented
in Figure 5. We used 8× 8 pixel tiles and variable bit-rate encoding for offset
compression, entropy coding, and our algorithm. Variable bit-rate coding comes
very natural to our algorithm and entropy coding. For offset compression, we
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Figure 6: A normalized histogram of the number of tiles that are compressed to a
given size (in multiples of 128 bits), using different algorithms. We use 8×8 pixel
tiles, which means that 2048 bits indicate uncompressed tiles. The histogram is
based on an average over all our test scenes. Note that our algorithm has a distinct
peak, which makes it efficient when only a few compressed sizes can be used. It is
of course also essential that the peak is located at good compression ratios, i.e., to
the left in this diagram.

implemented variable bit-rate in the sense that we use no fixed bit allocations for
the offsets. We simply use the least amount of bits that is capable of representing
the largest offset in the tile.
The plane compression algorithm is special in that we used the specified 2×4 tile
size and only the two modes specified in the patent. We would like to emphasize
that this algorithm is disfavored in this evaluation since it is so specialized. A
generalized version of plane compression may generate better results, but this is
left for future work.
We would also like to point out that our measurements (Figure 5) do not take hard-
ware limitations, such as the width of the memory bus, into account. Furthermore,
in most hardware implementations, we can only afford a few different compressed
sizes, since the compressed size of a tile is typically stored in on-chip memory so
that we know beforehand how many memory words to read. In order to measure
the algorithms performance with respect to these limitations, we computed the
compressed size histograms shown in Figure 6. Note that we have left out plane
compression since it is so specialized, and only allows for 128 or 256 bits per tile.
Next, we show how to interpret this diagram with an example. Assume that we
allow two fixed sizes for tiles: 1024 bits for compressed and 2048 bits for un-
compressed. In this case, the number of tiles compressed to 1024 bits will be the
integral from 0 to 1024 over the histogram, while the uncompressed tile will be

150



5. RESULTS

Color Offset
#Sizes Best sizes (Bits) Effective Compression

1 1280 1.43:1
2 1024,1408 1.58:1
3 896,1152,1408 1.61:1
∞ 2.04:1

Entropy Coding
#Sizes Best sizes (Bits) Effective Compression

1 1024 1.52:1
2 768,1280 1.75:1
3 640,1024,1408 1.88:1
∞ 2.45 : 1

Our Algorithm
#Sizes Best sizes (Bits) Effective Compression

1 1024 1.78:1
2 896,1152 2.04:1
3 640,896,1152 2.17:1
∞ 2.88:1

Table 1: The tables show how the algorithms perform when given a number of
allowed compressed sizes, as well as what selection of sizes that worked best for
our test suite. Note that our algorithm performs very well even with very few
compressed sizes.

the integral from 1024 to 2048. Using the histogram, we can easily find the best
n sizes for each algorithm using an exhaustive search. In Table 1, we present the
best compressed sizes for n = 1,2,3. Note that an extra uncompressed size always
needs to be available as a fallback.

5.2 Approximate Compression

In Figure 7, we show the results from our experiments with approximate compres-
sion. The Quake 4 scene is excluded since alpha handling is currently not imple-
mented in the lossy part. As can be seen, the additional compression gains can
be quite substantial. We can gain an additional 25–60% compression by allowing
approximate compression. The visual impact is normally small as can be seen in
Figure 8 and in the SSIMrgb plot (Figure 7c). See Section 5.3 for more information
on SSIM. However, the “ducks” scene clearly shows artifacts (Figure 9) already
for small levels of τrmse

thresh. This is due to that we use chrominance sub-sampling,
which makes chrominance leak out to surrounding pixels. For a case like this, a
more conservative error metric could be used, e.g., a maximum error threshold.
This would decrease the effect of these artifacts. Our most important contribution
for lossy buffer compression is the error control mechanism, and we believe our
results shows that it works well, and that it can keep high image quality. However,
more research is clearly needed on lossy compression algorithms.
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Figure 7: Approximate (lossy) compression results for three of the test scenes
(average of three rendering resolutions 320× 240, 640× 480 and 1280× 1024
pixels). From the left: a) compression ratio vs. τrmse

thresh, b) PSNR vs. τrmse
thresh, and c)

SSIMrgb vs. τrmse
thresh.

A B C

Figure 8: Crops from the “Square” scene. A: original, B: τrmse
thresh = 4, PSNR = 39.0

dB, SSIMrgb = 98.8%, compression ratio = 4.1:1, C: τrmse
thresh = 15, PSNR = 35.6

dB, SSIMrgb = 98.8%, compression ratio = 4.3:1.

A B C

Figure 9: Crops from the “Ducks” scene. A: original, B: τrmse
thresh = 4, PSNR = 34.9

dB, SSIMrgb = 97.8%, compression ratio = 3.3:1, C: τrmse
thresh = 15, PSNR = 32.4

dB, SSIMrgb = 97.2%, compression ratio = 3.8:1.
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5.3 Structural Similarity Index - SSIM

In addition to the common error metric, PSNR, we also use the structural similar-
ity index, SSIM, as suggested by Wang et. al [16]. This is a visual quality metric
which attempts to mimic the human visual perception. The SSIM index is a num-
ber between 0% and 100%, where 100% is perfect similarity. Note that the SSIM
index is normally calculated using the luminance alone. In order to get the errors
in all three color channels, R, G and B respectively, we have chosen to calculate
the SSIM index for the R,G and B channels independently and combining them
into a single number, SSIMrgb, according to:

SSIMrgb = 0.2126∗SSIMR +
0.7152∗SSIMG +0.0722∗SSIMB, (5)

where the weights comes from ITU-BT.709 [8].

6 Conclusions and Future Work

Color buffer compression is available in almost all (if not all) GPUs, but up until
now, this type of algorithms have not been described in the literature. By providing
an overview of existing algorithms, we now have an important stepping stone in
place, which is needed to invent new algorithms.
In addition, we have presented new algorithms based on a decorrelated color trans-
form, which is also exactly reversible. Our results show that this can improve the
compression ratio compared to other algorithms. Since it is well-known in the
image and video compression community that the human visual system is more
sensitive to luminance than chrominance, we have also done some initial results
on approximate color buffer compression with this reversible transform.
We note that it is very important to keep the accumulated error under strict control,
and we presented a simple mechanism to do this. We realize that approximate
compression is a feature that must be turned off for some applications, but for,
e.g., gaming on mobile devices, it can be very valuable with a longer use time on
the battery with a only slight degradation in image quality.
We have only experimented with simple compression algorithms for approximate
color buffers, and for future work, there is much to learn and transfer from the im-
age and video processing field. We have started to investigate more sophisticated
and fine-grained sub-sampling and quantization schemes. There is definitely room
for inventing new algorithms. High dynamic range (HDR) color buffer compres-
sion is also an interesting topic for further studies.
In our paper, we have not handled multi-sampling, but several of the techniques [4,
11] for this can be merged relatively quickly into our work. Finally, we note that
lossy depth buffer compression might not be feasible, due to the artifacts that can
arise when surfaces intersect. However, this could be worth further investigation.
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ABSTRACT

Culling techniques have always been a central part of computer
graphics, but graphics hardware still lack efficient and flexible support
for culling. To improve the situation, we introduce the programmable
culling unit, which is as flexible as the fragment program unit and ca-
pable of quickly culling entire blocks of fragments. Furthermore, it is
very easy for the developer to use the PCU as culling programs can
be automatically derived from fragment programs containing a dis-
card instruction. Our PCU can be integrated into an existing fragment
program unit with a modest hardware overhead of only about 10%.
Using the PCU, we have observed shader speedups between 1.4 and
2.1 for relevant scenes.

ACM Transactions on Graphics, 26(3):92, 2007.





1. INTRODUCTION

1 Introduction

Faster rendering is a major field in computer graphics research due to the ever-
increasing demands of applications. A prime example of such applications are
games with high image quality, complex shading, and detailed geometry. In real-
time graphics, programmable vertex, geometry, and fragment shaders provide the
programmers with more flexibility for the rendering tasks, but higher image quality
and using more complex shading incur a cost in performance.
The fragment pipeline is often considered to be the major bottleneck in a GPU [1],
and hence it is a clear candidate for acceleration algorithms. At a high level, the
task of the fragment pipeline is to access memory and execute instructions in order
to produce the output (e.g., color, depth, stencil) of a fragment. The focus of our
research is on the latter.
To make shader programs run faster, one can insert KIL (fragment discard) in-
structions at appropriate places, in order to provide an early-out. In practice, these

42.4 M Instructions 31.5 M Instructions In
cr
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Figure 1: Our programmable culling unit applied to Quake 4 (courtesy of id Soft-
ware). Top: Rendered image. Bottom left: False color image of the number of
instructions executed per pixel using a standard GPU. Bottom right: Similar visu-
alization using our programmable culling unit.
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instructions seldom make the execution faster on contemporary GPUs, due to the
underlying hardware design. In addition, a GPU designer can employ pipelining
and parallelization techniques for faster shader instruction execution. Note, how-
ever, that the fastest instruction is the one that never is executed to begin with.
Hence, the target of our paper is to avoid executing, i.e., cull, a substantial amount
of instructions which do not contribute to the final image.
To that end, we present the programmable culling unit (PCU). The idea is to exe-
cute a cull program on tiles of pixels before the per-pixel shader processing starts.
In many cases, a conservative decision can be made based on the outcome of the
cull program, and per-pixel executions completely avoided. For example, if all
pixels in a tile are in shadow, it may be possible to determine this on a tile-level,
and shading instructions can be avoided for all pixels in the tile. Our PCU is flexi-
ble in that the programs can be automatically generated from the fragment shader
programs (i.e., transparent to the programmer), or written explicitly. The core idea
of the PCU is to use interval arithmetic [19] to bound the value of a floating-point
variable, and let the fragment pipeline operate on such bounded number represen-
tations.
The PCU makes existing fragment programs run faster, and opens up new possi-
bilities for culling algorithms specifically written for the PCU. In addition, a major
advantage is that the rendering programmer can work in a more carefree way. For
example, many current games are doing back-face culling from the light source on
the CPU, before sending the geometry to the GPU for shading. Such culling can
be done automatically on a per-tile basis using the PCU. For an example of how
our PCU can improve performance, even in a highly optimized computer game,
see Figure 1.
A prototype hardware implementation of a fragment pipeline has been developed,
and the increase in size is about 10%. We provide extensive simulation results us-
ing a variety of benchmarks, such as commercial games and relevant shader effect
demos. For these, we observed that 29–52% of the instructions can be avoided,
which implies a speedup of 1.4 – 2.1×. The memory bandwidth utilization is also
decreased by approximately 15%.

2 Previous Work

In our research, we have used interval arithmetic [19] (IA), which is an arithmetic
defined on intervals rather than real numbers. It dates back to the early 20th cen-
tury, and is now an established field of research. IA has already been used on
several occasions in the field of computer graphics, and we will mention only the
ones that relates to our research. For a more in-depth overview, consult Kearfott’s
survey [13].
The Achilles heel of interval arithmetic is that the width of an interval can grow
rapidly for complex equations. Affine arithmetic [5] reduces this problem by track-
ing all linear dependencies in an equation and evaluates them exactly. Higher order
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dependencies are solved using linear approximation and by adding an extra term
that bounds the approximation error.

