
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Novel AAV-Based Rat Model of Forebrain Synucleinopathy Shows Extensive
Pathologies and Progressive Loss of Cholinergic Interneurons.

Aldrin-Kirk, Patrick; Davidsson, Marcus; Holmqvist, Staffan; Li, Jia-Yi; Björklund, Tomas

Published in:
PLoS ONE

DOI:
10.1371/journal.pone.0100869

2014

Link to publication

Citation for published version (APA):
Aldrin-Kirk, P., Davidsson, M., Holmqvist, S., Li, J.-Y., & Björklund, T. (2014). Novel AAV-Based Rat Model of
Forebrain Synucleinopathy Shows Extensive Pathologies and Progressive Loss of Cholinergic Interneurons.
PLoS ONE, 9(7), Article e100869. https://doi.org/10.1371/journal.pone.0100869

Total number of authors:
5

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1371/journal.pone.0100869
https://portal.research.lu.se/en/publications/aee6c0f8-fc18-4b0b-9dd0-f445eff34279
https://doi.org/10.1371/journal.pone.0100869


Novel AAV Based Rat Model of Forebrain
Synucleinopathy Shows Extensive Pathologies and
Progressive Loss of Cholinergic Interneurons
Patrick Aldrin-Kirk1, Marcus Davidsson1, Staffan Holmqvist2, Jia-Yi Li2, Tomas Björklund1*

1 Molecular Neuromodulation, Wallenberg Neuroscience Center, Lund University, Lund, Sweden, 2 Neuronal Plasticity and Repair, Wallenberg Neuroscience Center, Lund

University, Lund, Sweden

Abstract

Synucleinopathies, characterized by intracellular aggregation of a-synuclein protein, share a number of features in
pathology and disease progression. However, the vulnerable cell population differs significantly between the disorders,
despite being caused by the same protein. While the vulnerability of dopamine cells in the substantia nigra to a-synuclein
over-expression, and its link to Parkinson’s disease, is well studied, animal models recapitulating the cortical degeneration in
dementia with Lewy-bodies (DLB) are much less mature. The aim of this study was to develop a first rat model of
widespread progressive synucleinopathy throughout the forebrain using adeno-associated viral (AAV) vector mediated
gene delivery. Through bilateral injection of an AAV6 vector expressing human wild-type a-synuclein into the forebrain of
neonatal rats, we were able to achieve widespread, robust a-synuclein expression with preferential expression in the frontal
cortex. These animals displayed a progressive emergence of hyper-locomotion and dysregulated response to the
dopaminergic agonist apomorphine. The animals receiving the a-synuclein vector displayed significant a-synuclein
pathology including intra-cellular inclusion bodies, axonal pathology and elevated levels of phosphorylated a-synuclein,
accompanied by significant loss of cortical neurons and a progressive reduction in both cortical and striatal ChAT positive
interneurons. Furthermore, we found evidence of a-synuclein sequestered by IBA-1 positive microglia, which was coupled
with a distinct change in morphology. In areas of most prominent pathology, the total a-synuclein levels were increased to,
on average, two-fold, which is similar to the levels observed in patients with SNCA gene triplication, associated with cortical
Lewy body pathology. This study provides a novel rat model of progressive cortical synucleinopathy, showing for the first
time that cholinergic interneurons are vulnerable to a-synuclein over-expression. This animal model provides a powerful
new tool for studies of neuronal degeneration in conditions of widespread cortical a-synuclein pathology, such as DLB, as
well an attractive model for the exploration of novel biomarkers.
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foundation, Swedish Parkinson’s foundation, Crafoord foundation, Åhlén foundation, Kock foundation, Thuring foundation, Segerfalk foundation and the Royal
physiographic foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: tomas.bjorklund@med.lu.se

Introduction

Synucleinopathies such as Parkinson’s disease (PD) and

dementia with Lewy bodies (DLB) are neurological disorders, that

while differing significantly in their symptomatic presentation, are

unified by a-synuclein aggregation and neuronal degeneration

[1,2]. Between these two distinct diagnoses lies also a spectrum of

disorders usually classified as PD with dementia (PDD) [3]. DLB is

one of the more common forms of dementia although the exact

proportion of all the dementia patients that is actually DLB (as

determined through neuropathological examination) is still not

settled. Studies indicate however, that DLB and vascular origins of

dementia are a close tie for the second most common source of

dementia after Alzheimer’s disease (AD) [4]. One of the striking

differentiators of DLB is thought to be caused by a-synuclein

toxicity localized to the cerebral cortices, leading to neurodegen-

eration and in particular, loss of cortical acetylcholine [5,6].

Together this causes frontal-subcortical and visio-spatial dysfunc-

tion, manifested by rapidly progressing dementia, apathy, depres-

sion and vivid visual hallucinations. Memory impairment may or

may not be part of the initial symptoms however. Through

insertion of the human a-synuclein gene in mice using transgenic

techniques, a number of useful animal models have been created

replicating a-synuclein pathology in PD [7–11]. Other useful

animal models have been created through targeted gene delivery

using viral vectors into the midbrain dopaminergic neurons of

mice, rats and non-human primates [12–16] or the combination of

both transgenics and viral vectors [17]. Transgenic animal models

have been important for understanding the neuronal pathology

and motor dysfunction seen in PD but lack the robust cortical

pathology, replicating the cognitive dysfunction seen in DLB.

Likewise, targeted gene delivery has been used mainly to over-

express a-synuclein in small, well defined brain regions like the
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substantia nigra pars compacta (SNpc), replicating primarily

motor symptoms of PD.

Targeting a large brain region, such as the cerebral cortices,

using recombinant viral vector mediated gene transfer has,

however, remained a challenge. To overcome the limitation in

viral vector diffusion in the adult brain parenchyma, a novel

strategy was proposed to inject the viral vector suspension into the

maturing brain during the first post-natal days [10,18,19]. This

mode of administration enables the vector diffusion and infection

to occur before maturation of axon myelination and gliogenesis,

the two processes that restrict free diffusion in the brain. Using this

methodology to deliver human a-synuclein in a recombinant

adeno-associated viral (AAV) serotype 6 vector (AAV6), we were

able to create a novel rat model exhibiting a-synuclein over-

expression mainly localized to the cerebral cortices, mimicking

primarily cerebral type of Lewy body disease [20]. These animals

displayed a progressive neurodegenerative phenotype with both

widespread degeneration of cholinergic interneurons and a

multitude of degenerative changes in the remaining cortical

neurons. This was associated with a changed behavioral pheno-

type displaying increased baseline locomotor activity as well as

dopaminergic dysregulation.

Materials and Methods

Experimental procedure
To evaluate the significance of a-synuclein over-expression

localized to the forebrain, neonatal Sprague Dawley rats received

under hypothermia a stereotactic, intra-parenchymal injection of

an AAV6 vector containing constructs expressing either a-

synuclein (n = 29) or GFP (n = 21). A third group, exposed only

to the hypothermic treatment, was kept as intact controls (n = 22).

All animals were evaluated for deficits in memory function in

Morris water maze; general anxiety; responsiveness of the

dopaminergic motor system and general motor function, with a

subgroup being tested at 8 weeks and the remainder tested at 6

months. Animals were sacrificed ten months post viral-injection

and evaluated for cortical neuronal degeneration using a modified

isotropic fractionation protocol [21]. In addition, further post

mortem analyses were performed using immunohistochemistry.

Animal Research
Six time-mated, pregnant female rats were purchased from

Charles River (Germany). After birth of the litter they were housed

one litter per cage with free access to food and water under a

12 hours light/12 hours dark cycle in a temperature-controlled

room. All experimental procedures performed in this study were

approved by the Ethical Committee for Use of Laboratory

Animals in the Lund-Malmö region.

Neonatal stereotaxic surgery
We used a neonatal model where pups were injected post-natal

day 2–4, in order to facilitate neuronal transduction throughout

the forebrain. Rat pups were anesthetized by hypothermia

through the following procedure; The pups were individually

sedated through rapid cooling in wet ice for 5 minutes where after

the animal was retained at <+4uC on a metal bed in the stereotax

throughout the surgery. A small hole was drilled through the skull

and the viral vector solution (viral titer: 3.5E12 gc/ml) was injected

bilaterally (1 ml/side) into the striatum at a flow rate of 0.2 ml/min

using a pulled glass capillary (60–80 mm I.D. and 120–160 mm

O.D.) attached to a 5 ml hamilton syringe. Target sites for the

injection were identified by using coordinates (relative to the

bregma): AP = +0.7; ML = +2.1; DV = 22.9 and the capillary was

left in position for one minute before retraction. Post-surgery, the

wound was closed using a surgical suture and the animal was

placed on a heating mat until awake.

Recombinant AAV vectors
AAV vector plasmids containing genes for either wild type

human a-synuclein or GFP, were expressed under the human

synapsin-1 promoter, ensuring neuron specific protein expression

[22]. The sequence was flanked 39 by the Woodchuck hepatitis

virus post-transcriptional regulatory element (WPRE) and termi-

nated with a SV40 derived poly-adenylation sequences to increase

mRNA cytosolic half-life. AAV vector constructs were produced

by dual-plasmid, calcium precipitation mediated transient trans-

fection of HEK-293 cells and purified by iodixanol gradient

centrifugation and anion exchange chromatography according to

[23]. Viral titers were determined by qPCR with primers

recognizing the WPRE sequence and diluted to match the

working titer of 3.5E12 GC/ml [24].

