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Errata

Page Reads Should read
8 caption Fig. 7 a RNZAF an RNZAF
8 caption Fig. 7 source: New Zealand Air Force source: Royal New Zealand Air Force
25 Fig. 22 Known electric field Known (measured) electric field
65 par. 2, line 2− summation limits Nm and Np are summation limit Nm is
66 par. 1, line 1 quadratic square matrices
66 par. 1, line 7 orthogonal unitary
84 par. 1, line 2− summation limits Nm and Np are summation limit Nm is
84 line 10− quadratic square matrices
84 line 4− orthogonal unitary
137 line 4 This can be corrected by probe Sentence is deleted.

compensation where the antenna
aperture is mathematically
translated to the center of
rotation [12].

164 eq. (4.1) P co
n + P cross

n P co + P cross
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Abstract

In this thesis, an inverse source reconstruction method with great potential in
radome diagnostics is presented. A radome is a cover that encloses an antenna in or-
der to protect it from environmental influences. Radome diagnostics are acquired in
the design process, the delivery control, and in performance verification of repaired
and newly developed radomes. A measured near or far field may indicate deviations,
e.g., beam deflection, but the origins of the flaws are not uncovered. In this thesis,
radome diagnostics is performed by imaging the tangential electromagnetic fields
on radome surfaces, disclosing the radome influence on the electromagnetic fields as
well as the positions and influences of defects.

The source reconstruction is based on a surface integral representation together
with the extinction theorem. The extinction theorem and its associated surface in-
tegral equation ensure that the reconstructed tangential electromagnetic fields have
their sources within the radome. The presence of axial symmetry in the measure-
ment set-up enables usage of the fast Fourier transform to reduce the computational
complexity. Furthermore, the problem is solved by an in-house body of revolution
method of moments (MoM) code utilizing a singular value decomposition (SVD)
for regularization. The reconstruction is performed on a fictitious surface in free
space, located precisely outside the physical surface of the radome, i.e., no a priori
information of the material of the radome is requested. Moreover, both synthetic
and measured data are used to verify the method.

In Papers I-III, the measurement set-up is a reflector antenna covered by a
monolithic radome, and the near field is measured on a cylindrical surface. The
height of the radome corresponds to 29 − 43 wavelengths in the frequency interval
8.0 − 12.0 GHz. The amplitude and phase of the tangential electromagnetic fields
are reconstructed on the radome surface and the influence of the radome is investi-
gated. Moreover, the alteration of the phase due to the transmission of the radome,
the insertion phase delay (IPD), is imaged. Defects in the form of square copper
patches, with an edge length corresponding to 1.6− 2.4 wavelengths in the consid-
ered frequency interval, are attached to the radome wall. These might serve as a
model for e.g., a lightning conductor or a Pitot tube. The attached patches alter the
near field, and by applying source reconstruction, the disturbances of the patches
are focused and detectable.

In Paper IV, the field is measured on a spherical sector in the far-field region at
10.0 GHz. Two set-ups with dielectric defects attached to the radome surface, are
investigated. The aim is to investigate if variations in the electrical thickness of the
radome wall can be detected. It is concluded that it is possible to discover dielectric
patches of various edge sizes (0.5−2.0 wavelengths), and with the smallest thickness
corresponding to a phase shift of a couple of degrees.

In Paper V, a frequency selective (FSS) radome corresponding to a height of
51 wavelengths at the frequency 9.35 GHz is investigated. The electrical perfor-
mance of an FSS radome depends on the periodic structure of the elements in the
radome frame. The periodic structure of the investigated radome is disrupted by
horizontal defects (vertical displacements of elements) and vertical defects (a col-
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umn of missing elements). The far-field data is measured on a spherical sector, and
the far-field data reveals that the radome changes the radiation properties. The
tangential electromagnetic fields on the radome surface are reconstructed for several
antenna illuminations to image the cause of these alterations. Furthermore, it is
shown that the different components of the electromagnetic fields are affected differ-
ently by the defects, implying that both co- and cross-components of the electric and
magnetic fields need to be considered. Moreover, the Poynting’s vector is employed
to visualize how the defects block the field from the antenna.
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Populärvetenskaplig sammanfattning (in Swedish)

Elektromagnetiska fält finns idag överallt och är en förutsättning för att det moderna
samhället ska fungera. Utan att fundera närmare p̊a det, använder vi oss ständigt av
de elektromagnetiska fältens förmåga att tr̊adlöst överföra information och energi.
N̊agra exempel är; uppvärmning av mat i mikron och p̊a induktionshällen, samtal i
mobiltelefonen, uppdatering av status p̊a Facebook oavsett var vi befinner oss, samt
volyminställning p̊a TV och stereo med fjärrkontrollen.

För att omvandla en elektrisk ström i en apparat till elektromagnetiska fält som
breder ut sig i luften, eller tvärt om, används antenner. En antenn kan behöva
skyddas fr̊an väderp̊averkan och insyn. Ett s̊adant skydd kallas radom och sitter
som ett hölje över antennen. Ett exempel p̊a en radom är noskonen p̊a ett flygplan.

Radomen ska helst vara elektriskt genomskinlig, det vill säga den ska inte för-
ändra de elektromagnetiska fälten som antennen skickar ut eller tar emot. Elektrisk
genomskinlighet är dock mycket sv̊art att uppn̊a eftersom det är m̊anga faktorer som
man m̊aste ta hänsyn till vid radomtillverkning. En noskon p̊a ett flygplan är väldigt
utsatt där den sitter längst fram. Radomen måste vara robust för att st̊a emot
kraftiga mekaniska p̊afrestningar s̊asom regn- och hagelstormar, samtidigt som den
inte ska vara alltför tung. Flygplanets hastighetsmätare sitter oftast som ett metall-
rör längst fram i radomens nos. Detta rör attraherar blixten, vilket betyder att ett
kraftigt blixtskydd är nödvändigt. Dessutom ska radomen även vara aerodynamiskt
utformad. Alla dessa krav p̊a radomen g̊ar inte att till fullo uppfylla samtidigt.
Detta innebär att den elektriska genomskinligheten kommer att p̊averkas, det vill
säga, radomen kommer till viss del att p̊averka och förändra antennens elektriska
prestanda.

Innan leverans av nya radomer, samt vid tester p̊a lagade radomer, genomförs
oftast fjärrfältsmätningar för att avgöra om uppsatta specifikationer uppn̊as. Med
hjälp av fjärrfältsdata kan man se om n̊agot är fel men inte vad felet beror p̊a. För
att hitta orsaken till felet måste ytterligare undersökningar göras. Exempelvis kan
man undersöka om det elektromagnetiska fältets fas p̊averkas som det är tänkt d̊a
fältet passerar genom radomväggen. En annan metod som används för att t.ex.
hitta sprickor i radomväggen är ultraljud. I denna avhandling föresl̊as ett nytt sätt
att diagnostisera radomer. Metoden är baserad p̊a källrekonstruktion vilket innebär
att ett uppmätt elektromagnetiskt fält ”backas tillbaka” till radomytan. Genom att
åsk̊adliggöra fälten p̊a den tredimensionella radomkroppen kan defekter lokaliseras
och deras inverkan p̊a de elektromagnetiska fälten kan studeras. Resultaten är my-
cket positiva och metoden har stor potential att kunna utvecklas till ett industriellt
anpassat diagnostiseringsverktyg.
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This doctoral dissertation in Engineering summarizes the research I have carried out
at the Department of Electrical and Information Technology, formerly the Depart-
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General Introduction followed by the scientific papers as listed below.
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Summary of included papers

Paper I: Reconstruction of equivalent currents using a near-field data
transformation – with radome applications

In this paper, it is investigated how the amplitude of the dominant co-polarized
component of the electric near field can be reconstructed on a radome surface close
to the source of radiation. The method is based on a surface integral representation
together with the extinction theorem. The representation describes an inverse source
problem with the dominant co-polarized component of the electric field and its
normal derivative on the radome surface as unknowns. The experimental set-up
is axially symmetric, such that the complexity of the problem can be reduced by
employing a Fourier transform. The linear system is regularized by a singular value
decomposition (SVD). The measurement set-up consists of a reflector antenna and
a radome. The height of the radome corresponds to 29 wavelength at 8 GHz, and
the electric near field is measured on a cylindrical surface.

Three different configurations are considered in the frequency range 8− 12 GHz;
antenna only, antenna with radome, and antenna with defect radome. The defect
radome has two copper plates attached to its surface. The formulation is validated
for synthetic data. Furthermore, it is showed that the measured electric field can
be reconstructed on the radome surface in an accurate way, where the effects of the
copper plates, not seen in the measured near field, are localized. Moreover, the used
technique is verified by comparing the far field, calculated from the reconstructed
fields employing a near- to far-field transformation, to a measured far field.

Contributions of the author:
The author of this dissertation is the main contributor to this paper. She has carried
out a major part of the analysis and the algorithm implementation. The author is
also responsible for the numerical simulations, and the writing of the paper.

Paper II: Reconstruction of equivalent currents using the scalar surface
integral representation

This paper is a continuation of Paper I. An extended analysis of the measurement
data from Paper I is performed, whereas the theoretical parts remain unchanged.
Specifically, the phase of the electric field is taken into account. The phase delay
caused by the radome, referred to as the insertion phase delay (IPD), is investigated.
Furthermore, different ways of visualizing the results are discussed and presented.

Contributions of the author:
The author of this dissertation is the main contributor to this paper. She has carried
out a major part of the analysis and the algorithm implementation. The author is
also responsible for the numerical simulations, and the writing of the paper.
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Paper III: Reconstruction and visualization of equivalent currents on a
radome surface using an integral representation formulation

In this paper, the inverse source problem is solved by utilizing the surface integral
representation combined with a surface integral equation originating from the ex-
tinction theorem. Both co- and cross-components are taken into account, and the
coupling between the components of the fields increases the complexity of the prob-
lem. The problem is solved in a similar way as in Papers I-II, i.e., the integral
representation and equation are written as linear systems and solved by a body of
revolution method of moments (MoM) approach. An SVD is employed to invert the
matrices and the singular values are filtered to regularize the problem.

The three radome configurations are investigated at 8 GHz; antenna only, an-
tenna with radome, and antenna with defect radome (attached copper plates). All
components of the measured near field are now analyzed, and both co- and cross-
components of the equivalent surface currents are reconstructed. These currents
reveal in what ways the radome changes the radiation pattern of the antenna. The
copper plates attached to the radome alter the measured electric field. However,
the cause of the distortion is not seen in the measured near field. In this paper, it
is shown that both components of the magnetic equivalent surface current can be
used to localize the effects of the copper plates. The influence of the radome on the
phase of the field, the IPD, is also investigated. An estimation of the thickness of
the radome wall from the calculated IPD verifies the results.

Contributions of the author:
The author of this dissertation is the main contributor to this paper. She has carried
out a major part of the analysis and the algorithm implementation, except the MoM-
kernel, which is based on an in-house MoM-code. The author is also responsible for
the numerical simulations, and the writing of the paper.

Paper IV: Radome diagnostics – source reconstruction of phase objects
with an equivalent currents approach

In this paper, the reconstruction algorithm is utilized to diagnose deviations in the
electrical thickness of the radome wall. These deviations are modeled by attach-
ing several patches of dielectric tape (defects) to the radome wall. The electrical
properties of the tape are similar to the electrical properties of the radome wall.

Two different far-field measurement series were employed at 10 GHz, each series
containing three separate set-up configurations; antenna only, antenna with radome,
and antenna with defect radome (attached dielectric patches). The height of the
radome corresponds to 36 wavelengths. The IPD is reconstructed, and the dielectric
patches of various edge sizes (0.5-2 wavelengths), and with the smallest thickness
corresponding to a phase shift of a couple of degrees, are imaged.

Contributions of the author:
The author of this dissertation is the main contributor to this paper. She has
carried out a major part of the planning of the measurements, the analysis, and the
algorithm implementation, except the MoM-kernel, which is based on an in-house
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MoM-code. The author is also responsible for the numerical simulations, and the
writing of the paper.

Paper V: Source reconstruction by far-field data for imaging of defects
in frequency selective radomes

In this last paper, defects in the periodic lattice of a frequency selective radome are
investigated by the reconstruction code. Specifically, a line defect, i.e., a column of
missing elements, and a horizontal defect that is due to a small vertical displacement
of the elements, are imaged. The far field is measured at 9.35 GHz for two set-ups;
antenna only and antenna with radome, where the height of the radome corresponds
to 51 wavelengths. Several measurement series, illuminating different parts of the
radome wall, are employed to determine the equivalent surface currents and image
the disturbances on the radome surface.

Contributions of the author:
The author of this dissertation is the main contributor to this paper. She has
carried out a major part of the planning of the measurements, the analysis, and the
algorithm implementation, except the MoM-kernel, which is based on an in-house
MoM-code. The author is also responsible for the numerical simulations, and the
writing of the paper.
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(a) (b) (c)

Figure 1: Examples of antennas: a) Television antenna of Yagi-Uda type. Photo
courtesy of: Antennlaget, Växjö, Sweden. b) Aircraft slot antenna. Photo courtesy
of: Björn Widenberg, GKN Aerospace Applied Composites, Linköping, Sweden.
c) Parabolic reflector antenna. Photo courtesy of: Mattias Hellgren, Smarteq Wire-
less AB, Enebyberg, Sweden.

1 Introduction

Electromagnetic fields and its ability to transfer information and energy is essential
in modern life. Without thinking, we use electromagnetic fields as information and
energy carrier thousands of times every day; the breakfast oatmeal is cooked in
the microwave oven. Opening the garage door is convenient with the remote key
and the need of “old fashion” maps are abandoned in favor of GPS, keeping track
of our position around the clock. If a Facebook update cannot be posted at any
time, or from any location, we get really annoyed. Needless to say, we would stand
bewildered without the functionality of the electromagnetic waves.

The antenna is the physical link between the radiation in free space and the
electronic devices interpenetrating and translating the electromagnetic waves, to
speech in a mobile phone or to dots representing airplanes on a radar screen. If
the antenna operates in receiving mode it collects electromagnetic waves from free
space, and if it works as a transmitter it sends out electromagnetic waves. Examples
of different types of antennas are depicted in Figure 1.

In a direct problem, the sources of the electromagnetic fields on an antenna
aperture are known. The primary goal is to determine the electromagnetic fields
radiated by the antenna, see Figure 2 and [13, 69, 103, 136]. In this thesis, an inverse
source problem is considered, where the electromagnetic field is measured and known
in a set of points at a distance from the source, and the cause of the radiation is
unknown [8, 24, 27, 34, 56, 60]. The challenge is to reconstruct the sources, to back
propagate the measured field to find the electromagnetic fields close to the surface,
or often on the surface of the radiator, see Figure 3. The inverse source problem
is ill-posed, which means that small perturbations (noise) in the measured field are
greatly amplified in the reconstruction of the sources, if not carefully considered.

An advantage of using source reconstruction in diagnostics is its non-destructive
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nature, where the object under test is not affected. Source reconstruction as a di-
agnostics tool is applied in many areas, a few examples are given here, and a brief
review is found in Section 3. In this thesis, the influences of defects attached to
radomes are investigated. Specifically, defects, such as metal patches, Papers I-
III, dielectric patches, Paper IV, and dislocations in a frequency selective radome,
Paper V, are investigated. The changes in the phase and the amplitude of the elec-
tromagnetic fields, due to the radome and the defects, are imaged on the radome
surface. These alterations of the electromagnetic fields give rise to unwanted devi-
ations in the far-field data; transmission loss, beam deflection, changes of side-lobe
levels, and the formation of flash lobes, see Papers I-V. The developed diagnostics
tool has the potential to provide an understanding of what causes these deviations.

In Figure 4a, the influences of dielectric patches attached to a radome, 0.3 mm
and 0.9 mm thick, are reconstructed on the radome surface. Other areas of inter-
est are antenna diagnostics, [22, 35, 38, 57, 58, 78, 79], investigation of mobile phone
radiation [39], and base station safety distances [151]. An example of antenna di-
agnostics is shown in Figure 4b, where the reconstructed electric field on a horn
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(a) (b)

Figure 4: a) A reconstruction revealing dielectric patches in the shape of the letters
LU attached to the radome surface, see Paper IV. b) A diagnosed horn antenna
unveiling an error in the antenna feed. Generated by DIATOOL of TICRA. Photo
courtesy of TICRA.

antenna reveals an unexpected error in the antenna feed. Applications within the
area of electromagnetic compatibility are found in e.g., [76], where the radiation of
printed circuits boards is characterized.

The main focus of this thesis is radome diagnostics by a source reconstruction
method based on a surface integral representation and the extinction theorem. This
introduction is intended to give the reader an brief description of what a radome is,
and the advantage of a diagnostics tool to evaluate its electrical properties, see Sec-
tion 2. The contributions of the author within the field of non-destructive radome
diagnostics are shortly reviewed in Section 2.5. In Section 3, a background of the
source reconstruction field is given with main focus on the method based on surface
integral representations and equations utilized in this thesis. Finally, future chal-
lenges and conclusions are discussed in Section 4. The interested reader can find
the derivation of the surface integral representations and equations in Appendix A.
Furthermore, some sections in the General Introduction are based on [98].

2 Radomes

A radome encloses an antenna to protect it from environmental influences. Radomes
shield antennas on various platforms, e.g., on ships, satellites, airplanes, submarines,
vehicles, high towers, or on the ground. Three examples are given in Figure 5. The
word radome originates from the words “radar” and “dome” and it is believed to be
coined by the staff at the Signal Corps’ Aircraft Radiation Laboratory, USA, during
the years of World War II [107, 140].
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(a) (b) (c)

Figure 5: Different radome applications: a) Nose cone protecting aircraft radar, JAS-
39 Gripen. Copyright Gripen International. Photo: Katsuhiko Tokunaga. b) Sta-
tion monitoring tectonic motions of the volcano Popocatepetl in Mexico. Photo
courtesy of Enrique Cabral-Cano. c) Aircraft surveillance, Bromma airport, Swe-
den. Photo courtesy of Maciej Swic.

Depending on the properties of the shielding antenna and the environment in
which it operates, the radomes have different styles and qualities. The size and form
are very much dependent on the antenna and its electrical properties. The radar
antenna on an airplane is very exposed, since it is located at the front to get a
free line of sight. The radome covering the antenna needs to be aerodynamically de-
signed, but also protect from snow, icing, wind, lightning, and hail i.e., hard weather
conditions, cf., Figure 6. In military applications, the radome is often designed to
have stealth properties, aiming for low monostatic reflection at frequencies outside
the transmitting band of the antenna [107]. Stealth properties are commonly imple-
mented by frequency selective surfaces (FSS) [90, 146]. Frequency selective surfaces
is also an asset in environments with many receiving and transmitting antennas
where shielding between electrical systems is desirable [65]. Another application is
energy saving windows, where the FSS is designed to reduce heat transmission —
the heat is kept indoors in the winter and shut out during the summer — without
interfering with frequencies used for communications [44, 146].

2.1 Disturbances of electrical performance

Ideally, a radome is expected to be electrically transparent, which means that the
amplitude and phase of the transmitted or received field should be unaffected by
the radome [19, 65]. However, tradeoffs are necessary to fulfill properties such as
aerodynamics, robustness, lightweight, weather persistency etc., and it is impossible
to completely avoid alterations in the antenna characteristics.

An example of a tradeoff, affecting the electrical performance, is the lightning
protection attached to an airplane nose cone, i.e., the Pitot tube, the lightning con-
ductor, and the lightning-diverter strips [19, 65]. The Pitot tube indicates the speed
of the airplane by pressure measurements, but serves also as a lightning attraction
(cf., Figure 10). Thus, the Pitot tube diverts the lightning, via a lightning con-
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Figure 6: The nose cone of a cargo Boing airplane, after flying through a severe hail
storm. Photo courtesy of Dave Subelack.

ductor attached on the inside of the radome, to the hull of the aircraft [147]. The
consequences of a severe stroke of lightning, are shown in Figure 7a. Another exam-
ple is shown in Figure 7b, where a radome from the 1970’s was not equipped with
lightning-diverter stripes. Instead, existing wires, the ones attached to the Pitot
tube, were dimensioned to manage a stroke of lightning [9].

Other attachments that have an influence on the electromagnetic performance
are plastic or metallic rain caps, located at the tip of the radome, which protect
from rain erosion. A metallic cap may also reduce the mechanical stress at the tip
of a nose-cone radome of an aircraft [19]. Different tradeoffs also occur when dealing
with large space frame radomes. These are assembled by several panels where the
framework, either metallic or dielectric, interacts with the electromagnetic fields, see
Figure 8, where a space frame with a metallic framework is shown [65, 120]. Yet,
another example appears when utilizing periodic structures in the design of bandpass
radomes. The periodicity is disturbed by the double-curved radome surface, which
gives undesired alterations in the electromagnetic performance of the radome [90,
107, 137, 146].

All these tradeoffs affect the electrical performance of the radome in different
ways. Furthermore, the amplitude, phase and polarization or the electromagnetic
field, are also changed in the radome wall and by interactions at the material in-
terfaces. The results of all these factors are transmission loss (gain reduction) and
beam deflection. Moreover, beam width, side-lobe levels, null depths are changed,
and flash or image lobes appear [5, 19, 65, 140, 147].

The transmission loss reduces the detection range of the antenna, whereas higher
side-lobe levels, caused by, e.g., lightning-diverter strips [19], give rise to increased
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Figure 7: a) Damaged radome, on a RNZAF Orion aircraft, due to a stroke of light-
ning. The arrows point out lightning-diverter stripes. New Zealand Crown Copy-
right, source: New Zealand Air Force (RNZAF), http://www.airforce.mil.nz.
b) Damaged radome due to a stroke of lightning at the Pitot tube, resulting in an
explosion of a heating wire. Copyright Saab AB.

clutter, and susceptibility to jamming [5, 147]. The flash or image lobes are caused
by reflections on the inside of the radome wall and reflections within the wall [19,
65, 140]. These artifacts result in faulty registered objects of, e.g., a radar system,
giving an increased false-alarm rate [5, 147]. The electromagnetic wave changes its
angle of incidence on the antenna when passing through the radome, and thereby
also its phase relatively to air, and if not properly compensated for, boresight errors
(BSE or beam deflection) and boresight error slope (BSES) occur [19, 65, 140]. The
boresight error slope is the ratio of the change of the boresight error as function of the
antenna scan angle [65]. These errors imply that the signal is believed to originate
from a faulty direction, cf., the discussion on this subject in Section 2.4.2. BSE can
have severe consequences in navigating systems. Moreover, interaction between the
radome wall and the antenna may further reduce the antenna performance if not
carefully considered [65].

Some of the above-mentioned deviations are depicted in Figure 9, where a cross
section of the measured far field is viewed. The co-polarization is showed, for the
antenna alone and the antenna together with the radome, respectively. The antenna
is a standard 18 inch slot antenna operating in the frequency band 9.2 − 9.5 GHz,
see Figure 1b. The radome consists of a frequency selective surface (FSS) with
deviations in the periodic lattice, see Paper V for more details. Observe, the far
field pattern does not reveal the causes of the deflections, to find these a diagnostics
tool is required.
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Figure 8: Photo of a metallic space frame radome protecting an antenna for satellite
communications. The diameter is 13.7 m. Located at Chitose, Hokkaido, Japan.
Photo courtesy of L-3 ESSCO Collins Limited.

2.2 Materials and configurations of the radome wall

The material of which the radome is manufactured must be electrically transparent,
but also sustainable and persistent against environmental stress. The desire to find
a strong, but radio frequency transparent material, is often contradictory, when it
comes to material parameters and compromises are required. In the 1940’s, when
the manufacturing of radomes started to boom, the choice of material was plywood.
However, plywood absorbs moisture, and it was soon abandoned in favor of plexiglass
and later fiberglass [65]. Common choices of radome material today are different
composite materials or ceramics [5]. Ceramics is utilized when high temperatures,
i.e., high velocities, are attained [65].

Composite radomes can be divided into subcategories — solids (monolithic),
multilayered (sandwich), and metal-loaded radomes. Here, a short review is given,
and the interested reader is referred to the literature for more details [19, 20, 65,
107, 125, 138, 140]. Solid radomes, also called monolithic radomes, can be of either
thin-wall or half-wave design. The thickness of a thin-wall design should be less
than λ/10, whereas the thickness of the wall in the half-wave design is a multiple of
λ/2, where λ is the wavelength in the radome wall [19, 65]. The monolithic radomes
consist of reinforced resin, where common choices of resin are; polyester, epoxy, or
cyanate ester, whereas the reinforcement consist of e.g., fiberglass or kevlar [19, 65,
147]. Multiple layers are used in sandwich radomes, where layers of material with a
high permittivity (fiber-reinforced resin system) are alternated by materials with low
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Figure 9: Changes in the electromagnetic performance due to the radome. The
co-component, Eϕ, of the far field is depicted, where the black line describes the
antenna case and the red one the radome case. Negative θ-values correspond to the
back side of the radome, whereas positive ones represent the front side where the
main lobe hits the radome wall.

permittivity (honeycomb or dielectric foam) in different combinations, A-sandwich,
B-sandwich, etc. [19, 65].

Introducing metal in a dielectric multilayered structure gives a metal-loaded
radome [19]. Adding a periodic structure of elements provides frequency filtering
properties, resulting in a radome that either transmits or reflects electromagnetic
fields in specific frequency spans. Walls of this type is called frequency selective
surfaces (FSS) [90, 95, 137, 143, 146, 148]. The periodic structures of an FSS usually
consist of thin metal films serving as layers in a multilayered structure. Another
type of FSS structure is the artificial puck plate (APP) design [106, 107, 148]. The
APP consists of a thick perforated conducting frame, where the apertures in the
periodic lattice are filled with dielectric pucks. These dielectric pucks act as short
waveguide sections [107].

Monolithic radomes are common in ground-based or shipboard applications,
where a simple design and construction is preferred, and the weight of the radome is
of less importance [19]. Moreover, many fighter radomes are half-wave monolithic,
since this construction is extremely persistent and sustainable [5]. Sandwich radomes
are the most common ones in lower-speed aircraft, since they are more broadband
and have a higher strength-to-weight ratio than the solid ones [5]. Metal-loaded
radomes can be utilized in environments where the coupling with other antennas,
using different frequency bands, needs to be low [65]. Moreover, stealth radomes
consist of frequency selective structures, and they are designed by a careful choice
of materials and geometries, to have a low radar cross section, i.e., to be “invis-
ible” [66, 90, 107]. Large antenna systems require large radomes, and these can
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consist of an air-supported electrically thin dielectric fabric or a space frame, cf.,
Figure 8 and [65, 120, 138].

2.3 Modeling approaches and fabrication techniques

Attaining all the desired properties of the radome is a delicate matter. The design
and manufacturing process consists of several iterative steps, where prototypes are
built, analyzed, and optimized. To speed up this process, analytical models of
the transmission/reflection within the wall, and the propagation within the radome
cavity, are available [19, 65]. Often a planar design is employed in the first iterative
steps [147]. To get reliable results, it is crucial that the representation of the field
radiated by the antenna, the input data, is well-known [5]. One modeling approach is
based on physical optics (PO) [4, 83, 123]. A PO-MoM hybrid method is presented
in [53, 85, 150], where the authors of [53] take the mutual coupling between the
antenna and radome into consideration. In [84], fast multipoles are utilized in the
PO-MoM hybrid to calculate the influence of an electrically large radome.

The antenna-radome interaction is often not negligible. For example, a change
of the antenna matching can be caused by fields reflected by the radome wall back
to the antenna aperture [65]. The interaction between the antenna and radome is
considered in [50, 51], where surface integral equations are applied to investigating
the change in antenna parameters of an Archimedean spiral antenna-radome system.

There are many manufacturing methods in use today. Three of the most popular
ones are wet layup, usage of prepreg sheets, and resin infusion processes [147]. The
main features of these are given here, whereas thorough descriptions are given in [30,
65, 75, 131, 140], where also other methods are outlined.

In wet layup, dry cloths of fiberglass are placed on a mandrel shaped as the
radome. After each layer, resin is brushed on, and with this method, it is difficult
to get an uniform ratio of resin and fiberglass. To avoid this, the pieces of fiberglass
are soaked in resin and weighted before application, in order to get a controlled resin
to fiber ratio [65].

There exists a number of different resin infusion technologies, which slightly dif-
fer from each other [131]. One example is the vacuum infusion processing, where all
layers of the dry fiberglass are applied to a mold and sealed by a vacuum bag [131].
The resin is then introduced and spread by applying vacuum at strategic points. An
advantage of this method is the improvement in work environment due to low emis-
sions of harmful volatile substances, such as styrene and isocyanates [30]. Vacuum
infusion is also an efficient and inexpensive method to use in production of large and
complex shaped radomes [131]. However, a drawback is the difficulty of obtaining a
uniform resin level [131].

Today, many radomes are built from commercially available preimpregnated
sheets, prepregs, which are sticky cheats of fiber impregnated with resin [131]. The
prepregs have a well-defined resin to fiber ratio and is available in a range of prede-
fined thicknesses [65]. The main disadvantages are the price as well as their limited
storage life. In order to prevent hardening of the resin, the prepregs need to be
freezer stored. However, the hardening process is slowed down at low tempera-
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tures, but not entirely stopped [147]. Moreover, frequency selective surfaces (FSS)
are often designed as flat sheets, on which the periodic structure has been printed.
These sheets are not very flexible, which makes the draping of them, on the radome
frame, quite complex [137]. Regardless of which method used, the radome needs
to be cured. Common methods utilize pressure and heat either by vacuum-bag or
autoclave molding [30, 131, 140].

2.4 Verification methods of electrical properties

The design of radomes is a delicate art of engineering as many choices and param-
eters are to be considered. Consequently, there is a demand for diagnostics tools
verifying the electrical properties of the radome. Delivery controls of new radomes
must fulfill specified requirements and repaired radomes must be checked according
to international standards and manufacturers maintenance manuals [65]. The eval-
uations can be divided into non-destructive or destructive, depending on the need of
impact on the radome wall. The non-destructive ones are often the most desirable.

2.4.1 Measurement ranges

The performance of a radome is usually defined in operational parameters, such as
e.g., transmission loss and beam deflection (cf., Section 2.1). A functional test is
commonly performed by evaluation of far-field data [52]. The far field can be mea-
sured at an indoor (anechoic chamber) or an outdoor far-field range. The distance
between the radome-antenna system and the range antenna, the size of the test
range, depends on the electrical size of the radome [12, 65, 66].

A smaller far-field test range is the compact range where a plane wave is pro-
duced by using one or several reflector screens [145], see Figure 10. Measuring the
near field, the chamber can be smaller still, however probe compensation becomes
necessary [46, 149]. The far field is then determined by a near-field to far-field
transformation [16, 40, 104, 117, 132, 133]. Figure 11 shows a photo of an anechoic
chamber utilized for both near- and far-field measurements, depending on the size
of the object under test and the frequency.