Culling To speed up execution in both software and hardware, it is common
to use culling algorithms. Hardware culling is typically limited to fixed function
mechanisms, such as back-face culling or hierarchical depth culling [11, 20].
Hierarchical depth culling (HDC) is an optimization of depth buffering. When
a tile of fragments is about to be rasterized, a conservative test is performed to
prove whether that tile is covered by the contents in the depth buffer. If it is,
the entire tile can be skipped which results in performance gains. Aila et al. [1]
improve the culling rate of HDC by introducing a delay stream, which basically
performs depth buffering first, and then puts the triangles on hold until the “occlud-
ing power” of the depth buffer has been built up. Another variant of HDC, called
Z-min culling [2], avoids depth reads when a tile of fragments being generated are
in front of the contents of the depth buffer.
In an attempt to implement more flexible hardware culling, Purcell et al. [22] in-
troduced computation masks. The basic idea is to let a fragment program set up
the depth buffer so that all fragments that can be culled fail the depth test. The hi-
erarchical depth culling hardware will then perform the actual culling. The weak
points of computation masks are all related to overlapping geometry. First, the
computation mask will overwrite the content of the depth buffer, which makes it
hard to use depth testing in conjunction with computation masks. Second, the
computation mask is given in screen space with just one entry per pixel. This
makes it difficult to make different culling decisions for overlapping geometry.
Occlusion queries provide functionality to query the graphics hardware for the
number of fragments that pass the depth test. The prime example of using occlu-
sion queries is to draw the bounding box of a mesh. If no fragments pass the depth
test, the entire mesh is occluded and does not need to be rendered. These algo-
rithms require intervention by the programmer, and it can be difficult to achieve
good performance due to the latency and overhead of a query, or require sophis-
ticated CPU algorithms [3]. In general, occlusion queries are orthogonal to our
work.

Programmable Shaders The core feature of modern GPUs is the availability of
programmable shaders. These are commonly divided into geometry shaders [4],
vertex shaders [14], and pixel/fragment shaders. However, as the programming
languages are very similar, the implementation trend is to use unified shader units [8],
which can execute the program for any type of shader. This enables more efficient
load balancing between the different tasks. For instance, if a scene contains many
small triangles, more processing units can be allocated for vertex processing. On
the other hand, if we draw a typical GPGPU full-screen quad, all units can be
allocated for fragment processing.
There has been some work made on software evaluation of programmable shaders
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Figure 2: Behavioral model of our proposed rasterization architecture. We add a
new programmable unit between the depth culling unit and the fragment-producing
unit. Our unit executes a cull program, and decides whether a tile can be culled or
not based on the results of the program.

using interval or affine arithmetic. Greene and Kass [10] evaluated shade trees [6]
using interval arithmetic. This was used to compute bounds for the final color
over a surface area element. The width of the bounds was used to guide adap-
tive refinement antialiasing. Heidrich et al. [12] used affine arithmetic to evaluate
procedural shaders written in RenderMan. Doing so enabled them to sample a
procedural shader over an area element. The authors argue that this can be used
to, for instance, adaptively sample procedural textures, or taking material into ac-
count in bounded lighting equations [23]. Moule and McCool [21] use interval
arithmetic to bound the approximation errors when performing adaptive tessela-
tion of displacement maps. As a hierarchical representation of the displacement
map function, they use a mipmap structure of intervals.

3 Programmable Culling Unit Overview

In this section, we give a high-level overview of our programmable culling unit,
and motivate some early design choices.
Figure 2 shows a behavioral overview of our novel rasterization architecture, which
includes the PCU as a new unit. The PCU is the last unit which processes entire
tiles of fragments. It conservatively decides whether to terminate the tile or send
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it down the pipeline for further per-fragment processing. The fundamental dif-
ference, compared to hierarchical depth culling (covered in Section 2), is that the
PCU bases its decision on the output from a shader program execution, rather than
fixed function computations.
One of our main ambitions was to make it as simple as possible for the programmer
to take advantage of the PCU. With our approach, the programmer does not have
to care about new programming languages, writing conservative algorithms, or
taking tile sizes into account. The whole PCU can simply be seen as a very fast
KIL (fragment discard) instruction that operates on a per-tile basis.
As an example, consider the “combined program” in Figure 2. This program per-
forms diffuse lighting by computing the dot product between the normal and light
vectors, and multiplies the result by a diffuse material coefficient stored in a tex-
ture. In this case, the programmer added a KIL instruction to terminate fragments
where the normal does not face the light. We see this KIL instruction as an op-
portunity for culling a whole tile of fragments. In order to do so, we need a way
to conservatively prove that the condition for the KIL instruction is fulfilled for
every fragment within the tile. From this follows that we must also be able to con-
servatively evaluate the DP3 instruction, since the KIL instruction depends on its
result. We must also be able to find conservative bounds of the input (the normal
and light vectors in this case) for a whole tile, since the DP3 instruction in turn
depends on these values.
In order to implement this chain of conservative evaluations, we base the PCU
on the same instruction set as the fragment program unit. However, instead of
floating-point variables as source and destination registers to an instruction, we
use intervals and implement the instruction using the principles of interval arith-
metic [19].1 As a simple example, consider a standard ADD instruction:

ADD c,a,b ⇐⇒ c = a+b (1)

For the corresponding PCU interval instruction, we replace the operands by inter-
vals, â, b̂, ĉ, where an interval, e.g., â is defined as:

â = [a,a] = {x |a≤ x≤ a}. (2)

The PCU interval ADD instruction is then:

ADD ĉ, â, b̂ ⇐⇒ ĉ = â+ b̂, (3)

where the interval addition operation is implemented as:

â+ b̂ = [a,a]+ [b,b] = [a+b,a+b]. (4)

As can be seen, the result of the interval addition contains all possible results of
“normal” additions, or more formally, it holds that a + b ∈ â + b̂ given that a ∈ â

1We decided to use interval arithmetic because it is simple to implement in hardware. An alternative
approach is to use affine arithmetic [5]. See Section 7 for further discussion.
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and b ∈ b̂. It is therefore conservatively correct. In similar fashion, we redefine the
behavior of every instruction in the fragment program instruction set. Full details
of our interval instructions, including conservative texture lookups, can be found
in Appendix A.
In addition to using interval instructions, the input must also be defined as inter-
vals. Therefore, we must be able to compute conservative bounds for quantities
interpolated over an entire tile of fragments. This is treated in more detail in Sec-
tion 4.2.
Given this architecture, we can execute the shader program for an entire tile at a
time. When a KIL instruction is executed, we determine if the conditional expres-
sion is unambiguously fulfilled by checking the interval of the input. In such a
case, we can quickly discard the entire tile and its fragments, which saves valuable
processing time. Otherwise, per-fragment shader execution follows.

2D Interval Dot Product Example Let us once again revisit the example in
Figure 2, while also looking at the figure to the right. For an entire tile of frag-
ments, assume that we have determined that the input interval of the normals is
n̂ = ([−

√
3/2,−1/2], [1/2,

√
3/2]), and the interval for the

light vector is l̂ = ([1/
√

2,1], [−1/
√

2,0]), as illustrated in
the figure. The dot product between these interval repre-
sentations results in d̂ = n̂ · l̂ = [−(

√
6+
√

3)/
√

8,−1/
√

8]
(see the DP3 instruction in Table A.1). We then reach the
KIL instruction and note that the operand, d̂, can be at most
d = −1/

√
8. Since this value is strictly less than zero, we

can cull this whole tile without executing the fragment pro-

x

y
n̂

l̂

gram for every fragment. This is the source of the performance gain in our algo-
rithm. 2

4 PCU Interaction

In this section, we will treat the PCU as a black box which takes intervals as input
and determines whether a tile can be culled. It is important to note that the PCU
is a part of a much larger system including both hardware and the driver. In this
section, we focus on the interaction between that system and the PCU.

4.1 Driver

Here, we will introduce a new CUL instruction, present compilation issues, and
discuss optional instruction support. All these features are implemented in the
driver.
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CUL Instruction

The system in Section 3 allows for rapid culling of fragment programs contain-
ing KIL instructions, but we also introduce a CUL instruction that can improve
performance in some cases. As an example of when it is useful, consider a frag-
ment program designed for multi-pass shading, such as the program from Figure 2.
These programs rarely or never use a KIL instruction to discard fragments whose
normals face away from the light. The light contribution will be zero anyway,
so the KIL instruction is not needed for correctness and will in most cases only
reduce performance.
In this case, we want the KIL instruction to exist only in the cull program, which
is exactly how we define the CUL instruction. The CUL instruction, and all instruc-
tions depending on it, will only be propagated to the cull program. Thus, where
a KIL instruction is always guaranteed to discard a fragment if the condition is
fulfilled, a CUL instruction may or may not discard the fragment depending on if
it belongs to a tile that can be culled. The CUL instructions can be removed for
hardware not supporting cull programs.

Program Compilation and Separation

A key point of our programmable culling unit is the ease of use. The programmer
writes a combined program, and it is up to the driver or compiler to separate the
cull and fragment program. This process can be done easily and efficiently using
dead code elimination [7]. For the fragment program, we mark the color outputs,
depth outputs, and all KIL statements as live code. We then perform dead code
elimination, efficiently removing all code not contributing to the final result. For
the cull program, we mark all CUL and KIL statements as live, and again perform
dead code elimination to remove all code not contributing to the result.
It should be noted that dead code elimination is a lightweight optimization tech-
nique that does not introduce any significant performance impact on the driver,
even if it is carried out at runtime.

Optional Instruction Support

A convenient feature of our PCU, and culling algorithms in general, is that lack of
culling does not compromise the correctness of the result. An implementation may
therefore freely omit PCU support for any instructions or features present in the
fragment program unit. The driver can then examine all KIL and CUL instructions
and determine if they depend on some unsupported feature. If this is the case, the
KIL or CUL instruction is simply marked as dead code when extracting the cull
program.
We use this strategy to handle dynamic loops (loops with a variable number of
iterations). For simple static loops, with a constant number of iterations, we can
simply use loop unrolling. However, dynamic loops present more of a challenge,
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x

Figure 3: The perspective-correct interpolation problem. The left figure shows
the perspective-correct interpolation space of a triangle, when extended outside
the triangle boundaries. Note the yellow line where the checkerboard is mirrored.
This is where the horizon of the triangle would be projected if it was infinitely
large. The right figure shows the perspective-correct interpolation function as gray
curve, and the projection line (at x = 0) marked in yellow. Note that computing
bounds using the corners of the tile (in blue) gives an incorrect result.

and we do not currently support them in the cull program. There are ways of
reformulating a dynamic loop on interval form [12], but the problem is that we
cannot guarantee that a loop converging on a per-fragment level will also converge
when using our interval instructions. There is a possibility of undesired infinite
loops.
To support dynamic loops, we believe the best approach would be to extend the
instruction set of the PCU with instructions for this purpose, and to force the pro-
grammer to write a custom cull program. Thereby, the programmer gets the re-
sponsibility to formulate a loops that converge. This is left for future work.

4.2 Hardware
When considering the PCU as a black box, there are still some issues that can be
discussed when it comes to hardware. In this subsection, we will first discuss how
to compute the input intervals to a tile, and then present a solution to how small
triangles can be handled efficiently.