Evaluation of learning and memory impairments
Learning and memory deficits, due to a-synuclein over-

expression and toxicity, were evaluated in the Morris water maze

(MWM) task at six months post-injection. The MWM test was

performed as described in [25]. In brief, the rats learning and

global visio-spatial working memory abilities were assessed by

tracking the mean time for each animal to find a platform

submerged in a 2 m I.D. water filled tank, over a period of seven

days, 4 trials/day. Retention of the performance of the task was

assessed by additional trials in the MWM at one, three, seven and

21 days after the initial learning phase. Time spent searching for

the platform and total distance traveled was recorded using the

Ethovision 2.0 tracking software.

General motor and exploratory behavior
General motor function and exploratory behavior in animals

expressing a-synuclein was assessed by open field experiment at six

months post viral injection. Animals were placed in the open field

boxes (40640640 cm) and their, general mobility, rearing and

location was recorded over 1 hour by use of infrared sensors and

tracked by the San Diego Instruments tracking software. Activity

was recorded in a dark environment.

Assessment of dopaminergic pathways
Deficits in dopaminergic neurotransmission were evaluated in

the open field boxes following subcutaneous apomorphine

injection (1 mg/kg s.c.), at nine months post-injection. The

locomotor response to dopamine receptor activation by apomor-

phine was recorded over 1 hour, in the open field boxes, as above.

Tissue preparation
At 8 weeks post injection a subgroup of the animals were killed

(AAV6|a-Syn n = 4, AAV6|GFP, n = 6 Intact ctrl n = 8). At 10

months post AAV injection, all but seven of the remaining

(AAV6|a-Syn n = 22, AAV6|GFP n = 13 Intact ctrl n = 12) were

killed. The animals were deeply anesthetized by sodium pento-

barbital overdose (Apoteksbolaget, Sweden) and transcardially

perfused with 50 ml physiological saline solution followed by

250 ml of freshly prepared, ice-cold, 4% paraformaldehyde (PFA)

in 0.1 M phosphate buffer adjusted to pH = 7.4. The brains were

then removed and fixed further for 2 hours in cold PFA before

storing in 25% buffered sucrose for cryoprotection over at least

24 hours until further processing. The remaining seven animals

were killed by decapitation, where after the brain was removed
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and sliced in the coronal axis into two millimeter thick slices using

a brain mold. The striatal tissue, midbrain region, olfactory bulb

and two regions of the cerebral cortex (covering frontal or motor

cortex) were rapidly dissected and frozen individually on dry ice

and stored at 280uC until further analysis with western blot and

qPCR.

Neuronal quantification through isotropic fractionation
PFA-fixed complete cerebral cortex was dissected bilaterally

from AAV6|a-Syn (n = 6), AAV6|GFP (n = 5) and intact control

rats (n = 6), killed 10 months after viral injection. The protocol

used here is a modified version of that published by Herculano-

Houzel and collaborators [21]. The tissue was dissociated in 10 ml

of 0.5 M tri-sodium citrate buffer (pH 4.5) into homogenous nuclei

solutions using the GentleMacs dissociator (Miltenyi biotec).

Heating the sample between dissociation programs further

facilitated dissociation, allowing for a homogeneous nuclei

suspension. The nuclei solution was subjected to antigen retrieval

in 0.2 M boric acid (pH 9.0) at 70uC for one hour, followed by

blocking in 5% BSA for one hour. DAPI was added to stain all

nuclei, allowing for quantification of neuronal and non-neuronal

cells. In order to differentiate neuronal nuclei from non-neuronal

nuclei within the same sample, the nuclei were stained using a

neuronal specific monoclonal mouse anti-NeuN antibody (1:200;

MAB377 Millipore) in conjunction with a Dylight 550 goat, anti-

mouse secondary antibody (1:400; ab96880, Abcam). Samples

from the nuclei solution were then counted in a haemocytometer

using fluorescence-microscopy to calculate the concentration of

nuclei. In order to validate our modified protocol, the cerebellum

of the animals were also dissociated and quantified using the same

modified protocol.

Immunohistochemistry
The remaining PFA fixed brains were cut into 35 mm thick

coronal sections using a freezing microtome (Leica SM2000R) and

collected into 8 series and stored in anti-freeze solution (0.5M

sodium phosphate buffer, 30% glycerol and 30% ethylene glycol)

at 220uC until further processing.

Brain sections were evaluated for; human a-synuclein, rat a-

synuclein and GFP expression patterns, using the mouse 211 anti

a-synuclein antibody (1:2000; sc-12767, Santa Cruz), mouse anti

42/a-synuclein (1:1000; 610786, BD Biosciences) and chicken anti

GFP (1:20000; ab13970, Abcam) were used respectively. Presence

of phosphorylated a-synuclein using the Rabbit anti-Serine129-

phosphorylated a-synuclein (1:2000; ab59264, Abcam). In order

to evaluate the impact of a-synuclein over-expression on

cholinergic neurons, midbrain dopaminergic neurons, astrocytes

and microglia the goat anti-Choline acetyl transferase (1:500;

AB144P, Millipore), mouse anti-TH (1:10000; 22941, Immunos-

tar) Rabbit anti-GFAP (1:1000; ab7260, Abcam) and Rabbit anti-

IBA-1 (1:2000; 019-19741, Wako) were used respectively. In

addition, presence of phosphorylated Tau protein was assessed

using the rabbit anti-tau phospho S396 antibody (1:1000; ab32057

Abcam) Primary antibodies were visualized using biotinylated

secondary antibodies: horse anti mouse (1:250; BA2000, Vector

Laboratories), horse anti goat (1:250; BA9500, Vector laborato-

ries), goat anti rabbit (1:250; BA1000, Vector laboratories) and

goat anti chicken (1:250; BA9010, Vector laboratories). This was

followed by a 30 minute incubation with avidin-biotin peroxidase

solution (ABC Elite, Vector Laboratories) and developed by 3, 39-

diaminobenzidine (DAB) in 0.01% H2O2 color reaction. For

fluorescence microscopy analysis, secondary antibodies used

included: Dylight 550, goat anti mouse (1:250; ab96880, Abcam),

Dylight 488 goat anti mouse (1:250; ab96871) Alexa 488, goat anti

chicken (1:250; A11039, Life technologies), Alexa 488 goat anti

rabbit (1:250; A11008, Life technologies) and Alexa 546 donkey

anti goat (1:250; A11056 Life technologies). All secondary

antibodies were incubated for two hours in TBS-buffer.

Laser scanning confocal microscopy
Laser scanning confocal microscopy was conducted using either

a Leica SP2 or a Leica SP8 microscope. The confocal images were

captured using a HyD detector. All images were acquired with the

lasers activated in sequential mode, to avoid any bleed-through of

fluorescence. Solid state lasers at wavelengths 488 nm and 552 nm

were utilized to excite the respective fluorophores. The pinhole

was retained at Airy 1 for all acquisitions. For each acquisition at

the same magnification, identical settings were loaded for laser

power gain etc. Post acquisition, deconvolution was performed

using the ‘‘Deconvolution’’ plugin for ImageJ (developed by the

Biomedical Imaging Group [BIG] - EPFL – Switzerland http://

bigwww.epfl.ch/) utilizing the Richardson-Lucy algorithm and

applying point-spreads functions (PSFs) calculated for the specific

imaging equipment using the Gibson and Lanni model in the PSF

Generator (BIG, EPFL – Switzerland http://bigwww.epfl.ch/

algorithms/psfgenerator/). The same PFS models and deconvolu-

tion parameters were applied to all image stacks at the same

magnification. Orthogonal or maximum intensity projections were

generated using ImageJ64 (version 1.47).

Western blot analysis
In order to evaluate the expression levels of a-synuclein protein,

quantitative western blotting was used. Protein was extracted from

dissected olfactory bulb, frontal cortex, motor cortex and striatum

from AAV6|a-Syn (n = 3) AAV6|GFP (n = 2) and Intact ctrl

(n = 2) groups. The dissected tissue was homogenized in Trizol,

using the Fastprep-24 homogenizer (#116004500, MP Biomed-

icals) with lysing matrix D (#116913500, MP Biomedicals) Protein

was then extracted and purified, using the Invitrogen trizol protein

isolation protocol. Total extracted protein was quantified using the

Pierce BCA protein assay kit (#23227, Thermo scientific). For

total a-synuclein quantification, 20 mg of protein was loaded from

each sample into a 12 well mini-protean TGX gel (#456-1095; 4–

20%, 20 ml, BioRad) together with a standard of monomeric a-

synuclein (50, 100, 200 ng). The molecular weight of the protein

bands was determined using the Pageruler plus pre-stained protein

ladder 10–250 kDA (#26619, Thermo scientific) and run at 200

volts for 40 minutes. Proteins were transferred to a PVDF

membrane (0,2 mm) using the Transblot turbo transfer system

(BioRad). Following a washing step, the membrane was blocked

using 2% milk and incubated with the mouse anti 42/a-synuclein

(1:1000; 610786, BD Biosciences) over night in RT. Secondary

HRP-conjugated goat anti mouse (1:10000; 115-035-174, Jackson

ImmunoResearch) were used and incubated in 2% milk for

2 hours. The membrane was then visualized using the Immun-

Star HRP Chemiluminescent Substrate Kit (#170-5040, BioRad)

with fluorescence detected using the Chemidoc MP imaging

system (BioRad). Total a-synuclein was then quantified relative to

the human a-synuclein monomeric standards.

Quantitative PCR
Brain areas were carefully dissected and swiftly flash frozen

using dry ice. mRNA was then extracted using Trizol (Invitrogen)

followed by Aurum Total RNA Mini Kit (BioRad). 500 ng total

mRNA was used in a cDNA synthesis using iScript cDNA

Synthesis Kit (BioRad) with the following program; 25uC for

5 minutes, 42uC for 30 minutes and finally 85uC for 5 minutes.