Far-field graphs can reveal antenna pattern degradations such as transmission
loss, beam deflection, changes of side-lobe levels, and introduction of flash lobes
(cf., Figure 9 and Section 2.1). However, these graphs do not reveal the source of
the error. To do so, skilled and highly experienced labour, or some further post-
processing of the data, is required (cf., Section 2.5).

2.4.2 Insertion phase delay

In performance evaluations of radomes, the phase shift of the electromagnetic field,
due to the passage through the radome wall, is important. This quantity is called
the electrical thickness of the radome or the insertion phase delay (IPD). The IPD
relates the phase shift in the radome wall to the phase shift in free space [19], and
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Figure 10: A compact test range from MI Technologies, at GKN Aerospace
Applied Composites, Linköping, Sweden. The radome belongs to the aircraft
Gripen. Attached to the tip of the radome is a Pitot tube. Size of chamber:
6.0(width) × 5.4(height) × 12(length) m3, frequency range: 8.0 − 18.0 GHz. Photo
courtesy of GKN Aerospace Applied Composites.

for a plane wave

IPD = ∠T − ω

c0
d cos θi (2.1)

where T is the complex transmission coefficient, which depends on the incidence
angle, the parameters of the radome wall, and the polarization of the electromagnetic
field [19]. The last term of (2.1) removes the phase shift of free space, where ω is
the angular frequency, c0 is the speed of light in free space, d is the thickness of the
radome wall, and θi is the incident angle of the plane wave.

Having a non-constant phase shift (IPD) over the illuminated area or the radome
surface can cause bore sight errors (BSE or beam deflection). This can be understood
by thinking of the phase shift as a delay of the electromagnetic field in the radome
wall relative to free space propagation. The angle of incidence may vary considerably
for a double-curved radome, see Figure 12, and a large angle of incidence generally
introduces a large IPD (if all other parameters are held constant), i.e., a large delay.
This is illustrated in Figure 12, where the BSE-effect is highly exaggerated to explain
the concept. The wall at point a, where the field have a small angle of incidence,
only delays the field a little, whereas the wall at point b, have a larger angle of
incidence, and thereby delays the field a bit more etc.. Altogether, the main beam
changes its direction. This change of direction is denoted beam deflection or BSE.
The antenna can in some cases avert a predicted BSE by a compensation in the
antenna software [19].
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Figure 11: Anechoic chamber at RUAG Space, Göteborg, Sweden, for both near-
and far-field measurements. Size of chamber: 5(width) × 5(height) × 9(length) m3,
frequency range: 0.8− 40.0 GHz. Photo courtesy of RUAG Space AB.

One of the techniques to measure the electrical thickness (IPD) is by locating
two horn antennas, on each side of the radome wall. A suitable choice is to locate
them in such a way that the incident angle of the field coincide with the Brewster
angle [31, 122]. This choice of incident angle minimizes the reflected field, and the
disturbances due to back scattering into the radiating horn antenna are reduced. To
calculate the IPD, the phase of the transmitted field is subtracted from the phase
of the measured field with no radome present between the horn antennas. However,
it is not always possible to measure at the Brewster angle due to radome geometry
and set-up. Moreover, the radome performance is usually required for multiple
incidence angles [31]. Another method is described in [29], where a modulated
scattering technique is utilized [15]. Exterior to the radome, a transmitting and a
receiving linear (1D) slot antenna scan the surface. Inside the radome, an array of
small modulated sensors is located. The field scattered by the sensors is modulated
and detected by the receivers. Due to the known modulation, the phase shift caused
by the radome can be derived. Non-modulated signals, such as reflections in the
radome wall or interaction between the receiving and transmitting antennas are
discriminated.

In the case of a monolithic radome, the radome wall can be trimmed to achieve
the required IPD-values [5, 147]. Trimming means that areas with a too high electri-
cal thickness are ground, whereas areas with a too low IPD are patched, by apply-
ing cloths of reinforced fabric or using a spray gun that simultaneously sprays out
chopped cloths of reinforced fabric, resin, and setting agent into a thin layer [131].
Care must be taken since a thickness change of the radome wall may affect other
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Figure 12: Beam deflection due to a non-constant phase shift over the illuminated
radome wall [107].

parameters, e.g., side and flash lobes, in an undesirable way.

2.4.3 Other non-destructive evaluation techniques

Due to mishaps in the production or impacts on the radome wall when in use, cracks
may accrue. In a multilayered structure also debonds, i.e., air pockets between the
layers, arise [5, 131, 144, 147]. Below, a brief listing of some of the non-destructive
evaluation techniques is presented, whereas the interested reader is referred to the
literature [10, 11, 116, 119, 126, 131, 144].

A very easy way to obtain a first indication if cracks and debonds are present
is to use coin tapping, also called the tap test [144]. In this test, one listens to
sound deviations when a coin is tapped against the radome wall. A more sophisti-
cated method, and one of the most commonly used, is ultrasonics [131], where the
reflection of acoustic waves is measured. The time delay of the pulse is highly af-
fected by density changes in the material, i.e., cracks and debonds. Another method
is shearography, which uses the fact that a defect in the surface reflects coherent
light differently than an unaffected surface when subjected to stress produced by a
mechanical or thermal excitation [10, 119].

To find moisture ingression in a damaged radome, a camera sensitive to infrared
light can be utilized [11]. Modern techniques involve embedded optical fiber sensors.
One example is the e.g., optical time domain reflectometry, where a bend of the
fiber induces a small reflection, that can be detected with a sensitive reflectrometer.
Another example is the fiber bragg grating sensors, which are designed to reflect
light of a specific wavelength, and if strained, the wavelength of the reflected light
is shifted. More details of optical fiber sensors are found in [10, 116, 126].
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2.4.4 Destructive methods

Figure 13: The radome
diagnosed in Papers I-IV.
The missing pieces at the
bottom have been used
for material characteriza-
tion.

Sofar, non-destructive methods have been described, but
in some tests it is hard to avoid damage to the radome
wall. In production, the radome is sometimes made
slightly longer than the blueprint indicates. This is done
in order to attach the radome correctly to the fixture of
the manufacturing tool, and the excess length is later cut
off [147]. However, pieces can be cut from the extended
region to ensure that the ratio of air to resin to fiber
is correct in the wall (cf., Figure 13). This is achieved
by weighing the cut before and after the resin and rein-
forcement are separated by melting the resin [147]. The
surface of the cut may also be inspected for debonds in
a multilayered structure [147]. Moreover, the thickness
of each layer can also be verified [147]. Other destruc-
tive tests, harming the radome, are lightning tests, and
bird-collision tests [5].

2.5 Verification of electrical properties
by source reconstruction

In this thesis, a novel approach, utilizing a non-
destructive source reconstruction method to diagnose radomes, is proposed. The
method is based on an inverse source problem where a measured far or near field is
related to the equivalent surface currents on the radome surface by integral represen-
tations, see Papers I-V. A detailed review of the method is given in Section 3. Similar
approaches have recently been used to diagnose antennas [1, 35, 57, 58, 78, 108, 110].

As mentioned in Section 2.4.1, graphs of the far field may indicate errors such as
transmission loss, beam deflection, changes of side lobes and introduction of flash
lobes, see Figure 9. However, the origin of the flaws is not revealed. To get an
understanding of the cause, the equivalent surface currents — the tangential elec-
tromagnetic fields, see (3.1) — are reconstructed on the 3D-radome body. It is not
feasibly to measure these fields directly, since a measurement of the electromagnetic
fields close to a radiating body or scatterer is affected by the interaction of the mea-
surement probe and the radiator or the scatterer. This interaction contaminates the
measurement [46, 113, 149].

To evaluate the potential of the source reconstruction method as a diagnostics
tool, defects of different kinds have been introduced to the radome surface. These
defects are metal patches (Papers I-III), representing e.g., lightning-diverter strips
or Pitot tubes, dielectric patches (Paper IV), modeling deviations in the electrical
thickness of the radome wall, and finally interruptions in the lattice of a frequency
selective surface (Paper V). The aim is to localize the defects and to visualize
their influences on the amplitude and phase of the electromagnetic fields. Attention
is paid to different visualization options, such as different scales and components
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Configuration (1)Configuration (0) Configuration (2)
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Figure 14: Sketch and notation of the measured set-up configurations in Papers I-
IV. The middle figure shows the unit vectors of the coordinate system in which the
reconstructed fields are expressed.

of the fields; co- or cross-polarizations of the electric or magnetic components, or
the Poynting’s vector, to reveal as many properties as possible of the fields on the
radome surface. Some examples of the main diagnostics results are reviewed in the
following paragraphs, whereas the full analysis and details are found in Papers I-V.
Throughout this section, the configurations of the measurements are referred to as
indicated in Figure 14; conf. (0) - antenna only, conf. (1) - antenna with radome,
and conf. (2) - antenna with defect radome. The configuration number is indicated
as a superscript on the fields, whereas the field component is showed by a subscript,
i.e., H

(0)
v is the magnetic component directed along the height of the radome surface

when only the antenna is present.
The influence of metal patches, 1.6×1.6 wavelengths2 at 8.0 GHz, is investigated

in Papers I-III. A measured near field is utilized to find the tangential electromag-
netic fields on a radome surface, with a height corresponding to 29 wavelengths.
Three different set-ups are measured; antenna only, antenna with radome, and an-
tenna with defect radome (two metal patches attached), see the sketch in Figure 14.
The measured near field shows that the main beam is deflected and attenuated,
and the side lobes are altered when the metal patches are present, see Figure 15.
However, the origin of the deviations is unknown. Figure 16 depicts the difference
between the radome and the defect radome cases for the reconstructed co-component
of the tangential electric field on the radome surface. In Figure 16a, the patches are
localized in a dB-scale, where the influence of the phase is included since the differ-
ence imaged is |E(1)

v −E(2)
v |. The linear scale in Figure 16b depicts the difference of

the amplitudes, i.e., |E(1)
v | − |E(2)

v |. The area with a negative field amplitude, just
above the lower patch, reveals a field contribution that is probably attributed to
scattering from the patch. The radome’s introduction of flash (or image) lobes and
the alteration of these due to the presence of metal patches are visualized for the
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Figure 15: The measured co-polarized electric field on the measurement cylinder.
(a) The angle is fixed at ϕ = 0 (front side), and the fields are normalized to the
maximum value when no radome is present — conf. (0). (b) The height is fixed
at z = 0, and the fields are normalized to the maximum value when no radome is
present.

electric co-component in Figure 17.
Localization and analysis of dielectric patches, cloths of fiberglass, are carried

out in Paper IV. The utilized reinforced fiber tape is employed in trimming of
monolithic radomes to achieve a smooth insertion phase delay (IPD) and to reduce
the bore sight errors (BSE), cf., Section 2.4.2. The dielectric material mainly effects
the phase of the field, and one layer of tape, 0.15 mm, gives rise to a phase shift of
2◦ − 3◦. Again, three different set-ups are measured; antenna only, antenna with
radome, and antenna with defect radome, see Figure 14. However, the measurements
are carried out in a compact range and far-field data at 10.0 GHz is employed in
the reconstruction. The height of the radome corresponds to 36 wavelengths. Two
measurement series are conducted where the sizes and thicknesses of the defects are
shown in Figure 18. Figures 19a and 20a depict the patches attached to the radome
and Figures 19b and 20b visualize the illumination of the defects when the radome is
present, i.e., conf. (1). The dielectric squares and letters are localized by the phase
difference between the radome and the defect radome cases, i.e., conf. (1) and (2),
see Figures 19c and 20c. Further analysis concludes that the dielectric squares of
size 2λ — one layer thick, the squares of size 1λ — two layer thick, and the squares
of size 0.5λ — 4 layer thick, are clearly visible in the reconstructed phase differences.
Furthermore, the dielectric tapes of two layers and the smallest dimension of 0.5λ
in the form of the letters LU are resolved. The phase shifts of the larger squares,
and the letters, coincide well with the approximated theoretical values of 2◦−3◦ per
layer. It is conjectured that the diagnostics method, can be used in constructing a
trimming mask for the illuminated areas of a radome. A trimming mask indicates
which areas that are too thin or too thick, and thereby need correction.

The electrical performance of a frequency selective (FSS) radome depends on
the periodic structure of the elements in the radome frame. Due to the double
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Figure 16: Metal patches, localized in the reconstructed field difference between
conf. (1) and (2). a) The logarithmic differences. The arrows point out the locations
of the copper plates. b) The linear differences.

curvature of the wall, the size, or other manufacturing difficulties, the periodicity
may be disrupted. In Paper V, the influence of disturbances, such as displacements
of the elements and missing elements, is visualized, see Figure 21. The far field is
measured at 9.35 GHz for two set-ups; antenna and antenna together with the FSS
radome, i.e., conf. (0) and (1), where the height of the radome now corresponds
to 51 wavelengths. The far field is illustrated in Figure 9, where it is clear that
the antenna pattern is altered due to the presence of the radome. However, the
appearance of the fields on the radome surface, and how these differ from the ones
predicted by e.g., a simulation tool, are unknown, i.e., the cause of the altered far
field pattern is unknown. One example of the reconstruction of the fields on the
radome surface is visualized in Figure 21b, where the difference of the Poynting’s
vector between the antenna and the radome cases — conf. (0) and (1), depicts how
the field is blocked (negative power flow) by the defects.

A correct description of the electromagnetic fields, radiated by the antenna, is
vital in the numerical modeling of the radome wall (cf., a discussion in Section 2.3).
Reconstruction of the tangential electromagnetic fields in conf. (0), close to or on
the antenna aperture, gives an accurate depiction of the antenna radiation [1, 35,
57, 58, 78, 108, 110].
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Figure 17: The back side of the radome displaying the flash lobes in the different
configurations. (a) Antenna only — conf. (0), i.e., no flash lobe present. (b) Radome
present — conf. (1). (c) Defect radome present — conf. (2).

3 Inverse source problems

Inverse problems have applications within a variety of disciplines, such as, radar,
medicine, non-destructive testing, and geophysical exploration. Depending on the
problem to be solved, different equations and solution methodologies are applied [8,
24, 34, 47, 60, 92, 96, 118, 135]. In this thesis, focus is on electromagnetic problems
modeled by the Maxwell equations. Specifically, attention is paid to the inverse
source problems [34, 56], where the aim is to reconstruct the source or the electro-
magnetic fields close to the source, i.e., the main interest of the investigation is the
electromagnetic sources and not the object itself. Moreover, usually some a priori
information of the object is given, e.g., geometry or material parameters.

In addition to the inverse source problems, there are the inverse scattering prob-
lems, where information about the scattering object is requested [24, 96, 118]. In
these problems, the incident field and a model for the field-obstacle interaction,
are utilized to determine the physical properties of the object, such as shape and
material. Multiple illuminations are usually employed. It is worth noting that the
division between the inverse scattering problem and inverse source problem is not
strict.

As stated, the focus in this thesis is the inverse source problem, and the follow-
ing sections give a background of the field of research, in particular, the diagnostics
applications. The technique to be employed depends on, the geometry of the sur-
face where the field is measured, the geometry of the body where the fields are to
be reconstructed, and the material of the body of the equivalent currents — the
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(a) (b)

Figure 18: The dielectric defects attached to the radome. The numbers on the
patches indicate the number of tape layers. a) The size of the squares are; 30 ×
30 mm2 on the top row, 15 × 15 mm2 on the middle row, and 60 × 60 mm2 on the
bottom row. b) Each “leg” has a width of 15 mm. The drawn square shows where
the centered lower square in the left figure was located.

most common ones are the perfect magnetic conductor (PMC), the perfect electric
conductor (PEC), or free space.

In Sections 3.1 and 3.2 decomposition in plane waves and modal expansions are
discussed as reconstruction techniques. Integral representations, as a method to
solve the inverse source problems, are then introduced in Section 3.3. This section
starts with a presentation of the equivalent surface currents, the surface integral
representation, and the surface integral equations. A brief review is then given of
how others employ the representations, and their results within diagnostics.

3.1 Plane wave spectrum

A numerically fast technique is the method utilizing the plane wave spectrum
(PWS) [17, 28, 45, 48, 91, 141]. This technique was one of the first employed, and
in this approach the measured field is expanded in plane waves. The PWS is the
Fourier transformation of the radiated far field in the lateral variables [46, 49]. The
near field on a plane, arbitrarily close to the radiator, can then be obtained by an
inverse Fourier transform. Both spherical and planar measurement surfaces can be
used, as well as measurements in the near field or in the far field, since accurate
transformations between the different geometries and the fields are available [18].

The PWS is used to determine the specific absorption rate (SAR) of mobile
phones [39]. Instead of scanning the electric field strength in the whole volume of a
phantom, it is enough to measure the amplitude of the electric field on two planes.
The phase of the electric field is retrieved by an iterative process and the expansion
of the field in its plane wave spectrum is utilized to evaluate the electric field and
thereby the SAR on other planes in the phantom. The method is also applied
to localize defects, patches of absorbers (Eccosorb), attached to a planar antenna



22 General Introduction

(a) (b)

|H(1)
v |/max|H(1)

v | (dB)

(c)

∠H(1)
v − ∠H(2)

v (deg)

Figure 19: a) A photo of the radome with the attached dielectric squares (defects).
b) The reconstructed field, Hv, on the radome — conf. (1). The drawn squares
indicate where the defects will be located to create conf. (2). c) The phase of the
reconstructed field difference between conf. (1) and (2).

array [74]. Another application is the reconstruction of the near field on the surface
of a parabolic antenna, where an iterative scheme and geometrical relationships
make it possible to find the fields on the non-planar parabolic surface [111, 112,
115]. Moreover, an early attempt to determine radome influences, using plane wave
decomposition, is found in [41].

3.2 Modal expansion

A modal expansion of the field can be employed if the reconstruction surface is cylin-
drical or spherical [46, 49, 129]. The field is then expressed as a sum of cylindrical or
spherical vector waves. The radial dependence in the expansion is given in cylindrical
or spherical Bessel functions, respectively. The angular part contains trigonomet-
ric functions, and in the spherical case associated Legendre functions [46, 49, 129].
The method is only valid outside the smallest cylinder/sphere enclosing the radiat-
ing body, i.e., equivalent currents can only be obtained on radiating bodies shaped
as cylinders or spheres. The resolution obtained with spherical wave expansion
(SWE) can be higher than the resolution achieved using the plane wave spectrum
(PWS) [42]. More general geometries, e.g., needle shaped objects and flat disks, can
be handled by expanding the field in spheroidal wave functions [127, 128]. As with
the spherical vector waves, the solution is only valid outside the smallest spheroid
enclosing the radiating body.

In [42], the SWE is employed to calculate the insertion phase delay (IPD) and
to detect defects in the wall of a spherical radome, i.e., deviations in the dielectric
constant and the wall thickness. The method is also utilized in antenna near-field
imaging problems to find the relation between accuracy and resolution [93, 94]. The
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Figure 20: a) A photo of the radome with the attached dielectric letters LU (defects).
b) The reconstructed field, Hv, on the radome — conf. (1). The drawn lines indicate
where the letters will be located to create conf. (2). c) The phase of the reconstructed
field difference between conf. (1) and (2).

Cramér-Rao bound gives a lower bound on the estimation error and a fundamental
physical limit on system accuracy. This bound is related, via the Fisher infor-
mation matrix [61], to the resolution as a function of the number of vector waves
included [93]. The mathematical frame-work is applied to an electric field, measured
on a cylindrical surface, and it is shown in which regions the result is trustworthy.

A combination of SWE and plane wave expansion (PWE) is employed in [21, 23].
The electric field of a spherical near-field measurement is expanded in spherical
vector waves. Utilizing an extended transform of [33], the field is expressed in its
plane wave spectrum, whereby the field on a plane close to the origin can be retrieved
through an inverse fast Fourier transform. The method combines the high resolution
of the SWE with the ability to come very close to the antenna under test provided
by the PWE. This diagnostics technique is demonstrated by introducing errors; feed
tilt, Gaussian shaped metallic bump, and dishes of aluminum, on an offset reflector
antenna. These deviations are localized in the recreated field on a plane surface just
in front of the antenna [22].

Another combination of modal expansion and PWE is utilized by [151], where
the safety perimeter of base station antennas is investigated. The electric field,
measured on a cylindrical surface, is expanded in cylindrical vector waves and the
far field is calculated. The far field is expanded in PWS, and the field on different
planes close to the antenna is retrieved.

3.3 Surface integral representations

The interest in applying surface integral representations in non-destructing diagnos-
tics has increased rapidly over the last years. The problem is a linear inverse source
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Figure 21: a) Part of the radome visualizing a vertical line defect — a column of
missing elements — at ϕ1. A horizontal defect occurs at z1 due to a small verti-
cal displacement of the elements. b) The time average power density through the
radome is depicted in areas illuminated down to −15 dB. A pointwise normalization
is utilized to reduce the influence of a non-even illumination, see details in Paper V.

problem, and it is solved by a method of moments (MoM) approach. Compared to
the previously described methods, the measurement surface and the surface where
the sources are reconstructed are not limited to certain shapes, and with the rapid
development of computer technology, the computational complexity becomes less of
a problem. Initial diagnostics studies, employing a surface integral representation
and the extinction theorem, assuming no a priori information on the material of
the object, were reported in [99, 100], also attached as Papers I-II. This method
and variations thereof have then been utilized for numerous diagnostics purposes,
see Section 3.3.3 and [1, 2, 35, 36, 38, 57–59, 78, 79, 97, 101, 102, 108–110]. In 2011 two
commercial software tools, based on the reconstruction technique, were launched,
i.e., DIATOOL by TICRA1 and INSIGHT by SATIMO2.

3.3.1 Surface integral representations and equations

In this thesis, a surface integral representation and a surface integral equation are
utilized for radome diagnostics. A typical set-up is depicted in Figure 22. The
amplitude and phase of an electric field (Ez and Eϕ) are sampled in the near- or far-
field region. The goal is to reconstruct the equivalent surface currents (Jv, Jϕ, Mv,
Mϕ) on a radome-shaped surface in order to diagnose the electrical performance of
the radiating system. The equivalent surface currents are defined as the tangential

1TICRA. http://www.ticra.com, 2013-04-03.
2SATIMO. http://www.satimo.com, 2013-04-03.
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Figure 22: Description of the inverse source problem, and notation for parametriza-
tion of the electromagnetic and equivalent surface currents components. The shape
of the sample surface is arbitrary, however, it is here depicted as a cylindrical geom-
etry in the near-field region.

components of the electromagnetic fields on the surface [13, 54];{
J = n̂×H
M =− n̂×E (3.1)

where J is the equivalent electric surface current3, M is the equivalent magnetic
surface current3, E is the electric field, H is the magnetic field, respectively, and n̂
is the outward pointing unit vector as shown in Figure 22.

The equivalent surface currents on the radome surface are decomposed into two
tangential components along the horizontal, ϕ̂, and vertical, v̂, arc lengths coor-
dinates, i.e., [ϕ̂, v̂, n̂] forms a right-handed coordinate system, see Figure 22. The
relations between the components of the tangential fields on the surface and the
equivalent surface currents are then; Hv = H · v̂ = −Jϕ, Hϕ = H · ϕ̂ = Jv,
Eϕ = E · ϕ̂ = −Mv, and Ev = E · v̂ = Mϕ. In this thesis, both terms — equivalent

3In a more stringent terminology, the currents are equivalent surface current densities. However,
the word density is commonly suppressed in the literature and the subscript S or eq is employed [13,
25, 54]. Moreover, equivalent surface currents are the only currents present in this thesis, and
since measurement configuration and field polarization are expressed as sub- and superscript, the
simplified notation in (3.1) is applied.
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surface currents and tangential electromagnetic fields — are used when the sources
are discussed.

A surface integral representation expresses the electric field (Ez, Eϕ in Figure 22)
in a homogeneous and isotropic region in terms of the tangential surface current
values on the bounding surface (Jv, Jϕ, Mv, Mϕ). In our case, the bounding surface,
Sradome, is a fictitious surface, located just outside the physical radome surface, with
smoothly capped top and bottom surfaces to form a closed surface. This fictitious
surface is located in free space, but for convenience, it is referred to as the radome
surface throughout the thesis. Combining the source-free Maxwell equations and
vector identities gives a surface integral representation of the electric field [27, 54,
55, 63, 69, 86, 89, 130, 139, 142]. A derivation is found in Appendix A, and the result
is

¨

Sradome

(
jkη0 g(r′, r)

[
n̂(r′)×H(r′)

]
− j

η0
k
∇′g(r′, r)

{
∇′S ·

[
n̂(r′)×H(r′)

]}

+∇′g(r′, r)×
[
n̂(r′)×E(r′)

])
dS ′ =

{
−E(r) r outside Sradome

0 r inside Sradome

(3.2)
where the time convention used is ejωt, ω is the angular frequency, and η0 is the
intrinsic wave impedance of free space. The surface divergence is denoted ∇S· [27],
the unit normal n̂ points outward, and the scalar free-space Green’s function is

g(r′, r) = e−jk|r−r′|

4π|r−r′| , where the wave number is k = ω/c0, and c0 is the speed of light

in free space. The representation (3.2) states that if the tangential electromagnetic
fields on a bounding surface is known, the electric field in the volume, outside of
Sradome, can be determined [55, 130].

If the integrals in (3.2) are evaluated at a point r lying in the volume enclosed
by Sradome, the integrals cancel each other — the extinction theorem [25, 130]. This
statement does not necessarily mean that the fieldE is identically zero inside Sradome,
it only says that the values of the integrals cancel. The use of the extinction theorem
together with the surface integral representation, i.e., both representations in (3.2),
guaranties that the sources of the reconstructed surface currents are located inside
Sradome.

In Papers I-II, the surface integral representation in (3.2) is applied to a mea-
sured near field with a dominating co-polarized component. The representation is
combined with the extinction theorem, where r in (3.2) is located inside the radome
at a small distance from the inner radome wall.

In Papers III-V, both polarizations of the measured electric field are considered,
and the lower representation in (3.2) is transformed into a surface integral equation
letting r approach Sradome from the inside. However, care must be taken since the
integrands become singular as r approaches the surface, see Appendix A and [27,
63, 87, 130]. To simplify the notation, the equivalent surface currents in (3.1), as
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well as the operators L and K are introduced as [54]
L(X)(r) = jk

¨

Sradome

{
g(r′, r)X(r′)− 1

k2
∇′g(r′, r)

[
∇′S ·X(r′)

]}
dS ′

K(X)(r) =

¨

Sradome

∇′g(r′, r)×X(r′) dS ′

In this notation, the surface integral representation yields

L (η0J) (r)−K (M ) (r) = −E(r) r ∈ Smeas (3.3)

where Smeas is the set of sample points. The surface integral equation for the electric
field (EFIE) reads

n̂(r)×
{
L (η0J) (r)−K (M ) (r)

}
=

1

2
M(r) r ∈ Sradome (3.4)

In a similar manner, a surface integral equation of the magnetic field (MFIE) is
derived,

n̂(r)×
{
L (M) (r) +K (η0J) (r)

}
= −η0

2
J(r) r ∈ Sradome (3.5)

No a priori assumption on the material parameters of the radome is employed
in (3.3)-(3.5). As pointed out above, the reconstruction of the equivalent currents is
performed in free space on a fictitious surface just outside the physical surface of the
radome, i.e., Sradome is located in free space. The main purpose of the diagnostics is
to find unknown deviations, e.g., regions where the parameters of the material differs
from the ones in the design model, the a priori information. By reconstruction of
the equivalent surface currents, in free space, precisely outside the physical radome
surface, these defects can be imaged.

The surface integral equations (3.3)-(3.5) are commonly simplified by assuming
the material inside the surface of reconstruction to be a perfect electric conduc-
tor (PEC) or a perfect magnetic conductor (PMC), see references in Section 3.3.3.
The boundary conditions state that the tangential electric field on a PEC and the
tangential magnetic field on a PMC vanish — M = 0 or J = 0, respectively.

By using EFIE or MFIE separately, it is well known that internal resonances can
occur when solving the direct scattering problem [25, 26, 87, 121]. The resonances
are not the same for EFIE and MFIE, thus a combination of them, e.g., a CFIE-
or a PMCHWT-formulation, removes the problem with the internal resonances [25,
54, 64, 87, 139]. Another approach is suggested in [124], where dual-surface integral
equations are employed to avoid the resonances.

In the inverse source problem, a slightly different approach is used, where the
surface integral equations, EFIE and/or MFIE, are combined with a surface integral
representation. In this thesis, the problem is solved by using both EFIE (3.4) and
MFIE (3.5) separately together with the representation (3.2). The results do not
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differ significantly from each other, and it is concluded that there are no problems
with internal resonances for the employed set-ups and choice of operators.

The inverse source problems with unknown volume current densities can contain
non-radiating volume current densities. This problem is well known and this means
that there exist volume current densities that produce a zero field outside a finite
region [14, 32, 77, 81, 136]. This implies that a non-radiating volume current density
can be added to the solution without affecting the electromagnetic field outside the
finite region, i.e., the inverse source problem is non-unique. However, we have not
encountered any difficulties when solving for the equivalent surface currents (3.1) in
(3.2)-(3.5). This suggests that either are non-radiating surface currents not present
or suppressed by the regularization.

The surface integral representation can also be derived by utilizing Love’s equiva-
lence principle. This subject is only briefly described here, and the interested reader
is referred to the literature concerning the details of Love’s form of the equivalence
principle [12, 49, 80, 110, 114]. Employing Love’s equivalence principle, equivalent
currents are defined in analogy to those in (3.1) on a fictitious surface that encloses
the original sources. Specifically, equivalent surface currents are constructed in such
a way that they produce the same electromagnetic fields, as the original sources,
outside the fictitious surface, but a zero field inside.

Love’s equivalence theorem states that different sets of equivalent surface currents
can be obtained depending of the choice of the material (e.g., free space, PEC, or
PMC) inside the fictitious surface [12, 49, 114]. Either one of these sets of surface
currents gives rise to the same electromagnetic field outside the fictitious surface as
the original sources. In this thesis, the fictitious surface, Sradome, is located in free
space just outside the radome surface. Moreover, the surface integral representation
is combined with a surface integral equation, (3.4) or (3.5), in which the material
parameters are set to free space. Further discussion about the implications of using
a surface integral representation alone, compared to combining it with a surface
integral equation is found in [110].

