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Abstract

Modern industrial robots are traditionally programmed to follow de-
sired trajectories, with the only feedback coming from the internal
position/angle sensors in the joints. The robots are in general very
accurate in tracking the desired motion, and they have become indis-
pensable in many applications, such as spot welding and painting in
the automotive industry. In more complex tasks, such as physical in-
teraction with the environment, position control of the robot might be
insufficient due to the fact that it is hard, or too costly, to achieve an
environment that is structured enough. This is due to inherent uncer-
tainties, such as part variations and inexact gripping.
One example of a challenging application is assembly, which is hard

to accomplish using only position controlled robots. By adding a force
sensor to the system, it gives the robot ability to correct for uncer-
tainties by measuring contacts. This thesis presents a framework for
force controlled robotic assembly. Assembly tasks are specified as se-
quences of constrained motions, where transitions are triggered by sen-
sor events, coming either from thresholds or from more advanced clas-
sifiers. The framework is also able to explicitly deal with uncertainties,
which can be estimated during execution to improve the performance.
Further, a method for adaptation of force control parameters is pre-
sented, and how a singularity-free orientation representation can be
used within the assembly framework. The case when no force sensor
is available is also considered, and a method for estimating the exter-
nal forces based on the joint control errors is presented. All methods
presented are validated in experiments.
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1

Introduction

1.1 Motivation and background

The traditional way of programming industrial robots is using posi-
tion control, i.e., the task is to follow desired trajectories, and the only
sensors used are usually the position sensors in the joints. Modern
robot controllers are very good at these tasks and are able to perform
them very fast and with good repetitive accuracy. Typical applications
include welding, painting, packaging, and palletizing. The introduc-
tion of robots in industry has relieved human workers from repetitive
and/or dangerous tasks, where the automotive industry is one exam-
ple.
Assembly is an example of an application that is less robotized. This

kind of application contains different sources of uncertainty that the
robot systems need to be able to handle, such as part variations and
inaccurate gripping, and the tasks often have small tolerances. Doing
assembly with position controlled robots is possible, but it requires
a very good accuracy of the workcell. This can be achieved by using
different kinds of fixtures and task specific solutions. This method is,
however, quite inflexible, e.g., a small change in the task may make the
previously used fixtures unusable, and new ones has to be designed,
which may require a lot of work, and even more work is required if also
the robot control program has to be changed.
The current trend in robotics seems to be going from the stiff and
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Chapter 1. Introduction

very accurate traditional industrial robots, to mobile and more light-
weight robots, with the PR2 [Willow Garage, 2012] and the Baxter robot
[Rethink Robotics, 2012] as recent examples. In this way, the possibility
of using robots close to humans opens up, as the robots no longer are
as dangerous as they used to be, with compliant structures, reduced
mass, and less power. Another example of a recent light-weight robot
is the ABB concept robot FRIDA [Kock et al., 2011], which is one of
the experimental platforms in this thesis. This new kind of robots is
weaker than traditional ones, but this can be advantageous in tasks
such as assembly. The robots will be less prone to break parts because
of the compliance, but this feature will on the other hand introduce
more uncertainties, which will have to be taken care of.
Introducing additional sensing is a way to compensate for an insuf-

ficient position accuracy, e.g., caused by tasks with small tolerances,
or inaccurate robots. A force sensor gives the robot capabilities to be
used in tasks where physical interaction with the involved objects is
central, as position uncertainties can be corrected for by sensing the
contact forces. However, additional sensing makes the specification of
tasks a harder problem, more advanced than just to follow a desired
trajectory. It should be possible for non-expert robot users to specify
advanced sensor-based tasks for the success of robotics to continue.
In this thesis, the research field of force controlled robotic assembly

is considered. The problem of specifying tasks and executing them is
a central part, but adaptation to uncertainties and different environ-
ments is also considered. Experiments are used throughout the thesis
to show the usefulness of the contributions.

1.2 Contributions

The thesis contains the following contributions

• a framework for general force-controlled assembly tasks, includ-
ing task specification and uncertainty management;

• a method for self-tuning of force controllers used in robots, and
integration of the method in a framework for performing assem-
bly;
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1.3 Publications

• a method for using a singularity-free orientation representation
in an assembly framework;

• a method for estimating external forces acting on the end-effector
of a robot, based on the joint control errors.

1.3 Publications

The thesis is based on the following publications.

Stolt, A., M. Linderoth, A. Robertsson, and R. Johansson (2011): “Force
Controlled Assembly of Emergency Stop Button” In Proc. 2011 IEEE
International Conference on Robotics and Automation (ICRA2011).
Shanghai, China, May 9–13, 2011, pp. 3751–3756.

Stolt, A., M. Linderoth, A. Robertsson, and R. Johansson (2012): “Force
Controlled Robotic Assembly without a Force Sensor” In Proc.
2012 IEEE International Conference on Robotics and Automation
(ICRA2012). St Paul, Minnesota, USA, May 14–18, 2012, pp. 1538–
1543. (Best automation paper award)

The above publications have mainly been written by the author to-
gether with M. Linderoth, but most of the parts included in this thesis
have been made mostly by the author. For the work on force estimation,
however, equal contribution is asserted. A. Robertsson and R. Johans-
son mainly assisted with structuring the manuscripts and discussing
the ideas.

Stolt, A., M. Linderoth, A. Robertsson, and R. Johansson (2012):
“Adaptation of Force Control Parameters in Robotic Assembly” In
Proc. 2012 IFAC Symposium on Robot Control (SYROCO2012).
Dubrovnik, Croatia, September 5–7, 2012, pp. 561–566.

Stolt, A., M. Linderoth, A. Robertsson, and R. Johansson (2012):
“Robotic Assembly Using a Singularity-Free Orientation Represen-
tation Based on Quaternions ” In Proc. 2012 IFAC Symposium on
Robot Control (SYROCO2012). Dubrovnik, Croatia, September 5–7,
2012, pp. 549–554.
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Chapter 1. Introduction

The above publications have the author as main contributor. M. Lin-
deroth assisted in developing the ideas, and A. Robertsson and R. Jo-
hansson assisted on structuring the manuscripts.
The assembly framework used in all of the above publications has

been developed in close cooperation between the author and M. Lin-
deroth.

Other publications

Björkelund, A., L. Edström, M. Haage, J. Malec, K. Nilsson, P. Nugues,
S. Gestegård Robertz, D. Störkle, A. Blomdell, R. Johansson,
M. Linderoth, A. Nilsson, A. Robertsson, A. Stolt and H. Bruyninckx
(2011): “On the Integration of Skilled Robot Motions for Produc-
tivity in Manufacturing” In Proc. 2011 IEEE/CIRP International
Symposium on Assembly and Manufacturing (ISAM2011). Tampere,
Finland, May 25–27, 2011, pp. 1–9.

The above publication is considering the same assembly scenario as
is considered in this thesis, and the same assembly framework as is
described in this thesis was used for one of the implementations.

Jonsson, M., T. Murray, A., Robertsson, A. Stolt, G. Ossbahr, and
K. Nilsson (2010): “Force Feedback for Assembly of Aircraft Struc-
tures” In Proc. 2010 SAE Aerospace Manufacturing and Automated
Fastening Conference. Wichita, Kansas, USA, September 28–30,
2010.

Stolt, A., M. Linderoth, A. Robertsson, M. Jonsson, and T. Murray
(2011): “Force Controlled Assembly of Flexible Aircraft Structure”
In Proc. 2011 IEEE International Conference on Robotics and
Automation (ICRA2011). Shanghai, China, May 9–13, 2011, pp.
6027–6032.

Jonsson, M., A. Stolt, A., Robertsson, T. Murray, and K. Nilsson (2011):
“Force Controlled Assembly of a Compliant Rib” In Proc. SAE 2011
Aerotech Congress & Exhibition. Toulouse, France, October 18–21,
2011.

Jonsson, M., A. Stolt, A., Robertsson, S. von Gegerfelt, and K. Nils-
son (2012): “On force control for assembly and cleaning of castings”
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1.4 Thesis outline

Submitted to The International Journal of Advanced Manufactur-
ing Technology.

The above publications considers an assembly scenario from the air-
craft industry. The same assembly framework that is described in this
thesis was used in these publications.

1.4 Thesis outline

Chapter 2 describes the robots, other hardware and interfaces used
throughout the thesis. Chapter 3 presents the emergency stop button
assembly scenario, which is used as an example in large parts of the
thesis. In Chapter 4, the assembly framework is described, i.e., how
tasks are modeled and control is performed. The implementation of
an assembly task using the control framework is presented in Chap-
ter 5, together with how a machine learning approach was used for
detecting when the assembly was finished. The topic of Chapter 6 is
how uncertainties can be modeled and resolved within the assembly
framework.
Chapter 7 presents a method for adaptation of force control pa-

rameters and how it is integrated with the assembly framework. In
Chapter 8, it is described how a singularity-free orientation represen-
tation based on quaternions can be used in the assembly framework.
A method for estimation of external forces together with two exam-
ples of assembly scenarios where the method is used is presented in
Chapter 9. Finally, conclusions are given in Chapter 10.
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2

Hardware and interfaces

All experiments presented in this thesis have been made in the Robotics
Lab of the departments of Automatic Control and Computer Science
at Lund University. The following section gives a brief overview of the
hardware used.

2.1 Robots

Two different robots have been used in this thesis. The first one is
the ABB IRB140 robot [ABB Robots, 2012] (see Fig. 2.1), which is a
common industrial robot with 6 degrees-of-freedom. It has a payload
of 6 [kg], a reach of 810 [mm], and a position repeatability of ±0.03
[mm].
The second robot used was ABB FRIDA [Kock et al., 2011] (see

Fig. 2.2), a dual arm concept robot not yet in production. Each of the
two arms is redundant with 7 degrees-of-freedom. The robot is weak
and lightweight, and much effort has been spent on making it safe
to use next to humans [Matthias et al., 2011]. All sharp edges have
been covered with soft padding, and together with the low mass and
the power and speed limitations the robot is designed not to be able to
hurt a human.
Both of the robots are controlled by the ABB IRC5 industrial control

system.
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2.2 Robot controller interface

2.2 Robot controller interface

The industrial control system, ABB IRC5, has been extended with an
open robot control system [Blomdell et al., 2005; Blomdell et al., 2010].
This makes it possible to connect to the low-level joint controllers, and
modify the references for joint positions and feed-forward of velocity
and motor torque. Measurements available are, e.g., measured joint
positions and motor torques. The sampling rate available is 250 [Hz].
The external controller is executed on an external PC running with

Linux and Xenomai [Xenomai, 2012] for real-time performance. The
communication with the robot controller is made with the LabComm
protocol [LabComm, 2012], which allows the specification of data types
that should be sent over a socket. The communication overhead has
been kept to a minimum and the protocol is thus appropriate for send-
ing data in real-time.

Figure 2.1 The ABB IRB140 robot used in the experiments in the thesis. The
robot is equipped with a JR3 force/torque sensor.
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Chapter 2. Hardware and interfaces

Figure 2.2 The ABB FRIDA robot used in the experiments in the thesis.

2.3 Force sensing

The IRB140 robot was equipped with a wrist-mounted 6 degrees-of-
freedom JR3 100M40A force/torque sensor [JR3, 2012]. The workcell
with the FRIDA robot was equipped with a table-mounted 6 degrees-
of-freedom ATI Mini40 force/torque sensor [ATI, 2012].
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3

The emergency stop button

assembly scenario

An assembly scenario that will be used as an example throughout this
thesis is the assembly of an emergency stop button. The scenario is
used to illustrate the different methods and the proposed algorithms
in the thesis. The example is valid for different robots, and imple-
mentations with robots with different numbers of degrees-of-freedom
are considered in the thesis. Also different sensor configuration setups
are considered, both using a wrist-mounted force/torque sensor and a
force/torque sensor mounted in the workcell.

The assembly scenario

An assembly graph for the scenario is displayed in Fig. 3.1, i.e., a
description of in which order the involved parts should be assembled.
The assembly scenario offers a number of smaller sub-assemblies that
are considered in the thesis.

The snapfit assembly The upper left part of Fig. 3.1 shows the
parts for the snapfit assembly scenario. The dark gray switch should
be placed in one of five available slots in the light gray bottom box.
Each slot is slightly wider than the switch length, but flexibility in the
switch makes it possible to snap it into the correct position.

The red button assembly The parts for this scenario are displayed
in the upper right part of Fig. 3.1. First the red button should be in-
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Chapter 3. The emergency stop button assembly scenario

Figure 3.1 Assembly graph for the emergency stop button assembly scenario.

serted into the hole on top of the yellow case, i.e., a peg-in-hole assem-
bly. Once inserted, the nut should be screwed on the button to attach
it to the yellow case.

18



The complete assembly With the two sub-assemblies performed,
i.e., the snapfit and the red button assemblies, the final part is to
place the yellow case with the button on top of the bottom box with the
switch. Finally, the screws should be screwed to finish the assembly.

Conclusions

This application case has been one of the main demonstrators in the
Rosetta project [ROSETTA, 2012], and it has, e.g., been demonstrated
at the Automatica trade fair in Munich 2012. The scenario has been
considered in numerous publications, e.g., [Stolt et al., 2011; Björkelund
et al., 2011; Stolt et al., 2012a; Stolt et al., 2012b].
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4

Assembly framework

Traditional position controlled robotic tasks are specified as trajecto-
ries for the robot to follow. This way of specifying the robot motion is
not very good when additional sensing is introduced, as it is difficult
to relate the sensor measurements to the task specification, i.e., the
position trajectory to follow. It is further not easy to reuse the task
specification if it only is a set of points to traverse. The task specifica-
tion in this thesis is based on the constraint-based task specification
framework [De Schutter et al., 2007], or simply iTaSC (instantaneous
Task Specification using Constraints). It is a general framework that
can be used to specify all kinds of robotic tasks. It makes it possi-
ble to incorporate different types of sensors, and also take geometric
uncertainties into account.
An early framework for specifying force controlled tasks is via hy-

brid position/force control [Raibert and Craig, 1981]. A framework for
specifying end-effector based motion tasks is the operational space for-
mulation [Khatib, 1987], where generalized task specification matri-
ces are used. The task frame formalism [Mason, 1981; Bruyninckx and
De Schutter, 1996] is another framework for specifying sensor based
tasks.

4.1 Task modeling

The iTaSC framework specifies the relative motion of objects by im-
posing constraints, such as position or force constraints. To be able to

20



4.1 Task modeling

specify these constraints in an easy way, kinematic chains are intro-
duced. They contain object and feature frames that are used to sim-
plify the task specification. The modeling procedure is illustrated on
the snapfit assembly task, which was presented in Chapter 3.
The object frames should be attached to the objects that are part of

the task. In the snapfit scenario, the relevant objects are the bottom
box, the switch, and the robot. The first object frame, o1, is attached to
a corner of the bottom box, as illustrated in Fig. 4.1. The second object
frame, o2, is chosen to coincide with the flange frame of the robot.

f2x

yz

o1 x

y
z

f1

x
y

z

Figure 4.1 Illustration of the coordinate frames in the snapfit scenario. Object
frame o2 is placed at the flange of the robot, not displayed in this photo.