Interpolation

Given an implementation of the instruction set in Appendix A, we may execute a
fragment program for a whole tile of fragments. However, in order to do so, we
also need to compute bounding intervals for the varying (or interpolated) inputs.
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We use a method inspired by the depth bounds computations of hierarchical depth
culling. Initially, we compute the value of the varying attribute in all four corners
of the tile using interpolation. We then compute the bounding interval of these
four values, and call it âc = [ac,ac]. We also compute the bounding interval of
the varying attribute at the triangle vertices, and call it âtri = [atri,atri]. The final
bounding interval of the varying attribute over the tile can be computed as âtile =
[max(atri,ac),min(atri,ac)].
Finally, we must take care of a special case, which is illustrated in Figure 3. Here,
perspective-correct interpolation over a triangle is illustrated in form of a checker-
board texture. As can be seen, the texture is mirrored about the yellow projection
line, which is where the horizon of the triangle would project if it was infinitely
large. This mirroring effect is a form of back-projection caused by the division
used in perspective-correct interpolation.
Now, assume we wish to compute the bounding interval of some varying attribute
over the blue tile, which overlaps the projection line. The right part of Figure 3
shows the perspective-correct interpolation function, as well as the values we get
when we interpolate the four corners of the tile. Note that the bounding inter-
val of these corners (dashed blue lines) is obviously incorrect since the function
approaches infinity at the projection line.
We handle this special case by setting âtile := âtri as the bounding interval for tiles
overlapping the projection line. One might argue that this interval is overly con-
servative, but these problematic tiles are so rare that it is hard to motivate more
complex computations. In our implementation, we only traverse tiles actually
overlapping the triangle, and use perspective-correct barycentric coordinates [17]
to do the interpolation. We can easily detect the problematic tiles when com-
puting perspective-correct barycentric coordinates for the corners of a tile. The
perspective-correct barycentric coordinates are expressed as a rational function,
and if the denominator is less than zero for any of the tile corners, then the tile
crosses the projection line.

Higher Level Culling

A potential weakness of our PCU is that the culling is done on a per-tile and per-
triangle basis. In the case of micro-polygons, triangles can be smaller than a pixel,
which means that executing the cull program will cost at least as much as executing
the fragment program. Here, we describe a solution to this problem.
In order to handle micro-triangles efficiently, we use a delay stream like unit [1].
This unit receives triangles in the same order as they are sent to the graphics card.
It also keeps an internal state with bounding intervals of the varying attributes. The
unit groups triangles as long as the accumulated bounding interval for the position
attribute is smaller than the size of a tile. This means that grouping is done as
long as the bounding box of the triangles is smaller than the size of a tile. When
the accumulated triangles reach this limit, we execute the cull program using the
accumulated bounding intervals. If the outcome indicates that culling can be done,
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the entire set of small triangles is terminated. Otherwise, per-fragment processing
commences for each triangle in the set.
Triangles overlapping more than one tile are rendered as usual. That is, we execute
the cull program for every tile during rasterization.

Fragment Program Switching

In some cases, such as shader level of detail, it may be convenient to be able to
use the cull program to specify which, out of many, fragment program should be
executed for the fragments in a tile. A nice example of this is our “Soft Shadows”
scene in Section 6. Here, we may skip a considerable amount of shadow map
lookups if we can prove that a tile is entirely lit, but we must still perform the
lighting on a per-fragment level so we cannot completely cull the tile.
We can support this if the underlying hardware is capable of rapidly switching
between a small number of fragment programs. In this case, we simply attach a
fragment program index to each cull instruction, and use the corresponding frag-
ment program when rendering the fragments of a tile that has been culled by that
instruction.

5 Implementation - Combined Shader Unit
So far, our description of the programmable culling unit has been on a functional
level. However, our goal has been to reuse existing hardware when possible, so it
is only natural to combine the PCU and the fragment program unit (or the unified
shader unit, if such an architecture is used) into a single programmable unit.
Figure 4 shows a block diagram of a possible fragment program unit. The execu-
tion pipelines are organized as four separate parallel units, with a direct mapping
to a quad of 2×2 fragments. This enables simple approximations of derivatives by
finite differences, which is essential for correct mipmapping. The fragment pro-
gram pipeline is broken down into several steps, and in order to avoid hazards, it
is reasonable to assume that the GPU executes at least as many parallel program
threads as there are pipeline steps in the program unit.
In order to implement our PCU, we augment the fragment program unit with new
logic shown in red in Figure 4. These additions mainly consists of extra control
logic before and after the ALU. The logic is responsible for value rerouting, de-
tecting and handling the special cases of Table A.1, and handling the special case
for interpolation. There are also additions in the texture unit to handle mipmap
computations and filtering, and a final set of min & max units to assemble the re-
sult. These units may be taken from the ALU and moved to the end of the pipeline.
No extra hardware is needed in this case.
We have implemented a simple fragment program unit augmented with a subset
of the PCU, in VHDL. We restricted our hardware implementation to the arith-
metic and logic functions, while omitting texturing and interpolation. The reason
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Figure 4: Conceptual diagram of a contemporary fragment program unit which we
have extended to a PCU. The new units are marked in red.

for this was that we had no access to peripheral units, such as texture caching,
vertex buffers, and so forth. Admittedly, our implementation is only a fraction of
a GPU, but implementing the entire hardware would take considerable effort. In
addition, for the same reasons, our processor model is most likely much simpler
than what can be found in the GPUs on the market. However, we learned two
facts which we believe will generalize to any GPU design. First, we can greatly
reuse the computational resources and only need to add a small amount of logic to
handle rerouting and special cases for interval arithmetic. In our particular imple-
mentation this overhead amounts to about 8%, and in this case we used duplicated
min and max units. Second, using interval arithmetic increases the latency for ex-
ecuting an instruction. We therefore need more executing threads in order to avoid
hazards, and consequently need a larger register file in on-chip memory. In our
particular implementation, the execution pipeline increased from 22 to 24 steps,
which gives a 9% increase in register space.
Note that we implemented the PCU by extending a fragment program unit. This
indicates that it should be relatively straightforward to make the PCU a part of a
unified shader architecture. No matter what architecture we choose, it should be
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noted that the PCU introduces an additional delay in the pipeline, since we add an
additional program that needs to be executed. However, we do not believe this will
have any negative effect on the throughput.

6 Results

We have evaluated our PCU experimentally using a variety of modern shader based
applications, all rendered at a resolution of 1280× 1024 pixels. The evaluations
are based on a functional simulator written in C++, which implements all fea-
tures of the PCU specified in this paper, as well as most other features of modern
graphics hardware. This includes interval-based texture lookups, texture caching,
HDC, and depth & color buffer compression and caching. We implemented the
PCU on top of a normal rasterizer, and also implemented an “optimal” culling
unit for reference. In practice, we implement this optimal unit by executing the
cull program for every fragment overlapping the triangle inside a tile, but without
counting the instructions. We then make the culling decision based on the results
of all fragments. This result can be seen as an upper bound for culling when using
a particular program and tile size.
Quake 4 is a modern game based on the Doom 3 engine which uses advanced per-
pixel lighting, bump mapping, and stencil shadows. We used a logging OpenGL
driver to output frames from the actual game, which means that we can completely
recreate its behavior.
The only modifications we made to the logged data was to enhance the fragment
programs with culling code. Since we did not have access to the game code or any
geometric data, we chose to disable shadowing in the game and concentrated our
optimizations on the lighting only. With access to the full code it might be possible
to use more sophisticated culling, such as clipping shadow volumes against portal
frustums. We got the best balance of performance and culling rate when apply-
ing simple culling algorithms such as back-face (bump-mapped), attenuation, and
spot-light frustum culling.
It should be noted that the Doom 3 game engine is optimized to perform a fill
rate heavy task on a wide range of graphics cards with varying performance. It
therefore makes heavy use of CPU culling, and possibly even pre-computations
such as splitting geometry by static lights in order to save fill rate. Hence, as it is
already optimized, this can be considered as a very difficult case for our PCU.
Soft Shadows is based on the soft shadows demo in the NVIDIA OpenGL SDK [25],
which we replicated using our logging driver. This program uses a shader that
draws eight jittered samples from the shadow map. If the shadow status for the
samples varies, the fragment is assumed to be in the shadow penumbra and an
additional 56 samples are drawn.
For this scene, we used a custom cull program. The reason is that we can use the
powerful interval-based texture lookup (see Appendix A.2) to determine if a frag-
ment is outside the penumbra. We do this using just one interval texture lookup,
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where the texture coordinate interval is computed so that it covers the entire filter
used for sampling. We can then determine if a tile is entirely in shadow or entirely
lit. If the tile is in shadow, we immediately discard it, and if it is completely lit,
we skip all shadow map sampling in the fragment program. Finally, if the tile is
in the penumbra region we use the original fragment program. In addition, we
have implemented back-face and attenuation culling for the light source. We do
not present any results for the optimal culling unit for this example, since it is
not completely defined how the interval texture lookup would work in the optimal
case.
Order Independent Transparency (OIT) is based on the depth peeling algo-
rithm [16]. Once again we used our logging driver and an example found in the
NVIDIA OpenGL SDK. Depth peeling is an iterative multi-pass algorithm which
creates one depth layer per pass. This is done by holding the depth values of the
previous pass in a texture, and performing a two-sided depth test. This test dis-
cards all fragments with a depth component less than or equal to the value of the
previous pass, or greater than the current value in the depth buffer.
Since the original shader code already contained a KIL instruction, we made no
significant modifications to it. We simply noted that the PCU provides a two-
sided hierarchical depth test, while a normal architecture only provides a one-sided
hierarchical depth test (namely the depth buffer).
The results for this scene were generated under the assumption that a “sparse
mipmap” of the depth buffer is available, as discussed in Appendix A.2. In this
case, it simply means that the tile’s Zmin and Zmax of the depth buffer are avail-
able in the PCU. This is perfectly reasonable since modern hardware supports
Zmin/Zmax-culling. It should be noted that the number of instructions when using
our PCU is reduced by an additional factor of two if a sparse mipmap is available
for the color buffer as well. In this case, we get a massive speedup of a factor 3.7.
Spheres is a simple test scene that renders procedural spheres using billboards
and a fragment program. A KIL instruction is used to discard all fragments in
the billboard which do not overlap the sphere. The overlap test is performed in
two-dimensional texture space.
An important feature for this test scene is that we also compute a custom depth
value in the shader, which is simply the depth of the sphere at each pixel. This typ-
ically breaks hierarchical depth culling functionality on current hardware. How-
ever, with our PCU it is a simple extension to output a bounding interval for the
depth values in a tile, and we can then feed the bounding interval directly to the
hierarchical depth culling unit. This way, we can efficiently handle depth culling
of shaders with custom depth computations, which was previously an unsolved
problem. This is desirable in many applications, such as rendering curved sur-
faces [15] and parallax mapping [24]. It should be noted, however, that we must
execute the cull program before the hierarchical depth test in this case. This opens
a question whether the PCU should be placed before or after the hierarchical depth
unit. Preferably, the order of the units should be configurable.
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7. DISCUSSION

Discussion of Results The results of our evaluations are summarized in Ta-
ble 1. Note that the PCU performance figures include execution of the culling
program. As can be seen, we achieve significant performance improvements for
all test scenes. The improvements are larger for the simpler demos than for the
game scene, as expected, since the game already makes heavy use of CPU-based
culling. Still, we believe that a performance improvement of 1.4× is significant
considering how easy it was to modify the game. Notice also how well our culling
unit performs when compared to the “optimal” case for that scene and program.
In the bottom part of Table 1, we present bandwidth figures. Bandwidth reduction
was not our primary goal, but even here we noticed improvements when compared
to a standard GPU.

