LUND UNIVERSITY

Realization of Expert System Based Feedback Control

Arzén, Karl-Erik

1987

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Arzén, K.-E. (1987). Realization of Expert System Based Feedback Control. [Doctoral Thesis (monograph),
Department of Automatic Control]. Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/c4af9490-80c1-4a0a-9c27-d5c9466d2358

Realization of

Based

Expert System

Karl-Erik Arzén

Lund 1986

To Gunilla and Pernilla

Department of Automatic Control
Lund Institute of Technology

Box 118

S-221 00 LUND

Sweden

©1987 by Karl-Erik Arzén
Published 1987

Printed in Sweden
Studentlitteratur

Document name

Department of Automatic Control Doctoral Dissertation
Lund Institute of Technology Date of issue
P.O. Box 118 November 1987
S-221 00 Lund Sweden Document Number
CODEN: LUTFD2/(TFRT-1029)/1-199/(1987)
Author(s) Supervisor
Karl-Erik Arzén K.J. Astrom

Sponsoring organisation
The National Swedish Board of Technical Develop-
ment (STU)

Title and subtitle
Realization of Expert System Based Feedback Control

Abstract

There is currently a significant interest in expert system techniques in the process control community. A
common application is to use the expert system as an operator aid for process monitoring. The topic of this
thesis is to explore the use of expert system techniques in feedback control systems. Even simple regulators
need a substantial amount of heuristic logic. The development of this safety-jacket is time-consuming. In
the thesis, the heuristics is separated from the algorithms and implemented using expert system techniques.
This gives a better logical structure and it leads to control systems with new and interesting properties. The
concept is referred to as knowledge-based control. The initial tuning of a regulator is a good example of a
problem where heuristics are mixed with deep knowledge and numerical algorithms. New theoretical result on
relay tuning are given. They are used as the basis for heuristic rules for classifying processes according to their
dynamics. An architecture is presented where two concurrent processes are used to implement the heuristics
and the control algorithms. A prototype system is described where the standard expert system framework
OPS4 is used on a VAX 11/780. Experiences from experiments with the prototype led to the design of a
real-time expert system framework better suited for the problem. ~A. modular, blackboard-based approach
is taken. This allows the decomposition of the problem into subtasks which are implemented as separate
knowledge sources that can be rule-based with different inference strategies or procedural. The framework
can be compared with a real-time operating system and has similar real-time primitives. An example is
shown were the framework is used to implement an elaborated version of relay auto-tuning. Knowledge is
extracted about three points on the open-loop Nyquist curve. The tuning procedure chooses process model
and controller depending on the extracted knowledge.

Key words
Real-time expert systems, Feedback control, Auto-tuning, Intelligent control; Relay feedback,

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ' ISBN
Language Number of pages Recipient’s notes
English 199

Security classification

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,
5-221 03 Lund, Sweden, Telex: 33248 lubbis lund.

Contents

Preface

;..a

. Introduction . Coe .
. Background and Motlvauon .
2.1 Related applications .o .
2.2 Functionality of the knowledge-based controller
2.3 User interface aspects
. Tuning Methods .
3.1 The relay tuning method
3.2 Step and pulse response methods
3.3 Summary
4. Implementation Structure .
4.1 Subprocess decomposition
4.2 Inter-process communication
4.3 The numerical algorithms subprocess
. Expert System Techniques
5.1 Expert system characterlstlcs
5.2 Object-oriented representations
5.3 Rule-based representations
5.4 Blackboard systems
5.5 Real time expert systems

b2

oo

Cj‘!

6. An Off-the-shelf Framework

6.1 Motivation
6.2 OPS4
6.3 A Ziegler- Nlchols auto tuner
6.4 Experiences and conclusions
7. A Real-time Expert System Framework .
7.1 Motivation and functional description
7.2 YAPS
7.3 YAPS extensions
7.4 The scheduler . Ce
7.5 Forward chaining knowledge sources .
7.6 Backward chaining knowledge sources
7.7 Procedural knowledge sources
7.8 Combination of knowledge sources .
7.9 Discussion .
8. Examples of Knowledge Based Controllers .
8.1 The tuning procedure
8.2 The numerical algorithms
8.3 The knowledge sources
8.4 A session with the system

10

17
19
20
36
37
33
38
41
45
51
51
54
56
61
62
65
65
66
66
68
70
70
73
76
86
89
96
102
105
111
113
114
126
132
144

vi

8.5 Extensions to the example 158

8.6 Automatic generation of gain schedules 163
9. Conclusions and Suggestions for Future Work 166
Referenceso e oL 1T0
Appendices o 180
A. Relay-based control design methods P 11
B. Step and pulse response based control design methods R 1
C. The mailbox mterface 19
D.YAPScommands L 000000 195

E. Planning from an Al perspective 197

vil

Preface

The following thesis belongs somewhere in the borderland of Computer Science,
particularly Artificial Intelligence, and Automatic Control. Writing an interdis-
ciplinary thesis has many potential pitfalls. The scope necessarily becomes broad
and the audience, with experience from both fields, is small. This thesis is pri-
marily written for a reader with knowledge of automatic control at the graduate
level. To provide the necessary background and terminology, the thesis contains
a survey on expert systems. The thesis is broad in the sense that it touches upon
several different areas that each, in its own right, could be the topic of further
research. The intention behind the work has been to tackle the entire problem in
all its width rather than to dwell into the details of all the subproblems. Another
pitfall of interdisciplinary theses is that they run the risk of being considered
inappropriate for both fields. Hopefully, this is not the case here. Instead, my
hope is that the work may generate new ideas and concepts.

Acknowledgements

This work has been carried out at the Department of Automatic Control, Lund
Institute of Technology, Sweden. It has been a pleasure to work in an inspiring
and dynamic atmosphere where projects that reach outside the borders of tra-
ditional control theory are encouraged. I would like to thank all my colleagues
at the Department, who have made this thesis possible. The ideas behind this
work originate from my supervisor Professor Karl Johan, Astrom. His. support
and confidence has been invaluable. I am indebted to Sven Erik Mattsson, Lars
Nielsen, Per Hagander, Jan Eric Larsson, and Per Persson who all have given
valuable criticism on the manuscript. A special thanks goes to Sven Erik Matts-
son and Per Hagander for their proof-reading on Chapter 3. One of the seeds of
this work is the relay auto-tuner. I would like to thank Tore Hagglund and Lars
Baath who have commercialized it and shared their experiences with me.

The thesis is type-set with the type-setting program TEX (Knuth, 1984). Leif
Andersson has written the macros that were used in the thesis and contributed
much to the typography of the thesis. He has also assisted me in mastering the
EUNICE system. The building blocks in the expert system framework developed
has been Flavors and YAPS. They have been provided by the Department of
Computer Science, Univ. of Maryland. I would like to thank Liz Allen for this
well-written software. The financial support has been provided by the National
Swedish Board of Technical Development (STU). The work has been carried out
in the Computer-Aided Control Engineering Project under contract 85-3084.

vii

Introduction

Process control systems have developed significantly during the last decades. The

control equipment has changed from analog controllers and relay networks during
the late 1958s to distributed computer-based contrel systems. Computer-based
systems increase the functionality and allow larger and more complex plants to
be autcmated. / ‘

The computer revolution has affected process control at all levels. Micro-
processors are used for implementation of local controllers. Programmable logic
controllers (PLC) have replaced the relay networks. On the plant-wide level,
computers are used for supervision and set-point control as well as for the actual
control of the plant in the form of direct digital control (DDC) systems. Powerful
tools for information presentation are an important part of the user interfaces.

In spite of this development the basic contrellers are still the same, although
implemented with new techniques. The control systems do not in general give any
support in choosing controller structure or controller parameters. The majority
of the control loops in process industry are still PID loops. A few adaptive and
auto-tuning controllers have entered the market but these systems are still rather
rigid.

Artificial intelligence (AI) is an area that long has attracted interest. Since
the late 1950s the area has evolved into a separate, now and then, heavily dis-
cussed and questioned, research discipline. Expert systems or knowledge-based
systems are a branch of Al that has gained increasing interest during the last
decade. An expert system can loosely be described as a computer program that
tries to emulate the problem solving behavior of a human expert in some limited
domain. The reason for the increased interest in expert systems is partly that
the technique has matured and partly that new and more suitable software and
hardware have emerged. Expert system development tools, so called expert sys-
tem shells or frameworks, are now available on conventional computers. Powerful

2 Chapter 1 Introduction

workstations with dedicated hardware for Al languages such as, e.g., Lisp are in
the market and the prices are dropping.

The topic of this thesis is to investigate the use of expert system techniques
at the local control level. The aim is to use expert system techniques for the
implementation of the heuristic logic that is an important part of all controllers.
The separation between numerical algorithms and heuristic logic hopefully gives
an environment that simplifies the development of complex controllers and where
heuristics can be exploited to a higher degree. The concept will be referred to as
knowledge-based control and the resulting controller will be named a knowledge-
based coniroller. The reason for this terminology is the use of knowledge-based
system techniques. It does not imply that it is the author’s opinion that tra-
ditional controllers are based on ignorance. The ideas behind knowledge-based
control were first presented in Astrom and Anton (1984) and Astrom ef al (1986).

Functionally, the knowledge-based controller can be viewed as an exten-
sion of auto-tuners and adaptive regulators. The controller should on-line build
up enough process knowledge to choose and tune an appropriate controller. The
knowledge is mainly built up through different dynamic tuning experiments. The
controller should have the capacity to select among several different control de-
sign principles. The knowledge-based system is used on a supervisory level on
top of a set of numerical control, identification, and monitoring algorithms. The
identification algorithms may consist of both simple algorithms for estimation
of, e.g, ultimate gain and frequency, and ordinary on-line identification algo-
rithms such as, e.g., a recursive least-squares algorithm. The main task of the
knowledge-based system is to orchestrate different numerical algorithms on-line.
This involves starting and stopping algorithms, calculating algorithm parame-
ters, analyzing results from identification algorithms, react correctly on alarms
from monitoring algorithms, etc.

Control of a process basically involves two types of knowledge: control knowl-
edge and process knowledge. Control knowledge contains the textbook knowl-
edge about automatic control, e.g., knowledge about different control strategies.
Process knowledge contains knowledge of the actual process that should be con-
trolled. This knowledge can, e.g, be acquired through identification experiments
or from experienced process operators.

- The knowledge-based controllers can be described as an attempt to supply a
controller with enough control knowledge to be able to extract the process knowl-
edge needed automatically. Ideally, the knowledge-based controller should be able
to act and reason in the same way as an experienced control engineer does when
he designs a controller and evaluates its performance. This involves several differ-
ent types of knowledge. Some examples are: knowledge about tuning procedure
procedures that can be used to extract process information, knowledge about
dynamic models, knowledge about different control design techniques, knowledge
about the numerical algorithms involved, e.g., what their parameters mean and
Yow their results should be interpreted, etc. The structure is shown in Figure
1.1.

-

User

Expert System
Control Knowledge

Numerical Algorithms

Process

Figure 1.1 Knowledge-based controller

An entirely different approach, though quite similar with respect to imple-
mentation, is taken in the fuzzy control area. Here, the control algorithm is
replaced by a set of rules for how the control output should be modified in dif-
ferent situations. The rules contains quantified, linguistic values of the measured
signals. The intended applications for fuzzy control are control of complex pro-
cesses for which either appropriate models do not exist or are inadequate. Work
in this area also goes under the names linguistic control and- rule-based control.
The fuzzy controller may be viewed as an attempt to model the behavior of
the operator who is manually controlling the process. Due to this, the resulting
controller will be based mainly on process knowledge. It also implies that each
controller is designed especially for a certain plant. The situation is shown in
Figure 1.2.

The approach taken in this thesis is more general in that the controller imme-
diately can be used on many different processes. However, it has also limitations.
The assumption that enough process knowledge to control a process can be built-
up automatically is probably only true for small control problems. This thesis
concerns only the single-input, single-output case. It might be possible to extend
the idea to systems with a few inputs and outputs. If, however, a process with
multiple interconnected control loops is considered, the correct way is definitely
to build-in as much a-priori process knowledge as possible into the controller.

A more well-known expert system application in process control is to use an
expert system as a complement to a conventional control system for process mon-
itoring and alarm analysis. The aim of such systems is to package the knowledge
of experienced process operators and provide it 24-hours a day. Expert systems
of this type are usually only used as advice giving systems. The architecture of

s

4 Chapter 1 Introduction

User

Expert System
Process Knowledge

Process

Figure 1.2 Fuzzy controller

this type of system is shown in Figure 1.3.

The knowledge-based controller can be viewed as a learning system. Learn-
ing has long been a major area of Al, (Michalski et al, 1983). In automatic control,
learning ideas have been used before. Adaptive controllers are sometimes labeled
as learning systems. Rule-based controllers sometimes have the possibility to
modify the control actions of the rules based on accumulated experience, (Michie
and Chambers, 1968). The learning in both these contexts_consists of adjusting
numerical parameters in expressions of a fixed form in order to obtain desired
performance. The learning in the knowledge-based controller is instead focussed
on acquiring higher level process knowledge, e.g., process models, by performing
experiments with the process and analyzing the results.

Contributions

The main contribution of this thesis concerns the architecture and design of a
knowledge-based controller. An architecture is proposed where the numerical
algorithms parts and the knowledge-based system are separated into different
concurrent processes. Most existing expert system frameworks are not suited for
real-time operation. In this thesis, an expert system framework is described that
is modelled after a conventional real-time operating system with similar real-time
primitives. It allows rule-based and procedural knowledge representation. The
framework supports the separation of a problem into a number of subtasks which
may be implemented as separate modules.

The process knowledge needed for the control design is extracted through
on-line tuning experiments. Relay feedback is one tuning method that is used in
existing auto-tuners, (Astrém and Héagglund, 1984b). The thesis also contains

-

User

Expert
System

Conventional Control System
Logic and Algorithms

Process

Figure 1.3 Expert system for process monitoring

new theoretical results regarding systems under relay feedback. Theorems are
given which partially can be used to classify systems according to how they
should be controlled. o .

The goal in the long-run for the work in knowledge-based control is to build
an “intelligent” controller. This thesis has not reached that far. Instead, it con-
tains some examples of how the real-time framework that has been developed
may be used in the initial tuning of the controller. In general, knowledge-based
control consists of more than just tuning. On-line monitoring is an equally im-
portant area.

Outline of the thesis

The thesis has the following organization. Chapter 2 gives further background
and motivation for the knowledge-based controller. The chapter also contains an
overview of related expert system applications in process control.

Tuning is a typical example of a problem that consists of both deep, the-
oretical knowledge, heuristic considerations and numerical algorithms. Chapter
3 contains new results on relay feedback. The results can be used to detect
processes which may be approximated by first order systems.

Chapter 4 discusses the overall architecture of the knowledge-based con-
troller. The subprocess decomposition and the interprocess communication are
described in detail for a VAX 11/780 implementation. The implementation con-
sists of three separate concurrent processes according to Figure 1.4. The chapter
also describes the internal structure of the numerical algorithm subprocess.

What distinguishes the knowledge-based controller is the use of expert sys-
tem techniques for implementing the heuristic logic. A brief overview of expert

6 Chapter 1 Introduction

Knowledge
Based
System

Numerical
algorithms

Man-machine
communication

Figure 1.4 Implementation structure of a knowledge-based controller.

system techniques is given in Chapter 5.

A first prototype where the knowledge-based part of the system was imple-
mented with an off-the-shelf expert system framework is described in Chapter 6.
The prototype is evaluated and the lessons learned are discussed. In Chapter 7,
an expert system framework suited for real-time operation is described. Chapter
8 describes some knowledge-based controller examples where this framework is
used. A relay based tuning procedure is presented which is based on knowledge of
three points on the Nyquist curve of the open-loop process. Finally, conclusions
and directions for further work are given in Chapter 9. '

Background and Motivation

When this thesis project started, it was called Expert Control. This name may,
however, cause confusion. Many other expert system applications in automatic
control go under the same name. Section 2.1 is an attempt to give a background
to this thesis and to classify different expert system applications in automatic
control. |

The knowledge-based control approach can be motivated from two different
viewpoints. The first relates to the intended functionality of the controller, i.e.,
to successively build up process knowledge. In Section 2.2, .the knowledge-based
controller is described in relation to conventional adaptive controllers and auto-
tuners. The second viewpoint concerns the implementation technique. Section
2.3 contains motivation for the use of expert system techniques and a discussion
of alternatives. The section emphasizes the heuristic elements of process con-
trol. Finally, Section 2.4 discusses possible implications that the expert system
approach may have for the user interface.

2.1 Related applications

Following the expert system boom during the last years, several expert system
applications in control, and specially process control, have been proposed. The
idea of trying to combine expert system ideas with controllers is, however, not
new. Already in 1962, a Heuristic Decision program was discussed (Crossman
and Cooke, 1962). It was mainly intended for manual control problems.

During the beginning of the 1960s, the interest and optimism were high in
artificial intelligence and cybernetics. Much research concerned systems modelled
atter the neuron-based structure of the human brain. These ideas were also
applied to control problems. Systems such as the Perceptron (Rosenblatt, 1961)

-

8 Chapter 2 Background and Motivalion

and ADALINE (Widrow, 1962) belong here. These ideas are also the origin of
what is called learning control. Other names for this are intelligent control and
self-organizing control.

