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Uncoupled Matching for Active and Passive
Impedances of Coupled Arrays in MIMO Systems

Michael A. Jensen,Fellow, IEEE and Buon Kiong Lau,Senior Member, IEEE

Abstract—Impedance matching for coupled antenna arrays
has received considerable attention in the research community.
Because optimal matching requires implementation of a coupled
network, leading to high complexity and often narrow operation
bandwidth, new research has focused on the development of un-
coupled matching networks with good performance. This paper
explores traditional uncoupled impedance matching techniques
for coupled arrays, specifically matching to the array active
and passive impedances, within the context of multiple-input
multiple-output communication. The concept of matching to
the array active impedance is extended to the case where the
propagating field is specified stochastically, and the performance
of this solution is compared to that of traditional solutions
using simulations. While emphasis is placed on matching for
maximum power transfer, the paper concludes with a discussion
on matching for minimum amplifier noise figure.

Index Terms—Antenna array mutual coupling, Impedance
matching, MIMO systems

I. I NTRODUCTION

CURRENT INTEREST in using multi-antenna technology
to enhance wireless communication performance coupled

with the small antenna separation mandated by compact mo-
bile devices have led to vigorous interest in impedance match-
ing techniques that compensate for the degradation createdby
antenna mutual coupling. Optimal solutions to this problem
require coupled matching networks, with examples being
the well-known optimal multiport conjugate match (MCM)
for maximum power transfer [1]–[3] and the corresponding
result for minimum noise figure [4]–[6]. Unfortunately, such
coupled networks are typically complicated and often result in
narrowband matching performance [7].

The challenges associated with implementation of optimal
matching motivate the identification of uncoupled matching
networks that achieve near-optimal performance. In traditional
array research, this is typically accomplished by matching
to the array self,passive [8], [9], or active [10] impedance.
However, when it comes to multiple-input multiple-output
(MIMO) systems, where the objectives of the array processing
generally differ from those for traditional or beamforming
arrays, the exploration of these uncoupled matching tech-
niques has been limited, with most work considering either
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numerically-optimized solutions for a given open-circuitco-
variance [11], [12] orinput impedance matching [7], which
respectively represent forms of matching to the active and
passive impedances. In this MIMO context, therefore, we lack
a common theoretical framework for designing such networks,
a detailed understanding of their different behaviors, anda
careful comparison of their relative performance.

This paper focuses on uncoupled matching for MIMO
systems by formulating these solutions under a common
theoretical framework and discussing each approach in the
context of what is known about the propagation channel.
Furthermore, because the channel is typically time-variant,
we demonstrate how to extend the concept of matching to
the active array impedance to the case of stochastically-
specified fields. The ergodic channel capacity achieved with
these matching techniques is compared to that resulting from
a numerically-optimized impedance match. Simulations with
closed-form and numerically-generated antenna characteristics
illustrate that active impedance matching provides good beam-
forming gain and optimal MIMO capacity for small signal-
to-noise ratio (SNR) or high antenna coupling, while passive
matching achieves superior performance for high SNR and low
coupling. While the paper focuses on matching for maximum
power transfer, it concludes with an approach for applying the
methods to achieve minimum amplifier noise figure.

II. M ATCHING FOR POWER TRANSFER

A common design goal is to maximize the power transferred
either from the transmit power amplifiers to the antennas or
from the receiving antennas to the terminating loads. The
goal of this section is therefore to formulate the uncou-
pled terminations that achieve this maximum power transfer.
Throughout this analysis, boldface lowercase and uppercase
symbols denote vectors and matrices respectively, while script
versions of the symbols indicate elements of the vector or
matrix (vm is the mth element of the vectorv). An overbar
indicates a vector electromagnetic quantity.

Let themth antenna in anM -element array be characterized
by an open-circuit radiation pattern (pattern with all other
elements terminated in an open circuit) denoted asEm(Ω),
whereΩ = (θ, φ) with θ andφ representing the elevation and
azimuth angles in a spherical coordinate frame, as shown in
Fig. 1. If the electric field incident on the array isEinc(Ω),
the open-circuit voltagevo,m on this antenna is given as

vo,m =

∫

Ω

Em(Ω) · Einc(Ω) dΩ. (1)
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Fig. 1. Geometry showing a two-elementz-oriented dipole array and the
incident electric field in the system coordinate frame.
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Fig. 2. Impedance parameter equivalent network model of a coupled antenna
array at the (a) receiver and (b) transmitter.