Novel AAV-Based Rat Model of Cortical Synucleinopathy
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Specific primer pairs for rat a-synuclein (fwd 59-GCTGGGAA-

CATTGCTGCT-39, rev 59-TGGGTACCCTTCTTCACCC-39)

and human a-synuclein (fwd 59- CAGGGAGCATTGCAGCA39,

rev 59-GTGGGGCTCCTTCTTCATTC-39) were designed and

validated on plasmid cDNA containing either rat or human a-

synuclein. Both primer pairs were used on both cDNA and a fold

change of 47000 was observed when using rat specific primers on

human cDNA and 112500 fold change when using human specific

primers on rat cDNA. Hence the primers were considered to be

species specific. Prior to qPCR, primer efficiency was determined

by qPCR on a 5 step dilution series of template, primer efficiencies

were calculated and values were used in normalization.

All qPCR results were normalized to three reference genes,

ActB (fwd 59- AAGTCCCTCACCCTCCCAAAAG-39, rev 59-

AAGCAATGCTGTCACCTTCCC-39) GAPDH (fwd 59-

CAACTCCCTCAAGATTGTCAGCAA-39, rev 59-GGCATG-

GACTGTGGTCATGA-39) and TBP (fwd 59-TGGGATTG-

TACCACAGCTCCA-39, rev 59-CTCATGATGACTGCAG-

CAAACC-39). All plates were run with inter-run calibrators and

–RT controls.

Each reaction contained 10 ml SSoAdvanced SYBR Green

Supermix (BioRad), 0.5 mM of each primer, 1 ml cDNA and 8 ml

H20. All samples were run in triplicates with the following

program; 95uC for 30 sec, 95u for 5 sec and 60uC for 20 sec (39

cycles), followed by a melt curve ranging from 65uC to 95uC with

0.5uC increments every fifth second.

Transmission electron microscopy
Tissue for TEM analysis was fixed using 1.5% paraformalde-

hyde with 1.5% glutaraldehyde in 0.1 M Sorensen’s buffer for

osmium tetroxide staining. The tissue was then fixed in 1%

osmium tetroxide in 0.1 M Sorensen’s buffer and progressively

dehydrated in acetone, starting at 30% up to 100% acetone. The

tissue was then embedded using 1:1 acetone and epoxy and

counterstained using 4% uranyl acetate and 1% lead citrate.

Tissue used for immunogold staining was fixed using 1.5%

paraformaldehyde with 0.5% glutaraldehyde and progressively

dehydrated in ethanol, using the Leica AFS protocol and then

embedded in Lowicryl HM20. The tissue was sectioned using the

Leica UC7 ultramicrotome and sectioned into 50–60 nm slices.

For immunostaining, gold conjugated syn 211 antibodies (santa-

cruz 1:200) were used and counterstained using 4% uranyl

actetate. All tissue sections were analyzed using the Tecnai biotwin

120 KV microscope.

Statistical analyses
Statistical analysis was performed using the SPSS 21 software.

Datasets from the open field task, total neuronal quantification

and quantification of ChAT positive neurons were tested for

statistical significance using one-way ANOVA with Newman-

Keuls post hoc test for multiple comparisons. Datasets for total

human a-synuclein mRNA expression and total protein levels

were tested for statistical significance using the Mann-Whitney

rank order test.

Results

In preparation for the described study, we compared AAV

serotypes 5 and 6 in the neonatal rat transduction model. We

found that the use of the AAV6 serotype ensured a broad spread of

expression, mainly localized to the cerebral cortices while the

AAV5 serotype, while displaying a broad spread, did not show a

great affinity to the cerebral cortices. Stereotactic surgery on

neonatal animals has in the past presented with its own challenges.

However, survival rate of over 80% was achieved in our study by

inducing anesthesia through hypothermia on neonatal (post-natal

day 2–4) animals. In total, this resulted in 29 animals with a broad

a-synuclein over-expression, localized to the cerebral cortices. To

characterize disease progression, neuronal degeneration and

pathology, the animals were exposed to a battery of behavior

tests, assessing both motor and cognitive function, at either 8

weeks or 26 weeks post viral injections.

AAV6|a-Syn animals display increased exploratory motor
behavior and dysregulated response to dopamine
agonist, but no memory impairment

AAV6|a-Syn animals displayed no significant difference in

exploratory behavior in the open field task, relative to control

groups at 8 weeks post viral injection (Fig. 1A). However, at six

months post viral injection, AAV6|a-Syn animals showed

significantly increased naive exploratory behavior relative to both

the AAV6|GFP (p = 0.01) and the intact Ctrl (p = 0.02) groups,

indicating abnormal locomotor behavior (Fig. 1B). AAV6|GFP

animals on the other hand, exhibited decreased ambulatory

locomotion relative to both AAV6|a-Syn and intact Ctrl animals,

indicating reduced exploratory behavior (Fig. 1B).

To investigate forebrain dopaminergic neurotransmission,

animals were injected with the dopaminergic agonist apomorphine

(1 mg/kg s.c.) and re-evaluated in the open field task. AAV6|a-

Syn animals displayed a significantly lower locomotor activity

relative to AAV6|GFP (p,0.05) with a strong trend relative to

intact Ctrls, indicating a desensitization of dopaminergic striatal

receptors or loss of postsynaptic neuronal targets at 6 months with

indications of dysregulation already at 8 weeks (Fig. 1 A–B).

The cerebral cortices are important for many broad cognitive

functions such as memory consolidation and retrieval and

degeneration of cortical neurons in combination with the loss of

cholinergic pathways is thought to contribute to dementia in DLB

patients. To assess the role of a-synuclein over-expression on

learning and memory formation rats were evaluated in Morris

Water maze (MWM) task. Rats over-expressing a-synuclein

displayed no learning deficits in the MWM task (Fig. 1C) and

no significant difference between AAV6|a-Syn animals and

control groups was observed in consecutive trials during the same

trial day, indicating that the hippocampal dependent spatial

working memory remained intact. We also evaluated the average

swim speed of the animals to evaluate if the motor dysfunction

observed in tests above could have been a confounding factor in

this test. No differences were observed in the swim speed between

the groups.

Neonatal AAV6 injection induces widespread a-synuclein
expression throughout the forebrain

The novel paradigm of neonatal viral delivery, using the AAV6

serotype, induced substantial expression of human a-synuclein

throughout the forebrain, mainly localized to the cerebral cortices

and striatum, visualized using the Syn211 antibody, previously

shown to be selective towards human a-synuclein [26] (Fig. 2A).

GFP expression from the control vector closely matched that of

human a-synuclein (Fig. 2B), suggesting similar distribution and

spread. Neurons positive for human a-synuclein were found to be

widely dispersed throughout all cortical layers and in both

projection and interneurons. Topographically, the main expres-

sion of human a-synuclein reached the highest levels in the M1/

M2 motor cortices, with lower expression apparent in the pre- and

infra-limbic frontal cortical areas. In addition, immunostaining

revealed major anterograde transport of human a-synuclein,
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through the cortico-thalamic and cortico-spinal tracts, continuing

through the pyramids of the medulla oblongata and persisting

through the cortico-spinal tract along the ventro-medial spinal

cord (Fig. 2A). Staining for human a-synuclein was also observed

to extend along the striato-nigral pathway to the globus pallidus

and the substantia nigra pars reticulata (SNpr), indicating

substantial anterograde transport. Retrograde transport of human

a-synuclein to the dopamine neurons in the SNpc was, however,

not readily apparent. Large numbers of a-synuclein positive

interneurons were also apparent within the olfactory bulb,

suggesting efficient transduction of neuronal progenitor cells

within the rostral migratory stream (RMS).

Human a-synuclein gene expression and protein levels
are increased throughout the forebrain

To evaluate the gene and protein levels of human a-synuclein,

several regions of the forebrain and midbrain were dissected at 40

weeks post-injection and evaluated by qPCR and Western

blotting. To allow for quantification of human a-synuclein and

rat a-synuclein mRNAs independently, primers specific for human

a-synuclein were developed and validated. Using these primers on

both human and rat a-synuclein cDNA, we found a SNR between

47000:1 and 112500:1, i.e., showing sufficient specificity. qPCR

analysis revealed significant amounts of human a-synuclein

mRNA levels in the striatum (p = 0.034), frontal (p = 0.034) and

motor cortices (p = 0.034). Interestingly, significant levels of

human a-synuclein were also detected in the olfactory bulb

(p = 0.034) and ventral midbrain (most likely in axon terminals

from medium spiny neurons projecting to the SNpr) (p = 0.034),

although to a much lesser degree (Fig. 3A). To investigate if

expression of human a-synuclein promotes any regulatory effect

on mRNA levels of endogenous rat a-synuclein, primers specific

for rat a-synuclein were used. qPCR analysis revealed no

significant differences in rat a-synuclein between the treatment

groups in any of the brain regions investigated, suggesting that

over-expression of human a-synuclein does not regulate expression

of endogenous rat a-synuclein (Fig. 3B).

Total rat and human a-synuclein protein expression was

evaluated using Western blotting with monomeric a-synuclein

protein as a standard detected with an antibody previously shown

to display comparable affinity to rat and human a-synuclein [27]

(Fig. 3C). AAV6|a-Syn animals showed a significant, 2–3 fold

increase of total a-synuclein levels within the olfactory bulb

(p = 0.034), striatum (p = 0.034) and the cerebral motor cortices

(p = 0.034) were the expression levels of a-synuclein were found to

be the highest (Fig. 3D). Interestingly, dimeric a-synuclein was

present in all AAV6|a-Syn animals, even though proteins were

extracted using SDS and run on a non-native gel, suggesting that

some insoluble a-synuclein aggregates may have formed in the

AAV6|a-Syn animals (Fig. 3C).

a-Synuclein induces broad pathologies and increased
phosphorylation throughout the forebrain

IHC staining revealed large numbers of neurons within the

cerebral cortices and striatum expressing human a-synuclein.

