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Abstract— We consider model predictive control (MPC) prob-
lems with linear dynamics, polytopic constraints, and quadratic
objective. The resulting optimization problem is solved by
applying an accelerated gradient method to the dual problem.
The focus of this paper is to provide bounds on the number of
iterations needed in the algorithm to guarantee a prespecified
accuracy of the dual function value and the primal variables
as well as guaranteeing a prespecified maximal constraint
violation. The provided numerical example shows that the
iteration bounds are tight enough to be useful in an inverted
pendulum application.

I. INTRODUCTION

Model predictive control (MPC) is an optimization based

control methodology that can handle state and control con-

straints (see [9], [10] for thorough descriptions of MPC).

In the optimization problem a cost function is minimized

based on predicted future state and control trajectories and

subject to constraints. Optimal control and state trajectories

are obtained and the first element in the input trajectory

is applied to the system. This procedure is repeated every

sampling instant which sets requirements on the execution

time of the optimization problem. The topic of this paper

is to provide certificates for the execution time of the

optimization algorithm such that for every feasible initial

condition the optimization algorithm provides a solution

within the sampling time. We consider linear time-invariant

systems with polytopic constraints and quadratic cost and

a dual accelerated gradient method [6] is used to solve the

resulting optimization problem.

For accelerated gradient methods there are convergence

rate results [13], [2], [17], [6] that depend explicitly on the

norm of the difference between the optimal solution and

the initial iterate. If this norm can be bounded, a bound on

the number of iterations to achieve a prespecified accuracy

of the function value can be computed. This was done in

[15] where input constrained MPC was considered. The

condensed problem, i.e., the problem with all state variables

eliminated, was solved using a fast gradient method. An

iteration bound was obtained since the norm of the difference

between the optimal solution and the initial iterate is bounded

by the size of the input constraint set. Accelerated gradient

methods can also be applied to the dual problem [16], [6].

To compute a bound on the number of iterations to achieve a

prespecified accuracy, a bound on the norm of the difference

between the optimal dual variables and initial dual iterate

is needed. This is more involved in the dual space than

in a constrained primal space since dual variables are not

chosen from a compact set. This is addressed in [16] where

the equality constraints are dualized and a bound on the

norm of the optimal dual variables is obtained using a recent

result in [5]. The obtained bounds turn out to be quite

conservative. Another method to provide computation time

certificates in MPC is to bound the search time in the look-

up table in explicit MPC [3], [1]. Practically this method

is limited to small or medium-sized problems. For interior

point methods, iteration bounds are available [11], these are,

however, reported to be quite conservative [16], [11].

In this paper we consider the dual to the condensed

problem, i.e., the dual to the problem where the state

variables are eliminated. The resulting optimization problem

has only inequality constraints and we apply the accelerated

gradient method to the dual problem. To compute an iteration

bound, we need a bound on the norm of the optimal dual

variables. Using a result in [12] a bound to this norm can

be computed if a Slater vector to the optimization problem

is known. Computation of the norm bound requires that the

distance from equality in the inequality constraints for the

Slater vector is known, as well as the primal cost for the

Slater vector. We will see that such a Slater vector can be

constructed for almost all feasible initial conditions in the

MPC case. The provided numerical example shows that the

presented bounds are tight enough to give useful bounds in

an inverted pendulum application.

II. PROBLEM SETUP AND PRELIMINARIES

We consider the problem of controlling a linear dynamical

system to the origin subject to polytopic constraints. To

achieve this we use MPC in which the following finite

horizon optimization problem is solved at the current state

x̄ ∈ R
n:

VN (x̄) := min
x,u

1

2

N−1∑

t=0

(xT
t Qxt + uT

t Rut) +
1

2
xT
NQNxN

s.t. (xt, ut) ∈ X × U , t = 0, . . . , N − 1
xt+1 = Axt +But, t = 0, . . . , N − 1
xN ∈ Xf , x0 = x̄

(1)



where xt ∈ R
n, ut ∈ R

m and x = [xT
1 , . . . , x

T
N ]T and

u = [uT
0 , . . . , u

T
N−1]

T . We use the standard assumptions that

Q � 0, QN � 0 and R ≻ 0. The constraint sets are assumed

to be polytopes

X = {x ∈ R
n | Cxx ≤ dx}, Xf = {x ∈ R

n | Cfx ≤ df}
U = {u ∈ R

m | Cuu ≤ du}.