In learning control systems, the controller should be able to estimate un-
known information during its operation and determine an optimal control action
from the estimated information. Different learning schemes have been proposed.
Pattern classification techniques, sometimes with adaptable decision thresholds,
are one example. Other examples are bayesian estimation and stochastic approx-
imation. Much of the work in learning control systems could just as well fall into
the adaptive control area. Examples of work in the area are Fu (1970, 1971) and
Saridis (1977, 1983).

The area of fuzzy control has its origin in the work of Zadeh (1965) on
multiple-valued logic in the form of fuzzy sets. The fuzzy control or rule-based
control approach has, e.g., been applied to steam engines (Mamdani and Assilian,
1975) and cement kilns (Holmblad and Ostergaard, 1981). In Francis and Leitch
(1985), a PROLOG based fuzzy control shell is described. A survey of the area
is found in Tong (1977, 1984).

Expert system applications in process control

Expert system applications in process control can be classified according to three
different criteria:

Plant-wide — single loop
Off-line operation — on-line operation _

Operator assistance — closed loop operation

The cases in each pair above should be regarded as extreme cases and an
actual application usually falls somewhere in between. The first criterion states
if the application is intended for the global, plant-wide level with several control
loops or if it is used on the single loop level. The second criterion states if the
application is used in off-line mode, e.g., in an analysis or design phase, or if it is
used for on-line operation. The last criterion tells whether the expert system is
used mainly for information and advice presentation to the operator or if itself
actually carries out the actions. This criterion is mainly applicable for the on-line
case.

The following classifies different types of expert system applications in pro-
cess control with respect to the above criteria.

Process Design: An expert system could be used as an off-line tool during pro-
cess design. The aim is to capture knowledge about how the process should be
designed in order to fulfill various objectives, e.g., good control prospects, ser-
viceability, economy etc. Work along these lines in the case of factory design is

described in Fisher, (1986).

ES

2.1 Related applications 9

Control design: Another typical off-line application. At the plant-wide level ex-
pert systems have been proposed for selecting appropriate input-output pairings
given process configuration and control specifications (Niida and Umeda, 1986).
In Shinskey (1986), an expert system is used for design of distillation controls
based on relative gain techniques.

At the single loop level, expert systems are often combined with computer
aided control design packages. The aim is to capture knowledge about differ-
ent control design techniques such as SISO lead/lag compensation (James et al,
1985), multivariable design using linear quadratic theory (Birdwell et al, 1985),
multivariable frequency domain design (Pang and McFarlane, 1987), state feed-
back and estimation (Trankle et al, 1986). In Larsson and Persson (1987), the
expert system plays the role of an intelligent help system for system identification.

Process monitoring: Process monitoring is perhaps the most well-known expert
system application in process control. The expert system is usually used on top of
a conventional control system. The applications are typically plant-wide and the
expert system is used more or less on-line. The expert system is mainly used as
an operator assistant. Special cases of monitoring are fault diagnosis and alarm
analysis. Fault diagnosis systems use plant-specific knowledge such as, e.g., cause-
effect relations and trouble-tracing diagrams to locate the fault that caused the
error symptoms and to give advice on how to correct it. In complex monitoring
systems, an initial alarm often results in a lot of secondary alarms that drown
the operators in information and hide the original alarm. An alarm analysis
system with knowledge of, e.g., alarm patterns, dynamics of fault propagation
and process configuration could assist the operators in resolving these matters.
This work is motivated by accidents such as the Three Mile Island nuclear reactor
accident. Examples of different monitoring applications are numerous. A few
examples are Nelson (1982) on nuclear power plants, Sakaguchi and Matsumoto
(1983) on electrical power systems and Palowitch and Kramer (1985) on chemical
plants.

Process scheduling and optimization: Control optimization and scheduling are
areas which have been proposed as potential expert system candidates. On a
global level the expert system could, e.g., be used to give advice on set-points
in order to optimize plant operation. Apart from using the expert system as an
operator assistant, it has been suggested that the loop should be closed and that
the expert system should directly interact with the controlled plant. The number
of actual expert system projects that have been carried out along these lines is,
however, small.
Expert system scheduling has been suggested for batch processes. It is also
widr! zongsed in the discrete manufacturing industry for flexible manufacturing
“o.cms (FMS), (Smith et al, 1986). Possible applications in continuous process
industries are process start-ups and shut-downs or major production changes.
Actual implementations are also here rare.

10 Chapter 2 Background and Motivation

Control: Here, the expert system typically is used on a small part of the plant,
on-line, and in closed loop. This category contains the work in this thesis. Fuzzy
controllers also belong here.

A few expert system projects have a closer relationship to knowledge-based con-
trol than others. These will be briefly described in the following.

In Trankle and Markosian (1985), Expert System Adaptive Control (ESAC)
is described. This is in spirit similar to knowledge-based control. The intended
application was a Reconfigurable Intelligent Flight Control System (RIFCS). The
goal of the system was to enable adaptation to catastrophic plant changes that
require changes in the structure of the control law. The system was modeled after
an ordinary self-tuning regulator with three different expert system modules: the
system 1dentifier, the control system designer and the control implementation
supervisor. No real-time version of the system has been implemented.

In Sanoff and Wellstead (1985), the combination of a self-tuning regulator
and an expert system was proposed. The expert system was suggested to consist
of two parts. A configuration expert guided the operator in the parameter setting
of the controller and a run-time expert monitored the control.

The PICON system (Moore ef al, 1984a, 1985) and the G2 system (Gensym,
1987) are two related expert system frameworks, specialized on process monitor-
ing, which could be compared to the expert system framework described in this
thesis. An expert system based on PICON basically consists of a set of rules
where each rule is tested periodically. The condition parts of the rules typically
specifies logical conditions of sensor values which must be fulfilled in order for

the rule to be applicable. An example of rules from a catalytic cracker process
(PICON, 1985) could look as follows.

let condition reactor-temperature-high =
reactor-temperature > 990 deg-f

if reactor-temperature-high then
send "The reactor temperature is high;
gasoline production is below optimum."
to console
and
conclude possible-increase-in-carbon

The above is a typical example of a rule based on shallow knowledge. Deep knowl-
edge e. g predictions based on mathematical models, or validation of balance

1

ermation g e Lore difficult to represent.

3

2.2 Functionality of the knowledge-based controller 11

2.2 TFunctionality of the knowledge-based controller

From a functional point of view the knowledge-based controller belongs to the
class of auto-tuning and adaptive controllers. Through different tuning experi-
ment, the controller should on-line build up and refine process knowledge. This
knowledge is explicitly represented in the controller. The controller should also,
to some extent, have the opportunity to exploit existing. a priori information.
This means that the operator should have some possibility to enter knowledge
he has about the process into the controller.

In many aspects, this resembles what existing auto-tuners and adaptive con-
trollers already are doing. A short overview will be given on current industrial
control practice to point out the differences and to motivate the knowledge-based
approach.

PID control

The choice of controller structure and the setting of the controller parameters
always require some process knowledge. Modelling based on physical laws and
off-line process identification (Eykhoff, 1974; Astrom and Eykhoff, 1970; Ljung,
1987) can be used to acquire the knowledge needed. These methods are, how-
ever, time and resource extensive and are mainly justified-for processes with high
potential economic benefits or where the control specifications require accurate
process models. This is usually not the situation in process industry. An ordinary
industrial process contains a large number, perhaps hundreds, of control loops.
Most control loops belong to a standard set of control problems, e.g., flow control,
level control, etc. The majority of the loops are controlled by PID controllers.
The controller structure is chosen based on experience from similar loops. For
example, in pressure and level control, proportional action is usually sufficient,
whereas in temperature control both proportional, integral and derivate action is
needed. The controller parameters are manually tuned by rule-of-thumb meth-
ods, e.g., introduce integral action in order to eliminate the static error. In spite
of this, or perhaps due to this, it is a well-known fact that many control loops in
process industry are badly tuned or run in manual mode.

Auto-tuners

Auto-tuning controllers (Astrém and Hagglund, 1984a, 1984b; Hoopes et al, 1983;
Yarber, 1984) have an initial tuning phase which is used to determine the param-
eters of the controller. An alternative approach is to let the auto-tuner monitor
the process behavior with respect to disturbances and based on that adjust the
controller parameters (Bristol, 1977; Kraus and Myron, 1984).

Although existing auto-tuners to some extent extracts and builds up process
" “owiedge, they have many limitations. The auto-tuners usually have a fixed
controller structure, typically only PID, and use only one design method to cal-
culate the PID parameters. This implicitly limits the class of processes which

-

12 Chapter 2 Background and Motivation

Design G Parameter <
Calculation Estimation
yref +
i u y
Controller Process

Figure 2.1 An explicit self-tuning regulator.

they can handle. They usually extract only the specific process knowledge needed
for the control design used. An overview of auto-tuning controllers can be found

in Astrém and Hagglund (1988).

Adaptive controllers

A problem with many control loops is that they are badly tuned due to changes
that have occurred since the tuning. A solution to this is the adaptive controller
(Astrom 1987a; Astrom and Wittenmark, 1988). An explicit self- tuning regu-
lator contains a recursive identification algomthm that periodically updates an
internal process model and adjusts the controller coefficients according to the
model. This is shown in Figure 2.1. - ,

The adaptive controllers are quite general. The process knowledge they
extract is the parameters in a predetermined process model or, in some cases, the
parameters in a predetermined control law. They need much a priori information
about, e.g., model orders and details in the control and estimation methods used.
Such information can be difficult to provide and process operators typically lack
the intuitive understanding that they have with conventional PID controllers.
The choice of these parameters is, however, crucial. Adaptive controllers can
be viewed as gradient methods that perform well locally. If they, however, are
started outside the local neighbourhood, the system may become unstable. The
trend among commercial suppliers is to predetermine as many parameters as
possible. The drawback of this is that the generality is lost and the class of
processes which can be controlled is diminished.

Operator knowledge

Experienced process operators and process engineers are an important source of
process knowledge. From experience of the process, the operator usually has some
mental model of how the process behaves and responds to changes. He knows
the type of control problem, i.e., whether it is a temperature loop or flow loop,

-

2.2 Functionality of the knowledge-based controller 13

PR
Supervision
i i
A priori Kn;WWZQG algorithms {47
information ase N —
in System
Identification
S —p algorithms T_

——3p» Control

|_> algorithms [] -

Process

Figure 2.2 A knowledge-based controller

etc. He has qualitative information of the process, e.g., if the open-loop system
is stable or highly oscillatory. He usually also has some feeling for the gross
nature of the dynamics, e.g., the time scale of the process and the magnitude
of the static gain. Information of this kind cannot be trusted too heavily since
it is based on subjective judgements. Used with care it can, however, provide
useful indications. Information of this kind is usually difficult to directly exploit
in conventional controllers.

The knowledge-based approach

.

This project is based on the hypothesis that a universal adaptive control algo-
rithm without requirements on prior information does not exist or can at least
not be implemented in practice. Fundamental theoretical work concerning the
amount of process knowledge that is needed to stabilize a process has been done
by, e.g., Byrnes (1985) and Martensson (1986). Unfortunately, the resulting con-
trol algorithms have not proved practically usable. The approach in this project
is to use different control algorithms for different purposes and to use different
identification and monitoring algorithms, each specialized on one aspect of the
process behavior. The overall controller consists of an “intelligent” combination
of these algorithms, as shown in Figure 2.2. Such an approach is found in many
engineering disciplines. One example is image analysis. When a digital image is
analyzed, the standard way is to use different algorithms each one specialized on
one aspect of the analysis. Examples are feature extracting algorithms of different
types or algorithms for different parts of the image understanding problem.
Functionally, the knowledge-based controller very much resembles a conven-
tional auto-tuner. The difference is that is should be more flexible. The controller
should be able to approximate the process dynamics with different model struc-
tures, e.g., by either a first-order system, a first-order system with a time delay or

N

14 Chapter 2 Background and Motivation

a second-order system. Depending on the model structure, the model parameters
and the specifications, the controller designs different control laws. This involves
both different methods for determining the parameters in a given control algo-
rithm, e.g., a PID controller, and different ways of choosing control structure,
e.g., a PID controller or a pole-placement controller.

Another difference is the monitoring aspects. The knowledge-based con-
troller should have the possibility to monitor the steady-state control performance
on-line and if necessary adjust parameters, switch between different controllers,
or initiate re-tunings.

A possible application for the knowledge-based approach is startup and mon-
itoring of adaptive control laws. Different tuning experiments could be performed
to built up enough knowledge to safely start a self-tuning regulator.

2.3 Implementation technique

Heuristics play an important role in many levels of process control. The use of a
knowledge-based system as a part of the controller is an attempt to manage the
heuristic elements of the controller in a structured way.

The word heuristic has the following mterpretatlon due basically to
Brownston et al (1985). :

Heuristic: A principle (sometimes called a rule-of-thumb) that embodies some
problem-solving knowledge and has some likelihood of successing more rapidly
than a theoretically based algorithm for solving the problem but that zs not guar-
anteed to work in all siluations. g

Heuristic elements in process control

Consider, to begin with, a conventional PID controller. It can be described by

the model: .
ut) = b[e) + - [elo)ds + T,

where u(?) is the controller output and e(¢) is the error signal. From this equation,
a basic understanding of the algorithm could be gained. To actually implement a
PID controller requires much more. First, a realization must be chosen. Commer-
cially available PID controllers may differ quite substantially here. The derivate
term may act only on the measured variable, the derivate and the proportional
term may act only on the measured variable, the controller could be combined
with a lead network, and so on.

The second point to consider is operational issues. It should be possible to
switch safely between manual and automatic mode, controller parameter changes
muzt ot cause process upsets, precautions against integral wind-up must be
taken, and so on. An industrial controller typically consists of an implementa-
tion of the basic control algorithm plus heuristic logic that take care of these

-

2.3 Implementation technique 15

issues. The logic shows up as selectors or branching statements e.g. if — then
— else statements and case statements. Although these issues are important for
good controller performance they are with a few exceptions, e.g., Glattfelder and
Schauffelberger (1983), seldom tackled theoretically. Instead they are designed
mainly from intuition, experience, and simulation.

In more complex controllers such as, e.g., adaptive controllers, the amount
of heuristic logic is increased. Another name for it is safety nets or safety jackets
(Clark, 1981; Isermann, 1982; Wittenmark and Astrém, 1984). The safety net
part of the controller code may be much larger than the actual algorithm. Ex-
perience has shown that the safety nets tend to become complex even for rather
small problems. A consequence of this is that design and testing is quite time
consuming.

As mentioned previously, the choice of controller structure is often based on
experience from control of similar loops, i.e., based on heuristics. The controller
parameters are adjusted according to heuristic rules-of-thumb. Heuristics plays
a role even if the controller parameters are calculated based on some design
method. Many possible design methods exist for a given process model and
controller structure. The choice of method is not obvious. Most the design
methods also contains parameters that must be chosen. Examples of this are
given in Chapter 3. .

Heuristic considerations play an even more important role on higher levels
of the plant. For example, how to pair control signals and measured variables in
order to fulfill some global control objective is to a large extent solved by methods
based on experience. Multivariable control loops follow the same pattern. How
to avoid undesired effects due to couplings between different controllers is one
example, (Shinskey, 1986).

The knowledge-based approach

It is the author’s experience from implementations of relay based auto-tuners,
that the combination of numerics and heuristics in such problems tends to result
in code where the numerical parts and the logic are mixed up, when implemented
with conventional languages such as, e.g., Pascal or Modula-2. The mixture
quickly causes the programs to become difficult to understand and a modular
development is difficult to maintain.

The approach taken in the knowledge based controller is to separate the
heuristics from the numerics to as a large degree as possible, and to implement
the heuristics with expert system techniques. This will give a more structured
implementation. The approach taken in the knowledge-based controller, where
the overall performance depends on the combination of several algorithms both
in sequence and in parallel, increases the logical complexity of the problem and
rise even higher demands for a structured implementation.

Expert systems are based on knowledge that consists both of facts and of
heuristics. The knowledge is explicitly implemented in a knowledge database

Fd

16 Chapter 2 Background and Motivation

that easily can be expanded. An inference engine which draws conclusions based
on the available knowledge is implemented separately from the knowledge base.
A very common knowledge representation is to use if — then - rules. In rule-
based expert systems, knowledge is represented as collections of rules. This gives
both a declarative programming style and a modular system where new rules
can be added relatively independently. A description of different expert system
techniques is given in Chapter 5. Furthermore, expert systems have the reputa-
tion of being suited for solving complex problems dominated by heuristics and
where conventional procedural programming techniques have not proved success-
ful. Based on this, expert system techniques seemed to have the qualifications
that were needed for the project.

Modes of application

The knowledge-based controller has two potential application modes. It can be
used as an actual controller or as a testbench for experiments with new controller
structures. The current status of expert system hardware does not allow an
expert system based controller to be used on a wider level. This is, however,
changing rapidly as computing power increases and expert system tools become
available also on small standard processors.

To use the system as an laboratory testbench has many interesting possibil-
ities. The rapid prototyping possibilities of expert systems makes it a suitable
environment for experiments with new controller structures. This would espe-
cially involve the development and testing of the logic safety nets. When a
relatively stable system has been developed and the need to further extend the
system is small, parts of it or the whole system may be implemented with con-
ventional programming techniques. The knowledge-based implementation could
here provide good guidance on how to choose abstract data types or objects.