Neuronal cells displayed diffuse human a-synuclein staining

Figure 1. Behavioral assessment of motor and memory
functions. At 8 weeks post viral injection, animals in the group
receiving the AAV-6 a-synuclein vector (AAV6|a-Syn) displayed no
significant difference in either naı̈ve locomotion, or after subcutaneous
apomorphine injection (1 mg/kg) relative to control groups (Intact Ctrl)
or animals receiving the control vector (AAV6|GFP), in the open field
task (A). However, at 26 wks post viral injection, the AAV6|a-Syn animals
displayed a significant increase in naı̈ve locomotion relative to control
groups. In addition, the AAV6|a-Syn animals displayed significantly
decreased response to apomorphine (1 mg/kg) relative to AAV6|GFP
animals, suggesting dysregulation of the dopamine system (B). AAV6|a-

Syn animals, trained in the Morris water maze (MWM) for seven
consecutive days, exhibited no significant deficits in visio-spatial
memory and learning (C9) and were also able to retain the learned
task up to 21 days after the initial training period (C0). (* = p,0.05, one-
way ANOVA with Newman-Keuls post hoc test). Data is expressed as
mean 6 SEM.
doi:10.1371/journal.pone.0100869.g001
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throughout the soma accompanied by aggregate pathologies

ranging from small a-synuclein positive puncta to larger inclusions

(Fig. 4B), as well as large a-synuclein positive axonal swellings that

were widespread throughout the cerebral cortices and the striatum

(Fig. 4 A–H). Alpha-synuclein staining within the thalamic nuclei

and SNpr revealed abundant a-synuclein positive projections but

no transduced cell bodies (Fig. 4 I–P). Large pathologies with

intense a-synuclein staining in both the thalamic nuclei and the

SNpr were thought to be exceptionally large axonal swellings,

created as a result of blocked anterograde transport and a-

synuclein accumulation (see EM data below).

Phosphorylation of a-synuclein, at serine 129, (pSer-129) is

thought to be a post-transcriptional modification associated with

a-synuclein aggregation and pathology. Staining for pSer-129 a-

synuclein revealed a significant increase of phosphorylation

throughout the cerebral cortical layers and striatum. Phosphory-

lation of a-synuclein was mainly found within the neuronal cell

soma and, to a lesser extent, in cortical and striatal projections

(Fig. 4 C and K). Moderately increased phosphorylation was

apparent in thalamic nuclei and the SNpr, although to a much

lesser extent than within the cerebral cortices and the striatum and

was notably different to the Syn211 human a-synuclein staining

pattern. These findings suggest that phosphorylation takes place

mainly in the cell soma and may be less prone to anterograde

transport, relative to non-phosphorylated a-synuclein in vivo.

Phosphorylated a-synuclein appeared to co-express with human

a-synuclein in the neuronal cell soma (Fig. 5 A–B), mainly as

intracellular puncta and within larger inclusion bodies (Fig. 5 C–

F), suggesting that phosphorylated a-synuclein may be more prone

to aggregation in vivo. Hyper-phosphorylation of AD associated

Tau protein, may be present simultaneously in patients with DLB

and AD was also evaluated by immunohistochemistry. However,

no Tau protein hyper-phosphorylated at the pSer396 residue

could be identified in any of the brain regions affected by a-

synuclein over-expression (data not shown).

Human a-synuclein localizes to cell soma, cell nuclei,
axonal swellings and synapses, and is correlated with
neuronal pathology

Electron microscopy on Osmium tetroxide (OsO4) treated

brain sections revealed a large number of cells with apoptotic

morphology, characterized by fragmentation of the nuclear

membrane, distended rough endoplasmic reticulum and swollen

mitochondria (Fig. 6). Apoptotic cell morphology ranged from

early apoptotic features to small, condensed cell fragments. In

some cases, autophagosomes derived from the Golgi were also

identified within highly apoptotic cells (Fig. 7 A–B). Using

immunogold staining against human a-synuclein (Syn211), apo-

ptotic cells presented with large amounts of nuclear associated a-

synuclein. The a-synuclein found in the nuclei appeared mainly

associated with areas of chromatin (Fig. 6 B), supporting previous

findings that a-synuclein may associate with DNA-histone

complexes and promote neurotoxicity. Diffuse staining of human

a-synuclein was observed in numerous cells, however, a-synuclein

was also present as larger inclusion bodies and fibrillar structures

(Fig. 7 C–D), some within vesicle structures that may be part of the

lysosomal system (Fig. 7 E–F). Cells with degenerative morphology

were often found to contain large numbers of large, swollen

mitochondria (Fig. 6 I–J). Human a-synuclein was found to be

associated with such pathological mitochondria (Fig. 6 I–J), as well

as to mitochondria without any clear pathological morphology.

Axonal swellings were also a relatively common finding in animals

expressing human a-synuclein. These swellings appeared as large,

empty structures, devoid of characteristic microtubules (Fig. 6 E).

Figure 2. Histological overview of transduced brain regions. At
40 weeks post AAV injection, the long-term group was sacrificed and
coronal brain sections stained with antibodies recognizing the
respective transgene, syn211 against human a-Synuclein and a chicken
polyclonal antibody against GFP. Intact control animals (Intact ctrl) were
stained with both antibodies to confirm specificity (only syn211 shown).
Transduction pattern was very similar in both the AAV6|a-Syn and the
AAV6|GFP group with a very intense immunoreactivity in the cerebral
cortex (A,B). Very low staining was observed in the Intact ctrl animals
with the syn211 antibody (C), confirming the specificity of this antibody
towards human a-synuclein. The expression pattern of human a-Syn (A)
differed substantially from the expression pattern of endogenous rat a-
synuclein as observer through staining with another antibody
recognizing also the rat a-synuclein (BD Biosciences 610786) (D). For
clarity, sections from the spinal cord are not to scale with the brain
sections and have been enlarged to 200%.
doi:10.1371/journal.pone.0100869.g002
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Figure 3. Molecular and biochemical quantification of a-synuclein expression. At 40 weeks post AAV injection, a separate group of animals
was sacrificed for molecular and biochemical assessments. Fresh brain tissue was rapidly dissected into five regions where a-synuclein expression had
been observed in the histological observations (Figure 1); striatum, motor cortex, frontal cortex, olfactory bulb and substantia nigra. Using trizol,
mRNA and protein were extracted from each region and assessed using quantitative RT-PCR (A–B) and western blot respectively (C–D). For qPCR, two
new primer pairs were designed, one specific for human a-synuclein (A) and one pair for rat a-synuclein (B). Both displayed very high specificity
without cross-amplification .47000:1). Human a-synuclein mRNA was robustly expressed in all regions tested in the AAV6|a-Syn animals without any
detection in the control groups. Interestingly a-synuclein mRNA was also detected in the olfactory bulb, further confirming the observation that
neuroblasts in the RMS were transduced in the neonatal brain. No changes were observed in the mRNA expression of endogenous a-synuclein (B). All
data in A and B are normalized to three housekeeping genes (Gap-DH, TBP and b-actin). Total a-synuclein protein levels were quantified using
quantitative western blot (C–D). The known amounts of human monomeric a-synuclein was loaded on each blot to create a standard curve (C9) and
total a-synuclein was detected using an antibody previously shown to have comparable affinity to rodent and human a-synuclein in WB. Final
expression levels were finally normalized to b-actin. Blot in (C) shows a representative blot of tissue from the motor cortex. Interestingly, despite
samples boiled in SDS and run on SDS containing gels, samples from the AAV6|a-Syn animals displayed a immunoreactive band at exactly double the
size of monomeric a-synuclein (arrow in C), an observation seen in all regions. This correlated with intensity of monomeric expression and was never
found in any of the control animals. Total a-synuclein levels were increased up to four-fold in regions of the cortex near the injection site (D) with
lower, although still significant, increase in the frontal cortex. (* = significant increase over control groups p,0.05 in Mann–Whitney U test). Data is
expressed as mean 6 SEM.
doi:10.1371/journal.pone.0100869.g003
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Figure 4. High-power histological analysis of a-synuclein expression. Histological analysis of the cerebral cortices revealed high expression
of human a-synuclein (syn211) within the soma and axonal projections of the cortical neurons. These neurons displayed a high incidence of a-
synuclein punctates within their soma (arrows), while phosphorylated a-synuclein (P-ser129) was highly increased within the neuronal soma, and to a
lesser extent within the axonal projections (A–D). Striatal analysis revealed high incidence of neurons with prominent expression of human a-
synuclein, with Lewy neurite’s being a common find (arrow). Phosphorylation of a-synuclein within the striatal neurons was also upregulated (E–H)
Projections within the thalamic nuclei were found to contain high levels of human a-synuclein with large a-synuclein positive structures, believed to
be large axonal swellings, were present throughout the thalamus (arrows) (I–L). Large axonal swellings were also present to a large extent in the SNpR
(arrows) while phosphorylation of a-synuclein appeared as only moderately increased (M–P). The neonatal injection of the AAV6 serotype displays an
interesting ability to also infect neuronal progenitors within the rostral migratory stream (RMS) or the sub-ventricular zone. This is seen as mature
neurons within the olfactory bulb expressing high levels of human a-synuclein (R–S). These neurons appear with healthy morphology with a-
synuclein distributed throw-out the neuropil (S). Dotted lines within the cerebral cortex denote the position of the tissue punch taken for TEM
analysis.
doi:10.1371/journal.pone.0100869.g004
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In sections stained for human a-synuclein, these large axonal

swellings were found to be full of human a-synuclein, suggesting a-

synuclein driven pathology (Fig. 6 F). Finally, large amounts of

human a-synuclein was also found within synapses, although no

morphological pathologies were apparent (Fig. 6 M–N).