The feature frames should be used to make the task specification
as simple as possible. They should therefore be attached to specific
features on the objects that are relevant for the task. In the snapfit
scenario, important features are the slot that the switch should be
mounted in, and the ends of the switch that should make contact with
the slot. The first feature frame, f1, is therefore attached to the slot
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Chapter 4. Assembly framework

that the switch should be placed in. The second feature frame, f2, is
attached to the end of the switch that should be put into the slot where
f1 is placed.
Further, one needs to specify a world coordinate frame, w. In the

snapfit scenario this is chosen to coincide with the base frame of the
robot. The object frames can now be given relations to w, a fix trans-
formation for o1, and a transformation depending on the robot joint
coordinates, q, for o2. The transformation between o1 and o2, via f1
and f2, should have 6 degrees of freedom that parametrize the trans-
formation. These degrees of freedom are called the feature coordinates,
χ f ; they are further divided into χ f I , χ f I I , and χ f I I I , denoting the co-
ordinates between o1 and f1, f1 and f2, and f2 and o2, respectively.
In the snapfit scenario, f1 is fix relative to o1, and f2 is fix relative
to o2, i.e., all degrees of freedom are in the transformation between
f1 and f2. The feature coordinates chosen are first three translations
along the coordinate axes of f1, then three Euler XYZ angles to de-
scribe the reorientation from f1 to f2, i.e, they are given as

χ f I = (−) , χ f I I = (x, y, z,ϕ ,θ ,ψ ) , χ f I I I = (−) (4.1)

Geometric uncertainties can be modeled by introducing uncertainty
frames, which represent the modeled position of the frame, e.g., uncer-
tainty frame o1′ is the modeled position of the actual frame o1. The
degrees of freedom in the transformations between the uncertainty
frames and the true frames are called the uncertainty coordinates, χu.
They represent the pose uncertainty in the frame, see further Chap-
ter 6.
The variables to be constrained are chosen by specifying outputs

y. In general, each output can be a function of the feature and the
robot joint coordinates, but if the kinematic chains have been chosen
properly the outputs will in most cases directly correspond to some
of the feature coordinates. Multiple kinematic chains may be used to
choose appropriate outputs for the task. The outputs are in general
defined by

y= f (q, χ f ) (4.2)

In the snapfit scenario, the outputs are chosen to be all of the feature
coordinates, i.e, they are chosen according to

y= χ f (4.3)
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4.2 Control

A kinematic chain is closed, which implies a relation between the
robot joint coordinates, the feature coordinates, and the uncertainty
coordinates. This relation can be expressed as

l(q, χ f , χu) = 0 (4.4)

Such a function can be expressed by the following position-loop con-
straint, i.e., a product of homogenous transformation matrices

T o1
′

w (q)T
o1
o1′(χu)T

f1′

o1 (χ f I)T
f1
f1′(χu)T

f2
f1 (χ f I I)...

T
f2′

f2 (χu)T
o2
f2′(χ f I I I)T

o2′
o2 (χu)T

w
o2′(q) = I4$4

(4.5)

4.2 Control

The control in this thesis has been made at the velocity level, which
means that the purpose is to derive a control law for the robot joint
velocities q̇, i.e., a velocity reference q̇re f to send to the low-level joint
controllers in the robot. In the sequel, the robot is assumed to track the
given references and the subscript re f is dropped. The time derivative
of (4.2) is

ẏ = Cqq̇+ Cf χ̇ f (4.6)

where Cq = � f/�q and Cf = � f /�χ f are the Jacobians of f with
respect to q and χ f , respectively. Further, the loop constraints (4.4)
have the time derivatives

Jqq̇+ J f χ̇ f + Ju χ̇u = 0 (4.7)

where Jq = �l/�q, J f = �l/�χ f , and Ju = �l/�χu are the Jacobians of
l with respect to the different coordinates. The feature coordinate time
derivatives χ̇ f can be solved from (4.7), according to

χ̇ f = −J
−1
f (Jqq̇+ Ju χ̇u) (4.8)

To be able to do this it is required that J f is invertible, and this will be
the case if the feature coordinates parametrize all 6 degrees of freedom
in task space. Equation (4.8) can now be substituted into (4.6), giving

Aq̇ = ẏ+ B χ̇u (4.9)
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Chapter 4. Assembly framework

where A = Cq − Cf J−1f Jq and B = Cf J
−1
f Ju.

All constraints should be expressed at the velocity level, and this
means specifying ẏ = ẏ0d. To be able to use more than velocity con-
straints, ẏ0d is chosen according to

ẏ0d = ẏd + C (4.10)

where ẏd is a feed-forward velocity term and C is a feedback controller
that might use additional sensing, such as a force sensor.
If the robot is assumed to be an ideal velocity controlled system,

the control signal that has to be calculated is q̇. This can be made
according to

q̇= A−1
(
ẏ0d + B ˆ̇χu

)
(4.11)

where ˆ̇χu denotes the estimate of χ̇u. The calculated value of q̇ is sent
as control signal to the robot.

Redundancy The iTaSC framework is suitable to handle both over-
and under-constrained tasks, as well as manipulators with redundant
degrees of freedom. The motion specification is calculated by solving
for the robot joint velocities, q̇, in (4.9). When the task is redundant, or
over-constrained, the matrix A will not be square, and hence a pseu-
doinverse must be used. In case of a redundant task the weighted
pseudoinverse A† in (4.12) can be used. The interpretation is that the
optimization problem (4.13) is solved, where M is a positive definite
weighting matrix.

A† = M−1AT
(
AM−1AT

)−1
(4.12)

minimize (over q̇) q̇TMq̇

subject to Aq̇ = ẏ0d + B
ˆ̇χu

(4.13)

Feedback controllers on task level

As mentioned in the previous section, all constraints have to be given at
the velocity level. Three different kinds of constraints have been used
throughout this thesis, namely position, velocity, and force constraints.
Each such constraint was handled by a feedback controller, that out-
puts an appropriate velocity for the corresponding output. Scalar con-
trollers were used for each component of the output vector y.
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4.2 Control

Position controller The position controller used was a proportional
controller on the velocity level, that for each position controlled output
yi was given as

ẏi = K (yire f − y
i) (4.14)

where K is the proportional gain and yire f is the reference. The output
from the controller was limited to avoid too large velocities when new
position references (possibly far away from the current position) were
given. The rate of change of the controller was also limited, i.e., limiting
the acceleration. No feed-forward term was used.

Velocity controller The velocity controller used was based on pure
feed-forward, according to

ẏi = ẏre f (4.15)

where ẏre f is the desired velocity. The low-level joint control loops are
assumed to track the desired velocity, such that no feedback is needed.
To handle large reference changes, the rate of change of the output
velocity ẏi was limited.

Force controller Impedance controllers [Hogan, 1985] were used to
handle force constraints. This controller gives the desired acceleration
for the output yi, according to

ÿides =
1
M

(
Fi − Fire f − Dẏ

i
des

)
(4.16)

where yides denotes the desired value of y
i and Fi denotes the force

in the direction of yi. The parameter M is the virtual mass and D
the virtual damping of the impedance that the controller acts like. The
given acceleration is integrated to give the velocity to use as constraint.
The output of the controller is limited in such a way that no wind-up
problems occur.

Controller switching When a switch of controllers for the same
output is made, e.g., when a velocity constraint is changed to a force
constraint, the control signal is made continuous by adjusting the ini-
tial state of the new controller. This ensures that the transfer becomes
bumpless [Åström and Wittenmark, 1996].
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Chapter 4. Assembly framework

Model update and estimation

The state of the system, i.e., the values of the feature coordinates χ f
and estimates of the uncertainty coordinates χu, are calculated in each
sample. The position loop constraints (4.5) are used to make sure that
the values of χ f are consistent with the robot joint coordinates, q, which
are given as measurements from the robot. The uncertainty coordinates
are first assumed to be constant when the value of χ f is calculated,
and then updated, more about this in Chapter 6.
As it is assumed that the only unknown variable of (4.5) is χ f , the

left hand side can be written as T(χ f ) and the goal is to achieve

T(χ f ) = I4$4 (4.17)

This equation holds if χ f is known, when this is not the case, the
identity matrix will be replaced by

Terr =

[

Rerr terr

01$3 1

]

(4.18)

Here Rerr represents the orientation error and terr the translation er-
ror. A linear approximation of the error is given by

J f∆χ f =

[

terr

aerr

]

(4.19)

where ∆χ f is the error in the feature coordinates, and aerr is an
axis/angle representation of Rerr. As J f is invertible, this relation can
be used to calculate a new estimate of χ f , according to

χ i+1f = χ if + ∆χ f = χ if + J
−1
f (χ

i
f )

[

tierr

aierr

]

(4.20)

One such iteration would be sufficient if the original system was linear.
This is not the case and therefore some iterations of this procedure are
needed. As the feature coordinates are calculated continuously in each
sample, the initial value is the value calculated in the previous sample,
and therefore only one or a few iterations are needed for convergence.
The values of the outputs y are straightforwardly calculated using

(4.2).
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4.3 Software implementation

4.3 Software implementation

The assembly framework was implemented using Mathworks’ Mat-
lab/Simulink environment. Executable code was generated via the Real-
Time Workshop toolbox [Real-Time Workshop, 2012].
An assembly task is coordinated with a finite state machine. Both

statecharts using Mathwork’s Stateflow [Stateflow, 2012] and sequen-
tial function charts using JGrafchart [JGrafchart, 2012] were used for
the implementation. The state machine outputs kinematic chains to
use in each state, encoded as lists of simple transformations. Further,
the types of constraints to use is communicated, i.e, which type of
controller to use. Finally, different types of parameters are sent, e.g.,
controller parameters and reference values. The inputs to the state
machine are measurements, i.e., values of the outputs, and forces and
velocities in the output directions.
The framework is such that it can be integrated with a standard

ABB RAPID program [ABB, 2012]. In this way, initial positioning and
picking of parts can be made with the specialized position control ar-
chitecture in the ABB controller. When external sensing is needed, the
execution can be handed over to the external controller, and the exe-
cution can be handed back to the ABB controller once the task using
external sensing is finished.
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5

Snapfit assembly scenario

5.1 Introduction

Assembly tasks can be implemented using position controlled robots if
the accuracy of the workcell and the robot, including grippers, is good
enough. What is meant with good enough varies, but for small-parts
assembly tasks it is usually in the sub millimeter scale. This makes it
really difficult, and also costly, to achieve the desired accuracy. An al-
ternative solution is to introduce a force sensor. The measured contact
forces can be used to detect different contact situations and in this way
compensating for errors in position. It is also possible to relax the posi-
tion accuracy requirements when a force sensor is available. Uncertain
object locations can be handled by implementing the assembly tasks as
sequences of search motions, where some of the position uncertainty
is resolved by each particular search motion. The measured forces are
used to detect when contacts are established, and also to keep contacts
once they have been established. The sequencing can be handled by a
finite state machine.
This chapter considers an example of a force controlled assembly

task, namely the snapfit scenario described in Chapter. 3. The assem-
bly is performed with a sequence of search operations with force mea-
surements triggering transitions. The condition for the assembly being
finished is that the switch snaps into place in the bottom box, and a
machine learning approach is applied for detecting this event from the
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5.2 Assembly strategy

measured force/torque signature.
A survey of the requirements for autonomous robotic assembly is

given in [Bruyninckx et al., 2001]. A previous example of robotic assem-
bly can, e.g., be found in [Arai et al., 2006], where optimization of force
control parameters with respect to cycle time was made in assembly of
a clutch. Another example is [Jörg et al., 2000], which describes an as-
sembly scenario where sensor fusion of vision and force sensing were
used to insert cylinders into a rotating engine. Yet another example
from the automotive industry is [Gravel et al., 2008], which describes
powertrain assembly. An example from the construction industry where
position control was used is given in [Gambao et al., 2000]. An appli-
cation of force control in robotics other than assembly is [Olsson et al.,
2010], where force control was used to avoid sliding movements when
drilling.
Machine learning approaches within assembly has previously been

used for instance for detection of failures, e.g., in [Cho et al., 2005]
and [Hsueh and Yang, 2008] support vector machines were used to
detect tool breakage in milling processes. Another example is given
in [Rodriguez et al., 2010], which used a single axis force sensor to
detect failures in an assembly scenario. A somewhat different approach
is applied in [Di Lello et al., 2012], where a Hierarchical Dirichlet
Process Hidden Markov model was used to monitor an assembly task,
for detection of errors. Another approach to monitoring assembly tasks
is presented in [Rojas et al., 2012], where a hierarchical taxonomy was
used to monitor a snap assembly task. The force/torque signatures
were investigated with respect to relative changes in several different
layers that could be used to discriminate nominal behavior from errors.

5.2 Assembly strategy

The modeling of the task is given in Sec. 4.1. Uncertainties in part
locations and gripping makes it impossible to use pure position control
to accomplish the assembly task. The strategy is therefore to use a
sequence of search motions, where each of these motions are designed
to resolve some of the uncertainty. The sequencing is modeled by a
finite state machine [Gill, 1962].
Each state in the state machine contains a set of kinematic chains
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Chapter 5. Snapfit assembly scenario

and constraints specifying the motion. For instance, a linear search
motion in the z-direction is described by position constraints on all
coordinates except for the z-coordinate, which instead has a velocity
constraint. State transitions are based on sensor measurements, e.g.,
a detected contact force or that a certain position has been reached.
For the snapfit scenario it was assumed that the position and ori-

entation of the of the bottom box was not known well enough to go
straight into the slot. The area in front of the slot, however, was larger
and thus possible to hit. Initial contact was therefore established with
the bottom of the box in this area, and the slot was found by two suc-
cessive search motions (while contact was kept with the bottom). Next,
the switch was rotated around the contact point in the slot, such that
it also made contact with the other end of the switch. The initial pose
of the switch was chosen such that it was known which direction to
turn the switch to find the other side of the slot, and a rotation was
performed in this direction until the switch slid down into the slot (a
torque was applied on the switch during the rotation). The remaining
step was to push the switch completely into the slot. The state machine
used for implementing this sequence is displayed in Fig. 5.1.

5.3 Snap detection

The transition condition between states 7 and 8 in the state machine
(Fig 5.1) is that the switch is snapped into place. This event can be
detected by monitoring the force/torque signals. A machine learning
approach was applied to classify wheter a snap had occurred in a given
sequence of force/torque data samples.
A total number of 160 executions where the snap occured were

recorded. Two different switches were used, and both ends of the switch
were used for equally many snaps. To find more robust classifiers, two
different robots were used, IRB140 and FRIDA, and also two different
rotational velocities during the switch insertion.

Data pretreatment

The force/torque data from all recorded snaps are displayed in Figs. 5.2
(the slow snaps) and 5.3 (the fast snaps). All snaps have been manually
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5.3 Snap detection

Figure 5.1 State machine describing the assembly sequence.
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Figure 5.2 Collected data from
all sequences where a slow in-
sertion velocity was used. The
IRB140 was used for the blue
curves and FRIDA for the red
curves.
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Figure 5.3 Collected data from
all sequences where a fast in-
sertion velocity was used. The
IRB140 was used for the blue
curves and FRIDA for the red
curves.

marked, and all sequences have been positioned in the figures such that
the snap occurs at t = 0 [s]. The snaps recorded with the IRB140 are
shown in blue and the ones with FRIDA in red, and it can be seen
that these curves have slightly different behaviors. The use of a stiff
robot, such as IRB140, gives larger force variations, as forces builds up
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5.3 Snap detection

quickly when contacts are established. A more compliant robot, such
as FRIDA, is more forgiving, i.e., the forces builds up much slower, and
therefore gives less variation in the measured force/torque. Further,
the time scales in Figs. 5.2 and 5.3 are different, but the shapes of the
measured data still look similar. It is possible to see some difference,
due to the use of the same controllers. See, e.g., the intial largeϕ -torque
that takes approximately 1 second to reduce in both the diagram with
the slow rotational velocity and the diagram with the fast rotational
velocity. Finally, the easiest way to recognize the snap with the human
eye is probably to look in the ψ -torque plot.
Six different channels in the measured data were available, 3 forces

and 3 torques. Only a subset of these channels was considered in the
classifiers. A number of npre samples before the snap and npost samples
after the snap were used in each sequence, and the data from the
different channels was put after one another in a single vector. The
problem was to classify whether such a vector contained a snap or not.
Data from different channels was rescaled to get approximately the
same magnitude, and the mean value was removed from each sequence,
to make the classifier independent of the offset force/torque.

Background data for training Half of the data set was used for
training and the other half for validation. The recorded data consisted
of all force/torque data from state 7 in the assembly sequence. The
transition condition used for leaving the state during data recording
was that theψ -torque was large, and this transition condition can also
be used as a backup trigger in cases when the snap detection fails.
The recorded data contained a vast amount of background data, i.e.,
sequences not containing a snap, as every recording only contained
one snap. To get a reasonable training data set, a number of N (usu-
ally around 20) randomly selected background sequences from each
recording together with the actual snap was used for training. Once
a particular classifier was trained, it was validated on all sequences
in the training data. If any misclassified sequence was found, it was
included in the training data set and the training was performed once
again. This procedure was iterated until all training data sequences
were correctly classified, or that a maximum number of iterations were
reached.
The procedure described in the previous paragraph was applied be-

33



Chapter 5. Snapfit assembly scenario

cause it was too computationally expensive to perform training with all
available background sequences included, but it was computationally
cheap to perform validation on all background sequences. Therefore it
was possible to start with a random selection of background sequences,
and then add any background sequences that was initially misclassified
to the training data set, i.e., sequences were added that were important
to have in the training data set to get a robust classifier.