Throughout this paper we assume that the sets X , Xf , and

U are non-empty and compact and that 0 ∈ int X , 0 ∈
int Xf , and 0 ∈ int U which implies that dx, df , du > 0. By

introducing the following matrices

A =




A
...

AN


 , B =




B 0 · · · 0

AB
. . .

. . .
...

...
. . .

. . . 0
AN−1B · · · AB B




the predicted future state variables can be described in the

current state x̄ and control variables u as

x = Ax̄+Bu.

We further define

Q := blkdiag(Q, . . . , Q,QN), R := blkdiag(R, . . . , R),

Cx := blkdiag(Cx, . . . , Cx, Cf ), dx := [dTx , . . . , d
T
x , d

T
f ]

T ,

Cu := blkdiag(Cu, . . . , Cu), du := [dTu , . . . , d
T
u ]

T .

The optimization problem (1) can, using these matrices,

equivalently be written as

VN (x̄) = min
u

JN (x̄,u) := 1
2u

THu+ x̄TGu+ 1
2 x̄

TF x̄

s.t. g(x̄,u) ≤ 0
(2)

where H = BTQB+R, G = ATQB, F = ATQA+Q,

g(x̄,u) = Cu− d(x̄) and

C =

(
Cu

CxB

)
, d(x̄) =

(
du

dx −CxAx̄

)
.

To solve (2) we introduce dual variables µ ∈ R
p
≥0 for the

inequality constraints. The first pu ≤ p dual variables in the

dual variable vector µ correspond to the input constraints

and the last p − pu dual variables correspond to the state

constraints. If Slater’s condition holds, we get the following

dual problem (cf. [4])

VN (x̄) = max
µ≥0

min
u

1

2
uTHu+ x̄TGu+ µ

T (Cu− d(x̄)).

As shown in [6] the dual problem becomes

max
µ≥0

−1

2
(CT

µ+GT x̄)TH−1(CT
µ+GT x̄)−µ

Td(x̄). (3)

We define the dual function

DN (x̄,µ) = −1

2
(CT

µ+GT x̄)TH−1(CT
µ+GT x̄)−µ

Td(x̄)

which satisfies the following properties (cf. [6]).

Proposition 1: The dual function has Lipschitz continuous

gradient with Lipschitz constant L = ‖CH−1CT ‖ and the

gradient is given by ∇DN(x̄,µ) = −CH−1(CT
µ+GT x̄)−

d(x̄).
This implies that the dual function can be maximized

using an accelerated gradient method [13], [2], [17], [6]. The

algorithm presented in [6] with a cold-starting strategy, i.e.,

µ
0 = 0 is presented below.

Algorithm 1: Accelerated gradient algorithm

Initialize µ
0 = µ

−1 = 0 and u−1 = −H−1GT x̄.

For k ≥ 0

uk = −H−1(CT
µ

k +GT x̄)

ũk = uk +
k − 1

k + 2
(uk − uk−1)

µ
k+1 = max

{
0,µk +

k − 1

k + 2
(µk − µ

k−1)+

+
1

L

(
Cũk − d(x̄)

)}

Before we state the convergence rate properties of the

algorithm, we introduce the set of optimal dual variables

M∗(x̄) = {µ ∈ R
p
≥0 | DN (x̄,µ) ≥ VN (x̄)}.

We also introduce XN which is the steerable set defined as

XN = {x̄ ∈ R
n | there exist u s.t. Cu ≤ d(x̄)}.

Remark 1: From [14], we know that the steerable set XN

is convex and that 0 ∈ XN .

We also denote by u∗(x̄) the optimal solution to (2) with

initial condition x̄ and σ(H) the smallest eigenvalue to H .