AAV-mediated a-synuclein over-expression causes
cortical neurodegeneration

Quantification of forebrain neurons is essential to evaluate a-

synuclein induced toxicity that may lead to neuronal degeneration.

Thus, a modified isotropic fractionation protocol for neuronal and

non-neuronal quantification was developed. Assessing such a large

and heterogeneous brain region is difficult and time consuming

using established stereological methods, which require frequent

sampling of homogeneous regions to be accurate. Isotropic

fractionation, on the other hand, allows cell quantification and

accurate comparison between samples, regardless of differences in

volume [21,28]. Therefore, we used a modified protocol based on

the isotropic fractionation method to obtain quick and accurate

quantification of neurons throughout the forebrain (Fig. 8 A–B).

Intact control animals displayed a mean total of around 43000

NeuN positive cells/mg tissue. AAV6|a-Syn animals, killed 40

weeks after vector injection, differed significantly (p = 0.02), with

an average of 34000 NeuN positive cells/mg tissue, from that seen

in intact control and GFP expressing animals (Fig. 8 C). Control

animals had a mean total value of around 67000 DAPI positive

cells/mg tissue, while total cells in animals expressing human a-

synuclein displayed a non-significant reduction in mean total cells

of around 63000 DAPI positive cells/mg tissue (Fig. 8 D). Our

novel isotropic fractionation protocol was evaluated and validated

by quantifying total cell and total neuronal populations in the

cerebellum in all groups, as the cerebellum, a structure located

outside the vector-transduced parts of the brain. No significant

difference in the number of total DAPI positive and NeuN positive

cells was found between the animals expressing human a-synuclein

and the two control groups.

a-Synuclein over-expression induces progressive
neuronal degeneration and loss of cholinergic cortical
and striatal interneurons

Reduction in cortical acetylcholine levels has been reported to

play a major role in the cognitive deficits observed in DLB

patients. To evaluate the loss of cholinergic neurons in the cortex

due to a-synuclein over-expression, stereological analysis of ChAT

positive neurons in the dorso-medial cerebral cortices was

performed on animals 10 months post-injection. The stereological

analysis revealed a significant neuronal loss (p,0.05) of ChAT

positive cholinergic neurons within the cerebral cortices, relative to

GFP and intact controls, suggesting a-synuclein specific toxicity

(Fig. 9 H, J). In order to assess if the observed neuronal

degeneration was progressive or was a result of an earlier, acute

degeneration in response to a-synuclein over-expression, animals

expressing human a-synuclein were evaluated 8 weeks post-

injection. At this time-point, no neuronal degeneration in cortical

neuronal ChAT+ cells could be observed, suggesting a progressive

neuronal loss (Fig. 9 B,D). As a-synuclein over-expression is also

present in the striatum and the cholinergic interneurons there may

be part of the dysregulatory response to apomorphine in the open

field task, stereological analysis of the striatal cholinergic

interneurons was also performed. Animals expressing human a-

synuclein displayed a significant neuronal loss of cholinergic

interneurons at 10 months post viral injection (Fig. 9 G,I), while

Figure 5. Analysis of cortical pathologies in AAV6|a-Syn
animals using double fluorescence confocal microscopy.
Human a-synuclein was found to be localized both in the nucleus
and the cytosol of transduced neurons (A–B0). In cells with lower
expression level, expression was mostly confined to the cytosol (A9),
while with increase of the expression, nuclear localization increased
substantially (B9). Interestingly, a-synuclein localized to the nucleus
appeared to be relatively more phosphorylated than cytosolic a-
synuclein (inset in A, A0 and B0). Phosphorylated human a-synuclein also
appeared in larger inclusion bodies outside the nucleus. These
appeared both as large hollow spheres (C–D0), assemblies of fibril-
shaped protein (E–E0) and flat sheets (F–F0). In all these cases, the
majority of the aggregated protein appeared to be phosphorylated at
serine 129 (C0, D0, D0 and F0). If these inclusion bodies are localized
inside or outside the cell membrane cannot be conclusively determined
at this point. Images in panels A, C and E are displayed as maximum
intensity projections and B, D and F as orthogonal projections. All
captured using sequential laser scanning at Airy 1 pinhole.
doi:10.1371/journal.pone.0100869.g005
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this was not observed in animals at 8 weeks post viral injection

(Fig. 9 A,C), again, suggesting a progressive neuronal loss.

a-Synuclein over-expression, induces activation and
promotes pathological morphology in resident microglia

Microglial activation and reactivity has been found to be

increased in the brain of DLB patients [29] and may contribute to

disease progression. In our animal model, over-expression of

human a-synuclein was restricted to neurons through the

utilization of the neuron-specific human Synapsin-1 promoter

[22]. Nevertheless, a-synuclein over-expression caused distinct

phenotypic changes in microglial morphology. First, a large

fraction of microglial cells were found with highly condensed

cytoplasm and nuclei, with a loss of extending processes (Fig. 10

A), indicating increased activity and reactivity in response to a-

synuclein over-expression. The second change was observed as a

general elongation of the microglial cytoplasm coupled with loss of

extending processes, indicating increased activity and migration

Figure 6. Transmission electron microscopy assessing a-synuclein localization and associated pathologies. Analysis of the cerebral
cortices through electron microscopy revealed a large number of apoptotic neurons. These neurons were identified by morphological features, such
as large, swollen mitochondria, vacuole formation and disruption of the nuclear envelope (e.g., * in A). Immunogold staining for human a-synuclein
(Syn211) revealed a high presence of nuclear associated a-synculein in apoptotic neurons (black 10 nm dots marked by arrows in B) in addition to
that of the soma (A–D). Large axonal swellings were also a common pathological finding throughout the cerebral cortices (* in C). These were found
to have large accumulations of human a-synuclein (arrows in F) and also appeared to associate with the cellular membrane (E–H). Large and swollen
mitochondria present in neuronal cells, as well as within the axons (* in I) appeared associated with large amounts of human a-synuclein (I–L). Human
a-synuclein was also found to be present to a large extent in synapses of the cerebral cortices (M–P), However, these synapses appeared largely of
normal morphology. The antibody staining in B–C, F–G, J–K and N–O is visualized using immunogold particles of 10 nm in diameter.
doi:10.1371/journal.pone.0100869.g006
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(Fig. 10 C). These morphological changes were readily identified

within the main transduction area of the cerebral cortices but not

in proximity to a-synuclein positive projections in other brain

regions. The morphological changes were also not observed in

AAV6|GFP or intact control animals (Fig. 10 B, D). To investigate

if the morphological changes in the microglial cells could be a

result of direct uptake of human a-synuclein, tissue sections were

examined using confocal microscopy (Fig. 10 E–F). Human a-

synuclein was found within microglial cells from AAV6|a-Syn

animals and was present mainly as intracellular inclusion bodies

and within IBA-1 positive projections throughout the cerebral

cortices (Fig. 10 E). These cells were mostly found in close

proximity to human a-synuclein positive neurons displaying

degenerative morphology. In addition, some microglia were

observed to contain large vesicular structures loaded with a-

synuclein (Fig. 10 E), indicative of an active clearance mechanism.

Figure 7. Immunogold and osmium developed TEM reveals a-
synuclein associated, intracellular fibrillar structures and
increase of autophagosomes. Additional electron microscopy
revealed a number of pathological features, including apoptotic body
cell remnants, present throughout the cerebral cortices (A). Autopha-
gosomes forming from the Golgi (arrow) was a feature also present in
cells with a high degree of apoptotic morphology (B). Human a-
synuclein immunogold (syn211) staining revealed fibrillar-like structures
(arrow in C) as well as larger inclusion bodies (D) present within the
soma and axons (C–D). Subjectively, granular aggregates of lipofucins
appeared to be a more common feature in a-synuclein expressing
animals, suggesting lysosomal/proteosomal pathology. However, no
absolute quantification was possible. (E–F).
doi:10.1371/journal.pone.0100869.g007

Figure 8. Modified isotropic fractionation for neuronal quan-
tification reveals broad-spread cortical degeneration. Principals
of modified isotropic fractionation for neuronal quantification (A). PFA
fixed cerebral cortices were dissected and dissociated using the
GentleMacs tissue dissociator. Following centrifugation and washing
only a nuclear fraction remained. The nuclear fraction was stained for
DAPI and the NeuN neuronal marker and counted in a haemocytom-
eter, using florescence microscopy (B). Quantification revealed a
significant neuronal degeneration within the cerebral cortices of
animals expressing a-synuclein, relative to controls (C). There was
however, no significant neuronal loss in the cerebellum, a region
not expressing human a-synuclein, using our modified isotropic
fractionation protocol (AAV6|a-Syn 463.1624.96103, AAV6|GFP
475.1615.16103, Intact ctrl 506.7612.16103. (* = p,0.05, one-way
ANOVA with Newman-Keuls post hoc test). Data is expressed as mean
6 SEM.
doi:10.1371/journal.pone.0100869.g008
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Figure 9. Quantification of cholinergic neurons regions with high expression of human a-synuclein. Immunohistochemical staining of
ChAT positive Cholinergic interneurons using DAB precipitation coloring of the striatum and cerebral cortex revealed a significant, progressive loss in
both the striatum and the medial lateral Cerebral cortices starting later than 8 wks post viral injection. At the earliest time point (8 wks) no loss of
cholinergic neurons was apparent in either the striatum (A) or the cerebral cortices (B). However, ChAT + interneurons were qualitatively lighter
stained with fewer processes clearly visible (C–D) relative to GFP injected animals (E–F). At 10 months post viral injection, however, there was a
significant reduction on Cholinergic interneurons in both Striatum (G) and Cortex (H) of AAV6|a-Syn animals compared to both AAV6|GFP and Intact
ctrl animals. At this time point, ChAT staining revealed a high degree of clearance of cholinergic neurons within the striatum (I) and medial lateral
cerebral cortices (J), relative to GFP injected animals (K–L). (* = p,0.05, one-way ANOVA with Newman-Keuls post hoc test). Data is expressed as
mean 6 SEM.
doi:10.1371/journal.pone.0100869.g009
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Taken together, these data suggest that microglial uptake of

human a-synuclein participates in the ongoing pathology in this

animal model.

