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Modelling and Forecasting Short-Term Interest Rate

Volatility: A Semiparametric Approach

Abstract

This paper employs a semiparametric procedure to estimate the di¤usion process

of short-term interest rates. The Monte Carlo study shows that the semiparametric

approach produces more accurate volatility estimates than models that accommodate

asymmetry, levels e¤ect and serial dependence in the conditional variance. Moreover,

the semiparametric approach yields robust volatility estimates even if the short rate

drift function and the underlying innovation distribution are misspeci�ed. Empirical

investigation with the U.S. three-month Treasury bill rates suggests that the semipara-

metric procedure produces superior in-sample and out-of-sample forecast of short rate

changes volatility compared with the widely used single-factor di¤usion models. This

forecast improvement has implications for pricing interest rate derivatives.

Keywords: Interest Rates; GARCH modelling; Nonparametric method; Volatility esti-

mation; Forecasts

J.E.L. Reference Numbers: E43;C22; C53
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1 Introduction

There is an extensive literature on the modelling of the short-term interest rate as this rate is

fundamental to the pricing of �xed-income securities and for the measurement of the interest

rate risk associated with holding portfolios of these securities. One of the earliest papers

that formally compares a number of single-factor models is Chan et al. (1992). Based on

U.S. data, their study controversially rejects the commonly adopted square root di¤usion

model of Cox et al. (1985), whereby the volatility of short rate changes is proportional to

the square root of the interest rate levels. Instead, their model shows that volatility is more

sensitive to interest rate levels, specifying an exponent for the commonly known level e¤ect

in the region of 1.5. A more recent study by Brenner et al. (1996) shows that models which

parameterise volatility only as a function of interest rate levels tend to over emphasize the

sensitivity of volatility to levels and do not take into consideration the serial correlation in

conditional variances. They propose a new class of models which allows volatility to depend

on both interest rate levels and information shocks. There is by now a general consensus in

the literature that short rate models which account for both levels e¤ect and serial correlation

in the volatility processes perform better than models that solely parameterises levels e¤ect

or serial dependence in the conditional variances (Bali, 2000).

Unlike the di¤usion process, the appropriate drift speci�cation of short rate models re-

mains highly controversial in the literature. While a large proportion of research reports

a linear drift (such as Chan et al., 1992 and the models nested by it), others argue to the

contrary (Ait Sahalia, 1996a,b; Conley et al., 1997; Jones, 2003) �nding nonlinear mean

reversion. Using a semi-nonparametric approach, Ait-Sahalia (1996a,b) constructs a gen-

eral speci�cation test of a short-rate model and rejects a linear drift in favour of models

that imply no mean reversion for levels of the short rate between certain threshold levels,

and strong mean reversion for extreme levels of the short rate. Stanton (1997) and Jiang

(1998) estimate a model of the short rate nonparametrically using di¤erent data sets from

Ait-Sahalia and �nd supporting evidence of nonlinearities in the drift function. Bali and Wu

(2006) document evidence that the speeds of mean-reversion for short-term interest rates at
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extremely high interest rates such as in the Volker (1979-1982) regime are di¤erent than at

normal times. They attribute the nonlinearity in short-rate drift to the di¤erences in the

degree of mean-reversion at di¤erent interest rate levels. Be that as it may, the robustness

of the nonlinear drift function in short rate models has been questioned by some authors.

Pritsker (1998) examines the �nite-sample properties of Ait-Sahalia�s nonparametric test,

showing that upon adjusting for the high persistence in interest rates, the nonlinearity in

the drift function becomes statistically insigni�cant. Chapman and Pearson (2000) perform

simulation exercise and show that the evidence supporting the nonlinear drift function could

be an artifact of the nonparametric estimation procedure rather than depicting the true

data generating process. Using Bayesian estimation method, Jones (2003) shows that the

determination of short-rate drift speci�cation is dependent on the assumption of the prior

distribution. In particular, under the assumption of a �at prior distribution and the imposi-

tion of stationarity in interest rate dynamics, he identi�es a nonlinear drift. However, when

he implements an approximate Je¤reys prior there is no mean-reverting evidence. Finally,

Durham (2004) �nds that the signi�cance of nonlinearity in the drift function depends on

the speci�cation of the di¤usion process, a �nding which accords with Bali (2007).

This paper considers an alternative method for modelling short rate volatility. We apply

a semiparametric smoothing technique to the generalised autoregressive conditional het-

eroskedasticity (GARCH) model of short rate volatility. This involves estimating a paramet-

ric form of the short rate drift function followed by estimating the hidden volatility process

nonparametrically. On the basis that the literature is divided about the appropriate drift

speci�cation, we estimate both linear and nonlinear drift functions of the short rate. The

estimation of a parametric drift speci�cation quali�es this approach as a semiparametric

method (Jiang and Knight, 1997). To estimate the latent volatility process, we use the

algorithm developed by Bühlman and McNeil (2002) and apply it to a generalised additive

model of Hastie and Tibshirani (1990). Bühlman and McNeil (2002) argue that estimating

the volatility process with the nonparametric approach is less sensitive to model misspeci�-

cation and does not require a priori knowledge of the innovation distribution. This feature
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makes the application of nonparametric method attractive for estimating short rate di¤usion

process given that short rates are known to possess distributions that depart from normality.

We specify the latent volatility process as a general additive function of the lagged value of

the conditional variance, innovations and interest rate levels. This speci�cation is consistent

with a class of single-factor short rate di¤usion models where the volatility of short rate

changes is serially dependent on past volatility, squared innovations and interest rate levels.

In addition, the additive structure of the hidden volatility facilitates the use of a back�tting

algorithm to estimate the di¤usion process.

The potential usefulness of the semiparametric approach for estimating short rate volatil-

ity is examined by comparing its forecast performance with a variety of one-factor short rate

di¤usion models. Results from our Monte Carlo simulation illustrate the robustness of the

semiparametric approach when estimating short rate changes volatility to misspeci�cation

in the short rate drift function and the underlying innovation distribution. Moreover, the

in-sample forecast performance of the semiparametric approach is superior to the paramet-

ric models considered. The empirical application to U.S. three-month Treasury bill yields

suggests that the semiparametric estimation procedure provides superior in-sample and out-

of-sample volatility forecast than short rate volatility models of Brenner et al. (1996) which

feature asymmetric and levels-dependent conditional variance. Although the semiparametric

approach does not specify the asymmetric feature of the volatility process, this procedure

improves upon the goodness of �t and the predictive power of the volatility estimates. We

do not �nd any evidence of nonlinearities in short rate drift and conditional skewness in

short rate changes distribution. Finally, we demonstrate that the semiparametric approach,

which yields a greater degree of accuracy in modelling short rate changes volatility, has

pertinent implications for pricing long-dated and path-dependent interest rate derivatives.1

Using simulation method, we show that the semiparametric modelling approach gives rise to

signi�cantly di¤erent probability distributions of future interest rate levels compared with

parametric short rate models. The con�dence intervals of future interest rate levels are nar-

rower than any of the parametric models considered, thereby leading to a lesser degree of
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price variability of interest rate derivatives.

The rest of the paper is organised as follows. Section 2 describes the short rate models

and the semiparametric smoothing technique. Section 3 outlines the design of the Monte

Carlo experiment to examine the in-sample predictive power of the semiparametric approach

and its forecast property when subject to possible misspeci�cations in the drift function

and the innovation distribution. This section also reports the results of the simulation

study. Section 4 applies the semiparametric technique to the U.S. short-term interest rates

to evaluate its in-sample and out-of-sample forecast performance relative to other short rate

models. Implications of this forecast improvement on pricing interest rate derivatives are

also discussed. Section 5 concludes.

2 The Short Rate Models and the Semiparametric Ap-

proach

2.1 The Short Rate Models

Chan et al. (1992) (CKLS, hereafter) propose the generalised continuous time short rate

speci�cation,

dr = (�+ �r) dt+ �r�dW (1)

where r denotes the level of the short-term interest rate, W is a Brownian motion and �; �

and � are parameters. The drift component of short-term interest rates is captured by �+�r

while the variance of unexpected changes in interest rates equals �2r2�. The parameter � is a

scale factor and � controls the degree to which the interest rate level in�uences the volatility

of short-term interest rate changes. The CKLS model nests many of the existing interest

rate models. For example, when � = 0 then (1) reduces to the Vasicek (1977) model, while

� = 1=2 yields the Cox, Ingersoll and Ross (1985) model, see Chan et al. (1992) inter alia for

further details. There is a dearth of literature that focuses on the univariate CKLS model.

Czellar, Karolyi and Ronchetti (2007) study di¤erent estimation techniques for the CKLS
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short rate model. Bali and Wu (2006) investigate extensions of the mean speci�cation of the

CKLS model. On the other hand, Nowman and Sorwar (2005) use the CKLS model to price

bonds and contingent claims.

It is common to consider the Euler-Maruyama discrete time approximation to (1) written

as:

�rt = �+ �rt�1 + "t: (2)

Let 
t�1 represent the information set available at time t � 1 and that E ("tj
t�1) = 0:

Suppose ht represent the conditional variance of the short-term interest rate changes then

E ("2t j
t�1) � ht = �2r2�t�1. It can be seen that the only source of conditional heteroscedas-

ticity in (2) is through the level of the interest rate. Brenner et al. (1996) (BHK, hereafter)

relaxes the assumption of a constant �2 by allowing it to vary according to information

arrival process. One common approach to capturing the e¤ect of unanticipated news is the

GARCH(1,1) model:

ht = �0 + �1"
2
t�1 + �2ht�1: (3)

The innovation "t denotes a change in the information set from time t � 1 to t and can

be treated as a collective measure of unanticipated news. In (3) only the magnitude of

the innovation is important in determining ht. BHK extend (2) to allow information from

unanticipated news and the one-period lagged interest rate levels to govern the dynamics of

short rate volatility in the following way:

�rt = �+ �rt�1 + "t;

"t =
p
htzt; zt � t(v) and

ht = �0 + �1"
2
t�1 + �2ht�1 + br

2�
t�1: (4)

Equation (4) is known as the GARCH-X process. Under the restriction �0 = �1 = �2 =

0; (4) collapses to (2) where b = �2 and that volatility depends on interest rate levels alone.

Furthermore when b = 0 then there is no levels e¤ect. The GARCH-X model does not permit
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short rate volatility to respond asymmetrically to interest rate innovations of di¤erent sign.