3.3.2 Reconstruction algorithm

The algorithm of the inverse source problem is given in Paper III, and the procedure
is reviewed here. To find the unknown equivalent surface currents in (3.3)-(3.5), the
integral equations are written in their weak forms, i.e., they are multiplied with
test functions and integrated by parts over their domain [16, 37, 68, 87, 103]. The
set-up, see Figure 22, is axially symmetric. Consequently, a Fourier expansion in
the azimuth angle of rotational symmetry reduces the problem by one dimension,
i.e., the problem can be solved independently for each Fourier mode [82, 103, 105].
Moreover, the Fourier spectrum of the measured field is truncated at a certain
Fourier index, above which the energy contents is too low, see details in Papers III-
IV.

The system of equations in (3.3)–(3.5) is solved by a body of revolution method of
moments (MoM) code [6, 82], and the Green’s functions are evaluated based on [43].
The basis function in the ϕ̂-direction consists of a piecewise constant function, and a
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global function, a Fourier basis, of coordinate ϕ. Moreover, the basis function in the
v̂-direction consists of a piecewise linear function, 1D rooftop, of the coordinate v,
and the same global function as the basis function in the ϕ̂-direction, see Figure 22
for notations. Test functions are chosen according to Galerkin’s method [16]. The
surface is described by a second order approximation, and to form a closed surface,
a smooth top and bottom are added to the radome surface. The MoM code is based
on an in-house MoM code, and it is verified by perfectly conducting or dielectric
scattering spheres [136].

The inversion of the surface integral representation (3.2) is ill-posed, which means
that small errors in the measured data can produce large errors in the reconstructed
equivalent surface currents, i.e., the problem needs to be regularized [8, 62, 68]. In
this thesis, the problem is regularized by a truncated singular value decomposi-
tion (SVD), where the influence of small singular values is reduced [8, 34, 47]. In
Papers IV-V, a reference measurement series is performed to set the regularizing
parameter used in the subsequent series. The inversion of the matrix system is ver-
ified using synthetic data. Moreover, the results, which localize the given defects,
serve as verifications.

3.3.3 Source reconstruction utilizing surface integral representations

The interest in surface integral representations and surface integral equations as
tools in diagnostics has increased rapidly over the last years, where different combi-
nations and formulations based on an integral representation, the electric (EFIE),
and magnetic (MFIE) field integral equation, are utilized. This section contains a
brief overview presenting a selection of the results accomplished within the field of
research. More extensive reviews are given in [1, 110].

If the object on which the equivalent surface currents are to be reconstructed is
metallic, a perfect electric conductor (PEC), the magnetic equivalent surface cur-
rent is eliminated in (3.2). This is often a legitimate approximation in diagnostics
of metallic antenna apertures. For example, in [134] an electric surface integral rep-
resentation is employed together with measured near-field data of a cylindrical PEC
having apertures of various sizes on its surface. The very near field is reconstructed
to demonstrate how to localize and diagnose leakage points in metallic wires.

A common approach is to utilize the equivalence theorem together with image
theory, cf., a short discussion in Section 3.3.1 and [12, 49, 114]. In this method,
the volume inside the surface containing the sources is replaced by a body of a
perfect electric conductor (PEC) or a perfect magnetic conductor (PMC), leaving
only one of the equivalent surface currents. By employing the image technique, the
remaining equivalent surface current is calculated on a planar surface in front of the
object. This technique is convenient in diagnostics of flat antenna structures, see
e.g., [73], where an equivalent magnetic current together with a priori knowledge
of the antenna geometry is utilized to diagnose a low-directivity printed antenna.
A development of the method is given in [71], where a base station antenna is
enclosed by two infinite planes, one aligned with the front antenna aperture and
one aligned with the back aperture, on which the magnetic equivalent current is
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recreated. The magnetic equivalent current is then employed to find the safety
perimeter of the base station antenna by recreating the radiating field on planes at
various distances in front of and behind the antenna. In [3], the equivalence principle
and the image technique are utilized to diagnose radiated noise in electronic circuits
by reconstructing the electric equivalent surface current on a plane above the circuit.
In addition to diagnostics, the utilization of the equivalence theorem together with
image theory is also applied in near-field to far-field transformations [70, 72, 104,
117, 132].

A first attempt to recreate both electric and magnetic equivalent surface currents
on a 3D body is published in [99], i.e., Papers I-II, where an electric field with a
dominating co-component is utilized to image electromagnetic deviations due to
copper plates attached on a radome surface. The problem is solved by a dual-
surface integral representation and regularized with a singular value decomposition
(SVD). This work is followed by [97, 101, 102], i.e., Papers III-V, where the surface
integral representation is combined with the EFIE and applied to the co- and cross-
components of the measured electric field — measured in the near field in [97] and
measured in the far field in [101, 102]. Diagnostics of radomes are performed with
special interest in metallic defects [97], dielectric defects [101], and defects in the
lattice of a frequency selective radome [102].

A slightly different approach is found in [57–59], where defect elements on a
satellite antenna [58], and on a circular array antenna [57], are imaged. Specifically,
the integral representation, the EFIE, and the MFIE are solved utilizing higher order
bases functions in a MoM solver. The problem is regularized with a generalized
truncated singular value decomposition in [59], a Tikhonov regularization in [58],
and an iterative regularization scheme in [57], respectively.

In [38, 108–110], the surface integral representation is combined with EFIE or
MFIE that is evaluated on a surface located inside the surface of reconstruction,
i.e., a dual-surface approach is employed, and the matrix system is solved by an it-
erative conjugate-gradient solver. The dual-surface strategy is employed to find and
exclude radiation contributions from leaky cables and support structures in [108],
and in [38], antennas are characterized. A comparison between a single surface
integral representation and a dual-equation formulation (a surface integral represen-
tation combined with EFIE or MFIE) is performed in [109, 110], which shows that
the dual-equation formulation is in favour.

Yet another approach is given in [1, 2, 78, 79], where a surface integral represen-
tation alone is applied together with an iterative conjugate-gradient solver. The
electric current on the walls of a PEC, pyramidal horn antenna, is visualized in [2].
In [78], a conjugate-gradient solver and a singular value decomposition are shown to
give similar results. Moreover, measured near-field and far-field data is employed to
image the electric equivalent surface current on a radome covered log-periodic wide-
band antenna. A parallelized algorithm implemented on graphic processing units is
employed in [79] to image the equivalent surface currents on a base station antenna
and a helix antenna.

A single surface integral representation involving the dyadic Green’s function
is employed by [35, 36]. In [36], the surface integral representation is solved by
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using fast multipoles and an iterative solver based on generalized minimal residual.
The electric equivalent current is reconstructed on a PEC flat surface in front of a
reflector antenna and on the chassis of a car where an array of monopole antennas is
located. In [35], the authors make use of higher order basis functions and multilevel
fast multipoles to recreate the electric and magnetic equivalent surface currents on
a base station antenna from probe corrected near-field measurements.

4 Conclusion and future challenges

In this thesis a novel approach of source reconstruction for radome diagnostics is
investigated. A radome covers an antenna and protects it from environmental in-
fluences. The radome is ideally electrically transparent in the frequency band of
operation. However, several aspects affecting the electric performance, such as aero-
dynamics, robustness, lightweight, and lightning protection, must be considered in
the design. The electrical performance is usually defined by operational parameters,
e.g., beam deflection and transmission loss, which are commonly evaluated by far-
field measurements. Moreover, it is in general very difficult to determine the cause of
a performance deviation from far-field data alone. Source reconstruction for radome
diagnostics is presented in this thesis, where the tangential electromagnetic fields
are imaged on the radome surface, and the influences of defects and their locations
are revealed.

Previously, source reconstruction for diagnostics has been performed on canoni-
cal shaped bodies (planes, cylinders, and spheres), by utilizing plane wave decompo-
sition, modal expansion or combinations thereof [21–23, 39, 41, 42, 74, 111, 112, 115,
151]. The source reconstruction method, in this thesis, is based on a surface integral
representation together with the extinction theorem. The representation relates the
unknown tangential electromagnetic fields on the 3D-radome body to the measured
electric near or far field. The extinction theorem guarantees that the sources are
located inside the radome. The tangential electromagnetic fields are reconstructed
in free space just outside the physical surface of the radome, i.e., no a priori in-
formation of material parameters are required. The problem is an ill-posed inverse
source problem, regularized with a truncated singular value decomposition (SVD).

Surface integral representations have been employed in source reconstruction
prior to the work in [99], included as Paper I. However, to our knowledge, the
surface integral representation has earlier only been applied by itself to a perfect
electric conductor (PEC) or a perfect magnetic conductor (PMC), where one equiv-
alent surface current is reduced in the surface integral representation [3, 71, 73, 134].
Lately, the method utilizing a surface integral representation, commonly in combi-
nation with a surface integral equation or variations thereof, have been employed
in antenna diagnostics to find both the electric and the magnetic equivalent surface
currents [2, 35, 36, 38, 57, 58, 78, 79, 108]. Furthermore, two commercial tools have
been launched4.

4DIATOOL by TICRA, http://www.ticra.com,
and INSIGHT by SATIMO, http://www.satimo.com. 2013-04-03.
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The objective of the thesis is to demonstrate the potential of the source recon-
struction method as a diagnostics tool for radomes. The technique is non-destructive
and can be applied to both near- and far-field measurements. The electrical perfor-
mance of the radome wall, and defects attached to or in the wall, have successfully
been investigated. Specifically, influences of attached metal patches (representing
e.g., lightning-diverter strips or Pitot tubes), attached dielectric patches (modeling
deviations in the electrical thickness of the radome wall), and interruptions in the
lattice of a frequency selective surface (e.g., seams between printed circuits boards),
have been imaged and analyzed. Attention is paid to both amplitude and phase
of the reconstructed fields, as well as different visualization options, such as differ-
ent scales and components of the fields (co- or cross-polarizations of the electric or
magnetic components), or the Poynting’s vector, to discover as much properties as
possible of the electromagnetic fields on the radome surface.

Based on the investigations within the scope of this thesis, it is concluded that the
source reconstruction method has great potential of becoming a useful diagnostics
tool in radome design and evaluation processes. Below, some suggestions of how the
method can be incorporated as a diagnostics tool, together with further development
proposals, are listed.

• Source reconstruction can be utilized in delivery controls to guarantee manu-
facturing tolerances, e.g., the insertion phase delay (IPD), for specific antenna
illuminations.

This is demonstrated in Papers II-V, where the IPD of the radome wall is
investigated.

• In performance validations, there is a need to understand the cause of de-
viations in far-field data; transmission loss, beam deflection, side-lobe devia-
tions etc. A comparison, between the reconstructed tangential electromagnetic
fields on the radome surface and the expected ones derived from the theoretical
design, is suggested to reveal the errors and their influences. Another example
is the requirement of a trimming mask to reduce beam deflection caused by a
monolithic radome. A proposal is to utilize source reconstruction for a couple
of set-ups where the illuminations (the antenna positions) are directed towards
the areas on the radome that give rise to the largest beam deflections. Images
of the phase shifts (IPD) on the radome surface reveal areas of the wall that
are either too thick or too thin, and thereby need trimming.

Several defects and their influences on the electromagnetic fields are inves-
tigated in Papers I-V. Specifically, thickness deviations of the radome wall are
explored in Paper IV.

• Placement of Pitot tubes, lightning conductors, the attachment of the radome
to the hull of the aircraft, and errors in the periodic lattice of a frequency selec-
tive surface, change the electrical performance of the radome. Reconstruction
of the tangential electromagnetic fields on the radome surface gives an un-
derstanding of these influences. To get detailed information about a certain
defect, a couple of illuminations can be employed in the reconstruction. The
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idea is that different visualization techniques (such as, division of the tangen-
tial electromagnetic field in different components, imaging in different scales,
and applying filtering masks) reveal properties of the defect. Employing care-
fully chosen illuminations, i.e., relevant polarizations and incident angles, one
might be able to diagnose blockage of different field components, interference
patterns, edge effects, introduction of side and flash lobes, etc..

The concept is visualized in Papers I-V, where metallic and dielectric at-
tachments have been studied in the Papers I-IV, whereas deviations in an
frequency selective radome is imaged in V.

• A correct representation of the antenna radiation is essential as input in
radome design software tools in order to model the antenna characteristics
accurately. This can be achieved by the source reconstruction method, see [2,
22, 35, 36, 38, 57, 58, 71, 73, 74, 78, 79, 108, 111, 112, 115, 134, 151].

• Source reconstruction can also been utilized as a local verification tool in the
design of radome design software tools. These design tools commonly predict
the far field by modelling the propagation of the antenna radiation through the
radome wall. However, if the predicted far field contains errors, it is hard to
track the cause, i.e., the area of the radome surface that is incorrectly modeled
by the software. These areas are identified by making a local comparison
against the reconstructed electromagnetic fields.

• In the future, it will be feasible to filter the influence of a defect. For example,
assume a radome that gives rise to beam deflection. The radome is diagnosed
by reconstruction of the IPD, which indicate that the radome has a too thick
wall at a specific area, and it is proposed that the wall needs to be locally
ground. The plan is to make a numerical simulation of the suggested surface
alteration, in order to ensure that the proposed step (here grinding) creates
the desired effect in the far-field data. That is, the reconstructed IPD is vir-
tually manipulated in such a way that the change corresponds to the physical
thinning of the wall. This IPD is then employed to calculate the far field to
make sure that the proposed grinding does not change e.g., side lobes in an
undesirably way. This procedure guaranties that the suggested modifications
lead to the required effects in the far-field data.

• Today, the regularization parameter in the SVD is set manually. Studies have
shown that, for the investigated set-ups, the choice of this parameter within
an interval leads to stable results, and the parameter needs only to be set
once for a whole measurement series, see Paper IV. However, in future work,
it is desirably to automatically set the regularization parameter. This can
for example be achieved by employing a Tikhonov regularization with the
associated L-curve [47, 67].
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Appendix A Surface integral representations and

equations

There are several ways to derive surface integral representations and surface integral
equations of the Maxwell equations [27, 54, 55, 63, 86, 89, 130, 139]. In this appendix,
an alternative way is demonstrated [69, 142]. The aim is to give a basic understand-
ing of the derivation, and rigorous mathematical definitions of function spaces etc.,
are ignored.

The surface integral representation expresses the electromagnetic field in a ho-
mogeneous and isotropic region in terms of its values on the bounding surface. The
representation states that if the electromagnetic field on a surface of a volume is
known, the electromagnetic field in the volume can be determined [55, 130].

The representation is derived starting with two arbitrary scalar fields, φ(r′) and
ψ(r′), defined in a bounded domain V . The domain V is bounded by the surface
S with outward pointing normal vector n̂(r′), see Figure 23. The Green’s theorem,
reads [7, 129]

¨

S

[φ(r′)∇′ψ(r′)− ψ(r′)∇′φ(r′)] · n̂(r′) dS ′

=

˚

V

[
φ(r′)∇′2ψ(r′)− ψ(r′)∇′2φ(r′)

]
dv′ (A.1)

Proceeding to the representation of vector fields, let the scalar field φ(r′) in (A.1)
be [a · F (r′)], where a is an arbitrary constant vector and F (r′) is a vector field.
We have
¨

S

{
[a · F (r′)]∇′ψ(r′)− ψ(r′)∇′[a · F (r′)]

}
· n̂(r′) dS ′

=

˚

V

{
[a · F (r′)]∇′2ψ(r′)− ψ(r′)∇′2[a · F (r′)]

}
dv′
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and the observation point r.

Tedious algebra using differentiation rules of the nabla operator and the divergence
theorem give [54, 88, 129]

¨

S

(
ψ(r′)

{
n̂(r′)× [∇′ × F (r′)]

}
+∇′ψ(r′)

[
n̂(r′) · F (r′)

]
− ψ(r′)

[
∇′ · F (r′)

]
n̂(r′)−∇′ψ(r′)×

[
n̂(r′)× F (r′)

])
dS ′

=

˚

V

(
F (r′)∇′2ψ(r′) + ψ(r′)

{
∇′ × [∇′ × F (r′)]−∇′[∇′ · F (r′)]

})
dv′ (A.2)

This equation is the foundation for finding integral representations of vector fields.

A.1 Introduction of the scalar free-space Green’s function

Let the scalar field ψ in (A.2) be the scalar free-space Green’s function,

g(r, r′) =
e−jk|r−r

′|

4π|r − r′|

using the time convention ejωt. The variable of integration is denoted r′ and the
observation point r, see Figure 24. Assume r /∈ S. The Green’s function satisfies,

∇′2g(r, r′) + k2g(r, r′) = 0 r′ 6= r (A.3)
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Figure 25: The geometry for the evaluation of the limit process. The volume V is
punctuated by a ball of radius rε centered at the observation point r. The bounding
surface of this ball is Sε and its volume is denoted Vε.

where k is the wave number of the material. Replacing ψ in (A.2) with the scalar
free-space Green’s function and utilizing (A.3) gives

¨

S

(
g(r, r′)

{
n̂(r′)×

[
∇′ × F (r′)

]}
+∇′g(r, r′)

[
n̂(r′) · F (r′)

]
− g(r, r′)

[
∇′ · F (r′)

]
n̂(r′)−∇′g(r, r′)×

[
n̂(r′)× F (r′)

])
dS ′

=

˚

V

(
g(r, r′)

{
∇′ ×

[
∇′ × F (r′)

]
−∇′

[
∇′ · F (r′)

]
− k2F (r′)

})
dv′ (A.4)

Now, let us investigate what happens when the observation point belongs to the
volume V , i.e., r ∈ V . The Green’s function is singular at the point r′ = r and this
point must be avoided. Here, the integrals are investigated in the limit of classical
integrals. That is, a small ball Vε, centered at the singularity r, is excluded. The
radius of this ball is rε and its spherical bounding surface is denoted Sε, see Figure
25. Letting the radius of the sphere approach zero, in (A.4), gives

¨

S

... dS ′ + lim
rε→0

¨

Sε

... dS ′ =

˚

V

... dv′ − lim
rε→0

˚

Vε

... dv′ (A.5)

The surface Sε is parameterized in spherical coordinates, i.e., rε > 0, 0 6 ϕ 6 2π,
and 0 6 θ 6 π, with êz as the symmetry axis. The used notation is, cf., Figure 26,

rε = |r′ − r| dS = r2ε sin θ dϕ dθ

n̂ = −ν̂ dv = r2ε sin θ drε dϕ dθ
(A.6)
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Figure 26: The geometry and notation for the evaluation of integrals over the sphere
Sε.

ν̂ =
r′ − r
rε

= cosϕ sin θ êx + sinϕ sin θ êy + cos θ êz

∇′g(r, r′) =
(r − r′) e−jk|r−r

′|

4π|r − r′|3
[
1 + jk|r − r′|

]
= n̂

e−jkrε

4πrε

[
1

rε
+ jk

] (A.7)

where ê denotes the Cartesian orthonormal basis vectors in the x-, y-, and z-
direction, respectively.

In the integrals over the small sphere Sε, the normal unit vector ν̂ varies rapidly
over the integral domain while the fields F , [∇ · F ], [∇× F ], {∇ ×

[
∇× F

]
}, and

{∇
[
∇ · F

]
} are assumed to vary more slowly. Provided these fields are continuous,

the mean value theorem for integrals implies that in the limit of rε → 0, the fields
can be evaluated at the singular point r [27]. Letting rε → 0, results in the following
limits for the different parts in (A.4).

lim
rε→0

¨

Sε

g(r, r′)
{
n̂(r′)×

[
∇′ × F (r′)

]}
dS ′

= lim
rε→0

¨

Sε

e−jkrε

4πrε

{
n̂(r′)×

[
∇′ × F (r′)

]}
r2ε sin θ′ dϕ′ dθ′ = 0

lim
rε→0

¨

Sε

∇′g(r, r′)
[
n̂(r′) · F (r′)

]
dS ′

= lim
rε→0

¨

Sε

n̂(r′)
e−jkrε

4πrε

[
1

rε
+ jk

] [
n̂(r′) · F (r′)

]
r2ε sin θ′ dϕ′ dθ′

=
1

4π

¨

Sε

n̂(r′)
[
n̂(r′) · F (r)

]
sin θ′ dϕ′ dθ′ =

1

3
F (r)
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lim
rε→0

¨

Sε

g(r, r′)
[
∇′ · F (r′)

]
n̂(r′) dS ′

= lim
rε→0

¨

Sε

e−jkrε

4πrε

[
∇′ · F (r′)

]
n̂(r′) r2ε sin θ′ dϕ′ dθ′ = 0

lim
rε→0

¨

Sε

∇′g(r, r′)×
[
n̂(r′)× F (r′)

]
dS ′

= lim
rε→0

¨

Sε

n̂(r′)
e−jkrε

4πrε

[
1

rε
+ jk

]
×
[
n̂(r′)× F (r′)

]
r2ε sin θ′ dϕ′ dθ′

=
1

4π

¨

Sε

n̂(r′)×
[
n̂(r′)× F (r)

]
sin θ′ dϕ′ dθ′

=
1

4π

¨

Sε

{
n̂(r′)

[
n̂(r′) · F (r)

]
− F (r)

[
n̂(r′) · n̂(r′)

]}
sin θ′ dϕ′ dθ′

=
1

4π

[4π

3
F (r)− 4πF (r)

]
= −2

3
F (r)

lim
rε→0

˚

Vε

g(r, r′)
{
∇′ ×

[
∇′ × F (r′)

]
−∇′

[
∇′ · F (r′)

]
− k2F (r′)

}
dv′

= lim
rε→0

˚

Vε

e−jkrε

4πrε

{
∇′ ×

[
∇′ × F (r′)

]
−∇′

[
∇′ · F (r′)

]
− k2F (r′)

}
r2ε sin θ′ drε dϕ′ dθ′ = 0

The parts are inserted into (A.5) giving
¨

S

... dS ′ + F (r) =

˚

V

... dv′ r ∈ V

Until now we have assumed that r belongs to the volume V . If r /∈ V the
integrals in (A.4) are not singular. The results are collected in the following integral
representation

˚

V

(
g(r, r′)

{
∇′ ×

[
∇′ × F (r′)

]
−∇′

[
∇′ · F (r′)

]
− k2F (r′)

})
dv′

−
¨

S

(
g(r, r′)

{
n̂(r′)×

[
∇′ × F (r′)

]}
+∇′g(r, r′)

[
n̂(r′) · F (r′)

]
− g(r, r′)

[
∇′ · F (r′)

]
n̂(r′)−∇′g(r, r′)×

[
n̂(r′)× F (r′)

])
dS ′

=

{
F (r) r ∈ V
0 r /∈ V

(A.8)
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This is a general representation of a vector field F . The field F is represented as
a volume integral of its values in V and as a surface integral of its values over the
bounding surface S of V . If these integrals are evaluated at a point r that lies outside
the volume V , these integrals cancel each other — the extinction theorem [25, 130].
It is important to notice that this does not necessarily mean that the field F is
identically zero outside the volume V — only the values of the integrals cancel. As
stated above, it is assumed that r /∈ S.

A.2 Introduction of the Maxwell equations

So far, the vector field F has been an arbitrary vector field. This field can be chosen
as the electric or magnetic field that satisfies the source-free Maxwell equations with
the time convention ejωt, i.e., {

∇×E = −jωB

∇×H = jωD
(A.9)

Moreover, assuming that the material inside the volume V is isotropic and homoge-
neous, the constitutive relations are given by{

D = ε0εE

B = µ0µH
(A.10)

Combination of (A.9) and (A.10) give{
∇×E = −jωµ0µH

∇×H = jωε0εE
(A.11)

{
∇× (∇×E) = k2E

∇× (∇×H) = k2H
(A.12)

{
∇ ·E = 0

∇ ·H = 0
(A.13)

where ε0 is the permittivity of free space, ε the relative permittivity, µ0 the per-
meability of free space, µ the relative permeability, ω the angular frequency, and
k = ω

√
ε0µ0εµ the wave number.

Let F in (A.8) be the electric field E. Together with (A.11)-(A.13) a surface
integral representation for the electric field, is obtained

¨

S

{
jωµ0µ g(r, r′)

[
n̂(r′)×H(r′)

]
−∇′g(r, r′)

[
n̂(r′) ·E(r′)

]
+∇′g(r, r′)×

[
n̂(r′)×E(r′)

]}
dS ′ =

{
E(r) r inside S

0 r outside S
(A.14)
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where the surface S is shown in Figure 24. Observe that the volume integral is
zero and only the surface integral remains. If F is interchanged by the magnetic
field H , a surface integral representation for the magnetic field is attained. The
surface integral representation (A.14) contains both the normal and the tangential
components of the electromagnetic field. In practice, it is more convenient to work
only with the tangential fields. The normal component, the second term in (A.14),
can be written in terms of a tangential component by an application of the Maxwell
equations (A.9)-(A.10),

n̂(r) ·E(r) = −j
1

ωε0ε
n̂(r) ·

[
∇×H(r)

]
= j

1

ωε0ε
∇S ·

[
n̂(r)×H(r)

]
where the identity ∇S · (n̂× a) = −n̂ · (∇×a) is used with a denoting an arbitrary

vector and ∇S· the surface divergence [27]. That gives a surface integral represen-
tation for the electric field consisting of only tangential components on the surface
S,

¨

S

(
jωµ0µ g(r, r′)

[
n̂(r′)×H(r′)

]
− j

1

ωε0ε
∇′g(r, r′)

{
∇′S ·

[
n̂(r′)×H(r′)

]}

+∇′g(r, r′)×
[
n̂(r′)×E(r′)

])
dS ′ =

{
E(r) r inside S

0 r outside S
(A.15)

A.3 Values of the integral equations on the bounding sur-
face

The integral representation in (A.15) is defined for all r /∈ S. To include the
surface into the domain it must be studied what happens as r approaches S. At
this stage of the derivation it is not even clear that these limit values exist at all.
The integrands in (A.15) become singular as r moves toward the surface. This
singularity can be treated in several ways. Here, a classic approach is used, where
the limit is investigated by adding a half sphere from the outside and the inside,
respectively [139].

Starting with the approach from the outside, the surface integral representa-
tion (A.15) reads

¨

S

(
jωµ0µ g(r, r′)

[
n̂(r′)×H(r′)

]
− j

1

ωε0ε
∇′g(r, r′)

{
∇′S ·

[
n̂(r′)×H(r′)

]}
+∇′g(r, r′)×

[
n̂(r′)×E(r′)

])
dS ′ = 0 r /∈ V

and it is applied to a volume Vpunc, which is slightly deformed compared to the
original volume V , i.e., a small half ball of radius rε is excluded. The bounding
surface of the volume Vpunc is denoted S ′ and consists of two parts; the punctuated
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Figure 27: (a) The geometry and notation for the evaluation of the limit process
taken from the outside. (b) The parametrization of the half sphere Sε. Notice that
n̂ = −ν̂.

surface Spunc, and a half sphere Sε of radius rε, i.e., S ′ = Spunc ∪ Sε, see Figure 27a.
In the limit rε → 0 the surface S ′ → S and Vpunc → V , i.e.,

lim
rε→0

¨

S′

... dS ′ =

  

S

... dS ′ + lim
rε→0

¨

Sε

... dS ′ (A.16)

where the integral
fflffl
... dS denotes Cauchy’s principal value [105].

To investigate the limit of the integral over the surface Sε, this surface is param-
eterized by the spherical angles 0 6 ϕ 6 2π and 0 6 θ 6 π/2 with the direction
ez as the symmetry axis, see Figure 27b and (A.6)-(A.7). The normal unit vector
ν̂ varies rapidly over the small half sphere Sε, while the electromagnetic fields E
and H are assumed to vary more slowly. Provided these fields are continuous, the
mean value theorem for integrals implies that in the limit of rε → 0 the fields can
be evaluated at the point r [27]. Letting rε → 0, results in the following limits for
the different parts

lim
rε→0

¨

Sε

g(r, r′)
[
n̂(r′)×H(r′)

]
dS ′

= lim
rε→0

¨

Sε

e−jkrε

4πrε

[
−ν̂(r′)×H(r′)

]
r2ε sin θ′ dϕ′ dθ′ = 0

lim
rε→0

¨

Sε

− j
1

ωε0ε
∇′g(r, r′)

{
∇′S ·

[
n̂(r′)×H(r′)

]}
dS ′

= lim
rε→0

¨

Sε

−∇′g(r, r′)
[
n̂(r′) ·E(r′)

]
dS ′
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= lim
rε→0

¨

Sε

ν̂(r′)
e−jkrε

4πrε

[
1

rε
+ jk

] [
−ν̂(r′) ·E(r′)

]
r2ε sin θ′ dϕ′ dθ′

=− 1

4π

¨

Sε

ν̂(r′)
[
ν̂(r′) ·E(r)

]
sin θ′ dϕ′ dθ′ = −1

6
E(r)

lim
rε→0

¨

Sε

∇′g(r, r′)×
[
n̂(r′)×E(r′)

]
dS ′

= lim
rε→0

¨

Sε

−ν̂(r′)
e−jkrε

4πrε

[
1

rε
+ jk

]
×
[
−ν̂(r′)×E(r′)

]
r2ε sin θ′ dϕ′ dθ′

=
1

4π

¨

Sε

ν̂(r′)×
[
ν̂(r′)×E(r)

]
sin θ′ dϕ′ dθ′

=
1

4π

π/2ˆ

θ′=0

2πˆ

ϕ′=0

{
ν̂(r′)

[
ν̂(r′) ·E(r)

]
−E(r)

[
ν̂(r′) · ν̂(r′)

]}
sin θ′ dϕ′ dθ′

=
1

4π

[2π

3
E(r)− 2πE(r)

]
= −1

3
E(r)

The limit values above are plugged into (A.16), giving

  

S

(
jωµ0µ g(r, r′)

[
n̂(r′)×H(r′)

]
− j

1

ωε0ε
∇′g(r, r′)

{
∇′S ·

[
n̂(r′)×H(r′)

]}
+∇′g(r, r′)×

[
n̂(r′)×E(r′)

])
dS ′ =

1

2
E(r) r ∈ S (A.17)

which is the limit value of the surface integral representation for the electric field
when approaching from the outside.

If the limit is taken from the inside instead, the surface integral representation,
(A.15),

¨

S

(
jωµ0µ g(r, r′)

[
n̂(r′)×H(r′)

]
− j

1

ωε0εr
∇′g(r, r′)

{
∇′S ·

[
n̂(r′)×H(r′)

]}
+∇′g(r, r′)×

[
n̂(r′)×E(r′)

])
dS ′ = E(r) r ∈ V (A.18)

is applied to a volume Vpunc shown in Figure 28a. The derivation is similar to the
analysis above. The difference is that now n̂ = ν̂. This changes the sign in the limit
processes, which inserted in (A.18) give the same final surface integral equation, i.e.,
(A.17).