Discussion

In this study we set out to develop a novel rat model of

widespread progressive forebrain synucleinopathy. The goal was

to achieve pathology restricted to this region without affecting

other parts of the brain, such as hippocampus and the substantia

nigra. Rodent models of diverse forms of synucleinopathy, such as

PD, and DLB, have been valuable in determining both

vulnerability factors and the specific contribution of a-synuclein-

induced pathology to the phenotype [30–34]. In a-synuclein

overexpressing transgenic mice, however, the specific contribution

of pathology induced in different parts of the brain has been

difficult to achieve, since most of these transgenic mouse strains

express the protein in many parts of the brain [11,35,36].

Through the neonatal AAV6-mediated gene delivery paradigm

together with the injection coordinates utilized in this experiment,

a-synuclein expression was mainly expressed within neurons in the

M1–M2 regions and to a lesser extent also in the pre- and infra-

limbic prefrontal cortex and the striatum. The mechanism behind

the prominent cortical transduction following AAV injection into

the striatum of neonatal rats is currently unknown. It is clear that

AAV particles diffuse much more efficiently in the neonatal brain,

compared that that in adults [18,19]. This is not only due to the

smaller size of the brain in neonates but most probably also to the

absence of myelinated structures that are known to restrict the

diffusion of the viral particles from the injection site. In

preparation for this experiment we compared the usefulness of

two different AAV serotypes, AAV5, which has been used in

previous studies [18,19], and AAV6, which is our preferred

serotype. We found that AAV5 induced broad expression of

human a-synuclein throughout the forebrain but did not display

the same high affinity for neurons in the neocortex as the AAV6

vector. Thus, the properties of the AAV6 capsid are particularly

favorable for targeting neurons in the neocortex. The broad

transduction pattern is not believed to be caused by a leakage of

the vector into the CSF, as neurons in the hippocampus and other

structures surrounding the caudal parts of the ventricles are not

transduced. We have also conducted pilot studies injecting the

AAV6 vector directly into the ventricles and the resulting

transduction pattern is then restricted mainly to the ependymal

cells with very little parenchymal penetration. The pattern of a-

synuclein expression in the olfactory bulb, confined to a subset of

interneurons, suggest that the AAV6 vector is efficient in

transducing the neural progenitors in the subventricular zone

and/or the RMS. This labeling, which was not observed with the

AAV5 vector, further supports the beneficial permissiveness of

AAV6 to immature and still dividing neural progenitors. Postnatal

cell division in the cerebral cortex [28] may therefore also

contribute to the efficient cortical transduction obtained with the

AAV6 vector. a-Synuclein expression did not extend into the

Figure 10. Morphological changes and evidence of a-synuclein
uptake in IBA-1 positive microglia. Immunohistochemical staining
of IBA-1 using DAB precipitation coloring in the cerebral cortex revealed
a substantial change in the microglial morphology in the cortex of
AAV6|a-Syn animals compared to AAV6|GFP and Intact ctrl animals at 10
months post AAV injection (A–D). In the regions overlapping with the
most intense human a-synuclein over-expression, most microglial cells
appeared with very few visible processes and majority of the IBA-1
positive staining localized to the nucleus (A), this stood in stark contrast
to the normal IBA-1 staining of microglia in the corresponding cortical
regions of AAV6|GFP animals (B). In surrounding cortical regions, the
microglial morphology in AAV6|a-Syn animals showed a second distinct
morphology, with elongated cell body and fewer processer, suggesting
a migratory profile (C). Using double-labeled, fluorescence with IBA-1

and human a-synuclein/GFP antibodies in a scanning confocal
microscope, the presence of a-synuclein in microglia was investigated
(E–F0). At the core of the human a-synuclein over-expression in the
AAV6|a-Syn animals, microglia were found with significantly changes
morphology and intra-cellular a-synuclein (E–E0). Interestingly, two
localization patterns were observed, both in the cell soma in circular,
vesicular structures and as small accumulations in distal processes of
the microglia. No such patterns were observed in AAV6|GFP (F–F0) or
intact controls.
doi:10.1371/journal.pone.0100869.g010

Novel AAV-Based Rat Model of Cortical Synucleinopathy

PLOS ONE | www.plosone.org 13 July 2014 | Volume 9 | Issue 7 | e100869



hippocampus or other parts of the temporal lobe. The absence of

synucleinopathy in this region is consistent with the absence of

spatio-visual memory deficits in the MWM, a test known to be

highly hippocampus dependent [37].

In post-mortem analysis performed at 40 weeks post injection,

i.e. when the rats had reached 9 months of age, the animals

displayed a multifaceted degenerative pattern with a number of

very interesting pathological features. Isotropic fractionation based

quantification showed an overall loss of cortical neurons of more

than 20% in the AAV6|a-Syn animals. Such a loss is impressive in

the light of that the entire cerebral cortex was included in this

counting and, as the expression of a-synuclein is primarily in the

frontal parts, the degeneration in this region is most likely even

greater. In addition, widespread a-synuclein –induced pathology

was present in many surviving neurons, associated with wide-

spread microglial activation. a-Synuclein was distributed diffusely

throughout the neuronal cytoplasm and also as puncta and

inclusion bodies of varying size in both the soma and the nucleus.

Immunogold staining on EM sections revealed that a-synuclein

formed fibrillar-like structures as well as larger inclusion bodies

within the transduced neurons.

Phosphorylated a-synuclein was observed in the form of small

puncta within larger inclusion bodies present in the cytoplasm,

supporting the notion that phosphorylation is important for

aggregation, though not absolutely required [38]. However, this

still remains an open question and there are studies showing that

S129 phosphorylation has a negative effect on aggregation [39].

Therefore, the phosphorylation may also have happened after the

synuclein accumulated. It remains to be shown if the amounts of

phosphorylation in this model follows the amount of human a-

synuclein over-expression or if it is increased to an even larger

extent, then suggesting a potential seeding effect of the human a-

synuclein on the endogenous protein. Interestingly, phosphorylat-

ed a-synuclein was commonly associated with the cell nucleus

[40,41]. This is an important finding as nuclear localization may

further aggravate neuronal toxicity [42]. Indeed, electron micros-

copy analysis revealed that neurons with large amounts of human

a-synuclein present within the nucleus often presented with a

degenerative morphology.

Human a-synuclein was observed to be anterogradely trans-

ported along the cortico-thalamic and cortico-spinal tracts, as well

as in striatal projection neurons. This fits well with previous studies

showing that a-synuclein plays a role in synaptic function [43–45].

Although found in some neuronal projections, phosphorylated a-

synuclein was not as common there as non-phosphorylated a-

synuclein, especially in longer projections, suggesting that phos-

phorylation impacts anterograde axonal transport of a-synuclein in

vivo. This is in line with previous studies showing that phosphor-

ylation of a-synuclein attenuate axonal transport in cultured

neurons [46]. Human a-synuclein was a common finding in

numerous axonal swellings, localized not only in the cortex but

also within the striatum, thalamus and SNpr. The axonal swellings

indicate that a-synuclein over-expression causes blockages or

disruption of axonal trafficking, which would further contribute to

pathology and neuronal degeneration [46,47].

In this study we also chose to study one cellular subtype of

interest in the normal function of the forebrain, the cholinergic

interneurons. Cholinergic interneurons have recently received

increased attention, as they are important for intrinsic regulation

of a wide range of behaviors, including associative learning [48],

reward processing [49], depression [50] and dyskinesias in PD

[51]. Furthermore, a decrease in forebrain acetylcholine levels is

observed in many DLB cases and pathological changes in

cholinergic interneurons may be a contributor to this disease

phenotype [52].

Stereological counting showed a progressive loss of ChAT+
interneurons, both in striatum and cortex of AAV6|a-Syn

animals. While variable, we found up to a 50% reduction of

ChAT+ interneurons both in the striatum and in the cortex. This

is a proportionally greater reduction than we observed in the total

loss of neurons in the cortex using the isotropic fractionation,

indicating that cholinergic interneurons may be more vulnerable

to a-synuclein toxicity than other sub-types of cortical neurons.