Proposition 2: Suppose that x̄ ∈ XN . For any µ
∗ ∈

M∗(x̄) Algorithm 1 has the following convergence rate

properties:

1) The dual function converges as

DN (x̄,µ∗)−DN (x̄,µk) ≤ 2L‖µ∗‖2
(k + 1)2

, ∀k ≥ 1. (4)

2) The primal variable rate of convergence is

‖uk − u∗(x̄)‖2 ≤ 4L‖µ∗‖2
σ(H)(k + 1)2

, ∀k ≥ 1. (5)

3) The constraint violation is bounded by

‖g(x̄,uk)− g(x̄,u∗(x̄))‖2 ≤ 4L2‖µ∗‖2
(k + 1)2

, ∀k ≥ 1.

Proof. Argument 1 is proven in [2], [17], [6] and argument

2 is proven in [6]. To prove the third argument we have

‖g(x̄,uk)− g(x̄,u∗(x̄))‖2 =

= ‖Cuk − d(x̄)− (Cu∗(x̄)− d(x̄))‖2

= ‖∇DN(x̄,µk)−∇DN (x̄,µ∗)‖2

≤ 2L
(
− 〈−∇DN (x̄,µ∗),µk − µ

∗〉
+DN (x̄,µ∗)−DN (x̄,µk)

)

≤ 2L(DN(x̄,µ∗)−DN (x̄,µk)).

The first inequality comes from [13, Theorem 2.1.5] since

−DN is convex. The second inequality is due to first order



optimality condition [13, Theorem 2.2.5] for the convex

function −DN . It is left to apply Argument 1 to prove the

result. �

The objective of the paper is to, a priori, compute bounds

on the number of iterations needed to achieve a prespecified

dual function, primal variable, and constraint satisfaction

tolerance when initializing the algorithm with µ
0 = 0. These

bounds should ideally hold for any initial state x̄ ∈ XN . In

this paper we will show how to compute bounds that hold

for any x̄ ∈ βXN where β ∈ (0, 1) and βXN is defined as

βXN := {x̄ ∈ R
n | 1

β
x̄ ∈ XN}.

From the definition and Remark 1 we conclude that βXN ⊆
XN and that 0 ∈ βXN . Before we proceed with the

presentation we introduce the following definition.

Definition 1: We define κ ≥ 1 as the smallest scalar such

that for every x̄ ∈ XN the following holds

VN (x̄) ≤ κmin
u

JN (x̄,u).

Remark 2: The optimal solution to minu JN (x̄,u) is

u∗
uc(x̄) = −H−1GT x̄. The corresponding cost becomes

min
u

JN (x̄,u) =
1

2
x̄TGH−1GT x̄− x̄TGH−1GT x̄+

1

2
x̄TF x̄

=
1

2
x̄T (F −GH−1GT )x̄.

By defining P := F −GH−1GT where P ≻ 0 we get

VN (x̄) ≤ κmin
u

JN (x̄,u) =
κ

2
x̄TP x̄.

Also, note that we have

VN (x̄) ≥ min
u

JN (x̄,u) =
1

2
x̄TP x̄.

A. Notation

We denote by R the real numbers and by R≥0 non-negative

real numbers. The norm ‖ · ‖ refers to the Euclidean norm

or the induced Euclidean norm unless otherwise is specified

and 〈x, y〉 = xT y. Further σ̄(H) denotes the largest singular

value of H and σ(H) denotes the smallest singular value of

H . Further [·]i denotes the i:th element in the vector.

III. LAGRANGE MULTIPLIER NORM BOUNDS

All quantities in the bounds in Proposition 2 are known

except for ‖µ∗‖ where µ
∗ ∈ M∗(x̄). This section is devoted

to bounding the norm of the optimal dual variables in (3) for

any x̄ ∈ βXN where β ∈ (0, 1). The following result is used

to achieve this.

Lemma 1: Assume that ū(x̄) is a Slater vector, i.e., that

ū(x̄) satisfies Cū(x̄) < d(x̄). Then

max
µ∈M∗(x̄)

‖µ‖ ≤ 1

γ(x̄, ū(x̄))
(JN (x̄, ū(x̄))− VN (x̄))

where γ(x̄, ū(x̄)) := min1≤j≤p[−g(x̄, ū(x̄))]j .