6.1 Small Triangles

We also examined how our PCU architecture scales with decreasing triangle size,
with and without the extension presented in Section 4.2. In this test, we used a
very simple scene in order to focus entirely on the effects of varying tessellation.
The scene consists of a unit sphere that is clipped arithmetically by a cylinder in
the fragment program. We varied the tessellation of the sphere in order to study
how the algorithm performs at different triangle sizes.

We evaluated three different rasterization algo-
rithms, and the results are shown in the dia-
gram to the right. The standard rasterizer emu-
lates a modern hardware rasterization architec-
ture. That is, it is based on pixel quads as the
smallest set of pixels that can be rasterized. It
should be noted that it is therefore sub-optimal
for rendering extremely small triangles, but this
is a problem inherent in most current hardware 0 1 2 3 4 5 6 7 8
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rasterizers. The PCU algorithm refers to our PCU architecture without the exten-
sion in Section 4.2. As we predicted, the performance decreases more rapidly with
increasing tessellation than for a standard rasterizer. In this particular scene, we
have found that the two curves intersect when the average projected triangle area is
around three pixels. Finally, we have the extended PCU algorithm as discussed in
Section 4.2. Note that the extended PCU now follows the same trend as a normal
rasterizer, with a virtually constant performance advantage due to the culling.

7 Discussion

The prime use of our PCU is to speed up fragment shader execution using a very
simple culling program. We believe this is the reason why we have achieved such
good results using interval arithmetic, which may otherwise suffer from rapidly
growing bounds when computations become too complicated. This has termi-
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nated many efforts of implementing interval-arithmetic-capable CPUs. However,
in culling it is more a rule than an exception to use a very simple algorithm, and
this makes interval arithmetic well-suited for the task.

During the course of this project, we noted that existing fragment
shader programs can be used by the PCU without any additional
work by the programmer. However, with some additional effort,
much better culling can be obtained in many cases. For instance,
we found that Quake 4 uses a texture for spotlight angular falloff,
as shown to the right. If we perform a texture lookup on the green region which
is clearly outside the falloff, mipmapping and clamping may cause the result to be
the interval of the texture over the red region. Much better results are achieved if
the culling is done directly on the texture coordinates, rather than using the more
conservative texture lookup.

The texture lookup is one of our biggest sources of interval growth, and it is a
clear candidate for improvements and future work. In fact, one of our main rea-
sons for discarding affine arithmetic (apart from interval arithmetic being better
suited for hardware) is that there is no obvious way to efficiently improve tex-
ture lookups with affine arithmetic, and that the texture lookups instantly break
all linear dependencies. We did some preliminary tests using affine arithmetic for
the arithmetic instructions, but most results were discouraging. The cull programs
were either too simple with few dependencies, or contained texture lookups.

8 Conclusion

A long awaited feature in the GPU programming community is the ability to treat
the depth buffer, color buffer, and possibly even stencil buffer contents as inputs
to the fragment program. This would essentially remove the need for depth/sten-
cil/alpha tests and blending, which are the last remaining parts of the fixed function
pipeline.
According to Blythe [4], the reasons why this functionality has yet to be imple-
mented in hardware are, 1) pipeline hazards (a.k.a. read before write hazards), 2)
multisampling issues, and 3) lack of culling due to the unpredictability of shader
programs. Even though our PCU cannot help in the two first issues, it provides the
functionality needed to solve the culling problem. For instance, it is not clear how
to use hierarchical depth culling when an arbitrary depth test function is specified
by the fragment program. With our PCU the culling comes automatically as long
as the fragment program uses a KIL instruction for the depth test, and as long as
the depth bounds of the triangle and depth buffer contents are given as inputs to
the culling program.
The two remaining issues still are still open problems. Pipeline hazards has been,
at least partially, solved by Donovan [9] and Molnar [18], who both introduce
conflict detection units which ensure that no program threads are allowed to si-
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multaneously access the same pixel elements. If such a conflict is detected, the
conflicting threads are executed sequentially in the same order as they were is-
sued, stalling the conflicting threads.
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A Interval Arithmetic Instruction Set

In this section we introduce an instruction set operating on intervals. This includes
arithmetic operations, conditionals, and texture lookups. We base the native in-
struction set of our PCU on a subset of the fragment program instructions defined
by the OpenGL ARB.

A.1 Arithmetic and Conditional Instructions

Arithmetic and conditional operations have been thoroughly studied in interval
arithmetic [19, 13], and we base our instruction set on those findings. The instruc-
tions and their corresponding operational behavior are summarized in Table A.1.

A.2 N-Dimensional Texture Lookups

The interval instructions for performing N-dimensional texture lookups are in-
spired by Moule and McCool’s [21] approach, originally used for displacement
map subdivision. The general idea is to provide an efficient way of computing the
bounding interval of the texture data over a given area2. The remainder of this
section will only consider two-dimensional textures, but generalization to a higher
dimension is straightforward.
We initially compute two mipmap pyramids for each texture that is subject to
interval-based texture lookup. As shown in Figure A.1, each element in a mipmap
is computed as the component-wise minimum or maximum value of the four cor-
responding texels immediately below it in the pyramid. The final result can be seen
as a mipmap pyramid of bounding intervals. This type of pre-computation can eas-
ily be handled by the driver, similar to how standard mipmaps are auto-generated.
When performing a texture lookup, we wish to compute the bounding interval of
the texture data over an axis-aligned bounding box, which is the texture coordinate

2Interval-based texture example: assume we render a fence as a quad, using alpha testing and a
texture to represent the geometry. It would then make sense to cull tiles where textureα = 0 over the
whole tile. This can be done using the interval-based texture lookup.
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Instruction Operation Condition
MOV d, a di← ai

MAD d, a, b, c di← [min(ai ∗bi,ai ∗bi,ai ∗bi,ai ∗bi)+ ci,

max(ai ∗bi,ai ∗bi,ai ∗bi,ai ∗bi)+ ci]

DP4 d, a, b dx← [∑i min(ai ∗bi,ai ∗bi,ai ∗bi,ai ∗bi),
∑i max(ai ∗bi,ai ∗bi,ai ∗bi,ai ∗bi)]

RCP d, a di← [1/ax,1/ax] 0 6∈ ax
d← [−∞,∞] 0 ∈ ax

RSQ d, a di← [1/
√

ax,1/
√ax] ax > 0

di← [NaN,NaN] ax ≤ 0

EX2 d, a di← [2ax ,2ax ]

LG2 d, a di← [log2 ax, log2 ax] ax > 0
di← [NaN,NaN] ax ≤ 0

MAX d, a, b di← [max(ai,bi),max(ai,bi)]

MIN d, a, b di← [min(ai,bi),min(ai,bi)]

SGE d, a, b di← 0 ai < bi
di← 1 ai ≥ bi
di← [0,1] otherwise

SLT d, a, b di← 0 ai ≥ bi
di← 1 ai < bi
di← [0,1] otherwise

FLR d, a di← [baic,baic]

NEG d, a di←−[ai,ai]
SAT d, a di← [max(0,min(1,ai)),max(0,min(1,ai))]

Table A.1: The arithmetic and conditional expressions of our minimal instruction
set, named in accordance to the ARB_fragment_program extension. We use d for
the destination register, and a, b & c for source registers. Note that NEG and SAT
are not actual instructions. They refer to the optional negation of source registers,
and the optional saturation of the result. Also, the DP3/DPH are left out since
they are simple modifications of the DP4 instruction. Note that whenever i is used
above, it implies componentwise computations, i.e., i ∈ {x,y,z,w}, and also we
have omitted the hats (ˆ) to avoid cluttering.

interval. First, we compute an appropriate mipmap level as:

λ =
⌈

log2

(
max(tx− tx, ty− ty)

)⌉
(A.1)

where t̂ = (t̂x, t̂y) is a two-dimensional interval of the unnormalized integer texture
coordinates (i.e., they include the dimensions of the texture). These are conserva-
tively rounded so that ti is floored and ti is ceiled for i ∈ {x,y}.
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Min Max 

level n

level n+1

Figure A.1: The mipmap pyramids used for conservative texture lookups. We
compute two pyramids, where each texel contains the minimum and maximum
values respectively, of the corresponding four texels in the mipmap level directly
below.

Figure A.2: The four different lookup patterns of conservative texture lookups.
Mipmap selection makes sure that the texture coordinate interval (red rectangle) is
never more than one texel wide. Therefore, only the four cases shown in the image
are possible. Since we always read a block of 2× 2 texels (in the spirit of linear
filtering) we exclude the texels shaded in red from the final result.

When transformed to this mipmap level, t̂ will never be more than one texel wide in
any dimension, and always least 1/2 texels wide in the widest dimension. Thus, we
get four possible cases of texture coordinate intervals as illustrated in Figure A.2.
Here, we deviate slightly from Moule and McCool [21] who used these cases to
determine how many texels they need to sample. Instead, we always sample a
square of 2×2 texels with the lower left corner at the texel of (tx, ty), in the access
scheme used for normal linear interpolation. The result of the texture lookup is
then computed as the bounds of the colors of the texels that actually overlap the
texture coordinate interval. That is, we discard the texels shaded in red in Fig-
ure A.2. Since the mipmap transformed t̂ will be rounded to the nearest integer
coordinates, this overlap test can be implemented very efficiently by comparing
just the final bit.
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It can be shown that this texture lookup process is conservative with respect to fil-
tered texture lookups, such as bi-linear, tri-linear and anisotropic filtering, as long
as the filtered texture lookups compute derivatives using finite differences, and as
long as the texture filter does not extend outside the area spanned by the deriva-
tives. The texture lookup also natively supports all different kinds of wrapping
modes, such as clamping and repeating. The appropriate wrapping mode can sim-
ply be applied to the interval coordinates, after mipmap level computation, to get
the expected result. Our texture lookup process is essentially as costly as a normal
tri-linearly filtered texture lookup. The biggest differences are that we need to be
able to sample from the same level in two different mipmap pyramids rather than
two adjacent levels, and that we compute the final result as a bounds rather than
using linear interpolation.

Discussion If more texture units are available, it is possible to improve the bounds
of the interval texture lookup. The normal texture lookup assumes that we can read
a block of 2× 2 texels at a time. If we have enough hardware resources to read
a block of 4× 4 texels instead, then we can move one level down in the mipmap
hierarchy and get a more accurate result.
Another important observation is that we only need to create the mipmap lev-
els that are actually used in the cull program. This optimization is particularly
important for algorithms taking place in screen space such as order independent
transparency (see Section 6). In this case, we know beforehand that we only need
the texture at its base level and the mipmap level that corresponds to a tile on the
screen. Note that such tile information is already available in modern hardware and
can be read “for free”. The minimum and maximum depth values can, for instance,
be found in the hierarchical depth culling unit. It is also possible (but less likely)
that the min and max colors are already computed for compression purposes, oth-
erwise we need to compute them. Extensions for rendering to the base and tile
mipmap level of a texture would greatly accelerate screen space algorithms.

A.3 Cube Map Lookups

Cube maps present more of a challenge than normal texture lookups. Normally, a
cube map is accessed through a vector coordinate (x,y,z), and thus we get a three-
dimensional coordinate interval. As can be seen in the left part of Figure A.3, we
want to project that interval onto the cube map and compute the interval of the
texture data under the projected area.
There are two problems with this approach. First, it is expensive to project a cube
onto the shape of another cube. Second, hardware is typically designed with the
restriction that each texture lookup may only access a single side of the cube.
Since we strive for as modest hardware modifications as possible, we propose an
alternate method which trades accuracy3 for a simpler algorithm.