Classifiers considered

Four different classifiers were applied to the data, a simple least-
squares classifier, two different versions of support vector machines
(SVM), and a boosting classifier. A detailed description of the methods
can, e.g., be found in [Bishop, 2006], a summary of them can be found
below.

Least-squares The first classification method tested was based on
least-squares. The model used was linear and given by

y(x) = wT x +w0 = [ wT w0 ]

[

x

1

]

= w̃T x̃ (5.1)

where x denotes the data sequence, w̃ the parameters, and y should
be 1 for a snap and −1 for the background. The classifier is based on
finding a hyperplane that separates the snaps from the background.
All training data can be described by









y1
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yn








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T

=









x̃T1

x̃T2
...

x̃Tn









︸ ︷︷ ︸

X̃

w̃ (5.2)

and by using a sum of squares error function

J(w̃) =

n∑

i=1

(yi − x̃
T
i w̃)

2 = (T − X̃ w̃)T (T − X̃ w̃) (5.3)
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the optimal w̃ is given by

w̃ =
(
X̃ T X̃

)−1
X̃ TT (5.4)

Classification is now performed by calculating y(x), and the classifi-
cation boundrary is by default 0, i.e., y(x) > 0 means that the data
vector is classified as a snap.

Support vector machines The simplest form of support vector ma-
chines (SVM) uses the model (5.1), but instead of choosing the param-
eters based on the least-squares error function, the parameters are
chosen such that the resulting hyperplane is the one with the largest
margin to the different classes of data. The problem can be stated as
the optimization problem

minimize
over w,ζ

C
n∑

i=1
ζ i +

1
2qw̃q

2
2

subject to tiy(xi) ≥ 1− ζ i , i = 1, . . . ,n

ζ i ≥ 0 , i = 1, . . . ,n

(5.5)

where ζ i are slack variables that allow for misclassifications, but the
sum of them are punished by the parameter C. The optimization prob-
lem (5.5) is convex, and it can therefore be solved easily. This classifier
will be called the primal SVM.
By considering the dual formulation of (5.5), it can be shown that

the following problem is equivalent to solve

minimize
over a

n∑

i=1
ai −

1
2

n∑

i=1

n∑

j=1
aia j tit jk(xi, x j)

subject to 0 ≤ ai ≤ C , i = 1, . . . ,n
n∑

i=1
aiti = 0

(5.6)

where the parameters ai are the Lagrange multipliers corresponding
to the inequality constraints tiy(xi) ≥ 1 − ζ i in (5.5). The function
k(xi, x j) = xTi x j is a kernel function, which can be replaced by any
other positive definite kernel function.
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The formulation (5.6) was therefore used together with a Gaussian
kernel, k(xi, x j) = e−(xi−x j )

T (xi−x j )/l. The classification function is now
given by

y(x) =
n∑

i=1

aitik(x, xi) + b (5.7)

Most of the ai are zero, and these that are non-zero correspond to the
support vectors xi. The parameter b is calculated through

b =
1
NS

∑

i∈S



ti −
∑

j∈S

a j t jk(xi, x j)



 (5.8)

where S is the set of all support vectors and NS is the total number
of support vectors.

Boosting This is a classifier that uses the result from many simple
classifiers, called weak classifiers, to make the final classification. The
performance of the final classifier is usually significantly better than
any of the weak classifiers. During training, weights are used to give
data points that are hard for the weak classifiers to correctly classify
more importance. The final classifier is a weighted average of the weak
classifiers, which in turn has been trained with differently weighted
training data. The algorithm used is called AdaBoost and was first
proposed in [Freund and Schapire, 1996].
The weak classifiers used in the snap detection scenario was to

find a simple threshold for one of the coordinate axes. All axes were
considered, and the one giving the best separation (concerning the
importance weights) was used.

Training procedure

In the snapfit example, a false positive, i.e., a detection of a snap by
the classifier that actually was not a snap, is much worse than a false
negative, i.e., missing to detect a snap. This is due to the fact that there
is a backup classifier, based on a simple torque threshold, that can be
used if the snap is missed. To take this asymmetry in the problem
into account, the cost function (5.9) was used during evaluation of the
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5.3 Snap detection

different classifiers, where n f p denotes the number of false positives
and n f n the number of false negatives.

J = 10n f p + n f n (5.9)

The cost for false positives is thus 10 times higher than the one for false
negatives. In cases where the classifiers did not manage to classify all
training data sequences correctly, the final threshold was chosen by
minimizing the cost function (5.9).
The first part of the training procedure was to decide which chan-

nels of the available data to use, and also how many samples before
and after the snap to use. This was done in three steps and evaluated
using the least-squares and the boosting classifier.

Varying the channels used First, the number of channels was var-
ied, and the number of samples before and after the snap was set to a
high value (30 was used). The result of this experiment on validation
data is displayed in Figs. 5.4 and 5.5. All possible combinations of chan-
nels to use were tested, and, e.g., the upper left diagrams display the
six different possibilities of choosing one channel. Good classification
can be achieved with as few as 2 channels, but perfect classification
was achieved first when 3 or more channels were used. Therefore, 3
channels was chosen to be used in the final classifier. There was, how-
ever, no set of 3 channels that resulted in perfect classification for both
least-squares and boosting. A compromise was to choose the channels
containing the y- and z-force, and the ψ -torque.

Varying npost The number of samples to use after the snap should
be kept to a minimum, to not delay the detection of the snap more
than necessary. To find out how many samples after the snap that are
needed for good classification, an experiment where this parameter
was varied was performed. The number of samples before the snap was
large (npre = 30), such that all information before the snap was kept,
and the purpose of the experiment was to see how much information
after the snap that was needed. The result from the experiment is
displayed in Fig. 5.6. The cost is decreased when the number of samples
used is increased, which is intuitive as the classifier then has more
information available. Taking the result from both tested classifiers
into account, it was reasonable to use 6 samples after the snap.
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Figure 5.4 Results on valida-
tion data when the number of
channels used for classification
was varied. A least-squares classi-
fier was used.
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Figure 5.5 Results on valida-
tion data when the number of
channels used for classification
was varied. A boosting classifier
was used.

The large jumps in the cost can be explained by the definition of the
cost function (5.9). An extra false positive makes the cost increase 10
units, and this is, e.g., what happened at npost = 5 in the least-squares
result in Fig. 5.6 (the upper diagram).

Varying npre The third parameter to choose was the number of sam-
ples to use before the snap. The trade-off for this parameter consisted
in performance versus the complexity of the classifier, more data used
gives longer time for training and classification. The result from an
experiment where the number of samples used before the snap was
varied is displayed in Fig. 5.7, the number of samples after the snap
was fixed to npost = 6. As the performance is only slightly increased by
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Figure 5.6 Variation of the number of samples after the snap used for classi-
fication.
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Figure 5.7 Variation of the number of samples before the snap used for clas-
sification.

including more samples, it can be seen that 10 samples is a reasonable
choice.

Classifier-specific tuning The final stage of the training procedure
was to find parameters for the individual classifiers. The least-squares
classifier contained no tunable parameters, and neither did the boost-
ing classifier (a fixed number of 50 weak classifiers were used). The
SVM classifiers, however, had some parameters.
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For the primal SVM classifier, the penalty for misclassification, C
in (5.5), had to be chosen. The performance on validation data when
this parameter was varied is displayed in Fig. 5.8. Clearly, a large
misclassification penalty is to prefer. A low penalty makes it afford-
able to allow for data points to be within the margin and also to be
incorrectly classified, for the purpose of increasing the margin. The
drawback was, however, that the performance on validation data was
decreased. A misclassification penalty of 10 was chosen for the final
classifier.
For the SVM classifier using the dual formulation, two parame-

ters had to be chosen, namely the width l of the Gaussian kernel and
the misclassification penalty C in (5.6). The result from an experiment
where these parameters were varied is displayed in Fig. 5.9. Small ker-
nel widths give classifiers that classify everything as the background,
which can be seen as the lower half of Fig. 5.9. Increasing the ker-
nel width gives better performance, at least for large misclassification
penalties. The minimum cost was found for a kernel width of approxi-
mately 42 and a misclassification penalty of 672.
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Figure 5.9 Variation of the parameters for the SVM classifier using a
Gaussian kernel.

Final comparison

The classification results on training data for all the considered clas-
sifiers are displayed in Figs. 5.10-5.13. The last training samples for
each classifier correspond to the sequences that initially were misclas-
sified, i.e., those sequences that were added to the training data set
during the training procedure (as was described in the ’Background
data for training’-section on page 33). Those samples can be seen to
all lie relatively close to the decision threshold. A smaller number of
background sequences were used for training the SVM classifier using
the dual formulation, as the training was very time consuming. Only
the boosting and the primal SVM classifier succeed in correctly classi-
fying all training sequences, while both the least-squares and the SVM
classifier using the dual formulation make some errors. It can further
be seen in all diagrams that the first half of the data1 gives a larger
variation than the second. This outcome was expected, as the first half
corresponds to the data from the IRB140 executions, which in Figs. 5.2
and 5.3 was seen to have more variation than the FRIDA executions.
The result on validation data is summarized in Table 5.1. Included
1Excluding the last 5-20 samples in the end of each diagram that was added during

the training procedure as was described earlier in the paragraph.
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Figure 5.10 Classification on
training data for the least-squares
classifier.

200 400 600 800 1000 1200 1400 1600

−60

−50

−40

−30

−20

−10

0

10

20

30

40

50
 

 

 

C
la
ss
if
ic
at
io
n
va
lu
e

Training sample

Snap
Background
Threshold

Figure 5.11 Classification on
training data for the boosting
classifier.
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Figure 5.12 Classification on
training data for the primal SVM
classifier.
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Figure 5.13 Classification on
training data for the SVM clas-
sifier using the dual formulation
with a Gaussian kernel.
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5.3 Snap detection

Classifier Threshold Value False negatives False positives

Least- +10% 0.23 14 0

squares nominal -0.095 1 0

-10% -0.42 0 34

SVM +10% 1.89 14 0

(primal) 0.95 7 0

nominal 0.0 2 0

-0.95 0 19

-10% -1.87 0 153

SVM +10% 0.37 46 0

(dual) nominal -0.048 3 0

-10% -0.47 0 17129

Boosting +10% 12.4 6 0

nominal 1.25 2 0

-10% -9.94 1 9

Table 5.1 Results on validation data. There was a total number of 80 snaps,
i.e., the maximum number of false negatives is 80, and the backround data
consisted of 31651 sequences, i.e., the mamximum number of false positives is
31651.

is also the performance when the threshold has been increased and
decreased with 10 % of the total variation in the training data. This
is a measure of the sensitivity of the classifier, a small decrease of the
performance when the threshold is changed indicates that the classifier
has a good robustness. This measure was, however, unfair to the primal
SVM classifier, as the increased and decreased threshold ended up
outside the margin. Therefore, also thresholds within the margin has
been included.
The least-squares classifier has the best nominal performance, but

it is quite sensitive to variations of the threshold. The best classifier is
instead the boosting classifier, which only shows a slight decrease in
performance when the threshold is changed. The primal SVM classifier
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Chapter 5. Snapfit assembly scenario

has a similar performance as the boosting classifier, but the dual SVM
classifier performs much worse. The use of a Gaussian kernel seems
not to be the best alternative, and another choice of kernel function
would maybe perform better.
The detection of snaps is quite reliable, concerning the large varia-

tion in both training and validation data, with different robots, switches,
and assembly speeds. The fact that the least-squares classifier works
really well shows that the problem is almost possible to solve using a
simple hyperplane classifier. This was an unexpected outcome of the
experiments. Using more advanced classifiers, such as boosting, how-
ever, gives an increased robustness towards errors in classification.
In a real scenario, the robot user would have to manually mark

the snap (or the signature of the event to detect) in a number of se-
quences. Then the system should perform the entire training procedure
automatically. All classifiers considered are possible to implement in
a real-time setting, as the calculations required for classifying a data
sequence are quite modest.

5.4 Experimental results from an assembly execution

The assembly scenario was implemented using both IRB140 and FRIDA.
Exactly the same assembly strategy could be used for both robots, but
some of the force control parameters should be modified for good per-
formance, due to different robot properties. The use of a weaker robot,
such as FRIDA, makes it easier to accomplish the assembly, as the
robot itself is compliant and therefore enables the use of higher search
speeds as forces do not build up as quickly as when a stiff robot is used.
Force data from an experimental execution where IRB140 was used

is given in Fig. 5.14, together with the corresponding state in the as-
sembly sequence. The first three states shown are linear search mo-
tions in z, y and x. The transition conditions were large contact forces
in the corresponding search directions, which is easily seen in the force
plot, at t = 1.1 [s] in z, at t = 2.0 [s] in y, and at t = 2.5 [s] in x. States
5 and 6 were rotational searches, the transition conditions were large
corresponding torques. Notice how the ψ -torque (around f2 x-axis)
drops around t = 4.5 [s]. This was because the switch slid down into
the slot in the box. State 7 was the push-down state, and when the snap
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Figure 5.14 Force data from an assembly sequence vs. time. The uppermost
diagram shows the state sequence, the middle the forces and the lowermost the
torques.

occurred (at t = 5.7 [s]) a transition to the last state was made, where
the robot lifted the switch and the box to show that it had finished the
assembly.
More insight is given in Fig. 5.15, where velocity data from the

experiment is shown. Measured data is given when the correspond-
ing coordinates were position or velocity controlled, but the control
signal (the desired velocity) is given when the coordinates were force
controlled. The search motions are easy to recognize on the non-zero
velocities.
The boosting classifier trained in Sec. 5.3 was used for detecting

the snap. The resulting classification in each sampling instant is dis-
played in Fig. 5.16. The snap was detected a t = 5.68 [s], as can be seen
when the classification value exceeds the threshold. It can further be
seen that the background gets approximately the same values as the
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Figure 5.15 Velocity data from an assembly sequence vs. time. The upper-
most diagram shows the state sequence, the middle the linear velocities and the
lowermost the rotational velocities.

classification on training data in Fig. 5.11, but the snap gets a con-
siderably lower value. The switch used was not one of those used for
training, which is a hint for that the classifier may have been some-
what overtrained, i.e., that more than two switches might be needed
for training.

5.5 Conclusions

Force control was used to successfully perform the snapfit assembly
scenario using two different robots. A machine learning approach was
applied for detecting when the switch snaps into place. The classi-
fier with the best performance was a boosting classifier, with simple
thresholds along the coordinate axes as weak classifiers.
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Figure 5.16 Classification results for the boosting classifier during the assem-
bly experiment (when in state 7). The snap was detected when the classification
value exceeded the threshold at t = 5.68 [s].
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6

Uncertainty estimation

6.1 Introduction

Traditional position controlled robots require a very structured envi-
ronment to work well, as everything within the task must be known
with a certain accuracy for the robot to be able to complete the task.
The required accuracy depends on, e.g., the tolerances of the gripper
and the parts involved in the task. A system like this has difficulties in
handling uncertainties in the task, and fixtures and other task specific
solutions are used to avoid problems with them, e.g., specialized pro-
cedures for gripping parts in exactly the same way every time. These
implementations are quite time consuming and also inflexible, as much
work usually is required when something in the task changes.
Relaxing the requirements on a structured environment directly

introduces uncertainties in the task, e.g., positions of parts might no
longer be exactly known and exact gripping might not be possible
any more. To be able to cope with these circumstances, extra sensing
might be needed, such as vision and force sensing. A systematic way of
modeling geometric uncertainties and incorporate external sensing is
provided in the constraint-based task specification framework (iTaSC)
[De Schutter et al., 2007].
An introduction to the importance of taking uncertainties into ac-

count in robotics, along with the challenges that arise, is given in
[Thrun, 2002]. An early framework for incorporation of uncertainties
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in the context of motion planning is described in [Donald, 1986]. Two
examples of uncertainty management within the context of force con-
trol and compliant motion are [De Schutter, 1988] and [Lefebvre et al.,
2005]. The first one considers how estimation of the motion of an object
can be used to improve force control against the same object, and the
second is about how active sensing can be used to resolve uncertainties.
This chapter describes how uncertainties in robotic assembly can

be modeled and resolved using force sensing. An example of gripping
uncertainty from the snapfit assembly scenario is presented. The un-
certainty is resolved using a Kalman filter.