Alternative implementation methods

One implementation alternative is to use an available distributed control sys-
tem. Distributed control systems often consist of a combination of a function
block language and a programmable logic controller (PLC). The PLC part typi-
cally implements the sequence control problems with logic functions, timers and
switches. The function block language implements the continuous control prob-
lems with standard blocks for control functions frequently used. These systems
are, however, mainly intended for large control problems where the individual
controllers are implemented in one or perhaps a few blocks and the PLC system
is used to implement the logical connections among the different control loops.
The knowledge-based controller instead is a very complex single controller. If this
was to be implemented with a commercial control system, there are two possible
solutions which reflect the way function block languages can be classified.

The first group of function block languages are the one where the function
blocks are small. Each function block performs only a low-level operation. Single

=

2.3 Implemeniatlion technique 17

blocks are combined to form a functional module. The knowledge-based controller
would in such a system consist of a very large number of combined function blocks
with the branching logic implemented in the PLC system. The logic safety net
part of the controller typically requires a richer expressibility than is provided by
a standard PLC system. This and the mere number of function blocks needed,
make the solution intractable. ;

The second group of function block languages contains large, specialized
function blocks. In some of these languages, it is possible for the user to program
the function blocks. The languages provided for this are usually either languages
common in process industry already, e.g., FORTRAN or interpreted languages
such as BASIC or FORTH. To implement a knowledge-based controller in this
way would, however, probably create the same or even worse problems as if a
high-level, real-time language was used from the start.

2.4 User interface aspects

The knowledge-based approach has interesting potentials for the user interface.
Ideally, a knowledge-based controller would start by giving the human operator
the possibility to enter his process knowledge. This can be done in different ways.
The traditional expert system approach is to ask questions to the user. A less
rigid form of interaction would be to allow the operator to enter the information
on his own initiative. If questions are used, they must be related to the language
and the mental models the operator uses for the process. Explanations must
be provided for each question. The explanatlons could also contain guldehneb
for how the required information could be gathered or calculated if it is not
known by the operator. Explanation facilities would give a tutoring facility that
perhaps could be used for educational purposes. The operator must always have
the possibility to refrain from answering the questions. The decision of what
information that is needed and what information the knowledge-based system
could take advantage of is not evident. It is also difficult to compose relevant
questions that extracts this information from the operator.

A second important source of information is the control specifications. The
knobs on a conventional controller are usually controller specific parameters, e.g.,
regulator gain, integration and derivative times in a PID controller. On a few
controllers 1t is possible to use the knobs to specify the closed loop performance,
e.g., bandwidth or overshoot (Astrom 1979). A desired feature of a knowledge-
based controller would be the possibility to enter qualitative measures of the
closed loop performance, e.g., as high bandwidth as possible. It is then the
task of the controller to calculate the control parameters to fulfil this, with the
constraints given by, e.g., controller saturations, acceptable overshoot, etc.

The knowledge based controller must also be able to explain its operation
to the user, i.e., be able to give answers on various questions. The explicit pro-
cess knowledge representation simplifies the implementation of extensive query

18 Chapler 2 Background and Motivation

facilities. Possible question types that might be supported are:

What process model have you come up with?
Which control design method was used and why?
Is the disturbance situation normal right now?

What is the variance of the control error?

These examples are mainly intended for the process engineer. The knowledge-
based approach also has other implications for the interface to the process and
control engineers. The knowledge-based approach allows direct interaction with
the knowledge-based system. It may be possible to inspect and manipulate the
contents of the knowledge-base during operation. This could, e.g., involve the
addition of new rules to the system.

Tuning Methods

The automatic acquisition of process knowledge through different tuning experi-
ments is an essential part of the knowledge-based controller. Tuning is also a good
example of a problem where numerical algorithms are combined with heuristic
logic. Theoretical results exist, but are not complete. Heuristic rules based on
experience and sound engineering are used to cover the theoretical gaps. This
chapter concentrates on relay based tuning. Theoretical results are presented
which can be used as a partial basis for the classification of processes according
to their dynamics. . ,

The process knowledge needed, in order to design a controller for a given
process, basically consists of knowledge about the process dynamics and about the
disturbances that affects the process. The process dynamics may include linear
as well as non-linear dynamics. This chapter mainly considers automatic tuning
methods for acquiring knowledge about the linear process dynamics. Non-linear
dynamics is approached via linearization around different operating points.

Disturbances are basically of two different kinds: low-frequency load distur-
bances and high-frequency measurement noise. A more exact knowledge about
the disturbances may be used to improve the control. Internal disturbance mod-
els may be used by the controller for disturbance compensation. For example, a
sinusoidal signal of known frequency that disturbs the system can easily be com-
pensated for. Typically, disturbance compensation of this kind requires accurate
process models.

Systems can be classified according to their dynamics. Strictly positive real
systems are one class. Such systems are easy to control since they are stable under
proportional feedback with arbitrarily high gain. Systems with a positive impulse
response, or equivalently, a monotonously increasing step response, are easy to
deal with if they don’t have too large time-delays. Such systems appear naturally
when describing, e.g., mixing phenomena. Simple and safe design methods exist

-

19

20 Chapter 3 Tuning Methods

bias

+d
yref e Yy
= G(s)

+€

Figure 3.1 Relay feedback

for this class. Systems with time-delays or with zeros in the right half plane
impose constraints on the achievable control performance.

The majority of the control loops in industry contain PID controllers. Pro-
portional control is basically sufficient only for systems that can be well approxi-
mated by a first order system. Derivative action is typically needed when a second
order process model must be used. For systems with a dominating time delay,
derivative action does not help much. Instead, a PI controller with small gain
in order to maintain stability, and a large integral part must be used. For these
systems much can be gained by using a controller with dead-time compensation,
e.g., a discrete time pole-placement controller. Systems with poorly damped os-
cillatory modes are another class of systems that are difficult to handle with PID
controllers. Notch filters are typically used to reduce the signal transmission at
the resonance frequency.

3.1 The relay tuning method

The idea behind the relay tuning method is to introduce a relay in the feedback
loop. This will in most cases cause the system to oscillate. Measurements of
the oscillations give information about the process dynamics that can be used to
compute the appropriate controller parameters.

The idea of using a relay for tuning purposes was proposed by Astrom (1982).
Astrom and Hagglund have further developed the ideas in Hagglund (1981),
Astrém and Hiigglund (1984a), (1984b), and Hagglund and Astrém (1985). The
work on relay auto-tuning was actually the seed of the work on knowledge based
control and this thesis. Early work along these lines is described in Astrém
(1983).

A process under relay feedback is shown in Figure 3.1 where d is the relay

3.1 The relay tuning method 21

amplitude and ¢ is the relay hysteresis. The process information that can be
acquired from a relay experiment is basically knowledge of one point on the open-
loop Nyquist curve of the process. In many cases, this point is the intersection
of the Nyquist curve with the negative real axis. This point is usually described
by the ultimate gain k., and the ultimate period ¢.. Knowledge of this point
is important since it is the basis for the Ziegler-Nichols scheme, (Ziegler and
Nichols, 1943), for determining PID parameters.

Describing function methods

An approximative analysis of a system under relay feedback can be done
using describing function techniques, e.g., Atherton (1975). In the describing
function method, the non-linearity is replaced by its describing function. The
describing function is defined as the fundamental component of the Fourier series
expansion of the nonlinearity output divided by the sinusoidal input. The de-
scribing function becomes a function of the amplitude of the sinusoidal input and
is denoted N(a) where a is the amplitude of the input. The existence of stable
limit cycles can be predicted using the Nyquist stability criterion. It is done by
plotting the values of —1/N(a) in the s-plane and examining the intersections
with the process Nyquist curve.

Consider the ideal relay, i.e., ¢ = 0. The describing function is

4d
The value of —1/N(a) is thus the negative real axis. Inforimation about other
points on the Nyquist curve can be obtained by connecting a system with known
dynamics between the relay and the process. For example, an integrator gives
information about the point where the Nyquist curve intersects the negative
Imaginary axis.

A relay with hysteresis has the describing function

. N(a)——:—j{—é—(\/aZ—ez—ie) ; a>e¢

wa?

The value of —1/N(a) is in this case a straight line parallel to the negative real
axis and with the imaginary value —ne/4d. Using a relay with positive hysteresis,
it is possible to extract knowledge about points on the Nyquist curve of the open-
loop process that lie in the third quadrant. The choice of d and ¢ is constrained
by the dynamics of the process. For example, for a process with monotone step
response the following condition must hold for the relay to start oscillate, (Astrém
and Hagglund, 1984b).

< G(0) G(0) >0

IS L]

22 Chapter 3 Tuning Methods

Describing function methods are approximative and in particular require
that the process has low-pass filter characteristics in order to attenuate all har-
monics but the fundamental. This is not always the case. Consider for example
a first order system, G(s) = k/(s + a). The Nyquist curve for this system lies
entirely in the fourth quadrant. The describing function method, thus, does not
predict any oscillations. In spite of this, first order systems do oscillate under
relay feedback with positive hysteresis.

Exact sclutions

Methods for determining the exact oscillation period exist. Tsypkin, (1958,
1984) has given conditions in the frequency demain. Equivalent time domain
conditions have been given by Hamel (1949).

Using notation from Atherton (1975), Tsypkin’s conditions for symmetric
relay oscillations with oscillation period w are

Adw Z Re{G1(i(2n 4+ 1)w)} —d lim sG1(s) < 0 (3.1)
=0

T

and

4d S Im{G1(i(2n + 1)w)} L ,
= S oy — dG(c0) = —¢ (3.2)

n=0

where G1(s) is the strictly proper part of G(s), i.e.,
Gls) = G (5) + G(o0)

The first condition says that the derivative of the output should be negative
immediately before the relay switches from negative to positive. The second
condition says that the output should have the value —¢ when the relay switches
from negative to positive. Tsypkin has defined a locus, A(w), which is an analog
of the Nyquist locus, as follows:

Ref{A(w)} =Y Re{G1(i(2n + 1)w)}

B

Using A(w), the conditions for limit cycle oscillations can be reformulated as
Re{A(w)} < Z lim 5G4 (s)
4w s—oo

Im{A(w)} = 2{G(0) = =}

3.1 The relay tuning method 23

Astrom and Hagglund (1984a) have given a condition that is equal to con-
dition (3.2) for systems without direct term, i.e., G(co) = 0. The condition is
derived from the observation that the oscillating system can be described as a
discrete time system that is sampled at the relay switching times. The condition
for symmetric oscillations is

H(T/2,-1) = —%

where H (h, z) is the pulse transfer function for zero-order-hold sampling of G(s)
with sampling period h, and where 7' is the oscillation period.

The complete sampled system conditions equivalent to (3.1) and (3.2) can
be formulated as follows. Let the system G(s) = G1(s) + G(o0) be controlled by
a relay with hysteresis, i.e.

d ife> eor(e>—candu(t—)= d)

u(t) = { —d ife<—cor(e< candu(t—)=-—d) (3.3)

where e = —y.

THEOREM 3.1 Consider the system G(s) = G1(s) + G(co) with the feedback
law (3.3). Assume that the closed loop system oscillates with a stable limit cycle
with period T'. Assume further that the oscillation is symmetric, i.e. u(t+7T/2) =
—u(t) and y(t +T/2) = —y(t). It then follows that '

H (T/2,-1) — 2 lim sGi(s) <0 (3.4)
and . ’ |
Hy(T/2,~1) = G(o0) = —= (3.5)

where H;(h, z) is the pulse transfer function for zero-order-hold sampling of the

system G4 (s) with sampling interval h and H; (k, z) is the pulse transfer function
for zero-order-hold sampling of the system sG(s).

Proof: The proof is based on the relation between the z-transform of a continu-
ous function and.its Laplace transform, (Jury, 1964). When the system contains
a direct term this relation is

H(h,eh) = %ZF(S + inw,) + -;—f(O-{—)

where

1 — e sh

F(s) G(s)

8

ud f(t) is the corresponding time function. The term f(0+) is omitted if the
system has no direct term. _

24 Chapter 3 Tuning Methods

In condition (3.4), it follows that

~ i . 1 ..
o (h, esh) — % Z(l _ e—h(s+mws))G1(3 +inw,) + 3 81_1_{{.10 s(1— C_Sh)Gl(s)

-0

Using the fact that
Wy = —
et =2

and by putting z = —1, i.e., s = iw/h, this can be written as

= ﬁ 2Re{Gy((2n+1) i)} + 5 lim s(1 - (-1))G1(s)
4 i Re{G1((2n + 1wi)} + hm sG1(s)
where -
W=y

From this and since d > 0, it follows that condition (3.4) is equivalent to condition

(3.1).
In condition (3.5), it follows that,

1 (1 _ e—h(s+inws))
Hi(h,e*?) = — G '
1()6) h;o (5+Z.nw_,) 1(3"!“2”&)3)

Using the fact that

2
wWg — T
et =z
and by putting 2z = —1, i.e., s = iw/h, this can be written as

1 2 Ty 4 = Im{G1((2n + Dwi)}
Db L CICER T DNEE) Dy ey

where
W= —

h
from this it follows that condition (3.5) is equivalent to condition (3.2). O

=

3.1 The reley tuning method 25

Remark 1. Using relay feedback for systems with direct term is rather unreal-
istic. An algebraic loop occurs if G(co0)d > «.

Conditions for local stability of the oscillations are also available, (Tsypkin
1984). A frequency domain criteria is

dim{Aw)}

dw 0

where w is the oscillation frequency. A corresponding time domain version also
exists (Astrom and Hagglund, 1984a). The proofs of these conditions are based
on local analysis.

Common for all the exact methods is that they only give necessary condi-
tions. Sufficient conditions do not seem to exist yet.

Theorems for the oscillation curve form

A collection of additional results for symmetric relay oscillations will be presented.
The previous results only concerned the oscillation period T. The new results
also describe the curve form of the limit cycles. The proofs of the two theorems
are based on state-space formalism. Let the system G(s) be described by the
minimal realization

5(4,B,C, D) A G X)'

THEOREM 3.2 Consider the system (3.6) with the feedback law (3.3). Assume
that the closed loop system oscillates with a stable limit cycle with period T.
Assume further that the oscillation is symmetric, i.e. u(t 4 T/2) = —u(t) and
y(t +T/2) = —y(t). It then follows for any 7, 0 < 7 < T/2, that

H,(T/2,-1) = & (3.7)

where y; is the y value the time 7 after the relay has switched from plus to
minus and H, (h, z) is the pulse transfer function for zero-order-hold sampling of
the system S(A4, B, C, D) with the input delayed T'/2 — 7.

Proof: The general form of the signals u and y are shown in Figure 3.2. From the
symmetry and the minimal realization of (3.6), it follows that z(f) = —2(t—T/2).
Assume that z(t3,) = b. It then follows that z(t2,4+1) = —b and 2(tgn42) = b.

P

26 Chapter 8 Tuning Methods

Figure 3.2 Signals under limit cycle conditions
Integration of the state equations over the half period [t2,, t2ny1] gives
—b=3Y2p 4 Tyd —Tyd

where

@1/2 — 6AT/2
T/2 T/2—7
I'h= / e4*ds B = eA"/ e?*ds B
T 0

Ty = / " A B
0
Thus
~b=—[I+®/2]7 [y — I]d
Using the assumption that the output is equal to y, at ty,41 it follows that
yr = —C[I + ®/*]71[[y — Iy]d — Dd

The pulse transfer function for system (3.6), with the input delayed T/2 — 7, and
sampled with period 7'/2 looks as

H (T/2,2) = ClzI — eAT/2)7 Dy + Ty 271 + D271

From this the theorem easily follows. O

3.1 The relay tuning method 27

THEOREM 3.3 Consider the system (3.6) under the constraint that D = 0,
together with the feedback law (3.3). Assume that the closed loop system oscil-
lates with a stable, symmetric limit cycle with period 7. Assume further that
the derivative of the output, y, has the value y,, 7 units after a relay switch from
plus to minus where 0 < 7 < T'/2. It then follows that

/-1 ="2 : (3.8),

where H,(h,z) is the pulse transfer function for zero-order-hold sampling of the
system S(A, B,C'A,C B) with the input delayed T'/2 — .

Proof: The preceding theorem can be used where
y(t) = Ci(t) = CAz + CBu

1s realised as

S(A, B,CA,CB)
)

The proof of these theorems are based on state-space formalism and are thus
not valid for systems that contain a time delay. The results can, howéver, be
extended to the general case.

Information content

The relay method is primarily used to obtain information about one point on the
open-loop Nyquist curve. The oscillation curve form, however, gives additional
information about the open-loop dynamics. Figure 3.3 shows the relay output
u and the output y from the controlled process for the following standard cases:
a first order system, a second order system, a first-order system with time de-
lay and a high frequency roll-off system. The resulting curve forms vary quite
significantly. The describing function assumptions are best fulfilled by the high
frequency roll-off system. The phase shift is here close to —180° as expected. The
first order system has a phase shift of approximately —90° which is natural. An
interesting feature of the first order system is that the derivative of the output
changes sign at the relay switching time. This feature can be used to detect first
order systems or systems that can be successfully approximated by a first order
system.

A complete characterization of the class of systems that give a unique stable
limit cycle is not available. In Astrom and Hagglund (1984b), it is shown that

the equation

H(T/2,-1) = -5

always has at least one solution for stable systems where G(s) — 0 as s — 0.