Proof. A proof is provided in [12]. �

Thus, if we can find a Slater vector for any initial condition

x̄ ∈ βXN we can bound the norm of the optimal Lagrange

multipliers, µ
∗. In the following lemma we show how to

construct a Slater vector to (2) for any initial state x̄ ∈ βXN .

Before we present the lemma the following notation is

introduced; d := [dT
u ,d

T
x ]

T and dmin := minj [d]j which

implies that dmin > 0.

Lemma 2: For every x̄ ∈ βXN with β ∈ (0, 1), ū(x̄) =
βu∗(x̄/β) is a Slater vector to the optimization problem (2).

The Slater vector satisfies γ(x̄, ū(x̄)) ≥ (1 − β)dmin.

Proof. Since x̄ ∈ βXN we have by definition that x̄/β ∈
XN . The optimal control trajectory at x̄/β is u∗(x̄/β). Since

x̄/β ∈ XN the optimal control trajectory is feasible, i.e., the

following holds

g(
x̄

β
,u∗(

x̄

β
)) =

(
Cuu

∗(x̄/β)− du

Cx(Ax̄/β +Bu∗(x̄/β))− dx

)
≤ 0.

For any x̄ ∈ βXN we have for the chosen Slater vector

ū(x̄) = βu∗(x̄/β) that

g(x̄, βu∗(
x̄

β
)) =

(
Cuβu

∗(x̄/β)− du

Cx(Ax̄+Bβu∗(x̄/β))− dx

)

=

(
β(Cuu

∗(x̄/β)− du) + (β − 1)du

β(Cx(Ax̄/β +Bu∗(x̄/β))− dx) + (β − 1)dx

)

= β

(
Cuu

∗(x̄/β)− du

Cx(Ax̄/β +Bu∗(x̄/β))− dx

)
−
(
(1 − β)du

(1− β)dx

)

≤ −
(
(1 − β)du

(1− β)dx

)
.

This gives

γ(x̄, ū(x̄)) = min
1≤j≤p

[−g(x̄, βu∗(x̄/β))]j

≥ (1− β)min([d]j) = (1− β)dmin.

This completes the proof. �

By limiting the set of initial states, a Slater vector can

be constructed with a certain distance to equality in the in-

equality constraints. Using this result the following theorem

provides a bound on the norm of the optimal dual variables.

Theorem 1: For every x̄ ∈ βXN we have that

max
µ∈M∗(x̄)

‖µ‖ ≤ κ− 1

2(1− β)dmin
x̄TP x̄. (6)

Proof. We will show that Lemma 1 gives (6) using the Slater

vector ū(x̄) = βu∗(x̄/β). We have

JN (x̄, βu∗(x̄/β)) =

=
1

2
(βu∗(x̄/β))THβu∗(x̄/β) + x̄TGβu∗(x̄/β) +

1

2
x̄TF x̄

=
β2

2

(
(u∗(

x̄

β
))THu∗(

x̄

β
) + 2

[
x̄

β

]T
Gu∗(

x̄

β
)+

+

[
x̄

β

]T
F

[
x̄

β

])

= β2VN (x̄/β) ≤ κ

2
β2

[
x̄

β

]T
P

[
x̄

β

]
=

κ

2
x̄TP x̄



where the inequality comes from Remark 2. From Lemma 1

and Lemma 2 we have

max
µ∈M∗(x̄)

‖µ‖ ≤ JN (x̄, βu∗(x̄/β))− VN (x̄)

γ(x̄, βu∗(x̄/β))

≤ 1

(1− β)dmin
(
κ

2
x̄TP x̄− VN (x̄))

≤ κ− 1

2(1− β)dmin
x̄TP x̄

where the last inequality is due to Remark 2. This completes

the proof. �

Remark 3: If Definition 1 is changed such that κβ1
is the

smallest scalar such that for all x̄ ∈ β1XN and for some β1 ∈
(0, 1) we have an upper bound VN (x̄) ≤ κβ1

2 x̄TP x̄. Then

for every x̄ ∈ β2XN where β2 ∈ (0, β1) it is straightforward

to verify that

max
µ∈M∗(x̄)

‖µ‖ ≤ κβ1
− 1

2(1− β2/β1)dmin
x̄TP x̄.