3In the sense of interval width. The algorithm is still fully conservative.
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Figure A.3: Left: The cube mapping problem. A texture coordinate interval (the
red box) may map to several sides on the cube (the projection of the red box),
but current hardware only allows one side at a time to be accessed. Right: Min-
Max mipmap generation for interval-based cube mapping. Only a small part of
the cubemap is shown here. We use texels from both sides of an edge (the green
regions), and texels from three sides in the corners (the red region).

We compute the min/max mipmap pyramid for the cube map, using the same ap-
proach as for two-dimensional textures. However, near edges and corners of the
cube, special treatment is necessary as shown to the right in Figure A.3. For the
edges, we compute the mipmap color as the min or max of four texels on both sides
of the edge, and for the corners we compute the mipmap color as the min or max of
four texels on all three sides emanating from that corner. Texels on opposite sides
of edges will therefore share the same colors in higher mipmap levels. Similarly,
the three texels in a corner will also share a common color. It should be noted that
the highest level mipmap will contain the min and max value over the full cube, as
expected.
We can now use this mipmap pyramid to do conservative cube map lookups with
accesses to only one side of the cube. First, we compute the interval-based equiv-
alent of the major axis. Given a texture coordinate interval t̂ = (t̂x, t̂y, t̂z), we de-
fine the major axis, i, as the axis where ti and ti have the same sign, and where
min(|ti|, |ti|) is maximized. This is essentially the axis where the texture coordi-
nate interval does not contain the origin, and lies nearest to a cube map face. If ti
and ti have different signs over all axes, then we cannot find a major axis. How-
ever, this can only happen if the origin lies within the texture coordinate interval.
In this case, the texture coordinate interval will project onto the entire cube map.
We can easily handle this by choosing the highest mipmap level, and sample an
arbitrary cube map face.
Once we have found a major axis, we conservatively project the texture coordinate
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y
sign ( t x ) sign ( t y ) sign ( t y )

− + +
+ − −
+ + +
− − −

+ − +

− − +

Extreme
Points
( t x , t y )
( t x , t y )
( t x , t y )
( t x , t y )
( t x , t y )
( t x , t y )
( t x , t y )
( t x , t y )

x

Figure A.4: Our method for projecting the bounds of a texture coordinate interval
on the cube map. Here x is the major axis, and we want to find the texture coor-
dinate interval when projected on any of the x-sides of the cube map. The figure
illustrates the six possible cases of texture coordinate intervals, and the projected
extreme points. The table summarizes the different cases of extreme points and
show how they can be determined using signs.

interval on the corresponding side of the cube map. The projection is done by
projecting the bounds of each of the two remaining axes separately. Figure A.4
shows such a projection, where x is the major axis, and y is the axis for which
we want to project the bounds. The figure shows the six possible cases of texture
coordinate intervals (note that no interval may cross the y-axis since the x-axis
would not be a major axis in that case), and the extreme points we have to project to
compute the bounds. Fortunately, it is very easy to determine which these extreme
points are. It is sufficient to look at the signs of the texture coordinate interval, as
shown in the table in Figure A.4.
We project the extreme points for the remaining two axes to form a two-dimensional
projected coordinate interval. This interval is used to compute a mipmap level and
perform a two-dimensional texture lookup, identically to the method described in
Section A.2.
It is possible to show that this algorithm is conservative because of the information-
bleeding during mipmap generation. Furthermore, it is computationally inexpen-
sive. Finding the major axis, and projection can be expected to be twice as costly
as a normal cube mapping implementation, which is reasonable considering we
use intervals. In addition we need the tabulated function from Figure A.4, which
is already very inexpensive.
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ABSTRACT

Graphics processing units supporting tessellation of curved sur-
faces with displacement mapping exist today. Still, to our knowledge,
culling only occurs after tessellation, i.e., after the base primitives
have been tessellated into triangles. We introduce an algorithm for
automatically computing tight positional and normal bounds on the
fly for a base primitive. These bounds are derived from an arbitrary
vertex shader program, which may include a curved surface evalua-
tion and different types of displacements, for example. The obtained
bounds are used for backface, view frustum, and occlusion culling
before tessellation. For highly tessellated scenes, we show that up to
80% of the vertex shader instructions can be avoided, which implies
an “instruction speedup” of 5×. Our technique can also be used for
offline software rendering.

ACM Transactions on Graphics, 28(2):19, 2009.





1. INTRODUCTION

1 Introduction

To provide rich surface representations for real-time rendering, it is expected that
most graphics hardware in the near future will have support for tessellation of
curved surfaces with displacement mapping. The Xbox 360 [5] and the ATI Radeon
HD 2000 series [25] already have support for this. A primitive with a triangular or
square domain is tessellated, and barycentric coordinates are forwarded to the ver-
tex shader, which may compute an arbitrary position based on these coordinates,
and more. To the best of our knowledge, these systems only perform culling after
tessellation using the conventional graphics pipeline. Clearly, it would be advanta-
geous to be able to cull before tessellation occurs, and Figure 1 shows an example
of this.

Vertex shader:

u

v

Base mesh

backface culled and
occlusion culled
before tessellation

H
W

 tessellator
16    tessellation

x(u, v) = ( 2+ cos(2πv)) ·
cos(2πu) ;

y(u, v) = ( 2+ cos(2πv)) ·
sin(2πu) ;

z(u, v) = sin(2πv)

Figure 1: GPUs with tessellation hardware are given a base mesh over a parameter
space, (u,v), as input. In this case, the tessellator increases the number of triangles
by a factor of sixteen, and a vertex shader evaluates a point on a torus surface. In
the lower part, we visualize the base triangles that our culling algorithm automat-
ically can avoid to tessellate, and where vertex shader evaluations can be avoided.
We are able to cull 56% of the triangles prior to tessellation.
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Over the years, culling techniques have seen many uses in both real-time graphics
and offline rendering. In general, RenderMan implementations [1, 4] use culling
on many different levels. However, the details may vary for different implemen-
tations. View frustum and occlusion culling are performed, often prior to tessella-
tion, and splitting of primitives may also occur. Backface culling is usually done
after tessellation. Wexler et al. [27] describe a GPU-optimized implementation,
where (among other things) occlusion queries are used to accelerate rendering.
However, to bound a displaced surface in RenderMan, the user either has to pro-
vide the renderer with a conservative upper bound, or the displacement shader is
executed on micropolygons, and exact bounds computed from these [1]. In this
latter case, no culling occurs before tessellation.
Shirman and Abi-Ezzi [24] use cones to bound a set of normals on a patch, and
can thus perform efficient backface culling. Kumar and Manocha [15] derive a
different method for backface culling of curved surfaces, and use a conservative
technique to bound the normals and then test for culling. However, neither of these
techniques can handle arbitrary surface evaluations automatically on the fly. Han
et al. [10] describe an alternative GPU implementation, where the part of the vertex
shader that computes the position of a vertex is executed first. After that follows
backface culling. If the triangle is culled then unnecessary lighting calculations
are avoided. Our goal is similar, but we want to perform culling before tessellation
even occurs.
There is a wealth of literature on adaptive on-the-fly tessellation, and as our work
can be combined with such techniques, we only list some of them. Doggett and
Hirche [6] use a summed-area table of the displacement map and a normal test to
guide the tessellation. A similar approach is to use interval arithmetic and interval
textures to focus the tessellation efforts [22]. To provide a continuous level of
detail, Moreton [21] introduces fractional tessellation where tessellation factors
are specified as floating-point numbers per triangle edge. This allows for adaptive
tessellation across a mesh, and similar techniques are used in modern GPUs [25].
In contrast to the previous work described above, we focus on presenting a single
automatic solution. Our paper contributes with a novel pre-tessellation backface,
view frustum, and occlusion culling method which is:

• fully automatic, based only on arbitrary vertex shader code which can in-
clude for example deformations, curved surfaces, and displacement map-
ping.

• implemented with tightly bounded arithmetic on triangular domains.

• suitable for implementing in both hardware and software rendering systems.

Next, we describe our algorithm in detail.
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Triangle traversal

Input

Pixel shader

Output

Vertex shader

Culling unit

Tessellator

Figure 2: To support tessellation in the GPU pipeline, a tessellation unit has re-
cently been added. We propose to add the culling unit, which automatically deter-
mines whether tessellation of a base primitive can be avoided.

2 Tessellation Culling

The goal of our work is to efficiently avoid tessellating the majority of surfaces
which do not contribute to the final image. This occurs when a surface is back-
facing, outside the view frustum, or occluded by previously rendered surfaces.
Furthermore, we believe it is of utmost importance that fully arbitrary vertex dis-
placement shaders can be handled in a completely automatic way. In this section,
we present a novel algorithm for this. Without loss of generality, we restrict our-
selves to triangular domains and tessellation.

2.1 Overview

We extend the current GPU tessellation pipeline [25] with our new culling unit as
illustrated in Figure 2. Note that this type of pipeline is also rather similar to offline
rasterization pipelines. Without our culling unit, base triangles are first injected
into the pipeline, and these can be tessellated to a desired number of triangles
by the hardware. For each created vertex, the tessellator forwards its barycentric
coordinates, (u,v), down the pipeline. The vertex shader then computes the po-
sition, p(u,v), of each vertex as a function of its barycentric coordinates. This
may include, e.g., the evaluation of a Bézier triangle with texture displacement,
procedural noise, and transform matrices. Each term can also depend on a time
parameter, in order to animate a water surface, for example.
Our culling algorithm works as outlined in Fig. 3. First, we analyze the vertex
shader program and isolate all instructions that are used to compute the vertex
position. We then compute geometric bounds for this position over an entire base
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a) Base triangle c) Bernstein expansionb) Taylor model d) Final bounds

Figure 3: Algorithm overview: a) A base triangle (seen from the side) with pre-
computed tessellation factors is sent to the tessellation unit. b) By expressing
the vertex program in Taylor form (polynomial + interval remainder), a conser-
vative estimate of the surface is obtained. c) The Taylor polynomial is expanded
in Bernstein form for efficient range bounding (using the convex hull property),
d) Finally, by adding the interval remainder term from the Taylor model to the
Bernstein bounds, conservative surface bounds (red) are obtained.

triangle, and use these bounds to perform the culling.
Recently, it has been shown [12] that pixel shaders can be executed, bounded, and
culled over a block of pixels using interval arithmetic [19]. In this case, the pro-
grams used for culling are often short (terminated by a KIL instruction). However,
in our context, the shader programs are significantly more complex, and therefore
we use Taylor models [2] to approximate the shader function over the triangle do-
main. We then use Bernstein expansion [14] to compute tight bounding boxes for
the Taylor models, and use these bounding boxes for culling.
In the following, we first present some background on Taylor models in Sec-
tion 2.2. Then follows an algorithm for computing tight polynomial bounds in Sec-
tion 2.3, and our program analysis and generation in Section 2.4. In Section 2.5,
we describe how selective execution of our culling can be done, and finally, the
culling algorithms are described in Section 2.6.

2.2 Taylor Arithmetic

Taylor arithmetic has seen little use in computer graphics research, but there is a
recent exception in collision detection [28]. Interval arithmetic [19], on the other
hand, has been used extensively in graphics. Intervals are used in Taylor models,
and the following notation is used for an interval â:

â = [a,a] = {x |a≤ x≤ a}. (1)

Given an n + 1 times differentiable function, f (u), where u ∈ [u0,u1], the Taylor
model of f is composed of a Taylor polynomial, Tf , and an interval remainder
term, r̂ f [2]. An nth order Taylor model, here denoted f̃ , over the domain u ∈
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[u0,u1] is then:

f̃ (u) =
n

∑
k=0

f (k)(u0)
k!