F

28 Chapter 3§ Tuning Methods

First order system Second order system
1 1
LI I uNp4 \/ \/ N\
-1+ - —14
|] T] 1 I I i I 1
0 1 2 3 4 5 0 1 2 3 4 5
First order + delay High order system
1 - 14
SNVA\VAWAN 0~ J/\/\ v
—14— -1 L
I T I T I i T I 1 1
0 1 2 3 4 5 0 1 2 3 4 5

Figure 3.3 Oscillation curve forms. ¢ = 0.2 and d = 1.

In the same paper it is also conjectured that there exists’a unique, stable limit
cycle for stable systems. This seems, however, not to be true. The simulation
curves in Figure 3.4 show a stable system with poorly damped oscillatory modes
and a large time delay that oscillates with different periods for different initial
values. A theoretical analysis of the case gets very complicated. It may be argued
that the simulations may not have reached stationarity. Extended simulations,
however, show the same limit cycles. With regard to the relay tuning experiment
this does, however, make no difference. Processes exist for which the relay auto-
tuning will have problems.

Stable systems with a monotone step response have a more pleasant behav-
ior. In Astrém and Hagglund (1984b), it is shown that they will have a stable
limit cycle provided ¢ is large enough. It is also shown that the oscillation perlod
T must be smaller than the time 2¢; where ¢y is given by

S(t0) = 5(S(e0) +)

and S(t) denotes the step response of the system.

3.1 The relay tuning method 29

4.X1(0)=0

L\

D

4

T T T 1

0 2 4 6 8 10

Figure 3.4 Relay control of the system (s+w?)e™*L /(52 +s¢ws+w?) with w = 10,
¢ =0.13 and L = 1 for different initial values.

Conjecture 1: If a stable system with monotone step response contains a pure
time delay e, it is conjectured that the oscillation period must be larger than
2L.

The conjecture is motivated as follows. Assume first that the system consists
only of a time delay. The oscillation period will then be 2L. If dynamics with a
monotone step response is added to the system, the resulting oscillation period
will increase.

The conjecture does not necessarily hold for systems with non-monotone
step responses. An example of this is the second curve in Figure 3.4. Systems
with poorly damped oscillatory modes are in general difficult to analyze and they
may give strange oscillation curve forms. An example of this is shown in Figure
3.5. ‘

The following conjecture can be stated about the approximative phase-shift
for a system under relay control.

Conjecture 2: For a minimum-phase system, the derivative of the output will
change sign at a time 7 after the relay switching time with 0 < 7 < T'/4.

Consider first an open-loop system where all but the first harmonics are atten-
uated, i.e., the output y is a perfect sine. The phase-shift will then approach
—180°, i.e. 7 — T'/4. Higher order harmonics that are not attenuated will cause
the oscillation curve form to more and more resemble a square-wave and thus
decrease 7. The reverse of the condition is not always true. Systems with small

s

30 Chapter 8 Tuning Methods

0 10 20 30

Figure 3.5 Oscillation curve form for the system G(s) = w?/(s + 1)*(s? + 2¢Cws +
w?) with w =4 and ¢ = 0.005.

time delays will, e.g., behave almost as minimum-phase systems. The conjecture
will be demonstrated for a very special system.

ExamPLE 3.1
Consider the following system under relay control.

a

Gls) = s(s + a)

a>0

Theorem 3.3 gives an expression for when the output derivative y changes sign.
The system that should be investigated is

sG(8)e*T/2=1) 0 <7 < T/2.
The pulse transfer function for this system sampled with 2 = T'/2 and evaluated
in —1is 7 (Tf2-m)
e"l/2(2e(T/2=T) 1) —1
1+ e—aT/2 = f(T)

HAT/2,-1) =

This expression can be shown to be a monotonously decreasing function of 7 with
the following values.

; 1— e—aT/Z
Tg% f(T) = 14 e—aT/2 >0
_ (1 _ ea,T/4)2
I = = emarp <0
1 —e—aT/2
lim f(r) = . <0

T—T/2 —1 + e—eT/2

3.1 The relay tuning method 31

This shows that the derivative of output signal always changes sign for 7 €

(0,7/4).

Detection of PI-controllable systems

Minimum phase systems with relative degree one form an interesting class. These
systems can theoretically be controlled arbitrarily well by constant high gain
proportional feedback. In practice, control signal saturation and measurement
noise limits the maximum allowed feedback gain and thus integral action might
be needed.

PI controllers are also used for control of processes with significant time de-
lays. These systems will not be detected with the method that will be presented.
On the other hand dead-time compensation is a better solution for these systems.

Systems having relative degree one can in theory be detected by examining
the value of the derivative of the process output at the relay switching times.
If the system has relative degree one, the derivative will have a discontinuity.
Discontinuities are however very difficult to measure, in particular when they are
small.

A characteristic which is easier to measure is whether the derivative of the
output changes sign at the relay switching time or not. This determined by the
following theorem.

THEOREM 3.4 Consider the system G(s) = Gi(s) + G(co) where Gy(s) is
strictly proper, under the feedback law (3.3). Assume that the closed loop sys-
tem oscillates with a stable limit cycle with period 7. Assume further that the
limit cycle is symmetric, i.e., u(t + T/2) = —u(t) and y(t + T/2) = —y(t). The
derivative of the output will change sign at the relay switching time if and only
if

H(T/2,-1) >0 (3.9)
where H (h,z) is the pulse transfer function for zero-order-hold sampling of the
system sG(s).
Proof: Let ty, be the time when the relay switches from negative to positive.
The value of the derivative at y(,,—) is, according to Tsypkin,

iltm—) = “2 3" Re{Gali(2n + 1))} — d Jim G ()

iy
n=0

From condition (3.1), it follows that this value is negative. The derivative will
change at the switching time if

lim sGy(s) #0

8§ — 00

and the magnitude of the discontinuity will be

2d lim sGy(s)

§— 00

32 Chapter 3 Tuning Methods

The value of the derivative immediately after the switch is

Y(ton+) = %ﬁ Z Re{G1(i(2n + 1)w)} + dalirgo sG1(s)

n=0
= H(T/2,—1)d (3.10)
The derivative changes sign if (3.10) is positive. . |

Remark. The proof also shows that under symmetric limit cycle conditions
H(T/2,-1) > 0 = limsGy(s) >0

The converse is not true. This corresponds to the case when the discontinuity is
too small to change the sign of the derivative.

The given result contains the oscillation period as a parameter and thus implicitly
depends on the relay characteristics, i.e., the relay amplitude and hysteresis. For
certain systems it is, however, possible to show that y will change sign at the
relay switching time independently of the oscillation period and thus of the relay
characteristics.

ExAMPLE 3.2 — SPR systems

Consider a system that is strictly positive real (SPR), (van Valkenburg, 1960
Chapters 3 and 4), and has no direct term. It then follows from Equation (3.10)
in the proof of Theorem 3.4 that 7 will change sign at the relay switching times
independently of the relay characteristics.

The fact that SPR systems belongs to the class that we can detect is satisfactory.
These systems will be stable under proportional feedback for all values of the
gain. : ‘

ExaMmMPLE 3.3

Consider the system
s+a

G(s) = s(s+b)
If @ < b, the system is SPR and y will change sign independently of the relay
characteristics. When a = b, the system is a pure integrator for which y always
will change sign at the switching time.
If a > b, the system 1s not SPR. The Nyquist curve of the system lies entirely
in the third quadrant. Using Theorem 3.4 gives

a,b>0.

= a— — etk
H(h,z) =1+ (b(lz))ile—bh) !
and
a2, -1)=1- (a—b)(1 — e=/7)

b(1 + e~tT/2)

a—btanhég— = f(T)

=1-

3.1 The relay tuning method 33

a=0.5 a=4
GBan Fy
TTTTT rT T
a=1 a=5
SO MY
0 1 2 3 4 5 0 1 2 3 4 5
a=2 a=8
ZNPNEN 1
s i

Figure 3.6 Oscillation curves. b=1,c=0.4 and d = 1.
f(T) is a monotonously decreasing function of T' with the limits

f0)=1
a—2>b a-

It thus follows that if a/b < 2 then ¢ will change sign at the relay switching times

independently of the relay characteristics. If a/b > 2, the relay characteristic
determines whether y changes sign or not. Figure 3.6 shows the oscillation curve
forms for different ratios of a/b. The discontinuity of § at the switching instants
is clearly seen. In this example, the derivate changes sign also for higher values
of a/b than 2. The limit value for a/b can be calculated by first computing the
limit cycle period as a function of a for the particular values of b, d and € used
in Figure 3.6. This can, e.g., be done with the condition (3.5). In this case,
Equation (3.5) has no closed solution. Figure 3.7 shows a plot of the oscillation
period T as a function of a. Figure 3.8 shows f(T'(a)) which has been computed
using the plot in Figure 3.7. From this it is seen that f(7T'(a)) is positive for
approximately a < 3.9.

These examples and the condition (3.10) indicate that the changing of sign at
the relay switching times depends on how far into the left half plane the Nyquist

34 Chapter 3 Tuning Methods

17
T(a)
16 1
151

1.4 4

1.3

Figure 3.7 T(a)

2-
f(T(2))

14

Figure 3.8 f(T'(a))

curve, and thus Tsypkin’s A-locus, lies for the frequencies above the oscillation
frequency. The Nyquist curve and A-locus for the system in Example 3.3 are
shown in Figure 3.9. The diagrams are plotted for the values a = 0.5,1.5,2, 4, 6, 8.
In each diagram, the leftmost curve has the value a = 0.5.

Theorem 3.4 is applies also to systems that cannot be controlled with a PI
controller. For example, non-minimum phase systems with zeros in the right
half plane may satisfy the theorem if lim;_,o, sG1(s) > 0. Such systems will

N

3.1 The relay tuning method 35

0.0 0
//’/; A
0.5 AN T
s R 1 . '
4 .'.‘ I‘ ! // .'. ‘/I
-1.0+ A I' 0.5 Ry A 0.5
e Sy 4 !
s l; -2. i ;
1.5 e ‘15 L 15
rd
g 2 3 id 2
2.0t e 7
’ K 4
/ . ’
2.5 S ; 4l e 4
’ * ,
’ 4 ,
3.0 P /
// 5 4 6
/ ¢
3.5 ’ ’
’ /’
4.0 // 6 -8. ’
/! 8
/8
4.5 . 7 +
-3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0.5 7 6 5 4 3 2 1 0 1

Figure 3.9 Nyquist curve and A-locus for different values of a.

become unstable with high gain proportional feedback. It is also possible to find
minimum-phase systems with relative degree one for which P or PI control is
inadequate.

Based on the insight derived from the theoretical analysis the follwing em-
pirical rule is used to classify a system as Pl-controllable. If the time it takes for
the signal y to reach its peak value after a relay switch isclose to zero, the process
is considered as PI-controllable. This rule reduces the risk of erronously detect-
ing systems with non-minimum phase zeros. The oscillation curve for a non-
minimum phase system where the derivative changes sign at the relay switching
time is shown in Figure 3.10. This system will not be classified as PI-controllable.

Control design methods

Several control design methods that are based on relay oscillations exist. Several
of them will be used in the experiments in Chapter 8. A survey of the different
methods is given in Appendix A.

Practical considerations

The relay experiment requires a relatively small amount of prior information. The
input parameters that must be given is the initial value of the relay hysteresis, the
maximum allowed relay amplitude gain, the bias level and the desired oscillation
amplitude. The latter is needed in order to ensure that the oscillation exceeds
the measurement noise level. After a few half-periods the oscillation amplitude
is compared to the desired amplitude and, if needed, the relay amplitude and
hysteresis are adjusted. A correct bias value is needed in order to get symmetric
oscillations. Experience has, however, shown that this is not crucial. In most
cases the method works well even if the oscillations are slightly unsymmetric.
The relay method is, as most estimation techniques, sensitive to load distur-
bances that occur during the experiment. The occurrence of a load disturbance

36 Chapter 8 Tuning Methods

-1

Figure 3.10 Relay oscillation curve form for a non-minimum phase system with
lim sGy(s) > 0.

8—r 00

can, however, be detected. When a load disturbance occurs, the relay switching
period is disturbed, i.e., the relay does not change sign when it is expected to.
This could then be reported to the supervisory logic. The presence of sinusoidal
load disturbances will still give rise to difficulties.

3.2 Step and pulse response methods

An alternative method to determine the dynamics of a process is to examine its
response to a deterministic signal such as a step or a pulse. A prerequisite for
these methods is that the process is in stationarity and that no drastic distur-
bances influence the process. Step and pulse experiments are usually performed
on the open-loop system. The deterministic signal is entered in the process input
and different features of the response are measured. The measurements are either
used to fit a process model or for direct calculation of the controller parameters
in, e.g., a PID controller.

The step and pulse response methods are, at least in principal, easy to carry
out. Many characteristics of the process dynamics can be read out directly from
the response, e.g., the static gain and whether the process has oscillatory modes or
not. A drawback with the step and pulse response methods is that the time scale
of the process must be known in advance. This is necessary in order to determine
when the transient response has died out and, thus, when the measurements can
be finished.

The step and pulse response methods can also be performed on the closed-
loop system. In that case, the deterministic signal is entered as a change in

=

3.2 Step and pulse response methods 37

reference value. The complexity of the computations is, however, increased since
the controller dynamics must be taken into account.

Several different versions of step and pulse response methods have been
proposed 1in the literature. An overview of the different approaches will be given
in Appendix B.

3.3 Summary

This chapter together with Appendices A and B describe alternative tuning meth-
ods. A method which not has been described is to use full-fledged parameter
estimation with proper selection of input signals and validations. This is, e.g.,
used in Turnbull Control Systems’ TCS 6355 auto-tuner and Leeds & Northrup’s
Electromax V. The method gives good results. It needs, however, a significant
amount of prior information. The commercial systems have therefore added a
“pre-tune” mode to acquire the prior information.

The described methods are mainly useful for the initial tuning phase where
enough process knowledge is gathered in order to choose a controller structure and
compute the controller parameters. In order to handle varying process dynamics
the controller must be combined with one or several monitoring algorithms that
may initiate a re-tuning if the control performance deteriorates.

A common characteristic for the different tuning methods is that they do
not give a single answer on how a process model should be chosen and how the
controller should be designed. Instead, some methods perform better for some
systems and other methods perform better for other systems. Disturbances may
affect the tunings and different methods may give contradictory results. All
in all, the tuning phase contains a large amount of heuristics. In Chapter 8,
experimental results will be shown where several of the described methods are
used.

Implementation Structure

The knowledge-based controller is an example of how to separate the logic safety

net from the pure numerical algorithms and to implement it with expert system
techniques. This chapter is devoted to the question of how thls separation should
be done.

A number of prototype systems have been developed in the prOJect The
basic architecture has remained the same. What has changed is the internal
structure of the knowledge-based system. Chapter 6 describes a prototype sys-
tem where an off-the-shelf expert system framework was used to.implement
the knowledge-based system and Chapter 7 describes a real-time expert system
framework dedicated for knowledge-based control.

The prototypes have all been implemented on a VAX 11/780 running under
VMS. The system is divided into a number of subprocesses running concurrently.
The subprocesses communicate by sending messages through mailboxes. The
main subprocesses are the numerical algorithms, the knowledge-based system and
the man-machine communication. This chapter gives motivation for the chosen
division and discusses its implementation. Section 4.1 discusses the separation of
the problem into different processes. The division between numerical algorithms
and symbolical computations is given special treatment. In Section 4.2, the
communication between the processes is described. Section 4.3 describes the
internal structure of the algorithm process.

4.1 Subprocess decomposition

Applications where numerical and symbolical computations are combined have
attracted increased attention in the expert system community lately. Mimicing
the expertize of e.g. an experienced engineer almost inevitably requires that the

S

38

4.1 Subprocess decompostlion 39

expert system is combined with programs for numerical calculations. In spite
of this it is not clear how symbolical and numerical computations should be
combined. Most expert system applications are purely symbolical stand-alone
systems that interact only with the human user.

Several different approaches for the combination exist. It is often possible
for expert systems to call routines written in conventional languages. In this
way, numerical, calculation extensive tasks could be implemented in conventional
procedural languages. The opposite solution is to embed an expert system in a
conventional language such as Pascal or C.

Another way of combination is to use an expert system as an intelligent
front-end (Carroll and McKendree, 1987; Larsson and Persson, 1987; Gale and
Pregibon, 1982) to existing numerical programs. The expert system can act as
an goal-directed help system that gives practical advice on both how to use the
actual program and how to correctly apply the program and interpret its results.

The described approaches are, however not suitable for this project. In
knowledge-based control, the combination of the expert system and the numerical
algorithms must meet certain real-time demands. The execution of rules in an
expert system is basically a large search problem and as such typically slow
compared to the time scales determined by the controlled process. It is also less
deterministic with respect to timing. For example, the control algorithm must
be able to compute a control output at a fixed sampling interval and' cannot
be halted by the expert system searching among different rules. The solution is
therefore to implement the separate parts as communicating concurrent processes
with different priorities. The numerical algorithms have the highest priority in
order to ensure that the controller is not delayed. The implementation structure
is described in Figure 4.1. The man-machine communication is implemented as
a separate subprocess. This process provides the user interface. Currently, the
interface is purely alpha-numerical using a VT-100 terminal. From the interface
the user can interact directly with the knowledge-based system and indirectly
with the different algorithms, e.g., manually change controller parameters or
switch between different modes, This is described in more detail in Section 8.4.