BHK relax the assumption of a symmetric GARCH-X process by modelling the conditional

variance speci�cation as:

ht = �0 + �1"
2
t�1 + �2ht�1 + br

2�
t�1 + �3�

2
t�1 (5)

where �t�1 = min(0; "t�1): BHK refer to this model as the AsyGARCH-X. For simplicity, we

refer to the symmetric (asymmetric) GARCH-X as the GARCHX (AGARCHX) model. For

the purpose of this paper, we only consider the additive levels e¤ect as the (A)GARCHX

model is consistent with the generalised additive non-parametric GARCH model discussed

in the next sub-section.2 In practice, when estimating the (A)GARCHX model it is common

to scale the interest rate level term in the variance equation with a factor (1/10) such that

the levels dependence in the conditional variance is captured by b(rt�1=10)2� (see Brenner et

al., 1996).

The linear drift in equation (2) implies that the strength of mean reversion is the same for

all levels of the short rate. Even though there is no a priori economic intuition that would

suggest the existence of a nonlinear drift, empirical research has shown that there is evidence

of nonlinear drift in short-term interest rates, that is, mean reversion is stronger for extreme

low or high levels of short rate. Ait-Sahalia (1996a) advocates the use of a �exible functional

forms to approximate the true unknown shapes of short rate process. He estimates a short

rate model:

drt = (�+ �1rt + �2r
2
t +

�3
rt
)dt+

q
�0 + �1rt + �2r

�3
t dWt: (6)

and �nds that the test rejects a linear drift in favour of models that imply no mean reversion

for levels of the short rate between 4 and 22 percent, and strong mean reversion for extreme

levels of the short rate. Conley et al. (1997) adopt the same drift parameterisation as

Ait-Sahalia but keeps the constant elasticity variance di¤usion used by CKLS:

drt = (�+ �1rt + �2r
2
t +

�3
rt
)dt+ �r
t dWt: (7)
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They �nd that the drift function displays mean-reversion only for rates below 3% or above

11%. Bali (2007) also estimates the nonlinear drift speci�cation of Ait-Sahalia in (6) but

with a di¤usion process that follows a GARCH(1,1) model and is dependent on interest

rate levels. Bali and Wu (2006), estimate a variant of the drift speci�cation in (6) which

includes a �fth order polynomial. As is apparent from extensive research which adopts the

nonlinear drift speci�cation of Ait-Sahalia and the possible in�uence this nonlinear drift

might exert on the conditional volatility of interest rate changes, we also estimate a discrete

time approximation of the Ait-Sahalia (1996a) nonlinear drift speci�cation:

�rt = �+ �1rt�1 + �2r
2
t�1 +

�3
rt�1

+ "t (8)

and the conditional variance of the short-term interest rate changes which follows equation

(5).

Empirical studies on short-term interest rates have shown that the standardised residuals

obtained from the GARCH models exhibit leptokurtosis. The assumption of normality is

easily rejected by the Jarque-Bera test when applied to short rate data. Consequently, the

Student�s t distribution is commonly employed to capture the thicker tails in the empirical

distribution of short rates. There are, however, other non-normal distributions which have

been used to characterise the distribution of short rate changes. In particular, much attention

has been paid in modeling the skewness of the distribution. Bali (2007) adopts the skewed

generalised error distribution of Theodossiou (1998) as well as the Hansen�s (1994) skewed

t-distribution to capture the skewness in the empirical distribution of the U.S. 3-month

Treasury bill yield. Following Bali (2007), we employ both the Student�s t and Hansen�s

skewed t distributions in the Monte Carlo experiment and empirical application. For the

skewed t distribution, we de�ne the residuals in equation (4) as:

"t =
p
htzt; zt � Hansen0s t(v; �) . (9)

The parameters � and v control the direction of asymmetry and kurtosis of the distribution.
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The Hansen�s skewed t distribution is de�ned by

f(zt; �; v; �) =

8>>><>>>:
bc

�
1 + 1

v�2

�
bzt+a
1��

�2�� v+1
2

if zt < �a
b

bc

�
1 + 1

v�2

�
bzt+a
1+�

�2�� v+1
2

if zt � �a
b

(10)

where zt = "tp
ht
; � is the set of parameters associated with the drift and di¤usion speci�ca-

tions of the short rate model, and the constants a; b and c are given by

a = 4�c

�
v � 2
v � 1

�
; b2 = 1 + 3�2 � a2; c =

�
�
v+1
2

�p
�(v � 2)�

�
v
2

� :
For � = 0 the Hansen�s distribution reduces to the traditional standardised t distribution,

while for � = 0 and v = 1, it reduces to a normal density. The density (10) is de�ned for

2 < v <1 and �1 < � < 1:

2.2 The Generalised Additive Semiparametric GARCH Model

Consider the short-rate model:

Xt = �tZt (11)

�2t = f1(Xt�1) + f2(�
2
t�1) + f3(rt�1) (12)

where fZt; t 2 Zg is an i.i.d innovation with zero mean, unit variance and a �nite fourth

moment, andXt = �rt�(�+�rt�1) for a linear drift andXt = �rt�(�+�1rt�1+�2r2t�1+ �3
rt�1
)

for a nonlinear drift. Let f1 : < ! <+; f2 : <+ ! <+ and f3 : <+ ! <+ be strictly

positive-valued functions. The conditional variance and volatility are denoted by �2t and

�t; respectively. Further assume that Xt and rt are stationary stochastic processes and

fXt; t 2 Zg is adapted to the ���ltration fFt; t 2 Z} with Ft = � (fXs; s � tg). The

assumption of stationarity in rt is empirically veri�ed by performing the Seo (1999) unit

root test on the U.S. 3-month Treasury bill rate. To ensure comparability with the CKLS

and BHK short rate models, we �rst estimate a linear drift function speci�ed in equation
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(2). However, given the vast literature on short rate models with nonlinear drift function,

we also investigate the nonlinear drift speci�cation of Ait-Sahalia (1996a) given by equation

(8). The exact form of the functions f1; f2 and f3 in (12) is left unspeci�ed but it can

be estimated by a nonparametric method in which X2
t is regressed on the lagged variables

Xt�1; �
2
t�1 and rt�1: To show that this procedure is applicable for estimating the unobserved

variable �2t , we re-write the model (11 and 12) as:

X2
t = f1(Xt�1) + f2(�

2
t�1) + f3(rt�1) + Vt (13)

Vt =
�
f1(Xt�1) + f2(�

2
t�1) + f3(rt�1)

� �
Z2t � 1

�
where Vt is a martingale di¤erence series with E(Vt) = E(VtjFt�1) = 0 and Cov(Vs; Vt) =

Cov(Vs; VtjFt�1) = 0 for s < t. Taking the conditional expectations of X2
t in (13) yields:

E(X2
t jFt�1) = f1(Xt�1) + f2(�

2
t�1) + f3(rt�1) (14)

and its conditional variance can be shown to be:

V ar(X2
t jFt�1) =

�
f1(Xt�1) + f2(�

2
t�1) + f3(rt�1)

�2 �
E(Z4t )� 1

�
: (15)

To estimate the latent variable �2t in (12), we adopt the estimation algorithm of Bühlmann

and McNeil (2002). For a given data sample we �rst calculate the volatility estimate �̂t;0 by

�rst estimating the linear drift speci�cation (2) and the conditional variance (3) using the

method of maximum likelihood. Further, we verify that the semiparametric approach is ro-

bust to possible nonlinear drift by estimating the volatility estimate �̂t;0 with a nonlinear drift

speci�cation. Note that �̂t;0 is used as the initial volatility estimate. In the �rst iteration, we

regress fX2
t ; 2 � t � ng against fXt�1; 2 � t � ng ;

�
�̂2t�1;0; 2 � t � n

	
and frt�1; 2 � t � ng

using a nonparametric smoothing procedure with a back�tting algorithm to obtain an es-

timate f̂i;1 of fi for i = 1; 2 and 3.3 The regression is performed with regression weights�
�̂�2t;0 ; 2 � t � n

	
as this yields improved estimates of �2t (Bühlmann and McNeil, 2002).
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Having estimated fi;1, we then calculate �̂
2
t;1 = f̂1;1(Xt�1) + f̂2;1(�̂

2
t�1;0) + f̂3;1(rt�1). In the

next iteration, we perform another regression to obtain f̂i;2 and �̂
2
t;2 which yields improved

estimates of the conditional variance �̂2t;2. This iterative process is performed for a prespec-

i�ed number of iterations, m. As shown by Bühlmann and McNeil (2002) and according to

our estimation experience which is documented in the simulation results, the improvement

over the parametric GARCH estimation of volatility can be attained in a small number of

iterations which usually takes place in the �rst 4 iterations. The algorithm can be improved

by averaging over the �nal K estimates to derive:

�̂t;� =
1

K

MX
m=M�K+1

�̂t;m: (16)

Note that we average over the volatility rather than the conditional variance since �̂t is our

proxy for volatility. In the �nal smoothing, we regress X2
t against Xt�1; �̂

2
t�1;� and rt�1

to obtain f̂i and �̂
2
t = f̂1(Xt�1) + f̂2(�̂

2
t�1;�) + f̂3(rt�1): In our empirical application and

simulation experiment we obtain the �nal smoothing based on K = 4 for eight iterations

(i.e. m = 8):

3 Monte Carlo Study

3.1 Experimental Design

The purpose of the simulation experiment is to illustrate the superior volatility forecast

performance of the semiparametric procedure compared with parametric short rate models.

In addition, we show that the semiparametric method yields volatility forecasts that are

invariant to the underlying distribution of the short rate and its drift speci�cation.

The data generating process (DGP) for interest rates with a linear drift follows the
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AGARCHX model (2) and (5). Speci�cally, the DGP with a linear drift is:

�rt = 0:06� 0:008rt�1 + "t; (17)

"t = �tzt, zt � t (4); (18)

�2t = 0:24 + 0:1026"2t�1 + 0:5595�
2
t�1 + 0:3282�

2
t�1 + 0:015(rt�1=10) (19)

where �t�1 = min(0; "t�1): The use of Student�s t distribution for interest rate innovation is

consistent with the widely observed non-normal short-term interest rate distribution. More-

over, for the purpose of examining the e¤ects of nonlinear drift function on forecasts gener-

ated by the semiparametric approach, we consider the following DGP:

�rt = 0:06 + 0:008rt�1 � 0:01r2t�1 + 0:0002=rt�1 + "t; (20)

"t = �tzt, zt � t (6); (21)

�2t = 0:05 + 0:1026"2t�1 + 0:5595�
2
t�1 + 0:3282�

2
t�1 + 0:045(rt�1=10) (22)

where �t�1 = min(0; "t�1): The parameter values used in the DGPs are typical of short rate

empirical research. We discard the initial 50 observations to mitigate the e¤ect of start-up

values yielding samples of 1000 observations, drawn with 50 replications. The small number

of replications does not bias the results in any way. In fact, this is consistent with the

number of replications performed in the simulation experiment conducted by Bühlmann and

McNeil (2002). Upon generating the data, we estimate the parametric models of short-term

interest rates with linear and nonlinear drifts, symmetric and asymmetric GARCHX models,

and with three di¤erent innovation distributions, namely normal, Student�s t and Hansen�s

skewed t distributions. In addition, we estimate the latent volatility using the method of the

generalised additive semiparametric GARCH model discussed in sub-section 2.2. For both

DGPs we �t linear and nonlinear drift speci�cations before applying the nonparametric

smoothing technique to the volatility estimates. The parametric models are estimated by

maximizing the log-likelihood function using the Broyden, Fletcher, Goldfarb and Shanno
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(BFGS) algorithm with the Bollerslev and Wooldridge (1992) robust standard error.