Consistent with the widespread a-synuclein-induced pathology

the AAV6|a-Syn animals displayed significantly increased loco-

motor behavior in the open field task, linked to a decreased

locomotor response to apomorphine. While there are many

possible functional explanations for this particular phenotype, a-

synuclein mediated pathology and loss of cholinergic interneurons

in the striatum, provides one possible mechanism. Both cholinergic

and GABAergic interneurons in the striatum play a major role in

modulating output from the medium spiny neurons to the direct

and indirect pathways [53,54]. Cholinergic interneurons within

the striatum work in close proximity with dopaminergic synapses

and modulate dopamine release and the response of the medium

spiny neurons to dopamine agonists [55]. It is also worth to note

that while the degeneration of striatal cholinergic interneurons is

not a prominent feature in either DLB or other forms of dementia,

they have been shown to be affected in related disorders such as

supranuclear palsy (PSP) [56].

The utilization of both morphologic EM and immunogold

labeled EM in this study allowed us to study the a-synuclein-

induced toxic mechanisms in both soma and axons of degener-

ating and dysfunctional neurons. The pathological morphology

ranged from disruption of the nuclear membrane and distention of

the endoplasmatic reticulum, to apoptosis with evidence of

autophagy. Similar findings have recently been observed with

mutations of b-synuclein linked to DLB [57]. Autophagy

represents a major route for degradation of aggregated cellular

proteins and dysfunctional organelles and has emerged as an

interesting potential target for neuroprotective therapies, relevant

for both a-synuclein- and tau-induced toxicity [58–61]. Immuno-

gold staining also revealed that human a-synuclein had a strong

association to mitochondria. These mitochondria often presented

with a swollen pathological morphology, although this was not

always the case. Indeed, mitochondrial dysfunction has been

identified as one of the hallmarks of a-synuclein toxicity and is

thought to play a major role in neuronal degeneration [58,62].

Lastly, it is worth to stress that we through the neonatal

injection paradigm achieve widespread protein injection and

significant pathology without the requirement of exceptionally

high a-synuclein expression levels. In areas of most prominent

pathology, the total a-synuclein levels were increased to, on

average, two-fold. This is very similar to the levels observed in

patients with SNCA gene triplication (coding for a-synuclein) of

the Swedish-American kindred, which also displays severe

dementia, Parkinsonism and Lewy pathology both in cortex and

in the hippocampus [63]. However, individual neurons within the

transduced region may express relatively higher amounts.

Furthermore, as we in this model restrict expression of human

a-synuclein to the cerebrum, this opens up for peripheral studies of

wet biomarkers of disease progression, e.g., in CSF or blood, as any

human a-synuclein observed there can be directly attributed to

central expression.
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Concluding remarks
Viral vector gene delivery has shown great promise in

development of novel models replicating human monogenic

disease conditions in animals. Using this technique we have

created a novel animal model, based on over-expression of human

a-synuclein, that replicates the cortical neuronal degeneration and

pathology seen in DLB patients, without the confounding

contributions of midbrain and/or brainstem pathology. This

study has for the first time shown that cholinergic interneurons in

the cortex and striatum are selectively vulnerable to a-synuclein

induced toxicity and that early, AAV-mediated a-synuclein

delivery produces a progressive neurodegeneration with chronic

microglial activation. The pathology in this model replicates a

number of important findings in other in vivo models of a-synuclein

mediated toxicity, such as nuclear localization of phosphorylated

a-synuclein, swollen mitochondria with membrane associated a-

synuclein, increased autophagy, and microglial activation with a-

synuclein uptake. Therefore, this rat model could become very

useful for studies of novel disease modifying therapies.

Although we used human wild-type a-synuclein in our study,

the neonatal gene delivery approach described here may be used

investigate other, mutated forms of a-synuclein, and it will be

generally useful for studies involving widespread gene delivery to

neurons in the neocortex. We also propose that our animal model

may be used as a platform for discovering and evaluating novel

biomarkers, such as development of diagnostic imaging tools like

SPECT, PET and functional MRI. These may be used for

evaluating hypoperfusion, hypometabolism, and global grey

matter atrophy. Taken together, this model exhibiting a-synuclein

over-expression localized to the cortices provides significant

advantages over current transgenic models for evaluating the

mechanisms observed in conditions of widespread cortical a-

synuclein pathology, such as DLB.

Acknowledgments

The authors thank Lina Gefors at the LBIC for expert assistance in in

preparation of samples for transmission electron microscopy.

Author Contributions

Conceived and designed the experiments: TB PAK. Performed the

experiments: PAK MD SH TB. Analyzed the data: PAK MD SH JYL TB.

Contributed to the writing of the manuscript: PAK MD TB.

References

1. Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M (1998) alpha-

Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and

dementia with lewy bodies. Proc Natl Acad Sci U S A 95: 6469–6473.

2. Goedert M (2001) Alpha-synuclein and neurodegenerative diseases. Nat Rev

Neurosci 2: 492–501.

3. Ballard C, Ziabreva I, Perry R, Larsen JP, O’Brien J, et al. (2006) Differences in

neuropathologic characteristics across the Lewy body dementia spectrum.

Neurology 67: 1931–1934.

4. Heidebrink JL (2002) Is dementia with Lewy bodies the second most common

cause of dementia? J Geriatr Psychiatry Neurol 15: 182–187.

5. Lippa CF, Smith TW, Perry E (1999) Dementia with Lewy bodies: choline

acetyltransferase parallels nucleus basalis pathology. J Neural Transm 106: 525–

535.

6. Perry EK, Curtis M, Dick DJ, Candy JM, Atack JR, et al. (1985) Cholinergic

correlates of cognitive impairment in Parkinson’s disease: comparisons with

Alzheimer’s disease. J Neurol Neurosurg Psychiatry 48: 413–421.

7. Daher JP, Pletnikova O, Biskup S, Musso A, Gellhaar S, et al. (2012)

Neurodegenerative phenotypes in an A53T alpha-synuclein transgenic mouse

model are independent of LRRK2. Hum Mol Genet 21: 2420–2431.

8. Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, et al. (2000)

Dopaminergic loss and inclusion body formation in alpha-synuclein mice:

implications for neurodegenerative disorders. Science 287: 1265–1269.

9. Hansen C, Bjorklund T, Petit GH, Lundblad M, Murmu RP, et al. (2013) A

novel alpha-synuclein-GFP mouse model displays progressive motor impair-

ment, olfactory dysfunction and accumulation of alpha-synuclein-GFP. Neuro-

biol Dis 56: 145–155.

10. Maries E, Dass B, Collier TJ, Kordower JH, Steece-Collier K (2003) The role of

alpha-synuclein in Parkinson’s disease: insights from animal models. Nat Rev

Neurosci 4: 727–738.

11. Magen I, Chesselet MF (2010) Genetic mouse models of Parkinson’s disease The

state of the art. Prog Brain Res 184: 53–87.

12. Gorbatyuk OS, Li S, Sullivan LF, Chen W, Kondrikova G, et al. (2008) The

phosphorylation state of Ser-129 in human alpha-synuclein determines

neurodegeneration in a rat model of Parkinson disease. Proc Natl Acad

Sci U S A 105: 763–768.

13. Lo Bianco C, Ridet JL, Schneider BL, Deglon N, Aebischer P (2002) alpha -

Synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based

model of Parkinson’s disease. Proc Natl Acad Sci U S A 99: 10813–10818.

14. Klein RL, King MA, Hamby ME, Meyer EM (2002) Dopaminergic cell loss

induced by human A30P alpha-synuclein gene transfer to the rat substantia

nigra. Hum Gene Ther 13: 605–612.

15. Kirik D, Rosenblad C, Burger C, Lundberg C, Johansen TE, et al. (2002)

Parkinson-like neurodegeneration induced by targeted overexpression of alpha-

synuclein in the nigrostriatal system. J Neurosci 22: 2780–2791.

16. Eslamboli A, Romero-Ramos M, Burger C, Bjorklund T, Muzyczka N, et al.

(2007) Long-term consequences of human alpha-synuclein overexpression in the

primate ventral midbrain. Brain 130: 799–815.

17. Ulusoy A, Bjorklund T, Buck K, Kirik D (2012) Dysregulated dopamine storage

increases the vulnerability to alpha-synuclein in nigral neurons. Neurobiol Dis

47: 367–377.

18. Kornum BR, Stott SR, Mattsson B, Wisman L, Ettrup A, et al. (2010) Adeno-

associated viral vector serotypes 1 and 5 targeted to the neonatal rat and pig

striatum induce widespread transgene expression in the forebrain. Exp Neurol

222: 70–85.

19. Gabery S, Sajjad MU, Hult S, Soylu R, Kirik D, et al. (2012) Characterization of

a rat model of Huntington’s disease based on targeted expression of mutant

huntingtin in the forebrain using adeno-associated viral vectors. Eur J Neurosci

36: 2789–2800.

20. Kosaka K, Iseki E, Odawara T, Yamamoto T (1996) Cerebral type of Lewy

body disease. Neuropathology 16: 32–35.

21. Herculano-Houzel S, Lent R (2005) Isotropic fractionator: a simple, rapid

method for the quantification of total cell and neuron numbers in the brain.

J Neurosci 25: 2518–2521.

22. Kugler S, Kilic E, Bahr M (2003) Human synapsin 1 gene promoter confers

highly neuron-specific long-term transgene expression from an adenoviral vector

in the adult rat brain depending on the transduced area. Gene Ther 10: 337–

347.

23. Zolotukhin S, Potter M, Zolotukhin I, Sakai Y, Loiler S, et al. (2002) Production

and purification of serotype 1, 2, and 5 recombinant adeno-associated viral

vectors. Methods 28: 158–167.

24. Aurnhammer C, Haase M, Muether N, Hausl M, Rauschhuber C, et al. (2012)

Universal real-time PCR for the detection and quantification of adeno-

associated virus serotype 2-derived inverted terminal repeat sequences. Hum

Gene Ther Methods 23: 18–28.