If the array is further characterized by a full impedance
matrix ZA and is terminated in a load having an impedance
matrix ZL, then the equivalent circuit for the receiving system
is that shown in Fig. 2(a) [13]. In this network,v andi respec-
tively represent the voltage across and the current throughthe
termination. It has been well-established that maximum power
is transferred to the load for the MCM [3], orZL = Z

†
A, where

{·}† indicates a conjugate transpose. This requires a coupled
termination (or matching network), which typically leads to
implementation complexity and reduced bandwidth [7].

A. Deterministic Field Matching: Active Impedance

Maintaining maximum power transfer while avoiding the
complexities associated with the MCM is possible for a
specific incident field (or equivalently value ofvo) using the
notion of matching to the array active impedance, the goal
of which is to maintain the voltages and currents associated
with the optimally-terminated network [6], [10]. This is ac-
complished through the relations

ZLi = Z
†
Ai = Z

∗
acti (2)

vo = (ZL + ZA)i, (3)

whereZact is the active impedance,ZL andZact are diagonal
matrices, and{·}∗ is the conjugate. Using (2) in (3) leads to
vo = (Z†

A + ZA)i = ZBi, whereZB = (Z†
A + ZA). Note

that ZB = 2RA, with RA being the real part ofZA, under
the assumption of reciprocal antennas that satisfyZA = Z

T
A,

where{·}T is the transpose. Solving this relationship fori and
substituting the result into (2) leads to

ZL,m =

[
Z

†
AZ

−1
B vo

]

m[
Z

−1
B vo

]
m

, (4)

where[·]m is themth element of the vector inside the brackets.

B. Stochastic Field Matching

Achieving optimal power transfer for a specific incident
field is only practical if the termination can adapt to the
changing incident field. When this is infeasible, it is usefulto
consider the termination that functions over a range of incident
field profiles. Consider a discrete set ofP incident fields,
with the pth field generating the open-circuit voltagev(p)

o

and currenti(p). Finding the load impedance that on average
matches the active impedances associated with all excitations
means finding the solution minimizing the objective function

γz =
1

P

P∑

p=1

M∑

m=1

∣∣∣ZL,mi(p)
m − Z

(p)∗
act,mi(p)

m

∣∣∣
2

, (5)

whereZ
(p)
act,m is the active impedance for thepth excitation.

Setting the derivative of (5) with respect toZ∗
L,m equal to zero

and solving (with the help of (2) and (3)) leads to

ZL,m =

[
Z

†
AU

]

mm

Umm
(6)

U = Y
1

P

P∑

p=1

v
(p)
o v

(p)†
o

︸ ︷︷ ︸
Ko

Y
†, (7)

whereY = (ZL+ZA)−1 and[·]mn denotes themnth element
of the matrix inside the brackets.

SinceZL appears withinU, we solve (6) by first initializing
the load impedance (for example,ZL,m = Z∗

A,mm) and then
constructingY andU using (7). We computeZL using (6),
and use this new value to updateY and U. This procedure
repeats iteratively until it achieves convergence.

In the limit as P → ∞, the sum in (7) becomes a true
expectation over the stochastic set of excitations. We assume
that the fields are zero-mean Gaussian random processes
obeying the angular correlation model

E
{

Einc(Ω)E
†

inc(Ω
′)

}
= S(Ω)δ(Ω − Ω′), (8)

where S(Ω) = E
{

Einc(Ω)E
†

inc(Ω)
}

is the dyadic power

angular spectrum (PAS) of the incident field andE {·} denotes
the expectation. Substitution of (1) into the expression for Ko

shown in (7) yields the covariance ofvo given as [14]

Ko,mn =

∫

Ω

Em(Ω) · S(Ω) · E
∗

n(Ω) dΩ. (9)

