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Abstract—The symmetric PMCHWT method of moments 

(MoM) impedance matrix allows for the characteristic modes 
(CMs) of a structure containing dielectric to be found. Recently, 
this impedance matrix was proven to provide non-real solutions 
which can be attributed to the MoM internal resonance problem. 
These internal resonances can be removed through different CM 
post-processing techniques. However, these studies focus on 
dielectric structures, whereas the majority of antennas utilize 
electric conductors as the radiators. As such, dielectrics are often 
neglected to simplify the CM analysis and hence the problem of 
internal resonance is overlooked. This work explores the extent 
of the internal resonance problem in mixed conductor-dielectric 
structures. The results reveal that the problem is severe even 
when the structures only contain small amounts of dielectric 
materials. Moreover, the significant impact of dielectrics on CMs 
reveals that dielectrics should be included in CM analysis to 
ensure high accuracy. 

Index Terms—Theory of Characteristic Modes, terminal 
antennas, method of moments, dielectric material. 

I.  INTRODUCTION 

Shortly after the initial development of the Theory of 
Characteristic Modes (TCM) in [1], Harrington introduced a 
method for extracting the characteristic modes (CMs) of 
dielectric and magnetic bodies using a method of moments 
(MoM) volume integral equation (VIE) formulation [2]. This 
specific formulation produces a symmetric impedance matrix 
which can be used to solve for the CMs of an object. However, 
VIE formulations are computationally complex, and even 
electrically compact objects are difficult to solve using this 
method [3], [4].  

As a computationally efficient alternative, a symmetric 
form of the MoM surface integral equation (SIE) was 
formulated in [5], along with a proof that this SIE formulation 
can be used to solve for the modal currents of any dielectric or 
magnetic body. However, it was shown in [4] and later proven 
in [6] that these modal currents are not equivalent to the 
characteristic currents of the object. The modal solution to the 
symmetric SIE impedance matrix provides an orthogonal set of 
both internal (non-real) and external (real) currents; these 
internal modes are related to the classical MoM internal 
resonance problem [3]. The set of currents which include the 
internal resonances does not provide a unique set of orthogonal 
far-fields, and furthermore the internal resonances cannot be 
excited and do not radiate far-field energy. Therefore, these 
internal currents do not satisfy the basic properties of CMs [1].  

However, by applying any of the post-processing methods 
described in [4] and [6], the internal resonances can be 

removed, with the remaining external (real) modes being equal 
to the complete set of CMs for the structure. Nevertheless, 
despite the recent progress in removing internal resonances 
from SIE solutions [4], [6], recent work has only focused on 
dielectric resonators, which are pure dielectric structures. The 
extent of the internal resonance problem has not been studied 
for other structures, such as a conventional terminal chassis 
which does not rely on dielectrics as the main radiators when 
used for antenna design. Moreover, the impact of dielectrics on 
the CMs of such structures is largely unknown.  

In this article, a terminal chassis containing a small amount 
of dielectric material is analyzed using CMs. As will be shown, 
it is important to include the dielectric material in CM 
simulations, as the extracted CMs should match as closely as 
possible to the actual CMs of the real-world device. As the 
terminal chassis contains both conducting and dielectric 
materials, the symmetric form of the mixed material Poggio-
Miller-Chan-Harrington-Wu-Tsai (PMCHWT) SIE MoM 
impedance matrix was used to solve for the structure’s CMs. 
The results demonstrate that even when small amounts of 
dielectrics are used in terminal structures, the internal 
resonances cannot be ignored. Furthermore, this paper 
compares the resonant frequencies of the structure’s CMs 
against those of excited antennas designed to utilize the 
corresponding CMs, with the latter obtained from Finite 
Element Method (FEM) simulations in CST.  

II. MIXED MATERIAL ANALYSIS 

Solving for the CMs of any object composed of multiple 
kinds of material is not identical to solving for the CMs of 
objects composed of a single kind of material. Papers [5] and 
[6] show that all existing MoM SIE implementations form an 
asymmetric impedance matrix, and this type of matrix does not 
guarantee proper diagonalization of the currents when using a 
suitably weighted eigenvalue equation. Therefore, a method of 
forcing a specific SIE solution into symmetry was proposed in 
[5]. The SIE equation set that was utilized is the PMCHWT 
surface integral equation, as described by  
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(1) 

where J and M are the electric and magnetic surface current 
vectors, E and H are the electric and magnetic field vectors, 
[1Zmn1] is the impedance matrix, [1Ymn1] is the admittance 
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matrix, matrix [1Cmn1] defines how [1Ymn1] and [1Zmn1] are related 
to one another (linking matrix), and [1Z’]] is the PMCHWT 
impedance matrix. This specific integral equation formulation 
was forced into symmetry through the addition of a phase 
operator multiplied to one of the two equations, which form 
the basis of the MoM equation set [6], shown by 