6.2 Modeling

Uncertainties are introduced in iTaSC by assuming that the pose of
some of the modeled object and feature frames are uncertain. Uncer-
tainty coordinates, denoted by χu, are used to represent the directions
in which the uncertainty is present.
The state update and estimation procedure is divided into two parts

when uncertainty coordinates are introduced. First, the uncertainty
coordinates are assumed to be known and constant when the feature
coordinates are calculated. Then an estimator is fed with measurement
data and the values of the uncertainty coordinates are updated. There
is no general procedure for how to create such an estimator, instead it
has to be derived in each particular case.
The general goal with modeling and estimating uncertainties is

to increase the performance of the task execution. Less uncertainties
makes it possible to achieve a decreased failure rate, and it can also
make it possible to decrease the cycle time of the task.

6.3 Example from snapfit assembly

Uncertainties in the task include the exact location of the box and
its orientation. They are however resolved using guarded search mo-
tions, i.e., the motion is velocity controlled in the search direction and
stopped when a contact force is detected. Once contact is made, it is
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Chapter 6. Uncertainty estimation

maintained by using force control, and hence no explicit uncertainty
coordinates are used to model this uncertainty. It could be modeled
with an uncertainty frame positioned in the true position of the slot.
The position of this frame could be estimated when contact had been
established in the different directions.
The exact grasp of the switch is also assumed to be uncertain, and

the z- and y-distance from f2 to o2 (Fig. 6.1) is therefore modeled as
uncertainty coordinates yu and zu. The distance in x is also uncertain,
but it is small compared to the other distances and therefore considered
to be known with sufficient accuracy.

o2

y

z

y

z f2

zu

yu

Figure 6.1 Illustration of the uncertainty coordinates yu and zu between the
two frames f 2 and o2.

An illustration of the uncertainty coordinates yu and zu is given in
Fig. 6.1. As the only sensor available is a force sensor, the estimation
can only be performed when the switch is in contact with the environ-
ment. The uncertainty can be estimated by performing a rotation in
ψ (rotation around f2 x-axis, see Fig. 6.2) while keeping the switch
in contact with the box (this corresponds to state 5 in the assembly
sequence, see Sec. 5.2). If yu and zu were known exactly, the contact
forces at the origin of f2 would remain constant during the rotation
without any force control. In practice the contact forces will change

50



6.3 Example from snapfit assembly

and force controllers will modify the velocity references in the y and z
directions to maintain the forces.

f2
f2'

o2

y

y

z
z

z

y
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z

z

^
ψ
. u

u

u

y~uŷu

yu

Figure 6.2 Illustration of the uncertainty coordinates yu and zu.

Let us assume that there is an estimation error ỹu = yu − ŷu and
z̃u = zu − ẑu, illustrated in Fig. 6.2, where ŷu and ẑu are estimates of
yu and zu, respectively. These estimation errors give rise to attempted
rotations around the origin of frame f2′ instead of around the origin
of f2. Since the contact is force controlled the actual rotation will,
however, be made around the origin of f2, and the velocity of o2 will
be

v = [ψ̇ , 0, 0]T $ [xdist, yu, zu]T = [0,−ψ̇ zu,ψ̇ yu] (6.1)

This assumption only holds if the force controllers manage to control
the contact forces to the reference values, i.e., the force controllers have
to be fast, the estimation errors small, or the rotational search speed
low.
The assumption described in the previous paragraph can be used to

set up a dynamical model for yu and zu, according to (6.2), where the
state s = [yu, zu]T and the measurement m = v is the linear velocity of
frame o2, � and n are Gaussian noise.

{

ṡ = �(t)

m = −ψ̇ s+ n(t)
(6.2)
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Chapter 6. Uncertainty estimation

A Kalman filter [Kalman, 1960] can be used to estimate zu. A dis-
cretized model of (6.2) is (6.3), with system matrices defined in (6.4).
The noise covariances are assumed to be given by Eq. (6.5).

{

s(k+ 1) = As(k) +w(k)

m(k) = C(k)s(k) + e(k)
(6.3)

A = I2$2 , C =






0 0

0 −ψ̇

ψ̇ 0




 (6.4)

E
[
w(k)wT (k)

]
= Q(k)

E
[
w(k)eT (k)

]
= 0

E
[
e(k)eT (k)

]
= R(k)

(6.5)

A Kalman filter for the model (6.3) is given by (6.6)-(6.12).

ŝ(kpk− 1) = Aŝ(k− 1pk− 1) (6.6)

P(kpk− 1) = AP(k− 1pk− 1)AT + Q(k) (6.7)

m̃(k) = m(k) − C(k)ŝ(kpk− 1) (6.8)

S(k) = C(k)P(kpk− 1)CT (k) + R(k) (6.9)

K (k) = P(kpk− 1)CT (k)S−1(k) (6.10)

ŝ(kpk) = ŝ(kpk− 1) + K (k)m̃(k) (6.11)

P(kpk) = (I − K (k)C(k)) P(kpk− 1) (6.12)

6.4 Experimental results

The estimation scheme described in the previous section was imple-
mented in a snapfit assembly like scenario. Initial contact was searched
for in the z-direction, when this contact was established it was force
controlled and a new search in the y-direction was performed. Once
contact was established also in this direction, it was force controlled
and a rotation in ψ (around the f2 x-axis) was started. Simultaneous
to the rotation, the estimator was also started. Three different initial
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Figure 6.3 Experimental data from the three uncertainty estimation experi-
ments. The uppermost diagrams show the y- and z-forces, measured data with
solid lines and references with dashed lines. The middle diagrams show the y-
and z-velocities, i.e., the force controller outputs, which should be equal to zero
(indicated by black dashed lines). The lowermost diagrams finally show the time
evolution of the uncertainty coordinate estimates (blue), the dashed lines indi-
cate the correct value, and the green lines show the estimate used for control,
i.e., the initial guess until the estimation covariance has settled down.
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guesses were used and the result is displayed in Fig. 6.3, where each
column of diagrams corresponds to one initial guess.
The state and measurement covariances (6.5) were chosen to be

constant and diagonal. The covariance was further chosen to be larger
for the measurement noise than for the state noise, i.e., trust the model
more than the measurements.
All three experiments started with relatively large force transients.

The explanation for this is the inaccurate initial guess of the uncer-
tainty coordinates, which meant that the rotation was not performed
around the contact point. A contribution to the transient was also the
newly established contact, the force controller needed some time to set-
tle down after making contact as the environment was quite stiff. This
latter explanation for the transient behavior was not modeled, and it
therefore resulted in some temporary estimation errors, which can be
seen in the beginning of the resulting estimates for the three experi-
ments. The initial behavior was also caused by the fact that the initial
state covariance was chosen to be large, as it was assumed that the
initial guess was poor. The actual estimate of the uncertainty coordi-
nates used during the execution was the initial guesses, at least until
the Kalman filter had converged. This was considered to have hap-
pened when the rate of change of the covariance had decreased below
a threshold.
The estimation performance was good, as estimation errors of up

to 30 [mm] converge in less than 2 [s] for all three experiments. Once
the estimates have converged, the forces track the references in a sat-
isfactory way, 3 [N] in the y-direction and 5 [N] in the z-direction. The
velocity corrections made (by the force controllers) can also be seen to
become very small. With the uncertainty coordinates known, it is pos-
sible to increase the assembly speed, as the force controllers now have
to do less corrections. The risk for errors occurring is also decreased.
The yu-estimate can be seen to increase fast in the end of each

experiment, this was caused by the rotational search making contact
with the other end of the switch. The switch then had two contact
points, i.e., a contact situation that was not modeled.
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6.5 Conclusions

A method of modeling uncertainties in robotic assembly based on the
iTaSC-framework was described. The methodology can be applied to
any geometric uncertainty, as long as it is possible to relate it to the
measurements from a sensor. Making it completely automatic, i.e., gen-
erating an estimator to an uncertainty coordinate specified by the user,
is, however, probably not possible. The user will have to also specify
the measurement model.
A gripping uncertainty in the snapfit assembly scenario was re-

solved using a Kalman filter. The method was experimentally imple-
mented on an industrial robot system.
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7

Adaptation of force control

parameters

7.1 Introduction

There is a need to make it easy for robot operators to specify tasks,
especially when external sensing is used. One such example is force
controlled assembly. Force sensing is beneficial in these tasks, as it
increases the robustness towards uncertainties, e.g., caused by inac-
curate gripping, compared to for instance a position-controlled imple-
mentation. The environment is often stiff, which makes it crucial to
design appropriate force controllers. This is a non-trivial task that may
be hard for the task programmer. One solution to this problem is to
offer a self-tuning mechanism, making the force controllers adaptive.
In this chapter, the problem of robotic assembly based on force sens-

ing only is addressed. An adaptive algorithm for choosing force control
parameters in a pre-defined controller structure is presented. A con-
tact model is identified, and it is used to tune the force controller. The
approach is finally integrated in the snapfit assembly scenario (Chap-
ter 3).
Identification of contact model parameters has previously been con-

sidered by many researchers. In [Erickson et al., 2003], four different
methods for estimating the environment contact model were described
and experimentally verified. One of the methods was originally pre-
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sented in [Love and Book, 1995], which describes how the parameters
in an impedance controller can be chosen when using contact model pa-
rameters estimated with Recursive Least Squares (RLS). A comparison
of different algorithms for real-time identification of contact model pa-
rameters are described in [Haddadi and Hashtrudi-Zaad, 2008], among
them RLS. In [Roy and Whitcomb, 2002], an adaptive force controller
was presented, being based on an estimate of the contact stiffness. A
similar approach was presented in [Kröger et al., 2004], which consid-
ers adaptive force controllers within the Task Frame Formalism. In
[Mallapragada et al., 2006] estimates of contact stiffness and damping
are used in a gain scheduler based on an artificial neural network for
a PI force controller.
An approach to identification of a contact model with multiple con-

tact points is given in [Weber et al., 2006]. The geometry was assumed
to be known and this made it possible to calculate the contact loca-
tions; the results presented are based on simulations. An extension of
the results provided in [Weber et al., 2006] is [Verscheure et al., 2010],
which also considers geometric uncertainties and presents experimen-
tal results.
A method for designing force controllers when given environment

stiffness by the robot user was presented in [Natale et al., 2000]. An in-
dustrial robot with a position-controlled interface is assumed, and the
robot dynamics are taken into consideration when doing the controller
design.

7.2 Modeling

Contact model

The environment is modeled to consist of a spring and a damper, ac-
cording to Fig. 7.1. Thus, interacting with the environment gives the
reaction force, F, given by

F = Kenv(xenv − x) − Denvẋ (7.1)

The stiffness of the environment is denoted by Kenv, the damping
by Denv, and the location of the unloaded environment by xenv. The
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x

Kenv

Denv
xenv

Figure 7.1 Contact model.

environment is further assumed to be decoupled, such that there is
one relation (7.1) for each Cartesian direction.
The environment perceived by the robot will not equal the actual

environment, it will rather be a combination of the stiffness and damp-
ing properties of the tool attached to the robot, the robot itself, and the
actual contact. Hence, a stiff environment might be perceived as a soft
one if the tool on the robot is soft. Further on, if the tool has different
stiffness properties in different directions, even an isotropic contact
material will be perceived to have different stiffness in different direc-
tions.

Adaptation algorithm

The algorithm chosen was the Recursive Least Squares (RLS) method.
The contact model (7.1) is nonlinear, because of the product Kenvxenv.
This product can, however, be seen as a separate model parameter, and
then the model is linear. It can be cast in regressor form according to

y= ϕTθ ,







y= F

ϕ =
[

−x −ẋ 1
]T

θ =
[

Kenv Denv Kenvxenv

]T

(7.2)

The RLS algorithm is given as [Johansson, 1993]
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





θ̂ k = θ̂ k−1 + Pkϕ kε k

ε k = yk −ϕTk θ̂ k−1

Pk =
1
λ

(

Pk−1 −
Pk−1ϕ kϕ

T
k Pk−1

λ+ϕT
k
Pk−1ϕ k

)
(7.3)

The forgetting factor λ can be used to cope with time varying pa-
rameters by setting it to a value less than 1. A value of λ = 1 gives
the usual least-squares solution. The initial value of the adaptation
gain matrix P has to be chosen, and its magnitude is usually chosen to
be large to get a fast convergence to the true values of the estimated
parameters.
Each force controlled direction will have nominal parameters, likely

not well tuned. These will be used during the estimation of the con-
tact parameters. To assure that the input signals to the estimator are
persistently exciting [Johansson, 1993], the force reference is set to
a sufficiently exciting signal, e.g., a square wave. As the covariance
of the estimate is decreased (proportional to the P-matrix), the con-
troller parameters are updated based on the contact model parameter
estimates. Once the covariance is considered to be low enough, this
adaptation phase is finished.

Force controller

The force controller used in the assembly framework was decoupled
impedance control [Hogan, 1985] for each Cartesian direction x. This
setup makes it possible to perform force control in some directions and,
e.g., position control in others. The control law used for the impedance
controller is given by (7.4).

ẍdes =
1
M
(Fx − Fx,re f − Dẋdes) (7.4)

The direction controlled is denoted by x and its desired behavior
by xdes, Fx and Fx,re f denote the force and the force reference in the
direction of x, respectively. The parameter M is the virtual mass and D
the virtual damping of the impedance the robot is controlled to behave
like (in the direction x). No position reference was used, as it was only
interesting to control the force.
To make the controller safe to use, the maximum output veloc-

ity (ẋdes) was limited. This limitation was made in such a way that
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no wind-up problems occur. The switching between different control
modes, e.g., from position to force control, was made by bumpless trans-
fer, i.e., the new controller was initially being set to have the same
control signal as the previous controller.

Choice of force control parameters

The control parameters were chosen according to a pole placement
design, of the poles in the transfer function from the force reference,
Fre f , to the measured force, F. The controller (7.4) together with the
contact model (7.1), where the location of contact is ignored, gives

{

ẍ = 1
M
(F − Fre f − Dẋ)

F = −Kenvx − Denvẋ
(7.5)

In (7.5) the assumption of an ideal velocity controlled robot is made,
i.e., ẋ = ẋdes. The time-domain equations can be transformed to the
frequency domain by the Laplace transform, giving

{

s2X (s) = 1
M
(F(s) − Fre f (s) − DsX (s))

F(s) = −KenvX (s) − DenvsX (s)
(7.6)

By eliminating X (s) in the above equations the following relation
between Fre f and F is achieved

F(s) =

Kenv

M
+
D

M
s

s2 +
Denv+ D

M
s+
Kenv

M

Fre f (s) (7.7)

Hence, the measured force is related to the force reference by a
second-order linear time-invariant dynamical system. A stable pole
placement design for such a system can be parameterized according
to Fig. 7.2, which gives the denominator polynomial

s2 + 2ζ ω s+ω 2 (7.8)

Comparison of the coefficients of the denominator in (7.7) and the
specification polynomial in (7.8) gives that the force control parameters
should be chosen as (estimated values of contact stiffness and damping
should be used)
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Im s

 = cos 

ω
ϕ

Re s

ζ ϕ

Figure 7.2 Illustration of pole placement design (7.8).

M =
Kenv

ω 2
, D =

2ζ Kenv
ω

− Denv (7.9)

The actual force controllers were implemented in discrete time, han-
dled by discretization of the control law (7.4) (the sampling period used
was 4 ms). The largest approximation is the assumption of neglected
robot dynamics in the realization of the control law (7.4). This will only
be approximately true up to a certain bandwidth, and the stability mar-
gins will depend on unmodeled dynamics, e.g., robot stiffness dynamics
and time delays originating from sensor processing. The bandwidth of
the force controller, ω , will thus have to be chosen with these consid-
erations taken into account.

Torque control parameters

Torque control during assembly operations often means two or more
point contacts. A change in the torque reference will therefore change
the measured force, as there is a coupling between the measured force
and torque. Usually the contact material for all contacts is approxi-
mately the same, which means that the same contact model that was
identified during the first phase with only one contact can be reused.
The remaining uncertainty is about the location of the second contact
relative to the first, and this can be estimated, e.g., with an RLS es-
timator. Once the location of the contact is estimated, the formulas
for controller parameters in the previous subsection can once again be
used, with the stiffness K̂ L̂ and the damping D̂ L̂, where L̂ is the esti-
mated distance between the two contact points, and K̂ and D̂ estimated
stiffness and damping, respectively.
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Alternative specification of torque control

When performing assembly operations with two-point contacts, it is
not always easy to choose appropriate set point values for the force and
the torque controllers. An alternative is to instead control the force in
each contact. The estimation outlined earlier in this section gives the
required information about the relative location of the contacts, i.e., the
distance between them. This makes it possible to calculate the force
originating from each contact, and transform a reference on the forces
in each contact to an equivalent force and torque.
This way of specifying the force and the torque during a two-point

contact assembly operation will simplify the procedure for the user.
The easiest way to implement it is to transform the two-force reference
from the user, to force and torque references, and keeping separate
control of force and torque. The user should, however, be presented
with measurements transformed into forces from two contacts.