· (u−u0)k

︸ ︷︷ ︸
Tf

+[r f ,r f ]︸ ︷︷ ︸
r̂ f

=
n

∑
k=0

ckuk + r̂ f . (2)

This representation is called a Taylor model, and is a conservative enclosure of the
function, f over the domain u ∈ [u0,u1].
Similarly to interval arithmetic, it is also possible to define arithmetic operators on
Taylor models, where the result is a conservative enclosure (another Taylor model)
as well [2]. Addition is defined as follows: Assume that f + g shall be computed
and these functions are represented as Taylor models, f̃ = Tf + r̂ f and g̃ = Tg, r̂g.
The Taylor model of the sum is then

f̃ +g = (Tf +Tg)+(r̂ f + r̂g). (3)

Note here that Tf +Tg is an addition of two polynomials.
Similarly, for multiplication of a Taylor model, f̃ , by a scalar value, λ , we get that:

λ̃ · f = (λ ·Tf )+(λ · r̂ f ). (4)

Multiplication between two Taylor models is more complicated. Assume again
that we want to compute f · g where f and g are represented by Taylor models.
The Taylor model of the product is then

f̃ ·g = Tf ·Tg︸ ︷︷ ︸
Tf ·g

+B
(
Tf ·Tg

)
+B

(
Tf
)
· r̂g +B(Tg) · r̂ f + r̂ f · r̂g︸ ︷︷ ︸
r̂ f ·g

. (5)

The polynomial part of this equation, Tf ·g is simply the multiplication of the poly-
nomials Tf and Tg, but clamped (denoted Tf ·Tg) so that all terms of higher order
than the Taylor model has been removed.
The remainder has several contributing terms. First, we have the part of the poly-
nomial multiplication that overflows and has terms only of higher order than the
Taylor model (Tf ·Tg = Tf ·Tg−Tf ·Tg). Note that we want the remainder term on
interval form, and therefore we must bound the overflow of the polynomial mul-
tiplication over the domain (this is indicated by the bounding operator, B()). To
compute the bounds, we directly evaluate overflowing terms using interval arith-
metic and accumulate them to the remainder. More complex bounding computa-
tions, such as the one presented in Section 2.3, are possible, but since multipli-
cation is such a frequent operation, we must ensure that it is fast to compute its
bounds. The other terms found in the remainder involve computing the bounds of
Tf and Tg and are treated similarly to the overflow from the polynomial multipli-
cation. It should be noted that one or more of the terms in the remainder often are
zero. For instance, if r̂ f or r̂g is zero, then the corresponding terms will be zero as
well. As an optimization, we detect these cases and avoid the computations.
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By using Taylor expansion, and the addition and multiplication operations pre-
sented above we can derive more complex arithmetic operators, like sine, log, exp,
reciprocal, and so on. We refer to the work of Berz and Hoffstätter [2] and Makino
and Berz [18] for more details.

Motivation The motivation for us to use Taylor models is that curved surfaces
and subdivision schemes are often based on polynomials. Polynomial compu-
tations can be represented exactly by Taylor models (provided they are of high
enough order) which leads to very tight bounds. Previous work on shader analy-
sis [7, 13, 12] have successfully used interval and affine arithmetic, which are com-
putationally less expensive than Taylor models. However, note that they subdivide
the domain into small tiles before evaluating the bounded shader. In contrast, we
must bound the shader over the entire domain (the base triangle) in a single evalu-
ation, and consequently we need much tighter bounds. A side by side comparison
between the tightness of interval arithmetic, affine arithmetic and Taylor models
can be found in the example in Section 2.3.
Taylor models also provide a flexible framework since it is essentially a superset of
interval and affine arithmetics. It allows us to tweak interval sharpness versus com-
putational overhead by changing the order of the Taylor model. Orders zero and
one correspond to interval arithmetics, and generalized interval arithmetics [11],
which is similar to affine arithmetics.

2.3 Tight Polynomial Bounds

Our approach to tessellation culling is to evaluate the vertex shader using Tay-
lor arithmetic as described above. We execute the part of the shader that affects
the position attribute using Taylor arithmetic. This results in a Taylor model for
each of the components in the position attribute: (x,y,z,w). To find a geomet-
rical bounding box, one could then find local minima and maxima for each of
these. However, this requires numerical, iterative methods for polynomials of de-
gree n > 4, and also quickly becomes impractical due to the dependence on the
two parametric coordinates, (u,v).
Instead, we use a faster, conservative approach which still produces tight bounds.
The resulting Taylor polynomials are in power form, and the core idea is to convert
these to Bernstein form. The convex hull property of the Bernstein basis guaran-
tees that the actual surface or curve of the polynomial lies inside the convex hull
of the control points. Thus, we compute a bounding box by finding the minimum
and maximum control point value in each dimension.
In practice, we obtain bivariate polynomials from the vertex shader evaluation us-
ing Taylor arithmetic, and for a single component (e.g., x), this can be expressed
in the power basis as follows (where we have omitted the remainder term, r̂ f , for
clarity):
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x

y

Figure 4: A comparison of the bounds for a parametric curve (px(t), py(t)) of de-
gree 3 in t for interval aritmethic (red), affine arithmetic (blue) and Taylor models
with Bernstein bounds (green).

p(u,v) = ∑
i+ j≤n

ci juiv j. (6)

We want to transform Equation 6 into the Bernstein basis:

p(u,v) = ∑
i+ j≤n

pi jBn
i j(u,v), (7)

where Bn
i j(u,v) =

(n
i
)(n−i

j
)
uiv j(1− u− v)n−i− j are the Bernstein polynomials in

the bivariate case over a triangular domain. We can convert a polynomial in the
power basis form, into the Bernstein form using the following formula [14]:

pi j =
i

∑
l=0

j

∑
m=0

(
i
l

)(
j

m

)(n
l
)(

n−l
m

)clm. (8)

To compute a bounding box, we simply compute the minimum and the maximum
value over all pi j for each dimension, x, y, z, and w. This gives us a bounding box,
b̂ = (b̂x, b̂y, b̂z, b̂w), in clip space. Next, we will give an example of the effective-
ness of this technique when compared to interval and affine arithmetic.

Example Assume we have the following parametric curve, p(t) = (px(t), py(t)),
where t ∈ [0,1], px(t) = 1 + 3t + 3t2− 2t3, and py(t) = 1 + 9t− 18t2 + 10t3. We
will illustrate how interval and affine arithmetic compare to our tight polynomial
bounds when computing a two-dimensional axis-aligned bounding box of this
curve over the domain, t ∈ [0,1]. The resulting bounds are visualized in Fig. 4. Us-
ing standard interval arithmetic, we obtain p̂x = [1,1] + [0,3] + [0,3] + [−2,0] =
[−1,7] and p̂y = [1,1] + [0,9] + [−18,0] + [0,10] = [−17,20], and these two in-
tervals represent a box with an area of 296. Similarly, applying affine arith-
metic [3] on the same example gives us px = 3 + 9/4ε1 + 1/2ε2 − 3/4ε3 and
py = 9/4− 3/4ε1− 13/4ε2 + 15/4ε3, where εi ∈ [−1,1] are noise symbols. The
bounding box becomes p̂x = [−0.5,6.5], p̂y = [−5.5,10], which represent a box
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with an area of 108.5. To apply our tight polynomial bounds, we first observe that
the polynomials for px and py are essentially in Taylor form already. Our strategy
is therefore to rewrite these on Bernstein form: px(t) = 1 ·(1−t)3 +2 ·3(1−t)2t +
4 ·3(1− t)t2 +5 · t3, and py(t) = 1 · (1− t)3 +4 ·3(1− t)2t +1 ·3(1− t)t2 +2 · t3,
where the control points have been typeset in boldface. The bounding box is then
found as the minimum and maximum of the control points in x and y. This gives
us p̂x = [1,5] and p̂y = [1,4], which has an area of 12. The tightest fit axis-aligned
box has p̂x = [1,5] and p̂y = [1,2.37], with an area of 5.48.

2.4 Program Analysis and Generation

In a graphics pipeline with a tessellation unit, the vertex shader receives barycen-
tric coordinates & the associated base triangle information, and then outputs a
vertex position in clip space. In the simplest vertex shader, the vertex position is
computed by interpolating the base triangle vertices, using the barycentric coordi-
nates, and transforming this position into clip space by a matrix multiplication. In
the general case, the vertex position is displaced using an arbitrary function (of the
barycentric coordinates) before the clip space transform.
We want to bound this position over the entire barycentric domain, and must there-
fore evaluate the vertex shader output for every possible barycentric coordinate,
since this is the only input that varies over the base triangle. To accomplish this,
we reformulate the vertex shader using Taylor models.
We represent each Taylor model as a coefficient list. Each coefficient has a scalar
value and an id i, indicating that it is the coefficient of the xi term. For example,
the polynomial 4+3x +0.5x2 over the domain x ∈ [0,1] would be represented, as
a Taylor model of order 2, by the list [{4,0},{3,1},{0.5,2}, r̂ = 0]. It could also
be represented as a Taylor model of order one as [{4,0},{3,1}, r̂ = [0,0.5]].
Our only varying input, the barycentric coordinates, are expressed as two-dimensional
Taylor models. Generalizing the list representation from above to two dimensions
so that a polynomial term αxiy j is represented by a coefficient {α, i, j}, we can
write the barycentric coordinates as two-dimensional Taylor models:

u = 0+1 ·u+0 · v = [{1,1,0}]
v = 0+0 ·u+1 · v = [{1,0,1}]
w = 1−1 ·u−1 · v = [{1,0,0},{−1,1,0},{−1,0,1}]

These are Taylor models of order 1 (i, j ≤ 1) over the domain u ∈ [0,1],v ∈ [0,1].
Note that no remainder is needed.
We then proceed by evaluating all instructions using Taylor models. We will
briefly exemplify the implementation of addition and multiplication of Taylor mod-
els, as more complex operations will be expressed in these in the end.
Addition: Addition is done by adding the polynomial part of each Taylor model.
Our internal representation of the polynomial part is a list of non-zero coefficients.
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Thus, the polynomial addition essentially becomes a sparse vector addition at run-
time. Here is an example:

u+w = [{1,0,0},{1−1,1,0},{−1,0,1}] = [{1,0,0},{−1,0,1}] = 1− v. (9)

Note that we only need to perform additions for non-zero terms existing in both u
and w, as the other terms can be handled using variable renaming. The remainder
term, if non-zero, is handled using normal interval arithmetic. A more realistic
shader would include linear interpolation between two, at compile time unknown,
positions. This requires us to work with variables rather than constants. Thus the
example becomes:

p1u+ p0w = [{p0,0,0},{p1−p0,1,0},{−p0,0,1}] = p0 +(p1− p0)u− p0v.
(10)

Multiplication: Here, we loop over the non-zero components in one Taylor model
and multiply it by all non-zero components in the other. Thus, the runtime com-
plexity is roughly O(a · b) multiplications, where a and b is the number of non-
zero coefficients in each of the two polynomials being multiplied. We bound the
remainder terms using interval arithmetics. This can be optimized by exploiting
that our domain is (u,v) ∈ [0,1], as all multiplications by zero can be omitted. For
multiplication, the order of the Taylor model will increase, so we have the choice
to bound the higher-order terms and add to the remainder, or increase the order of
the model. A higher order Taylor model has more precision (polynomials up to
the order of the model can be represented exactly), but is also more costly com-
putationally. With the sparse list representation above, we can use a fixed order
and models of lower orders will not have any computational overhead, as only
non-zero terms are stored and used in the arithmetic operations.
Polynomial displacement shaders (Bézier surfaces) are simply a sequence of Tay-
lor multiplications and additions, and elementary functions can also be bounded
by Taylor models. Like standard Taylor expansions, a higher-order representation
leads to tighter bounds. Once all arithmetic operations have been converted to
Taylor form, we express them using regular vertex shader code. Therefore, we do
not need to introduce any new specialized instruction set for our bounding shader.
However, the bounding shaders will be significantly longer than the corresponding
vertex shader.
Finally, our program analysis gives us a polynomial approximation of the vertex
position attribute. We then compute its bounds using the algorithm in Section 2.3.
Once again, we generate the necessary vertex shader code for this operation.