Implementation languages

The knowledge-based system is implemented in Lisp and the numerical algo-
rithms are implemented in Pascal. The reasons for using different languages are
numerous. The majority of existing expert systems and programming tools for
expert systems are written in Lisp. Using Lisp for the knowledge-based process
in this project makes it possible to use existing software products or parts of such
in the system.

There is no impediment in principle to writing an expert system in a con-
ventional language. Two approaches can be used. The first is to hard-code the
rules of the expert system as program statements in the language. By doing
this, however, much is lost. The modular, incremental nature of expert systems

2

40 Chapter 4 Implementation Structure

Knowledge
Based
System

Numerical
algorithms

Man-machine
communication

Figure 4.1 Implementation structure.
disappears. The control structure of the implementation -also becomes different.
The data-driven feature of forward chaining systems is, e.g., difficult to emulate.

The second approach is to implement a rule interpreter in the conventional
language. This, however, tends to force the implementation of several features,
important for symbolic processing, already available in Lisp, é.g., dynamic mem-
ory allocation combined with garbage collection. The advantages of conventional
languages are then to a large extent lost. The programming environments avail-
able for conventional languages are also in general much inferior to what is avail-
able in Lisp systems.

An objection against Lisp is that it is slow and difficult to integrate with
existing software. The first objection is principally true. Programming languages
with run-time type checking are slower than languages with compile-time type
checking at least when executed on standard processors. The development of
dedicated Lisp processors has, however, resulted in powerful Lisp workstations
that can execute Lisp at high speed. Good Lisp implementations are also evolving
for small computers like, e.g., the IBM PC. The trend among expert system
framework developers is to supply delivery versions of their frameworks written in
conventional languages for standard computers. The development of the expert
system 1s meant to take place on Lisp machines with powerful programming
environments. When a system is ready, systems based on conventional languages
can serve as delivery vehicles with smaller demands on, e.g., modifiability.

The Lisp used in the project is the Unix dialect Franz Lisp, (Foderaro et
al, 1983). The software package EUNICE, (Kashtan, 1982), is used to create a

2

4.1 Subprocess decomposilion 41

Unix environment under VMS. EUNICE functions as an interface that performs
the necessary translations between applications written for Unix and the VMS
operating system. It 1s, e.g., possible both to use VMS system services and Unix
system services in an EUNICE application program. This combination of differ-
ent operating system has been somewhat of a nuisance during the project. The
reason is the EUNICE system which has not been fully reliable. The combina-
tion was, however, necessary since no good Lisp implementation for VMS was
available to us when the project started.

The reason for the use of a conventional language in the algorithm part is
mainly that most numerical algorithms are coded in conventicnal languages. By
using Pascal, existing algorithms can easily be included in the system. The use
of a compiled language gives a less interactive environment than what had been
the case if, e.g., Lisp had been used. It is, however, favorable with respect to
execution speed. One of the assumptions of the project has been that it is the
heuristic logic that is the most difficult part to develop and where the need for an
interactive environment is most evident. In a different situation that, e.g., was
focused more on algorithm development, the considerations would be different.

4.2 Inter-process communication

The knowledge-based control task contains different types of information of both
symbolical and numerical nature. Symbolic information could, e.g., be process
models structures, information about the outcome and parameter settings of
different numerical algorithms, etc. Measured signal values and computed control
signals are examples of numerical information. ’

The approach behind the system is to store the symbolic information in the
knowledge-based system and the numerical information in the numerical algo-
rithm process. In some cases, it would be useful to be able to store information
in shared memory. An example of such information is stored values of old mea-
surements and control signals. In the VAX implementation, however, this is
difficult. Instead the information is either stored in both places or exchanged
when necessary. .

Communication between the different processes occurs for different reasons.
The knowledge based system must be able to notify the algorithms that an al-
gorithm should be started or stopped. It is also necessary for it to be able to
give 1nitial values for the different internal parameters in the algorithms as well
as having the possibility to change the parameters while the algorithms are run-
ning. The knowledge-based system must also have the possibility to request the
algorithms for information, i.e., ask questions to them and await their answers.

The numerical algorithms on the other hand, must consequently have the
possibility to deliver answers to the knowledge-based systems. They must also
be able to report information on their own initiative, e.g., the results of some
algorithm. '

-

42 Chapter 4 Implementation Struclure

The man-machine communication must be able to transfer commands to
the knowledge-based systems and to the algorithms. These subprocesses must,
accordingly, have the possibility to return results to the human user.

VMS communication facilities

The operating system VMS has three different methods for interprocess commu-
nication: event flags, global sections, and mailboxes.

Event flags provide a means for event synchronization between processes.
They can, however, not be used for exchanging data and are thus not suitable
for this application.

A global section is an area of memory containing data or code that is shared
between different processes. This is done by mapping virtual memory areas from
the different processes onto the same physical memory area. Global sections
are the most general communication on VAX/VMS. Using global sections with
assembler or conventional high-level languages works well since in these languages
there is a direct correspondence between the variables in the program and the
memory cells where they are stored. A Lisp symbol, that corresponds to a variable
in a conventional language, does not, however, directly correspond to a memory
cell. Lisp implementations use internal data structures to represent Lisp symbols.
The garbage collection in Lisp also causes Lisp symbols to be moved arpund in
memory. The effect is that it is difficult to associate memory locations with Lisp
symbols and thus to perform the memory mapping.

The communication method used in this project is the mailbox mechanism.
The communication structure is shown in Figure 4.2, where the rectangles rep-
resent mailboxes. o

The mailbox Inbox is used for messages to the knowledge-based system from
both the numerical algorithms and the man-machine interface. The knowledge-
based system handles all user commands also those that regard the numerical
algorithms. The mailbox Outbox is used for messages to the numerical al-
gorithms. A separate mailbox, Answerbox is needed for sending answers to
information requests from the knowledge-based system. Resultbox is used by
the knowledge-based system to return results to the man-machine interface.

A mailbox is an I/O device that can be used by cooperating processes for
synchroncus or asynchronous message passing. There are primitives for creating,
writing to and reading from a mailbox. Mailboxes can hold multiple messages
which are stored in a first-in, first-out queue. It is also possible to check the
number of messages in a mailbox. Mailboxes can be accessed at several different
levels. In the implementation of the knowledge-based controller, the highest level
is used. Here, mailboxes can be viewed as ordinary files with the same accessing
methods. By treating the mailbox as a text file, a message is regarded as a line
of text. Appendix C contains the details of how the mailboxes are created and
how they are interfaced to the Lisp and Pascal processes.

A demand on the system is the possibility to insert messages into mailboxes

4.2 Inter-process communication 43

Outbox

Knowledge
Based
System

Numerical
algorithms

Answerbox

Process

Result
box

Man-machine
communication

Figure 4.2 Communication structure. The rectangles represent mailboxes.

according to an associated priority instead of by FIFO scheduling. This is'needed
to assure that for example alarm messages from monitoring algorithms are taken
care of by the knowledge-based system before less important messages. This
is not allowed with VMS mailboxes. Instead, it is solved by an internal mail-
box structure in the knowledge-based system process. Instead of only reading
a message from Inbox, the process starts by emptying Inbox and inserting all
messages into the internal mailbox according to their priority before returning
the first message in the internal mailbox.

Associating a mailbox with a text file has a powerful impact on the commu-
nication between two Lisp processes. Arbitrary Lisp expressions, e.g., lists can
be exchanged between the processes. Moreover, in Lisp there is no syntactical
difference between data objects and program code, i.e., Lisp functions. Lists are
used to represent.both. This makes it easy to implement remote evaluation of
Lisp functions. An arbitrary Lisp expression can be sent to another process,
evaluated there, and the result of the evaluation sent back. The Lisp code for
this is very simple.

Process 1 Process 2

(print message
mailbox-1)

44 Chapter 4 Implementation Siructure

(print (eval (read mailbox-1))
mailbox-2)

(read mailbox-2)

The value of the Lisp symbol message could be an arbitrary Lisp expression.
The symbols mailbox-1 and mailbox-2 are bound to the actual mailboxes. The
example will not work if an error occurs during the evaluation of the message.
Such errors can, however, be caught by the Franz Lisp function (errset ex-
pression). This function evaluates its argument; if no error occurs during the
evaluation, the resulting value is returned in a list. If an error occurs, the value
nil is returned. Process 2 now instead looks like

Process 2

(let
((result (errset (read mailbox-1))))
(print
(cond (result (car result))

(t ’ERROR))
mailbox-2))

The unrestricted message format makes it possible to evaluate Lisp functions in
other processes almost as if they were run interactively. It is used for the commu-
nication between the man-machine interface arid the knowledge-based system.

The remote evaluation facility has fascinating possibilities. In particular, it is
very easy to change code in an executing process while it is running. This gives,
theoretically, the possibility to on-line change arbitrary parts of an executing
process. In practice, however, it is only minor modifications to the code that
are made due to the risk for run-time errors caused by changes not thoroughly
thought-out. When the knowledge-based controller is used as an experimental
development environment, however, the feature is important.

Message protocol
Messages to the mailbox Inbox have the following syntax.
(priority (message-tag body) ¥

The integer-valued priority tells how important the message is. The message-tag
can take either the value regul meaning that the message comes from the numer-
ical algorithms, or the value eval which implicitly tells that the message comes
from the man-machine interface. In the latter case the body, a Lisp expression, is
evaluated and the result is returned in Returnbox. Messages that come from the
numerical algorithms have different bodies depending on which algorithm they
origin from. These messages are taken care of by the knowledge-based system.

-

4.2 Inter-process communicalion 45

The messages from the knowledge-based system to the numerical algorithms
are of four different types.

Start (algorithm) (parameter) (real-value) ...

The periodic execution of an algerithm is started. Legal parameter values are
real numbers. Default values are given to parameters that not are explicitly
initialized. ‘

Par (algorithm) (parameter) (real-value) ...
The parameters of the algorithms are changed. This message is also used
for sending questions.

Stop (algorithm)
An algorithm is stopped.

Execute (algorithm)
A single execution of an algorithm is performed. This is used for algorithms
that are not executed pericdically.

The knowledge-based system can also change some of the global variables in the
numerical algorithms process. Typical examples are sampling period, set point,
or the control variable when the controller is in manual mode. This is done with
the message Z

Global (parameter) (real-value) ...

4.3 The numerical algorithms subprocess

This section describes the internal structure of the numerical algorithms subpro-
cess. The actual algorithms are described in Section 8.2.

The aim of the process is to provide a flexible library of numerical algorithms.
An algorithm performs some limited calculations based on numerical signals. Tt
is usually executed periodically.

The algorithms can principally be divided into three groups: control algo-
rithms, identification algorithms and monitoring algorithms. The control algo-
rithms all compute a control signal. Only one control algorithm can be running
at a time. The identification and monitoring algorithms all in some sense ex-
tract information from the numerical signal flow. This information is sent to the
knowledge-based system The algorithms in these two groups can be viewed as fil-
ters that send information to the knowledge-based system only when something
significant has happened. During steady-state operation, the knowledge-based
system is not involved and the system resembles a conventional controller. The
separation between the numerical algorithms and the knowledge-based system is
favorable from the point of information flow. If a knowledge-based system was

.

46 Chapter § Implementation Structure

interfaced directly to a physical process or to an existing control system, numer-
ical information would have to be sent forth and back again at a high rate. The
knowledge-based system also had to itself extract all useful symbolic information
from the signals. This is a task that often is expressed in the form of numerical
algorithms. Using expert system techniques for such tasks is often inefficient.

The intention has been to code the algorithms as cleanly and as closely to
the textbook as possible. The heuristic safety-jacket parts of the code should
be left to the knowledge-based system. This separation cannot be carried out
completely. Some logic conditions may require instant actions when they have
been detected. In such cases, the delay caused by the knowledge-based system
could be unacceptable. The algorithms may also contain heuristic parts that
need to be tested every sampling instant. These parts should be included in the
algorithms. An example of this is the anti reset-windup code of a PID controller.

Another intention has been to implement the different algorithms as inde-
pendently as possible. The reason for this is that it should be easy to switch
different algorithms in and out. This is solved by having as few common vari-
ables as possible shared by the different algorithms. This has, e.g., the effect
that the same information sometimes is stored in more than one algorithm and
thus increases the storage required. Total independence among the algorithms is
undesired. For instance, all algorithms share the values of ‘the measured control
variable and error signal. Some algorithms must share additional variables. An
example of this is the situation where an explicit self-tuning regulator is formed
by combining one pole placement control algorithm, one least-square identifi-
cation algorithm and one algorithm that computes new controller parameters.
Other examples are algorithms that monitor the execution of other algorithms.

The most flexible implementation of a library of this type would probably
be in the form of interconnected function blocks. Each function block type would
then represent an algorithm. Multiple instances with different parameters and
input signals could then be created. This would, e.g., facilitate the implemen-
tation of a multi-loop system. The computation order for the individual blocks
in a conventional function block language is based on causal dependencies and is
often calculated when the function blocks are configured. Function blocks that
generate signals must be evaluated before function blocks which use these signals,
etc. The causal dependencies are explicitly expressed in the blocks. The input
signal to a block is declared as the output signal from another block, etc. This
obstructs the desire for independence among the algorithms. Consider the fol-
lowing simple example. A PID controller block needs the value of the controlled
variable y. The controlled variable is filtered through a digital low-pass filter
before it is used. Figure 4.3 shows a standard function block solution for this.
This solution is not sufficient since in a knowledge-based controller it should be
possible to activate and deactivate the low-pass filter without affecting the PID
controller. To achieve this, the measured control variable could be stored in a
register according to Figure 4.4.

Ead

4.8 The numerical algorithms subprocess 47

DIGFILT-1 PID-1

—E oO— —
=

ADIN-1

Figure 4.3 Standard function block solution.

REGISTER-1

[]

ADIN-1 | l

L DIGFILT-1 J I E E_—_
m

Figure 4.4 Modified function block solution.

In this configuration the causal ordering is ambiguous: One way to resolve
it is to have prespecified partial orderings among different blocks. This is what
is used in the system. Algorithms are viewed as filters that may transform the
incoming signals as shown in Figure 4.5. This is similar to the pipe facility of

Unix (Ritchie and Thompson, 1978).

Digital 1 !
filter 1 1

A/D

Figure 4.5 Pipe oriented solution

Another demand on the function block language is that it must be possible
for the knowledge-based system to perform reconfiguration on-line. This is usu-
ally not possible in commercial control systems. The technique for implementing

o

48 Chapter 4 Implementation Structure

function block languages is well known and commercial control systems often use
function blocks (Lukas, 1986). The work involved in developing a function block
language is, however, not neglectable. Therefore, since this part of the project is
not central, a less ambitious approach has been taken.

The solution uses a fixed number of numerical algorithms with a prespecified
computation order. The main loop of the subprocess has the following structure.

begin
initiate_mailbox_communication;
while true do

begin
set_sampling_eventflag(main_sampling_time);
y := analog_in(inchannel);

for all algorithms do
if active[algorithm] then algorithm(execute);
if message_in_outbox then read_message;
wait_for_sampling_eventflag;
end;
end.

The order of the algorithms is determined by their function. For example, a
digital filter on the measured signal is checked before the control algorithm.

Identification algorithms are in general processed after the control algorithms,
etc.

Each algorithm is coded according to the same pattern. The pattern looks
as follows. ’
procedure algorithm_1(operation : operationtype);
procedure algorithm_1_execute;

{* Declarations *}

begin
with algorithm_1_variables do
begin
if counter > O then counter := counter - 1
else
begin
counter := sampling_time;

{* Execution body *}

end;
end;

4.3 The numerical algorithms subprocess 49

end;
procedure algorithm_1_parameter_change;
{* Declarations *}

begin
with algorithm_1_variables do
begin
vhile more_new_parameter_values do
begin
read parameter_identifier;
read parameter_value;
case parameter_identifier of
parameter-1 :

end;
end;
end;
end; T

procedure algorithm_1_start;

{* Declarations *}

begin
with algorithm_1_variables do
begin
active[algorithm_1] := true;

{* Initializations *}
algorithm_1i(parameters);
{* Decode initial parameter settings *}

end;
end;

procedure algorithm_1_stop;
{* Declarations *}
begin

with algorithm_1_variables do
begin

50 Chaptler 4 Implementation Structure

activelalgorithm_1] := false;

{* Terminations x*}

end;
end;
begin
case operation of
start : algorithm_1_start;
stop : algorithm_1_stop;
execute : algorithm_1_execute;
parameters : algorithm_i_parameter_change;
end;
end;

Each algorithm is separated into four parts. These parts are implemented as sep-
arate procedures. The start procedure is executed when an algorithm is started.
This also involves a call to the parameter procedure to take care of initial pa-
rameter settings. The parameter procedure is also executed when a parameter
message for this algorithm has been received. The execute procedure contains
the actual body of the algorithm. It is executed by the main program every sam-
pling loop as long as the algorithm is active. It can also be executed on demand
from the knowledge-based system by the means of an execute message. The stop
procedure is executed when the algorithm is stopped. .

Apart from the above body, an algorithm also consists of its own constant
declarations, type declarations and variable declarations. These four parts are
stored in separate files which are inserted in the main program. This structure
simplifies the addition of new algorithms to the program.

Associated with each algorithm is a sampling interval. This is implemented
by the counter variable in each algorithm. The fastest allowed sampling interval
1s the main sampling interval which determines the execution speed of the main
loop. The synchronization between different algorithms is solved automatically
by the program. Algorithms that have functional connections are executed at
the same sampling instant.