C. Unknown Field Matching

Systems often operate in a variety of scenarios, making it
impossible to impedance match even to the stochastic nature
of the fields. If the system cannot adapt its termination to
changing statistics, then the termination should be designed
to accommodate all incident fields. One simple approach is to
set S(Ω) = 1/4π in (9) (field arriving from all angles) and
use this PAS to design the matching network. In this scenario,
Ko ∝ RA, which is the mutual resistance of the coupled
array [6], [15]. Since any difference in scaling is removed in
(6), we can useU = YRAY

†.
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An alternate approach is to match to the array passive
impedance [8], [9], which is the input impedance seen looking
into each antenna port. While a closed-form derivation of the
terminations that allow all ports to be simultaneously matched
to their input impedances is simple for the case of two identical
antennas [7], [16], the solution becomes tedious for largeror
inhomogeneous arrays. Therefore, consider the antenna array
used in transmit mode as depicted in Fig. 2(b) for which
i = Yvs and v = ZAi. We excite the array with a voltage
vs on themth port and zero voltage on the other ports and
subsequently compute the input impedance seen looking into
the coupled array from themth port. The load impedance
for this port is then chosen as the conjugate of this input
impedance, which can be expressed as

ZL,m =

{
[ZAY]mm

Ymm

}∗

. (10)

SinceZL appears in the expression forY, this equation can be
solved iteratively using the procedure outlined in SectionII-B.

Fundamentally, the passive impedance represents a special
case of the active impedance. Specifically, matching to the
active impedance maximizes the received power for a spe-
cific beamformer [6]. The passive impedance is the active
impedance when the beamformer has only one non-zero
weight (i.e. processes the signal from only one antenna port).

D. Superdirective Solutions

The concept of selecting a termination based on the incident
field characteristics emphasizes that the uncoupled termination
itself serves as a beamformer. As a result, for closely-spaced
antennas the terminations may produce superdirective behav-
ior [17], and therefore we should take measures to remove
these solutions when designing practical systems.

To assess the level of superdirectivity caused by a termina-
tion, we compute the arrayQ-factor defined asQ = i

†
i/i†Ai,

whereA = RA/RA,11 [18]. This equation is suitable when
considering the active impedance match for a specific field.
However, when considering stochastic fields, we likely wish
to take the average of this quantity, which is difficult given
its rational form. However, we may approximate the average
Q-factor by taking the ratio of averages. Specifically, using
that i = Yvo and that, as discussed in connection with (7)
and (9),Ko = E

{
vov

†
o

}
, this approximate averageQ-factor

can be expressed as

Qe =
E

{
v
†
oY

†
Yvo

}

E
{
v
†
oY

†AYvo

} =
Tr

[
Y

†
YKo

]

Tr [Y†AYKo]
, (11)

whereTr [·] is the trace.
We also need to limit the allowable superdirectivity in the

solution, and we therefore adopt the pragmatic approach of
incorporating antenna loss and spatially-white noise in the
model [19]. Specifically, if themth radiating element has a
radiation efficiencyeA,m, then its associated self-impedance
ZA,mm can be modified to have resistancêRA,mm =
RA,mm/eA,m. Similarly, the open-circuit covariance matrix
should contain the spatially-white noise generated by the
antenna loss. For simplicity, we assume that the ratio of the

open-circuit noise to open-circuit signal squared voltages is
proportional to the ratio of the loss to the radiation resistances,
leading to the regularization̂Ko,mm = Ko,mm/eA,m.

E. S-Parameter Analysis

The developments detailed in this section can be formulated
using the full S-parameter matrix of the antenna and the un-
coupled reflection coefficient matrix representing the load. For
matching to the active impedance given a deterministic field
or to the passive impedance as discussed in Sections II-A and
II-C, the solutions based on Z-parameters and S-parametersare
identical. However, when trying to simultaneously match toa
range of active impedances by minimizing the cost function
in (5), the relative weight of each term in the cost function
for Z-parameters differs from that for S-parameters because
of their nonlinear mathematical relationship, and therefore
slight differences can occur in the two sets of solutions. In
the cases considered in this paper, these slight differences
change neither the behavioral trends nor the fundamental
conclusions drawn from the results. Furthermore, while the
derivation of the corresponding techniques using S-parameters
is straightforward, their inclusion requires definition ofnew
notation and terminology. Motivated by these observationsand
for the sake of conciseness, we therefore forego S-parameter
analysis in this paper.