Discussion Program analysis is done in the exact same way as a standard imple-
mentation [2] of Taylor models, with the exception that we need to treat symbolic
constants (variables) rather than values, and we need to emit code rather than exe-
cuting the operations.
It should be noted that the Taylor models for the barycentric coordinates are the
same for all base triangles, and thus we can treat them as constants rather than vary-
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ing input. This means that the order for all Taylor instructions can be computed
statically at compile time. Furthermore, we can do most standard optimizations
(for example, exploiting c ·0 = 0, and c+0 = c), as well as all control flow that is
internally needed in the Taylor model computations, at compile time. This greatly
increases the runtime shader performance.
In conclusion, the complexity of each Taylor operation is highly dependent on the
“order” of the vertex shader. For instance, for a program with only interpolation
and a matrix multiplication, the Taylor models will have no non-zero coefficients
over order one. In contrast, cubic Bézier triangle evaluation uses polynomials of
degree 3, and consequently the Taylor models will have more higher-order coeffi-
cients. The instruction ratio between the culling program and vertex shader grows
for more complex shaders (see Section 4). Note that we can determine the number
of instructions during compile time. Thus we can compile the program, see how
expensive it gets, and only trigger culling if there is potential for performance gain.

Texture Mapping

Shaders using texture map lookups are problematic as the texture map may contain
an arbitrarily complex function. However, texture mapping is an important feature
as displacement mapping is a prime use-case of a tessellation unit.
We implement texture mapping using interval-based texture lookups [22, 12], which
computes a bounding interval for the texture in a given region. If, for example, we
want to displace a surface in the direction of an interpolated normal, then the tex-
ture interval will be used in subsequent arithmetic computations. Therefore, we
must convert the interval to Taylor form.
A naive way of doing this is to treat the texture lookup in the interval remainder
term, r̂ f , of the Taylor model. However, we found this approach to be unsatis-
factory as the remainder term in Taylor models is treated using standard interval
arithmetic, which cause the bounds to grow rapidly. Instead, we treat every tex-
ture lookup as a functional parameter. That is, instead of treating the shader as a
two-dimensional Taylor model:

f̃ (u,v) = ∑
i+ j≤n

ci juiv j + r̂ f , (11)

we treat it as a three-dimensional Taylor model:

f̃ (u,v,a(u,v)) = ∑
i+ j+k≤n

ci jkuiv ja(u,v)k + r̂ f , (12)

where a(u,v) is an unknown (texture map) function defined over the interval do-
main, which we computed in the interval texture lookup. By increasing the dimen-
sionality of the Taylor models, we can track correlations for arithmetic operations
which depend on texture lookups. In effect we defer the interval evaluations to the
last part of the shader, which is the bounds computations. To support an arbitrary
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number of texture lookups, all Taylor arithmetic, as well as the tight bounding
computations of Section 2.3, can be generalized to n-dimensional domains. For
details, we refer to the work by Berz and Hoffstätter [2], and Lin and Rokne [16].

Branching and Looping

We can easily support branching and looping when the conditional expression is
a value (or equivalently, a zero:th order Taylor model with no remainder). In this
case, it is uniquely determined which branch we should take, or how many itera-
tions of a loop we should perform. A typical example would be looping over an,
at compile time unknown, number of fractal noise octaves.
We can also handle branches with Taylor models for conditional expressions. In
such cases we compute quick bounds for the Taylor model based on interval arith-
metic (see multiplication in Section 2.2). If the bounds of the condition is ambigu-
ous, we must execute both branches. Furthermore, if a variable is assigned a value
in both branches, we must assign it the union of those values. A union of two
Taylor models could be computed by computing the average of their polynomial
parts, and growing the rest term accordingly to enclose both polynomials.
A construct that we cannot handle is loops with a Taylor model as the conditional
expression. For example, some iterative computation on the barycentric coordi-
nates, that loops until the result has converged. As previously explained by Hassel-
gren and Akenine-Möller [12], such computations are not guaranteed to converge
when bounded arithmetics are used, and we may get an infinite loop. Fortunately,
we can easily detect those cases and simply disable our culling.

2.5 Selective Execution

We have observed that the bounding shaders are roughly 3−15× more expensive
than the corresponding vertex shader in terms of instructions. Since this cost is
rather significant, it makes sense to execute the bounding shader only in regions
where we are likely to improve overall performance. A statistical analysis shows
that it is beneficial to execute the bounding shader if the following holds:

c(cull)
c(vertex)

≤ p(cull) ·n. (13)

Where c(cull)
c(vertex) is the cost ratio between the cull and the vertex program, p(cull)

is the probability that a base triangle is culled, and n is the number of vertices that
will be generated during tessellation.

2.6 Culling

In this section, we will describe how the actual culling is performed. We want to
emphasize that the culling algorithm per se is not a novel contribution. However,
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some details are given here for the sake of completeness. Recall that the output
from the bounding shader program are geometrical bounds: p̃(u,v)= (p̃x, p̃y, p̃z, p̃w),
i.e., four Taylor models. As described above, we use the convex hull property of
the Bernstein form to obtain a bounding box from these Taylor models. This box
is denoted b̂ = (b̂x, b̂y, b̂z, b̂w), where each element is an interval, e.g., b̂x = [bx,bx].

View Frustum Culling

For view frustum culling, we simply need to test the geometrical bounds against
the planes of the frustum. Since we have the bounding box, b̂, in homogeneous
clip space, we can perform the test in this space as well. We use the standard
optimization for plane-box tests [9], where only a single corner of the box is used
to evaluate the plane equation. Each plane test then amounts to an addition and a
comparison. For example, testing if the box is outside the left plane is done with:
bx + bw < 0. Since these tests are inexpensive, our culling always starts with the
view frustum test.

Backface Culling

After the vertex shader has been executed, the vertex p is in homogeneous clip
space (before division by w). This means that the model-view transform has been
applied, so the camera position is at the origin. Now, given a point, p(u,v), on a
surface, backface culling is in general computed as:

c = p(u,v) ·n(u,v), (14)

where n(u,v) is the normal vector at (u,v). If c > 0, then p(u,v) is backfacing
for that particular value of (u,v). For a parameterized surface, the unnormalized
normal, n, can be computed as:

n(u,v) =
∂p(u,v)

∂u
× ∂p(u,v)

∂v
. (15)

After our bounding shader has been executed, we have Taylor models, p̃(u,v), for
the position. As part of the bounding shader program, these are differentiated as
well, resulting in ∂ p̃(u,v)/∂u and ∂ p̃(u,v)/∂v. Finally, the Taylor model of the
normal, ñ(u,v), is computed using these.
There are two issues with this technique, which we need to solve. The first prob-
lem arises if p̃(u,v) contains a non-zero remainder term, r̂p, since this must be ac-
counted for when computing the partial derivatives. We solve this by using knowl-
edge about the tessellation frequency of the base primitive. Assume that a worst-
case sawtooth tessellation pattern is generated by the remainder term, as shown in
Figure 5a. The maximum slope for such a configuration is ( f (x + ∆x)− f (x) +
w)/∆x, where ∆x is the shortest edge generated during tessellation and w is the
width of the interval remainder term. This expression is bounded by f ′(x)+w/∆x
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q=(1-t)p0+tp1

s=(1-t)q+tf(t)

f(t)

a) b)
Figure 5: We must take special care of the interval remainder term when perform-
ing backface culling. Figure a) shows a worst case derivative of a Taylor model
with a polynomial f (x) an interval remainder term with width w. The worst case
derivative that can be introduced by the remainder term is given by the blue saw-
tooth pattern, which has a period of 2∆x where ∆x is the length of the shortest edge
created during tessellation. Figure b) shows how we alter the original fractional
tessellation algorithm to avoid problems that would arise in Figure a) if ∆x is very
small.

according to the mean value theorem. Similar reasoning holds for the minimum
slope. Thus ∂ p̃(u,v)/∂u is bounded by ∂Tp/∂u± (rp− rp)/∆x.
It should be noted that fractional tessellation may introduce edges that are arbi-
trarily short, since new vertices may be inserted at the position of old ones. This
makes it very hard to bound the derivatives of Taylor models with remainder terms,
as we must assume that ∆x = 0. We propose to modify the fractional tessellation
algorithm so that new vertices are inserted in a bi-linearly interpolated fashion. As
shown in Figure 5b, we find the point q(t) by linearly interpolating between the
two neighbors p0 and p1. Then we interpolate again between the actual position,
f(t), and q(t). Given this modification, one can show that the derivative from the
previous section will behave as if the minimum edge length is half of the edge
length in a corresponding uniform tessellator. This means that we can now bound
the slope.
The second issue concerns treatment of texture maps. As can be seen in Equa-
tion 12, a Taylor model with texture lookups will contain terms which depend on
some unknown texture function a(u,v). When such a term is differentiated, we will
obtain partial derivatives ∂a(u,v)/∂u and ∂a(u,v)/∂v. Our solution is to evaluate
these terms using textures of pre-computed differentials. These differential tex-
tures are treated just like the regular textures described in Section 2.4, and increase
the dimension of the Taylor models. It should be noted that this increase in dimen-
sion is not computationally costly as we rarely get more than linear dependencies
of a texture.

Occlusion Culling

Our occlusion culling technique is similar to hierarchical depth buffering [8], ex-
cept that we use only a single extra level (8×8 pixel tiles) in the depth buffer. The
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maximum depth value, ztile
max, is stored in each tile. This is a standard technique in

GPUs [20] used when rasterizing triangles. We project our clip-space bounding
box, b̂, and visit all tiles overlapping this axis-aligned box. At each tile, we per-
form the classic occlusion culling test: zbox

min ≥ ztile
max, which indicates that the box

is occluded at the current tile if the comparison is fulfilled. The minimum depth
of the box, zbox

min is obtained from our clip-space bounding box, and the maximum
depth of the tile, ztile

max, from the hierarchical depth buffer (which already exists in
a contemporary GPU). Note that we can terminate the testing as soon as a tile is
found to be non-occluded, and that it is straightforward to add more levels to the
hierarchical depth buffer. Our occlusion culling test can be seen as a very inex-
pensive pre-rasterizer of the bounding box of the triangle to be tessellated. Since
it operates on a tile basis, it is less expensive than an occlusion query.