To compare the goodness of �t of the in-sample volatility estimates for the di¤erent

models, we compute the absolute error (AE) and the squared error (SE) given by:

AE(�̂:;m) =
1

1000� r

1000X
t=r+1

j�̂t;m � �tj and SE(�̂:;m) =
1

1000� r

1000X
t=r+1

(�̂t;m � �t)2

(23)

where r = 50 is the semiparametric estimates of volatility at the �rst �fty time points that

are omitted as these estimates may be unreliable, and m applies only to the semiparametric

approach and refers to the speci�c number of iterations. These measures are also computed

at each iteration of the semiparametric procedure to show the degree of improvement in the

goodness of �t of the volatility estimates. For the 50 independent realisations, we average our

volatility estimation error statistics to provide an estimate of mean squared error (MSE) and

mean absolute error (MAE), as well as the standard errors for the MSE and MAE estimates.

3.2 Simulation Results

Figures 1(a) and (b) present plots of volatility estimates from the DGP with linear and

nonlinear drifts, respectively. Column three of Figures 1(a) and (b) shows volatility plots of

the semiparametric method while columns one and two show volatility plots of the parametric

GARCHX and AGARCHX models. Both the true and estimated volatility are plotted

together so as to provide a visual impression of their goodness of �t. To conserve space, we

only report an arbitrarily selected sample of 100 observations from one of the replications

results. The plot of the volatility estimates produced by the semiparametric method is based

on the �nal smoothed �t estimate. A cursory look at Figure 1(a) and (b) suggests that the

semiparametric approach yields volatility estimates which match the true simulated volatility

better than the parametric models. This result is robust to the innovation distributional

assumption. The GARCHX and AGARCHX models fail to produce volatility estimates that

can adequately capture the variation in the true volatility even though in some instances they

capture the spikes relatively well. Another interesting observation which is commonly shared
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by Figures 1(a) and (b) is that the parametric volatility estimates tend to be higher than the

actual volatility level. This is not the case with the semiparametric estimates; they trace the

level of the true volatility well. When comparing the volatility estimates produced by the

GARCHX and the AGARCHX models, we �nd that a model with asymmetric conditional

variance produces estimates that better depict the actual volatility. This result is, perhaps,

not surprising as the DGP possesses this asymmetric feature in the conditional variance.

There is some indication that the volatility estimates generated by the same parametric

model but with di¤erent innovation distributional assumptions are distinct. This distinction

is less noticeable with estimates produced by the semiparametric approach.

- Figures 1a and b about here -

Tables 1(a) and (b) show the estimation error results for the in-sample volatility estimates

of various short rate models for DGPs with linear and nonlinear drifts, respectively. For both

DGPs, there is evidence that the standard GARCH model yields the largest MSE and MAE.

This result is robust to the innovation distributional assumption and the drift speci�cation

that is estimated. On the other hand, amongst the di¤erent parametric GARCH models, the

AGARCHX model produces the lowest MSE and MAE. There is evidence that �tting the

correct conditional variance speci�cation and using the appropriate innovation distribution

give rise to signi�cant improvement in the MSE and MAE. In the case of the linear drift DGP,

the improvement in the MSE between a linear drift model with GARCH and AGARCHX

speci�cations is about 16% for Normal distribution, 26% for Student�s t and 16% for skewed

t distribution. On the other hand, for a nonlinear drift DGP, the improvement is the MSE

between a nonlinear drift model with GARCH and AGARCHX speci�cations is about 5%

for Normal distribution, 11% for Student�s t and 18% for skewed t distribution. We also

observe that �tting an erroneous drift speci�cation tends to increase the MSE and MAE of

the in-sample �t.
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-Tables 1a and b about here -

Turning to the estimation error of the semiparametric approach for both DGPs indicates

that the MSE and MAE are substantially smaller than the parametric models. For the linear

drift DGP, between the best �tting AGARCHX model with linear drift and the semipara-

metric approach with linear drift, the improvement in the MSE(MAE) is about 21%(6%) for

both Normal and skewed t distributions, and 20%(6%) for the Student�s t distribution. Simi-

larly, for the nonlinear drift DGP, the improvement is about 9%(4%) for Normal distribution,

7%(4%) for Student�s t and 12%(3%) for skewed t distribution. It can be inferred, therefore,

that while there is gain to be made from using a semiparametric approach over parametric

GARCH models in estimating latent volatility, the bene�t is more substantial for the case of

a short rate model with a linear drift. An interesting observation about the semiparametric

approach which contrasts the parametric models is that the MSE and MAE produced by the

�nal smoothed semiparametric approach tend to be very close to each other for the three

di¤erent innovation distributions, as well as the di¤erent drift speci�cations. This result is

interesting as it suggests that the semiparametric approach yields volatility estimates that

are robust to the innovation distributional assumption and possible misspeci�cation of the

short rate drift function - a feature that is lacking in parametric models.

Last but not least, according to Bühlmann and McNeil (2002) the apparent improvement

in the volatility estimates produced by the semiparametric technique should show up in the

�rst four iterations of the smoothing procedure. Indeed we observe that the reduction in

the estimation error (relative to a GARCH model) is largest at the �rst iteration of the

procedure. However, this reduction is more substantial in the case of the linear drift model

than the nonlinear drift model.
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4 Empirical Application

4.1 Data Description

The empirical investigation is based on 1892 weekly observations on the U.S. 3-month Trea-

sury bill rate, sampled from 9 February 1973 to 8 May 2009. The data are obtained from

the Federal Reserve Bank of St. Louis (FRED) database. This period comprises a shift from

historically high interest rates in the late 1970s to early 1980s during the Volcker monetary

regime to low interest rate levels in the latter part of the sample period. The interest rate

data and the �rst di¤erenced series are presented in Figure 2. Summary statistics for the

data set are provided in Table 2.

- Figure 2 about here -

From Figure 2 it is clear that there is indeed a tendency for the volatility in the interest

rate series to be positively correlated with current interest rate levels. At the start of the

sample period, the association between the level of interest rate and its volatility is visible.

This feature becomes more apparent for the 1979-1983 period during which both the level

and volatility of the rate are high. The level e¤ect is not as obvious after the Volker monetary

regime. These empirical features tally with those reported in Brenner et al. (1996). The

time-varying nature of the volatility in the sample is indicative that unexpected �news�might

be equally important in explaining the volatility of interest rates, in addition to the level

e¤ect.

- Table 2 about here -

The time-varying nature of the volatility that is evident in Figure 2 is associated, in turn,

with an empirical distribution for the �rst di¤erenced data that exhibits excess kurtosis.

The relevant kurtosis statistic reported in Table 2 is signi�cantly greater than the value of 3

associated with the normal distribution. The negative skewness coe¢ cient is also signi�cantly

less than the value of zero associated with the symmetric normal distribution. This is
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re�ective of a �leverage�e¤ect of sorts, whereby interest rate falls are associated with higher

volatility than increases of the same magnitude. The �rst di¤erenced data exhibit strong

correlation as shown by the Ljung-Box test statistic which overwhelmingly rejects the null

hypothesis of no serial correlation at the �fth and tenth lag order. The interest rate series

clearly possesses conditional heteroskedasticity as indicated by application of a formal �fth

and tenth order LM test for ARCH to the residuals from an AR(10) regression of the interest

rate data. The Jarque-Bera test strongly rejects the null of normality in the interest rate

series.

The stationarity property of the interest rate data is less clear-cut. There is a lot of

controversy in the literature surrounding the unit root property of interest rates. Short-rate

di¤usion models estimated by Marsh and Rosenfeld (1983), Chan et al. (1992), and Aquila

et al. (2003) inter alia based on U.S. data document evidence that short-term interest rates

behave like a random walk process. In contrast, Brenner et al. (1996) and Ball and Torous

(1999) amongst others show supporting evidence that the U.S. short rates mean revert. As

it is widely known the standard Dickey�Fuller test is subject to typically moderate size

distortion in the presence of a neglected GARCH e¤ect in the series (see Kim and Schmidt,

1993; Haldrup, 1994). To circumvent the problem of neglected GARCH e¤ects in unit root

testing, Seo (1999) suggests the unit root test equation and GARCH process should be

estimated jointly when the series examined exhibits GARCH e¤ects. We pursue this testing

approach to ensure that the unit root test result is robust to the presence of GARCH e¤ects.

As is evident from Table 2, the mean level of interest rate is 5.8252. This suggests that the

unit root tests should include an intercept in the mean equation.

Seo (1999) augments the standard Dickey-Fuller testing equations as follows:

�yt = �+ �yt�1 + "t

�2t = �0 + �1"
2
t�1 + �2�

2
t�1 (24)

"t = �tvt , vt � N(0; 1):
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The mean equation in (24) di¤ers slightly from Seo�s (1999) approach in which the in-

tercept is excluded. Seo (1999) considers the use of a preliminary regression to demean or

detrend the series prior to testing the series for a unit root. Cook (2007), however, presents

an approach where the deterministic terms are explicitly included in the testing equation

such as in (24). Moreover, he simulates a new set of critical values involving di¤erent �0,

�1 and �2 parameter values which are more typical in empirical research. The unit root

hypothesis is examined via the maximum likelihood t-ratio for �, which is denoted as t�.

Seo (1999) shows that the asymptotic distribution of t� is a mixture of the non-standard

Dickey�Fuller distribution and the standard normal. The extent to which the distribution

moves towards the standard normal from the Dickey�Fuller depends upon the strength of

the GARCH e¤ect which is determined by a nuisance parameter, �. The null hypothesis of a

unit root is rejected if t� is less than the critical value at the conventional signi�cance levels.