 
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 (2) 

In (2), the parameters [1Zmn1], [1Ymn1], and [1Cmn1] are the 
same as those in (1), and1[1Z1] is the symmetric impedance 
matrix used in the eigenvalue decomposition for obtaining 
CMs. The phase offset applied to (2) allows the impedance 
matrix to become symmetric, but the new matrix [1Z1] no 
longer meets the criteria for surface equivalent problems to be 
free of internal resonances. However, the CMs obtained from 
[1Z1] are unique as the eigenvalue decomposition solves for all 
the modes of the object (internal and external resonances). 
After current normalization is applied to the CMs and the total 
radiated power of the individual modes is determined, the 
internal resonances can be removed through post-processing 
methods including those described in [4] and [6]. 

The symmetric form of the impedance matrix shown in [6], 
though accurate, does not detail the problems associated with, 
or how to force symmetry on, an SIE for an object with 
different kinds of materials (i.e., conducting, magnetic and 
dielectric materials). For such a mixed-material object, the 
original PMCHWT SIE has to be modified [7]. This 
modification changes the general layout of the original 
impedance matrix, as is shown by (20) in [7]. This equation 
can be simplified to be used with any two kinds of materials, in 
the simplest form a perfect electric conductor (PEC) and a 
single dielectric material, as shown by  
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(3) 

where [1Zm11] is the impedance matrix of material 1, [1Zm21] is 
the impedance matrix of material 2, [1Ym21] is the admittance 
matrix of material 2, and [1Cm1,11], [1Cm1,21], [1Cm21] define how 
the impedance and admittance matrices ([1Zm11], [1Zm21], [1Ym21]) 
are linked to one another. Jm1 and Em1 are the electric current 
and electric field vectors of material 1, Jm2 and Em2 are the 
electric current and electric field vectors of material 2, and Mm2 
and Hm2 are the magnetic current and magnetic field vectors of 
material 2. In general, the individual matrices are of different 
sizes and hence the linking matrices are not guaranteed to be 
square. Moreover, it can be seen from (3) that [1Z’1] is not 
symmetric. Therefore, (1) and (3) have the same general form.  
 

The outlined asymmetry problem with mixed-material analysis 
requires the equation system (3) to be forced into symmetry in 
the same manner as (1). The resulting symmetric matrix [1Z1], 
can be formed as 
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(4) 

When a properly weighted eigenvalue decomposition of the 
symmetric [1Z1] as described by (4) is applied, proper 
diagonalization of the characteristic currents is accomplished. 
This analysis provides an orthogonal set of currents for the 
PEC object (material 1) and the associated electric and 
magnetic surface currents of material 2. However, this 
formulation is based on the original PMCHWT MoM SIE, and 
when forced into symmetry, the full set of orthogonal currents 
will pertain to both non-real CMs (internal resonances) and 
real CMs. The non-real CMs can be removed through the post-
processing methods described in [4] and [6]. 

III. INTERNAL RESONANCES OF PLANAR STRUCTURES 

Internal resonances resulting from the symmetric form of 
the PMCHWT mixed-material SIE given by (4) can have a 
significant impact on the CM analysis of a structure which 
utilizes any amount of dielectrics, planar structures included. 
The internal resonance problem cannot be predicted, and as 
such should not be ignored. To illustrate the impact of the 
internal resonance problem, two different planar structures 
with the dimensions of 136 mm × 66 mm were analyzed. 
These structures are intended to represent the rectangular 
chassis used in a typical mobile terminal. The first structure 
was a baseline structure (a flat rectangular plate of zero 
thickness) utilizing only PEC, as shown in Fig. 1. The CMs of 
this structure were obtained using the conventional TCM 
formulation [1]. The second structure, as shown in Fig. 2, was 
a printed circuit board (PCB). The PCB consisted of the 
rectangular PEC plate of the first structure as well as a 1 mm 
FR4 substrate attached to one side of the PEC plate. The 
substrate provides mechanical support to the terminal chassis 
and facilitates electronic component integration.  

 

Fig. 1:  Flat perfect electric conductor terminal chassis of the first structure. 



 
Fig. 2:  PEC layer and dielectric substrate forming the chassis of the second 
structure. 