Assembly task

The assembly task considered as an example was the snapfit assembly
scenario described in Sec. 4.1, with kinematic chains and the coordi-
nate frames illustrated in Fig. 4.1. The assembly strategy used was
the one presented in Sec. 5.2.
The adaptation strategy described should only be used when the

force control parameters are not well tuned, i.e., usually the first time
the assembly is performed or when something has changed, e.g., at
the use of a new gripper. The adaptation phases can be considered as
separate states in between the nominal ones, see a part of the state
machine implementing the sequence in Fig. 7.3.

7.3 Experimental results

Contact with different materials

An experiment where contact was made with three different environ-
ments was used to test that the adaptation gave the desired perfor-
mance. An initial search towards the environment was made until a
contact force was detected. A force controller was then started with
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Search for 

for contact in

f1 z-direction

(state 2)

Adapt parameters

for force controller

in f1 z-direction

(state 2.5)

Search for 

for contact in

f1 y-direction

(state 3)

adapt AND contact_zDirection

adaptation_finished

(NOT adapt) AND contact_zDirection

Figure 7.3 A part of the state machine implementing the assembly sequence.
The parameter adapt decides whether the adaptation phase should be entered
or not.

poorly tuned parameters, i.e., a default initial setting, and the adap-
tive algorithm was initiated. The given force reference was a square
wave, and the forgetting factor λ was chosen to be 1, as the environ-
ment was not assumed to vary over time. Once the covariance of the
contact model parameter estimates became low, the force control pa-
rameters were updated. A bandwidth of ω = 5 [rad/s] and a relative
damping ζ = 0.8 was chosen for the controller.
Experimental data from the experiment is shown in Fig. 7.4, the

left column shows the measured force and the force reference, and the
right column shows the estimated stiffness and damping. In the top-
most diagrams the environment was a soft plastic foam. The fact that
the material was soft can be seen in the force response when contact
was made, as the force is slowly built up. The nominal force control
parameters were used in the first period of the reference signal, and the
parameters were so poorly tuned that hardly anything happened. When
the estimated contact parameters were used, however, the reference
was satisfactorily tracked. The estimates of the contact stiffness and
the damping can be seen to converge in less than 5 seconds.
The second environment used was a mouse pad, displayed in the

middle diagrams in Fig. 7.4. This material was stiffer, but both the
control and estimation behavior was similar to the first case. The last
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Figure 7.4 Experimental data from an experiment where contact was made
with different environments. The top diagrams show contact with soft plastic
foam, the middle diagrams contact with a mouse pad, and the bottom diagrams
contact with a table surface. The left diagrams show the measured force in blue
and the force reference in black. The right diagrams show estimated stiffness
and damping.

environment was a table surface, displayed in the bottom diagrams in
Fig. 7.4. The initial force transient shows that this environment clearly
was the stiffest. When the estimated contact parameters were used,
the resulting control performance was worse than in the two previous
cases. This was probably caused by that the assumptions made when
deriving the control parameters were not completely valid for the cho-
sen control bandwidth and the stiffness of the contact material. Even
though the performance is worse than for the previous environments,
it is acceptable in regular assembly tasks.
The estimate of the stiffness starts with a large transient for all

materials, which is caused by the choice of a large initial covariance.
Choosing it smaller, however, would lead to slower convergence for the
parameter estimates.
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Adaptation in an assembly sequence

The adaptation strategy was used to tune the force control parameters
in an assembly sequence, experimental data is displayed in Figs. 7.5-
7.8. Force data from the beginning of the sequence is shown in Fig. 7.5.
State 2 was the search motion in f1 z-direction, and the adaptation of
the force control parameters for the z-coordinate was started in state
2.51, when contact was detected. The initial parameters were poor, as
shown by the large initial force transient. On the other hand, the tran-
sient gave good excitation for the estimation algorithm. Initially, the
force reference in state 2.5 was a sinusoid, to get a reference that would
not be too hard for the poor controller to follow. Once the covariance of
the estimate decreased below a threshold, the reference was switched
to a square wave, to get more excitation. In order not to disturb the es-
timation algorithm, all other output directions were controlled to keep
their current position during the adaptation phase. This phase was
finished once the covariance decreased below a second threshold.
Search motions and adaptation in the f2 y- and x-directions then

followed. Here it can be noted that the initial transients were much
lower than for the z-direction and that the adaptation phases lasted
somewhat longer. State 5 was the rotational search around the f2
x-axis, where the forces were controlled to be constant to keep the
contact.
The identified contact model parameters and the norm of the P-

matrix (a measure of the size of the covariance) are shown in Fig. 7.6.
It can be seen that the contact in the z-direction was considerably
stiffer than in the other directions. The contact material itself had
approximately the same properties in all directions, but the gripper
and the switch was much stiffer in the z-direction than in the others.
The slower convergence for the estimation in the y-direction can clearly
be seen in the plot of the norm of P. Occasionally the algorithm gave
unreasonable estimates, such as negative parameters, and to avoid
problems with this the algorithm was supervised. The values used for
chosing force controllers were projected into allowed intervals, see e.g.,
the damping parameter around t = 14 [s]. The estimation of the contact
location, xenv in (7.1), is not shown because it is not relevant for the
assembly sequence, but it also converged to a reasonable value for each

1This state corresponds to the adaptation state. It was defined in Fig. 7.3.
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Figure 7.5 Experimental data from the beginning of the assembly sequence.
The top diagram shows the state sequence, with state numbers defined in
Sec. 5.2, and the decimal states defined according to Fig. 7.3. The remaining
diagrams show the measured force (blue) and the force reference (black) for the
coordinate directions in frame f1. The reference is only shown when the coordi-
nate is force controlled. The adaptation phases are marked with vertical green
lines.

contact model.
The search speeds in the assembly sequence had to be slow to han-

dle the initial force control parameters, see e.g., the transient in the
z-force in Fig. 7.5 at t = 4 [s]. Once the control parameters had been
tuned, it was possible to increase all search speeds.
The data shown in Figs. 7.5 and 7.6 have only been a one-point

contact. The two-point contact was made in the second part of the as-
sembly, see experimental data in Figs. 7.7 and 7.8. The adaptation for
the torque controller (around f2 x-axis) started when the two-point
contact was detected, i.e., when state 5.5 was entered. The resulting
controller, active in the end of the adaptation phase, shows some over-
shoots when the reference is a square wave. This means that better
reference tracking probably can be achieved by decreasing the control
bandwidth, but this is not good for the performance in the assembly
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Figure 7.6 Experimental data from the beginning of the assembly sequence.
The top diagram shows the state sequence, the second the stiffness parameter
estimate, the third the damping parameter estimate, and the last diagram the
norm of the P-matrix. The beginning of each adaptation phase is marked with
a green line. The first phase is for the parameters in the z-direction, the second
in the y-direction, and the third in the x-direction.

sequence, where it needs to react fast to disturbances caused by move-
ments in other directions not to lose contact. The following action in the
assembly sequence was to find the slot with the second contact point,
by a search around the f2 z-axis. Once found, detected by a large z-
torque, the switch was pushed down until it was correctly inserted.
Finally, the whole assembly was lifted to show that the sequence had
finished.
The estimation of the distance between the two contact points is

shown in Fig. 7.8. The estimate initially varies, and even becomes neg-
ative, which is handled by the previously mentioned supervision of the
algorithm. A negative distance is further considered to be more of an
issue than a negative damping parameter, so the P-matrix was also
reset to a larger magnitude to restart the estimation. The estimate
finally converges to approximately 34 [mm], which is within 1 [mm]
from the true value.
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Figure 7.7 Experimental data from the final part of the assembly sequence.
The top diagram shows the state sequence. The second diagram shows the mea-
sured force (solid lines) and the force reference (dashed lines) for the coordinate
directions in frame f1. The third diagram shows the measured torque (solid
lines) and the torque reference (dashed lines) around the coordinate axis of
frame f2. The adaptation phase is marked with vertical green lines. Only the
torque around the x-axis is controlled in the adaptation phase.

Alternative specification of torque reference

The approach where the user specifies two forces instead of one force
and one torque in a two-point contact situation (Sec. 7.2) was imple-
mented in the assembly sequence. The only relevant state in the se-
quence was state 6, and experimental data from this state is shown
in Fig. 7.9. The first contact point was the end of the switch that first
made contact, and the force reference for this point was set to 5 [N],
enough to not lose contact. It was desired that the other end of the
switch slides down into the slot, and the reference was therefore a
larger force, here 15 [N]. By using the identified distance between the
two contact points, the given specification was translated to a force
and a torque reference, see the two top diagrams in Fig. 7.9.
The control performance is good in the beginning of the time slot

shown in Fig. 7.9. The references are lost in the end, and this was
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Figure 7.8 Experimental data from the final part of the assembly sequence.
The top diagram shows the state sequence, the second diagram the distance
parameter estimate (between the contact points), and the last diagram the norm
of the P-matrix. The adaptation phase is marked with green lines.

caused by the switch sliding down into the slot, i.e., contact was lost
for the second point. This can also be seen in the torque diagram, as
the torque approaches 0. This behavior is an indication of a successful
assembly.

7.4 Discussion

The adaptation algorithm described in Sec. 7.2 was successfully im-
plemented on an industrial robot system. The achieved performance is
satisfactory, both for soft and stiff contacts, and it can be used to free
the user from the tedious work of tuning the force controllers manually.
Some performance degradation for stiff contacts is present that was not
foreseen by the design procedure. This was caused by a too coarse ap-
proximation of the robot dynamics, by making the assumption of an
ideal velocity controlled robot. To get a better control design, which

69



Chapter 7. Adaptation of force control parameters

51 51.2 51.4 51.6 51.8 52

0

10

20

51 51.2 51.4 51.6 51.8 52

0

0.2

0.4

0.6

0.8

51 51.2 51.4 51.6 51.8 52

0

10

20

30

 

 Contact point 1

Contact point 2

F
or
ce
[N
]

T
or
qu
e
[N
m
]

F
or
ce
[N
]

Time [s]

Figure 7.9 Experimental data from state 6 in the assembly sequence. The top
diagram shows the z-force, the middle diagram the x-torque, and the bottom
diagram the estimated equivalent forces acting on the two ends of the switch.
Measured force/torque are shown with solid lines and references with dashed
lines.

considers the limitations of the robot system, also the robot dynamics
has to be modeled.
An option that might enhance the control performance is to resort

to an optimal controller, e.g., an LQG or H∞-controller. But this means
that the impedance control structure has to be abandoned, which might
not be desirable. The impedance control parameters have a physical
interpretation that might be valuable, e.g., in an error situation.
In this work, only decoupled contact models and force controllers

were considered. This was convenient concerning the use of force con-
trollers in the assembly framework, but using coupled contact models
and force controllers might be a way to increase the control perfor-
mance. One difficulty with this approach is the identification phase, it
will be hard for the system to autonomously know when it is possible
to identify a coupled model, i.e., when the robot is in contact in several
directions. The solution might be to include this information in the
task specification.
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The adaptation is currently implemented as separate states in the
controlling state machine. A dedicated excitation signal is used to as-
sure that input data to the estimation algorithm is sufficiently excit-
ing. A further development could be to run the adaptation algorithm
in each assembly operation without an excitation signal.
The contact locations have been estimated during the assembly se-

quence, but this information has so far not been used. One way to use it
is to decrease the search times, by starting the search motions closer to
the identified contact locations, after a number of successful assembly
operations have been performed.
The method of using two forces instead of one force and one torque

in a two-point contact scenario simplifies the task specification for the
user, as the coupling between the force and the torque can be ignored.
Generalizing the strategy to more than two-point contacts is hard, as
the conversion from force and torque measurements to multiple forces
is very hard or even impossible to solve.
To the best of the authors knowledge, a similar approach has not

been previously presented within assembly. Adaptive force control with
comparable results has been performed, e.g., in [Roy and Whitcomb,
2002] and [Kröger et al., 2004]. They both show similar results for
corresponding contact stiffnesses, but this thesis also considers signif-
icantly stiffer contact environments. A stiffness of over 100 [N/mm]
was estimated in Fig. 7.4, compared to a stiffness around 20 [N/mm]
in [Kröger et al., 2004] and below 1 [N/mm] in [Roy and Whitcomb,
2002].

7.5 Conclusions

A method for self-tuning of force controllers to use in industrial robots
has been described. It was based on identification of a contact model us-
ing an RLS algorithm. The force controller considered was an impedance
controller and its parameters were chosen according to a pole place-
ment design. The method was implemented in an industrial robot sys-
tem and used in an assembly task.
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8

Singularity-free orientation

representation based on

quaternions

8.1 Introduction

This thesis focuces on creating a framework for sensor-guided assem-
bly that should be possible to use for non-expert robot operators. In
Chapters 4 and 5 the snapfit assembly scenario was presented. The
implementation was based upon the iTaSC framework, where Euler
angles commonly are used as a representation for orientation. A main
reason for using this representation is that it is intuitive to work with
and that it offers a minimal representation for orientations, but unfor-
tunately it has problems with representation singularitites [Siciliano
and Khatib, 2008].
One way to avoid the problems with an Euler angle representa-

tion, but keeping the intuitive orientation description, is to use an
internal singularity-free representation. Two such representations are
quaternions and rotation matrices. The former representation is the
one considered in this thesis, due to the fact that a quaternion needs
4 parameters only, whereas a rotation matrix needs 9 (not all unique)
ones. Another possibility is to switch between different Euler angle
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representations that have the representation singularity in different
orientations, as described in [Singla et al., 2005]. A drawback with a
switching solution is that it would be cumbersome to handle all pos-
sible Euler angle parametrizations, if the user should have the possi-
bility to choose from all of them. The mapping of constraints between
the switching representations might also be a problem. An advantage
with the quaternion representation is that it always gives orthogonal
rotation axes, which is not the case for an Euler angle representation.
If the task requires constraints on non-orthogonal rotation axes, the
remedy is to use more than one kinematic chain.
A general method to handle non-minimal representations, such as

quaternions, within iTaSC is suggested in [De Schutter et al., 2007].
Both this approach and the one presented in this thesis use the fact
that there exists a minimal representation on the velocity level. In fact,
they can be proven to be equal. This thesis further presents how the
quaternion representation is integrated into the iTaSC methodology,
making it possible for the user to specify tasks without having to worry
about orientation representation singularities. The approach is exper-
imentally verified in an implementation of a force-controlled assembly
task. The task considered is a subassembly of an emergency stop but-
ton; namely the initial part of the red button assembly described in
Chapter 3. The red button should be inserted into the yellow case, i.e.,
a peg-in-hole assembly. The button is assumed to be rotationally sym-
metric, which introduces a redundant degree of freedom in the task.
This redundancy is exploited using the iTaSC framework.
Quaternions have previously been used in many contexts, such as

robotics, computer graphics, and attitude control of aircrafts and space-
crafts. A primary reason for working with quaternions is that they are
a singularity-free orientation representation. An underwater vehicle-
manipulator system was controlled in a singularity-free manner us-
ing the unit quaternion in [Antonelli and Chiaverini, 1998], and the
quaternion was also used in [Caccavale and Siciliano, 2001] to avoid
representation singularities in control of a redundant manipulator on a
spacecraft. In [Wen and Kreutz-Delgado, 1991] the unit quaternion was
used as a singularity-free orientation representation to derive a large
family of globally stable control laws for the attitude control problem.
Another example where the quaternion is used to avoid singularities
is [Xian et al., 2004], where it was used to implement a task-space
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tracking control scheme.
Quaternions have also been used in connection with SLAM, e.g., in

[Kyrki, 2008] they are used to represent similarity transforms. Further,
a general framework on how to handle redundancy is presented in
[Rocco and Zanchettin, 2010].