In addition to applying the Seo (1999) test, we also perform the augmented Dickey�Fuller

(ADF) test and the higher powered GLS-based Dickey�Fuller test (Elliott et al., 1996). The

optimal lag length, or degree of augmentation, of the testing equation is determined using the

modi�ed Akaike Information Criterion (MAIC) proposed by Ng and Perron (2001) following

initial consideration of a maximum lag length given by int[12(T=100)]0:25. Hayashi (2000)

provides a justi�cation of this upper bound. The appropriate degree of augmentation for

both tests is found to be 25. The results obtained from the application of these tests,

denoted as �� and �GLS� ; are given in Table 2. Using the 5% critical values obtained from

Fuller (1996) and Pantula et al. (1994), the derived test statistics, respectively, show the unit

root null hypothesis is not rejected by either of the tests. However, the interest rate series

clearly possesses conditional heteroskedasticity as indicated by the application of a formal

twelfth order LM test for ARCH to the residuals from the ADF test. Given the presence of

conditional heteroskedasticity, Seo�s (1999) approach outlined above is followed to test the

unit root hypothesis. Accordingly, an ADF testing equation with 18 lags is estimated jointly

with a GARCH(1,1) process using maximum likelihood estimation and the Bernt-Hall-Hall-

Hausman (BHHH) algorithm. The test statistic which uses the Bollerslev and Wooldridge
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(1992) standard errors is denoted as t�(BW ).4 We simulate the 5% critical value for the

estimated GARCH parameters of f�̂1; �̂2g = f0:14; 0:85g along with the e¤ective sample

size of 1892 observations since neither Seo (1999) nor Cook (2007) studies provide critical

values that can be applied to our results.5 The simulated critical value at the 5% level

of signi�cance is -1.9074 for the non-robust standard errors and -1.8891 for the Bolleslev-

Wooldridge robust standard errors. The calculated test statistic for t� and t�(BW ) are

-2.4301 and -2.5147 respectively. These results imply that the unit root hypothesis can

be rejected comfortably in both cases. On the basis that Seo (1999) test incorporates the

GARCH e¤ects into the testing framework, we are more inclined to believe in its robust

inference, that is the weekly U.S. 3-month Treasury bill interest rates is stationary.

4.2 Empirical Results

The data descriptive statistics indicate that an appropriate model of short rate volatility

should account for its time-varying nature, its asymmetric response to shocks of di¤erent sign

and its dependence on interest rate levels. For this reason, we estimate the GARCHX and

AGARCHX models for the di¤usion process. As for the drift speci�cation, we estimate both

linear and nonlinear drifts to determine the presence of nonlinearities. Given the evidence

of unconditional skewness in short rate changes, we also estimate the models with three

di¤erent distributional assumptions, namely normal, Student�s t and skewed t distributions.

All the models are estimated with the Bollerslev and Wooldridge (1992) quasi-maximum

likelihood method, which gives robust standard errors. The in-sample and out-of-sample

volatility forecasts of these parametric models are then compared with the semiparametric

model. To produce the one-period ahead out-of-sample volatility forecasts, we exclude the

last 100 observations from our sample and estimate the parametric and semiparametric

models recursively over the remainder of the data. In other words, each time we produce a

one-period ahead volatility forecast we estimate the model using all the data up until the

period prior to that forecast. The estimation results for the parametric models with linear
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and nonlinear drifts are reported in Tables 3(a) and 3(b), respectively.

- Tables 3a and b about here -

It can be seen in Table 3(a) that the coe¢ cients of the linear drift function are only

statistically signi�cant at the 5% signi�cance level for the models �tted with a Student�s t

distribution. The estimate for the coe¢ cient � which captures the degree of mean reversion is

very small implying that the degree of mean reversion is weak. The estimates of the interest

rate levels sensitivity parameters, b and �, the coe¢ cients of last period�s unexpected news,

�1, as well as the last period�s volatility, �2, and the coe¢ cient of the asymmetric response

of current volatility to last period�s bad news, �3, are found to be highly signi�cant. Taken

together, these results suggest that there is overwhelming evidence of GARCH, levels and

asymmetric GARCH e¤ects in the di¤usion process. In terms of maximised log-likelihood

values, the AGARCHX with Student�s t distribution performs better than the other models.

There is evidence that, independent of the underlying distribution, models that account for

both asymmetric GARCH and levels e¤ects perform better than models that do not account

for asymmetric GARCH e¤ects. The simple GARCH model performs the worst in terms of

the log-likelihood values. This model fails to capture the asymmetry and level-dependence

in the short rate volatility process. Moreover, the Ljung-Box test of the twelfth order serial

correlation in the squared standardised residuals rejects the null of no serial correlation

implying that the GARCH model does not adequately characterise the volatility dynamic of

short rate changes. The skewness parameter � of the skewed t distribution turns out to be

statistically insigni�cant at all conventional signi�cance levels. Furthermore, the � estimate

for the three short rate models is virtually zero, implying that a Student�s t distribution is

adequate in characterising the short rate distribution. Our �nding which supports the use

of Student�s t instead of skewed t distribution is consistent with the results of Bali (2007).

In Table 3(b) we show the estimation results for nonlinear drift short rate models. Irre-

spective of the distributional assumption of the error, we �nd that the coe¢ cients �2 and
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�3 which govern the nonlinear dynamics in the drift function are statistically insigni�cant.

Our results, which support the lack of evidence of nonlinearity in the 3-month T-bill data,

concur with earlier �ndings by Bali (2007) who shows that the incorporation of the GARCH

e¤ects into the volatility process gives rise to no evidence of nonlinearity in the drift spec-

i�cation. The skewness parameter � of the skewed t distribution, again turns out to be

statistically insigni�cant for all models, implying the lack of evidence for skewness asym-

metry in the short rate changes distribution. Comparing models with linear and nonlinear

drifts across similar distributional assumption indicates a substantial reduction in the log-

likelihood value, thereby suggesting that a short rate model with linear drift is the preferred

speci�cation. Based on this result, we do not consider the in-sample and out-of-sample

forecast performance of short rate models with nonlinear drift and skewed t distribution.

We use four di¤erent metrics to evaluate the in-sample and out-of-sample volatility fore-

cast performance of the semiparametric approach compared to its parametric conterparts.

In addition to the MAE and MSE measures given in equation (23), we also use the Akaike

Information Criterion (AIC) which is a penalised negative log-likelihood criterion adjusted

for the degree of parameters that are estimated, and the R2vol measure of Bali (2003). For

the four metrics, we proxy the unobserved true volatility �t with jrt � rt�1j. The AIC is

computed as:

AIC = 2K + T

�
ln

�
2� �RSS

T

�
+ 1

�
(25)

where K is the number of parameters that are estimated, T is the sample size and RSS =PT
t=1(�t� �̂t)2. The R2vol measure essentially computes the total variation in the true volatil-

ity proxied by jrt � rt�1j that can be explained by the estimated conditional volatilities. This

is obtained from the coe¢ cient of determination of an OLS regression of the form:

�t = a0 + a1�
f
t + et (26)

where �t and �
f
t are the actual and forecasted volatility of (rt � rt�1); respectively. It

should be highlighted that the R2vol measure is a crude measure and is subject to the fol-
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lowing caveat. As pointed out Andersen and Bollerslev (1998), the idiosyncratic component

of daily interest rate changes is large, thus the use of realised interest rate changes may

not fully capture day-by-day movements in volatility. To circumvent this problem, we use

a range based volatility proxy by adopting the Garman and Klass (1980) extreme value

estimator to construct a minimum variance unbiased estimator that utilises the opening,

closing, high and low prices. Due to the paucity of high frequency data, the use of the

Garman and Klass (1980) (GK hereafter) extreme value estimator is deemed as a com-

promise to the preferred realised volatility measure derived from high frequency data (see

Andersen, Bollerslev, Diebold and Labys, 2001).6 Our choice of the GK estimator is also

motivated by the �ndings of Bali and Weinbaum (2005) who perform a horse race among

all the extreme-value estimators which have featured in the literature. They show that, in

practice, the GK estimator is the least biased and most e¢ cient estimator compared with

other extreme value estimators. The GKminimum variance and unbiased estimator is b�2GK =
1
n

Pn
t=1

�
0:511

�
ln Ht

Lt
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�0:019

h
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�
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�
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�
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�
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�
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�
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�i
�0:383
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�
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,

n > 1 where Ot, Ct, Ht and Lt denote, respectively, the opening, closing, high and low prices

on day t and n is the number of days in the sample. The IRX index data are obtained from

the Yahoo/�nance web site.7

- Tables 4a and b about here -

Tables 4(a) and (b) report the results of the four metrics for evaluating the in-sample fore-

cast performance of the models using the volatility benchmarks jrt � rt�1j and b�2GK , respec-
tively. Focusing on the results with volatility proxy jrt � rt�1j, we �nd that the AGARCHX

model with Student�s t distribution performs the best compared with other parametric mod-

els. Not only does it deliver the lowest MSE and MAE, it also gives the lowest AIC and

highest R2vol. The GARCH model, which does not take into account the levels dependence

and asymmetric response in the conditional variance of short rate changes, performs the

worst. However, there is evidence that the semiparametric model yields the most superior

in-sample volatility forecast performance as judged by the four metrics. When compared
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with the best �tting AGARCHX Student�s t model, the reduction in the MSE and MAE

based on the �nal smoothed semiparametric method is about 4% and 1%, respectively. The

AIC shows a marked improvement in the goodness of �t falling from -498.52 to -601.80,

while the R2vol increases by about 11%. Looking at the four metrics, we also �nd that in

each of the iteration of the semiparametric smoothing procedure there is a signi�cant im-

provement in the volatility forecast performance compared with the AGARCHX Student�s

t model. Interestingly, we �nd that for the semiparametric approach, �tting a nonlinear

drift function erroneously to obtain an initial volatility estimate does not give rise to an

inferior forecast performance. The di¤erence in forecast performance results for the linear

and nonlinear drifts semiparametric approach is negligible thus implying that the choice of

the drift function is immaterial to the forecast performance of the semiparametric approach.

This result corroborates the simulation results in which we �nd that neglecting to �t the

correct drift function in the semiparametric approach does not bear any in�uence on its

volatility forecast performance. Another important �nding is that the choice of the innova-

tion distribution, whether it is normal, Student�s t or skewed t, does not have a considerable

impact on the forecast performance of the semiparametric approach.8 Taken together, these

results highlight the robust forecast property of the semiparametric approach to possible

misspeci�cations of the drift function and the innovation distribution. In Table 4(b), we

show that these results are qualitatively unchanged even with the use of a more accurate

volatility benchmark (i.e. b�2GK) to assess the forecast performance of the semiparametric
approach relative to parametric models.