III. C OMPUTATIONAL RESULTS

A. MIMO System Capacity

While impedance matching for maximum power transfer is
applicable to many scenarios, our focus is on comparing the
different terminations in terms of MIMO capacity. LetHo

represent theM × M transimpedance transfer matrix, or

vo = HoiT + ηo, (12)

where iT is the vector of transmit currents andηo is the
receiver noise referred to the open-circuit antenna terminals.
The instantaneous signal power received by the loads is

pL = i
†
RLi = i

†
T H

†
oY

†
RLYHoiT , (13)

where RL is the diagonal matrix of load resistances. We
assume that the transmit array has large element spacing (no
coupling, no correlation) so that the transmit currents have
the covarianceKT = E

{
iT i

†
T

}
= PT /MI, whereI is the

identity matrix. We note thatTr [KT ] = PT .
Given an effective channel matrixH relating the transmit

currents to the signals at the loads, the capacity is given by

C = log2

∣∣∣∣I +
PT

Mσ2
η

HH
†

∣∣∣∣ , (14)

where σ2
η is the noise variance at each load and| · | is the

determinant. Since the last term in the determinant represents
received SNR, comparison with (13) indicates that

H = R
1/2
L YHo. (15)

This formulation allows us to express the average power
received in the loads asPL = E {pL} = Tr

[
HKT H

†
]
. For all
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computational examples, we present the ergodic capacityCe

computed as an average over 250 random channel realizations
normalized by the average capacityCS for single transmit and
receive antennas in the same environment.

B. Channel Matrix and Spatial Covariance

To construct the channel matrix for the simulations, we first
realize anM × M matrix Hw whose entries are independent
zero-mean unit-variance complex Gaussian random variables.
Using our assumption of uncorrelated transmit signals outlined
in Section III-A and assuming that the signals at the receive
array have the covariance given by (9), we can use the well-
known Kronecker model for the covariance to writeHo =
K

1/2
o Hw. This model is known to have deficiencies for small

element separation or large arrays [20], but since our goal is
to compare therelative performance of different terminations,
its use here is reasonable.

The normalization used forH must preserve the impact of
element spacing and load impedance on the capacity. To ac-
complish this, we first constructH in (15) assuming an infinite
antenna separation (ZA is diagonal) and withZL = Z

∗
A. We

then normalizeHo (or Ko) so that the Frobenius norm ofH
is ‖H‖F = M , meaning thatPT /σ2

η is the single-input single-
output (SISO) SNR as detailed in [16]. We finally construct
H for different terminationsZL using this normalized version
of Ho with an antenna efficiency ofeA,m = 0.97.

In evaluating the performance of MIMO systems, it is also
useful to understand the correlation structure of the signals
across the loads. Given our formulation for the capacity and
channel matrix, this signal issL = HiT such that (13)
becomespL = s

†
LsL. Since the structure ofHo leads to

E
{
HoH

†
o

}
= MKo, the covariance ofsL is given as

E
{
sLs

†
L

}
= M R

1/2
L YKoY

†
R

(1/2)T
L︸ ︷︷ ︸

Ks

. (16)

The properly-normalized off-diagonal elements of this matrix
represent the commonly-used correlation coefficients between
antennas. However, for this study, we instead use the eigenval-
ues of this covariance, as this directly translates the correlation
into the average power for each of the communication modes.
This can be explicitly seen in the upper bound on the ergodic
capacity that is computed as [16]

Ce ≤
M∑

m=1

(
1 +

PT

σ2
η

λm

)
, (17)

whereλm is themth eigenvalue ofKs.