Solving for the CMs of the first structure using standard 
TCM provides a baseline of the modes that exist in a flat PEC 
structure (see Fig. 3). However, all commercial terminal 
chassis utilize PCBs with dielectric substrates. Therefore, the 
second terminal chassis structure as shown in Fig. 2 better 
resembles a real-world design. Since this structure contains 
dielectric material, the CM analysis must be carried out using 
a symmetric impedance matrix formed by either a VIE or the 
previously described SIE MoM solution. Solving for the CMs 
of this structure using a VIE implementation requires a dense 
tetrahedral mesh which requires significantly more 
computational time than an SIE implementation. As a rough 
comparison, the computational time to solve for the CMs (per 
frequency point) was found to be 226 seconds for a coarse 
VIE mesh, whereas the computational efficient SIE 
implementation required only 8.6 seconds (per frequency 
point). As was illustrated in [6], the computational 
requirements for a CM VIE implementation is not practical 
for most engineering applications; hence, the PMCHWT 
mixed-material SIE formulation (4) is used in this work. 
 

The CM eigenvalues of the second structure are shown as 
black dots in Fig. 4. In this plot the internal resonances have 
not yet been removed using post-processing methods. It can 
be seen from this figure that the calculated modes are 
significantly different from the modes of the PEC chassis 
(Fig. 3). Though not likely, these modes could be real CMs as 
the structure has changed, and thus the two sets of CMs 
should not be identical. However, the sheer number of CMs 
present are an indication that internal resonant modes may be 
found in this solution. When the internal resonances are 
removed using the post-processing method proposed in [6], 
the eigenvalues shown by red circles in Fig. 4 remained. It can 
be observed from this figure that the number of modes 
matches the number of modes seen in the baseline structure 
(see Fig. 3). However, minor differences have been found, 
including a decrease in the resonance frequency for most 
modes (e.g., from 983 MHz in Fig. 3 to 957 MHz in Fig. 4 for 
the first real CM), as well as slight differences in each of the 
modes’ quality factor (Q) and current distributions. This is 
expected, as the dielectric material should load the structure, 
with some modes being more affected than others.   

 

Fig. 3: CMs of the first structure (Fig. 1) as calculated from conventional 
TCM. 
 

 
Fig. 4: First 60 modes from SIE formulation (black dots), and all real CMs 
(red) of the second structure (Fig. 2). 

IV. EVALUATION AND EXCITATION ANALYSIS OF CMS 

It is possible to use the standard TCM to individually excite 
specific CMs. Utilizing the attributes associated with the real 
CMs of the structure, feed placement analysis can be 
performed on these structures [8]. The first CM of the PEC 
structure becomes resonant at 983 MHz (see Fig. 3), and the 
currents of this resonant mode resembles those of a flat dipole 
along the length of the chassis. These currents could be fed by 
splitting the chassis in half and feeding the mode using a 
current based feed (e.g., as is done with a tradition dipole 
antenna), but this is not practical in most terminal antenna 
applications. As a traditional current feed should not be 
applied, analysis of the near-field of this mode must be 
examined. The near-fields of mode 1 of the PEC structure are 
shown in Fig. 5. This figure shows that at each end of the 
chassis there is significant electric near-field energy in the x-
direction (along the length of the chassis). Through 
implementing a capacitive coupling element (CE) located at 
the end of the chassis (as seen in Fig. 5) the mode can be 
excited. The second mode of the PEC chassis is resonant at 
1.86 GHz. For the same reasons as were described for mode 1, 
a current based feed is not an appropriate excitation method 



for mode 2 and a near-field CE must be utilized. The electric 
near-fields of mode 2 for the PEC chassis are visualized in 
Fig. 6. Using this information, it can be determined that a CE 
located at the edge of the chassis (along the width of the 
chassis) which couples y-directed energy into the chassis, 
should excite the mode. The placement and length of this 
coupling element is shown in Fig. 6.  

 
Fig. 5: Mode 1 of PEC chassis and mode 2 of the mixed-material chassis. 

 

 
Fig. 6: Mode 2 of the PEC chassis and mode 5 of the mixed-material chassis. 

 
The total number of CMs in the mixed-material chassis far 

exceeds the number of modes calculated for the PEC chassis. 
Both [4] and [6] indicate that many of these modes should not 
be considered real CMs. Furthermore, those modes indicated 
to be non-real CM should not be excitable. To determine if 
these modes are excitable the first and second CM of the 
mixed material chassis can be examined. The first CM is 
considered (by means of post-processing) to be a non-real 
CM, whereas the second CM is a real CM. The first CM of 
this structure becomes resonant at 462 MHz, and this mode 
has a seemingly random current distribution with no apparent 
locations where the chassis can be segmented and fed using a 
current feed. The less random electric near-field distribution 
has two locations where a CE could be utilized to excite the 
structure (points ‘A’ and ‘B’ in Fig. 7). Although excitation of 
the structure may be achievable using these CE locations, 
successful feed excitation does not imply that mode 1 is 
excited, but rather another mode may be excited. This is 
because it is physically possible to use an impedance 
matching network to force a non-resonant mode into 
resonance. Mode 2 of the structure has a nearly identical 
current distribution as that of mode 1 in the PEC chassis. This 
mode is resonant at 957 MHz, and can be excited with the 
same CE which was used to excite mode 1 of the PEC chassis 
(Fig. 5). Furthermore, mode 6 of the mixed-material chassis 
closely resembles the current distribution and resonant 

frequency of mode 2 of the PEC chassis (Fig. 6). 
 