- Figure 3a and b about here -

Given the extensive results reported in Tables 4(a) and (b), we summarise these �ndings

by presenting them in Figures 3(a) and (b). To interpret the plot, the four shaded bars repre-

sent the metric value of the parametric models: AGARCHX-T, AGARCHX-N, GARCHX-T

and GARCHX-N in that order. The line that is plotted across the x-axis is a locus of the
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metric value for the GARCH model (represented by the �rst mark on the x-axis), the metric

value for the eight iterations of the semiparametric approach (represented by the second to

ninth marks on the x-axis) and the �nal smoothed stage of the semiparametric approach

(represented by the tenth mark on the x-axis). It is evident from the plot that the semi-

parametric approach yields the best results based on all four forecast performance measures.

The results are consistent whether we use the crude or more accurate volatility benchmark.

To visually illustrate the superior performance of the semiparametric approach compared

with the AGARCHX Student�s t model, we plot in Figures 4(a) to (d) the in-sample volatil-

ity estimates of the two models for an arbitrarily selected period 1997/01/01 - 2000/01/01.

Figures 4(a) and (b) employ jrt � rt�1j as the true volatility proxy while Figures 4(c) and

(d) are based on the more accurate volatility proxy given by b�2GK .
- Figures 4a, b, c and d about here -

By comparing the plots of the volatility estimates between the best �tting parametric

AGARCHX Student�s t model and the semiparametric model, we can see that the latter

model is capable of capturing movements of the short rate volatility process better than

the former model. The AGARCHX Student�s t model tends to yield an overly smoothed

volatility estimates of the true volatility process that is proxied by jrt � rt�1j (b�2GK) in Figure
4b (Figure 4d) . There are two important features about the way the volatility estimates

obtained from the semiparametric approach improves upon the estimates of the AGARCHX

Student�s t model. First, there are peaks or spikes in the volatility of short rate changes

which are well captured by the semiparametric model but not by the AGARCHX Student�s

t model. For example, the peak that is observed on 1998/01/01 is clearly captured by

the semiparametric approach but not by the AGARCHX Student�s t model. Second, the

volatility estimates produced by the semiparametric approach tend to match the rise and

fall in interest rates better than the AGARCHX Student�s t model. The most obvious of this

point is the drop in interest rates between the two peaks that happened prior to 1999/01/01
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(see Figure 4a). While the semiparametric approach does not fully capture the drop in rates,

nonetheless it does a better job at capturing the fall in interest rates than the AGARCHX

Student�s t model.

- Tables 5a and b about here -

- Figures 5a, b, c and d about here -

Turning to the out-of-sample volatility forecast performance of the semiparametric model,

we �nd that the volatility estimates obtained from the �nal smoothed stage have better pre-

dictive power than those produced by the parametric models. Using the volatility benchmark

b�2GK (see Table 5b), the improvement in the volatility forecast estimation error measured by
the MSE and the MAE is 14% and 11%, respectively between the �nal smoothed semipara-

metric approach and the AGARCHX Student�s t model. On the other hand, the reduction

in the forecast estimation error based on the crude volatility proxy jrt � rt�1j is more conser-

vative; the MSE and MAE fall by 6% and 5% respectively (see Table 5a). Figures 5(a) to (d)

provide plots of the volatility forecast estimates of the two contending models. Unlike the

in-sample volatility estimates, we fail to �nd that the semiparametric approach is capable

of capturing the observed peaks in interest rate volatility, particularly with the volatility

benchmark b�2GK and the sharp spike at the start of the forecast horizon (see Figure 5c).

However, this does not diminish the out-of-sample forecast performance of the semiparamet-

ric approach compared with the AGARCHX Student�s t model. The latter model continues

to provide an overly smoothed out-of-sample volatility forecast of interest rates. In contrast,

the semiparametric approach yields volatility forecasts that better capture �uctuations in

the short rate thus leading to smaller estimation error than the AGARCHX Student�s t

model.
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4.3 Implications for Pricing Interest Rate Derivatives

Given that the volatility processes of the semiparametric and parametric models are distinct,

it is very likely that the two classes of models will generate di¤erent probability distribu-

tion of future interest rate levels. Predictions of future interest rates are essential for pricing

long-dated, path-dependent interest rate derivatives such as the index amortizing rate (IAR)

swaps, amongst others. For the purpose of illustration, we consider the IAR swaps. The

notional value of the IAR swaps is reduced over time according to an amortization sched-

ule based on the level of a reference interest rate on a particular �xed date in the future

(usually every three or six months). The value of this swap is contingent on the probability

distribution of the reference rate on each reset date. Since the amount of principal that

remains on any reset date depends on past interest rate levels, the IAR swaps are considered

as "path-dependent" securities. In other words, �uctuations in interest rates and hence the

accuracy in modelling short rate volatility matters for the pricing of the IAR swaps. For a

detailed discussion of the IAR swaps refer to Galaif (1993).

To examine how an improvement in the estimation accuracy of short rate volatility could

a¤ect the pricing of interest rate derivatives, we follow Brenner et al. (1996) and perform

the following experiment. We simulate the semiparametric model and the parametric models

5000 times using the 3-month Treasury bill rates estimation results with June 8, 2007 as the

starting date. The interest rate level is 4.67% on this date. Following Brenner et al (1996),

we focus on the volatility process and employ the mean equation rt � rt�1 = �0:0015 given

that the average weekly change in the interest rate over the estimated sample period is -

0.0015.9 Figure 6 graphs the 5th, 25th, 50th, 75th and 95th percentiles of the 5000 simulated

paths for each horizon up to 100 weeks for the di¤erent short rate models. The solid lines

represent the con�dence intervals for simulated interest rates based on the parametric models.

The ordering from the outermost to innermost lines represents the resulting interest rate

distributions for the AGARCHX-T, GARCHX-T, AGARCXH-N and GARCHX-N models.
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The dotted lines denote the short rate distribution of the semiparametric model.

- Figure 6 about here -

Visual inspection of Figure 6 suggests that there are several interesting results. First,

the distribution assumption in the parametric models does not seem to matter for derivative

prices. The interest rate distributions are very similar when comparing between the same

type of model with di¤erent distribution assumptions. Secondly, like Brenner et al. (1996)

we �nd that whether we model asymmetries in the parametric models or not is immaterial

for the paths of future interest rates and therefore this will not greatly a¤ect interest rate

derivative prices. Thirdly, amongst the di¤erent models considered, the con�dence intervals

of future short rate levels generated by the semiparametric model are narrower, particularly

at the 5% and 95% levels. In other words, the semiparametric model predicts a narrower

con�dence band of extreme interest rate movements than the parametric models. For other

con�dence levels considered, we �nd that the future levels of short-term interest rates are

comparable with the parametric models.

Based on these results, what can be said about the pricing of certain path-dependent

interest rate derivative such as the IAR swaps mentioned above, mortgages and collateralised

mortgage obligation? Given that parametric models produce larger upper tails, the average

predicted amortization will be less for such models than the semiparametric model. In other

words, the predicted lives of these securities and their cash �ows will increase. Accordingly

these securities would be overpriced for the parametric models relative to the semiparametric

model. On the other hand, the larger lower tails of the parametric models would imply that

these securities would be underpriced compared to the semiparametric model. Our results

for the parametric models are consistent with that of Brenner et al. (1996) who �nd that the

conditional variance model speci�cation does not have an in�uence on the pricing of interest

rate derivatives. In particular, they show that whether a model speci�es an asymmetric

conditional variance or an additive or multiplicative levels e¤ect in the variance speci�cation
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does not yield signi�cant di¤erences in the pricing of interest rate derivatives. Likewise, we

demonstrate that the asymmetric speci�cation of the di¤usion process and the distributional

assumption for parametric models do not a¤ect the pricing of interest rate derivatives. More

importantly, we �nd that the narrower con�dence intervals of future interest rate levels

produced by the semiparametric model relative to any of the parametric models suggests

that our method would yield less price variation for long-dated and path-dependent interest

rate derivatives.

Although the semiparametric model does not give rise to simple analytical solution for the

pricing of derivatives, the estimation process sets up naturally for Monte Carlo evaluation.

Thus, like the BHK models, the semiparametric model can be easily applied to the valuation

of securities that already require Monte Carlo evaluation. These securities include those

interest rate derivatives discussed above.

5 Conclusion

In this paper an application of a semiparametric GARCH approach to modelling short-term

interest rate volatility has been proposed. The semiparametric smoothing technique uses

a general additive function of lagged innovations, volatilities and past interest rate levels,

and a back�tting algorithm to estimate the unobserved di¤usion process. While the volatil-

ity model is estimated semiparametrically, it resembles the widely used short-rate volatility

models of Brenner et al. (1996) which features interest rate levels dependence and asymmet-

ric dynamic in the conditional variance. Consequently, we compare the performance of the

semiparametric approach with this class of single-factor short rate di¤usion models in terms

of its ability to characterise short rate volatility. Our simulation study shows that the semi-

parametric model provides a superior �t of the in-sample volatility estimates to a GARCH

model that exhibits asymmetry and levels e¤ect. The volatility forecast performance of the

semiparametric procedure, unlike the parametric GARCH models, is also robust to potential

misspeci�cation in the short rate drift and the innovation distribution. The empirical appli-
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cation to weekly U.S. 3-month Treasury bill rates between 1971 and 2009 further illustrates

improvement in the in-sample and out-of-sample predictive power of the semiparametric

model over models of Brenner et al. (1996). Finally, we show that the greater degree of

accuracy in modelling short rate volatility o¤ered by the semiparametric model is important

for pricing long-dated and path-dependent interest rate derivatives.