If
κβ1

−1

1−β2/β1
< κ−1

1−β2
we get an improved bound on the norm

of the dual variables compared to Theorem 1.

The provided bound on the norm of optimal dual variables

can, together with Proposition 2, be used to bound the

number of iterations to get a prespecified accuracy in the

function value, primal variables and constraint violation. This

is the topic of the following section.

IV. ALGORITHM ITERATION BOUNDS

In this section we provide bounds on the number of itera-

tions within which a dual ǫd-solution, ǫc constraint violation

and ǫp norm-distance to the primal optimal solution are

guaranteed. The bounds are developed for the cold starting

case, i.e., when the initial iterate is µ
0 = 0.

A. Iteration bound to guarantee dual ǫ-solution

The first bound is on the number of iterations within which

a dual ǫ-solution is guaranteed. To avoid that scaling the

Q and R-matrices give different bounds we use a relative

tolerance.

Theorem 2: Suppose that Algorithm 1 is initialized with

µ
0 = 0. Then for every x̄ ∈ βXN with β ∈ (0, 1) we have

VN (x̄)−DN (x̄,µk) ≤ ǫdVN (x̄) (7)

if

k ≥ kd(x̄) :=

√
Lx̄TP x̄

ǫd

κ− 1

(1− β)dmin
− 1.

Proof. Inequality (7) is equivalent to

DN (x̄,µ∗)−DN (x̄,µk) ≤ ǫdDN (x̄,µ∗)

for any µ
∗ ∈ M∗(x̄). From Proposition 2 and Theorem 1

we have that

DN(x̄,µ∗)−DN(x̄,µk) ≤ 2L‖µ∗‖2
(k + 1)2

≤

≤ 2L(κ− 1)2

4(1− β)2d2min(k + 1)2
(x̄TP x̄)2.

Since 1
2 x̄

TP x̄ ≤ VN (x̄), we have that

2L(κ− 1)2

4(1− β)2d2min(k + 1)2
(x̄TP x̄)2 ≤ ǫd

1

2
x̄TP x̄ (8)

implies (7). Rearranging the terms gives the result. �

Remark 4: By scaling the penalty-matrices Qa = aQ,

Ra = aR we get Ha = aH which implies La =
‖CH−1

a CT ‖ = 1
a‖CH−1CT ‖ = 1

aL and Pa = aP . Thus,

using a relative tolerance the same bound is obtained for

every scaling factor a > 0.

Remark 5: To get a bound that holds for all x̄ ∈ βXN ,

kd(x̄) should be maximized subject to x̄ ∈ βXN . An over-

estimator is to maximize kd(x̄) subject to x̄ ∈ βX which

is readily available. The resulting maximization problem

depends affinely on
√
x̄TP x̄, hence the maximizing argu-

ment can be found by maximizing x̄TP x̄ on βX . This is a

quadratic maximization problem that can be rewritten as a

mixed integer linear program (MILP) as shown in [8]. MILP

software produce upper and lower bounds to the objective in

each iteration and since an upper bound to the objective is

enough to compute an iteration bound, the optimization can

be stopped when sufficient accuracy is achieved.

B. Iteration bound for constraint violation

In this section we bound the number of iterations within

which a prespecified constraint violation is guaranteed. We

use the following relative tolerance g(x̄,uk) ≤ ǫd.

Theorem 3: Suppose that Algorithm 1 is initialized with

µ
0 = 0. Then, g(x̄,uk) ≤ ǫcd holds for every x̄ ∈ βXN if

k ≥ kc(x̄) :=
L(κ− 1)x̄TP x̄

(1− β)d2minǫc
− 1.