The representation (A.17) consists of three components, two describing the tan-
gential field and one describing the normal component of the field. Since the normal
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Figure 28: (a) The notation and geometry for the evaluation of the limit process
taken from the inside. (b) The parametrization of the half sphere Sε. Observe that
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component can be determined by the knowledge of the tangential parts, the normal
component can be eliminated [89], giving

n̂(r)×
  

S

(
jωµ0µ g(r, r′)

[
n̂(r′)×H(r′)

]
−j

1

ωε0ε
∇′g(r, r′)

{
∇′S ·

[
n̂(r′)×H(r′)

]}
+∇′g(r, r′)×

[
n̂(r′)×E(r′)

])
dS ′ =

1

2
n̂(r)×E(r) r ∈ S (A.19)

A.4 The exterior problem

Sofar, we have derived a surface integral representation (A.15) and a surface integral
equation (A.19), where the regions are defined in Figure 29a. Observe that all
sources are assumed to be outside the surface S and that the electric field inside S
can be determined by the electromagnetic fields on the border. The expressions do
not give any information of the electromagnetic field outside the surface S.

In this thesis, the surface integral representation and equation are applied to the
exterior problem (cf., Figure 29b). That is, all sources are assumed to be inside
the surface S and the electric field outside can be determined by the fields on the
border. The outside volume is not bounded. However, employing the Silver-Müller
radiation conditions, the solution of the Maxwell equations satisfies the following
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surface integral representation and equation [63, 89, 125, 130]

¨

S

(
jkη0 g(r, r′)

[
ν̂(r′)×H(r′)

]
− j

η0
k
∇′g(r, r′)

{
∇′S ·

[
ν̂(r′)×H(r′)

]}

+∇′g(r, r′)×
[
ν̂(r′)×E(r′)

])
dS ′ =

{
−E(r) r outside S

0 r inside S

ν̂(r)×
  

S

(
jkη0 g(r, r′)

[
ν̂(r′)×H(r′)

]
− j

η0
k
∇′g(r, r′)

{
∇′S ·

[
ν̂(r′)×H(r′)

]}
+∇′g(r, r′)×

[
ν̂(r′)×E(r′)

])
dS ′ = −1

2
ν̂(r)×E(r) r ∈ S

where the change of signs is due to the choice of normal, ν̂ = −n̂. Furthermore,
the volume outside S is set to free space, i.e., the intrinsic wave impedance being

η0 =
√

µ0
ε0

and the wave number is k = ω/c0, where c0 is the speed of light in free
space.

The tangential fields on the surface can be expressed as the electric and magnetic
equivalent surface currents, J and M , defined as [13, 54]{

J(r) = ν̂(r)×H(r)

M (r) =− ν̂(r)×E(r)

To further simplify the expressions, the operators L and K are introduced as [54]
L(X)(r) = jk

¨

S

{
g(r′, r)X(r′)− 1

k2
∇′g(r′, r)

[
∇′S ·X(r′)

]}
dS ′

K(X)(r) =

¨

S

∇′g(r′, r)×X(r′) dS ′
(A.20)

All collected, giving a surface integral representation and a surface integral equation
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of the electric field
L (η0J) (r)−K (M) (r) =

{
−E(r) r outside S

0 r inside S

ν̂(r)×
{
L (η0J) (r)−K (M) (r)

}
=

1

2
M (r) r ∈ S

where the regions are depicted in Figure 29b, and the integrals are interpreted as
Cauchy’s principle value [27, 105] when necessary.

Sometimes it is preferable to utilize a surface integral equation of the magnetic
field together with the surface integral representation. This equation can be derived
in a similar way as shown above by letting the vector F in (A.8) be the magnetic
field H , resulting in

ν̂(r)×
{
L (M ) (r) +K (η0J) (r)

}
= −η0

2
J(r) r ∈ S
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Abstract

Knowledge of the current distribution on a radome can be used to improve
radome design, detect manufacturing errors, and to verify numerical simula-
tions. In this paper, the transformation from near-field data to its equivalent
current distribution on a surface of arbitrary material, i.e., the radome, is
analyzed. The transformation is based on the scalar surface integral represen-
tation that relates the equivalent currents to the near-field data. The presence
of axial symmetry enables usage of the fast Fourier transform (FFT) to reduce
the computational complexity. Furthermore, the problem is regularized using
a singular value decomposition (SVD). Both synthetic and measured data are
used to verify the method. The quantity of data is large since the height
of the radome corresponds to 29 − 43 wavelengths in the frequency interval
8.0 − 12.0 GHz. It is shown that the method gives an accurate description
of the field radiated from an antenna, on a surface enclosing it. Moreover,
disturbances introduced by copper plates attached to the radome surface, not
localized in the measured near field, are focused and detectable in the equiv-
alent currents.

1 Introduction

There are several applications of a near field to equivalent currents transformation.
For example, in the radome industry it is important to have accurate models of the
field radiated from the antenna placed inside the radome. It is hard to measure this
field directly since the radome often is placed very close to the antenna and at these
distances, there is a substantial interaction between the antenna and the measuring
probe [5, 10, 16]. Another field of application is in the manufacturing of radiating
bodies, e.g., radomes, antenna arrays, when the radiation pattern from the body
does not exhibit the expected form. By determination of the equivalent currents on
the radiating body the malfunctioning areas or components can be found.

A common method, transforming near field to equivalent currents and vice versa,
is to use modal-expansions of the electric field [5]. This is a very efficient method
for radiating bodies with certain geometrical symmetries, i.e., planar, cylindrical,
and spherical. Having a planar aperture, the plane wave spectrum of the field
is utilized in the back transformation [3, 4]. The fact that the expression of the
far field originating from a planar surface is equal to the Fourier transform of the
radiating field on the aperture has been investigated in [9, 10]. The paper [9] also
illustrates that defects, patches of Eccosorb, can be detected on the aperture. If the
radiating body is of cylindrical or spherical geometry, the radial solutions contain
cylindrical and spherical Bessel functions, while the angular solutions are described
by trigonometric functions and the associated Legendre functions [5, 14]. For general
geometrical symmetries, where modal-expansions do not exist, the modal-expansion
is less applicable.

Later on different combinations of the electric- and magnetic-field integral equa-
tions (EFIE and MFIE) derived from the Maxwell equations, have been used to
back propagate fields towards their sources. By this method it is possible to handle
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a wider class of geometries [10]. In [15] the dual-surface magnetic and electric-field
integral equations are investigated. The fields are transformed back to a cubic per-
fect electric conductor by solving the dual-surface magnetic-field integral equation
using the conjugate gradient method. Other work using the integral equations is
reported in [11], where the near field is measured on a arbitrary surface and later
inverted to a planar, perfectly conducting surface by using a singular value decom-
position (SVD) for regularization.

In this paper, the approach is to investigate a scalar surface integral representa-
tion that does not require the aperture to be a perfect electric or magnetic conductor.
The representation provides a relation relating the unknown electric and magnetic
equivalent currents on a surface to the measured electric field. An additional re-
lation is given by the fact that the equivalent currents are constructed such that
the integral is zero inside the volume, on which surface the currents exist, i.e., the
extinction theorem [13].

The integral relations are discretized into matrix linear equations. The matrix
equations include an azimuthal convolution which is solved with a fast Fourier trans-
form (FFT) in the angular coordinate. The fast Fourier transform brings down the
complexity of the problem, i.e., the original surface-to-surface linear map is decom-
posed into a set of line-to-line linear maps. A singular value decomposition (SVD)
is used to invert each of these linear maps. As most inverse problems it is ill-posed,
i.e., small errors in the near-field data can produce large errors in the equivalent
currents. Thus, the problem needs to be regularized by suppression of small singular
values when inverted.

In this paper, the measured electric field is presumed to be scalar, i.e., the
scalar surface integral representation is utilized. The assumption is acceptable since
the used near-field data, supplied by SAAB Bofors Dynamics and Chelton Applied
Composites, Sweden, clearly have one dominating component in the main lobe,
see Figure 3. The measured data is given for three different antenna and radome
configurations, viz., antenna, antenna together with radome, and antenna together
with defect radome. The height of the radome corresponds to 29 − 43 wavelengths
in the frequency interval 8.0− 12.0 GHz.

As a start, synthetic data is used to verify the method. Verification is also
performed by a comparison between the measured far field and the far field calculated
from the equivalent currents on the radome. The calculated far field agrees well with
the measured far field. We show that the method can describe the field radiated
from an antenna, on a surface enclosing it. When the radome is introduced the
field is scattered and flash lobes arise. The equivalent currents on the radome, that
produce the electric field measured in the near-field area, are identified and the flash
lobes are accurately detected.

Manufacturing errors, not localized in the measured near-field data, can be fo-
cused and detected in the equivalent currents on the radome surface. In this paper,
it is shown that the field scattered by copper plates attached on the radome, is
focused back towards the original position of the copper plates. The length of the
side of the square copper plates is 6 cm, i.e., 1.6− 2.4 wavelengths corresponding to
the frequency span 8.0− 12.0 GHz.
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Figure 1: Photo of the cylindrical near-field range at SAAB Bofors Dynamics,
Sweden. The antenna under test is rotated and the probe is moved in the vertical
direction. A close up of the reflector antenna is shown in the upper right corner.

In Section 2 the experimental set-up is described and the measured near-field
data is presented. The scalar surface integral representation is introduced and
adapted to the specific problem in Section 3. Section 4 discusses the implemen-
tation process of the scalar surface integral representation. Results, using synthetic
near-field data and the error of the method is elucidated. The results, when using
the experimental near-field data, are shown and examined in Section 5. The paper
ends with the achieved conclusions in Section 6.

2 Near-field measurements

The near-field data, used in this paper, was supplied by SAAB Bofors Dynamics
and Chelton Applied Composites, Sweden. The set-up with relevant dimensions
indicated is shown in Figures 1 and 2a. Three different measurements were per-
formed; data measured without the radome, data measured with the radome, and
data measured with the defect radome. The defect radome has two copper plates
attached to its surface.

A reflector antenna fed by a symmetrically placed wave-guide generates the near-
field data, see Figure 1. The diameter of the antenna is 0.32 m and its focal distance
is 0.1 m. The main lobe of the antenna is vertically polarized relative to the hori-
zontal plane. The standing wave ratio (SWR) is approximately 1.4 in the frequency
range 8.2− 9.5 GHz. The antenna is poorly adapted for other frequencies.

The radome surface is axially symmetric and its radius, in terms of the height
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Figure 2: (a) The dimensions of the reflector antenna, the radome, and the cylinder
where the electric near field is measured. (b) A close-up showing the discretized
geometric variables.

coordinate, is modeled by

ρ(z) =

{
0.213 m −0.728 m ≤ z ≤ −0.663 m

−(bz′ + d) +
√

(bz′ + d)2 − a(z′)2 − 2cz′ − e −0.663 m < z ≤ 0.342 m

(2.1)
where z′ = z + 0.728 m and the constants are a = 0.122, b = 0.048, c = −0.018 m,
d = 0.148 m, and e = −0.108 m2. The near-field measurement probe consists of a
wave-guide for which no compensation is made in the final data. The cylindrical
surface, where the electric field is measured, is placed in both the reactive near-field
zone and the radiating near-field zone [2].

The amplitude and phase of the electric field are measured in the frequency
interval 8.0−12.0 GHz on a cylindrical surface by moving the probe in the z-direction
and rotating the antenna under test, see Figure 1. Applying this measurement set-
up, the fields on the top and the bottom of the cylindrical surface could not be
collected. It would have been preferable to measure the fields on an infinite cylinder.
However, the size of the cylinder is chosen due to the influence of the turntable below
the radome and the low field amplitudes above z = 800 mm, cf., Figures 2a and 3. In
the azimuth angle, 120 points are measured between −180◦ and 180◦ in steps of 3◦.
The z-dimension is divided into 129 points, every two points separated by 12.5 mm.
This means that at 8.0 GHz the electric field is measured 3 times per wavelength, in
the z-direction, and 1.5 times per wavelength, in the azimuth direction, respectively.
Together, a total of 120×129 = 15480 measurement points are used for each radome
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Figure 3: The measured co- and cross-polarized electric field on the measurement
cylinder at 8.0 GHz. In (a) and (b) the angle is fixed at ϕ = 0, and the fields are
normalized to the maximum value when no radome is present in (a). In (c) and (d)
the height is fixed at z = 0, and the fields are normalized to the maximum value
when no radome is present in (c).

configuration and frequency. The co- and cross-polarized measured electric fields are
shown in Figure 3. The differences between the three different antenna and radome
cases arise from constructive and destructive interference between the radiated field
and the scattered field. In Figure 3 it is also observed that the electric field consists
of a dominating co-component in the main lobe, i.e., a dominating z-component
since the antenna is vertically polarized.

3 The surface integral representation

The surface integral representation expresses the electromagnetic field in a homo-
geneous and isotropic region in terms of its values on the bounding surface. The
representation states that if the electromagnetic field on a surface of a volume is
known, the electromagnetic field in the volume can be determined [7, 13]. The rep-
resentation is derived starting from the time harmonic Maxwell equations with the
time convention ejωt. The Maxwell equations transform into the vector Helmholtz
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equation
∇2E(r) + k2E(r) = 0 (3.1)

since the material (air) is source free, homogeneous, and isotropic.
Assume that the electric field only consists of a component in the z-direction.

This is a good approximation dealing with the specific measurements described in
Section 2 since our prime interest is to reconstruct the electric field in the main lobe,
where the z-component is clearly the dominating one, cf., Figure 3.

Working with a scalar field, the surface integral representation only depends on
the scalar electric field, Ez, and its normal derivative, ∂Ez/∂n, i.e., the magnetic
field is not taken into account as it must in the full three dimensional expression [7].
The scalar surface integral representation is derived using the free space Green’s
function g(r, r′) = e−jk|r−r

′|/4π|r − r′| [13]

ˆˆ

S

[
∂g(r, r′)

∂n
Ez(r)− g(r, r′)

∂Ez(r)

∂n

]
dS =

{
−Ez(r′) r′ ∈ V
0 r′ /∈ V (3.2)

where V is the volume spanning from the outside of the radome to infinity. The
closed surface S is the radome surface with an added top and bottom surface. Ob-
serve that the electric field does not have to be zero outside the volume, i.e., inside
the radome. The surface integral representation (3.2) only states that the left-hand
side of the equation is zero if the vector r′ points outside the volume V , i.e., the
extinction theorem [13].

The equivalent surface currents are introduced as

M(r) ≡ Ez(r) and M ′(r) ≡ ∂Ez(r)

∂n
(3.3)

which are inserted in (3.2) to give

ˆˆ

radome

[
∂g(r, r′)

∂n
M(r)− g(r, r′)M ′(r)

]
dS =

{
−Ecyl

z (r′) r′ ∈ cylinder

0 r′ ∈ surface inside radome

(3.4)
where Ecyl

z is the z-component of the electric field on the measurement cylinder.
The continuous variables are discretized to give linear matrix equations. The dis-
cretized cylindrical coordinate system is described by the integer indices displayed
in Figure 2b.

3.1 Angular Fourier transformation

The transformation, the Green’s function, is axially symmetric due to the mea-
surement set-up, see Section 2. Observe that the symmetry only applies to the
transformation, not to the electric field. Thus, the left-hand side in (3.4) represents
a convolution and by using a Fourier transformation of the azimuth coordinate the
computational complexity can be brought down one dimension. This reduction of
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one dimension, can be understood by writing the left-hand side in (3.4) as a ma-
trix X. This matrix is a circulant matrix, i.e., every row is shifted one step to the
right compared to the previous row. The eigenvectors of all circulant matrices are
the column vectors of the Fourier matrix F . When a circulant matrix is multiplied
with the Fourier matrix. i.e., performing the Fourier transformation, the result is
FX = FΛ where Λ is a diagonal matrix, which can be seen as a reduction of one
dimension [12].

Discretization and Fourier transformation, in the azimuth coordinate, of (3.4)
give

Nm−1∑
m=0

[
Ĝ ′im̂M̂m̂ − Ĝim̂M̂ ′

m̂

]
= −Êcyl

î for all i, ̂ (3.5)

and
Nm−1∑
m=0

[
Ĝ′pm̂M̂m̂ − Ĝpm̂M̂

′
m̂

]
= 0 for all p, ̂ (3.6)

where G and G are the surface integrals, taken over the radome, of the Green’s
function multiplied with the basis functions used in the discretization process. G
has the discretized space variable r′ belonging to the measurement cylinder and
G has the discretized space variable r′ belonging to a surface inside the radome,
respectively. The prime denotes the normal derivative of the Green’s function, ̂ is
the integer index belonging to the Fourier transformed azimuth component, and the
“hat” denotes the Fourier transformed variables. The summation limits Nm and Np

are described in Figure 2b.
To solve the scalar surface integral representation, a limit process of (3.6) should

be performed, letting the fictitious surface inside the radome approach the radome
surface [2, 8]. To avoid singularities, we let the fictitious surface be located at a
finite distance from the radome surface. This provides us with a simple and feasible
method to allocate the surface currents, i.e., the extinction theorem is used as an
approximate solution to the integral representation in (3.6).

Reduction of M ′ in (3.5) and (3.6) gives

Nm−1∑
m=0

{
Ĝ ′im̂ −

Np−1∑
p=0

Nm−1∑
q=0

Ĝiq̂ (Ĝ−1)qp̂ Ĝ
′
pm̂

}
M̂m̂ = −Êcyl

î for all i, ̂ (3.7)

Equation (3.7) can also be written as ̂ matrix equations

Ĝ
radome

̂ M̂ ̂ = −Êcyl

̂ for all ̂ (3.8)

where the matrices are defined as M̂ ̂ ≡ [M̂m1]̂, Ê
cyl

̂ ≡ [Êcyl
i1 ]̂, and

Ĝ
radome

̂ ≡ [Ĝ ′im]̂ − [Ĝim]̂[Ĝmp]
−1
̂ [Ĝ′pm]̂ (3.9)

The notation of matrices used here is that of [1].
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3.2 Inversion with singular value decomposition

Since the matrices Ĝ
radome

̂ and [Ĝmp]̂ in (3.8) and (3.9) are not quadratic, a regular
inversion cannot be performed. A fast and easy way to solve this is to use the
singular value decomposition (SVD) [12]. This method is used on both matrices,

but the SVD-equations are only given here for Ĝ
radome

̂ . The matrix system (3.8)
can then be rewritten as

Û ̂Ŝ ̂V̂
†
̂M̂ ̂ = −Êcyl

̂ for all ̂ (3.10)

where V̂
†
̂ denotes the Hermitian conjugate of V̂ ̂. Both Û ̂ and V̂ ̂ are orthogonal

matrices. Ŝ ̂ is a diagonal matrix consisting of the singular values to Ĝ
radome

̂ in de-

creasing order. The singular values of both Ĝ
radome

̂ and [Ĝmp]̂ exhibit the tendency
shown by the curves in Figure 4a.

A cut-off value δ normalized to the operator L2-norm of Ĝ
radome

1 is chosen. The

operator L2-norm of Ĝ
radome

1 is equal to the largest singular value (σ1) of the largest
Fourier transformed azimuth component [8]. All singular values smaller than δ are

ignored during the inversion of Ŝ ̂ and are afterwards set to zero. If this is not done
the small singular values create an uncontrolled growth of non-radiation currents
when inverted. The mathematical formulation then fails since very small electric
field contributions become dominating. Performing the inversion of (3.10) gives

M̂ ̂ = − Û †̂Ŝ
−1
̂ V̂ ̂Ê

cyl

̂ for all ̂ (3.11)

Before the system of equations is solved it is necessary to convert it back from
Fourier space by an inverse Fourier transformation

M j = F−1
[
−Û †̂Ŝ

−1
̂ V̂ ̂Ê

cyl

̂

]
for all j, ̂ (3.12)

where j, as before, denotes the integer index belonging to the discretized azimtuth
component, see Figure 2b.

4 Implementation

Some adjustments of the formulas are made in the implementation process. To
facilitate the calculations, the radome surface is reshaped into a closed surface by
adding a smooth top and bottom surface. These extra surfaces are useful since the
measurements are performed under non-ideal conditions. The table, on which the
antenna and radome are placed, see Figure 1, reflects some of the radiation, which
is taken care of by the bottom surface. The top surface represents the electric field
that is reflected on the inside of the radome and then is passed out through the
top hole. If these factors are not considered, unwanted edge effects occur since the
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Figure 4: (a) The tendency of singular values of Ĝ
radome

̂ and [Ĝmp]̂. Every curve
represents the singular values of a Fourier transformed azimuth component, i.e.,
different ̂. The horizontal lines describe the cut-off values δ = σ1[0.15 0.1 0.05
0.01 0.005]. (b) The synthetic equivalent current, originating from three dipoles,
in dB-scale [−15, 0], normalized to the highest current value, i.e., the maximum
current magnitude in figure c. (c) The reconstructed current in dB-scale [−15, 0],
normalized to its highest current value.

electric field originating from the table and the top of the radome is forced to arise
from the radome itself.

The measured electric near field is measured 1.5 times per wavelength, in the
angular direction, at the frequency 8.0 GHz, see Section 2. To be sure that the
equivalent currents on the radome are recreated in an accurate way it is necessary to
have a high sample density on the radome. This is achieved by increasing the number
of discrete points, in the angular direction, on the radome surface by including extra
angles between the already existing ones. Thus, the axial symmetry of the Green’s
transformation is kept. The sample density on the measurement cylinder contributes
very little to the total error. The scalar surface integral representation creates
currents on the radome such that the electric field is correct at the measurement
points. However, if the Nyquist theorem is fulfilled, then the electric field is correct at
all points on the measurement surface, i.e., not only at the measurement points. As
mentioned before, the problem is vast and the matrix Ĝ, cf., (3.9), has approximately
108 elements at the frequency 8.0 GHz when the sample density is 10 points per
wavelength both in the angular direction and in the z-direction on the radome.

To verify and find the error of the method, synthetic data is used. A synthetic
electric field, originating from three dipoles inside the radome is shown in Figure 4b.
The corresponding reconstructed current on a surface shaped as the radome is shown
in Figure 4c where the sample density is 10 points per wavelength both in the z-
direction and in the angular direction. The inner fictitious surface is located one
wavelength from the radome surface.

The error as a function of the Fourier transformed azimuth component is defined
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as

Err(̂) = 20 log10

‖ M̂ ̂ − M̂
correct

̂ ‖2
‖ M̂ correct

̂ ‖2
(4.1)

= 20 log10

√∑Nm−1
m=0 | M̂m̂ − M̂ correct

m̂ |2 ∆Sm√∑Nm−1
m=0 | M̂ correct

m̂ |2 ∆Sm

for all ̂ (4.2)

where ∆Sm denotes the discretized area elements on the radome.
By using synthetic data and choosing appropriate cut-off values δ the error is

shown to be below−60 dB for each existing Fourier transformed azimuth component.
To obtain these low error levels, the measurement surface must be closed, i.e., field
values at the top and bottom surfaces of the cylindrical measurement surface must be
included. The cut-off values depend on the complexity of the specific measurement
set-up and must be investigated for each new set-up.

The total error of the scalar surface integral representation using the measured
near field described in Section 2 is hard to define since the noise level and the amount
of field spread outside the measurement cylinder are unknown parameters. Instead
we rely on the fact that the method handles synthetic data well and that the results
using measured data is satisfactory, see Section 5.

5 Results using measured near-field data

The measured near-field data, described in Section 2, is investigated. The inner
fictitious surface is located one wavelength from the radome surface. The sample
density on the radome is 10 points per wavelength both in the angular direction
and in the z-direction. The cut-off values are determined in accordance with the
discussion in Section 4.

Three different measurement configurations are investigated, viz., antenna, an-
tenna together with radome, and antenna together with defect radome. The studied
frequency interval is 8.0− 12.0 GHz. The results for the different measurement con-
figurations are shown in Figure 5a at the frequencies 8.0 GHz and 10.0 GHz. In Fig-
ure 5b the results for the defect radome case are shown for the frequencies 8.0 GHz,
9.0 GHz, 10.0 GHz, 11.0 GHz, and 12.0 GHz, respectively.

In the case when no radome is placed around the antenna the equivalent current
is calculated on a surface shaped as the radome, see Figure 5aa’ and 5ad’. The
figures show that the near field close to the antenna is complex and hard to predict,
i.e., the diffraction pattern must be taken into account. The diffraction is explained
as environmental reflections and an off-centered antenna feed.

The case when the radome is present, see Figure 5ab’ and 5ae’, shows in compar-
ison to the case without radome that the used radome interacts with the antenna
and hence disturbs the radiated field. However, the currents in the main lobe are
hardly affected by the radome, as seen in Figure 6a. The influence of the radome is
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Figure 5: The reconstructed currents in dB-scale [−30, 0], all normalized to the
highest current value, i.e., the maximum current magnitude in figure ac’. (a) The
different measurement configurations are depicted at two different frequencies. From
left to right; antenna without radome, antenna together with radome, and antenna
together with defect radome, respectively. The arrows point out the location of the
copper plates on the defect radome. (b) The defect radome case, shown at different
frequencies.

clearly visible in the reconstructed currents on the back of the radome where flash
lobes occur, see Figure 6b.

The defect radome has two copper plates attached to its surface. These are
placed in the forward direction of the main lobe of the antenna and centered at the
heights 41.5 cm and 65.5 cm above the bottom of the radome. The length of the
side of the squared copper plates is 6 cm, which corresponds to 1.6 wavelengths at
8.0 GHz and 2.4 wavelengths at 12.0 GHz, respectively. The locations of the copper
plates are detected as shown in Figure 5ac’ and 5af’, where the lower plate appears
clearly. The other plate is harder to discern since it is placed in a region with small
current magnitudes. However, a cross section graph through the main lobe detects
even this copper plate, see Figure 6a. Observe that the effects of the copper plates
cannot be localized directly in the near-field data, compare Figure 6a to Figure 3a.
The near-field data only shows that the field is disturbed, not the location of the
disturbance. Nevertheless, by using the scalar surface integral representation the
effects of the plates are localized and focused. The defect radome also increases the
backscattering as seen in Figure 6b. Due to the copper plates the flash lobes are
different compared to the case with the non-defect radome.
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Figure 6: Cross section of the reconstructed current on the radome surface for
the different measurement configurations, at 8.0 GHz. The current is shown as
functions of the radome height for a fixed angle. All graphs are normalized to the
highest current value, i.e., the maximum current for the defect radome. (a) The
graph representing the currents in the main lobe, i.e., the front of the radome. The
position of the copper plates are marked as thick lines on the horizontal axis. (b) The
currents on the back of the radome.

As a final verification, the far-field amplitude on a sphere in the far-field region is
studied. The electric field, originating from the equivalent currents on the radome,
is calculated on the sphere,

Esph
j = −F−1

[
Ĝ̂M̂ ̂

]
for all j, ̂ (5.1)

in accordance with (3.8) and (3.12), except that Ĝ̂ now describes the transformation
from the radome to the inner fictitious surface and the far-field sphere, respectively.
The denotations j and ̂ are, as before, the integer index belonging to the discretized
azimuth component and the Fourier transformed discretized azimuth component,
respectively.

The far-field amplitude F is derived as

F (θ, φ) = kr ejkrEsph(r, θ, φ) as r →∞ (5.2)

where (r, θ, φ) describes the spherical coordinate system [6]. The result is compared
with measured far-field data, supplied by Chelton Applied Composites, as shown in
Figure 7. The far field is depicted for the angles φ = 0 and φ = π, i.e., a cross-section
through the far field of the main lobe and the corresponding far field originating from
the currents on the back of the radome. There is a lack of agreement between the
measured far field and the calculated one in the angles corresponding to the top
of the radome,i.e., θ ≈ 0. This is due to the fact that fields originating hereof are
not all included in the measured near-field data, since the measurement surface is a
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Figure 7: Comparison between the measured far-field data, supplied by Chelton
Applied Composites, and the far field calculated from the equivalent currents on the
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when no radome is present. (a) Antenna without radome. (b) Antenna together
with radome. (c) Antenna together with defect radome. (d) The calculated far-field
pattern for the three measurement configurations.

cylinder, see Figure 2a. The fact that the radome disturbs and reflects the electric
field, as earlier seen in Figure 6b, can also be detected in the far field, see Figure 7d,
where flash lobes appear when the radome is present.

6 Discussions and conclusions

The used scalar surface integral representation gives a linear map between the equiv-
alent currents and the near-field data for general structures. It is here shown that
this map can be inverted for axially symmetric geometries. The model can the-
oretically be adapted to geometries lacking symmetry axes. Although it is not a
feasible approach for radome applications, demanding large quantities of measured
data, with the present computer capacity.
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The transformation method is stable and useful in radome design and for eval-
uation purposes. To investigate the electric field passing through the radome, the
current distribution on the antenna or on a surface enclosing the antenna must
be known. Using the surface integral representation, the equivalent currents, on a
surface enclosing the antenna, can be described.

Another range of application within the radome industry is to study how e.g.,
lightning conductors and Pitot tubes, often placed on radomes, influence the equiv-
alent currents. We show that such influences and the field effects of the radome
itself can be detected. In this paper, copper plates are attached on the radome, in
the direction of the antenna main lobe. The length of the side of the square copper
plates are 1.6−2.4 wavelengths, corresponding to the frequency span 8.0−12.0 GHz.
The effects of the plates cannot be localized directly by using the near-field data,
but by using the equivalent currents the effects are focused and detected on the
radome surface. Thus, by transforming the near-field data to the radome surface,
field defects introduced by the radome and other disturbances are focused back to
their origins.

It is concluded that the transformation method based on the surface integral
representation works very well and that the field of applications is large. A nat-
ural continuation is to elaborate the algorithm by including near field data with
cross-polarization, i.e., to implement the full Maxwell equations with a method of
moments (MoM). Nevertheless, if the measured near-field data consists of one dom-
inating component the use of the full Maxwell equations are not necessary, as shown
in this paper.

Additional aspects to be investigated more thoroughly in the future are the
resolution possibilities of manufacturing errors and other external field influences.
Analysis of the phase information in the equivalent currents is also of interest. More-
over, a study regarding the detection of different materials attached to the radome
surface is desirable.
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The technical report is a continuation of Paper I. An extended analysis of the
measurement data is performed, whereas the theoretical parts remain unchanged.
Specifically, the phase of the electric field is taken into account, and different visu-
alization techniques are discussed and presented.
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Abstract

Knowledge of the current distribution on a radome can be used to improve
radome design, detect manufacturing errors, and to verify numerical simula-
tions. In this paper, the transformation from near-field data to its equivalent
current distribution on a surface of arbitrary material, i.e., the radome, is
analyzed. The transformation is based on the scalar surface integral represen-
tation that relates the equivalent currents to the near-field data. The presence
of axial symmetry enables usage of the fast Fourier transform (FFT) to reduce
the computational complexity. Furthermore, the problem is regularized using
a singular value decomposition (SVD). Both synthetic and measured data are
used to verify the method. The quantity of data is large since the height
of the radome corresponds to 29 − 43 wavelengths in the frequency interval
8.0 − 12.0 GHz. It is shown that the method gives an accurate description
of the field radiated from an antenna, on a surface enclosing it. Moreover,
disturbances introduced by copper plates attached to the radome surface, not
localized in the measured near field, are focused and detectable in the equiva-
lent currents. The method also enables us to determine the phase shift of the
field due to the passage of the radome, cf., the insertion phase delay.