For future research, we intend to apply this technique to the two-factor model of Black,

Derman and Toy (1990) with stochastic volatility which was developed and estimated by

Bali (2003). The two factors of the model are the short-term interest rate and the volatility

of interest rate changes. This would involve performing a nonparametric estimation on both

the drift and di¤usion of the short rate process. The application of this technique to the

two-factor arbitrage free model could be used to assess the importance of modelling short

rate changes volatility accurately and its implications on default-free bond pricing.
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Appendix
To simulate the critical values for the Seo (1999) test, the following data generating process

(DGP) is employed:

yt = yt�1 + "t, t = 1; :::; T

�2t = �0 + �1"
2
t�1 + �2�

2
t�1 (27)

"t = �tvt , vt � N(0; 1):

We set the parameters �1 = 0:14; �2 = 0:85 and �0 = 1 � �1 � �2. These values are

taken from estimates of our ADF testing equation with 18 lags which is estimated jointly

with a GARCH(1,1) process. T is set to 1892 to match our sample size. Once the data are

simulated, we perform Seo (1999) test by estimating:

�yt = �+ �yt�1 + "t

�2t = �0 + �1"
2
t�1 + �2�

2
t�1 (28)

"t = �tvt , vt � N(0; 1):

with the maximum likelihood method using the BHHH algorithm. The resulting t-test for the

null hypothesis of a unit root process in yt (i.e. � = 0) which is denoted as t� is computed.

In addition, we compute the robust t-test, t�(BW ); using the Bollerslev and Woodridge

(1992) robust standard error. The experiment is repeated 25,000 times and each time the

test statistic values for t� and t�(BW ) are saved. The resulting series of t̂� and t̂�(BW ) are

sorted and the 1%, 5% and 10% critical values are obtained accordingly. The critical values

at the 1%, 5% and 10% signi�cance levels for t� are -2.4280,-1.9073 and -1.6701, and for

t�(BW ) are -2.4196, -1.8891 and -1.6454, respectively.
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Notes

1These interest rate derivatives include index amortizing rate swaps, CMO swaps, swaptions, mortgages

and adjustable rate preferred securities.

2BHK also consider the multiplicative levels e¤ect in which �2 in E
�
"2t j
t�1

�
� ht = �2r2�t�1 follows a

GARCH(1,1) process.

3For a discussion on the back�tting algorithm refer to Friedman and Stutzle (1981) and Hastie and

Tibshirani (1986).

4Cook (2007) shows that the maximum likelihood estimation of the Seo (1999) unit root test equations

could employ the Bollerslev and Wooldridge (1992) robust standard errors. The t-test statistic for the slope

coe¢ cient � with robust standard error is given by t�(BW ).

5The Appendix provides details of the simulation to obtain 1%, 5% and 10% critical values for t� and

t�(BW ).

6Implied volatility can be obtained from the value of the 13-week Treasury index (IRX) which is based on

the discount rate of the most recently auctioned 13-week U.S. T-bill. However, high frequency IRX data are

only available from November 3, 1997. Our sample period, on the other hand, commences from February 9,

1973.

7The URL for the IRX data is http://�nance.yahoo.com/q/hp?s=%5EIRX+Historical+Prices.

We thank the referee for directing us to this data source.

8To conserve space, we do not report the results for the semiparametric approach with a skewed t

distribution. These results are available from the authors upon request.

9Although the mean-reverting slope coe¢ cient is signi�cant, the coe¢ cient estimate is very small and

it is virtually close to zero. For this reason, ignoring the mean-reverting dynamics in the simulation is a

reasonable assumption.
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   Figure 1  (a) Plots of Volatility Estimates of Various Models for Simulated Data with Linear Drift 
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Note:The dotted line represents simulated true volatility, while the solid line represents the estimated volatility derived from estimating a model with a linear 
drift. The estimated volatility for the semiparametric approach is for the final smoothed volatility. N, T and ST denote Normal, Student’s t and Skewed t 
distributions, respectively. 
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   Figure 1  (b) Plots of Volatility Estimates of Various Models for Simulated Data with Nonlinear Drift 
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Note:The dotted line represents simulated true volatility, while the solid line represents the estimated volatility derived from estimating a model with a nonlinear 
drift. The estimated volatility for the semiparametric approach is for the final smoothed volatility. N, T and ST denote Normal, Student’s t and Skewed t 
distributions, respectively. 
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Figure 2  The U.S. Short Rates: Levels and First Differences 
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Figure 3 Plots of MSE, MAE, AIC and R2
vol

  for the In-Sample Volatility 
Forecast Performance of the Parametric and Semiparametric Short 
Rate Models  
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(b) Volatility benchmark 2ˆGK  
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Note: The shaded bars represent the metric value for the parametric models in the following order: 
AGARCHX-T, AGARCHX-N, GARCHX-T, GARCHX-N. The 1 to 10 marks on the x-axis are to be 
interpreted in the following way. The first mark represents the metric value for the parametric GARCH 
model. The second to ninth marks represent the metric values for the eight iterations that are performed in 
the semiparametric procedure, while the tenth mark denotes the metric value for the final smoothed stage. 
R-square denotes 2

volR . The results are for the sample period 1973/02/09 - 2007/06/08. 
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Figure 4  Plots of In-Sample Volatility Estimates for the U.S. Short Rates over 
the Sample Period 1997/01/01 - 2000/01/01  
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(b) AGARCHX-T model 
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(c) Semiparametric approach 
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(d)  AGARCHX-T model 
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Note: The dotted line in (a) and (b) is the true volatility proxied by 1| |t tr r  . The dotted line in (c) and 

(d) is the true volatility proxied by 2ˆGK . The line marked in bold is the volatility estimates ˆt . 
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Figure 5  Plots of Out-of-Sample Volatility Forecasts for the U.S. Short Rates 
over the Sample Period 2007/06/15 - 2009/05/08  
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(c) Semiparametric approach 
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Note: The dotted line in (a) and (b) is the true volatility proxied by 1| |t tr r  . The dotted line in (c) and 

(d) is the true volatility proxied by 2ˆGK . The line marked in bold is the volatility estimate ˆt . 
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Figure 6  Confidence  Intervals for Simulated Interest Rates from  BHK and  

Semiparametric Models 
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Note: The solid lines (reading from the outermost to the innermost lines) are for the 
AGARCHX-T, GARCHX-T, AGARCXH-N and GARCHX-N models. The dotted lines 
are for the semiparametric model. 
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Table 1 Estimates of Mean Squared and Mean Absolute Volatility Estimation Error for Simulated Data  
 

(a) DGP – linear drift  
  Normal   Student’s t   Skewed t  
Models MSE Std. err. MAE Std. err. MSE Std. err. MAE Std. err. MSE Std. err. MAE Std. err.
Estimated with a linear drift function 
GARCH 0.3262 0.1210 0.3794 0.0638 0.3558 0.1357 0.4044 0.0716 0.3229 0.1193 0.3772 0.0559
Iteration 1 0.2316 0.1065 0.3561 0.0664 0.2310 0.0968 0.3561 0.0638 0.2308 0.0962 0.3558 0.0635
Iteration 2 0.2036 0.0861 0.3336 0.0617 0.2028 0.0944 0.3337 0.0629 0.2027 0.0951 0.3333 0.0631
Iteration 3 0.2065 0.0886 0.3359 0.0598 0.2030 0.0839 0.3336 0.0595 0.2033 0.0847 0.3336 0.0595
Iteration 4 0.2126 0.0961 0.3411 0.0627 0.2038 0.0855 0.3349 0.0607 0.2057 0.0845 0.3370 0.0593
Iteration 5 0.2085 0.0855 0.3402 0.0603 0.2057 0.0876 0.3371 0.0597 0.2062 0.0881 0.3379 0.0602
Iteration 6 0.2095 0.0846 0.3408 0.0605 0.2080 0.0864 0.3389 0.0607 0.2083 0.0876 0.3392 0.0624
Iteration 7 0.2155 0.0934 0.3445 0.0628 0.2094 0.0864 0.3398 0.0602 0.2098 0.0868 0.3399 0.0604
Iteration 8 0.2137 0.0906 0.3426 0.0623 0.2117 0.0916 0.3404 0.0620 0.2119 0.0918 0.3401 0.0619
Final smoothing 0.2158 0.0929 0.3442 0.0617 0.2123 0.0909 0.3415 0.0611 0.2125 0.0911 0.3417 0.0614
AGARCHX 0.2738 0.1193 0.3674 0.0693 0.2650 0.1011 0.3631 0.0652 0.2705 0.1052 0.3640 0.0511
GARCHX 0.3194 0.1234 0.3789 0.0711 0.2945 0.1217 0.3704 0.0686 0.3116 0.1143 0.3755 0.0532
Estimated with a nonlinear drift function 
GARCH 0.3286 0.1234 0.3785 0.0650 0.3552 0.1352 0.4025 0.0717 0.3224 0.1324 0.3826 0.0600
Iteration 1 0.2310 0.1071 0.3552 0.0677 0.2306 0.0972 0.3551 0.0644 0.2378 0.0984 0.3638 0.0661
Iteration 2 0.2038 0.0871 0.3331 0.0623 0.2039 0.0951 0.3343 0.0644 0.2130 0.0961 0.3436 0.0642
Iteration 3 0.2081 0.0897 0.3368 0.0611 0.2031 0.0835 0.3335 0.0597 0.2154 0.0888 0.3454 0.0626
Iteration 4 0.2147 0.0996 0.3413 0.0639 0.2053 0.0856 0.3362 0.0611 0.2143 0.0860 0.3460 0.0613
Iteration 5 0.2082 0.0857 0.3397 0.0613 0.2069 0.0892 0.3374 0.0604 0.2176 0.0918 0.3484 0.0636
Iteration 6 0.2117 0.0852 0.3423 0.0618 0.2098 0.0860 0.3397 0.0605 0.2192 0.0884 0.3499 0.0628
Iteration 7 0.2143 0.0907 0.3438 0.0632 0.2095 0.0864 0.3392 0.0599 0.2211 0.0901 0.3502 0.0629
Iteration 8 0.2173 0.0958 0.3450 0.0641 0.2135 0.0921 0.3414 0.0621 0.2233 0.0942 0.3512 0.0644
Final smoothing 0.2167 0.0927 0.3449 0.0630 0.2134 0.0910 0.3418 0.0613 0.2239 0.0940 0.3522 0.0639
AGARCHX 0.2846 0.1237 0.3689 0.0714 0.2739 0.1223 0.3672 0.0692 0.2814 0.1248 0.3681 0.0663
GARCHX 0.3205 0.1260 0.3813 0.0725 0.3131 0.1255 0.3811 0.0710 0.3207 0.1269 0.3859 0.0701
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(b) DGP – Nonlinear drift  
  Normal   Student’s t   Skewed t  
Models MSE Std. err. MAE Std. err. MSE Std. err. MAE Std. err. MSE Std. err. MAE Std. err.
Estimated with a linear drift function 
GARCH 0.1094 0.0708 0.1893 0.0741 0.1077 0.0720 0.1877 0.0670 0.1042 0.0714 0.1907 0.0667 
Iteration 1 0.0808 0.0651 0.1791 0.0501 0.0809 0.0649 0.1791 0.0500 0.0805 0.0637 0.1788 0.0497 
Iteration 2 0.0704 0.0532 0.1669 0.0461 0.0685 0.0524 0.1651 0.0449 0.0692 0.0529 0.1649 0.0443 
Iteration 3 0.0756 0.0568 0.1747 0.0498 0.0780 0.0758 0.1739 0.0522 0.0764 0.0722 0.1735 0.0509 
Iteration 4 0.0710 0.0517 0.1693 0.0431 0.0729 0.0581 0.1703 0.0415 0.0716 0.0550 0.1695 0.0439 
Iteration 5 0.0772 0.0605 0.1740 0.0473 0.0739 0.0558 0.1725 0.0460 0.0770 0.0596 0.1746 0.0523 
Iteration 6 0.0782 0.0680 0.1748 0.0533 0.0700 0.0521 0.1684 0.0427 0.0721 0.0569 0.1691 0.0448 
Iteration 7 0.0755 0.0568 0.1746 0.0467 0.0756 0.0614 0.1724 0.0466 0.0750 0.0583 0.1721 0.0458 
Iteration 8 0.0782 0.0623 0.1750 0.0471 0.0754 0.0577 0.1752 0.0486 0.0742 0.0577 0.1732 0.0467 
Final smoothing 0.0772 0.0603 0.1750 0.0472 0.0756 0.0591 0.1734 0.0464 0.0753 0.0595 0.1725 0.0462 
AGARCHX 0.0967 0.0695 0.1851 0.0652 0.0930 0.0645 0.1825 0.0607 0.0944 0.0673 0.1838 0.0625 
GARCHX 0.0991 0.0705 0.1872 0.0643 0.0956 0.0671 0.1860 0.0618 0.0968 0.0680 0.1867 0.0632 
Estimated with a nonlinear drift function 
GARCH 0.0998 0.1057 0.1865 0.0724 0.0843 0.0646 0.1823 0.0647 0.0963 0.0693 0.1909 0.0653 
Iteration 1 0.0917 0.0961 0.1816 0.0591 0.0846 0.0782 0.1786 0.0518 0.0830 0.0564 0.1843 0.0502 
Iteration 2 0.0856 0.0948 0.1727 0.0602 0.0688 0.0519 0.1630 0.0422 0.0719 0.0572 0.1686 0.0480 
Iteration 3 0.0888 0.0970 0.1772 0.0591 0.0754 0.0555 0.1716 0.0478 0.0726 0.0528 0.1721 0.0469 
Iteration 4 0.0852 0.0907 0.1751 0.0559 0.0709 0.0501 0.1682 0.0432 0.0751 0.0579 0.1739 0.0494 
Iteration 5 0.0844 0.0899 0.1738 0.0527 0.0779 0.0597 0.1733 0.0481 0.0798 0.0628 0.1778 0.0499 
Iteration 6 0.0841 0.0907 0.1760 0.0551 0.0740 0.0538 0.1721 0.0462 0.0777 0.0603 0.1764 0.0490 
Iteration 7 0.0839 0.0884 0.1766 0.0543 0.0737 0.0557 0.1713 0.0454 0.0768 0.0597 0.1751 0.0476 
Iteration 8 0.0869 0.0906 0.1783 0.0550 0.0747 0.0542 0.1732 0.0458 0.0789 0.0532 0.1769 0.0492 
Final smoothing 0.0862 0.0907 0.1766 0.0535 0.0747 0.0550 0.1731 0.0463 0.0790 0.0551 0.1770 0.0493 
AGARCHX 0.0945 0.1022 0.1846 0.0619 0.0806 0.0612 0.1804 0.0521 0.0901 0.0635 0.1825 0.0534
GARCHX 0.0977 0.1025 0.1852 0.0637 0.0838 0.0637 0.1817 0.0580 0.0942 0.0668 0.1843 0.0599