8.2 Preliminaries

Orientation representation

Orientation in the kinematic chains in iTaSC is usually represented by
Euler angles, i.e., three consecutive rotations around given coordinate
axes. The reason for choosing Euler angles is that they are intuitive
to work with and easy to specify in a kinematic chain. Furthermore,
they offer a convenient way of parametrizing an orientation, and also
make it possible to control all three angles separately.
There are, however, several problems with an Euler angle repre-

sentation. The first one is that the parameterization is not unique,
e.g., (π

2 ,
π
2 , 0) and (−

π
2 ,−

π
2 ,π ) are two examples of ZYZ-Euler angles

that represent the same orientation. This results in problems when
the inverse kinematics problem is considered, i.e., when calculating
the Euler angles for a given orientation. Another problem is the inher-
ent representation singularity, which occurs when two rotation axes
are aligned. This results in the Jacobian of the kinematic chain losing
rank. The iTaSC motion solver uses an inverse of this Jacobian, and a
representation singularity is therefore highly inconvenient.

Quaternions

Quaternions [Hamilton, 1840] are an extension of the complex number
system. A quaternion Q consists of a scalar part, Qs ∈ R, and a vector
part, Q̄v ∈ R

3, according to

Q =
(

Qs, Q̄v
)

(8.1)

More on the properties of quaternions can, e.g., be found in [Siciliano
and Khatib, 2008]. Unit quaternions are a suitable choice as a repre-
sentation for rotations. The rotation around an axis v̄, pv̄p = 1, with the
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angle θ is then given by the quaternion

Q =
(

cos (θ/2) , sin (θ/2) v̄
)

(8.2)

The use of quaternions for representing rotations does not exhibit
the problems of the Euler angle representation. The drawback is, how-
ever, the non-minimality of the quaternion representation, in which
case four parameters are needed together with the normalization con-
straint, qQq = 1. The intuitivity of the Euler angles is also lost.

8.3 Quaternion representation

Kinematics

To be able to incorporate quaternions in a kinematic chain in the iTaSC
framework, a new rotation transformation has to be introduced. It is
a general 3D rotation, and its current value is described by a quater-
nion. One difference from other types of transformations previously
used within iTaSC is that this has three degrees of freedom, and the
corresponding feature coordinate is a 4D-vector. A kinematic chain can
contain several of these quaternion transformations, but only one can
be part of the feature coordinates. The others might be used to intro-
duce uncertain and constant reorientations.
When formulating the iTaSC motion specification, all constraints

are transformed to velocity constraints. Force and position constraints
are handled by the use of controllers that output a desired velocity
to achieve the constraints. The velocity of an ordinary feature coordi-
nate is simply its time derivative, but for a quaternion transformation
this is not the desired way to describe a velocity constraint, as the
derivative of the quaternion parameters are even less intuitive than
the quaternion itself. Therefore a geometric approach is adopted, and
the velocity considered is the angular velocity in the local coordinate
system described by the quaternion. This means that the angular ve-
locities around the coordinate axes described by the quaternion are
considered as feature coordinates and not the quaternion parameters.
The quaternion is used to keep track of the current orientation. Using
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Figure 8.1 The inverse kinematics problem is solved by considering the posi-
tion loop constraint that is defined by the kinematic chain, w denoting the world
coordinate frame, q1 and q2 robot joint coordinates, o1 and o2 object frames, f1
and f2 feature frames, and χ f = (χ f I , χ f I I , χ f I I I) the feature coordinates.

the angular velocities as feature coordinates makes it easy to calcu-
late the part of the Jacobian of the kinematic chain belonging to the
quaternion transformation. The Jacobian is given in (8.3), where xi, yi,
and zi are the rotation axes, i.e., the coordinate axes in the coordinate
system described by the quaternion. The vector t̄ represents the vector
from the rotation point to the endpoint of the kinematic chain.

JQ =

[

xi $ t̄ yi $ t̄ zi $ t̄

xi yi zi

]

(8.3)

Inverse kinematics, i.e., the problem of finding the feature coordi-
nates when the rest of the kinematic chain is known, can be solved in a
similar way as the model update proposed in [De Schutter et al., 2007].
Consider the position loop constraint (8.4) represented as a product
of homogenous transformation matrices1, see also the illustration in
Fig. 8.1.

Tw→o1(q1)To1→ f1(χ f I)T f1→ f2(χ f I I)...

T f2→o2(χ f I I I)To2→w(q2) = I4$4
(8.4)

When there is a quaternion Q in the kinematic chain, the feature
coordinates can be written χ f = (Q, χ̄ f ), where χ̄ f contains all feature
coordinates except for Q. An equivalent formulation of (8.4) is (8.5),
where the fact that q1 and q2 are known and constant has been used.

T1T2(χ̄ f )T3(Q)T4(χ̄ f )T5 = I4$4 (8.5)
1The uncertainty coordinates have been omitted here, but the inclusion of them are

straightforward as they are considered to be known and constant in these calculations.
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8.3 Quaternion representation

This position loop constraint can be solved for χ̄ f and Q in an iterative
fashion. By first assuming that χ̄ f is known, it is possible to calculate Q
such that the orientation part of (8.5) is fulfilled, i.e., only the rotation
matrix part of the homogenous transformations is considered. To then
solve (8.5) for χ̄ f one can for instance make a linear approximation.
Let us denote the left-hand side of (8.5) for T(χ̄ f ) and the current
estimate of χ̄ f for ˆ̄χ f , then (8.6) holds, where Rerr is the orientation
error represented by a rotation matrix and terr the translation error
represented by a Cartesian vector.

T( ˆ̄χ f ) = Terr I4$4 , Terr =

[

Rerr terr

01$3 1

]

(8.6)

A linear approximation to describe ∆ χ̄ f = χ̄ f − ˆ̄χ f is (8.7), where aerr
is an axis/angle representation of Rerr and Jχ̄ f the Jacobian for T(χ̄ f ).

Jχ̄ f ∆ χ̄ f =

[

terr

aerr

]

(8.7)

Normally there are 6 feature coordinates, but as χ̄ f does not contain
the quaternion only 3 feature coordinates remain. This means that a
least-squares solution can be used to solve (8.7) for ∆ χ̄ f and update
ˆ̄χ f .
Iteration of the described procedure is performed until the error,

i.e., the right-hand side of (8.7), is small enough. As the inverse kine-
matics is calculated continuously during operation and the coordinate
values in the previous sample are used as starting values in the next
sample, usually only one or a few iterations are needed. The only ex-
ception is in the start-up of the program, when the initial guess might
be far off.

Euler angle references

The value of the quaternion transformation is possible to specify in
any format, and it is possible to give a desired orientation in Euler
angles. This is no problem as the transformation this way is unique,
i.e., all possible Euler angle coordinates for a particular orientation
result in the same quaternion. The same holds for velocity and torque
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references. In the velocity control case the desired Euler angle velocity
is transformed to a desired angular velocity using the Jacobian, relat-
ing the Euler angle time derivatives to the angular velocity. When a
torque constraint is active the controller output is the desired veloc-
ity, which is transformed using the Jacobian, in the same way as the
velocity control case.

Hybrid control

Controlling a quaternion in a kinematic chain to a desired value is
fairly straightforward. If the current orientation is denoted Qcur and
the desired orientation Qdes, then the orientation error is given by
Qerr = Q

−1
cur ∗ Qdes, where ∗ denotes quaternion multiplication. By ex-

ploiting the fact that the error describes a rotation, its rotation axis
v̄err and its rotation angle θ err can be calculated from the parametriza-
tion (8.2). The orientation error can now be eliminated by applying the
desired angular velocity (8.8), where K is a gain factor.

ω̄ des = Kθ errv̄err (8.8)

It is a bit more difficult to apply hybrid control, e.g., when it is desired
to control the orientation around one axis and torque around another.
A solution to this problem is to continuously update the quaternion
reference, by integrating the velocity references given by the torque
controller. The position (orientation) controller is constrained to only
apply velocity corrections around the axes that are position controlled,
i.e., the desired velocity from the controller is projected onto the axes
that are position controlled. Updating the reference for the part of the
orientation that is position controlled requires a complete orientation
reference, or a change relative to the current orientation. Only giving
the Euler angles for the position controlled directions is not enough,
as the complete orientation description can not be uniquely calculated
from this information.
The integration of the quaternion reference is made by applying a

rotation with constant angular velocity during one sample period, i.e.,
multiplying with the quaternion (8.9), where ω̄ is the angular velocity
and h the sample period.

Qint = ( cos(pω̄ ph/2), sin(pω̄ ph/2)ω̄/pω̄ p ) (8.9)
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8.4 Assembly scenario

Redundancy

A task may not need all available degrees of freedom, and such re-
dundancy should be exploited. If the orientation that is described by a
quaternion is part of the redundancy it can be handled by not speci-
fying the velocity around the redundant axis. When the quaternion is
position controlled the calculated desired velocity should be projected
onto the rotation axes that are part of the task. This means that any
desired quaternion can be specified, but that only errors projected into
the degrees of freedom being part of the task will be eliminated.
Introducing quaternions do not alter the way iTaSC handles the

redundancy, as the quaternion on the velocity level is completely de-
scribed by three angular velocities.

8.4 Assembly scenario

The assembly scenario used to illustrate the quaternion approach is
the first part of the red button assemnly (Chapter 3), i.e., inserting
the red button into the yellow case. The button is assumed to be rota-
tionally symmetric, although this is not exactly true. Making this as-
sumption, however, makes the task redundant, as the rotation around
the symmetry axis does not matter. If the button is grasped in such
a way that the symmetry axis coincides with the last joint axis of the
robot, the redundancy is trivial and only results in the position of the
last robot joint being unconstrained. The gripper is designed in such
a way that the redundant degree of freedom is not trivial. A wrist-
mounted 6 degrees-of-freedom force/torque sensor is used to perform
the assembly.

Kinematic chain

One kinematic chain is used in the assembly task and the object and
feature frames related to it are shown in Fig. 8.2.

• Object frame o1 is attached to the box. It is related to the world
coordinate frame by a fix transformation.

• Feature frame f1 has its origin in the center of the hole on top
of the yellow case. The orientation is the same as o1.
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Figure 8.2 Illustration of the differ-
ent coordinate frames used in the as-
sembly task.

φ

θ

ψ

Figure 8.3 Illustration of
the Euler angle representa-
tion (ZYZ) of the orientation
of the button. φ is a rotation
around the z-axis, θ is then
a rotation around the y-axis
in the new coordinate system
defined by the first rotation.
Finallyψ is a rotation around
the new z-axis.

• Feature frame f2 is attached to the endpoint of the button and
its orientation is illustrated in Fig. 8.2.

• Object frame o2 has its origin on the base of the gripper and the
same orientation as the robot flange frame. It is related to f2 by
a fix transformation.

The feature coordinates χ f are divided into three groups depending
on which frames they relate to, according to
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8.4 Assembly scenario

χ f I = (−) o1→ f1

χ f I I = (x, y, z,Q) f1→ f2

χ f I I I = (−) f2→ o2
The first three feature coordinates, (x, y, z), are translations along

the coordinate axes of f1. Then it is intuitive to describe the orientation
of the red button with ZYZ-Euler angles, illustrated in Fig. 8.3. First
a rotation around the z-axis is made, and then a rotation around the
y-axis of the new coordinate system. Finally, a rotation around the
new z-axis is introduced. The last axis is the symmetry axis of the
button and this rotation thus corresponds to the redundancy in the
task. This Euler angle representation would certainly cause trouble
if it would have been used for feedback control. The reason is that it
has a representation singularity close to the target position, because
in this position the second angle coordinate is zero and the first and
the third rotation axes coincide. Instead, the three Euler angles are
represented by a quaternion, Q, internally.
Outputs are chosen as Eq. (8.10), where the two last outputs are

specified on the velocity level and correspond to the quaternion (ω x
and ω y denote the angular velocities around the x- and the y-axis,
respectively, in the coordinate frame described by the quaternion, i.e.,
frame f2). The actual values of y4 and y5 are not defined, but the torque
corresponding to these outputs is the torque around the corresponding
rotation axes (x- and y-axis, respectively). The last angular velocity,
ω z, is not chosen as output as it will not be constrained in any way,
due to the assumption of rotational symmetry.

y1 = x , y2 = y , y3 = z , ẏ4 = ω x , ẏ5 = ω y (8.10)

Uncertainties in the task include the exact location and orientation
of the box, and the grasp of the button. They were, however, resolved
using guarded search motions, i.e., the motion was velocity controlled
in the search direction and stopped when a contact force was detected.
Once contact was made, it was maintained by using force control, and
hence no explicit uncertainty coordinates were used to model this un-
certainty.
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Assembly strategy

The assembly strategy is designed in such a way that the uncertainties
are resolved during execution of the task. The position of the yellow
case is assumed not to be known well enough for hitting the hole with
the button in the upright position. But the uncertainty is small enough
for an approach with a tilted button to hit the hole (Fig. 8.2). Once
the hole is found, force control is used to find the center of it. Then
the button is reoriented towards what is assumed to be the upright
position while using force control to press downwards, such that the
button gradually slides down into the hole. Torque control is then used
to find the correct orientation. This strategy is modeled with a state
machine, where each state has the following actions:

1. Goto start position

2. Search for contact in z-direction (output y3)

3. Force control to center of hole

4. Reorient to the approximate upright position

5. Control torques to zero

6. (Release button and) move robot away

Position or force measurements are used to trigger transitions be-
tween subsequent states.

8.5 Experimental results

Force data from an experimental execution is given in Fig. 8.4, together
with the corresponding state in the assembly sequence. The first state
shown, state 2, is the search in the z-direction. The transition condition
to the next state is that a large z-force is detected, and this happens at
t = 2.2 [s]. State 3 is a search for the middle of the hole, which is made
by controlling the x- and y-forces to zero while keeping a positive force
in the z-direction; the reference is set to 10 [N]. The next step is then
a position control of the orientation to the assumed upright position
of the button, while pressing in the z-direction such that the button
slides down completely into the hole. In state number 5 the torques
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Figure 8.4 Force data from an assembly sequence vs. time. The uppermost
diagram shows the state sequence, the middle the forces (along the first three
feature coordinate directions, i.e, they are given in frame f1) and the lowermost
the torques (around the coordinate axes defined by the quaternion, i.e., they are
given in frame f2).

around the x- and y-axes are controlled to zero, such that the button is
completely pushed down into the hole. The last state is that the robot
is moved away in the positive z-direction.
The feature coordinates with Euler angles in the kinematic chain

have been calculated for the experimental execution shown in Fig. 8.4,
and these angles are shown in Fig. 8.5. The initial position chosen was
φ = −90○, θ = 36○ and ψ = 90○, where the ψ -angle corresponds to the
redundant degree of freedom. As the θ -coordinate was decreased, cor-
responding to the button being moved towards the upright position, the
current pose was getting closer and closer to the singular configura-
tion. When it came close, the φ - and theψ -angles immediately changed
with about 180○, and the reason it stopped there is probably that the
singularity was only closely passed by. If this kinematic chain would
have been used for control it would be hard to predict what would hap-
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Figure 8.5 Calculated Euler angles from the assembly sequence. φ is the
first rotation around the z-axis, θ the rotation around the y-axis, and ψ the
final rotation around the z-axis. Problems occur when the singular position is
entered at t = 17.3 [s].

pen close to the singularity. Furthermore, if the program would have
survived the singularity, problems might have occurred because the
φ -coordinate had drifted away.
The redundancy in the task was handled by choosing the weighting

matrix M (in Eq. (4.12)) as (8.11), i.e., such that it was desired to
rather move the wrist of the robot (joints 4, 5 and 6) than the three
first joints.

M =














10 0 0 0 0 0

0 10 0 0 0 0

0 0 10 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1














(8.11)
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Figure 8.6 Measured angular velocity in the redundant direction.

The resulting measured redundant angular velocity from the ex-
perimental execution is shown in Fig. 8.6. Quite large rotations can be
seen, indicating that the redundancy was exploited, especially around
t = 16 [s] when the button is closing in on the upright position and
slides down into the hole.