Proof. First note that if ‖g(x̄,uk)−g(x̄,u∗)‖ ≤ ǫcdmin then

g(x̄,uk) ≤ ǫcd since g(x̄,u∗) ≤ 0. From Proposition 2 and

Theorem 1 we get

‖g(x̄,uk)− g(x̄,u∗(x̄))‖ ≤ 2L‖µ∗‖
k + 1

≤ L(κ− 1)x̄TP x̄

(1− β)dmin(k + 1)
.

Setting this ≤ ǫcdmin and rearranging the terms gives the

iteration bound. �

Remark 6: This result can be used in a constraint tight-

ening approach to guarantee a feasible solution w.r.t. to the

original constraint sets within kc(x̄) iterations.

C. Primal variable iteration bound

Using the same techniques it is also possible to bound the

number of iterations needed to guarantee a primal solution

that is within a prespecified distance to the optimal solution.

Theorem 4: Suppose that Algorithm 1 is initialized with

µ
0 = 0. Then, for every x̄ ∈ βXN we have

‖uk − u∗(x̄)‖ ≤ ǫp

if

k ≥ kp(x̄) :=

√
L

σ(H)

(κ− 1)x̄TP x̄

ǫp(1− β)dmin
− 1.



Proof. From Proposition 2 and Theorem 1 we have

‖uk − u∗(x̄)‖ ≤
√

L

σ(H)

2‖µ∗‖
(k + 1)

≤
√

L

σ(H)

(κ− 1)xTPx

(1− β)dmin(k + 1)
.

Setting this ≤ ǫp and rearranging gives the result. �

V. PRECONDITIONING

There are two different ways of preconditioning the prob-

lem data to possibly achieve smaller iteration bounds. One is

to do a variable change in the primal variables and another

is to scale the matrices defining the inequality constraints.

We start by considering scaling the matrices defining the

inequality constraints.

A. Scaling inequality constraints

All iteration bounds kd, kc, kp depend on
√
L/dmin or

L/d2min. By introducing D = diag(d) and recalling the

definition of L we get L/d2min = ‖CH−1CT ‖/λ2
min(D). By

scaling the inequality constraints, this ratio can be minimized

to get less conservative bounds without affecting the solu-

tions of the optimization problem. We introduce the scaling

matrix S = blkdiag(Su, Sx) where Su = diag(s1, . . . , spu
),

Sx = diag(spu+1, . . . , sp) where pu ≤ p and all elements

si > 0, i = 1, . . . , p. We get the following scaling

SCu ≤ Sd(x̄).

From the definition of C and d(x̄) we see that this is

equivalent to

SuCu ≤ Sudu SxCx(Ax̄+Bu) ≤ Sxdx.

The scaling of constraints will give as small bounds as

possible if the scaling is chosen according to the following

minimization

min
S

‖SCH−1CTS‖
λ2
min(SD)

.

We introduce S̄ = SD which is a diagonal matrix with

strictly positive elements since it is a product of two di-

agonal matrices with strictly positive elements. This gives

the equivalent minimization problem

min
S̄

‖S̄D−1CH−1CTD−1S̄‖
λ2
min(S̄)

. (9)

It was shown in [16, Lemma 1] that for invertible S̄, an

optimal solution is S̄ = I . Since diagonal matrices with

positive elements are a subset of all invertible matrices, we

get that S̄ = I minimizes (9). The optimal scaling becomes

S = S̄D−1 = D−1.

B. Preconditioning of primal variables

When performing a linear change of variables in primal

variables, i.e., set q = T−1u where T is an invertible matrix,

H , G and C must be changed accordingly to not affect the

primal optimal solution. We get Hq = T THT , Gq = GT
and Cq = CT . The Lipschitz constant does not change since

Lq = ‖CqH
−1
q CT

q ‖ = ‖CTT−1H−1T−TT TCT ‖
= ‖CH−1CT ‖ = L.

Straightforward verification of the algorithm when initialized

with µ
0 = 0 gives that the µ

k-sequence is identical whether

using the new variables q or the original variables u. It is

also straightforward to verify that the relation between the

iterates in the new variable qk and the iterates in the original

variable uk is qk = T−1uk. Thus, we do not get better (or

worse) convergence properties by preconditioning the primal

variables.