Note: The results are for simulated data from the DGP in equation (14) for the linear drift and equation (15) for the nonlinear drift with the conditional variance following 
equation (16). The sample size is 1000 and the number of replications is 50. The rows labeled as iterations and final smoothing are the results for the semiparametric 
approach. 
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Table 2  Summary Statistics for the U.S. Short Rates 
 

Variable Mean Standard 
deviation 

Skewness Kurtosis JB test Q(10) 

tr  5.8252 3.0448 0.7665 1.0476 271.82 
[0.00] 

18017.36 
[0.00] 

tr  -0.0028 0.2319 -0.6466 17.9637 25557.59 
[0.00] 

185.53 
[0.00] 

Variable ARCH(10)   GLS
     (BW) 

tr  35.5992 
[0.00] 

-1.4902 -1.5440 -2.4301 -2.5147 

Note:  The JB test represents the Jarque-Bera test of normality. Q(10) is the Ljung-Box test of serial correlation 
of order 10. ARCH(10) is the test for ARCH effect up to order 10 for the resulting residual of an AR(12) 
regression on short rate.   and GLS

  are the ADF and the GLS-based Dickey-Fuller test statistics and their 5% 

critical values are – 2.8629 and  –1.95, respectively.   and  (BW) are the test statistics for Seo (1999) test 
with the latter using the Bollerslev and Wooldridge (1992) robust standard errors. The simulated critical values 
of  and  (BW) are –1.9073 and –1.8891 at the 5% significance level. 
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Table 3  Short-Term Interest Rate Model Estimates (1973/02/09 - 2007/06/08) 
(a) Linear drift specification 

  Normal   Student’s t  Hansen’s Skewed t 
Models GARCH GARCHX AGARCHX GARCH GARCHX AGARCHX GARCH GARCHX AGARCHX 

          
  0.0042 

(0.0063) 
0.0039 

(0.0030) 
0.0033 

(0.0031) 
0.0037 

(0.0039) 
0.0018 

(0.0024) 
0.0014 

(0.0026) 
0.0026 

(0.0019) 
0.0041 

(0.0058) 
0.0015 

(0.0045) 

  -0.0014 
(0.0016) 

-0.0002 
(0.0008) 

-0.0004** 
(0.0002) 

-0.0002** 
(0.0001) 

-0.0003** 
(0.0001) 

-0.0003** 
(0.0001) 

-0.0007** 
(0.0003) 

-0.0004 
(0.0008) 

-0.0006 
(0.0008) 

0  0.0001 
(0.0003) 

0.0001 
(0.0002) 

0.0003* 
(0.0001) 

0.0000 
(0.00001) 

0.00002 
(0.00002) 

0.00002 
(0.00004) 

0.0002 
(0.0005) 

0.0003* 
(0.0001) 

0.0000 
(0.0001) 

1  0.1055* 
(0.0252) 

0.3031* 
(0.0695) 

0.2157* 
(0.0757) 

0.1181* 
(0.0258) 

0.2415* 
(0.0455) 

0.2643* 
(0.0478) 

0.1825* 
(0.0731) 

0.2016* 
(0.0680) 

0.2389* 
(0.0412) 

2  0.8915* 
(0.0252) 

0.6719* 
(0.1069) 

0.6643* 
(0.1857) 

0.8815* 
(0.0258) 

0.7110* 
(0.0575) 

0.7054* 
(0.0518) 

0.8107* 
(0.0359) 

0.7589* 
(0.1205) 

0.7182* 
(0.1033) 

3  - - 0.0337* 
(0.0137) - - 0.0082* 

(0.0011) - - 0.0028* 
(0.0010) 

b  - 0.0076* 
(0.0014) 

0.0006* 
(0.0001) - 0.0010* 

(0.0003) 
0.0005* 
(0.0001) - 0.0012* 

(0.0004) 
0.0003* 
(0.0001) 

  - 0.4417* 
(0.0861) 

0.5231* 
(0.1494) - 2.6622* 

(0.3310) 
3.14407* 
(0.7811) - 2.3817* 

(0.4930) 
2.9637* 
(0.5182) 

v  - - - 5.2401* 
(0.4109) 

4.4148* 
(0.4034) 

4.4212* 
(1.5303) 

4.9613* 
(0.3153) 

4.1945* 
(0.5738) 

4.3182* 
(0.5016) 

        -0.0005 
(0.0015) 

-0.0001 
(0.0021) 

-0.0002 
(0.0014) 

          
LL 2810.19 2868.07 2871.29 2841.77 2912.65 2946.31 2135.35 2139.57 2146.18 

( / )t tQ    194.8024 
[0.0000] 

168.6053 
[0.0000] 

170.8604 
[0.0000] 

189.8495 
[0.0000] 

170.4310 
[0.0000] 

172.7072 
[0.0000] 

153.6514 
[0.0000] 

161.4817 
[0.0000] 

169.2258 
[0.0000] 

2 2( / )t tQ    22.1335 
[0.0361] 

11.0381 
[0.5256] 

11.5038 
[0.4863] 

20.394 
[0.0599] 

11.7280 
[0.4614] 

12.0020 
[0.4455] 

21.3148 
[0.0459] 

10.3564 
[0.5848] 

10.0106 
[0.6151] 
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(b) Nonlinear drift specification 
  Normal   Student’s t  Hansen’s Skewed t 

Models GARCH GARCHX AGARCHX GARCH GARCHX AGARCHX GARCH GARCHX AGARCHX 
          

  0.0513*** 
(0.0269) 

0.036 
(0.0247) 

0.0356 
(0.0236) 

0.0158 
(0.0247) 

0.0034 
(0.0031) 

0.0018 
(0.0024) 

0.0103 
(0.0256) 

0.0023** 
(0.0011) 

0.0214 
(0.0668) 

1  -0.0009 
(0.0007) 

0.0047** 
(0.0017) 

0.0044** 
(0.0021) 

-0.0019 
(0.0026) 

0.0011 
(0.0007) 

0.0016* 
(0.0004) 

0.0015 
(0.0037) 

0.0013 
(0.0035) 

0.0006 
(0.0014) 

2  -0.0003 
(0.0005) 

-0.0000 
(0.0005) 

-0.0000 
(0.0005) 

-0.0000 
(0.0006) 

-0.0001 
(0.0002) 

-0.0002 
(0.0006) 

0.0007 
(0.0005) 

-0.0000 
(0.0001) 

-0.0004 
(0.0003) 

3  -0.0004 
(0.0291) 

-0.0002 
(0.0181) 

-0.0002 
(0.0195) 

-0.0001 
(0.0171) 

-0.0002 
(0.0042) 

-0.0001 
(0.0035) 

-0.0002 
(0.0725) 

-0.0001 
(0.0395) 

-0.0002 
(0.0497) 

0  0.0001 
(0.0003) 

0.0004** 
(0.0002) 