8.6 Discussion

The described choice of Euler angles in the assembly task had a repre-
sentation singularity close to the target position, and would therefore
cause trouble in the execution of the task. The previous solution to
this problem was to be careful and choose a safe orientation represen-
tation, e.g., as was done in the snapfit assembly scenario described in
Chapter 5. An Euler XYZ representation would for instance be fine for
the red button assembly scenario in this chapter. However, using the
assembly framework and the quaternion representation described re-
lieves the user from doing these considerations, and the user only has
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to come up with a suitable representation for the task. In this way it is
a step towards making it easier for unexperienced robot programmers
to accomplish assembly tasks.
A drawback of the approach with an internal singularity-free repre-

sentation is that it is not possible to use feedback from the individual
Euler angles. An example is when one Euler angle direction is torque
controlled and the other two position controlled, as then a reference
change for the position controlled angles might be impossible to trans-
late to the internal representation because of the Euler angle ambigu-
ity. These situations are rare, and most scenarios relevant in assembly
are not subject to this problem. In case they do occur, the remedy is to
specify the complete orientation.
The current experimental implementation of the proposed quater-

nion representation is not completely automatic, i.e., it is not possible
for a user to make the modeling and design the state machine describ-
ing the task with Euler angles and get an implementation based on the
quaternion representation. The current procedure requires some man-
ual steps, which in a real application have to be made automatic. This
is, however, a shortcoming of the implementation, not of the proposed
method.
The redundancy resolution should be chosen such that some crite-

rion is optimized, e.g., the energy spent during the task execution could
be minimized. The weighting matrix M in the assembly task has been
chosen quite arbitrarily, where the only objective was to show the con-
cept of relative weighting. Further efforts should be spent to find a
meaningful criterion (4.13).
The button was assumed to be rotationally symmetric, which is not

true in reality. There are some edges that might get stuck during the
insertion in the hole. This sometimes happened during execution of the
assembly. Some extra oscillations are then induced, but otherwise the
assembly sequence still works fine.
The current assembly speed is not that fast, but very little effort has

been spent on optimizing it. This is, however, something that would be
important in an industrial application. If it is assumed that the same
assembly is performed several times, learning approaches can be used
to generate feed-forward data that can speed up the assembly. Learning
can also be used to make changes in the assembly sequence, if this is
appropriate.
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8.7 Conclusions

A method to introduce a singularity-free orientation representation
based on quaternions within the iTaSC framework has been described.
The proposed method makes it possible to model tasks with Euler an-
gles, and execute them such that the inherent representation singu-
larities cause no problems. The method has further on been imple-
mented on an industrial robot system and experimentally verified in a
force-controlled assembly task. The chosen task contained a redundant
degree of freedom that was exploited using the iTaSC framework.
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9

Force controlled assembly

without a force sensor

9.1 Introduction

There exist a few different strategies for performing robotic assembly,
where different amounts of sensor information are used. One way is to
use pure position control of the robot. To be able to do this one has to
rely on that the accuracy of the robot, of the involved parts, and of the
workcell are good enough. Usually task specific fixtures and toolings
are needed. Further, one has to be certain that nothing unexpected
will happen during the assembly operation, as this is hard to discover
without an external sensor. It is possible to handle some degree of part
variation by using a compliant tool.
A second strategy is to use binary information from sensors. This

means that the assembly is divided into several steps, in which the
information from the sensors is used to trigger transitions between the
steps. This strategy can be used when there are a few uncertainties,
e.g., some variations in the parts. One example can be to use a sequence
of search motions in order to find a certain feature of an object, and
once this feature is found, it is possible to use pure position control to
finish the assembly operation.
Yet another alternative is to use sensors for continuous feedback

control. This strategy makes it possible to cope with large uncertain-
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ties, but it is also the strategy that is the most difficult to program for
a robot operator. One example of this strategy is force controlled as-
sembly, where force sensing can be used to identify contact formations,
keep contacts and find new contacts during an assembly operation. If
contacts only are detected in a binary fashion, as described in the pre-
vious paragraph, there is a risk of losing contact or getting very large
contact forces during sliding motions. Hence, continuous sensing can
make assembly possible when more uncertainties are involved, and
also reduce the risk of damaging equipment.
The strategies described in the previous paragraphs can handle

different amounts of uncertainties and the type of effort one has to
spend to get them running are different. In the case of pure position
control one has to assume that the position accuracy is very good and
that everything will go as planned. These requirements can be relaxed
when binary sensor information is used, but then one has to take care
of the sensor signals in an appropriate way instead. Using continuous
sensing demands even more sensor processing, and feedback control
strategies, which may be hard to tune. The two last strategies also
require a sensor, which may be expensive. The reusability and the
increased robustness to uncertainties, however, are incitements to use
the strategy based on continuous sensing.
This chapter will propose a method of how to perform force sens-

ing without a force sensor, by instead estimating the forces from the
joint position control errors. The method is experimentally verified in
two real-world small-part assembly tasks using a redundant robotic
manipulator, see Fig. 2.2.

9.2 Estimating external forces

The simplest and most straightforward way of estimating the external
force acting on the end-effector is to use a force sensor. One alternative
is to use a wrist-mounted sensor, and by assuming that the end-effector
is rigidly connected to the sensor, the external force acting on the robot
can be calculated. Another option is to use torque sensors on each joint
of the robot, e.g., as done in the DLR lightweight arm [Albu-Schäffer
et al., 2007]. If the individual joint torques are collected into the vector
τ , the end-effector force F can be calculated from τ = JT F, where J is
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the Jacobian of the robot.
If there is no force sensor available, one alternative is to use the

motor torque in each joint. The problem with this approach is that
it requires the measured torques to be compensated for disturbance
forces—e.g., gravity and friction—before the torque signals can be used.
Further problems arise if there are gears in the robot, since a high
gear ratio will deteriorate the signal to noise ratio, as applied forces
on the arm side are scaled down on the motor side. This will make it
hard to achieve an accurate estimate. If it is possible to extract the
joint torques, the same approach as with individual torque sensors in
the joints can be utilized. It is also possible to use the motor torques
together with a dynamical model of the robot to estimate the forces. In
[Van Damme et al., 2011] it is presented how this can be performed by
using a filtered dynamic model and a recursive least-squares estimator.
A third approach is to use some kind of observer. One way is to use

disturbance observers, i.e., to use a dynamical model of the robot and
consider deviations from this as disturbances caused by external forces,
see e.g. [Eom et al., 1998] and [Ohishi et al., 1992] for examples of this
approach. Direct force observers can also be used. In [Ohishi et al.,
1991] an H∞ force observer is used. In [Hacksel and Salcudean, 1994]
and [Alcocer et al., 2003] the force is estimated by considering how
position estimation errors behave as a damped spring-mass system.
Force estimation can also be performed by using adaptive methods.

In [Jung et al., 2006] a method based on the Extended Kalman filter
together with an adaptive law is presented. Another adaptive force
estimation approach is given in [Sararoody et al., 2005]. Estimation
of the robot joint velocities and accelerations together with a dynamic
model are used to perform impedance control without a force sensor in
[Tachi et al., 1990].
Methods for force estimation are also available in commercial robot

systems, e.g., both Toshiba [Toshiba, 2012] and ABB [ABB, 2011] pro-
vide such products. These systems are, however, designed to work well
for large forces and they are therefore not suitable in small-parts as-
sembly, as is considered in this thesis.
A clear disadvantage with the proposed methods using observers

and adaptive methods is that they usually require a dynamic model of
the robot. Such a model is straightforward to derive in theory, but in
practice you often do not know the values of all parameters involved.
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It is possible to perform identification experiments, but then one will
probably run into problems with friction, which is hard to model in a
good way. Even with all parameters known, for a manipulator with 6
or 7 joints the dynamic equations get very large and complicated. They
might therefore be hard to implement in a real-time controller.
Yet another approach is possible when each joint on the lowest level

is individually controlled, which is a common solution in industrial
robots. By disabling the integral action in the joint controllers, they
will act as virtual springs, and the deviation of each joint angle from
its reference will correspond to a joint torque. By using the same ap-
proach as with individual joint torque sensors, it is possible to calculate
the external force. Due to friction and gravity, the joint errors may be-
come large if the integral action is removed completely, leading to bad
performance in the position control and bias in the force estimate. One
remedy to this problem is to use a small integral part, which allows
force transients to be detected, but over time the position errors will
be removed. Estimation of forces based on joint errors, using small
intergal action, acts as a high-pass filtered version of the forces.
The joint torques τ and the end effector forces F are related by

τ = JT F + e (9.1)

where J = J(q) is the robot Jacobian, q is the robot joint coordi-
nates, and e are disturbance joint torques with the assumption E[e] = 0
and E[eeT ] = Re. The minimum variance estimate of the force is then
given by F̂ = (JR−1e J

T )−1JR−1e τ , but if the disturbances are large,
the estimate may be of very poor quality. By adopting a Bayesian
approach and using prior knowledge about the particular assembly
operation, it may be possible to improve the force estimates. Assume
that the prior knowledge about F can be described by E[F] = F̄ and
E[
(
F − F̄

) (
F − F̄

)T
] = RF , and that the distribution of τ conditioned

on F is given by (9.1), then the minimum variance unbiased estimate
of F is

F̂ = (JR−1e J
T + R−1F )

−1(JR−1e τ + R−1F F̄) (9.2)

For example, it may be known that the contact torques on the end effec-
tor may be very small during an assembly operation. By reflecting this
knowledge in RF , the estimates of the contact forces can be improved.
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Figure 9.1 The vacuum gripper used in the first assembly scenario. Left:
Unloaded gripper. Right: Shield can in the gripper.

9.3 Assembly scenarios

The main assembly scenario considered is a subassembly of a mobile
phone. A ’shield can’ (metal lid) should be assembled onto a printed
circuit board (PCB). The shield can should be pressed onto a socket
on the PCB. There are no tolerances between the shield can and the
socket, and the shield can will therefore have to be deformed to fit. The
parts involved are small and fragile, and the assembly therefore has
to be performed with care not to break anything.
A second scenario used to test the approach is the screwing of the

nut in the emergency stop button assembly, see Chapter 3. This par-
ticular assembly is made with both of FRIDA’s arms.

Robot tooling

To make it possible to perform the mobile phone assembly, special
tooling has been produced. A fixture has been designed for keeping
the PCB in position. A suction tool is used to grasp the shield can, see
Fig. 9.1. The maneuverability in contact is good in the vertical direction
(the f2 z-direction in Fig. 9.2), but worse orthogonal to this direction
( f2 x- and y-direction in Fig. 9.2), since the shield can may slide.
A 6 degrees-of-freedom ATI Mini40 force/torque sensor has been

placed beneath the PCB fixture to make it possible to both perform
the shield can assembly using force sensor feedback and make a com-
parison with it when the external forces are estimated from the joint
errors only.
The nut screwing task uses a three finger gripper to hold the button

on one of the arms and a two finger gripper to hold the nut with the
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Figure 9.2 Illustration of the frames used in the shield can assembly task.

other arm.

9.4 Task modeling

The tasks were modeled with the iTaSC framework. A thorough expla-
nation of this is given in Chapter 4 and [De Schutter et al., 2007].

Shield can assembly task

One kinematic chain is used in the assembly task and it is illustrated
in Fig. 9.2. A schematic description of the kinematic chain is given in
Fig. 9.3.

• Object frame o1 is attached to the fixture holding the PCB. It is
related to the world coordinate frame by a constant transforma-
tion.
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Figure 9.3 Schematic illustration of the kinematic chain used in the shield
can assembly task.

• Feature frame f1 is attached to one of the corners of the socket
on the PCB. It is related to o1 by a constant transformation.

• Feature frame f2 is attached to one of the corners on the shield
can.

• Object frame o2 coincides with the flange frame of the robot. The
transformation between f2 and o2 is fix.

The feature coordinates are all collected into the transformation
between f1 and f2. The first three are Cartesian translations along
the coordinate axes of f1 and the remaining reorientation is then
parametrized by three Euler XYZ angles. The feature coordinates are
divided into three groups depending on which frames they relate to,
according to:

χ f I = (−) o1→ f1

χ f I I = (x, y, z,ϕ ,θ ,ψ ) f1→ f2

χ f I I I = (−) f2→ o2
Outputs are chosen to be all of the feature coordinates, according

to
y1 = x y2 = y y3 = z

y4 = ϕ y5 = θ y6 =ψ

Uncertainties Uncertainties in the task include the exact location
and orientation of the fixture holding the PCB, and also how the shield
can has been grasped. The first one can be modeled by introducing an
uncertainty frame f1′. This frame represents the modeled position of
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zu

xu
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yu f1
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Figure 9.4 Illustration of the uncertainties in the shield can assembly task.
The magnitude of the uncertainty is scaled up to make room for the frames and
the labels.

the socket corner on the PCB, while f1 gives the real position. It is
assumed that the fixture is mounted such that the PCB is placed in
the horizontal plane, but the exact location and orientation in this
plane is uncertain. This is modeled by introducing three uncertain
translations and one uncertain reorientation angle (around the f1 z-
axis), see Fig. 9.4. Similarly, in the grasp the orientation around the
z-axis and the translations along the x- and y-axes in frame f2 are
uncertain.
The prior distribution of the uncertainty coordinates is assumed

to have a standard deviation of a few millimeters and a few degrees
respectively. The only sensor information available is the contact force.

Assembly strategy The assembly strategy is designed such that the
uncertainties are resolved in a robust way. A suitable strategy is to
first find a corner of the socket with the shield can in a tilted position,
see e.g. Fig. 9.2, by executing a sequence of guarded search motions,
i.e., the search motions are stopped once the corresponding contact
force is sensed. Once the corner is found, rotate the shield can to what
is estimated to be the correct orientation and press it onto the socket.
When a certain force and torque are applied the shield can can be
considered to be mounted correctly.
By inspecting the PCB a suitable corner to try to find is the one

where frame f1 is placed, see Fig. 9.4. The area in front of this corner
is almost free of small edges that can lead to problems during the as-
sembly. It is further large enough to be possible to find, considering the
variance of the modeled uncertainties. A detailed assembly sequence
is given below:
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Chapter 9. Force controlled assembly without a force sensor

1. Pick up shield can from tray

2. Goto start position

3. Search for contact in negative f1 z-direction

4. Search for contact in positive f1 y-direction

5. Search for contact in negative f1 x-direction

6. Find corner of socket by yet another search in positive f1 y-
direction (force control in x-direction)

7. Make a rotational search around the f2 x-axis and the f2 y-axis

8. Press shield can into position

9. Release shield can and move away with robot

An illustration of how the corner of the socket is found is given in
Fig. 9.5.

Figure 9.5 Snapshots from the shield can assembly sequence to illustrate how
the corner is found. The arrows indicate in which direction the shield can is in
contact. In the leftmost photo the robot is in state 5 and has sensed contact
in the y-direction, in the middle photo the robot is in state 6 and has sensed
contact in the x-direction, and in the rightmost photo the robot has found the
corner.

Nut screw scenario

Two kinematic chains are used for the nut screw scenario, see illustra-
tion in Fig. 9.6. The first one (chain a) is used to specify the relative
motion between the arms, and the second (chain b) to specify the mo-
tion of one of the arms with respect to the world coordinate frame, in
this case the right arm.
The first chain is illustrated in more detail in Fig. 9.7 (here the

superscript has been dropped). The world coordinate frame, w, is placed
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Figure 9.6 Illustration of the two kine-
matic chains used in the nut screw assem-
bly scenario. The trays for all the different
parts in the whole emergency stop button
scenario can be seen in the background.
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Figure 9.7 A detailed
view of the first kinematic
chain (chain a) in the nut
screw assembly scenario.

at the base of the robot and the chain begins with the left FRIDA arm.
Object frame o1 is placed on the flange of the robot arm, and feature
frame f1 in the middle of the gripped nut. Feature frame f2 is placed
at the bottom of the yellow case, centered in the button. The second
object frame, o2, is placed at the flange of the right robot arm. The
chain is closed by going back to w through the right arm.
The feature coordinates used are all gathered between f1 and f2,

first three translations along the coordinate axes of f1 and then three
Euler angles to describe the reorientation. The translations describe
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Chapter 9. Force controlled assembly without a force sensor

the relative distance between f1 and f2, e.g., a positive z-translation
results in the arms moving apart (at least for the configuration shown
in Fig. 9.7).
The second kinematic chain, b, begins once again in the robot base.

This chain is used to specify the motion of one of the arms, and as
no relevant features are present for this task, both o1b and f1b are
chosen to coincide with the world coordinate frame w. Feature frame
f2b and object frame o2b are further chosen to coincide with the flange
of the right robot arm. The chain is closed by going back to w through
the robot arm. The feature coordinates used are three translations and
three Euler angles, all gathered between f1b and f2b.