C. Simulation Scenarios

In the computations, the PAS is described by a truncated
Gaussian function in elevation centered atθ = 90◦ and with an
angle spread of10◦. The distribution in azimuth is described
either as a constant (uniform distribution) or as a single cluster
represented by a truncated Laplacian function with an angle
spread of40◦ and centered at the angleφ = φ̄. These PAS
functions are computed using the methods in [21]. We use
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Fig. 3. Normalized average capacity as a function of element spacing for a
PAS described by a single Laplacian cluster arriving on a two-element array
at broadside for different matching conditions and two different SNR levels.

arrays of half-wavelength dipole antennas oriented in thez-
direction as shown in Fig. 1, so that these PAS functions
represent the average power in theθ̂ polarization.

In all of the cases considered, we first compute the ter-
minations for each of the closed-form techniques (match
to the active impedance for the PAS, match to the passive
impedance, etc.). We then choose the termination achieving
the largest average capacityCe as a seed for a numerical
optimization whose goal is to find the uncoupled termination
that maximizes this average capacity. Since, however, the
capacity as a function of the terminations has local maxima,
we generate 250 different starting points by randomly varying
the real and imaginary parts of the seed termination uniformly
over a range of±25%. For each of these starting points, we
complete a Nelder-Mead simplex optimization that determines
the termination achieving the local maximum average capacity.
Because each of these local maxima potentially represents a
unique value ofCe, the termination achieving the largest value
of Ce is selected as the optimization outcome.

D. Two-Element Dipole Array

As a starting point in our analysis, we assume a linear array
of two half-wave dipole antennas at the receiver. The open-
circuit radiation patterns are assumed to be identical to the
isolated dipole element patterns computed using the simple
formula in [22]. The impedance matrix is also computed using
the closed-form expressions in [22]. While this antenna char-
acterization approach is approximate, it provides maximum
flexibility in sweeping antenna parameters and therefore allows
us to explore basic behaviors before adding the complexity
associated with numerical antenna characterization.

Figure 3 plots the capacity as a function of the element
spacing for the Laplacian PAS at̄φ = 90◦ (broadside) using
the different terminations and for two different values of the
SISO SNR. The performance for a perfect MCM is shown
for comparison. Figure 4 plots the same results when the
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Laplacian PAS is centered at̄φ = 0◦ (endfire). Despite
the simplicity of these simulations, they teach some clear
principles. For example, when the SNR is low, the termination
obtained by actively matching to the incident PAS is optimal.
In this scenario, only one of the two possible communication
modes can be efficiently used for MIMO communication,
and therefore the termination that matches to the incident
PAS functions as a beamformer that enhances the quality of
the dominant mode. The benefit of this beamforming is less
pronounced for broadside excitation, since in this case all
solutions consist of identical terminations on the two antennas
due to the problem symmetry, and therefore the active match
offers little benefit over other terminations.

When the SNR is high, matching to the active impedance
maximizes the capacity when the element spacing is small.
Here, the high signal correlation creates a scenario where
only one mode is useful, and therefore the termination-induced
beamforming enhances the communication. As the element
separation increases, however, it becomes beneficial to equal-
ize the two modes rather than enhance one mode at the expense
of the other. The termination resulting from matching to the
passive impedance does not attempt to beamform for the PAS
and therefore better accomplishes this mode equalization.

The relationship between beamforming gain and capacity
is reinforced by examining the eigenvalues of the covariance
Ks. Figure 5 plots these two eigenvalues, normalized so
that the maximum value is unity, for the case of the PAS
arriving at φ̄ = 0◦ (endfire) and for an SNR of 20 dB.
These results clearly show that the active match to the PAS
maximizes the dominant eigenvalue at the expense of the other,
reinforcing its nature as a beamformer. The eigenvalues for
the numerically optimized termination mirror this behavior for
small element separation but then abruptly jump to become
more equalized as the spacing increases. Despite this abrupt
change in eigenvalues, the capacity of the optimized solution
is smooth, showing that this change represents a transition
from the optimality of beamforming enhancement of a single
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Fig. 5. Normalized eigenvalues of the covarianceKs as a function of element
spacing for a PAS described by a single Laplacian cluster arriving on a two-
element array at endfire and for SNR = 20 dB.

communication mode to the exploitation of multiple modes.
The power delivered to the loads for this scenario is shown in
Fig. 6, with a behavior that reinforces these concepts.