Expert System Techniques

The objective of this chapter is to explain and discuss some of the characteristics
and programming techniques that distinguish expert systems from conventional
programs. Section 5.1 discusses the common characteristics of expert systems.
Section 5.2 focuses on object-oriented representation afld Section 5.3 on rule
based programming. The ideas behind blackboard systems are explained in Sec-
tion 5.4. Expert systems for real-time operation are discussed in Section 5.5.

Most of the material in this chapter should be well-known for a reader with
some experience of AIl. The motivation for the chapter is to-provide the necessary
background for the discussions in Chapter 7. This has influenced the presentation
of the subject. Hence, this presentation does not pretend to give a complete
treatment of the expert system area. This can be found in Waterman (1986),
Hayes-Roth et al (1983) or Harmon and King (1985).

5.1 Expert system characteristics

Expert systems or knowledge-based systems is an area of Artificial Inteiligence
that has grown rapidly during the last few years. The basic definition of the
term ezpert system is a program that solves problems within a specific, limited
domain that normally would require human expertise. This is a wide and vague
definition that also covers many traditional computer programs. As an example,
both compiler-compilers and programs for Fast Fourier Transform calculations
without doubt require expertise and thus fulfill the definition. Still these examples
are normally not considered to be expert systems. A clear definition of an expert
system 1s difficult to state. The situation instead is that an expert system more
or less fulfills a number of different characteristics.

The most significant characteristic is the expert problem solving capacity

51

52 Chapter 5 Ezpert System Techniques

within limited application domains and for problems where conventional pro-
gramming techniques have not been successful. The reason why conventional
techniques do not work is mainly that the problem lacks a clear analytical
and/or algorithmical solution or that the existing algorithm is computationally
intractable. The expert system instead tries to emulate the problem solving be-
havior of the human expert. This means that the system tries to represent and
execute the expert’s knowledge and reasoning strategy.

Another very common characteristic is that the domain knowledge is repre-
sented explicitly in an identifiable, separate part of the program. This so called
knowledge base is separated from the inference engine that actually runs the
program by operating on the knowledge. A system of this type is referred to as a
knowledge-based system. The explicit knowledge representation gives an expert
system a declarative nature in contrast to traditional procedural programming
languages such as Pascal or Fortran where domain knowledge is expressed in the
form of program statements. Knowledge representation is a key issue in expert
systems. Common representation forms are rules and ebjects which are discussed
in the following sections.

Well-developed explanation facilities are another expert system characteris-
tic. It is necessary that an expert system can explain its reasoning in order to
be accepted by the user. It is usually possible to get an explanation for why the
system asks a certain question to the user and how a certain conclusion has been
reached.

The possibility to reason with uncertainty is another feature that might be
present. Knowledge might be uncertain in certain applications and expert sys-
tems can then support the representation of, and reasoning with, this uncertainty.
This 1s often implemented in the form of probability measures that reflect the
reliability of the knowledge and which are propagated through the reasoning.

Another expert system aspect is the modularity that is provided threugh the
explicit knowledge representation. The knowledge base is built incrementally and
can relatively easily be expanded with, e.g., new rules. This makes exploratory
programming possible, where prototypes rapidly can be developed and later be
used as a part of the final implementation. This is perhaps the main reason why
expert systems have the reputation of allowing implementation of very complex
systems.

Implementation languages

Most existing expert systems are implemented in a symbolical language such as
Lisp (Winston and Horn 1984; Steele 1984) or Prolog (Clocksin and Mellish 1984)
or in scme language implemented on top of those. In the sequel the reader is
assumed to have some knowledge about Lisp. The separation between the knowl-
edge base and the inference engine has led to the development of so called ezpert
system shells or frameworks. A framework is an empty expert system without
any domain knowledge. It provides an inference engine and a knowledge repre-

=

54 Chapter § Ezpert System Techniques

a-kind-of

Non-linear
system

Figure 5.1 Semantic network example

the sometimes very high expectations on expert systems from people not well-
informed on the subject. It should always be kept in mind that expert system
frameworks are nothing more than high level programming languages, run on
conventional von-Neumann architectures and suitable for certain applications.
Today’s expert systems cannot exhibit true intelligence in the meaning the term
has to most of us, e.g., to be able to come up with solutions in unforeseen sit-
uations or to be able to perform common-sense reasoning. Systems with these
capabilities are way into the future.

5.2 Object-oriented representations

To represent knowledge as objects with associated attributes is common in ex-
isting expert systems. The basis is the semantic network, (Quillan, 1966), which
represents knowledge as a network of nodes. A node could represent the concept
of objects, events, ideas, etc. Associative links represent the relations among
the nodes. An example of a semantic network is shown in Figure 5.1. A sur-
vey is given in Brachman (1979). Semantic networks represent the combination
of a superclass-subclass hierarchy and the description of properties (attribute -
value pairs). Superclass-subclass or generalization versus specialization is often
represented with the a-kind-of link. Another well-known aspect of the network
formalism is the instance relation that associates a particular individual with
a class of which it is a member. This is often represented with the is-a link.

-

5.2 Object-oriented representations 55

SI1SO-controller

Slots:
input
output
reference

(Discreta COl‘lll’O"Bﬁ

Slots:
sampling-time

(Discrete PID)

A-kind-of:
Siso-controller,
Discrete controller

Slots:

K
Ti
\ J

rPID-7 N

Is-a: Discrete PID
input: AD1

output: DA1
reference: AD2
sampling-time: 1

K: 5
Ti: 10
\Td: 10 J

Figure 5.2 Frame system example

Sometimes no distinction is made between a-kind-of links and is-a links.

Frame systems ’

The idea of frame systems, a variation of the semantic networks, was introduced
by Minsky (1975). A frame system consists of three different building blocks:
frames (sometimes called units), slots and facets. A frame is the equivalent to a
node in a semantic network, i.e., it represents concepts of objects, events, ideas,
etc. With some abuse of language, frames are often referred to as objects. The
slots describe the properties or attributes of a certain frame. In the same way,
facets describe the different slots. One of the facets is the actual value of the
slot. Others facets could be used to specify which type the slot value may take,
default value for the slot or to give additional description of the slot.

Frames are often divided into two types: those which describe classes and
those which describe individual instances. An important concept of semantic
networks and frame systems is the inheritance of properties. Inheritance allows
class frames which can pass their slots along to subclass frames and to instance
frames. Multiple inheritance, i.e., that a frame is a subclass of more than one
superclass is common. A simple frame system example is shown in Figure 5.2.

Procedures can be attached to frames by associating the procedures with
slots. These procedures are called demons and they provide for so called access-

-

56 Chapter 5 Ezpert System Techniques

oriented programming. Demons are for example used to compute the value of
a slot when a reference is made to it and no previous value exists. Another
possibility is to have demons that are executed each time a slot is given a new
value or each time a frame is created or destroyed.

Several frame based knowledge representation languages exist. Some exam-
ples are KRL (Bobrow and Winograd, 1977), Units (Nllsson, 1982), PAUL (Hein,
1983) and KEE (Intellicorp, 1984).

Object-oriented programming

At the same time as the frame based knowledge representation languages were
developed, a very similar development took place in the area of object-oriented
programming. This area has its historical background in the work on SIMULA
(Dahl and Nygaard, 1966) and has its most extreme representative in the pro-
gramming language SMALLTALK-80 (Goldberg and Robson, 1983). A good
overview of object-oriented programming is given in (Stefik and Bobrow, 1986).
The basic entity of object-oriented programming is the object which has a local
state and a behavior. Objects are asked to perform operations by sending ap-
propriate messages to them. Objects have associated procedures called methods
that respond to the messages. Message passing supports data abstraction and
generic algorithms. A protocol, i.e., a set of messages is defined, which specifies
the external behavior of the object. The internal implementation of the object
can thus easily be changed without affecting the calling programs.

In the same way as in frame systems, objects are divided into classes and
instances of classes. The classes builds up a superclass - subclass hierarchy with
inheritance. The inheritance is more focused on inheritance of behavior, i.e., of
methods than on inheritance of properties as is the case in the frame systems.
The analogue of the slots in frame systems are the variables. Variables are often
divided in two types: instance variables that are inherited by the instances and
class variables that are attached to a specific class and common to all the instances
of this class.

Several different object-oriented add-ons to Lisp exist. Some examples are
Flavors (Cannon, 1982), Common-Loops (Bobrow ef al, 1986) and Object Lisp
(Drescher, 1985). The programming language C is undergoing a similar de-
velopment with the add-ons Objective-C (Cox, 1986) and C++ (Stroustrup,
1985). Although very similar in spirit to frame systems the main purpose of the
object-oriented systems is to use the cobjects for data abstraction in computer
programming. The frame systems are instead focussed on using similar facilities
for knowledge representation.

5.3 Rule-based representations 57

5.3 Rule-based representations

Rules are the main knowledge representation method used in existing expert
systems. This is reflected by the use of the name rule-based system synonymously
to expert system. Another name that is used i1s production sysiems where a
preduction is the equivalent of a rule. The primary reference for production
systems is Newell and Simon (1972). Rules often look like

if <antecedents>
then
<consequents>

or like

if <conditions>
then
<actions>

The antecedent or condition part of a rule is also called the left hand side (LHS)
of the rule. In the same way the consequent or action part is called the right
hand side (RHS).

The three main parts of a rule-based expert systems are

1. Database or working memory
2. Rulebase

3. Inference engine

The database is used to represent facts about the application domain. The
data structures in the database vary between different systems. The simplest
form is a collection of variables that can take different values. Another quite
common data structure is the list. Lists are used in OPS4 (Forgy, 1979) and
YAPS (Allen, 1983). Object-oriented data structures are very common. The
EMYCIN (van Melle, 1981) class of systems usually use object-attribute-value
triplets. Basically the same is used in the OPS5 (Forgy, 1981) system. Other
systems use more elaborate frame based systems with inheritance and procedural
attachment. Examples of those are KEE (Intellicorp, 1984) and ART (Inference
Corp., 1984).

The rulebase contains the rules of the system. It is sometimes partitioned
into different rule-groups according to different contexts. The left hand side of
the rules typically consists either of patterns that should match the contents of
the database or of predicates on the database that should be fulfilled. Most
systems allow rules to use pattern matching variables. This makes it possible to
write generic rules that can be used by the system for many different facts. The

N

58 Chapter 5 Ezpert System Techniques

right hand side of the rule either modifies the database in some way or performs
some external input or output.

The inference engine applies the rules to the database according to some
strategy. The dominating strategies are forward chaining and backward chaining.
In some systems these are combined. Since the inference strategy is the real core
of the system, these two strategies will be explained in detail later.

The rule-based programming style is especially well suited for certain prob-
lems. Suitable problems as well as advantages and disadvantages of rule-based
systems are described in, e.g., Brownston e? al (1985). The power of the rule-
based systems is most evident for complex, ill-structured applications that lack
efficient algorithmical solutions. The decomposition of the system into a number
of relatively loosely coupled rules makes it suitable for problems that are decom-
posable into subproblems which have no fixed or apparent order. The rule-based
approach supports parallel lines of reasoning as opposed to the primarily sequen-
tial execution of conventional languages.

Forward chaining

In a forward chaining system, the left hand sides of the rules are examined to
see whether or not they are fulfilled. If so, the modifications to the database in
the right hand side of the rules are executed and then.the.system examines the
rules again. Forward chaining systems are sometimes called data-driven systems.
A survey of forward chaining expert systems is Brownston et al (1985). Most
forward chaining systems use pattern matching to express when rules are appli-
cable. The LHS of the rules contain patterns that must match the contents of
the database for the rule to be fulfilled. An example could-look like -

if (father -x -y)
(father -y -z)
then
(add (grand-father -x -z)).

In this notation, -x,-y and -z are matching variables that can match arbi-
trary symbols. When the same matching variable occurs at more than one place
it must match against the same symbol at all occurrences.

The reasoning is performed in what is called a recognize-act cycle that has
three states. During the match state all rules that are fulfilled are collected into
the conflict set together with the corresponding database elements. If rules with
pattern matching variables are allowed, the same rule can appear in the conflict
set several times with different matching database elements. During the select
phase, one rule is chosen for execution. If the conflict set contains more than one
element, the conflict is resolved according to some conflict resolution strategy.
During the act state the right hand side of the selected rule is executed.

The conflict resolution strategy is crucial for how the rule execution proceeds.
Conflict resolution strategies can be divided into two groups. The first group

Y

5.8 Rule-based representations 59

consists of strategies that order the rules in a predetermined way. Examples of
this are strategies that select rules according to the order in which the rules were
created or according to a priority associated with each rule. Another example is
strategies that favor more complex rules, e.g., rules with many condition elements,
before simpler rules. The other group contains strategies where the choice of
a particular rule depends on the state of database. An example of this are
strategies that select rules on the basis of the recency of the matched database
elements. Rules matched by more recent added information are usually favored.
It is only systems with conflict resolution strategies of this type that really deserve
the name data driven systems. Systems that use predetermined ordering could
actually be implemented in conventional programming languages as a sequence
of if-then statements with each if-then statement representing one rule.

The conflict resolution also determines the search strategy that the inference
engine implements. A recency based resolution implements depth-first search of
a knowledge base and a resolution based on predetermined order implements a
breadth-first search.

Matching each rule against the contents of the database every recognize-act
cycle is time consuming. It can be avoided by saving matching information be-
tween the cycles and by matching only the database elements that are changed
at each cycle. This is efficient because typically the database changes very little
between the cycles. The most well-known matching algorithm of this type is the
RETE algorithm (Forgy, 1982) used in the OPS family. The rules are basically
compiled into a network where each node represent a test of one left hand side
condition. Rules that contains more than one left hand side condition give rise to
nodes that join the nodes for each single condition element, When database ele-
ments are added or removed, they are propagated through the network and result
in the addition or removal of partial matches and conflict set elements. Matching
algorithms of this kind usually also allows negated left hand side conditions, i.e.,
patterns that must not match against the contents of the database.

An effect of the network based rule interpreters is that the recognize-act
cycle now has a different ordering. The cycle starts with the select state where a
fulfilled rule is selected. During the act state the right hand side of the selected
rule is executed. This causes database elements to be added or removed and it is
during these database alterations that the actual matching occurs. The network
approach to pattern matching affects the addition of new rules to the system in
a serious way. Since the rules build up the network used in the matching, this
network must exist before database elements are added or removed. This means
that a new rule which is added during rule execution will only recognize database
elements that has been altered after the rule was entered. In order for the new
rule to operate on the total database, the database elements already added to
the database have to be refreshed, i.e., removed and added anew.

Another implication of network based systems is the effect they have on the
use of predicates in the left hand sides of the rules. The intended use of LHS
predicates is to further specialize the rules beyond what is possible through pure

-

60 Chapter 5 Ezpert System Techniques

pattern matching. An example of this is the trivial rule

if (number -n)

predicate
(>= -n 1000)
then

(add (large-number -n))

that simply marks a number as being large if it exceeds 1000. Predicates are
tested as soon as enough partial matching information is available for the pred-
icate arguments to have values. The reason for this is the wish to prune the
network, and thus the search space, as early as possible. This works well as
long as the LHS predicates act only on the database contents. It is, however,
sometimes desirable to have predicates that act upon information outside the
database, e.g., predicates that test if some measured signal exceeds a certain
threshold or if a certain global variable takes a given value. An example is the
following rule.

if (check-signal -signal)
(channel-number -signal -channel)
(signal-limit -signal -limit)

predicate
(>= (analog-in -channel) -limit)

then S
(remove 1)
(message '"The signal " -signal

" exceeds the value " -limit)

The intended meaning of this rule is to check if the value of a signal exceeds a
certain limit whenever the database element check-signal is added. Due to the
network based system this will not work as intended. The greater-or-equal pred-
icate will be evaluated as soon as enough partial information is available for its
arguments to have values, 1.e., as soon as the database elements channel-number
and signal-limit are available, and not when check-signal is added. The
delay of the predicate testing until the complete LHS is matched would solve this
specific example but gives no general solution. The main problem is that the
network, which in a way contains the state of system, can only be changed by
database alterations and not by external events. With a small trick, the above
rule would behave as intended. The trick is to replace the above predicate with

(and -signal
(>= (analog-in -channel) -limit))

5.3 Rule-based representalions 61

which has the same effect but cannot be tested until a value for -signal is
available.

Backward chaining

Backward chaining systems are sometimes called goal-directed systems. A back-
ward chainer tries to achieve a goal, or alternatively stated, to verify a hypothesis
by trying to prove rules that confirm this hypothesis. A goal could, e.g., be ex-
pressed as the need to compute the value of a certain object attribute in the
database, and a hypothesis could be expressed, e.g., as a certain value for an ob-
Ject attribute that needs to be verified. If the goal is not immediately available
in the database, the backward chainer tries to find the rules with consequents
that deduce the goal. A rule is selected and the antecedents of this rule become
new goals that must be fulfilled. This causes new rules with these goals in their
consequents to be selected and so on. The user is usually asked when a goal can-
not be directly proven and no rules are found with the goal in their consequents.
If a goal cannot be fulfilled the system backtracks and chooses another rule. The
way in which the rules are selected and in which order the subgoals are analyzed
determines the search strategy. During depth-first search the first applicable
rule is chosen and its first antecedent immediately becomes the new subgoal. In
a breath-first scheme all the antecedents of the chosen rule are checked before
eventually a subgoal is selected. In a best-first scheme ‘the rule most lkely to
succeed, e.g., with fewest antecedents, is selected first.