VI. NUMERICAL EXAMPLE

We evaluate the conservatism of the iteration bounds by

applying them to a double integrator system and a double

integrator with a pendulum attached. We consider the pen-

dulum in [7] with pendulum length l = 0.4m. The cart has

inner control loops that make it behave as a double integrator.

We choose sample time h = 0.02s as in [7]. We get the

following discrete time dynamics for the pendulum system

when the pendulum is in its inverted position (cf. [7])

x+ =




1 0.02 0 0
0 1 0 0
0 0 1.0049 0.0200
0 0 0.4913 1.0049


x+




0.0002
0.02

−0.0005
−0.0501


u.

The state variables are x = [p ṗ θ θ̇]T where p is cart

position, ṗ is cart velocity, θ is pendulum angle and θ̇ is

pendulum angular velocity. The double integrator system is

the system consisting of only the first two states, [p ṗ]. We

have the following constraints

−0.5 ≤ p ≤ 0.5 −1 ≤ ṗ ≤ 1 −5 ≤ u ≤ 5

−0.2 ≤ θ ≤ 0.2 −0.5 ≤ θ̇ ≤ 0.5.

The objective is to minimize

N−1∑

t=0

(
xT
t Qxt + uT

t Rut

)
+ xT

NPxN

where Q = diag(1, 0.3, 0.3, 0.1), R = 0.1 and P is the

infinite horizon cost for the unconstrained LQ-problem with

weighting matrices Q and R. Further we choose the terminal

set Xf = X .

In Figures 1 and 2 we compare the iteration bounds with

the worst case actual number of iterations and the maximum

number of iterations, kreq, to guarantee an execution time

less than h = 0.02s on a machine with 1 Gflops/s computing

power. If implemented wisely, the number of flops per

iteration in Algorithm 1 is 2(pN)2 + 7pN and we get

kreq =
109h

2(pN)2 + 7pN
.
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Fig. 1. The figure shows the iteration bounds (kd, kc, kp), the actual num-
ber of iterations (kact

d
, kactc , kactp ), and the maximal number of iterations

needed to certify execution time within h=0.02s for the double integrator
system (kreq).
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Fig. 2. The figure shows the iteration bounds (kd, kc, kp), the actual num-
ber of iterations (kact

d
, kactc , kactp ), and the maximal number of iterations

needed to certify execution time within h=0.02s for the pendulum system
(kreq).

In all examples, we use control horizon N = 10, accuracy

requirements ǫd = 0.01 and ǫc = ǫp = 0.05. In Figure 1, the

results for the double integrator are presented. On the x-axis

β in βXN is plotted and on the y-axis the iterations bounds

and the actual number of iterations are plotted. We are able

to certify that the optimization algorithm will terminate with

a close to optimal solution for all x̄ ∈ 0.925XN within the

sampling time, h = 0.02s. We also see that for x̄ ∈ 0.825XN

we can guarantee that the optimal solution is found in one

iteration, i.e., that no constraints are active.

In Figure 2, the results for the inverted pendulum system

are presented. Also here we have β in βXN on the x-axis

and the iteration bounds and the actual number of iterations

on the y-axis. We are able to certify that for x̄ ∈ 0.6XN

that the required accuracy is achieved within the sampling

time, h = 0.02s. We can also certify that a dual ǫd-solution

is found within the sampling time for any x̄ ∈ 0.9XN . We

see that for large parts of the steerable set, XN , the iteration

bounds give meaningful results that can be used to certify

the MPC-controller with respect to execution time.

VII. CONCLUSIONS AND FUTURE WORK

We solve the optimization problems arising in MPC with

linear dynamics, polytopic constraints, and a quadratic cost

using a dual accelerated gradient method [6]. By constructing

Slater vectors to the optimization problems, we are able to

bound the norm of the optimal dual variables. This is used

to compute iteration bounds on the number of iterations

within which a certain accuracy of the dual function value,

constraint violation, and primal variables is guaranteed. The

provided numerical example shows that the bounds are tight

enough to be useful in a pendulum application. A future work

direction is to search for tighter iteration bounds when using

warm-starting strategies.
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