The superiority of the passive impedance match for high
SNR is consistent with recent work demonstrating that this
match maximizes the upper bound on the capacity when the
SNR is large enough to satisfyPT λm/σ2

η ≫ 1 in each term
of the capacity expression of (17) [16]. When interpreting
the results in Figs. 3 and 4, it is important to recognize that
even when the SNR is 20 dB, the second eigenvalue for small
element spacing is so weak that this high-SNR approximation
does not apply, which explains why the passive impedance
match does not maximize capacity in this regime.

Figure 6 also shows the level of supergain, as measured
by the effectiveQ-factor, for the different terminations. These
results reveal that the terminations produced by MCM, nu-
merical optimization, and active matching to the PAS yield
relatively large effectiveQ-factors for small element separa-
tion, consistent with their nature as beamformers.

We have also characterized the array and the corresponding
reference of isolated antennas numerically using the method of
moments (MoM) implementation of [23] for half-wave dipoles
of diameterλ/400. We find that the results and therefore
our analysis closely match what we have observed using the
closed-form antenna characteristics. As one example, Fig.7
shows the capacity for two SNR levels as a function of element
spacing when the PAS is uniform in azimuth. In this case,
not surprisingly, the behavior for the termination for active
matching to the PAS matches that obtained for the termination
for active matching to a spherically uniform PAS, since the two
PAS structures are the same in azimuth. This indicates that for
a dipole array in this orientation, the resulting termination is
relatively insensitive to the elevation structure of the PAS.

E. Three-Element Dipole Arrays

Fig. 8 plots the capacity for a SISO SNR of 0 dB for linear
and triangular arrays of three dipoles, again characterized



6

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

Element Spacing (wavelengths)

R
el

at
iv

e 
P

ow
er MCM

0

5

10

15
Q

e

 

 

MCM

Passive
Active: Uniform
Active: PAS
Numerical Optimum

Fig. 6. EffectiveQ-factor and average power delivered to the loads as a
function of element spacing for a PAS described by a single Laplacian cluster
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using the MoM, as shown in the figure inset. The PAS is a
single Laplacian cluster at̄φ = 0◦ (endfire to the linear array),
and only key curves are plotted to simplify the discussion. In
this case, the larger array aperture perpendicular to the cluster
for the triangular array enables a higher overall capacity,while
the beamforming enabled by the active PAS match provides a
larger relative benefit for the linear array than the triangular
array for moderate element separation.

F. Applicability to other Antennas

The framework presented here can be used to formu-
late uncoupled matching networks for other coupled antenna
topologies. However, we can directly use the results presented
here to estimate what might occur for other antennas. What
complicates such a comparison is that the capacity depends on
the correlation, which is a function of the multipath structure
and the antenna spacing, as well as the quality of the match.
Fortunately, this information is contained in the eigenvalues
of the covariance matrix. Therefore, if one can find a dipole
spacing for which the eigenvalues in Fig. 5 are similar to those
of the target antenna, then using the capacity from Fig. 4
corresponding to the selected spacing will give an estimate
of the capacity for the MIMO system using the target array.

IV. M ATCHING FOR NOISE FIGURE

The discussion on matching to maximize power transfer has
provided valuable insights into the behavior of different match-
ing topologies. However, this discussion would be incom-
plete without considering impedance matching for practical
receivers where the front-end amplifiers represent a dominant
noise source. In this situation, some amplifier noise is coupled
between ports due to the antenna coupling, and the matching
between the antennas and the amplifiers directly controls the
front-end noise figure and system capacity.
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Fig. 7. Normalized average capacity as a function of element spacing for a
uniform PAS for different matching conditions and two different SNR levels
with the elements characterized using MoM.

A. Matching Implementation

The challenge of identifying an uncoupled termination that
achieves minimum receiver noise figure is that it is based on
a theory of optimallymismatching the antennas to the front-
end amplifiers. In this case, rather than use the simple receiver
model of Fig. 2(a), we introduce a matching network between
the antennas and amplifiers using the model and theory derived
in [4]. For the sake of conciseness, this analysis will not
be repeated here, and we only indicate that the goal of the
matching network is to transform the antenna impedance such
that it appears to the amplifiers as the optimal noise figure
termination with diagonal impedance matrixZopt. Naturally,
this precise condition is only satisfied either for a specific
incident field or for a coupled matching network.