1 Introduction

This paper provides a wrap-up and a final report of the reconstruction of equivalent
currents in the scalar approximation. The paper is a continuation of the work in [11].
An extended analysis of the measurement data is performed, whereas the theoretical
parts remain unchanged. Specifically, the phase of the electric field is taken into
account, and different visualization techniques are discussed and presented.

1.1 Ranges of application

There are several applications of a near field to equivalent currents transformation.
For example, in the radome industry it is important to have accurate models of the
field radiated from the antenna placed inside the radome. It is hard to measure
this field directly since the radome often is located very close to the antenna and
at these distances, there is a substantial interaction between the antenna and the
measuring probe [6, 13, 19]. It is also important to have a powerful tool to determine
the insertion phase delay (IPD), also known as the electrical thickness of the radome.
The IPD is often one of the specified qualities given to characterize a radome. One
way to measure the IPD is to place two horn antennas in such a way that the
incident angle on the radome coincide with the Brewster angle, which is the angle
where the transmitted field has its highest value [12]. To get the IPD, the phase
of the transmitted field is subtracted from the phase of the measured field with no
radome between the horn antennas. This process is very time consuming since it
has to be repeated several times to cover the whole radome surface. Using the scalar
surface integral equation, the phase shift due to the propagation through the radome
is determined.
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Another field of application is in the manufacturing of radiating bodies, e.g.,
antenna arrays, when the radiation pattern from the body does not exhibit the
expected form. By determination of the equivalent currents on the radiating body,
the malfunctioning areas or components can be found.

1.2 History

A common method, transforming near field to equivalent currents and vice versa,
is to use modal-expansions of the electric field [6]. This is a very efficient method
for radiating bodies with certain geometrical symmetries, i.e., planar, cylindrical,
and spherical. Having a planar aperture, the plane wave spectrum of the field
is utilized in the back transformation [3, 5]. The fact that the expression of the
far field originating from a planar surface is equal to the Fourier transform of the
radiating field on the aperture has been investigated in [10, 13]. The paper [10] also
illustrates that defects, patches of Eccosorb, can be detected on the aperture. If the
radiating body is of cylindrical or spherical geometry, the radial solutions contain
cylindrical and spherical Bessel functions, while the angular solutions are described
by trigonometric functions and the associated Legendre functions [6, 17]. For general
geometrical symmetries, where modal-expansions do not exist, the modal-expansion
is less applicable.

Moreover, different combinations of the electric- and magnetic-field integral equa-
tions (EFIE and MFIE) derived from the Maxwell equations, have been used to back
propagate fields towards their sources. By this method it is possible to handle a
wider class of geometries [13]. In [18] the dual-surface magnetic and electric-field in-
tegral equations are investigated. The fields are transformed back to a cubic perfect
electric conductor by solving the dual-surface magnetic-field integral equation using
the conjugate gradient method. Other work using the integral equations is reported
in [14], where the near field is measured on a arbitrary surface and later inverted
to a planar, perfectly conducting surface by using a singular value decomposition
(SVD) for regularization.

1.3 The scalar surface integral representation

In this paper, the approach is to investigate a scalar surface integral representation
that does not require the aperture to be a perfect electric or magnetic conductor.
The representation provides a relation relating the unknown electric and magnetic
equivalent currents on a surface to the measured electric field. An additional relation
is given by the fact that the equivalent currents are constructed such that the integral
is zero inside the volume, on which surface the currents exist, i.e., the extinction
theorem [16].

The integral relations are discretized into matrix linear equations. The matrix
equations include an azimuthal convolution which is solved with a fast Fourier trans-
form (FFT) in the angular coordinate. The fast Fourier transform brings down the
complexity of the problem, i.e., the original surface-to-surface linear map is decom-
posed into a set of line-to-line linear maps. A singular value decomposition (SVD)
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Figure 1: The measured co- and cross-polarized electric field on the measurement
cylinder at 8.0 GHz. In (a) and (b) the angle is fixed at ϕ = 0, and the fields are
normalized by the maximum value when no radome is present in (a). In (c) and (d)
the height is fixed at z = 0, and the fields are normalized to the maximum value
when no radome is present in (c).

is used to invert each of these linear maps. As most inverse problems it is ill-posed,
i.e., small errors in the near-field data can produce large errors in the equivalent
currents. Thus, the problem needs to be regularized by suppression of small singular
values when inverted.

1.4 Results

In this paper, the measured electric field is presumed to be scalar, i.e., the scalar
surface integral representation is utilized. The assumption is acceptable since the
used near-field data, supplied by SAAB Bofors Dynamics and Applied Composites
AB, Sweden, clearly have one dominating component in the main lobe, see Figure 1.
The measured data is given for three different antenna and radome configurations,
viz., antenna, antenna together with radome, and antenna together with defect
radome. The measurement set-up is shown in Figure 2. The height of the radome
corresponds to 29− 43 wavelengths in the frequency interval 8.0− 12.0 GHz.
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Figure 2: Photo of the cylindrical near-field range at SAAB Bofors Dynamics,
Sweden. The antenna under test is rotated and the probe is moved in the vertical
direction. A close up of the reflector antenna is shown in the upper right corner.

As a start, synthetic data is used to verify the method. Verification is also
performed by a comparison between the measured far field and the far field calculated
from the equivalent currents on the radome. The calculated far field agrees well
with the measured far field. Moreover, when the radome is introduced, the field is
scattered and flash lobes arise. The equivalent currents on the radome, due to these
effects are identified and the flash lobes are accurately detected.

Manufacturing errors, not localized in the measured near-field data, can be fo-
cused and detected in the equivalent currents on the radome surface. In this paper,
it is shown that the field scattered by copper plates attached on the radome, is
focused back towards the original position of the copper plates. The length of the
side of the square copper plates is 6 cm, i.e., 1.6− 2.4 wavelengths corresponding to
the frequency span 8.0− 12.0 GHz.

1.5 Outline

In Section 2, the experimental set-up is described and the measured near-field data
is presented. The scalar surface integral representation is introduced and adapted to
the specific problem in Section 3. Section 4 contains the implementation process of
the scalar surface integral representation. Results, using synthetic near-field data,
and the error of the method are presented. The results, when using the experi-
mental near-field data, are shown and examined in Section 5. To give the reader a
understanding of the field properties that can be extracted from the resulting data,
Section 6 gives examples of ways to visualize the results. The paper ends with the
achieved conclusions in Section 7.
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Figure 3: (a) The dimensions of the reflector antenna, the radome, and the
cylinder where the electric near field is measured. (b) A close-up showing the inner
fictitious surface and the discretized geometric variables.

2 Near-field measurements

The near-field data, used in this paper, was supplied by SAAB Bofors Dynamics and
Applied Composites AB, Sweden. The set-up with relevant dimensions indicated is
shown in Figures 2 and 3a. Three different measurements were performed; data
measured without the radome, data measured with the radome, and data measured
with the defect radome. The defect radome has two copper plates attached to its
surface.

A reflector antenna, fed by a symmetrically located wave-guide, generates the
near-field, see Figure 2. The diameter of the antenna is 0.32 m and its focal distance
is 0.1 m. The main lobe of the antenna is vertically polarized relative to the hori-
zontal plane. The standing wave ratio (SWR) is approximately 1.4 in the frequency
range 8.2− 9.5 GHz. The antenna is poorly adapted for other frequencies.

The radome surface is axially symmetric and its radius, in terms of the height
coordinate, is modeled by

ρ(z) =

{
0.213 m −0.728 m ≤ z ≤ −0.663 m

−(bz′ + d) +
√

(bz′ + d)2 − a(z′)2 − 2cz′ − e −0.663 m < z ≤ 0.342 m

(2.1)
where z′ = z + 0.728 m and the constants are a = 0.122, b = 0.048, c = −0.018 m,
d = 0.148 m, and e = −0.108 m2, respectively. The material of the radome has a
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relative permittivity of 4.32 and its loss tangent is 0.0144. The thickness of the
wall of the radome varies between 7.6− 8.2 mm. The near-field measurement probe
consists of a wave-guide for which no compensation is made in the final data. The
cylindrical surface, where the electric field is measured, is located in the near-field
zone [2].

The amplitude and phase of the electric field are measured in the frequency
interval 8.0−12.0 GHz on a cylindrical surface by moving the probe in the z-direction
and rotating the antenna under test, see Figure 2. Applying this measurement
set-up, the fields on the top and the bottom of the cylindrical surface could not
be collected. It would have been preferable to measure the fields on an infinite
cylinder. However, the size of the cylinder is chosen such that the turntable below
the radome does not have a major influence of the measurements and such that the
fields above z = 800 mm are negligible, cf., Figures 1 and 3a. In the azimuth angle,
120 points are measured between −180◦ and 180◦ in steps of 3◦. The z-dimension
is divided into 129 points, separated by 12.5 mm. This means that at 8.0 GHz
the electric field is measured 3 times per wavelength, in the z-direction, and 1.5
times per wavelength, in the azimuth direction, respectively. Together, a total of
120 × 129 = 15480 measurement points are used for each radome configuration
and frequency. The co- and cross-polarized measured electric fields are shown in
Figure 1. The differences between the three different antenna and radome cases
arise from constructive and destructive interference between the radiated field and
the scattered field. In Figure 1 it is also observed that the electric field consists of
a dominating co-component in the main lobe, i.e., a dominating z-component since
the antenna is vertically polarized.

3 The surface integral representation

The surface integral representation expresses the electromagnetic field in a homoge-
neous, isotropic region in terms of its values on the bounding surface. The represen-
tation states that if the electromagnetic field on a surface of a volume is known, the
electromagnetic field in the volume can be determined [8, 16]. The representation is
derived starting from the time harmonic Maxwell equations with the time convention
ejωt. The Maxwell equations transform into the vector Helmholtz equation

∇2E(r) + k2E(r) = 0 (3.1)

since the material (air) is source free, homogeneous, and isotropic.
Assume that the electric field only consists of a component in the z-direction.

This is a good approximation dealing with the specific measurements described in
Section 2 since our prime interest is to reconstruct the electric field in the main lobe,
where the z-component is clearly the dominating one, cf., Figure 1.

Working with a scalar field, the surface integral representation only depends on
the scalar electric field, Ez, and its normal derivative, ∂Ez/∂n, i.e., not all compo-
nents of the electric and magnetic fields need to be included. Observe that in the
vector integral representation all tangential components of the electric and magnetic
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fields must be taken into account [8]. The scalar surface integral representation is
derived using the free space Green function g(r, r′) = e−jk|r−r

′|/4π|r−r′| giving [16]

ˆˆ

S

[
∂g(r, r′)

∂n
Ez(r)− g(r, r′)

∂Ez(r)

∂n

]
dS =

{
−Ez(r′) r′ ∈ V
0 r′ /∈ V (3.2)

where V is the volume exterior to the closed surface S which consists of the radome
surface with an added top and bottom surface. Observe that the electric field does
not have to be zero outside the volume, i.e., inside the radome. The surface integral
representation (3.2) only states that the left-hand side of the equation, evaluated at
a point r′ outside the volume V , is zero, i.e., the extinction theorem [16].

The equivalent surface currents are introduced as

M(r) ≡ Ez(r) and M ′(r) ≡ ∂Ez(r)

∂n
(3.3)

which inserted in (3.2) give

ˆˆ

radome

[
∂g(r, r′)

∂n
M(r)− g(r, r′)M ′(r)

]
dS =

{
−Ecyl

z (r′) r′ ∈ cylinder

0 r′ ∈ inside radome
(3.4)

where Ecyl
z is the z-component of the electric field on the measurement cylinder.

The fictitious surface, inside the radome, is shaped as the radome and located close
to the radome wall.

3.1 Angular Fourier transformation

Due to the measurement set-up, the transformation, the Green’s function, is axially
symmetric, see Section 2. The symmetry only applies to the transformation, not
to the electric field. Thus, the left-hand side in (3.4) represents a convolution and
by using a Fourier transformation of the azimuth coordinate, the computational
complexity can be brought down one dimension. This reduction of one dimension,
can be understood by writing the left-hand side in (3.4) as a matrix, X. This matrix
is a circulant matrix, i.e., every row is shifted one step to the right compared to
the previous row. The eigenvectors of all circulant matrices are the column vectors
of the Fourier matrix, F . Multiplying a circulant matrix with the Fourier matrix,
i.e., performing the Fourier transformation, gives FX = FΛ where Λ is a diagonal
matrix, which can be seen as a reduction of one dimension [15].

The continuous variables in (3.4) are discretized to give linear matrix equations.
The discretized cylindrical coordinate system is described by the integer indices
depicted in Figure 3b. Discretization and Fourier transformation, in the azimuth
coordinate, of (3.4) give

Nm−1∑
m=0

[
Ĝ ′im̂M̂m̂ − Ĝim̂M̂ ′

m̂

]
= −Êcyl

î for all i, ̂ (3.5)
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and
Nm−1∑
m=0

[
Ĝ′pm̂M̂m̂ − Ĝpm̂M̂

′
m̂

]
= 0 for all p, ̂ (3.6)

where G and G are the surface integrals, taken over the radome, of the Green’s
function multiplied with the basis functions used in the discretization process. G has
the discretized space variable r′ belonging to the measurement cylinder and G has
the discretized space variable r′ belonging to the fictitious surface inside the radome,
respectively. The prime denotes the normal derivative of the Green’s function, ̂ is
the integer index belonging to the Fourier transformed azimuth component, and the
“hat” denotes the Fourier transformed variables. The summation limits Nm and Np

are given in Figure 3b.
To solve the scalar surface integral representation, a limit process of (3.6) should

be performed, letting the fictitious surface inside the radome approach the radome
surface [2, 9]. To avoid singularities, we let the fictitious surface be located at a
finite distance from the radome surface. This provides us with a simple and feasible
method to allocate the surface currents, i.e., the extinction theorem is used as an
approximate solution to the integral representation in (3.6).

Reduction of M ′ in (3.5) and (3.6) gives

Nm−1∑
m=0

{
Ĝ ′im̂ −

Np−1∑
p=0

Nm−1∑
q=0

Ĝiq̂ (Ĝ−1)qp̂ Ĝ
′
pm̂

}
M̂m̂ = −Êcyl

î for all i, ̂ (3.7)

Equation (3.7) can also be written as ̂ matrix equations

Ĝ
radome

̂ M̂ ̂ = −Êcyl

̂ for all ̂ (3.8)

where the matrices are defined as M̂ ̂ ≡ [M̂m1]̂, Ê
cyl

̂ ≡ [Êcyl
i1 ]̂, and

Ĝ
radome

̂ ≡ [Ĝ ′im]̂ − [Ĝim]̂[Ĝmp]
−1
̂ [Ĝ′pm]̂ for all ̂ (3.9)

The used notation of matrices is that of [1].

3.2 Inversion with singular value decomposition

Since the matrices Ĝ
radome

̂ and [Ĝmp]̂ in (3.8) and (3.9) are not quadratic, a regular
inversion cannot be performed. A fast and easy way to solve this is to use the
singular value decomposition (SVD) [15]. This method is used on both matrices,

but the SVD-equations are only given here for Ĝ
radome

̂ . The matrix system (3.8)
can then be rewritten as

Û ̂Ŝ ̂V̂
†
̂M̂ ̂ = −Êcyl

̂ for all ̂ (3.10)

where V̂
†
̂ denotes the Hermitian conjugate of V̂ ̂. Both Û ̂ and V̂ ̂ are orthogonal

matrices. Ŝ ̂ is a diagonal matrix consisting of the singular values to Ĝ
radome

̂ in de-

creasing order. The singular values of both Ĝ
radome

̂ and [Ĝmp]̂ exhibit the tendency
shown by the curves in Figure 4a.
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A cut-off value, δ, normalized to the operator L2-norm of Ĝ
radome

1 is chosen. The

operator L2-norm of Ĝ
radome

1 is equal to the largest singular value (σ1) of the largest
Fourier transformed azimuth component [9]. All singular values smaller than δ are

ignored during the inversion of Ŝ ̂ and are afterwards set to zero. If this is not done
the small singular values create an uncontrolled growth of non-radiation currents
when inverted. The mathematical formulation then fails since very small electric
field contributions become dominating. Performing the inversion of (3.10) gives

M̂ ̂ = − V̂ ̂Ŝ
−1
̂ Û

†
̂Ê

cyl

̂ for all ̂ (3.11)

Before the system of equations is solved, it is necessary to convert it back from
Fourier space by an inverse Fourier transformation

M j = F−1
[
−V̂ ̂Ŝ

−1
̂ Û

†
̂Ê

cyl

̂

]
for all j, ̂ (3.12)

where j, as above, denotes the integer index belonging to the discretized azimuth
component, see Figure 3b.

4 Implementation

Some adjustments of the formulas are made in the implementation process. To
facilitate the calculations, the radome surface is reshaped into a closed surface by
adding a smooth top and bottom surface. These extra surfaces are useful since the
measurements are performed under non-ideal conditions. The turntable, on which
the antenna and radome are located, see Figure 2, reflects some of the radiation,
which is taken care of by the added bottom surface. The top surface takes care of the
electric field that is reflected on the inside of the radome and then radiated through
the top hole. If these factors are not considered, unwanted edge effects occur since
the electric field originating from the turntable and the top of the radome is forced
to arise from the radome itself.

The measured electric near field is measured 1.5 times per wavelength, in the
azimuth direction, at the frequency 8.0 GHz, see Section 2. To be sure that the
equivalent currents on the radome are recreated in an accurate way, it is necessary to
have a high sample density on the radome. This is achieved by increasing the number
of discrete points, in the azimuth direction, on the radome surface by including extra
angles between the already existing ones. Thus, the axial symmetry of the Green’s
transformation is preserved.

The sample density on the measurement cylinder contributes very little to the
total error. The scalar surface integral representation creates currents on the radome
such that the electric field is correct at the measurement points. However, if the
Nyquist theorem is fulfilled, then the electric field is correct at all points on the
measurement surface, i.e., not only at the measurement points [15]. As mentioned
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Figure 4: (a) The typical behavior of singular values of Ĝ
radome

̂ and [Ĝmp]̂. Every
curve represents the singular values of a Fourier transformed azimuth component,
i.e., different ̂. The horizontal lines describe the cut-off values, δ = σ1[0.15 0.1 0.05
0.01 0.005]. (b) The synthetic equivalent currents, originating from three dipoles, in
a dB-scale [−15, 0], normalized to the highest current value, i.e., the maximum cur-
rent magnitude in subfigure c. (c) The reconstructed currents in dB-scale [−15, 0],
normalized to its highest current value.

above, the amount of data is large and the matrix Ĝ
radome

, cf., (3.9), has approxi-
mately 108 elements at the frequency 8.0 GHz when the sample density is 10 points
per wavelength both in the azimuth direction and in the z-direction on the radome.

To verify and find the error of the method, synthetic data is used. A synthetic
electric field, originating from three dipoles inside the radome is shown in Figure 4b.
The corresponding reconstructed currents on a surface shaped as the radome are
shown in Figure 4c where the sample density is 10 points per wavelength both in
the z-direction and in the azimuth direction. The inner fictitious surface is located
one wavelength from the radome surface.

The error as a function of the Fourier transformed azimuth component is defined
as

Err(̂) = 20 log10

‖ M̂ ̂ − M̂
correct

̂ ‖2
‖ M̂ correct

̂ ‖2

= 20 log10

√∑Nm−1
m=0 | M̂m̂ − M̂ correct

m̂ |2 ∆Sm√∑Nm−1
m=0 | M̂ correct

m̂ |2 ∆Sm

for all ̂

(4.1)

where ∆Sm denotes the discretized area elements on the radome.
By using synthetic data and choosing appropriate cut-off values, δ, the error is

shown to be below−60 dB for each existing Fourier transformed azimuth component.
To obtain these low error levels, the measurement surface must be closed, i.e., field
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Figure 5: The reconstructed currents in dB-scale [−30, 0], all normalized to the
highest current value, i.e., the maximum current magnitude in figure ac’. (a) The
different measurement configurations are depicted at two different frequencies. From
left to right; antenna without radome, antenna together with radome, and antenna
together with defect radome, respectively. The arrows point out the location of the
copper plates on the defect radome. (b) The defect radome case, shown at different
frequencies.

values at the top and bottom surfaces of the cylindrical measurement surface must be
included. The cut-off values depend on the complexity of the specific measurement
set-up and must be investigated for each new set-up.

The total error of the scalar surface integral representation using the measured
near field described in Section 2 is hard to define since the noise level and the amount
of field spread outside the measurement cylinder are unknown parameters. Instead,
we rely on the fact that the method handles synthetic data well and that the results
using measured data is satisfactory, see Section 5.

5 Results using measured near-field data

The measured near-field data, described in Section 2, is investigated. The inner
fictitious surface is located one wavelength from the radome surface. The sample
density on the radome is 10 points per wavelength both in the azimuth direction
and in the z-direction. The cut-off values are determined in accordance with the
discussion in Section 4.

Three different measurement configurations are investigated, viz., antenna, an-
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Figure 6: Cross section of the reconstructed currents, on the radome surface, for
the different measurement configurations at 8.0 GHz. The currents are shown as
functions of the radome height for a fixed angle. All graphs are normalized to the
highest current value, i.e., the maximum current for the defect radome case. (a) The
graph representing the currents in the main lobe, i.e., the front of the radome. The
positions of the copper plates are marked by thick lines on the horizontal axis.
(b) The currents on the back of the radome.

tenna together with radome, and antenna together with defect radome. The studied
frequency interval is 8.0− 12.0 GHz. The results for the different measurement con-
figurations are shown in Figure 5a at the frequencies 8.0 GHz and 10.0 GHz. In Fig-
ure 5b the results for the defect radome case are shown for the frequencies 8.0 GHz,
9.0 GHz, 10.0 GHz, 11.0 GHz, and 12.0 GHz, respectively.

In the case when no radome is located around the antenna, the equivalent cur-
rents are calculated on a surface shaped as the radome, see Figure 5aa’ and 5ad’.
The figures show that the near field close to the antenna is complex and hard to
predict, i.e., the diffraction pattern must be taken into account. The diffraction is
explained as environmental reflections and an off-centered antenna feed.

The case when the radome is present, see Figure 5ab’ and 5ae’, shows in com-
parison to the case without radome that the radome interacts with the antenna and
hence disturbs the radiated field. However, the currents in the main lobe are hardly
affected by the radome, as seen in Figure 6a. The influence of the radome is clearly
visible in the reconstructed currents on the back of the radome where flash lobes
occur, see Figure 6b.

The defect radome has two copper plates attached to its surface. These are
located in the forward direction of the main lobe of the antenna and centered at
the heights 41.5 cm and 65.5 cm above the bottom of the radome. The length of the
side of the squared copper plates is 6 cm, which corresponds to 1.6 wavelengths at
8.0 GHz and 2.4 wavelengths at 12.0 GHz, respectively. The locations of the copper
plates are detected as shown in Figure 5ac’ and 5af’, where the lower plate appears
clearly. The other plate is harder to discern since it is located in a region with low
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Figure 7: The reconstructed phase of the currents on the front of the radome.
(a) The different measurement configurations are depicted at two different frequen-
cies. From left to right; antenna without radome, antenna together with radome,
and antenna together with defect radome, respectively. (b) The defect radome case,
shown at different frequencies.

amplitudes. However, a cross section graph through the main lobe detects even this
copper plate, see Figure 6a. Observe that the effects of the copper plates cannot be
localized directly in the near-field data, compare Figure 6a to Figure 1a. The near-
field data only shows that the field is disturbed, not the location of the disturbance.
Nevertheless, by using the scalar surface integral representation, the effects of the
plates are localized and focused. The defect radome also increases the backscattering
as seen in Figure 6b. Due to the copper plates, the flash lobes are different compared
to the case with the non-defect radome.

Until now only the amplitude of the reconstructed currents has been investigated.
The phase of the currents is depicted in Figure 7. The vertical lines above the
main lobe in Figure 7a’ and 7d’ are due to phase jumps and are caused by the low
amplitude of the currents in these areas. The phase difference (antenna - antenna
with radome) reveals how the the phase is changed due to the influence of the
radome, see Figure 8. The phase shift, denoted ∆ϕ, is only known modulus 2π. The
phase shift in the main lobe is almost constant, especially for the low frequencies,
which is more clearly seen by looking at the cross section of the front side of the
radome, see Figure 9. What is noticeable in this image is the region between z =
−0.4 m and z = 0 m, i.e., the main lobe where the phase shift is nearly constant.
In areas where the amplitude of the field is small, cf., Figure 6a, the phase of the
field is not well defined, i.e., it is dominated by noise. This almost constant phase
shift, for the low frequencies, confirms that the radome is quite well adapted to the
frequencies 8.0− 9.0 GHz, which is also the frequency interval where the antenna is
well matched, see Section 2.
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Figure 8: The phase difference (antenna - antenna with radome) for several
frequencies.
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Figure 9: Cross section of the phase difference (antenna - antenna with radome)
on the front of the radome. Observe that in areas where the amplitude of the
currents are small, cf., Figure 6a, the phase of the field is not well defined, i.e., it is
dominated by noise.
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Figure 10: The phase difference (antenna with radome - antenna with defect
radome) for several frequencies. The arrows point out the location of the copper
plates.

Sometimes, when dealing with phase information, the figures can be clarified by
using phase unwrapping [4]. It means that the jump in the scale between 0 and 2π
is removed. In our case phase unwrapping gives us no new information since the
area of interest is the main lobe and the phase shift there is almost constant.

To validate the calculation of the phase shift, the propagation distance of the
field through the radome, i.e., the actual propagation path of the field in the radome
material, is estimated and compared to the actual thickness of the radome given in
Section 2. The propagation distance of the field through the radome is longer than
the wall thickness since the field has an incident angle larger than zero. The phase
difference between two fields propagating the distance d in air and in the radome
material, respectively, can be written as [12]

∆ϕ = Re
[
2πf

√
ε0εrµ0(1− j tan δ)

]
d− 2πf

√
ε0µ0 d (5.1)

where f is the frequency, d the propagation distance of the field, ε0 the permittivity
of free space, and µ0 the permeability of free space, respectively. The parameters
belonging to the radome, described in Section 2, are the relative permittivity, εr,
and the loss tangent, tan δ. Since only an estimation of the propagation distance
is performed, we assume that this distance is the same in both air and the radome
material. We assume perpendicular incidence and neglect all reflections. According
to Section 2, the thickness of the radome is between 7.6 − 8.2 mm. The almost
constant phase shifts in the main lobe are approximated from Figure 9 for all fre-
quencies. Solving for d in (5.1) results in a propagation distance of 9.3− 9.7 mm for
all frequencies, which is considered constant due to the crude approximations of the
phase shifts. The phase shift, ∆ϕ, is comparable to the insertion phase delay (IPD)
often used in the radome industry.
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Figure 11: Comparison between the measured far-field data, supplied by Applied
Composites AB, and the far field calculated from the equivalent currents on the
radome surface. The far fields are normalized to the maximum value of the far field
when no radome is present. (a) Antenna without radome. (b) Antenna together
with radome. (c) Antenna together with defect radome. (d) The calculated far-field
pattern for the three measurement configurations.

The phase images in Figure 7b are not appropriate for finding the location of the
copper plates. Instead, the phase difference (antenna with radome - antenna with
defect radome) is useful, see Figure 10. These images reveal the change of the phase
due to the attached copper plates on the defect radome.

As a final verification of the method, the amplitude on a sphere in the far-field
region is studied. The electric field, originating from the equivalent currents on the
radome, is calculated on the sphere, i.e.,

Esph
j = −F−1

[
Ĝ̂M̂ ̂

]
for all j, ̂ (5.2)

in accordance with (3.8) and (3.12), except that Ĝ̂ now describes the transformation
from the radome to the inner fictitious surface and to the far-field sphere. The
denotations j and ̂ are, as above, the integer index belonging to the discretized
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azimuth component and the Fourier transformed discretized azimuth component,
respectively.

The far-field amplitude F is derived as

F (θ, φ) = kr ejkrEsph(r, θ, φ) as r →∞ (5.3)

where (r, θ, φ) denotes the spherical coordinate system [7]. The result is compared
with measured far-field data, supplied by Applied Composites AB, as shown in Fig-
ure 11. The far field is depicted for the angles φ = 0 and φ = π, i.e., a cross-section
through the far field of the main lobe and the corresponding far field originating
from the currents on the back of the radome. There is a lack of agreement between
the measured far field and the calculated one at the angles corresponding to the top
of the radome, i.e., θ ≈ 0. This is due to the fact that fields originating hereof are
not all included in the measured near-field data, since the measurement surface is a
cylinder, see Figure 3a. The fact that the radome disturbs and reflects the electric
field, as earlier seen in Figure 6b, can also be detected in the far field, see Figure 11d,
where flash lobes appear when the radome is present.

6 Alternative ways to visualize the electromag-

netic currents

6.1 Amplitude of the reconstructed currents

In the previous section, the amplitude and the phase of the reconstructed currents
have been visualized by showing the amplitude in dB-scale over the front side of the
radome in Figure 5, and over a cross section of the front and the back in Figure 6.
These ways of presenting the results are in this section supplemented in an attempt
to see what possibilities other visualization approaches offer. First, the back side of
the radome is shown in a dB-scale in Figure 12. The absolute value of the currents is
also displayed in a linear scale on the front and the back of the radome in Figures 13
and 14, respectively. The flash lobes clearly appear in both dB- and linear scale, see
Figures 12 and 14. Notice that the top copper plate is not resolved very well in the
linear scale compared to the dB-scale in Figure 5.