Assembly strategy A sketch of the state machine coordinating the
assembly task is displayed in Fig. 9.8. The red button with the yellow
case on it is placed in a vertical position to start with. The second arm,
with the nut in the gripper, approaches the first and tries to put the
nut on the button (as in Fig. 9.6). This is made as a search in f1a

z-direction. The search is ended when a contact force is detected, and
if the distance between the arms is small enough, the nut was put on
the button, otherwise the hole was missed. In the latter case, the robot
moves back and modifies the initial position slightly and tries again,
and this continues until the nut is on the button.
The gripper for the nut can grasp the nut in two ways. The first one

is used for putting the nut on the button, and the second for screwing.
The nut therefore has to be released and regripped, and this may cause
a movement of the nut. The remedy is therefore to push on the nut to
make sure it is all the way down on the button. The next step is to go
down to the nut, grip it, and start screwing. The robot can screw one
revolution, and then has to release the nut and go back to the start
position again.
It is known that it takes 2.5 to 3.5 revolutions to tighten the nut,

depending on where on the thread the screwing is started. Detecting
that the nut is tightened can not be done through the estimated torque
around the screwing axis, due to too large disturbances. What usually
happens is that the grip of the nut is lost when it becomes tightened,
and then the screwing arm pushes on the arm holding the button,
resulting in a large side force which can be detected. If this happens
during the third or the fourth revolution of screwing, it is assumed
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Figure 9.8 The state machine used for the nut screw assembly scenario.

that the reason was that the nut was tightened. If no large side forces
occur within four revolutions, the button has most likely slid in the
grip, which means that it has been tightened.
During screwing, there is a risk that the nut is gripped in a non-

centric way, which may cause a large side force when the screwing is
started, although the nut is not tightened. If such a force is detected
during the first or the second revolution, the screwing is stopped. The
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Chapter 9. Force controlled assembly without a force sensor

nut is then released, the robot arms are slightly moved apart, and
then the nut is gripped again, and the screwing continued. This set of
actions usually leads to a better grip.
The arm holding the button is controlled to be still, as a motion of

this arm might introduce disturbances to the screwing, due to errors
in the kinematic models of the robot arms. Another source of errors are
the position errors introduced by the detuning of the joint controllers.
No force sensing is available in the arms, and the assembly opera-

tion therefore has to rely on the estimated forces.

9.5 Experimental results

Force estimaton

The force estimation is affected by how the detuning of the joint con-
trollers has been performed. If the integral part is completely removed
there will be problems with offsets, because of gravity and friction
forces. Keeping the integral part, however, makes it impossible to esti-
mate a constant force, as this would require the joint controllers to have
a stationary error. Keeping the integral action will act as a high-pass
filter on the estimated forces, which means that only transients can
be detected. The behavior for different detunings is shown in Fig. 9.9,
where the force sensor has been used to find contact in one direc-
tion and control the contact force to a constant value. It can be seen
in the diagrams that a high integral gain gives a transient with a
short duration, which may be hard to detect. Removing the integral
action completely, however, introduces a bias in the estimate. The final
controller detuning chosen to be used in the assembly task was with
0.03Ki as integral gain, where Ki is the integral gain in the nominal
joint controllers.
A large disturbance acting on the force estimates is friction in the

joints. Experiments were performed to estimate the friction magnitude
in each joint, which mostly consisted of Coulomb friction. These values
were used to choose the diagonal elements of Re, the variance of the
disturbance forces in Eq. (9.1). The effect of gravity was assumed to
vary slowly, such that the integral part in the joint controllers could
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Figure 9.9 Estimated force (black) and measured force (green) in one direc-
tion for some different values of the integral gain in the joint controllers. The
nominal controllers have the integral gain Ki. The topmost diagram has integral
gain Ki, the second diagram 0.1Ki, the third diagram 0.01Ki, and the lowermost
no integral action at all.

compensate for it.
According to the identified joint friction torques, they will lead to

force estimation errors with an order of magnitude of 1 [N]. Estimation
errors of this size were measured for the experimental execution of the
assembly task, see Fig. 9.11.
To determine the spring constants of the joints, forces or torques

were applied to the tool of the robot, and the amplitude of the resulting
joint error transients were recorded. Doing this for three different arm
configurations, it was possible to determine the stiffness of all joints.
Approximately 5 experiments were performed for each arm configura-
tion, and the results can be seen in Fig 9.10. For each joint the mean
value of the experiments was later used for force estimation.
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Figure 9.10 Experimentally determined spring constants for the different
joints. The joints are numbered from shoulder to wrist. The different colors
denote values obtained from different arm configurations.

Shield can assembly scenario

Torques in the assembly sequence were measured in frame f2. The
major part of the assembly sequence is therefore performed with only
a point contact, which means that the torques should be zero around
this point. Modeling errors will of course contribute to some torques,
but they should be small. This insight can be used as prior information,
i.e., it can be used to choose F̄ and RF . No bias force is expected, which
gives F̄ = 0. The variance RF is chosen to be large for the forces and
small for the torques. The estimate that utilizes this prior information
is compared to an estimate without this information in connection with
Figs. 9.11 and 9.12.

Assembly scenario with force sensor The assembly sequence de-
scribed in Sec. 9.4 was implemented using a force sensor. The results
were similar to those presented in Chapter 5. Major differences were
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Figure 9.11 Measured and estimated forces from the the assembly sequence
without force sensor together with the state sequence. Forces estimated with
a priori information about the low torques are shown in blue, and forces esti-
mated without a priori information in black. For reference, raw force data from
the force sensor is shown in green, and high-pass filtered force data in red. The
data from the force sensor has not been used for control in this execution.

that the involved parts were smaller here, and also the magnitude of
the measured forces. The sliding search motions caused large distur-
bance forces that made it hard for the force controllers to keep con-
tacts in other directions. This made it difficult to increase the overall
assembly speed. The small force magnitudes also required care when
choosing force thresholds for the state transitions in the controlling
state machine.

Assembly scenario without force sensor The assembly strategy
had to be modified when the estimated force was used. The high-pass
character of the force estimates made it impossible to control constant
forces. Instead, once a search motion made contact the position was
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Figure 9.12 Selected part of the measured and estimated x-force around the
transition from state 5 to 6.

controlled instead of the force. This changed strategy made the assem-
bly less robust, but the effect was small concerning the uncertainties
in this particular task. As the contact torque estimates were found out
to be unreliable, the rotational search in state 7 was replaced with a
position control to the estimated final position of the shield can. To be
able to do this maneuver successfully it had to be assumed that the
mounting plane of the PCB was known with good accuracy, which is
a reasonable assumption to make, as the PCB is placed in a fixture.
Gripping uncertainties, corresponding to small rotations around the
f2 z-axis, were not expected to be a problem, as the gripper is com-
pliant in this direction and because the shield can was rotated down
when in contact with a corner of the socket, such that the shield can
was forced onto the socket by its edges. To be certain that the shield
can was assembled correctly once the rotating motion was finished, the
robot pressed the shield can with a large force towards the socket, kept
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Figure 9.13 Measured and estimated torques from the the assembly sequence
without force sensor together with the state sequence. Torques estimated with
a priori information about the low torques are shown in blue, and torques esti-
mated without a priori information in black. For reference, raw torque data from
the force sensor is shown in green, and high-pass filtered torque data is shown
in red. Some data has been cut away to show what happens in the measured
torque. This shows that the black curve is a bad estimate.

the position of making contact for some time and then the assembly
was assumed to be finished.
Force data from an experimental execution is given in Fig. 9.11.

The high-pass character of the estimated force is verified by including
a high-pass filtered version of the measured force. Two versions of
the estimated force are shown, with and without a priori information
about the low torques. The first state shown is the search for contact
in the f1 z-direction. The transition condition, a large positive z-force
can be seen in all force curves at t = 0.5 [s]. The following state is the
search in the positive y-direction and it makes contact at t = 0.7 [s],
which is seen by a large negative y-force. State 5 is then a search in
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the x-direction. The search motion is made with contact in both the
z- and the y-direction, and this initially causes a friction peak in the
x-force (at t = 0.8 [s]), the relevant part of the x-force is displayed
in Fig. 9.12. The force then disappears and the contact is made at
t = 1.1 [s]. The estimated force with a priori information shows the
same behavior as the measured force, but the force estimate without a
priori information does not. The transition to the next state is finally
made at t = 1.2 [s]. The final search for the corner of the socket is then
made in two steps; first a y-search in state 6 and then an x-search in a
new state, here called 6.5. The transition condition for the y-search can
be seen at t = 1.6 [s] and the transition condition for the x-search at
t = 1.9 [s]. The transitions can be seen in both estimated forces, but the
resemblance with the measured force is better for the estimate with
a priori information. State 7 is the position control of the orientation,
such that the shield can is rotated down onto the socket. The rotation
is made around the origin of frame f2. Modeling errors in the position
of this frame is the reason for the large z-forces around t = 2.7 [s],
as the rotation was not made exactly around the origin of f2. These
forces were detected and the reference position in the z-direction was
adjusted. The shield can was pressed onto the socket with a large force
in state 8, which can be seen in the z-force at t = 3.0 [s]. Finally, the
robot waited 0.3 seconds in state 8.5 and then moved away in state 9.
Measured and estimated torques from the experimental execution

are given in Fig. 9.13. It can be seen from the sensor measurements
that torques significantly different from zero only are present during
the last stage of the assembly, i.e., during state 7 and 8. The estimate
with no a priori information is really bad, neither the magnitude nor
the shape show any resemblence with measured data. Using the a pri-
ori information gives a reasonable magnitude on the estimate, but it
does not react to the applied torques in state 7 and 8 and the estimate
is therefore unreliable.
The estimated forces are reasonably correct when in contact, but

the performance is worse when no contact is present, see, e.g, after
t = 3.4 [s] in Fig. 9.11. The use of a priori information about the size
of the external torques gives better force estimates, and they are in
fact crucial for performing the assembly task considered, as one of the
transition conditions only can be found using this estimate. The simi-
larity between the high-pass filtered force data and the force estimate,
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at least in the case when a priori information is used, verifies the
high-pass character of the estimate. Most of the discrepancy between
the measured and the estimated force is because of friction, as was
previously described.

Screwing of nut

In this assembly scenario, torques were measured in frame f2a. In this
frame it is unlikely to get any significant torques around the x- and
y-axes, but there will be a torque around the z-axis when the nut is
tightened. This information was used for choosing RF (F̄ was chosen
to be zero, as no bias force or torque were expected).
Experimental data from one execution is displayed in Fig. 9.14. No

ground truth is available since the robot arms were not equipped with
any force sensors. The first part was about putting the nut on the
button. State 2 was a search in f1a z-direction, and the transition
to the next state was a large z-force, which happened at t = 1.6 [s].
The distance between the arms was, however, not small enough, and
therefore the robot moved back to a slightly modified start position
and perfomed the z-search once more. This procedure was repeated
two more times, and finally at t = 10.2 [s] the nut was finally put on
the button.
The nut was then released and pushed down on the button, which

can be seen as a z-force of 4 [N] at t = 13.8 [s]. Screwing was performed
in state 6, and during this phase the side forces, x- and y-forces, were
monitored. If their magnitude exceeded 3 [N] (illustrated with a dashed
line), the robot would stop screwing. If it happened during the first two
revolutions, it would release the nut, grip it again, and then continue
screwing, but if it happened during the third or the fourth revolution,
it would consider the nut to be tightened and the assembly finished.
Such an event occurred during the fourth revolution of screwing, at
t = 25.9 [s]. Also the estimated z-force was large, which might be an
indication of a large torque. As it happened during the fourth revo-
lution the assembly was finished. The entire sequence finishes with
state 8 after approximately 26 [s] (18 [s] if the search for putting the
nut on the button is excluded).
The screwing was made with a rotational velocity of 7 [rad/s] (400

[○/s]), and if the nut gets stuck on the thread or the robot gets a bad
grip, large side forces appear quickly. The threshold therefore had to
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Figure 9.14 Experimental data from an execution of the nut screw scenario.
The topmost diagram shows the state sequence (numbers according to Fig. 9.8).
The middle diagram shows the estimated x- and y-force (in frame f1a) together
with their magnitude and the threshold used for detection of large side forces.
The bottommost diagram shows the estimated z-force.
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be quite low, to be able to react before the safety functionality of the
robot reacted on too high torques in some of the joints.
The estimate of the z-torque is not shown, as this estimate was quite

bad. The screwing was mainly made with the last joint of the robot arm
holding the nut, and as the screwing was fast this generated a large
control error for this joint, especially with detuned controllers. This
gave a large bias in the estimation, and it was hard to see anything
useful in the estimate.

9.6 Discussion

Estimating forces from the joint errors instead of using a force sensor
introduces some difficulties in the implementation of the assembly op-
eration, compared to using a force sensor. Doing it the way presented
in this thesis requires you to choose an appropriate detuning of the
joint controllers. Since the disturbances in the estimates may be quite
large, special care must be taken when choosing force thresholds in
the design of the assembly sequence.
When the robot is not moving, the Coulomb friction in the joints

makes it particularly hard to estimate the forces, since the contribu-
tion from gravity and other disturbance forces is unknown, and it is
very difficult to predict how much additional torque is needed in the
different directions to overcome the friction and make the joint move.
When the robot is moving, however, the Coulomb friction torque is con-
stant and even a small external force (e.g., caused by a collision) can
affect the motion and be seen as a transient in the joint errors. Since
the disturbances from the friction are very similar between different
executions of the same motion, the situation becomes even better and
it is possible to robustly detect forces with the same order of magnitude
as the friction disturbances. Since the disturbances are velocity depen-
dent, there may, however, be a need to retune the force thresholds if
the speed of motion is changed.
When moving at high speeds, dynamic effects and lag in the position

tracking may cause large errors in the force estimation, but sometimes
increasing the speed of motion makes the sensing easier, since tran-
sients caused by collisions then become easier to detect in the high-pass
filtered data.
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The fact that the disturbances to a large extent are systematic,
indicates that adaptation or learning techniques could be successful in
improving the performance. By further on considering the entire signal
instead of its instantaneous value it is probably possible to find more
robust transition conditions. Another set of parameters that possibly
can be adapted is the detuning of the joint controllers.
In the shield can assembly scenario, the sensing problem is very

hard, since the contact forces are in the same order of magnitude as
the disturbances caused by friction in the joints. To get useful esti-
mates of the forces, the contact torques had to be assumed to be very
small. In the nut screw assembly scenario both arms of FRIDA were
used to perform a two-handed assembly, which meant that 14 joint
errors was available to estimate the forces and torques, as compared
to 7 joint errors in the single-armed case. This may have given better
estimates, but it is hard to tell as no ground truth from a force sensor
was available. In a different scenario, where contact forces are much
larger than the friction disturbances, it should be possible to perform
assembly without assuming that the contact torques are small.

9.7 Conclusions

A method for estimating the external forces acting on the end-effector
of a robot has been described. It was based on the control errors for the
low-level joint control loops. The method was experimentally verified in
two small-part assembly tasks using a kinematically redundant robotic
manipulator.
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Conclusions

A framework for force controlled robotic assembly was presented. It
was experimentally verified in different types of assembly tasks, with
different types of robots. The framework can handle redundant ma-
nipulators, and assembly tasks in both single-arm and dual-arm con-
figurations. The tasks are specified as constrained motions and they
are modeled with finite state machines. The state transitions are based
on measurements, either based on simple thresholds or more advanced
classifiers based on the time evolution of the measurement signal, with
the snap detection as one example.
It has been presented how uncertainties in assembly tasks can be

managed. Geometric uncertainties were modeled by introducing uncer-
tain transformations in the task description, and they were resolved by
relating them to the measurements with a dynamic model. An example
of uncertain gripping was resolved using a Kalman filter. Another type
of uncertainty is the environmental properties. It was presented how
the force controllers could be adaptively tuned based on identification
of a contact model of the environment. The method was experimentally
shown to work for a wide range of environments with different stiffness
properties. The ability of the assembly framework to handle uncertain-
ties makes it easier for the robot operators to specify and accomplish
different types of assembly tasks.
A way to introduce a singularity-free orientation representation in

the assembly framework was presented. By specifying the motions on
the velocity level and keeping track of the actual orientation with a
quaternion, it was possible to avoid the representation singularities
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from the Euler angle representation. The method was experimentally
verified in the execution of a peg-in-hole assembly task.
A method for estimating the force applied to the end-effector of

the robot based on the joint control errors was presented. The method
enables the use of force control in situations where an external force
sensor is not present. The method was experimentally verified in two
small-part assembly tasks, where the magnitude of the detected forces
were of the same magnitude as the disturbances, mainly caused by
friction in the joints.
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