 
Fig. 7: Mode 1 of the mixed-material chassis. 

 

The CE feed elements can be implemented in a full-wave 
simulation program and the feed-excited CMs of each chassis 
can be reconstructed using the theory presented in [9]. This 
theory allows the far-fields of the structure to be compared 
against the characteristic far-fields. If the excited chassis does 
not match that of the intended CM, the mode was not excited 
and the mode can be attributed to a non-real CM. 

V. VERIFICATION OF MODES 

The different antenna structures described in Section IV 
were simulated in the FEM solver of CST. Mode 1 of the PEC 
chassis (Mode 2 of the mixed-material chassis) was fed using a 
50 mm × 4 mm CE located 2 mm from the chassis and a 
capacitive lumped element was used to achieve the resonant 
frequency of 981 MHz (944 MHz). Mode 2 of the PEC chassis 
(mode 6 of the mixed-material chassis) was fed using a 100 
mm × 4 mm CE at 2 mm from the edge, a two element L 
matching network allowed for the resonant frequency of 1.82 
GHz to be realized. Five simulations were carried out in an 
effort to excite Mode 1 of the mixed-material chassis. The first 
set of simulations utilized a 26 mm × 2 mm plate, placed at 3 
mm, 5 mm, and 7 mm above the chassis (indicated by modes 
1a, 1b, and 1c in Table I) at the feed location indicated by 
point ‘A’ in Fig. 7. The second set of simulations utilized a 10 
mm × 10 mm CE placed at 4 mm and 6 mm above the chassis 
(indicated by modes 1d and 1e in Table I) at the feed location 
shown by point ‘B’ in Fig. 7. In these simulations an ideal  
matching network was utilized in an effort to achieve a 
resonant frequency near 462 MHz. It should be noted that the 
far-fields of mode 1 of the mixed-material chassis is highly 
correlated with that of mode 2 (42% in envelope correlation), 
whereas those of modes 2 and 6 are fully uncorrelated (as were 
modes 1 and 2 of the PEC chassis). The bandwidth of modes 
1a-1e were found to be less than 0.4% while all other modes 
had a resonant bandwidth of greater than 6%. The far-fields 
obtained from the CM analysis, and the FEM analysis, were 
applied to the theory presented in [9], and the results are shown 
in Table I. This table shows that the PEC structure was excited 
and the modes of interest were reconstructed to a high degree. 
The presence of mode 1 in the mixed-material chassis changed 
significantly between the two different feed positions, and 
mode 1 maintained a relatively low effective bandwidth across 
all feed types and locations. This behavior confirms mode 1 



being a non-real CM. The relative Q of mode 1 is nearly 
equivalent to that of mode 2, but the latter achieved a 
bandwidth of 6.2%. Furthermore, the FEM excitation of mode 
2 was fully reconstructed to the intended CM in the mixed 
material chassis, relating this mode to a real external resonant 
mode. It is also noted that, due to the correlation between 
modes 1 and 2 in the mixed-material structure, the sum of the 
percentages of contributing modes for each of these mixed-
material cases exceeds 100%.  

TABLE I.  MODAL RECONSTRUCTION FOR PEC AND MIXED-
MATERIAL TERMINAL CHASSIS 

Structure Mode Reconstruction 

  Mode 1 Mode 2 Mode 6 

PEC Mode 1 94% 2% 0% 

PEC Mode 2 1% 96% 0% 

Mixed Mode 1a 16% 46% 52% 

Mixed Mode 1b 14% 48% 56% 

Mixed Mode 1c 17% 44% 58% 

Mixed Mode 1d 29% 90% 4% 

Mixed Mode 1e 36% 88% 4% 

Mixed Mode 2 40% 98% 0% 

 

VI. CONCLUSION 

The CMs of a structure are dependent on the materials used 
to form the structure. Dielectric and magnetic materials load 
resonant structures differently and dielectric objects have the 
ability to become self-resonant. To determine the influence of 
mixed-material objects on the inherent CMs, symmetry must 
be forced on the SIE utilized to solve the problem. The 
symmetric PMCHWT mixed-material SIE impedance matrix is

 not free of the internal resonance problem, and as such non-
real CMs are found in the CM solution set. When the CMs of a 
mixed-material object are analyzed the modes attributed to 
non-real CMs (internal resonances), as determined by post-
processing, cannot be excited or reconstructed using full-wave 
analysis. These non-excitable modes are thus considered to be 
non-real CMs and should be removed before traditional CM 
analysis is applied. 
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