Given the different matching techniques outlined in Sec-
tion II, the challenge is to determine the mechanism for
specifying the characteristics of the matching network to
achieve the goal of minimum noise figure. In the context of
the theory presented in [4], we have found that the following
sequence of steps produces reasonable results:

1) Use the theory outlined in Section II to design the load
ZL that achieves maximum power transfer.

2) Given this load, assume that the active impedance seen
looking into the antenna terminals isZact = Z

∗
L.

3) Using the theory in [4], design the uncoupled matching
network that transforms this uncoupled antenna active
impedance toZopt. Note that, since the theory in [4] uses
the S-parameter representation,Zact must be converted to
a diagonal reflection coefficient for this computation.

This approach works for the active impedance matching tech-
niques as well as the passive impedance match. However,
rather than use this approach for the active impedance match
assuming a uniform PAS, we instead use the theory in [6] that
presents a similar solution achieving the goal of minimum
noise figure for the uniform PAS.
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B. Example Computation

Computations performed using this theory generally demon-
strate that the basic observations and conclusions made in
connection with the results presented in Section III apply to
the case of optimal noise matching. As an example, consider
again the two-element dipole array with the Laplacian cluster
arriving at array broadside and the elements characterized
using MoM. The transistors forming the amplifiers have noise
parametersRn = 3.5Ω, Z0 = 50Ω, Fmin = 2.5 dB,
Γopt = 0.475∠166◦ (optimal reflection coefficient), and an
input impedance of50Ω (see [4] for a detailed discussion on
how these are used in the design and simulations).

Figure 9 plots the capacity resulting from this analysis for
two different values of SISO SNR, where the “Minimum
Noise” match is that obtained from [6]. As can be seen, under
this procedure, the conclusions for high SNR are similar to
those obtained during the analysis of matching for maximum
power transfer. Specifically, when the SNR is high, matching
to the active impedance (including the solution from [6]) leads
to optimal performance only for high coupling, while matching
to the passive impedance is optimal elsewhere.

However, when the SNR is low, the numerically optimum
solution outperforms all other uncoupled solutions for high
antenna coupling. Closer investigation of this case reveals
that, despite the problem symmetry that suggests identical
matching on the antenna ports, the numerical solution provides
asymmetric matching to achieve these results. In fact, when
the optimization is constrained to produce symmetric match-
ing, the numerically-optimized solution follows the analytical
curves as observed in all other capacity plots in this paper.
This means that at low SNR, degrading the quality of one
output port to enhance the quality on the other provides benefit.
We also point out that the port selected to achieve improved
performance is arbitrary. Given the symmetric nature of this
problem, it is currently unclear as to how to develop a closed-
form matching strategy to achieve this behavior. However, it is
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Fig. 9. Normalized average capacity as a function of element spacing for a
PAS described by a single Laplacian cluster arriving on a two-element array
at broadside for different matching conditions and two different SNR levels
with the elements characterized using MoM.

important to recognize that this case of high coupling and low
SNR is impractical for most realistic communication scenarios.

V. CONCLUSIONS

This paper uses a common framework to develop and
analyze uncoupled impedance matching for coupled array
antennas. Specifically, it discusses matching to the array
active impedance for deterministic and stochastically-specified
electromagnetic fields, and shows that such active matchingin
effect creates a beamformer that maximizes received power.It
also discusses a previously-proposed technique for matching
to the antenna passive impedance, also referred to as input
impedance matching, known to be optimal in certain circum-
stances. Simulation results of MIMO capacity using different
propagation environments demonstrate that for low SNR or
high coupling, active matching outperforms passive match-
ing due to the associated beamforming gains. However, for
moderate coupling or high SNR, passive impedance matching
enables better use of the multiple communication modes. The
discussion concludes by demonstrating the application of the
matching techniques for minimizing the system noise figure.
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