3 Implementation

We have implemented our automatic culling unit in a C++ software framework
simulating the GPU pipeline. We execute the bounding shader program before
tessellating each base primitive. We noted that both view frustum and backface
culling may be realized in the bounding shader, and our implementation generates
code for this. The output of our bounding shader is therefore a single boolean indi-
cating if the base triangle should be culled or not, and a positional bounding box.
The bounding box is required for the occlusion culling, which cannot be imple-
mented in vertex shader code as it includes (coarse level) rasterization operations.
Occlusion culling is implemented further down the pipeline as a quick rasterization
algorithm.
We use fourth order Taylor models in our program analysis. This gives us an exact
representation of the position and normal for cubic polynomial surfaces, which are
frequently used. Some examples are curved PN-triangles [26] and bicubic patches,
such as Loop and Shaefer’s Catmull-Clark approximation [17]. Higher-order terms
will be handled by the remainder term in the Taylor model.
We believe that our automatic tessellation culling could be implemented in a graph-
ics hardware system at a moderate cost. For a full implementation, we need addi-
tional hardware that enables us to do the following:

• Execute a bounding shader once per base primitive. The instruction set and
program inputs are identical to the vertex shader. With unified shader archi-
tectures, this should be fairly straightforward to add.

• Perform the occlusion culling described in Section 2.6.

• Remove a base triangle before tessellation based on a boolean culling flag.

The remaining tasks can be done either in the bounding shader code or in a pre-
processing step in a driver.
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A partial implementation of our automatic culling algorithm could be realized on
current hardware in two passes. First, we would execute the bounding shader
program and use it to compute tessellation factors for the subsequent rendering
pass. The tessellation factor can then be set to zero for all culled triangles.

4 Results

Our test setup and results will be presented in this section. We use the soft-
ware GPU simulator described in the previous section, and render all images in
1920×1280 resolution. Since, to the best of our knowledge, no system exists that
can automatically perform culling based on vertex shader analysis, cull shader
generation, and on-the-fly execution, we decided to compare our system against
an “optimal” culling unit. This unit can, for example, backface cull a base triangle
only if all tessellated triangles are backfacing. In practice, such optimal culling
uses too much resources and so will not provide much (if any) speedup. However,
from a scientific point of view, it is interesting to find out how close to an optimal
culling unit our algorithm performs.
To investigate the performance of our algorithm, we use four test scenes, two of
which have recently been used in GPU tessellation contexts. These are Ninja, Ter-
rain, Figurines, and Spike balls, as can be seen in Table 1. In addition, we decided
to use four tessellation rates, giving approximate triangle areas of 8, 4, 2, and 0.5
pixels. We motivate these rates by the fact that GPUs were balanced for eight-pixel
triangles already two years ago [23], and the introduction of tessellation units in-
dicates an intention to further decrease the size. Our highest tessellation rate (0.5
pixels) is inspired by production rasterization pipelines [1], which is another pos-
sible application of our culling unit.
The Terrain scene is a common usage area for tessellation. A coarse mesh is
finely tessellated and displaced. The camera moves over the landscape, and so
a fair amount of view frustum culling should be possible. This scene has the
most inexpensive bounding shader, which is only 2.8× as expensive as the vertex
shader. The Ninja scene uses displacement mapping along an interpolated normal.
The model is always inside the view frustum, and so only backface and occlusion
culling can occur. Furthermore, the base mesh is highly tesselated, which makes it
a rather hard case for our algorithm. A highly tesselated base mesh will not gener-
ate as many tesselated vertices, and hence, there is not as much to be gained by the
culling. The Figurines scene consists of a set of models using PN-triangles [26],
i.e., cubic Bézier triangles. We included this scene to demonstrate that render-time
mesh smoothing can be handled efficiently by our culling algorithm. The scene
shows a grid of meshes seen from the front and tests all three types of culling. It has
the highest number of base primitives, but also has many more separate objects and
the most complex geometry. The final scene, Spike Balls, shows PN-triangulated
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Scene Terrain Ninja

# Base tris 2048 8884
# Instructions (BS / VS) 140 / 50 825 / 69
Cull rate (VF/BF/OC) 31.8% (26.8 / 0 / 5.0) 39.6% (0 / 13.5 / 26.1)
Opt. cull rate 38.7% (27.8 / 5.3 / 5.6) 53.0% (0 / 40.7 / 12.3)
Avg. tri area 8.0 4.0 2.0 0.5 8.0 4.0 2.0 0.5
Instruction speedup 3.39× 3.53× 3.46× 3.23× 0.96× 0.99× 1.08× 1.26×
Scene Figurines Spike Balls

# Base tris 42784 (764 per object) 4480 (560 per object)
# Instructions (BS / VS) 1612 / 126 2400 / 149
Cull rate (VF/BF/OC) 71.0% (18.0 / 29.6 / 23.4) 34.9% (0 / 23.6 / 13.3)
Opt. cull rate 74.1% (18.2 / 33.3 / 22.6) 59.5% (0 / 48.8 / 10.7)
Avg. tri area 8.0 4.0 2.0 0.5 8.0 4.0 2.0 0.5
Instruction speedup 2.03× 2.95× 3.81× 5.55× 0.92× 1.12× 1.24× 1.37×

Table 1: Performance evaluation for our four test scenes. The instructions row
shows the number of scalar instructions for the vertex shader (VS), and the bound-
ing shader (BS). The cull rate row shows how many base primitives our algorithm
can automatically cull. The bold figure is the total culling rate, and the numbers
in the parenthesis are for view frustum (VF), back face (BF), and occlusion (OC)
culling. The Optimal cull rate row shows the best possible culling. For each scene,
we then show Instruction speedup for four different tessellation rates, so that the
average tessellated triangle area is 8, 4, 2, and 0.5. These figures were computed
by dividing the number of instructions to compute the vertex position of every
tessellated triangle by the sum of the instructions used by our bounding shader
program and the instructions used for the non-culled vertices.

spheres with displacement mapping. This scene has the most expensive bounding
shader program, approximately 2400 instructions long. Since everything is inside
the view frustum, this scene only uses backface and occlusion culling.
We present our performance figures in Table 1. The culling rates show how
our culling unit compares to the optimal culling unit described above. Note that
our culling unit in some cases performs better than the optimal unit at occlusion
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culling. This only occurs because the occluded triangles were removed by the
backface culling test in the optimal culling unit. For the culling rate figures, we
execute our bounding shader for every base triangle in order to make a fair compar-
ison to the optimal culling unit. For the performance figures (Instruction speedup),
we instead execute the bounding shader based on Equation 13, where we chose
p(cull) = 0.5.
It should be noted that the instruction counts for bounding and vertex shaders pre-
sented in Table 1 is the number of scalar instructions used, and not vector in-
structions. The motivation for this is that modern graphics hardware architectures
use scalar instructions internally, and achieve parallelism by operating on multiple
vertices or pixels instead. Note also that we counted multiplications and additions
separately for simplicity. It is, however, likely that the bounding shader programs
can be significantly shortened using multiply-add.
It should also be noted that our performance numbers do not include the actual
tessellation (i.e., generation of connected vertices) nor execution of instructions in
the vertex shader not dealing with computing vertex position (e.g. vertex lighting,
tangent space transforms etc.). In addition, our simple occlusion culling is not
included either since it has to be implemented in custom hardware, but given its
simple nature it should be very efficient. In summary, we believe that our perfor-
mance would be even better if these factors were taken into account.

Discussion Given that our culling is automatically derived from a vertex shader
program, we consider our culling rates very high, compared to the optimal culling
rates. Note that we have intentionally avoided very simple test scenes where, for
example, a detailed, tessellated character is behind a wall. In such cases, our
occlusion culling would cull the entire character given that the wall was rendered
first. One thing we noted in particular is that backface culling of displacement
mapped surfaces is a very hard task (although our algorithm handles the Ninja and
Spike Balls scenes fairly well).
We also compared our culling results with generalized interval arithmetic (first
order Taylor models), and noted that the results directly dropped to 0% culling for
the scenes with Bézier surfaces, namely, Figurines and Spike Balls. This clearly
motivates our choice of higher-order Taylor models as a suitable arithmetic for
bounding shaders. For the remaining test scenes, Terrain and Ninja, we get the
exact same behavior for generalized interval arithmetic and higher order Taylor
models. This is to be expected, since our Taylor model implementation never use
higher order than necessary. Thus, the culling performance, and the instruction
ratio between the bounding and vertex shader, are identical for these scenes.
Our PN-triangle scenes (Figurines and Spike Balls) use third order surfaces, sim-
ilar to the popular Catmull-Clark subdivision schemes. We also performed initial
experiments with Loop and Schaefer’s [17] implementation of Catmull-Clark, for
the Figurines scene. As the surfaces are bicubic, they contain more high-order
terms than corresponding Bézier triangles, and consequently the bounding shader
becomes more expensive (6536 instructions bounding shader, and 159 instructions
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vertex shader, as compared to 1612/126 instructions with PN-triangles). However,
we only need to execute the bounding shader once for every quad, in this case. The
culling rate was within 2% of that of the PN-triangle version. It should be noted
that shaders as long as 6536 instructions may not fit in current instruction caches,
which may harm performance. However, we believe that future hardware will be
able to handle longer shaders.
As can be seen in Table 1, the performance is very high for scenes with view frus-
tum culling (the Terrain and Figurines scenes). In all scenes, we use fractional tes-
sellation and projected edge lengths to determine the tessellation factors for each
edge of the base triangles. A fundamental problem with this approach is that we
cannot conservatively determine if the edge will be visible or not without tessel-
lating it. Therefore, we chose tessellation factors based on projected edge lengths,
without clipping the edges by the view frustum. This leads to highly tessellated
base triangles close to the (infinite) near clipping plane, and consequently we get a
substantial speedup if we can cull these. This is a general problem in tessellation,
and not bound to our application. In fact, using our culling unit makes it much
simpler to design a tessellation heuristic, since culling is handled automatically.
Our tessellation heuristic also includes a maximum tessellation factor to avoid
generating base triangles being too highly tessellated. This limit is reached when
the Terrain scene is rendered at high tessellation rates. Consequently, the vertex
rate of the base triangles close to the camera (many of which we can cull) goes
down, and this explains why the performance gain (instruction speedup) for this
scene decreases when we increase the tessellation rate.
It should be noted that our culling technique is not limited to polynomial surfaces.
Fig. 1 shows an example of a vertex shader with sines and cosines, wrapping a
planar surface to a torus. Still, we can cull 56% (60% optimal) of the triangles
before tessellation.

5 Conclusion and Future Work
The trend in GPU rendering is steadily continuing to close in on the quality of
rasterization-based production pipelines. Using hardware to obtain highly tessel-
lated objects is another step in this direction. We are therefore excited about the
recent developments in hardware tessellation, and hopefully, our work can be used
in future implementations of GPUs to accelerate rendering further. As we have
shown, this would give significantly better performance, and since our technique
is fully automatic, we believe the application developers would find more motiva-
tion to use hardware tessellation if the culling is done for them by the system. For
future work, we would like to investigate hierarchical tessellation, so that parts of a
base primitive can be culled, or even several base primitives in a single cull opera-
tion. In addition, we have realized that backface culling is the most difficult type of
culling when it comes to handling arbitrary vertex shaders. Therefore, we would
like to do research on novel techniques to further increase the backface cull rate at
a low cost. Furthermore, our work can be used in a software rendering pipeline as
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well, and it would be interesting to evaluate exactly what kind of performance can
be obtained in such contexts.
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