25. Morris R (1984) Developments of a water-maze procedure for studying spatial

learning in the rat. J Neurosci Methods 11: 47–60.

26. Tinsley RB, Kotschet K, Modesto D, Ng H, Wang Y, et al. (2010) Sensitive and

specific detection of alpha-synuclein in human plasma. J Neurosci Res 88: 2693–

2700.

27. Gorbatyuk MS, Shabashvili A, Chen W, Meyers C, Sullivan LF, et al. (2012)

Glucose regulated protein 78 diminishes alpha-synuclein neurotoxicity in a rat

model of Parkinson disease. Mol Ther 20: 1327–1337.

28. Bandeira F, Lent R, Herculano-Houzel S (2009) Changing numbers of neuronal

and non-neuronal cells underlie postnatal brain growth in the rat. Proc Natl

Acad Sci U S A 106: 14108–14113.

29. Mackenzie IR (2000) Activated microglia in dementia with Lewy bodies.

Neurology 55: 132–134.

30. Decressac M, Mattsson B, Weikop P, Lundblad M, Jakobsson J, et al. (2013)

TFEB-mediated autophagy rescues midbrain dopamine neurons from alpha-

synuclein toxicity. Proc Natl Acad Sci U S A 110: E1817–1826.

31. Decressac M, Kadkhodaei B, Mattsson B, Laguna A, Perlmann T, et al. (2012)

alpha-Synuclein-induced down-regulation of Nurr1 disrupts GDNF signaling in

nigral dopamine neurons. Sci Transl Med 4: 163ra156.

32. Hall H, Jewett M, Landeck N, Nilsson N, Schagerlof U, et al. (2013)

Characterization of cognitive deficits in rats overexpressing human alpha-

synuclein in the ventral tegmental area and medial septum using recombinant

adeno-associated viral vectors. PLoS One 8: e64844.

33. Oueslati A, Schneider BL, Aebischer P, Lashuel HA (2013) Polo-like kinase 2

regulates selective autophagic alpha-synuclein clearance and suppresses its

toxicity in vivo. Proc Natl Acad Sci U S A 110: E3945–3954.

Novel AAV-Based Rat Model of Cortical Synucleinopathy

PLOS ONE | www.plosone.org 15 July 2014 | Volume 9 | Issue 7 | e100869



34. Oliveras-Salva M, Van der Perren A, Casadei N, Stroobants S, Nuber S, et al.

(2013) rAAV2/7 vector-mediated overexpression of alpha-synuclein in mouse
substantia nigra induces protein aggregation and progressive dose-dependent

neurodegeneration. Mol Neurodegener 8: 44.

35. Games D, Seubert P, Rockenstein E, Patrick C, Trejo M, et al. (2013)
Axonopathy in an alpha-synuclein transgenic model of Lewy body disease is

associated with extensive accumulation of C-terminal-truncated alpha-synuclein.
Am J Pathol 182: 940–953.

36. Magen I, Fleming SM, Zhu C, Garcia EC, Cardiff KM, et al. (2012) Cognitive

deficits in a mouse model of pre-manifest Parkinson’s disease. Eur J Neurosci 35:
870–882.

37. Richmond MA, Yee BK, Pouzet B, Veenman L, Rawlins JN, et al. (1999)
Dissociating context and space within the hippocampus: effects of complete,

dorsal, and ventral excitotoxic hippocampal lesions on conditioned freezing and
spatial learning. Behav Neurosci 113: 1189–1203.

38. Basso E, Antas P, Marijanovic Z, Goncalves S, Tenreiro S, et al. (2013) PLK2

modulates alpha-synuclein aggregation in yeast and mammalian cells. Mol
Neurobiol 48: 854–862.

39. Paleologou KE, Schmid AW, Rospigliosi CC, Kim HY, Lamberto GR, et al.
(2008) Phosphorylation at Ser-129 but not the phosphomimics S129E/D inhibits

the fibrillation of alpha-synuclein. J Biol Chem 283: 16895–16905.

40. Wakamatsu M, Ishii A, Ukai Y, Sakagami J, Iwata S, et al. (2007) Accumulation
of phosphorylated alpha-synuclein in dopaminergic neurons of transgenic mice

that express human alpha-synuclein. J Neurosci Res 85: 1819–1825.
41. Yu S, Li X, Liu G, Han J, Zhang C, et al. (2007) Extensive nuclear localization

of alpha-synuclein in normal rat brain neurons revealed by a novel monoclonal
antibody. Neuroscience 145: 539–555.

42. Kontopoulos E, Parvin JD, Feany MB (2006) Alpha-synuclein acts in the nucleus

to inhibit histone acetylation and promote neurotoxicity. Hum Mol Genet 15:
3012–3023.

43. Abeliovich A, Schmitz Y, Farinas I, Choi-Lundberg D, Ho WH, et al. (2000)
Mice lacking alpha-synuclein display functional deficits in the nigrostriatal

dopamine system. Neuron 25: 239–252.

44. Nemani VM, Lu W, Berge V, Nakamura K, Onoa B, et al. (2010) Increased
expression of alpha-synuclein reduces neurotransmitter release by inhibiting

synaptic vesicle reclustering after endocytosis. Neuron 65: 66–79.
45. Lundblad M, Decressac M, Mattsson B, Bjorklund A (2012) Impaired

neurotransmission caused by overexpression of alpha-synuclein in nigral
dopamine neurons. Proc Natl Acad Sci U S A 109: 3213–3219.

46. Saha AR, Hill J, Utton MA, Asuni AA, Ackerley S, et al. (2004) Parkinson’s

disease alpha-synuclein mutations exhibit defective axonal transport in cultured
neurons. J Cell Sci 117: 1017–1024.

47. Prots I, Veber V, Brey S, Campioni S, Buder K, et al. (2013) alpha-Synuclein
oligomers impair neuronal microtubule-kinesin interplay. J Biol Chem 288:

21742–21754.

48. Brown MT, Tan KR, O’Connor EC, Nikonenko I, Muller D, et al. (2012)

Ventral tegmental area GABA projections pause accumbal cholinergic

interneurons to enhance associative learning. Nature 492: 452–456.

49. Cachope R, Mateo Y, Mathur BN, Irving J, Wang HL, et al. (2012) Selective

activation of cholinergic interneurons enhances accumbal phasic dopamine

release: setting the tone for reward processing. Cell Rep 2: 33–41.

50. Warner-Schmidt JL, Schmidt EF, Marshall JJ, Rubin AJ, Arango-Lievano M, et

al. (2012) Cholinergic interneurons in the nucleus accumbens regulate

depression-like behavior. Proc Natl Acad Sci U S A 109: 11360–11365.

51. Ding Y, Won L, Britt JP, Lim SA, McGehee DS, et al. (2011) Enhanced striatal

cholinergic neuronal activity mediates L-DOPA-induced dyskinesia in parkin-

sonian mice. Proc Natl Acad Sci U S A 108: 840–845.

52. Tiraboschi P, Hansen LA, Alford M, Sabbagh MN, Schoos B, et al. (2000)

Cholinergic dysfunction in diseases with Lewy bodies. Neurology 54: 407–411.

53. Chang HT, Kita H (1992) Interneurons in the rat striatum: relationships

between parvalbumin neurons and cholinergic neurons. Brain Res 574: 307–

311.

54. Pisani A, Bernardi G, Ding J, Surmeier DJ (2007) Re-emergence of striatal

cholinergic interneurons in movement disorders. Trends Neurosci 30: 545–553.

55. Threlfell S, Lalic T, Platt NJ, Jennings KA, Deisseroth K, et al. (2012) Striatal

dopamine release is triggered by synchronized activity in cholinergic

interneurons. Neuron 75: 58–64.

56. Suzuki M, Desmond TJ, Albin RL, Frey KA (2002) Cholinergic vesicular

transporters in progressive supranuclear palsy. Neurology 58: 1013–1018.

57. Wei J, Fujita M, Nakai M, Waragai M, Watabe K, et al. (2007) Enhanced

lysosomal pathology caused by beta-synuclein mutants linked to dementia with

Lewy bodies. J Biol Chem 282: 28904–28914.

58. Choubey V, Safiulina D, Vaarmann A, Cagalinec M, Wareski P, et al. (2011)

Mutant A53T alpha-synuclein induces neuronal death by increasing mitochon-

drial autophagy. J Biol Chem 286: 10814–10824.

59. Crews L, Spencer B, Desplats P, Patrick C, Paulino A, et al. (2010) Selective

molecular alterations in the autophagy pathway in patients with Lewy body

disease and in models of alpha-synucleinopathy. PLoS One 5: e9313.

60. Caccamo A, Magri A, Medina DX, Wisely EV, Lopez-Aranda MF, et al. (2013)

mTOR regulates tau phosphorylation and degradation: implications for

Alzheimer’s disease and other tauopathies. Aging Cell 12: 370–380.

61. Wong E, Cuervo AM (2010) Autophagy gone awry in neurodegenerative

diseases. Nat Neurosci 13: 805–811.

62. Nakamura K, Nemani VM, Azarbal F, Skibinski G, Levy JM, et al. (2011)

Direct membrane association drives mitochondrial fission by the Parkinson

disease-associated protein alpha-synuclein. J Biol Chem 286: 20710–20726.

63. Farrer M, Kachergus J, Forno L, Lincoln S, Wang DS, et al. (2004) Comparison

of kindreds with parkinsonism and alpha-synuclein genomic multiplications. Ann

Neurol 55: 174–179.

Novel AAV-Based Rat Model of Cortical Synucleinopathy

PLOS ONE | www.plosone.org 16 July 2014 | Volume 9 | Issue 7 | e100869