Backward chaining systems are often used for classification problems, see
Shortliffe (1976) or Weiss and Kulikowski (1981). In these applications, the
number of possible outcomes, i.e., the values of the goal atiribute, is typically
small. A feature of many backward chaining systems is the possibility to reason
with uncertainty. Database elements have associated numerical certainty factors
that reflect the amount of belief or disbelief in a certain fact. Rules also have
certainty factors denoting to which degree a certain inference can be trusted. The
inference engine propagates the certainty factors during the rule execution. The
uncertainty feature is often combined with the possibility to let object attributes
simultaneously take different values with different amount of certainty.

Backward chaining systems have traditionally well-developed explanation
facilities. The explanation facilities are built into the inference engine and the
explanations are generated automatically. The two standard types of explanation
facilities are the “How?” and the “Why?” questions. When the system has drawn
a conclusion the user may ask how the conclusion was reached. This typically
results in a trace of the rules that were used in the reasoning. If the system
asks the user for additional information, the “Why?” question explains why this
information is needed. The user has sometimes the possibility to investigate the
outcome of different answers with a “Whatif?” question.

62 Chapter 5 Ezpert System Techniques

5.4 Blackboard systems

“orward chaining and backward chaining are both quite rigid reasoning strategies
that fit well only for rather stereotype applications. In so called oppurtunistic
“easoning systems, the most appropriate reasoning strategy, e.g., forward chaining
or packward chaining, is chosen at every time. The blackboard based problem
solving paradigm is a special case of such a system.

A blackboard system consists of a global database, the blackboard, and a set
¥ logically independent knowledge sources. The knowledge sources operate on
aiid respond to changes on the blackboard. The knowledge sources contain the
siomain knowledge for a certain part in the problem solving. Knowledge could
be ~xpressed either as rules together with an appropriate inference strategy or
s urdinary procedures. The choice of which knowledge source that should be
executed 1s determined dynamically depending of the contents of the blackboard.

Tie blackboard is usually hierarchically organized into objects. The rela-
tions between the objects are expressed through named links. This is somewhat
simiiiar to the frame-attribute-value structure in frame systems. A control mod-
ule monitors the changes on the blackboard and decides what action to take, i.e.,
which knowledge source to activate. Knowledge sources that may be activated
are contained in an agenda. e

Blackboard based systems are difficult to classify any further. The black-
board based reasoning model can rather be viewed as a guideline for problem solv-
ing structuring. A survey can be found in Nii (1986a; 1986b). In the HASP/SIAP
project, (Nii et al, 1982), a blackboard system was used for interpreting sonar
signals collected by hydrophone arrays in some area of the ocean. This project
is interesting since the system was used autonomously, in real time. The sys-
tem was however only passively recording incoming information and thus had no
feedback element.

5.5 Real time expert systems

The over-whelming majority of existing expert systems are off-line applications.
The human user provides the expert system with some amount of initial informa-
tion which possibly is completed later on during the consultation. In autonomous
systems, the interaction with the human is minimized but still the expert systems
are mainly off-line systems. In certain fault-diagnosis applications for, e.g., nu-
clear power plants or computer systems, the expert system apparently monitors
the plant operation continuously. If, however, these systems are scrutinized, they
are often basically off-line systems. When a fault has occurred and the expert
system has been activated, the system only looks at the history leading to the
current fault situation and this is similar to how an off-line system works from
some initial information. A few true on-line systems have been implemented.
These are mainly in the area of signal analysis. The systems are typically used

=

5.5 Real time expert systems 63

{for interpretation and analysis of measured signals. A few examples are process
monitoring (Moore, 1985), the previously mentioned HASP/SIAP project and
the *’M (Ventilator Manager) intensive care monitoring system (Fagan, 1978).
‘Uliese applications rarely contain any feedback action, i.e., can rarely themselves
uz{fect the incoming information flow.

The logical background for most existing system are a standard logic, i.e.,
propositional logic or first order predicate calculus, together with the modus
ponens rule. This simply says that whenever a fact A is known to be true and
‘hereisarule If A then B,itis permitted to concludethat B istrue. Another
characteristic of expert systems is the monotonicity property. The beliefs of the
expert system, i.e., the contents of the database, are considered to be true and
these truths are not allowed to change. The task of the reasoning system is to
moncicuically draw new conclusions from the existing ones. The monotonicity
shows :p for example in classification systems where the user rarely has any
possihilities to later change some of the information he has provided. A true on-
line expert system must provide some way of non-monotonic reasoning. In real
life we are often faced with the need to draw conclusions based on incomplete
or uncertain information. Later, as new information comes in, the basis for the
drawn conclusions may turn out to be wrong. The system then must be able to
retract these conclusions. L

Standard logic systems are all monotonic. If the logical statement -4 can
be proved from a set of initial axioms, additional axioms or information must
not cause the negation of A to be provable. If this was the case, the logical
system would be inconsistent. The approaches to non-monotonic reasoning can
be divided in two groups. The first group contains solutions where the logic is
extended in several ways. The second approach is to include the logical system
in a meta-system that handles the non-monotonic issues. Examples of extensions
to the logic system are, e.g., the work on circumscription, (McCarthy, 1980),
default reasoning (Reiter, 1980), the UNLESS operator (Sandewall, 1972) and
the non-monotonic modal logic of McDermott and Doyle (1980). A compilation
of non-standard logics is found in Turner (1984). Truth maintenance systems
(TMS) (e.g., Doyle (1979); de Kleer (1986)), are examples of the meta-system
approach. The overall system consists of an ordinary inference system and a
TMS that serves as a sort of intelligent database. The task of the TMS system is
to determine which data that are to be believed when a new inference has been
made and to ensure that the database is consistent. These theoretical approaches
to non-monotonic reasoning have not yet matured. Many problems are unsolved
and they have so far only been used in micro-world examples.

The expert system frameworks PICON (Moore et al, 1984a, 1985) and G2
(Gensym, 1987) take another approach. Associated with each measured process
variable is a duration time that reflects how long every measurement can be
assumed valid. The duration times are propagated to all conclusions drawn
based on these measurements. If no further information arrive all conclusions
will sooner or later become invalid. This feature is combined with the possibility

-

64 Chapter 5 Expert System Techniques

to check rules, and thus update information, with a fixed time period.

The usual approach taken in applications is to use various ad hoc methods
to circumvent the problems. One method that can be used is to explicitly, for
each case, ensure that the database is consistent; this is basically what is done
in conventional real-time computer programs. This is also the approach taken
in this thesis. TMS techniques have not been tried due to several reasons. The
main task for a TMS is to automatically maintain the consistency of database
when information changes. This is feasible for systems which only passively
record incoming information. In our application, the knowledge-based system
takes different actions, e.g., starts a certain tuning experiment, based on the
information it has at a certain time. If this information later changes, it is not
a trivial task to automatically maintain the consistency of the database. That
would in this example involve the automatic interruption of the ongoing tuning
experiment as well as some method to undo the effects it has had on the controlled
process.

An Off-the-shelf Framework

A standard off-the-shelf expert system framework, OPS4, was used to implement

the knowledge-based part of the controller in the first prototype (Arzén, 1986a;
1986b). This chapter describes that prototype and the experiences gained.

The OPS4 framework is briefly described and motivation for the choice is
given. An experiment with the resulting controller is described. During the
experiment, several lessons were learned, both positive and negative. The most
important lesson was that conventional expert system frameworks are not suited
for real-time operation. This was, however, more or less af;tipipated. : '

6.1 Motivation

The OPS4 framework, (Forgy, 1979), was used for two reasons. OPS4 is a pure
rule-based, forward-chaining expert system framework. It has a network based
pattern matching algorithm and 1s, thus, relatively fast compared to other expert
system frameworks. The second reason was simply that it was available to us
in source-code and that we wanted to test the basic ideas underlying knowledge-
based control rapidly.

The rule-based representation was motivated by its declarative nature and
by the modularity given by the decomposition of the program into a set of rules.
Apart from that, the fact that the majority of existing expert systems are rule-
based speaks for this cheice.

The forward-chaining inference strategy of OPS4 also seemed well suited.
The knowledge-based control application is basically data-driven. Data in the
form of significant events detected by the algorithms are sent to the knowledge-
based system which should react and generate some response. Forward chaining
systems have a parallel behavior. All rules have equal status and the focus

s

65

66 Chapter 6 An Off-the-shelf Framework

of attention shifts among them depending on the incoming data. This gives a
exccution strategy where parallel activities can be kept active. The recency based
conflict resolution strategy allows interrupts among the different activities when
new data arrive.

5.2 0PS4

0OPS4 is a pattern-matching forward-chaining system written in Lisp that uses
recency-based conflict resolution. The database consists of arbitrarily nested
list expressions. OPS4 uses incremental pattern-matching implemented by the
RETE algorithm.

Negated patterns are allowed in the LHS of the rules. Predicates can be used
in the LHS but this requires that the Lisp functions used are explicitly declared
as predicates. OPS4 also poses restrictions on how the predicates may be used.

The RHS of the rules must be composed out of a set of predefined functions
or actions. The most important actions are <ADD> which adds a new database
element and <DELETE> which deletes a database element. The action <BUILD>
creates a new rule and the action <EXCISE> removes a rule. It is possible to
have user-written actions. This requires that the Lisp functions are written in
a special way and explicitly declared as RHS actions. An example of the rule
syntax of OPS4 looks as follows. ”

(SYSTEM

RULE12 ((State is =X) & =Y .
(Alarm has occurred) & =2Z
—=>
(<DELETE> =Y =Z)
(<ADD> (State is alarm)
(0ldstate is =X)))

This rule simply switches to alarm state when an alarm notification has arrived.
Pattern matching variables are prefixed with an equal sign. The variables =Y and
=Z are bound to the entire expression preceding them by the ampersand.

OPS4 has no means for partitioning neither the rulebase nor the database.

6.3 A Ziegler-Nichols auto-tuner

The experiments performed with this system consisted of the implementation
of a relay auto-tuner as described in Chapter 3. The control design was based

on modified Zieger-Nichols rules. Gain-scheduling based on set point was later
~Aded.

-

6.3 A Ziegler-Nichols auto-tuner 67

The numerical algorithms used for this were a PID algorithm, a relay al-
gorithm, an oscillation analyzer and a noise estimator. The oscillation analyzer
measured the oscillation period and amplitude. The noise estimator measured
the noise level. The controller had three different modes: manual mode, tun-
ing mode, and PID mode. The operator had commands for switching between
the different modes. The experiment was started in manual mode. The opera-
tor controlled the process manually until it was in steady state at the desired set
point. The mode was then changed to tuning. When the tuning was finished, the
operator had to confirm the computed PID parameters. If they were accepted,
the system changed to PID mode. From PID mode the operator could change
to manual or tuning mode. When the set-point was changed, new PID param-
eters were switched in from the gain-schedule table if available, 1.e., if a tuning
experiment had been performed in the neighbourhood of the new set-point.

The operator also had commands for changing parameters, e.g., PID param-
eters and relay parameters such as step size and hysteresis. It was also possible
for the operator to change the contents of the database and to add new rules
on-line.

A total number of about 70 rules were used for this experiment. The rules
can be grouped according to their context as follows.

Noise estimation rules: Rules for start and supervision of thé noise-
estimation.

Relay rules: Rules related to the relay experiment for such things as
determining the relay parameters, adjusting the relay parameters, judg-
ing when the oscillation is steady, and computing the ultimate gain and
frequency.

PID design rules: Rules for computing the PID parameters.
PID monitoring rules: Rules for handling the gain-schedule table.

Command decoding rules: Rules for handling operator commands.

The OPS4 system was integrated with the real-time environment described in
Chapter 4 using a built-in restart feature. When no matching rules were found,
the element (RESTART) was added to the database. A rule with (RESTART) as
its condition element then became satisfied. This rule read an incoming message
which was either inserted into the database or treated as a Lisp expression and
evaluated. New elements in the database caused rules to be matched and the
recognize-act cycle to continue.

A lahoratory tank system was used as the controlled process during the ex-
periments and the objective was level control. As an alternative to control a
vhysical process, the simulation program SIMNON (Elmqvist, 1975) was inter-
faced to the system. Simnon is a program for simulation of non-linear differential

P

68 Chapter 6 An Off-the-shelf Framework

or difference equations. The program has been modified to allow real-time sim-
ulation. The simulation facility gave a convenient way to experiment with a
variety of different processes.

6.4 Experiences and conclusions

The experiment with this first prototype gave many results concerning both the
feasibility of the knowledge-based approach and the demands on a expert system
framework for knowledge-based control.

The most important conclusion was perhaps that we were reassured in that
the approach is feasible. The response times for the knowledge-based system
were acceptable. The sampling rate for the numerical algorithm process was 1
second. It took approximately 2-3 sampling periods from that a message was
sent to the knowledge-based system until a responding message was returned on
a moderately loaded VAX 11/780. This figure of course depends on the number
and complexity of the rules.

The second positive result of the experiment was a clean implementation
that clearly benefited from the separation of logic and algorithms. The system
was flexible and easy to expand. An example of this is the addition of the gain-
scheduling facility. This was done after the system had been developed and it
required only the addition of about 10 new rules. The time and effort to make
these extensions were significantly smaller than for comparable implementations
in Pascal and PL/M.

The negative results all regarded the expert system framework. The experi-
ences can be divided into general experiences of OPS4 and apphcatlon dependent
experiences.

A general experience of OPS4 is that it is more a programming language
than an expert system framework. The rule syntax can sometimes be very cryptic
which diminishes the declarative nature of the system and makes the rules difficult
to understand.

Another drawback with OPS4 is its lack of structuring facilities. It is not
possible to structure neither the database nor the rulebase. The knowledge-
based control task can be divided into relatively loosely coupled subtasks. There
is however nc possibility to arrange the rules into according groups. This leads to
the need for a special state element in the database which determine the actual
state of the system. Rules for the actual state all have the common database
element, (State is "actual state').

The need to structure the database is also apparent. One desired possibility
would be to have the database partitioned into one long-term memory and one
or scv o1 soratch-pad memories for volatile information.

ihe single database elements also lack structuring facilities. Arbitrary list
cxpressions are very general. They do, however, not support the representation
of information which naturally is grouped together. This is better expressed by,

-

6.4 FEzperiences and conclusions 69

e.g., frame structures. This also facilitates automatic correctness checking of the
condition elements in the rules. This not at all supported in OPS4 and leads to
frequent errors due to, e.g., misspellings or sheer oblivion.

The most 1mportant drawback with OPS4, which it with a few exceptions
shares with other expert system frameworks, is that it not designed for real time
operation. It has, e.g., no possibility to have time-outs associated with database
elements, no means for halting the rule execution for a.certain time, and no
possibilities to check rules at a given time interval.

The main experience of the tuning application is its large sequential nature.
First a noise estimator is used to gather noise information. This information is
then used to determine the relay parameters. When a steady state oscillation
has been cbtained, the PID parameters are determined from the oscillation data.
Production systems are in general weak at sequencing problems. The way to
achieve sequencing is to explicitly code it into the rules, i.e., to implement a kind
of finite state machine with states and state transformations. This has the effect
that the actual domain knowledge is obscured by the control knowledge, i.e.,
knowledge about when to apply a certain rule. It also increases the number of
rules. The pure sequential part of the problem is probably better implemented
by a procedural representation of some kind. It is however important that the
advantages with rule-based representation not are lost.

The sequential nature of the problem partially explains the large number of
rules needed for the relatively simple experiment performed. The extensive use
of rules, even for tasks where it was not needed such as command decoding, also
added up the number of rules. ,

Another insight that the experiment gave was that only forward chaining is
not enough. Even though the problem basically is data—dfiven, several subtasks
can be identified where an goal-driven approach may fit better. The monitoring
phase can be stated as a diagnosis problem where backward chaining is more
appropriate. The same is true for the phase where the system tries to extract
process knowledge from the operator.

A Real-time

Expert System Framework

One of the experiences from the OPS4-based prototypz system was that con-
ventional expert system frameworks lack many of the features desirable in a
knowledge-based controller. For that reason, a real-time expert system frame-
work has been developed which will be described in this chapter.

The framework is based on the blackboard principle with a set. of cooper-
ating knowledge sources working against a common global database. Different
knowledge representations techniques may be used in the knowledge sources.
The real-time features of the system have partly been inspired by conventional
real-time operating systems.

The framework is described conceptually in Section 7.1. The operating sys-
tem analogy is also described there. The implementation is based on YAPS (Yet
Another Production System) (Allen, 1983) and the object-oriented framework
Flavors (Cannon, 1982). YAPS is described in Section 7.2. Several extensions to
YAPS have been made. These are described in Section 7.3. Section 7.4 describes
the overall implementation of the system.

The structure of the implementation supports the use of different knowl-
edge representation techniques. Forward chaining based knowledge sources are
described in Section 7.5. This section also describes the real-time primitives
which have been added to the system and their implementation. Section 7.6
describes backward chaining knowledge-sources and Section 7.7 discusses proce-
dural knowledge sources. The combination of knowledge sources into sequences
or plans is described in Section 7.8.