6.2 Differences between the measurement configurations

To further demonstrate the distinctions between the three radome configurations
their differences are calculated. The difference (|antenna| - |antenna with radome|)
is shown in Figure 15 in a dB-scale, and in Figure 16 in a linear scale. The images
show the influence of the radome and the appearance of flash lobes at the back of
the radome. The dB-scale, Figure 15, has the advantage that also small current
values are made visible. The advantage with the linear scale is that the sign of the
difference is visible. In Figure 16, on the front of the radome, the field originating
from the antenna is the strongest, i.e., the difference is positive, while on the back
of the radome, the field passing through the radome as flash lobes is the strongest,
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Figure 12: The reconstructed currents on the back of the radome in a dB-scale
[−30, 0], all normalized to the highest current value, i.e., the maximum current mag-
nitude in Figure 5ac’. (a) The different measurement configurations are depicted at
two different frequencies. From left to right; antenna without radome, antenna to-
gether with radome, and antenna together with defect radome, respectively. (b) The
defect radome case, shown at different frequencies.
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Figure 13: The reconstructed currents on the front of the radome in a linear scale,
all normalized to the highest current value, i.e., the maximum current magnitude
in figure ac’. (a) The different measurement configurations are depicted at two
different frequencies. From left to right; antenna without radome, antenna together
with radome, and antenna together with defect radome, respectively. The arrows
point out the location of the copper plates on the defect radome. (b) The defect
radome case, shown at different frequencies.
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Figure 14: The reconstructed currents on the back of the radome in a linear scale,
all normalized to the highest current value, i.e., the maximum current magnitude
in Figure 13ac’. (a) The different measurement configurations are depicted at two
different frequencies. From left to right; antenna without radome, antenna together
with radome, and antenna together with defect radome, respectively. (b) The defect
radome case, shown at different frequencies.

i.e., the difference is negative. This conclusion cannot be drawn by looking at the
dB-scale in Figure 15, where only the amplitude of the difference is displayed.

To emphasize the contribution of the defect radome, the difference (|antenna
with radome| - |antenna with defect radome|) is studied in a dB-scale, see Figure 17
and in a linear scale, see Figure 18. The effect of the lower copper plate is clearly
detectable in both figures, while the top plate is hard to discern in both scales,
i.e., these figures are useful to get an overview, but when it comes to details, other
visualizations approaches are needed. The tricky part with the dB-scale is to choose
its lower limit. If a too low value is used, too much noise appears and blurs the
image. However, if instead a too high value is picked, the field effects caused by the
copper plates are hidden. To reveal the exact positions of the copper plates, cross
section graphs through the front of the radome are presented in a linear and in a
dB-scale in Figure 19 for the frequency 8.0 GHz. The effects of the copper plates
are clearly seen in both scales, but their positions are somewhat off-centered. This
is probably due to the fact that the copper plates cause diffractions and reflections,
which do not occur when only the radome is present. There is also an uncertainty
in the measurement set-up.

6.3 Propagation of the reconstructed fields

To see how the waves propagate on the radome-shaped surface, the field values, i.e.,
Re (M ejωt) for 0 6 ωt 6 2π, are presented as a movie on http://www.eit.lth.se/

staff/kristin.persson under the link Research. The distinctions between the
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Figure 15: The amplitude difference abs(|antenna| - |antenna with radome|) for
several frequencies. The amplitude differences are normalized to the highest value
at each frequency and are all depicted in a dB-scale [−20, 0].

different frequencies and radome configurations are revealed on both the front and
the back side of the radome surface.

7 Discussions and conclusions

The scalar surface integral representation gives a linear map between the equivalent
currents and the near-field data for general geometries. It is shown that this map
can be inverted for axially symmetric geometries. The model can theoretically be
adapted to geometries lacking symmetry axes. Although it is not a feasible approach
for radome applications, demanding large quantities of measured data, with the
present computer capacity.

The transformation method is stable and useful in radome design and for eval-
uation purposes. To investigate the electric field passing through the radome, the
current distribution on the antenna or on a surface enclosing the antenna must be
known. Using the surface integral representation, the equivalent currents, on a sur-
face enclosing the antenna, can be described. The insertion phase delay is estimated
by investigating the phase of the reconstructed currents.

In this paper, copper plates are attached on the radome, in the direction of
the antenna main lobe. The length of the side of the square copper plates is
1.6 − 2.4 wavelengths, corresponding to the frequency span 8.0 − 12.0 GHz. The
effects of the plates cannot be localized directly by using the near-field data, but by
using the equivalent currents, the effects are focused and detected on the radome
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Figure 16: The amplitude difference (|antenna| - |antenna with radome|) for several
frequencies. The amplitude differences are normalized to the highest value at each
frequency and are all depicted in a linear scale.

surface. Thus, by transforming the near-field data to the radome surface, field de-
fects introduced by the radome and other disturbances are focused back to their
origins. Another range of application within the radome industry is to study how
e.g., lightning conductors and Pitot tubes, often placed on radomes, influence the
equivalent currents. We predict that such influences and the field effects of the
radome itself can be detected.

It is concluded that the transformation method based on the scalar surface in-
tegral representation works very well and that the field of applications is large. A
natural continuation is to elaborate the algorithm by including near-field data with
cross-polarization, i.e., to implement the full Maxwell equations with a method of
moments (MoM). Nevertheless, if the measured near-field data consists of one domi-
nating component, the use of the full Maxwell equations are not necessary, as shown
in this paper.

Additional aspects to be investigated more thoroughly in the future are the
resolution possibilities of manufacturing errors and other external field influences.
Moreover, a study regarding the detection of different materials attached to the
radome surface is desirable.
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Abstract

In this paper an inverse source problem is investigated. The measurement
set-up is a reflector antenna covered by a radome. Equivalent currents are
reconstructed on a surface shaped as the radome in order to diagnose the
radome’s interaction with the radiated field. To tackle this inverse source
problem an analysis of a full-wave integral representation, with the equivalent
currents as unknowns, is used. The extinction theorem and its associated inte-
gral equation ensure that the reconstructed currents represent sources within
the radome. The axially symmetric experimental set-up reduces the compu-
tational complexity of the problem. The resulting linear system is inverted
by using a singular value decomposition. We visualize how the presence of
the radome alters the components of the equivalent currents. The method
enables us to determine the phase shift of the field due to the transmission
of the radome, i.e., the IPD (insertion phase delay). Also, disturbances due
to defects, not observable in the measured near field, are localized in the
equivalent currents.

1 Introduction

The aim of this paper is to calculate and visualize the sources of a measured electric
field on a radome-shaped surface. The electric field is originating from an antenna
inside the radome and is measured in the near-field zone outside the radome. The
electrical size of the radome is 29 wavelengths at the frequency 8.0 GHz.

This kind of calculations are important in antenna diagnostics, radome design,
etc., since the field close to the body of interest is difficult to measure directly. By
doing so, the interaction between the source and the measurement probe can give
incorrect results [14, 36, 49]. In the process of designing a radome, the electric field
close to the antenna is input to software calculating the field propagation through
the radome wall [1, 39]. To get reliable results, it is crucial that the representation
of the field radiated from the antenna, i.e., the input data, is well known. To deter-
mine the performance of the radome it is eligible to quantify e.g., beam deflection,
transmission efficiency, pattern distortion, and the electrical thickness of the radome
wall, i.e., the insertion phase delay (IPD). It is also of interest to see how the mount-
ing device and e.g., lightning conductors and Pitot tubes, often placed on radomes,
interact with the electric field.

One of the first techniques developed to solve the inverse source problems of
this kind employs the plane wave expansion [10, 23, 37]. The method works very
well when the equivalent currents are reconstructed on a planar surface. One recent
area of application is the determination of the specific absorption rate of mobile
phones [12]. A modal expansion of the field can be utilized if the reconstruction
surface is cylindrical or spherical [14, 24, 29]. This method has been used to calculate
the insertion phase delay (IPD) and to detect defects on a spherical radome [13].
More general geometries, e.g., needle shaped objects and flat disks, can be handled
by expanding the field in spheroidal wave functions [45]. A combination of the plane
wave spectrum and the modal expansion has been utilized in [7, 8] and [50] where
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flat antenna structures are diagnosed and safety perimeter of base stations’ antennas
is investigated, respectively. Further references in the area can be found in [43].

To be able to handle a wider class of geometries, diagnostics techniques based
on integral representations, which are solved by a method of moments approach, are
applied. The drawback is the computational complexity. If the object on which the
currents are to be reconstructed is metallic, i.e., a perfect electric conductor (PEC),
either the electric or magnetic field integral equation (EFIE or MFIE) can be em-
ployed [48] or combinations thereof [33, 40]. The equivalence principle is conveniently
used when analyzing flat antenna structures [21, 22, 38]. An integral representation
together with a priori information of the object and iterative solvers is used by [20]
and [11] to find the electric current on the walls of a PEC for diagnostics of a
pyramidal horn antenna and a monopole placed on the chassis of a car. In [35] a
dual-surface approach is compared to the single-equation formulation.

In this paper we propose a technique using the integral representations to relate
the unknown equivalent currents to a known measured near field. In addition to
the integral representation, we also use an integral equation, originating from the
extinction theorem [9]. By using the extinction theorem together with the integral
representation, we secure that the sources of the reconstructed currents only exist
inside the enclosing volume [47]. The equivalent currents can be reconstructed on a
surface arbitrarily close to the antenna. No a priori information of the material of
the object just inside the surface is utilized.

2 Prerequisites

In this section, we review the basic equations employed in this paper. We start
with a general geometry, and specialize to a body of revolution in Section 2.2. More
technical details are given in [32].

2.1 General case

The surface integral representation expresses the electromagnetic field in a homo-
geneous, isotropic region in terms of its values on the closed bounding surface.
We engage the integral representations to a domain outside a closed, bounded sur-
face Srad. Carefully employing the Silver-Müller radiation conditions, the solution
of the Maxwell equations satisfy the following integral representation [16, 27, 42, 47]

¨

Srad

(
−jωµ0µ g(r1, r2)

[
n̂(r1)×H(r1)

]
+

j

ωε0ε
∇1g(r1, r2)

{
∇1S ·

[
n̂(r1)×H(r1)

]}
−∇1g(r1, r2)×

[
n̂(r1)×E(r1)

])
dS1 =

{
E(r2) r2 outside Srad

0 r2 inside Srad

(2.1)
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Figure 1: The surface Srad of integration. The unit normal to the surface is n̂. The
variable of integration is denoted r1 and the observation point r2.

where the time convention used is ejωt, and the surface divergence is denoted ∇S· [9].
The variable of integration is denoted r1 and the observation point r2, see Figure 1.
The relative permittivity ε and the relative permeability µ may depend on the
angular frequency ω, i.e., the material can be dispersive, but they are constants as
functions of space (homogeneous material). The scalar free space Green function is

g(r1, r2) =
e−jk|r2−r1|

4π|r2 − r1|

where the wave number of the material is k = ω
√
ε0µ0εµ. The representation (2.1)

states that if the total electromagnetic field on Srad is known, the total electromag-
netic field outside Srad can be determined [15, 28, 47]. If these integrals are evaluated
at a point r2 lying in the volume enclosed by Srad these integrals cancel each other
(extinction). It is important to notice that this does not necessarily mean that the
field E is identically zero inside Srad, it only states that the values of the integrals
cancel.

The electric and magnetic equivalent surface current densities, J and M , are
introduced to simplify the notation and they are defined as [5]{

J(r) = n̂(r)×H(r)

M(r) =− n̂(r)×E(r)
(2.2)

The lower (or upper) representation in (2.1) is transformed into an integral equa-
tion letting r2 approach Srad. However, care must be taken since the integrands
become singular when r2 approaches the surface [9, 16, 26, 47]. The equation con-
sists of three components, two describing the tangential field and one describing the
normal component of the field. Since the normal component can be determined by
the knowledge of the tangential parts, this representation has redundancies, i.e., the
normal component is eliminated [27].
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To this end, (2.1) splits into a surface integral representation of the electric field¨

Srad

{
−jωµ0µ g(r1, r2)J(r1) + j

1

ωε0ε
∇1g(r1, r2)

[
∇1S · J(r1)

]
+∇1g(r1, r2)×M (r1)

}
dS1 = E(r2) r2 outside Srad

(2.3)

and a surface integral equation in J and M

n̂(r2)×
¨

Srad

{
jωµ0µ g(r1, r2)J(r1)− j

1

ωε0ε
∇1g(r1, r2)

[
∇1S · J(r1)

]
−∇1g(r1, r2)×M(r1)

}
dS1 =

1

2
M (r2) r2 ∈ Srad

(2.4)

When necessary, the integrals in the surface integral equation are interpreted as
Cauchy’s principal value [9, 34].

The integral equation is written in a weak form, i.e., it is multiplied by a test
function, Ψ, and integrated over its domain [6, 19, 26, 33]

jωµ0µ

¨

Srad

¨

Srad

Ψ(r2) · g(r1, r2)J(r1) dS1 dS2

− j
1

ωε0ε

¨

Srad

¨

Srad

[
∇2S ·Ψ(r2)

]
g(r1, r2)

[
∇1S · J(r1)

]
dS1 dS2

−
¨

Srad

¨

Srad

Ψ(r2) ·
[
∇1g(r1, r2)×M (r1)

]
dS1 dS2

− 1

2

¨

Srad

[
n̂(r2)×Ψ(r2)

]
·M(r2) dS2 = 0 (2.5)

The evaluation of the integrals in this paper is restricted to a body of revolution,
see Section 2.2, and follows the scheme in [2, 25].

2.2 Body of revolution

From now on the equations are adapted to a body of revolution (BOR) in free space,
i.e., ε = 1 and µ = 1. The surface is parameterized by the azimuth angle ϕ and the
height coordinate along the surface v, i.e., the position vector r can be expressed
as r(ϕ, v) = ρ(v) cosϕ êx + ρ(v) sinϕ êy + z(v) êz. The normalized basis vectors are
then

ϕ̂(ϕ) =
∂r

∂ϕ
/

∣∣∣∣∂r∂ϕ
∣∣∣∣ = − sinϕ êx + cosϕ êy and v̂(ϕ, v) =

∂r

∂v
/

∣∣∣∣∂r∂v
∣∣∣∣

and {n̂, ϕ̂, v̂} forms a right-handed triple of unit vectors, see Figure 2. The curvilin-
ear components of the magnetic equivalent surface current and electric field are de-
noted as Eϕ = −Mv and Ev = Mϕ, cf., (2.2), where Mϕ = M ·ϕ̂, and Mv = M · v̂.
The magnetic field and the electric equivalent current are related in a similar way.
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Figure 2: The regions of integration in (2.8).

Two functions, aϕmj and av
mj, are used as basis functions. They are defined as

aϕmj = fϕj (v) ejmϕϕ̂

av
mj = fv

j (v) ejmϕv̂
(2.6)

The height of the radome, v1, is discretized into points, vj, where j = 1, . . . , Nz.

The functions f
ϕ/v
j (v) can be chosen as a constant, linear, cubic, spline functions

etc., with support in a neighborhood of vj [6, 33]. For the results in this paper,

both f
ϕ/v
j (v) are chosen as piecewise linear functions, i.e., one-dimensional rooftops.

Observe that ϕ/v in fϕ/v denotes a superscript and not an exponential. In the
azimuthal direction, a global function, ejmϕ, i.e., a Fourier basis, is used due to the
symmetry of the body, and m is an integer index. The magnetic current is expanded
as

M =
∑
m,j

{
Mϕ

mj a
ϕ
mj +Mv

mj a
v
mj

}
(2.7)

The electric current J is expanded in a similar way, but with expansion coefficients
J
ϕ/v
mj . Galerkin’s method is used [6]. That is, the test functions are according to

(2.6) Ψϕ
ni = (aϕni)

∗ and Ψv
ni = (av

ni)
∗ where complex conjugation is denoted by a

star and the indicies run through the same integers as m and j.
The surface integral representation in (2.3) is applied to the measurement set-up

described in Section 3, i.e., r2 belongs to the discrete set of measurement points
(indexed; q = 1, . . . , Nmeas

z ) on the cylindrical surface Smeas, see Figure 2. None of
the integrals contains singularities since r1 and r2 will not coincide. From equation
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(2.3) we get[
v̂
ϕ̂

]
·
{
−jωµ0

¨

Srad

g(r1, r2)J(r1) dS1

+ j
1

ωε0

¨

Srad

∇1g(r1, r2)
[
∇1S · J(r1)

]
dS1

+

¨

Srad

∇1g(r1, r2)×M(r1) dS1

}
=

[
v̂ ·E(r2)
ϕ̂ ·E(r2)

]
=

[
Ev(ϕ2, v2)
Eϕ(ϕ2, v2)

] (2.8)

where r2 belongs to the discrete set of measurement points and the tangential com-
ponents are projected. The right hand side of (2.8) is expanded in a Fourier series.
The Fourier series reduce the dimensions of the problem by one degree [25, 33, 46].

The representation in (2.8) and the integral equation in (2.5) are organized as a
system of matrices, i.e.,[

Z11 Z12

Z21 Z22

] [
Jv

Jϕ

]
+

[
X11 X12

X21 X22

] [
Mv

Mϕ

]
=

[
Ev

Eϕ

]
(2.9)

and [
Z11 Z12

Z21 Z22

] [
Jv

Jϕ

]
+

[
X 11 X 12

X 21 X 22

] [
Mv

Mϕ

]
=

[
0
0

]
(2.10)

Combining the matrix systems for the integral representation (2.9) and (2.10) gives,
in short-hand notation, [

Z X
Z X

] [
J
M

]
=

[
E
0

]
The magnitude of the entries of the matrices may differ by several orders of magni-
tude. To avoid numerical errors, the system is solved for one current at a time,

J = −Z−1XM =⇒{
−ZZ−1X +X

}
M = E

(2.11)

when J is eliminated. In the first line, J is expressed as a function of M utilizing
the integral equation. The matrix Z is a square matrix and inverted numerically in
MATLAB. The second equation is ill-posed. The matrix is no longer a square matrix
and to solve for M , the linear system is inverted and regularized by the singular
value decomposition (SVD) in MATLAB [46]. Besides numerical errors also noise
and measurement errors show up. Here, the SVD helps in suppressing the ampli-
fication of noise in the inversion [3]. The cut-off value, i.e., the magnitude of the
largest singular value that is excluded, is proportional to the largest singular value
of the largest Fourier component of the measured field. The proportionality con-
stant is chosen as 0.1 and 0.3 when reconstructing the co- and the cross-component,
respectively [3].

In our initial investigation we have not encountered any problems with spurious
modes [41] or by using the numerical inversion of MATLAB or the SVD. However,
a more detailed investigation of the ill-posed equations and the choice of the cut-off
value, is planned to be addressed in a forthcoming paper.
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Figure 3: (a) Photo of the cylindrical near-field range at SAAB Bofors Dynamics,
Sweden. The antenna under test is rotated and the probe is moved in the vertical
direction. A close up of the reflector antenna is shown in the upper right corner.
(b) The dimensions of the reflector antenna, the radome, and the cylinder where the
electric near field is measured.

3 Near-field measurements

The experimental set-up and the measured electric field is described in [30]. How-
ever, for convenience, the necessary information is summarized. The measurement
set-up is shown in Figure 3. A reflector antenna, fed by a symmetrically mounted
wave-guide, generates the electromagnetic field. The diameter of the antenna is
0.32 m, and the main lobe of the antenna is vertically polarized relative to the hor-
izontal plane. The radome surface is axially symmetric and its radius, in terms of
the height coordinate, is modeled by

ρ(z) =


0.213 m − 0.728 m ≤ z ≤ −0.663 m

−(bz′ + d) +
√

(bz′ + d)2 − a(z′)2 − 2cz′ − e
−0.663 m < z ≤ 0.342 m

where z′ = z + 0.728 m and the constants are a = 0.122, b = 0.048, c = −0.018 m,
d = 0.148 m, and e = −0.108 m2, respectively. The height of the radome corresponds
to 29 wavelengths for the frequency 8.0 GHz. The material of the radome has a
relative permittivity of about 4.32 and its loss tangent is about 0.0144. The thickness
of the wall of the radome varies over the surface in the interval 7.6− 8.2 mm.

The surface Srad in (2.5) and (2.8) is defined by the radome surface, closed with
smooth top and bottom surfaces. These added surfaces are needed since the integral
representation applies to a closed surface and the measurements are performed under
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non-ideal conditions. The turntable, on which the antenna and radome are located,
see Figure 3a, reflects some of the radiation, which is taken care of by the added
bottom surface. The top surface takes care of the electric field that is reflected on
the inside of the radome and then radiated through the top hole. If these factors are
neglected, unwanted edge effects occur, since the electric fields originating from the
turntable and the top of the radome are forced to originate from the radome itself.
The radome surface is divided into 8 cells per wavelength in the height direction,
and in each cell 4 points are chosen where the integrations are evaluated.

The electric field is measured on a cylindrical surface by moving the probe in the
z-direction and rotating the radome and the antenna under test, see Figure 3. This
surface is located in the near-field zone [4]. The near-field measurement probe con-
sists of an IEC R100 waveguide, with a collar of radar absorbing material, for which
no compensation is made in the final data. The waveguide is linearly polarized, i.e.,
one polarization is measured after which the waveguide is turned 90 degrees. The
accuracy of the turntable and the probe is 0.00025 degrees and 0.12 mm, respec-
tively. For every movement of the probe, ∆z, the turntable is rotated 360 degrees.
With this measurement set-up, the data on the top and the bottom of the cylindri-
cal surface cannot be collected. It would have been preferable to measure the fields
on an infinite cylinder. However, the size of the cylinder is chosen such that the
turntable below the radome does not have a major influence on the measurements
and such that the fields above z = 800 mm are negligible. In the azimuth angle,
120 points are measured in steps of 3◦. The z-dimension is divided into 129 points,
every two points are separated by 12.5 mm. The sample density fulfills the sampling
theorem for cylindrical near-field measurements given in e.g., [49].

Three different measurement configurations are considered; antenna without
radome, antenna together with radome, and antenna together with defect radome.
The defect radome has two copper plates attached to its surface. These are lo-
cated in the forward direction where the main lobe hits the radome and centered at
the heights 41.5 cm and 65.5 cm above the bottom of the radome. The side of the
squared copper plates is 6 cm, corresponding to 1.6 wavelengths at 8.0 GHz. The
absolute values of the measured co- and cross-polarized electric fields, Ev and Eϕ,
respectively, are shown in Figures 4–5, where |Ev|dB = 20 log (|Ev|/|Ev|max) and
|Eϕ|dB = 20 log (|Eϕ|/|Ev|max), respectively. That is, all fields are normalized with
the largest value of |Ev| when no radome is present. In particular, Eϕ has a quite
complicated pattern. The diffraction is explained as environmental reflections and
an off-centered antenna feed. Observe that the amplitude of the azimuth component
is smaller than the amplitude of the height component, i.e., measurement errors are
more likely to show up here. The differences between the three different antenna
and radome cases arise from constructive and destructive interference between the
radiated field and the scattered field. The absolute value of the Fourier transformed
measured fields are shown in dB-scale in Figures 6–7. According to these figures,
the spectrum is truncated at n = 30, above which the energy contents is too low.
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Figure 4: The co-component, |Ev|dB, of the experimentally measured near-field data
at 8.0 GHz, normalized with the largest value of |Ev| when no radome is present.
(a) No radome present. (b) Radome present. (c) Defect radome present.
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Figure 5: The cross-component, |Eϕ|dB, of the experimentally measured near-field
data at 8.0 GHz, normalized with the largest value of |Ev| when no radome is present.
(a) No radome present. (b) Radome present. (c) Defect radome present.
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Figure 6: The Fourier transformed measured field, |Ev|dB, at 8.0 GHz. All values
are normalized with the largest value of |Ev| when no radome is present. a) No
radome present. (b) Radome present. (c) Defect radome present.
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Figure 7: The Fourier transformed measured field, |Eϕ|dB, at 8.0 GHz. All values
are normalized with the largest value of |Ev| when no radome is present. a) No
radome present. (b) Radome present. (c) Defect radome present.



4 Results 115
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Figure 8: The recreated |Ev|dB-component on the front side of the radome. All
values are normalized with the largest value of |Ev| when the defect radome is
present. (a) No radome present. (b) Radome present. (c) Defect radome present.
The arrows point out the locations of the copper plates.

4 Results

The measured field on the cylindrical surface at 8.0 GHz, cf., Figures 4 and 5, is
transformed back onto a surface corresponding to the radome surface. Figures 8
and 9 show the recreated electric fields, |Ev|dB and |Eϕ|dB, respectively, in the main
lobe for the different configurations. Observe that all values are normalized with the
largest value of |Ev| when the defect radome is present. The figures show that the
near field close to the antenna is complex and hard to predict. In the case, when no
radome is located around the antenna, the electric fields are calculated on a surface
shaped as the radome, see Figures 8a and 9a. The case when the radome is present,
see Figures 8b and 9b, shows that the radome interacts with the antenna and hence
disturbs the radiated field. How this interaction affects the amplitude is depicted
in Figures 10a and b, where (|Ev

no radome| − |Ev
radome|) and (|Eϕ

no radome| − |Eϕ
radome|)

are shown in a linear scale and normalized with the maximum difference for each
component. Both components of the electric field are reduced in amplitude in the
main lobe whereas the field strength outside the main lobe is increased when the
radome is introduced. This is most likely due to transmission loss in the radome
wall and scattering against the inside wall.

The effect of the attached copper plates are detected as shown in Figures 8c
and 9c, where the lower plate appears clearly. Observe that the copper plates cannot
be localized directly in the near-field data, compare Figures 4c and 5c to Figures 8c
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Figure 9: The recreated |Eϕ|dB-component on the front side of the radome. All
values are normalized with the largest value of |Ev| when the defect radome is
present. (a) No radome present. (b) Radome present. (c) Defect radome present.
The arrows point out the locations of the copper plates.

and 9c. The near-field data only shows that the field is disturbed, not the locations
of the disturbances. The upper plate is hard to discern in Figures 8c and 9c, since
it is located in a region with small field magnitudes. However, the influence of the
upper copper plate can be detected in the cross section graphs, see Figures 11a
and b. To determine the exact position of the defects several cross section graphs
have to be examined. It is interesting to see that even though the magnitude of the
cross-polarization is small, the locations of the copper plates can be found.

The presence of the radome also creates some backscattering (flash lobes) as seen
in Figures 11 c–d, 12, and 13. In Figures 11 c–d, a cross section at an angle 180o

from the center of the main lobe, i.e., in the middle of the back side, is viewed.
Figures 12 and 13 depict both components on the back side of the radome for all
three configurations in a dB-scale. In these figures it is also observed that the flash
lobes are altered when the copper plates are present.

The copper plates can also be detected by subtracting the field of the defect
radome and the field of the non-defect radome. This result is shown in dB-scale in
Figure 14 for both the components of the electric field, i.e., |Ev

radome −Ev
def radome|dB

and |Eϕ
radome −Eϕ

def radome|dB, each component normalized with the maximum differ-
ence for each component. The reconstruction of the Eϕ-component, cf., Figure 14b,
only shows the effects of some parts of the copper plates. The reason is that parts of
the copper plates are located in an area where the amplitude of the Eϕ-component
is small, cf., Figure 5 and 9a.
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Figure 10: The subtraction between the fields with and without radome present
on the front side of the radome. In (a) (|Ev

no radome| − |Ev
radome|)/max||Ev

no radome| −
|Ev

radome|| is shown and in (b) (|Eϕ
no radome| − |Eϕ

radome|)/max||Eϕ
no radome| − |Eϕ

radome||.
The scale is linear.

Figure 14a indicates that there is an amplitude difference between the configu-
rations slightly above the location of the lower copper plate. To visualize what is
happening, the difference (|Ev

radome| − |Ev
def radome|), normalized with its maximum

value, in a linear scale, is depicted in Figure 15. The scale is truncated in order to
see the small field difference above the copper plate. Here it becomes clear that the
area, where the copper plate is attached, has a reduced electric field, when the defect
radome is present. The area above the copper plate has instead an increased electric
field, when the defect radome is present. This is most likely due to scattering of the
copper plate.

So far only the amplitudes of the reconstructed fields has been investigated. How-
ever, even the phase can give useful information. The phase of the Ev-component,
i.e., ∠Ev, where ∠ denotes the argument, is depicted in Figure 16 for all configura-
tions. The vertical lines above the main lobe in Figure 16a are due to phase jumps,
and are caused by the low amplitude of the fields in these areas.

Just showing the phase as in Figure 16 does not give very much information.
What is interesting is to study the phase difference (antenna - antenna with radome)
for the two recreated components, see Figure 17. It reveals how the phase is changed
due to the influence of the radome. It is observed that the phase shift in the main
lobe is almost constant, for both components. This confirms that the radome is well
adapted to the frequency 8.0 GHz. Since the amplitude of Eϕ is low, cf., Figures 5
and 9, its phase contains much noise, and it is therefore somewhat more unreliable
than ∠Ev.
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Figure 11: Cross sections of the reconstructed field components. (a) |Ev|dB in the
main lobe. (b) |Eϕ|dB in the main lobe. (c) |Ev|dB on the back of the radome.
(d) |Eϕ|dB on the back of the radome. All values are normalized with the maximum
value of |Ev| when the defect radome is present. The solid black line corresponds
to no radome, the dashed dot blue line has the radome present and the dashed red
line represents the defect radome. The positions of the copper plates on the defect
radome are marked by thick lines on the horizontal axis.
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Figure 12: The recreated |Ev|dB-component on the back side of the radome. All
values are normalized with the maximum value of |Ev|, on the front side, when the
defect radome is present. (a) No radome present. (b) Radome present. (c) Defect
radome present.
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Figure 13: The recreated |Eϕ|dB-component on the back side of the radome. All
values are normalized with the maximum value of |Ev|, on the front side, when the
defect radome is present. (a) No radome present. (b) Radome present. (c) Defect
radome present.
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Figure 14: The logarithmic differences revealing the copper plates,
(a) 20 log{|Ev

radome−Ev
def radome|/max|Ev

radome−Ev
def radome|}, and (b) 20 log{|Eϕ

radome−
Eϕ

def radome|/max|Eϕ
radome −Eϕ

def radome|} on the front side of the radome. The arrows
point out the locations of the copper plates.
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Figure 15: The difference (|Ev
radome| − |Ev

def radome|)/max||Ev
radome| − |Ev

def radome|| in
a linear scale on the front side of the radome. The scale is truncated in order to see
the small field amplitude above the copper plate, marked with an arrow.
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Figure 16: The recreated phase of the Ev-component on the front side of the radome
in a linear scale. a) No radome present. b) Radome present. c) Defect radome
present.
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Figure 17: The IPD, i.e., the phase difference between the field when no radome is
present and the field when the radome is present, on the front side of the radome.
a) (∠Ev

no radome − ∠Ev
radome). b) (∠Eϕ

no radome − ∠Eϕ
radome).
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Figure 18: Cross section in the middle of the main lobe of the IPD depicted in
Figure 17. The solid blue line corresponds to (∠Ev

no radome − ∠Ev
radome) and the

dashed red to (∠Eϕ
no radome−∠Eϕ

radome), respectively. The insert shows the area with
reliable data and the medians.