0.0005* 
(0.0002) 

0.00014** 
(0.00006) 

0.0003* 
(0.0001) 

0.0002** 
(0.0001) 

0.0002** 
(0.0001) 

0.0003* 
(0.0001) 

0.0001* 
(0.0000) 

1  0.1645* 
(0.0082) 

0.3180* 
(0.0514) 

0.2157* 
(0.0757) 

0.1657* 
(0.0337) 

0.2643* 
(0.0478) 

0.2583* 
(0.0507) 

0.1367* 
(0.0413) 

0.1714* 
(0.0385) 

0.2010* 
(0.0294) 

2  0.8255* 
(0.1088) 

0.6619* 
(0.1311) 

0.6726* 
(0.1342) 

0.8213* 
(0.0415) 

0.7054* 
(0.0518) 

0.7217* 
(0.0507) 

0.8415* 
(0.2106) 

0.8107* 
(0.1359) 

0.7718* 
(0.1547) 

3  - - 0.0298* 
(0.0107) - - 0.0147* 

(0.0035) - - 0.0108* 
(0.0030) 

b  - 0.0593* 
(0.0065) 

0.0009* 
(0.0001) - 0.0006* 

(0.0001) 
0.0069* 
(0.0012) - 0.0018** 

(0.0009) 
0.0035* 
(0.0009) 

  - 0.0540* 
(0.0059) 

3.236* 
(0.3405) - 4.5966* 

(0.743) 
0.3979* 
(0.0671) - 4.2613* 

(0.9180) 
0.2859* 
(0.0101) 

v  - - - 4.9327* 
(0.3879) 

4.4043* 
(0.3871) 

4.3314* 
(0.4398) 

4.2138* 
(0.1310) 

4.1017* 
(0.6133) 

4.0981* 
(0.5819) 

  - - - - - - -0.0008 
(0.0561) 

-0.0003 
(0.0318) 

-0.0005 
(0.1036) 

          
LL 2443.13 2474.76 2491.27 2334.80 2355.82 2369.91 1753.42 1814.79 1830.25 

( / )t tQ    165.1314 
[0.0000] 

128.3772 
[0.0000] 

131.0561 
[0.0000] 

141.2809 
[0.0000] 

137.1750 
[0.0000] 

148.9106 
[0.0000] 

123.5912 
[0.0000] 

146.2058 
[0.0000] 

151.8333 
[0.0000] 

2 2( / )t tQ    21.0615 
[0.0495] 

17.9813 
[0.1163] 

18.0210 
[0.1151] 

19.5918 
[0.0752] 

15.3428 
[0.2233] 

14.7311 
[0.2565] 

20.1113 
[0.0650] 

12.4285 
[0.4119] 

12.0091 
[0.4449] 

Note: The GARCHX (AGARCHX) model refers to the symmetric (asymmetric) GARCH model with additive levels effects given by equation 4 (5). LL denotes 
the log-likelihood value, ( / )t tQ   and 2 2( / )t tQ    are the Ljung-Box test statistics for serial correlation in the standardised and squared standardised 
residuals up to order twelve, respectively.  *, ** and *** denote significance at 1%, 5% and 10% significance levels.  
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Table 4   The Goodness-of-Fit of In-Sample Volatility Estimates of Parametric and Semiparametric Models of U.S. Short 
Rates over the Period 1973/02/09 - 2007/06/08  
 

(a) Volatility Benchmark 1t tr r   

 

 Normal Student’s t 
Linear drift MSE MAE AIC 2

volR  MSE MAE AIC 2
volR  

GARCH 0.0441 0.1632 -465.2797 0.3539 0.0444 0.1645 -451.8839 0.3564 
Iteration 1 0.0410 0.1599 -584.3063 0.3982 0.0411 0.1601 -583.1900 0.3989 
Iteration 2 0.0413 0.1595 -572.9455 0.3941 0.0415 0.1601 -564.1346 0.3937 
Iteration 3 0.0409 0.1583 -589.5497 0.3929 0.0410 0.1584 -586.7339 0.3926 
Iteration 4 0.0408 0.1578 -593.7955 0.3913 0.0408 0.1579 -592.4436 0.3910 
Iteration 5 0.0408 0.1576 -593.4775 0.3901 0.0409 0.1577 -589.1935 0.3890 
Iteration 6 0.0407 0.1571 -598.9764 0.3903 0.0407 0.1572 -596.3312 0.3893 
Iteration 7 0.0407 0.1571 -599.0108 0.3906 0.0408 0.1573 -593.5321 0.3892 
Iteration 8 0.0406 0.1567 -603.5222 0.3909 0.0406 0.1568 -601.1995 0.3901 
Final smoothed 0.0406 0.1569 -601.8026 0.3908 0.0407 0.1572 -601.9206 0.3899 
AGARCHX 0.0433 0.1609 -468.8008 0.3445 0.0421 0.1584 -498.5179 0.3533 
GARCHX 0.0439 0.1617 -459.0652 0.3431 0.0428 0.1596 -486.4507 0.3526 
         

Nonlinear drift MSE MAE AIC 2
volR  MSE MAE AIC 2

volR  
GARCH 0.0441 0.1633 -463.5183 0.3534 0.0444 0.1645 -453.0660 0.3567 
Iteration 1 0.0411 0.1602 -581.6097 0.3981 0.0411 0.1601 -583.1312 0.3989 
Iteration 2 0.0414 0.1597 -571.1824 0.3943 0.0415 0.1601 -563.9604 0.3942 
Iteration 3 0.0409 0.1584 -588.7446 0.3932 0.0410 0.1584 -586.7507 0.3928 
Iteration 4 0.0408 0.1580 -593.2638 0.3919 0.0408 0.1579 -592.6804 0.3911 
Iteration 5 0.0409 0.1578 -590.8762 0.3901 0.0409 0.1577 -589.8344 0.3893 
Iteration 6 0.0407 0.1573 -597.7895 0.3905 0.0408 0.1574 -594.9734 0.3897 
Iteration 7 0.0407 0.1573 -597.6123 0.3905 0.0408 0.1573 -593.8119 0.3896 
Iteration 8 0.0406 0.1570 -601.9312 0.3914 0.0406 0.1569 -600.9026 0.3903 
Final smoothed 0.0407 0.1572 -600.0607 0.3907 0.0407 0.1572 -600.0972 0.3901 
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(b) Volatility Benchmark 2ˆGK  

 
Note: The rows labeled as iterations and final smoothed are the results for the sem-iparametric approach. The prefix ‘A’ denotes asymmetric while the suffix ‘X’ 
denotes levels effects. 
 
 

 Normal Student’s t 
Linear drift MSE MAE AIC 2

volR  MSE MAE AIC 2
volR  

GARCH 0.0263 0.1366 -1325.2800 0.4139 0.0270 0.1387 -1281.6440 0.4128 
Iteration 1 0.0249 0.1340 -1417.3380 0.4309 0.0251 0.1344 -1409.1910 0.4307 
Iteration 2 0.0245 0.1321 -1448.4510 0.4322 0.0248 0.1328 -1428.1230 0.4312 
Iteration 3 0.0242 0.1311 -1464.1010 0.4284 0.0244 0.1313 -1455.2030 0.4270 
Iteration 4 0.0243 0.1308 -1462.5520 0.4259 0.0244 0.1311 -1452.1460 0.4245 
Iteration 5 0.0243 0.1307 -1462.1710 0.4264 0.0244 0.1308 -1454.1570 0.4246 
Iteration 6 0.0241 0.1303 -1470.9490 0.4251 0.0243 0.1304 -1462.5230 0.4223 
Iteration 7 0.0242 0.1303 -1469.1290 0.4257 0.0243 0.1306 -1459.5990 0.4241 
Iteration 8 0.0241 0.1299 -1475.9890 0.4262 0.0242 0.1302 -1466.1370 0.4242 
Final smoothed 0.0241 0.1301 -1474.4380 0.4263 0.0242 0.1304 -1464.8260 0.4240 
AGARCHX 0.0268 0.1340 -1293.6400 0.4189 0.0261 0.1335 -1334.6530 0.4219 
GARCHX 0.0266 0.1342 -1302.4110 0.4167 0.0258 0.1327 -1352.3520 0.4225 
         

Nonlinear drift MSE MAE AIC 2
volR  MSE MAE AIC 2

volR  
GARCH 0.0266 0.1369 -1310.7710 0.4129 0.0270 0.1387 -1283.1120 0.4129 
Iteration 1 0.0250 0.1343 -1411.8520 0.4313 0.0250 0.1344 -1409.5440 0.4307 
Iteration 2 0.0245 0.1323 -1444.5760 0.4325 0.0248 0.1329 -1427.3420 0.4320 
Iteration 3 0.0243 0.1313 -1460.7870 0.4287 0.0244 0.1314 -1455.9540 0.4275 
Iteration 4 0.0243 0.1310 -1459.0720 0.4265 0.0244 0.1311 -1453.4080 0.4249 
Iteration 5 0.0243 0.1309 -1458.5770 0.4270 0.0244 0.1308 -1455.7790 0.4251 
Iteration 6 0.0242 0.1305 -1469.1250 0.4258 0.0243 0.1305 -1461.6970 0.4234 
Iteration 7 0.0242 0.1304 -1468.5080 0.4263 0.0243 0.1307 -1459.1260 0.4244 
Iteration 8 0.0242 0.1303 -1469.7660 0.4268 0.0242 0.1303 -1466.3600 0.4247 
Final smoothed 0.0241 0.1303 -1470.8810 0.4257 0.0242 0.1304 -1464.5850 0.4240 
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Table 5   The Out-of-Sample Volatility Forecast Performance of Parametric and 
Semiparametric Models of U.S. Short Rates over the Period 2007/06/15 - 2009/05/08  
 
(a) Volatility Benchmark 1t tr r   

 GARCH Final Smoothed  AGARCHX-T GARCHX-T AGARCHX-N GARCHX-N 
MSE 0.0349 0.0318 0.0339 0.0344 0.03499 0.0352 
MAE 0.1431 0.1225 0.1295 0.1319 0.1346 0.1359 
 
 
(b) Volatility Benchmark 2ˆGK  

 GARCH Final Smoothed  AGARCHX-T GARCHX-T AGARCHX-N GARCHX-N 
MSE 0.0498 0.0395 0.0458 0.0466 0.0477 0.0486 
MAE 0.1744 0.1402 0.1581 0.1643 0.1666 0.1678 
 
Note: See note to Table 4. ‘T’ and ‘N’ denote Student’s t and normal distributions, respectively.  
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