In Figure 18, a cross section in the middle of the main lobe of the phase difference
in Figure 17 is depicted. The cross section of ∠Eϕ is shown for a slightly acentric
angle, since the amplitude in the center of the main lobe is very low, see Figure 9. In
areas where the field is strong, the phase shift does not fluctuate as much. Outside
this areas the amplitude is low and the phase is not well defined, i.e., dominated by
noise, and it will not give valid information. This means that when looking at the
main lobe, the only area that contains reliable values is z ∈ [−0.5,−0.05].

The phase shift arising when the radome is introduced, i.e., the phase shift
viewed in Figures 17 and 18, is called the IPD (Insertion Phase Delay). It is one
of the parameters that quantifies the performance of the radome, and depending on
the polarization, two different IPD are defined [18]

T = |T |∠IPD (4.1)

where T = Et/Ei is the complex transmission coefficient. The incoming field is
denoted Ei, and the transmitted Et. The phase shift is only known modulus 2π. To
validate the calculation of the IPD, an estimation of the thickness of the radome
wall is carried out. Under the assumption of negligible reflections the IPD can be
expressed as [17]

IPD =
ω

c

{
Re
√
εr(1− j tan δ) cos θt − cos θi

}
d (4.2)

for both polarizations, where ω is the angular frequency, c is the speed of light in
free space, θi is the incident angle, and θt is the transmission angle of the field on the
inside of the radome wall. Approximate values of the relative permittivity, εr ≈ 4.32,
and the loss tangent, tan δ ≈ 0.0144, are used. The thickness of the radome wall is
denoted d. The incident angle is approximated to 40o, cf., Figure 3b. The measured
radome thickness, d, varies over the surface in the interval 7.6− 8.2 mm. The phase
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Figure 19: The phase difference between the field when the radome is present and
the field when the defect radome is present, on the front side of the radome. The
arrows point out the copper plates. a) (∠Ev

radome − ∠Ev
def radome). b) (∠Eϕ

radome −
∠Eϕ

def radome).

shift in the main lobe is taken as the medians of the calculated IPD, see the insert
in Figure 18. The medians, for z ∈ [−0.5,−0.05], are 1.68 rad and 1.40 rad for
the co- and the cross-component, respectively. Solving for d in (4.2) results in a
radome thickness of 6.9 − 8.3 mm. The agreement is quite well considering the
approximations made.

An investigation of the phase difference (radome - defect radome), see Figures 19
and 20, reveals that its harder to localize the actual positions of the copper plates by
using the phase instead of only the amplitude, cf., Figures 8 and 9. Nevertheless, the
upper copper plate is visible in the 3-D visualization in Figure 19a, and by looking
at a cross section over the main lobe of the phase difference, the position of the
upper copper plate is located for both components, see Figure 20. We only show
the interval, where the phase is not too contaminated by noise, cf., Figure 18. The
upper copper plate is located on the boundary to where noise dominates. Thus, if
the positions of the copper plate were not known in advance, the phase shift might
be interpreted as noise. The lower copper plate also introduces a phase shift, but
these effects are hard to interpret and not confined to the exact position of the plate.

5 Conclusions

The aim of this paper is to reconstruct equivalent currents on a surface bounding the
sources of an electromagnetic field. A vector-valued surface integral representation
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Figure 20: Cross section in the middle of the main lobe of the phase differences
depicted in Figure 19. The axis describing the radome height is truncated and shows
only the region where the phase information is reliable, cf., Figure 18. The blue solid
line corresponds to (∠Ev

radome − ∠Ev
def radome) and the red dashed to (∠Eϕ

radome −
∠Eϕ

no radome), respectively.

is utilized together with the extinction theorem. The surface integral representa-
tion gives a linear map between the equivalent surface currents and the near-field
data for general geometries. It is shown that this map can be inverted for axially
symmetric geometries with the measured near field. The theory can be adapted
to geometries lacking symmetry axes. However, it is not a feasible approach for
radome applications today due to the computational demand to solve the integral
equations. An alternative approach would be to address this problem using fast
multipoles methods [44].

In previous papers only the dominating vertical co-component of the measured
field has been used in the reconstruction by using a scalar integral representation,
where comparison with measured far field shows good agreement [30, 31]. In this
paper it is shown that both components of the equivalent currents can be recon-
structed by using a full-wave surface integral representation. The results for the
cross-component show that also this component provides useful insight of the com-
plex field close to the antenna and the field altered by the radome. It is illustrated
how the radome interacts with the electric field. In particular, transmission losses in
the radome wall and reflections on the inside decrease the field in the main lobe, and
new side and flash lobes appear. Both components of the experimentally measured
field can also be used to locate the effect of defects, i.e., copper plates, not directly
visible in the measured near-field data. Furthermore, the copper plates introduce
scattering and alter the flash lobes.

Also, the phase of the reconstructed fields is investigated. The IPD, i.e., the
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phase difference, arising when the radome is located between the antenna and the
measurement probe, is visualized. The results give a good estimate of the thickness
of the radome wall. The effects of the copper plates are visible in the phase shift.
However, the exact location of the defects is hard to determine solely from the phase
images.

This paper shows the potentials of the approach in radome diagnostics. Next
step is to analyze if the electric equivalent current, i.e., the magnetic field, on the
radome surface gives some more information. Moreover, investigations with different
frequencies are expected. To localize the exact positions of the defects, a deeper
analyze of 3D-pictures, cf., Figures 8c and 9c, and cross-section graphs, cf., Figure
11, combined with the phase shift data, is planned. To use this method in verifying
radomes, i.e., calculating the IPD, more analysis of the phase and its noise levels is
planned to be addressed in a forthcoming paper.
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Abstract

Radome diagnostics are acquired in the design process, the delivery control,
and in performance verification of repaired and newly developed radomes. A
measured near or far field may indicate deviations, e.g., increased side-lobe
levels, but the origin of the flaws are not revealed. In this paper, radome
diagnostics are performed by visualizing the equivalent surface currents on
the 3D-radome body, illuminated from the inside. Three different far-field
measurement series at 10 GHz are employed. The measured far field is related
to the equivalent surface currents on the radome surface by using a surface
integral representation. In addition, a surface integral equation is employed
to ensure that the sources are located inside the radome. Phase shifts, in-
sertion phase delays (IPD), caused by patches of dielectric tape attached to
the radome surface, are localized. Specifically, patches of various edge sizes
(0.5 − 2.0 wavelengths), and with the smallest thickness corresponding to a
phase shift of a couple of degrees are imaged.

1 Introduction and background

A radome encloses an antenna to protect it from e.g., environmental influences.
Depending on the properties of the shielding antenna and the environment in which
it operates, the radome has different appearance and qualities. The radome is ideally
electrically transparent, but in reality, radomes often reduce gain and introduces
higher side-lobe levels, especially flash (image) lobes caused by reflections on the
inside of the radome wall and reflections within the wall appear [4, 18]. Moreover,
the electromagnetic wave radiated by the antenna changes its direction when passing
through the radome, and, if not compensated for, boresight errors occur [4, 18].

New radomes must fulfill specified tolerance levels, and repaired radomes must be
checked according to international standard and manufacturers maintenance manu-
als [18]. Consequently, there is a demand for diagnostics tools verifying the electrical
properties of the radome. The verification test is often performed with a far-field
analysis. Due to the radome, a measured far field may indicate boresight errors,
amplitude reductions, introduction of flash (image) lobes, and increased side-lobe
levels. However, it is not feasible to determine the cause of the alteration, i.e., the
location of defect areas on the radome, from the far-field data alone. Further investi-
gations are often required, e.g., cracks can be localized by employing ultrasonics [31].
Moreover, the phase alteration caused by the radome, i.e., the insertion phase delay
(IPD) on the surface of the radome, is commonly investigated to localize deviations.
One way to measure the IPD is with two horn antennas aligned at the Brewster
angle [29].

An alternative diagnostics method is presented in this paper, where the tangen-
tial electromagnetic fields — the equivalent surface currents — on the outside of the
radome surface are reconstructed from a measured far field. The reconstruction is
performed on a fictitious surface in free space, located precisely outside the physical
surface of the radome, i.e., no a priori information on the material of the radome is
assumed. Both amplitude and phase are investigated. The effect of metallic defects
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attached to a radome has previously been investigated in [24–26]. In this paper, we
focus on imaging the phase changes introduced by a monolithic (solid) radome and
patches of dielectric tape attached to the radome surface. These phase changes are
interpreted as the IPD.

Three different far-field measurement series (at 10 GHz) are employed. In each
series, both polarizations are collected over a hemisphere. Moreover, for each series,
three different configurations are investigated; (0) antenna, (1) antenna together
with the radome and (2) antenna together with the radome where patches of metal
or dielectric material are attached to the surface. To clarify, different defects are
applied to the radome in conf. (2) in the different series; defects consisting of copper
plates (first series), squares of dielectric tape (second series), and the letters LU
of dielectric tape (third series). The results of the first measurement series (metal
defects) are employed to set the regularization parameters used in the subsequent
series. In the two last measurement series, patches of dielectric tape, which mainly
effect the phase of the field, are attached to the radome. The sizes of the patches
vary, with a smallest dimension of 0.5 wavelengths. The dielectric patches model
deviations in the electrical thickness of the radome wall, and the results can be
utilized to produce a trimming mask for the illuminating areas. A trimming mask
is a map of the surface with instructions of how the surface should be altered to
obtain the desired properties, e.g., a smooth IPD or low side- and flash-lobe levels.
IPD diagnostics of the radome surface is also significant in the delivery control to
guarantee the manufacturing tolerance of radomes.

The method to reconstruct the equivalent surface currents is based on a surface
integral representation combined with an electric field integral equation (EFIE). The
set-up is axially symmetric and a body of revolution method of moments (MoM)
code is employed, with special attention taken to the calculation of the Green’s
function [11]. Regularization is performed by a singular value decomposition (SVD).

Prior radome diagnostics of spherical radomes utilizing a spherical wave expan-
sion (SWE), applicable to spherical objects, are given in e.g., [10], where the IPD
and defects in the radome wall are investigated. Moreover, an early attempt to
employ the inverse Fourier transform in radome diagnostics, is reported in [9].

The interest in surface integral representations as a tool in diagnostics has in-
creased rapidly over the last years where different combinations and formulations
based on a surface integral representation, the electric (EFIE) and magnetic (MFIE)
field integral equations are utilized [1, 28]. Specifically, the influences of metallic
defects attached to a radome are imaged in [24–26]. In [27] an iterative conjugate-
gradient solver is utilized to find and exclude radiation contributions from leaky
cables and support structures and in [8] antennas are characterized. Defect elements
on a satellite antenna and a circular array antenna are localized in [16, 17], where
a MoM code with higher order basis functions are implemented together with a
Tikhonov regularization. Higher order basis functions and multilevel fast multipoles
are utilized in [7] to recreate equivalent surface currents on a base station antenna
from probe corrected near-field measurements. A surface integral representation is
applied in [20, 21] to diagnose antennas. Furthermore, in [20] a conjugate-gradient
solver and a singular value decomposition are shown to give similar results.
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Configuration (1)Configuration (0) Configuration (2)
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Figure 1: Description and notation of the configurations referred to throughout the
paper. The middle figure shows the unit vectors of the coordinate system in which
the reconstructed fields are expressed.

The focus of this paper is radome diagnostics, where patches of dielectric tape,
attached to the radome surface, are localized. In Section 2.1, the set-up, the com-
pact test range, and the measured far field are described. The IPD and different
visualization options — the electric or the magnetic field — are discussed in Sec-
tion 2.2. In Section 3, an outline of the reconstructing algorithm is given. Imaging
results are viewed and analyzed in Section 4, whereas conclusions and discussions
of future possibilities are finally given in Section 5.

2 Radome diagnostics

A measured far field of an antenna and radome configuration may indicate unwanted
deviations; e.g., increased and changed side lobes, and boresight errors. To find the
origin of the errors, diagnostics tools are essential. Here, far-field measurements from
a compact test range is utilized to localize phase shifts, insertion phase delays (IPD)
on the radome surface, caused by the radome and attached patches of dielectric
tape.

2.1 Measurement data and set-up

Three different measurement series are conducted at 10 GHz. Each measurement
series consists of three configurations; antenna — conf. (0), antenna together with
the radome — conf. (1), and antenna together with the radome where defects are
attached to the surface — conf. (2), see Figure 1. Different defects are applied to the
radome in conf. (2) in the different series; defects consisting of copper plates (first
series), squares of dielectric tape (second series), and the letters LU of dielectric
tape (third series). To clarify, conf. (0) and (1) are the same in all three series.
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Figure 2: Photo of the measurement set-up in the compact test range.

The reason for doing these all over is that the measurement series were obtained
at different times. In this way, we avoid the influence of small deviations in the
mechanical and electrical set-up together with relative phase and amplitude shifts
between the series. The configuration number is indicated as a superscript on the
fields, whereas the field component is showed by a subscript, i.e., H

(0)
v = v̂ ·H(0) is

the magnetic component directed along the height of the radome surface when only
the antenna is present (cf., notation in Figure 1).

The far-field measurements were carried out at a compact test range at GKN
Aerospace Applied Composites, Linköping, Sweden, see Figure 2 [33]. The far field
is measured on a hemisphere by turning the radome between 0◦ − 90◦ in the polar
plane (described by θ) for each azimuthal turn (described by ϕ), where θ and ϕ are
standard spherical coordinates, see Figure 3 for definitions and notational system.
Measurements in the polar plane are continuously recorded at 1◦/ s, whereas the
measurements along the azimuthal plane are discrete and thereby more time con-
suming. The field is sampled every second degree in the azimuthal plane and every
degree in the polar plane. A reduction of the sample density by a factor of two in
the polar plane is not noticeable in the imaging results, indicating that the sample
densities are satisfactory [12, 34]. Measuring one configuration, both polarizations,
took approximately nine hours.

The measured far field for both the co- and cross-polarization and the three dif-
ferent configurations is given in Figure 4, for measurement series number three. The
figure shows a cross section in the polar plane of the fields through the main lobe,
and it is observed that the radome — conf. (1) — changes the far field. Attach-
ing patches of dielectric tape in the form of the letters LU to the radome surface
— conf. (2) — alters the field a little more, which is hardly visible in the figure.
Moreover, the origin of the defects can hardly be determined from the far-field data
alone. The far fields of the other two measurement series have similar appearance.

In the far-field measurements no probe compensation is necessary [34]. Moreover,
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Figure 3: The geometry of the antenna, radome and far-field hemisphere. The center
of rotation is located at the origin. The dominating polarization of the electric field
on the antenna aperture is directed along the y-axis. The incline of the antenna is
α = 22.3◦. An approximation of the incident angle is given by θi ≈ 60◦. The far
field is described in a spherical coordinate system with the polar angle θ.

in a compact range, where the radome and antenna is moved instead of the trans-
mitting feed antenna, the off-set between the aperture of the antenna and the center
of rotation causes a negligible amplitude change and a small phase shift during the
measurement rotations. This can be corrected by probe compensation where the
antenna aperture is mathematically translated to the center of rotation [12]. How-
ever, we have no interest in the absolute phase, only the phase difference between
measurement configurations. This means that, as long as the set-up is rotated in
the same way during all measurements, the off-set causes no problem. The far-field
radius, r in Figure 3, is set to 1800 m. Larger radii give only negligible differences
in the results.

The antenna is a pyramidal X-band horn antenna. The square aperture is
8× 8 cm2. The antenna is mounted at an angle α = 22.3◦, and it has a domi-
nating electric field component in the y-direction, see Figure 3. The feed in the
chamber is a linearly polarized standard X-band feed. The feed is turned 90◦ in
order to measure both polarizations.

The radome is monolithic (solid) and covered with a thin layer of varnish. The
dielectric material of the bulk has a relative permittivity of 4.32 and a loss tangent
of 0.0144. The varnish has a, to us unknown, higher relative permittivity. The
thickness of the radome wall varies between 7.6 − 8.2 mm. The geometry is shown
in Figure 3, and the height of the radome corresponds to 36 wavelengths at 10 GHz.
In the investigations, patches of dielectric tape (Scotch Glass Cloth Electrical Tape
69-1”) are attached to the radome. Waveguide measurements of the relative permit-
tivity of the tape at Saab Dynamics, Linköping, Sweden, gave a value of εr ≈ 4.1
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Figure 4: Co- and cross-polarization of the measured far field at 10.0 GHz through
the main lobe (ϕ = 0). The top three lines correspond to the three different con-
figurations of the co-polarization, E = Eϕ, and the three lower ones to the cross-
polarization, E = Eθ, respectively. In conf. (2) the radome has dielectric letters LU
attached to its surface, see Figure 1. All values are normalized to the maximum
value of the co-polarization when only the antenna is present (conf. (0)).

assuming the thickness of one layer to be approximately 0.15 mm. The losses of the
tape are assumed negligible.

2.2 IPD and visualization options

In performance evaluations of radomes, the phase shift of the electromagnetic field,
due to the passage through the radome wall, is important. This quantity is called
the electrical thickness of the radome or the insertion phase delay (IPD), and it
relates the phase shift in the radome wall to the phase shift in free space [4]. For a
plane wave applies

IPD = ∠T − ω

c0
d cos θi (2.1)

where T is the complex transmission coefficient, which depends on the incidence
angle, the parameters of the radome wall, and the polarization of the electromagnetic
field [4]. The last term of (2.1) removes the phase shift of free space, where ω is
the angular frequency, c0 is the speed of light in free space, d is the thickness of
the radome wall, and θi is the incident angle of the plane wave. In this paper, we
consider reconstructed phase differences to visualize the IPD. In Section 4, the phase
change of one field component, due to the radome, the defects, or both, is imaged.

The phase change, due to the attached dielectric patches, is reconstructed in
Section 4. To verify the results, an approximate value of the phase change, due to
one layer tape, is calculated. Thus, under the assumption of negligible reflections
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Figure 5: The reconstructed phase differences between conf. (1) and conf. (2). In
conf. (2), dielectric patches in form of the letters LU are attached to the surface.
The horizontal arc length corresponds to the center value of the height viewed on
the y-axis, and this definition is utilized throughout the paper. a) The magnetic
component Hv. b) The electric component Eϕ.

and a homogeneous dielectric patch, the IPD can be expressed as [4]

IPD =
ω

c0

{
Re
√
εr(1− j tan δ) cos θt − cos θi

}
dp (2.2)

for both polarizations. The relative permittivity of the tape is εr ≈ 4.1, the loss
tangent (tan δ) is negligible, the thickness of one layer tape is dp ≈ 0.15 mm, and
the transmission angle of the field is denoted θt. Assuming the incident angle to be
in the interval [40◦, 80◦], see Figure 3, gives an approximate phase shift of 2◦ − 3◦,
per layer.

For large homogeneous slabs, the phase difference is the same for both the electric
and the magnetic fields. However, a difference occurs when small patches of dielectric
material are attached to the surface of the radome. In our investigations we conclude
that the magnetic field gives the best image of phase defects, see Figure 5. As a
consequence, this component is the one imaged in Section 4. In Figure 5a, the
phase change, due to the dielectric letters LU, is visualized for the magnetic field
component Hv, whereas the same phase difference is showed in Figure 5b for the
electric field component Eϕ. A qualified explanation of this difference is obtained
by considering the induced current Jχe = jε0χeωE

(2), see Appendix A for details.
If the induced current is of electric nature, the electric field dominates in the near-
field region, whereas the magnetic field is smoother [14]. A plausible assumption
is that the induced charges in the dielectric give rise to dominating irrotational
currents (electric charges) instead of solenoidal currents (loop currents). Hence, it is
conjectured that this extra contribution to the electric near field, due to the defects,
makes the defects appear less clear.

To further investigate the near fields, we have simulated the transmission using
the software CST Microwave Studio, see Figure 6. An electric field polarized in the
x-direction, propagating along the z-axis, illuminates the dielectric letter L located
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Figure 6: The phase differences simulated in CST. The incoming electric field is
polarized in the x−direction. a) Magnetic component Hy. b) Electric component
Ex.

in free space. The dielectric patch is 0.9 mm thick and has an relative permittivity
of 4.32. The surrounding box of vacuum has the dimensions 100 × 100 × 60 mm3.
In Figure 6, the field differences are visualized 0.02 mm above the dielectric, i.e.,
z = 0.92 mm. The phase of the magnetic component Hy gives clearly a sharper
image of the dielectric than the electric component Ex. Simulations with an electric
field polarized in the y-direction give similar results, i.e., Ey is less distinct than Hx.

3 Reconstruction algorithm

To localize the defective areas on the radome, we have utilized a surface integral
representation to relate the equivalent surface currents on the radome surface to the
measured far field [5, 30]. In addition, an electric surface integral equation is applied
to ensure that the sources are located inside the radome [5, 30].

A surface integral representation expresses the electric field in a homogeneous
and isotropic region in terms of the tangential electromagnetic fields on the bound-
ing surface. In our case, the bounding surface, Sradome, is a fictitious surface, located
just outside the physical radome wall, with smoothly capped top and bottom sur-
faces to form a closed surface. This fictitious surface is located in free space, but for
convenience, it is referred to as the radome surface throughout the paper. Combin-
ing the source-free Maxwell equations and vector identities gives a surface integral
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representation of the electric field [23, 30]

¨

Sradome

(
−jkη0 g(r′, r)

[
n̂(r′)×H(r′)

]
− η0

jk
∇′g(r′, r)

{
∇′S ·

[
n̂(r′)×H(r′)

]}

−∇′g(r′, r)×
[
n̂(r′)×E(r′)

])
dS ′ =

{
E(r) r outside Sradome

0 r inside Sradome

(3.1)
for the exterior problem where all the sources are located inside Sradome. The used
time convention is ejωt, ω is the angular frequency, and η0 is the intrinsic wave
impedance of free space. The surface divergence is denoted ∇S· [6], the unit normal

n̂ points outward, and the scalar free-space Green’s function is g(r′, r) = e−jk|r−r′|

4π|r−r′| ,

where the wave number is k = ω/c0 and c0 is the speed of light in free space. The
representation (3.1) states that if the electromagnetic field on a bounding surface
is known, the electromagnetic field in the volume, outside of Sradome, can be deter-
mined [30]. If these integrals are evaluated at a point r lying in the volume enclosed
by Sradome, these integrals cancel each other (extinction).

The representation (3.1) consists of three components, two tangential fields and
one normal component of the field. Since the normal component can be determined
by the knowledge of the tangential parts, this representation contains redundancies.
As a consequence, specifying only the tangential components suffice [23]. The mea-
sured far field consists of two orthogonal components, ϕ̂ (azimuth) and θ̂ (polar).
The tangential fields on the radome surface are decomposed into two tangential
components along the horizontal, ϕ̂, and vertical, v̂, arc lengths coordinates, see
Figure 1. The lower representation in (3.1) is transformed into a surface integral
equation letting r approach Sradome from the inside [6, 30]. To simplify, the operators
L and K are introduced as [15]

L(X)(r) = jk

¨

Sradome

{
g(r′, r)X(r′)− 1

k2
∇′g(r′, r)

[
∇′S ·X(r′)

]}
dS ′

K(X)(r) =

¨

Sradome

∇′g(r′, r)×X(r′) dS ′
(3.2)

In this notation the surface integral representation and the surface integral equa-
tion for the electric field (EFIE) yield[

θ̂(r)
ϕ̂(r)

]
·
{
−L (η0J) (r) +K (M) (r)

}
=

[
θ̂(r) ·E(r)
ϕ̂(r) ·E(r)

]
r ∈ Smeas (3.3)

n̂(r)×
{
L (η0J) (r)−K (M ) (r)

}
=

1

2
M(r) r ∈ Sradome (3.4)

where Smeas is the set of discrete sample points (cf., Figure 3), and Sradome is the
fictitious surface located precisely outside the physical radome wall with a smoothly
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capped top and bottom. In a similar manner, a surface integral equation of the
magnetic field (MFIE) can be derived,

n̂(r)×
{
L (M) (r) +K (η0J) (r)

}
= −η0

2
J(r) r ∈ Sradome (3.5)

In (3.3)–(3.5) we have introduced the equivalent surface currents on the radome
surface, J = n̂×H andM = −n̂×E [15]. As mentioned above, the tangential fields
on the radome surface are decomposed into two components along the horizontal and
vertical arc lengths coordinates of the surface, that is [ϕ̂, v̂, n̂] forms a right-handed
coordinate system. Throughout the paper we use the notations, Hv = H · v̂ = −Jϕ,
Hϕ = H · ϕ̂ = Jv, Ev = E · v̂ = Mϕ, and Eϕ = E · ϕ̂ = −Mv for the reconstructed
tangential electromagnetic fields.

The representation (3.3) can be used together with EFIE (3.4), MFIE (3.5), or a
combination of both (CFIE), to avoid internal resonances [3, 5]. We have solved the
problem by using both EFIE and MFIE separately together with the representation.
The results do not differ significantly from each other. As a consequence, there are no
problems with internal resonances for the employed set-up and choice of operators,
since the internal resonance frequencies of EFIE and MFIE differ [3]. In Section 4,
the results using (3.3) together with (3.4) are visualized.

The surface integral equations are written in their weak forms, i.e., they are
multiplied with a test function and integrated over their domain [3, 19]. The set-
up, see Figure 3, is axially symmetric. Consequently, a Fourier expansion reduces
the problem by one dimension [22]. Only the Fourier components of the fields with
Fourier index m = [−40, 40] are relevant, since the amplitudes of the field differences
of higher modes are below −60 dB, for all measurement series and configurations.
Convergence studies show that this choice is sufficient.

The system of equations in (3.3)–(3.5) is solved by a body of revolution method
of moments (MoM) code [2, 22]. The evaluation of the Green’s functions is based
on [11]. The basis function in the ϕ̂-direction consists of a piecewise constant func-
tion, and a global function, a Fourier basis, of coordinate ϕ. Moreover, the ba-
sis function in the v̂-direction consists of a piecewise linear function, 1D rooftop,
of the coordinate v, and the same global function as the basis function in the ϕ̂-
direction, see Figure 1 for notation. Test functions are chosen according to Galerkin’s
method [3], and the height (arc length) is uniformly discredited in steps of λ/12.
The surface is described by a second order approximation.The in-house MoM code is
verified by scattering of perfect electric conductors (PEC) and dielectric spheres [32].

The problem is regularized by a singular value decomposition (SVD), where the
influence of small singular values is reduced [13]. A reference measurement series
is performed to set the regularizing parameter used in the subsequent series, see
Section 4.1. The inversion of the matrix system is verified using synthetic data.
Moreover, the results, which localize the given defects, serve as good verifications.

The described method are applied in [24–26], to reconstruct equivalent surface
currents from a measured near field. A slightly different approach is found in [16, 17].
Specifically, the surface integral representation, the EFIE, and the MFIE are solved
utilizing higher order bases functions in a MoM solver with a Tikhonov regulariza-
tion. In [8, 27, 28], the EFIE and MFIE are evaluated on a surface located inside the
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surface of reconstruction, and the matrix system is solved by an iterative conjugate-
gradient solver. Yet another approach is given in [1, 20, 21], where a surface integral
representation is employed together with a conjugate-gradient solver as well as a
singular value decomposition. In [7] the authors make use of dyadic Green’s func-
tions.

4 Reconstruction results

Three different configurations are investigated at 10 GHz; (0) antenna, (1) antenna
together with the radome, and (2) antenna together with the radome where patches
of metal or dielectric material are attached to the surface, see Figure 1. The field is
measured in the far-field region, as described in Section 2.1. The equivalent surface
currents, both amplitude and phase, are reconstructed on a fictitious surface shaped
as the radome. Observe, even in the case when only the antenna is present —
conf. (0) — the field is reconstructed on a radome shaped surface.

The magnetic component, Hv, is analyzed in this section, since it gives the
sharpest image of the phase shifts (cf., the discussion in Section 2.2). Moreover, the
components Hϕ and Ev are small cross-polarization terms, and a pronounced influ-
ence of the phase shift due to a thin dielectric patch of tape are not visible in these
components. For this reason, these components are not investigated. The notation
used in visualizing the phase difference between the fields from e.g., conf. (1) and

(2), is ∠H(1)
v −∠H(2)

v = 180
π
∠
{
H

(1)
v [H

(2)
v ]∗

}
, where the star denotes the complex con-

jugate. The employed time convention, ejωt, gives a negative phase shift, indicating
that ∠H(1)

v − ∠H(2)
v > 0◦.

4.1 Reference measurement

First, a measurement series is conducted where copper plates are attached to the
radome surface in conf. (2). The imaging results agree well with the ones presented
in [24–26], where near-field measurements are utilized, and these results are not
further investigated in this paper. However, this first measurement series acts as
a reference measurement and sets the regularization parameter of the SVD used
in the subsequent measurement series. Typical graphs of the singular values are
shown in Figure 7. Each curve shows the singular value for the operator with
Fourier index m, normalized to the largest singular value (i = 1) for m = 0. As
|m| increases, the ”knee” of the graph, where the singular values start to rapidly
decrease, appears more quickly. The regularization parameter is chosen where the
”knee” bends. Investigations have shown that the chosen value is robust for a given
set-up and frequency. Furthermore, the results are not significantly altered if a
slightly different value is employed. The interval ∆ in Figure 7 indicates where the
regularization parameter gives a reliable outcome. The regularization parameter
is set to −29.8 dB, and this parameter is then utilized in the processing of the
succeeding measurement series.
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Figure 7: Singular values σmi . Each curve depicts different Fourier index m, and
the curves are normalized to the largest singular value for m = 0. The interval, ∆,
where the regularization parameter gives a reliable outcome, is drawn.

4.2 Imaging of dielectric material

Obtaining a constant phase shift over the illuminated area is often important to
trim radomes. The trimming is achieved by adding or removing dielectric material
to the radome surface. To investigate if the proposed method can be utilized to
map areas of the radome surface with a deviating electrical thickness, patches of
dielectric material (defects), are attached to the radome surface in conf. (2). Defects
of dielectric material mainly affect the phase of the field, and the phase differences
of the fields for the different configurations give us an understanding of how the
defects delay the fields.

Measurement series number two and three are employed. In each series the field
from the antenna (conf. (0)), the antenna together with the radome (conf. (1)),
and the antenna together with the radome where dielectric patches are attached to
the surface (conf. (2)), was measured, cf., Figure 1. In the second measurement
series, squares are added to the area where the main lobe illuminates the radome,
see Figure 8a, where the size and the thickness of the patches are shown. In the
third measurement series, the letters LU are attached to the radome, see Figure 8b.

4.2.1 Dielectric squares

Eleven dielectric squares of the sizes 0.5λ, 1λ, and 2λ are added to the radome
surface in conf. (2), see Figures 8a and 9. In Figure 9b, the illumination of the area
of conf. (1), to which the dielectric squares will be applied to create one case of
conf. (2), is shown. The largest squares are located in a field region of [−23,−6] dB,
the middle sized in the region [−12, 0.3] dB and the smallest ones in [−9, 0.3] dB,
respectively. In Figures 9c and 10, the reconstructed phase shifts due to the defects,
∠H(1)

v −∠H(2)
v , are visualized. The squares of size 2λ are clearly visible even though
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(a) (b)

Figure 8: The dielectric defects attached to the radome in conf. (2) — measurement
series number two and three, respectively. The numbers on the patches indicate the
number of tape layers. a) The size of the squares are; 30× 30 mm2 on the top row,
15×15 mm2 on the middle row, and 60×60 mm2 on the bottom row. b) Each “leg”
has a width of 15 mm. The drawn square indicates where the centered lower square
in the left figure was located.

they are partly located in areas with lower illumination. The ones of size 1λ are
also easily found. The defects of size 0.5λ with thickness of four and eight layers
are also clearly visible, even though the phase shift is not as conspicuous here.
The thinner, small squares tend to blend into the background phase deviation.The
rounded corners are due to the limited resolution. According to (2.2), each layer
gives rise to a phase shift of approximately 2◦ − 3◦. To get an estimate of the
phase shift due to the added squares, an average value is calculated over the areas
indicated in Figure 9b. These areas are drawn according to the given coordinates of
the squares, i.e., their positions are not approximated from the reconstruction. The
average values of the phase shifts are given in Table 1 and they agree very well for
the larger squares.

1 layer 2 layers 3 layers 4 layers 8 layers

0.5λ 2◦ 3◦ 4◦ 5◦ 10◦

1λ 6◦ 12◦ 22◦

2λ 2◦ 10◦ 19◦

Phase shift 2◦ − 3◦ 4◦ − 6◦ 6◦ − 9◦ 8◦ − 12◦ 16◦ − 24◦

due to (2.2)

Table 1: The average phase shift due to the dielectric squares. The bottom row
gives an approximate theoretical calculation, based on (2.2).
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Figure 9: a) A photo of the radome with the dielectric squares (defects). b) The re-
constructed field, Hv, on the radome — conf. (1). The drawn squares indicate where
the defects will be located to create conf. (2). c) The phase of the reconstructed
field difference between conf. (1) and (2).

4.2.2 Dielectric letters LU

In the third measurement series, defects of dielectric tape in the form of the letters
LU, are investigated, see Figures 8b and 11. The thickness of the tape is six layers
for the lower LU and two layers for the top one. The illumination of the area
of conf. (1), to which the dielectric letters will be applied to create one case of
conf. (2), is shown in Figure 11b. The ranges of the field within the defects are,
from the top left to the bottom right; [−8,−4] dB, [−5, 0.3] dB, [−8,−6] dB, and
[−9,−1] dB, respectively. In Figures 11c and 12a, the reconstructed phase shifts due

to the defects, ∠H(1)
v − ∠H(2)

v , are visualized. All letters are clearly visible in the
reconstruction. As stated above, each layer of tape shifts the phase by approximately
2◦ − 3◦. This agrees very well with the results given in Figure 12b, where the line
plots reveal how the phase difference changes due to the dielectric letters. The
defects on the bottom have a maximum deviation of about 16◦ and the top ones
circa 6◦.

4.2.3 Differences with the antenna as a reference

In the previous sections, we have looked at phase differences between the radome
with attached defects and the radome itself, i.e., the differences between conf. (1)
and (2). This has given an estimate of how well phase objects can be reconstructed.
In practice, it is advantageous to visualize the influence of the non-optimized radome.
In our measurements, this corresponds to the difference between conf. (0) and
conf. (1) or (2). The reconstructed phase shift over the illuminated area can act
as a trimming mask, indicating areas where a thickness alteration is required, in
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Figure 10: Enlarged view of the area with the dielectric squares in Figure 9c. The
phase of the reconstructed field difference between conf. (1) and (2) is depicted.
Each contour line represents one degree. The drawn squares indicate the given
coordinates, i.e., their positions are not approximated from the reconstruction.

order to get the phase shift into a pre-defined interval.
The influence of the radome in the main lobe, ∠H(0)

v − ∠H(1)
v , is visualized for

the second measurement series in Figure 13a. The same difference (∠H(0)
v −∠H(1)

v )
is shown in Figure 14a for the third measurement series, and it becomes clear that
there is a small deviation between the conf. (0) and (1) between measurement series.
Instead of a desired constant phase shift in the main lobe, Figures 13a and 14a
indicate a phase shift of 115◦ ± 10◦, implying that the radome surface needs to be
trimmed. The drawn squares and letters, in the figures, point out where the defects
are to be located to create conf. (2).

In Figures 13b and 14b, the phase difference in the main lobe between conf. (0)

and conf. (2) (∠H(0)
v − ∠H(2)

v ) is shown for the dielectric squares and letters LU.
The phase shift introduced by the dielectric patches in conf. (2) is now added to
the phase shift caused by the radome itself. The upper squares in Figure 13b are
mainly located in areas where the phase shift due to the radome itself is already
large, therefore these squares are clearly seen. The lower ones, to the left and right,
are thick enough to give rise to a visible phase shift by themselves. The square in the
middle on the bottom row is only one layer thick and located in a region with a low
phase shift to start with, and it cannot be resolved in the dynamic range showed.
Most parts of the letters LU are seen in the reconstructed images, see Figure 14b.
However, the left “legs” of the U:s are not as visible. The reason is that these parts
are attached to an area, where an added patch (with the appropriate thickness)
increases the phase shift to the level of the surrounding areas, and it is thereby not
localized by itself.
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Figure 11: a) A photo of the radome with the attached dielectric letters LU (defects).
b) The reconstructed field, Hv, on the radome — conf. (1). The drawn lines indicate
where the letters will be located to create conf. (2). c) The phase of the reconstructed
field difference between conf. (1) and (2).

4.2.4 Trimband

A horizontal band in the phase images is discovered during the investigations, see
Figure 15. Visual inspection reveals a small indentation on the inside of the radome
wall, originating from an earlier attempt to trim the radome. The indentation starts
at the approximate height 0.6 m (arc length) with a width of 0.1 m. In Figure 15a, the
reconstructed field from the antenna (conf. (0)), projected on the radome surface,
is shown, to visualize the illumination. The black lines indicate where the band
is located. The phase deviation between the band and the surrounding areas is
approximately −15◦ to −10◦, see Figure 15b.

To verify the phase deviation, the phase deviation is related to a wall thickness
by employing the approximate formula in (2.2). The utilized material parameters
are εr ≈ 4.32 and tan δ ≈ 0.0144 (cf., Section 2.1). Estimating the angle of incidence
to 60◦, see Figure 3, results in a wall thickness of 0.6− 0.9 mm. This approximated
value agrees well with the actual indentation on the radome. The phase differences,
at the top and the bottom of the radome in Figure 15b are not reliable due to low
illumination.

5 Conclusions and discussions

Techniques to diagnose radomes are requested in e.g., performance verifications.
In [24–26], the influence of copper plates, e.g., amplitude reduction and appearance
of flash (image) lobes, are investigated together with the localization of the defect
areas on the radome surface. In this paper, we investigate how reconstructed equiv-
alent surface currents from a measured far field can assist in localizing phase defects
on a radome. The phase defects introduce a hardly noticeable change in the far-field
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Figure 12: a) Enlarged view of the area with the dielectric letters in Figure 11c.
The phase of the reconstructed field difference between conf. (1) and (2) is depicted.
b) Line plot through the letters showing the phase deviations. The solid line in the
left image corresponds to the solid line in the right plot etc.

pattern. However, by visualizing the insertion phase delay (IPD) in the illuminated
area of the radome, the locations of the defects are revealed.

Dielectric squares of size 2λ — one layer thick, squares of size 1λ — two layer
thick, and squares of size 0.5λ — 4 layer thick, are clearly visible in the reconstructed
phase differences. One layer tape corresponds to a phase shift of a couple degrees.
Furthermore, the dielectric tapes of two layers and the smallest dimension of 0.5λ
in the form of the letters LU are resolved. The phase shifts of the larger squares
and the letters coincide well with the approximated theoretical ones. The radiance
at the upper left corner of the lower dielectric L, see e.g., Figure 12a, needs to be
investigated further. Possible explanations might be constructive and destructive in-
terference due to edge effects, noise influence, or a combination thereof. Analyzes of
other field components might explain this phenomenon. Future studies will address
the questions of how to combine the components to increase the resolution.

Reconstructing the fields on the radome surface, the magnetic field gives sharper
images than the electric field. A qualified explanation is that the induced currents on
the attached patches are of electric nature. This effect is also verified by simulations
in CST Microwave Studio.

The results indicate that the diagnostics method, beyond what is proposed in [24–
26], can be used in constructing a trimming mask for the illuminated areas of a
radome. The mask gives instructions of how to alter the radome surface, in order to
change the IPD, side and flash (image) lobes, to their preferable values. To indicate
how this can be implemented, we have explored the phase influence of the radome
itself, and then the radome with attached patches of dielectric tape. Even if the main
purpose of this paper is not to suggest how to trim the radome, we observe that
adding dielectric patches gives a smoother phase shift in areas where the phase shift
due to the radome itself is smaller than in the surrounding areas. In an upcoming
paper, these images and their potential to alter the IPD and flash (image) lobes will
be addressed.
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Figure 13: Enlarged view of the area illuminated by the main lobe. Phase differences
reconstructed from measurement series number two. a) Phase changes due to the
radome. The drawn squares indicate where the dielectric patches will be located to
create conf. (2). b) Phase changes due to the radome together with the dielectric
squares.
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Appendix A Induced currents due to dielectrics

A dielectric material introduces induced currents in the Maxwell equations. To see
this, start with the Maxwell equations for time harmonic fields in a source free region
(time convention ejωt),

∇×E = −jωB

∇×H = jωD

where E is the electric field, B is the magnetic flux density, H is the magnetic
field, and D is the electric flux density, respectively. The constitutive relations
read D = ε0εrE and B = µ0µrH , where ε0 is the permittivity of free space, εr is
the relative permittivity, µ0 is the permeability of free space, and µr is the relative
permeability, respectively.

In the absence of defects, and outside the radome (conf. (1) in Figure 1) we have

∇×E(1) = −jµ0ωH
(1)

∇×H(1) = jε0ωE
(1)
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Figure 14: Enlarged view of the area illuminated by the main lobe. Phase differences
reconstructed from measurement series number three. a) Phase changes due to the
radome. The drawn lines indicate where the dielectric letters will be located to
create conf. (2). b) Phase changes due to the radome together with the dielectric
letters.

On the other hand, in the presence of a dielectric material (conf. (2)) the defects
have an electric susceptibility χe = εr − 1, giving [14]

∇×E(2) = −jµ0ωH
(2)

∇×H(2) = jε0ωE
(2) + jε0χeωE

(2)

The field differences E = E(2) −E(1) and H = H(2) −H(1) satisfy

∇×E = −jµ0ωH

∇×H = jε0ωE + Jχe

where Jχe = jε0χeωE
(2) is interpreted as the induced current.
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Abstract

In this paper, an inverse source reconstruction method with great potential
in radome diagnostics is presented. Defects, e.g., seams in large radomes,
and lattice dislocations in frequency selective surface (FSS) radomes, are in-
evitable, and their electrical effects demand analysis. Here, defects in a fre-
quency selective radome are analyzed with a method based on an integral
formulation. Several far-field measurement series, illuminating different parts
of the radome wall at 9.35 GHz, are employed to determine the equivalent
surface currents and image the disturbances on the radome surface.

1 Introduction and background

Radomes enclose antennas to protect them from e.g., weather conditions. Ideally,
the radome is expected to be electrically transparent [10]. However, tradeoffs are
necessary to fulfill properties such as aerodynamics, robustness, lightweight, weather
persistency etc.. One tradeoff is the existence of defects. Specifically, seams appear
when lightning strike protection and rain caps are applied, or in space frame radomes
assembled by several panels [10, 18]. Other disturbances are Pitot tubes and the
attachment of the radome to the hull of an aircraft. In all these examples of defects,
it is essential to diagnose their influences, since they degrade the electromagnetic
performance of the radomes if not carefully attended.

In this paper, we investigate if source reconstruction can be employed to localize
and image defects on a radome surface. Employing far-field measurements removes
the need for probe compensation [22]. An artificial puck plate (APP) radome with
dislocations in the lattice is investigated. An APP radome is a frequency selective
surface (FSS) designed to transmit specific frequencies [15, 21]. It consists of a thick
perforated conducting frame, where the apertures in the periodic lattice are filled
with dielectric pucks. These dielectric pucks act as short waveguide sections [15].
Due to the double curvature of an FSS surface, gaps and disturbances in the lattice
may cause deterioration of the radome performance.

Source reconstruction methods determine the equivalent surface currents close
to the object of interest. These methods have been utilized for various diagnostics
purposes [1, 5, 8, 9, 11–14, 16, 17]. The reconstructions are established by employing
a surface integral representation often in combination with a surface integral equa-
tion. The geometry of the object on which the fields are reconstructed is arbitrary.
However, the problem is ill-posed and needs regularization.

Initial diagnostics studies are reported in [12–14], which focus on non-destructive
radome diagnostics. The equivalent surface currents are reconstructed on a body
of revolution with the method of moments (MoM), and the problem is regularized
with a singular value decomposition (SVD). Other research groups have employed
slightly different combinations of surface integral representations and surface integral
equations to diagnose objects. Especially, radiation contributions from leaky cables
are analyzed in [16], antennas are diagnosed in [1, 8, 9, 11, 17], and equivalent currents
on a base station antenna are studied in [5]. A more detailed background of source
reconstruction methods is found in [14].
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Figure 1: a) The geometry of the radome and the antenna. The center of rotation
is located at the origin. b) Part of the radome visualizing the lattice structure and
the defects at ϕ1 = −3◦ and z1 = 0.78 m.

This paper revisits the reconstruction algorithm described in [12, 14] in order to
investigate if defects on an FSS radome can be imaged. In Sec. 2 we describe the far-
field measurements, the set-up, and the measurement series. A brief reproduction
of the algorithm is given in Sec. 3. Images and analysis of the reconstructed fields
revealing the defects are found in Sec. 4, whereas a discussion of future possibilities
and conclusions are presented in Sec. 5.

2 Measurement data and set-up

The aim of this paper is to back propagate a measured far field using an equiva-
lent surface currents approach to determine the tangential field components on the
radome surface. The purpose is to investigate if defects on a frequency selective
surface (FSS) lattice can be localized.

The geometry of the radome and the antenna set-up are illustrated in Fig. 1a.
The height of the radome corresponds to 51.4 wavelengths at the investigated fre-
quency, 9.35 GHz. The antenna is a standard 18 inch slot antenna operating in
the frequency band 9.2 − 9.5 GHz. The radiated field is linearly polarized with a
dominating electric field component in the horizontal y-direction, see Fig. 1a. Sev-
eral mounting angles, defined by the polar angle θa, and the azimuth angle ϕa, are
employed to illuminate different parts of the radome surface, see Fig. 1a.

The radome is an FSS structure with a disturbed periodic lattice, depicted in
Fig. 1b. A vertical line defect — a column of elements is missing — is located at
ϕ1 = −3◦. The defect ends at z1 = 0.78 m, where a horizontal line defect is located.
The horizontal defect occurs due to a small vertical displacement of the elements.
Owing to a large curvature of the radome, the horizontal defect also results in a
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Figure 2: Photo of the radome in the compact test range.

small disturbance of the lattice in the azimuth direction. As a consequence, the
vertical and horizontal defects are of different nature. Another horizontal defect is
located at z0 = 0.38 m, see Fig. 4a. The smaller curvature makes the disturbance of
the lattice in the azimuth direction much smaller compared to the one at z = z1.

Four different measurement series were performed, each with a different antenna
orientation; {θa = 15◦, ϕa = 0◦}, {θa = 12◦, ϕa = −20◦}, {θa = 45◦, ϕa = 0◦},
and {θa = 45◦, ϕa = −20◦}. In the first two series, the antenna illuminates the
area, where the vertical defect merges the horizontal defect at z = z1, see Figs 1b
and 4a. The illumination in the last two series highlights the lower cross, depicted
in Fig. 4a. In this paper, we focus on the first two measurement series illuminating
the top. The last two series are utilized as reference measurements to set the reg-
ularization parameter as described in [14]. Moreover, in the last series, a dielectric
patch was attached to the radome surface, and the reconstruction of this patch was
employed to verify the absolute position of the radome in the chamber. In each
series illuminating the top, two different set-ups were measured for both polariza-
tions. The antenna alone is referred to as configuration (0) whereas configuration (1)
denotes the antenna together with the radome, also called the radome case. The
configuration numbers are given as superscripts in the field notation in Sec. 4.

The far-field was measured at GKN Aerospace Applied Composites’ compact test
range in Linköping, Sweden, see Fig. 2 and [20]. The measurements were carried out
over a spherical sector, described by the standard spherical coordinates, θ ∈ [0◦, 120◦]
and ϕ ∈ [0, 360◦], see Fig. 1a for notation. The distance between two subsequent
sample points was 1.5◦ in the azimuthal plane, and 0.75◦ in the polar plane, both
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Figure 3: The measured far field through the main lobe when the antenna orientation
is θa = 15◦ and ϕa = 0◦. The top two lines correspond to the co-component, E = Eϕ,
where the black line describes the antenna case and the red one the radome case.
The lower two lines correspond to the cross-component, E = Eθ, where the blue line
describes the antenna case and the purple one the radome case.

fulfilling the sample criteria [6, 22]. More details concerning the measurements and
the chamber are found in [14, 20].

Both polarizations of the measured far field, with and without the radome, are
given in Fig. 3, where the antenna orientation is θa = 15◦ and ϕa = 0◦. The cross sec-
tion in the polar plane, through the main lobe, ϕ = 0, is shown. The radome changes
the main lobe of the co-polarization, Eϕ, indicating transmission loss and beam de-
flection. The near side lobe levels are also slightly changed. Scattering effects, at
large polar angles, are introduced by the radome and affect the far outside lobes
in the co-polarization. The radome also changes the lobes of the cross-polarization.
Bear in mind, that the antenna illuminates the top of the radome, i.e., it is likely
that multiple scattering inside the radome give rise to some of the changes. More-
over, it is not possible to determine the electrical influence of the defects from the
unprocessed far-field data, i.e., a reconstruction technique, to retrieve the fields on
the radome surface, is necessary. Furthermore, the far fields show similar deviations
as the ones in Fig. 3, when the antenna orientation is θa = 12◦ and ϕa = 20◦.

3 Reconstruction algorithm

To investigate if a source reconstruction technique can be applied to image defects on
a frequency selective surface (FSS) radome, a reconstruction algorithm is applied to
relate the tangential electromagnetic fields on the radome surface to the measured
far field described in Sec. 2. In this paper, we only give a short outline of the
algorithm and some key implementation aspects, since the algorithm is thoroughly
described in previous works, see [12, 14].
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The electric surface integral equation (EFIE) [7]

n̂(r)×
{
L (η0J) (r)−K (M ) (r)

}
=

1

2
M(r) (3.1)

where r ∈ Sradome, and Sradome denotes the radome surface, smoothly closed at the
bottom, is combined with the surface integral representation [4, 19][

θ̂(r)
ϕ̂(r)

]
·
{
−L (η0J) (r) +K (M) (r)

}
=

[
θ̂(r) ·E(r)
ϕ̂(r) ·E(r)

]
(3.2)

where r belongs to the set of measurement points, see Fig. 1a, and η0 is the intrinsic
wave impedance of free space. A combination of the integral representation (3.2)
with a magnetic field integral equation (MFIE) does not change the results in Sec. 4
significantly. The far field is measured over a spherical sector, described by the
two spherical orthogonal components, ϕ̂ (azimuth) and θ̂ (polar), cf., Sec. 2. The
operators introduced in (3.1)–(3.2) are [7]

L(X)(r) = jk

¨

Sradome

{
g(r′, r)X(r′)− 1

k2
∇′g(r′, r)

[
∇′S ·X(r′)

]}
dS ′

and

K(X)(r) =

¨

Sradome

∇′g(r′, r)×X(r′) dS ′

where g is the scalar free space Green’s function, k is the wave number, and ∇S·
denotes the surface divergence [4]. Also, the equivalent surface currents on the
radome surface are, J = n̂ ×H and M = −n̂ × E [7]. The equivalent surface
currents on the radome surface are decomposed into two tangential components
along the horizontal, ϕ̂, and vertical, v̂, arc lengths coordinates, i.e., [ϕ̂, v̂, n̂] form
a right-handed coordinate system. Throughout the paper we use the notations,
Hv = H · v̂ = −Jϕ, Hϕ = H · ϕ̂ = Jv, Eϕ = E · ϕ̂ = −Mv, and Ev = E · v̂ = Mϕ

for the reconstructed tangential fields.
The set-up is axially symmetric, i.e., a body of revolution MoM code and a

Fourier expansion of the fields can be employed. Only components with Fourier
index m ∈ [−71, 71] are relevant to solve (3.1)–(3.2). The problem is regularized
by a singular value decomposition (SVD), where the regularization parameter is
set by the reference measurement series. The far-field radius, r in Fig. 1a, is set
to 2200 m. Employing larger radii do not change the results significantly. More
details, parameter choices of the MoM code, and discussions about the regularization
parameter are found in [14].

4 Reconstruction results

Two measurement series are investigated at 9.35 GHz with the antenna orientations:
{θa = 15◦, ϕa = 0◦}, and {θa = 12◦, ϕa = −20◦}, respectively, cf., Fig. 1a. The
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vertical lattice disturbance at ϕ = ϕ1, and the horizontal one at z = z1 are illumi-
nated, cf., Fig. 1b and Sec. 2. The magnetic field components, co-polarization Hv

and cross-polarization Hϕ, are depicted since they give clearer images of the defects,
see also [14].

The calculated tangential fields are visualized in Fig. 4, where the antenna orien-
tation is θa = 15◦ and ϕa = 0◦. In Figs 4ac, the field from the antenna is depicted on
a surface shaped as the radome to show how the defects, marked as white lines, are
illuminated. The z-axis in Fig. 4a, gives the positions of the horizontal defects, i.e.,
z0 = 0.38 m and z1 = 0.78 m, and the zooming area adapted throughout the paper,
i.e., zz > 0.28 m. The vertical defect and its top ending at z1 appear in the field of
the co-polarization on the radome, see Fig. 4b. The cross-polarized field reveals the
horizontal defect at z1, see Fig. 4d. The amplitude difference between the co- and
cross-polarization, i.e., 20log|H(0)

v |max− 20log|H(0)
ϕ |max, is 4.2 dB, where log denotes

the 10-base logarithm and |H(0)
v/ϕ|max = max

r∈Sradome

|H(0)
v/ϕ(r)|.

To verify that the defects really are imaged in Figs 4bd, another measurement
series was performed, where the antenna orientation is θa = 12◦ and ϕa = −20◦. The
influence of the radome in the main lobe is visualized in Figs 5–10. In Fig. 5, the
field amplitudes are depicted. Even though the main lobe is rotated by ∆θ = −3◦

and ∆ϕ = −20◦, the positions of the vertical defects (Figs 5ac), as well as the hori-
zontal ones (Figs 5bd), are identical. The linear scale reveals that the defects block
the field. The images of the cross-polarization, Figs 5bd, indicate an interference
pattern caused by the defects, where the distance between two subsequent minima
is approximately one wavelength.

The phase difference between the antenna and radome cases, the insertion phase
delay (IPD), is an essential tool in diagnostics of dielectric radomes [3, 14]. Here, we
investigate if defects in a frequency selective surface (FSS) lattice can be discovered
or not. Fig. 6 visualizes the IPD for the two antenna orientations. Observe that
the IPD is only determined modulus 2π, the phase difference ∠H(0) − ∠H(1) =
180
π
∠
{
H

(0)
v [H

(1)
v ]∗

}
gives a positive phase shift due to the time convention ejωt used,

and the star denotes the complex conjugate. The images of the vertical defect,
corresponding to the two different antenna orientations, are consistent in Figs 6ac.
Moreover, the position of the horizontal defect is stable in Figs 6bd. The phase
reconstruction is not reliable in areas with low amplitudes. To suppress the noise
in these areas, a mask is imposed in the figures, which only shows areas where
the field from the antenna, H

(0)
v/ϕ, is greater than a predefined value. Specifically,

20log{|H(0)
v |/|H(0)

v |max} > −15 dB in Figs 6ac and 20log{|H(0)
ϕ |/|H(0)

ϕ |max} > −10 dB

in Figs 6bd, respectively, where H
(0)
v/ϕ are depicted in Figs 4ac.

A diffraction pattern is detected in both polarizations, which implies an IPD
fluctuation in the main lobe. Due to rather large angles of incidence, cf., Fig. 1a,
the IPDs of the co- and cross-components deviate from each other [3]. In the main
lobe, the cross-polarization, Hϕ, has an average phase shift of 130◦ and the co-
polarization, Hv, has an average phase shift of 160◦. The vertical defect alters the
IPD with an additional 20◦ − 30◦. As a consequence of the large phase shifts in
the radome wall, the absolute difference |H(1)

v/ϕ − H
(0)
v/ϕ| becomes impertinent as a
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Figure 4: The Hv- and Hϕ-components of the antenna alone, i.e., conf. (0), are
depicted in (a) and (c), respectively. The defects at z0 and z1, marked with white
lines, are shown. Figs (b) and (d) show the Hv- and Hϕ-components of the radome
case, i.e., conf. (1). The antenna orientation is θa = 15◦ and ϕa = 0◦.
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Figure 5: The reconstructed amplitude differences between the radome case and the
antenna alone for z > zz. The top row (ab) corresponds to the antenna orientation
θa = 15◦ and ϕa = 0◦, whereas the bottom row (cd) corresponds to θa = 12◦

and ϕa = −20◦. Figs (ac) show the Hv-component and (bd) the Hϕ-component,
respectively.

visualization tool to detect differences. The reason for this is that a phase shift
close to π adds the fields instead of subtracting them.

As previously stated, the defects seem to block the incoming field, cf., Fig. 5.
This obstruction, which was detected in the magnetic field, is also visible in the power
flow. The real part of Poynting’s vector describes the time average power density
that flows through the radome surface. In the right-handed coordinate system on
the radome surface, [ϕ̂, v̂, n̂], the normal component of Poynting’s vector is [2]

P =
1

2
Re {E ×H∗} · n̂ =

1

2
Re
{
EϕH

∗
v − EvH

∗
ϕ

}
≡ P co

n + P cross
n (4.1)

where the star denotes the complex conjugate. In Fig. 7a, the difference in the power
flow between the radome and the antenna alone is depicted. This image illustrates
the impact of the radome. Moreover, it filters out some of the interference pattern,
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Figure 6: The insertion phase delay, IPD, ∠H(0)
v/ϕ − ∠H(1)

v/ϕ for z > zz. The top

row (ab) corresponds to the antenna orientation θa = 15◦ and ϕa = 0◦, whereas
the bottom row (cd) corresponds to θa = 12◦ and ϕa = −20◦. Figs (ac) show
the Hv-component in areas illuminated down to −15 dB, whereas (bd) visualize the
Hϕ-component in areas illuminated down to −10 dB.

and gives a clear view of the vertical defect. To reduce the influence of a non-
even illumination, a pointwise normalization of the power flow, i.e., a normalization
with P (0)(r), is presented in Fig. 7b. A mask of 10log{P (0)/P

(0)
max} > −15 dB is

imposed, to avoid amplification of small fields in areas of low illumination. In this
normalization, the horizontal defect starts to emerge. The reason why the horizontal
defect is less visible in the power flow graphs is that this defect is perceived by the
weaker cross-components, Hϕ and Ev, and these components are suppressed by the
stronger co-components in (4.1). To investigate if it is possible to get a more distinct
view of the horizontal defect, the part of P with contributions from only the cross-
components, i.e., P cross in (4.1), is mapped. This quantity is visualized in Fig. 8a,
where the horizontal defect appears. An even more distinct image is obtained if
the field difference, pointwise normalized with the incidence field, is depicted, see
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Figure 7: The time average power density through the radome for z > zz. The
antenna orientation is θa = 15◦ and ϕa = 0◦. a) Normalized to the maximum value.
b) Pointwise normalization in the illuminated areas down to −15 dB.

Fig. 8b. All values 15 dB below the maximum of P (0)cross are suppressed. Similar
results are obtained when the antenna orientation is θa = 12◦ and ϕa = −20◦, see
Figs 9–10. The positions of the defects are consistent in Figs 7–10, whereas the rest
of the field pattern changes slightly when the illumination is moved.

So far, the two measurement series illuminating the top have been investigated.
The measurements focusing on the lower cross at z = z0 are not presented in detail
here, see Fig. 4a and a description in Sec. 2. However, some of the results are worth
mentioning. For example, the horizontal defect at z = z0 is hardly visible. The
lattice is not as disturbed in the azimuth direction as it is higher up on the radome
surface, and it is conjectured that this explains the weak effects, cf., discussion
in Sec. 2. Moreover, the diffraction pattern — clearly visible in Figs 5bd, where
the top is investigated — does not appear in the cross-polarization for the lower
illumination. Additionally, a flash lobe is present, revealing a vertical defect on the
back of the radome wall.

5 Conclusions and discussions

Defects, giving rise to pattern distortions, are often an inevitable tradeoff in the
design of radomes. To minimize the effects of these defects, diagnostics tools are
valuable in the evaluation process and performance verification. In this paper, an
inverse source reconstruction method is utilized to back propagate measured far-
field to the surface of a frequency selective surface (FSS) radome with defects in
its lattice, see Fig. 1b. Different illuminations of the radome wall help us to image
these defects.

Both the amplitude and the phase differences are investigated. A vertical line
defect, where a column of elements is missing, is clearly visible in the images of
the magnetic co-polarization. Moreover, the visualizations of the magnetic cross-
polarization reveal a horizontal line defect caused by an enlarged vertical distance
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Figure 8: The cross-components of Poynting’s vector for z > zz. The antenna orien-
tation is θa = 15◦ and ϕa = 0◦. a) Normalized to the maximum value. b) Pointwise
normalization and viewed in areas illuminated down to −15 dB.

between the center of the lattice elements. It is conjectured that the defects are
blocking the field, and images of the power flow, i.e., the real part of Poynting’s
vector, confirm this hypothesis.

Prior studies have shown the potential of the source reconstruction method as a
useful tool in non-destructive dielectric radome diagnostics [12–14]. It is concluded
that also defects on FSS radomes can be properly analyzed with the same technique.
Further studies will address the question regarding the origin of the diffraction pat-
tern together with a thorough analysis of the measurement data illuminating the
lower cross. Another interesting aspect to be investigated is why the defects are
visible in specific field components and not in others. Also, the diagnostics of other
defects caused by e.g., lightning strike protection or edges, are to be reported else-
where.
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