70

7.1 Motivation and functional description 71

7.1 Motivation and functional description

The experiences from the OPS4 prototype indicate that a suitable expert system
framework for knowledge-based control should allow different knowledge repre-
sentation techniques, support a modular representation of distinct subtasks, have
structuring possibilities for the database, and allow for real-time constructs.

Different knowledge representation techniques are needed since the system
has to perform tasks of totally different nature. These subtasks are often rela-
tively independent. Sometimes they are also separated in time.

The knowledge extraction phase where the operator is questioned for a priori
process knowledge can be viewed as a classification problem where the expert
system tries to classify the process. When a controller has been started, the
system should monitor its performance. Finding the cause of bad performance
can be stated as a diagnosis problem where different hypothesis are tried. The
need for goal-driven reasoning is therefore evident.

In many situations, the system should be able to react on and reason from
incoming data. This implies data-driven reasoning in the form of a forward
chaining system. The design phase were the system should make a controller
design can be seen as a configuration problem which is often solved with forward
chaining. o

Other subtasks are dominated by a sequential element. The conventional
procedural representation is therefore needed for some tasks. The selection and
aggregation of different subtasks can be described as a planning problem.

The reasoning model chosen as the basis for the knowledge-based control
framework is the blackboard model. A global database, the blackboard, is avail-
able to different, cooperating knowledge sources. The database allows for frame-
attribute-value structures for storing associated information. The knowledge
sources can be thought of as different actors, each of which solves some subtask
of the problem. The knowledge sources also have their own local databases. Dif-
ferent knowledge representation strategies may be used in the knowledge sources.
The structure of the framework is shown in Figure 7.1. A knowledge source im-
plements the domain knowledge for a certain task. It is often associated with one
or more numerical algorithms. It could for example contain the heuristic logic
surrounding an algorithm. Another examples of subtasks suited for implemen-
tation in a knowledge source are the choice of controller structure, calculation
of controller parameters, the operator interrogation, etc. Knowledge sources can
either immediately perform their task, e.g., compute a result of some kind and
finish, or they need to wait for incoming information either from the algorithms
or from the operator.

The operation of the knowledge-based controller involves the activation of
different knowledge sources both in sequence and in parallel. A typical case when
knowledge sources are active in parallel is during the steady state control of the
process. One knowledge source takes care of the actual control algorithm while
other knowledge sources implement different monitoring aspects.

-

72 Chapter 7 A Real-time Ezpert System Framework

Global
Database
(Blackboard) Scheduler

(4)
Knowledge sources
J U

Figure 7.1 Knowledge based control structure

A separate module schedules the selection of knowledge sources at two differ-
ent levels. The first level involves the sequential activation of different knowledge
sources. This is treated in more detail in Section 7.8. The second level involves the
scheduling between different knowledge sources that are active simultaneously.
This resembles the scheduling in an ordinary real-time, multi-tasking operating
system.

The operating system analogy

The separation of the knowledge base into several knowledge sources has two
purposes. The first is an attempt to structure the implementation into parts
that have natural connections to the subtasks of the problem and to use the
most appropriate reasoning strategy for each subtask.

The second purpose is to use the knowledge sources to model the different
parallel activities going on in the knowledge-based controller. This can be com-
pared to an ordinary real-time operating system. The knowledge sources are the
equivalents of concurrent processes and the scheduler resembles the scheduler of
an operating system. Concurrent processes can call real-time primitives to wait
a certain time or for a certain event. The equivalents of these primitives have
been implemented in the knowledge-based control framework and will be further
described in Section 7.5.

The implementation of the knowledge sources can be done with different de-
grees of parallelism. The most extreme way is to implement the global database
in shared memory and distribute the knowledge sources on separate processors.
Another possibility is to implement the knowledge-sources as concurrent pro-
cesses. This requires a programming environment that allows concurrent Lisp

2

72 Chapter 7 A Real-time Ezpert System Framework

Figure 7.1 Knowledge based control structure

A separate module schedules the selection of knowledge sources at two differ-
ent levels. The first level involves the sequential activation of different knowledge
sources. This is treated in more detail in Section 7.8. The second level involves the
scheduling between different knowledge sources that are active simultaneously.
This resembles the scheduling in an ordinary real-time, multi-tasking operating
system. '

®

The operating system analogy

The separation of the knowledge base into several knowledge sources has two
purposes. The first is an attempt to structure the implementation into parts
that have natural connections to the subtasks of the problem and to use the
most appropriate reasoning strategy for each subtask.

The second purpose is to use the knowledge sources to model the different
parallel activities going on in the knowledge-based controller. This can be com-
pared to an ordinary real-time operating system. The knowledge sources are the
equivalents of concurrent processes and the scheduler resembles the scheduler of
an operating system. Concurrent processes can call real-time primitives to wait
a certain time or for a certain event. The equivalents of these primitives have
been implemented in the knowledge-based control framework and will be further
described in Section 7.5.

The implementation of the knowledge sources can be done with different de-
grees of parallelism. The most extreme way is to implement the global database
in shared memory and distribute the knowledge sources on separate processors.
Another possibility is to implement the knowledge-sources as concurrent pro-
cesses. This requires a programming environment that allows concurrent Lisp

2

7.1 Motivation and functional descriplion 73

processes. This is, e.g., found on Lisp machines. The hardware available for
this project is a VAX 11/780. Running parallel Lisp processes on a VAX is very
resource consuming. The solution chosen in this project is to simulate the con-
current processes in a single process. In the current implementation, the effect
of this is that the knowledge sources may not interrupt each other. A knowledge
source runs unti! it explicitly returns control to the scheduler, e.g., if it has to
wait for some information or if it is finished. An extension which allows interrupts
among the knowledge sources is outlined in Section 7.9. Using a single process
to implement the entire knowledge based part has advantages with respect to
portability.

A concurrent implementation of different reasoning modules have been pro-
posed before. In Ensor and Gabbe (1985), a blackboard system is described
where the knowledge sources are distributed on separate processors. The same is
discussed in Stenerson (1986). The control structure of the KRL system (Bobrow
and Winograd, 1977) is based on “the belief that the next generation of intelli-
gent programs will integrate data-directed and goal-directed processing by using
multiprocessing”. The KRL system, intended for use in language understand-
ing systems, provides for a multiprocess agenda with user-provided scheduling
strategies. The Loops system manual (Bobrow and Stefik, 1983) also describes
the use of concurrent tasks to represent the invocation of different rule sets.

7.2 YAPS

The main building block in the implementation of the knowledge-based control
framework is the forward-chaining expert system framework YAPS, This section
will describe YAPS rather extensively. Most of the material is collected from
Allen (1983).

Overview

YAPS is a pattern-matching forward-chaining system in the same spirit as the
OPS family. There are, however, very important differences.

The database in YAPS may contain arbitrarily nested list expressions. The
lists may contain atoms and numbers. They may also contain Flavor instances.
This is described more in Section 7.4. Associated with each database element is
a unique cycle number which acts as a time tag. YAPS allows multiple coexisting
databases.

A set of rules is associated with each database. The rules are stored in a
single discrimination network common to all YAPS databases. Rules used in
multiple databases are only stored once. The discrimination network principally
follows the description in Section 5.3.

YAPS patterns are arbitrarily nested list expressions with variables. Vari-

“les begin with the hyphen character ‘~’. A single hyphen may match anything.

S

74 Chapter 7 A Real-time Ezpert System Framework

A list of values can be bound to a single matching variable using the dot *.’
notation. For example, in the pattern

(-car . =-cdr)

the variable -cdr is bound to the list of the but-first arguments similar to the
Lisp case.

Arbitrary Lisp functions can be used as predicates in the LHS of the rules.
The rule for checking if a signal value exceeds a certain limit will with some small
extensions have the following look in YAPS.

(p check-signal-value

(check-signal -signal)

(channel-number -signal -channel)

(signal-limit -signal -limit)
test

(and -signal

(>= (analog-in -channel) -limit))

-—>

(remove 1)

(fact exceeded-value -signal -limit)

(message

" The signal " -signal " exceeds the value " -1limit))

The keyword test separates patterns from predicates. The RHS of the rule
begins after the keyword -->. The RHS may contain ordinary Lisp expressions.
The pattern matching variables are bound during the evaluation of the RHS. The
YAPS function remove removes the database elements matching the enumerated
LHS patterns. The fact function adds a new database element. The fact
function only evaluates its arguments if they are pattern matching variables.
The character ~, however, forces the evaluation of the succeeding argument.

Negated conditions are allowed and can be combined with predicates as in
the following example taken from Allen (1983).

(p find-largest
(print-largest)
(data -x)
(~ (data -y) with (> -y -x))
(remove 1)
(message "The largest data element is " -x))

This rule finds the largest data element and prints it. Negated patterns are

-

7.2 YAPS 75

preceded with the ~ character. A negated condition may contain arbitrarily many
patterns. The keyword with begins the predicates of the negated condition. If
all negated patterns are matched and all their tests return non-nil values then
the rule is prevented from execution. Predicates are tested as early as possible
in order to prune false partial matches early.

YAPS has two different conflict resolution strategies: goal-directed and age-
only. Both are based on recency of database elements and complexity of rules.
The algorithms are as follows.

1. If arule already has fired with a given set of facts, then it is prevented from
firing again with the same facts.

2. The goal-directed strategy sorts, for each binding, i.e., a rule together with
the facts that 1t matches, the ages of the facts in two lists. The first list
contains the ages of all facts which begin with the keyword goal. The second
list contains the ages of all the rest of the facts. The age-only strategy sorts
for each binding all the facts in the first list.

3. The bindings are first compared by looking at the first lists. The most recent
ages are compared and the binding with the most recent fact is chosen. If
the conflict still is unresolved, successive ages are compared. If this does
not help, take the binding with the longest list, i.e., the binding whose rule
contains the largest number of patterns. If the lists have the same length,
go to the next step.

4. The goal-directed strategy compares the second list ifi the same‘wa‘y as the
first. If there is still a tie, go to the next step.

5. A binding is chosen at random.

The conflict resolution strategy also influences the way YAPS reacts when facts
are added to a database which is not currently executing. By default, the rule
execution starts as soon as a new fact has been added which generates a binding
in the conflict set, i.e., an implicit (run) is performed. If, however, the goal-
directed strategy is used without any goal database elements, the rule execution
does not start until an explicit (run) has been performed. This gives a strategy
which from a conflict resolution aspect is equivalent to the age-only strategy but
which react differently when new facts are added. This is favorable in some cases
which will be explained in Section 7.3.

YAPS is implemented in Flavors (Cannon, 1982). A YAPS database is
created by instantiating the yaps-database flavor. This flavor defines methods
for adding rules, adding facts, etc. There is always one database which is active.
Initially this is a default database. The variable *yaps-db* always points to
the active database. Databases can be manipulated either by sending messages
to a specified database or by calling functions which by default operate on the

-

76 Chapter 7 A Real-time Ezpert Sysiem Framework

currently active database. Message-passing in the Flavors system used has the
syntax

(<- <object> <message> <argument> ...).

An overview of the most important messages and functions is given in Appendix

D.

OPS comparison

YAPS is with respect to functionality very similar to the OPS family of expert
system frameworks. It has, however, some important advantages which makes it
useful as a building block for knowledge-based control.

LHS predicates: Arbitrary Lisp functions can be used as predicates. No decla-
rations are needed and no restrictions are imposed.

RHS: The right hand side actions can be general Lisp expressions. No dec-
larations are needed. The right hand sides are internally represented as Lisp
functions and can be compiled in order to speed up execution.

Syntax: 'The syntax is less awkward than in OPS. The difference is not, however,
of very significant importance. ‘

Integration: The object-oriented implementation simplifies the integration of
YAPS with other Lisp tools. For example, arbitrary user-written flavors may
inherit the YAPS database flavor and thus combine object-oriented programming
with rule-based programming.

Implementation: The object-oriented implementation with clean message inter-
faces between the different internal objects simplifies extensions and modifications
of the plain YAPS system. The modifications that have been performed during
the project are described in the next section.

73 YAPS éxtensions

The YAPS system has been extended in different ways during the project. Most
of the extensions have been aimed at increasing the expression power of the rules.
The extensions have in some cases had a negative effect on execution efficiency.
This has, however, been considered acceptable since one of the aims for the
development of the knowledge-based control framework is to explore which rule
constructs that are needed.

7.3 YAPS extenstons - T7

Structured database elements

As in OPS4, the list is the only allowed database element. Closely related infor-
mation is however better represented with structured data types. Consider the
following example. Assume that the YAPS system reasons about PID controllers.
Assume for simplicity that a PID controller only is represented by its name and
by the three parameters: K,T;, and T;. This information could basically be
represented in two different ways using lists. The first alternative uses one list
as follows.

(<name> PID-controller K <value> Ti <value> Td <value>)

The second alternative use multiple list in an object-attribute-value style as fol-
lows.

(<name> PID-controller)
(<name> K <value>)
(<name> Ti <value>)
(<name> Td <value>)

Assume also that during the control design, a rule is used which always sets the
integration time to T; = 4 % Ty if its previous value is off. In the two different
representations the rule would look like either like

(p compute-Ti-1 .
(-name Pid-controller K -k Ti off Td -Td)
-—>
(remove 1)
(fact -name
PID-contreller
K -k
Ti ~(* 4 -Td)
Td -Td))

or like

(p compute-Ti-2
(-name PID-controller)
(-name Ti off)
(-name Td -Td)
-—>
(remove 2)
(fact -name Ti ~(* 4 -Td)))

78 Chapter 7 A Real-time Ezpert System Framework

The first alternative results in rules that have to refer to irrelevant information,
e.g., the value of K, in order to update the database. The second alternative
causes closely connected information to be spread out in the database. This
increases the number of condition elements needed in the rules.

The extension made to YAPS allows frame structures in the database. This is
somewhat similar to what is available in OPS5. Unlike OPS5, database elements
are not restricted to frames. The standard list format.is allowed as well. A
drawback with the OPS5 approach is that it forces the definition of a lot of
unnatural frames with perhaps only a single attribute.

Frames must be explicitly declared before they are referred to. This is done
according to the following syntax.

<frame-definition> :== (defframe <type> <description>
(<attribute-form> ...)
([<super-frame>] ...))
<type> :== <symbol>
<description> :== <string>
<attribute-form> :== <attribute>|
(<attribute> [<description>]
[<keyword> [<value>]] ...)
<attribute> ;== <symbol>
<keyword> :== :default|:askable|:duration
<value> :== <1lisp value>
<super-frame> :== <symbol> -

The definition of the PID controller would look like

(defframe PID-controller "PID controller frame"
((K "Proportional gain" :default 1)
(Ti "Integration time" :default off)
(Td "Derivation time" :default 0))
.

The :default keyword specifies the initial value of an attribute. If this option
is not used, the initial value is nil. Attribute inheritance can be specified as a
list of super frames. Attributes are collected on a left to right, depth-first scheme
with duplicate removal. This is the same inheritance scheme as in, e.g., Flavors.

Several functions for frame manipulation have been added. The most im-
portant are

(make [<name>] <type> <attrl> <vall> <attr2> <val2> ...)
(<- ’<database> ’make ’<body>)

-

7.3 YAPS exiensions 79

Creates a frame in a database. An optional identifier, <name>, can be as-
sociated with each frame. If omitted, a unique identifier is automatically
generated. Attribute values given override the default values. The <body>
in the message-passing form of make is a list of the arguments in the func-
tional form of make. The functions return the frame identifier.

(modify <number> <attri> <valil> ...)
Modifies a frame in the current database. The number correspond to the
patterns in the LHS of the rule. May only be used in the RHS.

(modi <name> <attri> <vali> ...)

(<- ’<database> ’modi ’<body>)
Modifies a frame in a database. The frame is identified through its unique
identifier. The <body> in the message passing form is a list of the arguments
of the functional definition of modi.

Frames are removed with the standard functions remove and rm.

Frames can be referred to in the rules by the following patterns.

(frame <type>
[<attribute> <value>] ...)

The <attribute> must be a symbol which belongs to the attributes of the frame
<type>. The <value> may be an arbitrary YAPS pattern. Unique frames can be
referred to by substituting the unique frame identifier for.the word frame. The
previous compute-Ti rule would now look as follows.

(make PID-controller K 5 Td 6)

(p compute-Ti-3
(frame PID-controller
Ti off
Td -Td)
-=>
(modify 1 Ti ~(* 4 -Td)))

Frames can also be used as attribute values. In the following small example, a
PID-controller frame is used as the value of the controller attribute of the
frame control-loop.

(defframe control-loop ""
(controller inchannel outchannel)

0D

80 Chapter 7 A Real-time Fzpert System Framework

(make control-loop
controller ~(make PID-controller)
inchannel 0
outchannel 1)

The patterns that match the above construct would look like.

(p frame-as-attribute-example
(frame control-loop
controller -frame)
(-frame PID-controller
K -k)
-—>

e

The reason why this works is that the make function returns the unique frame
identifier and this becomes the value of the controller attribute.

Frames are internally represented as single lists. The PID-controller created
previously is internally represented as ot

(PID-controller-frame-0 PID-controller K 5 Ti off Td 6).

The control-loop frame created above is represented as two lists

(PID-controller—frame-1 PID-controller K 1 Ti off Td 0)

(control-loop-frame-0 control-loop
controller PID-controller-frame-1
inchannel 0O
outchannel 1)

The rules which refer to frames are preprocessed and the frame patterns are
modified. The word frame is changed to a hyphen and the pattern is expanded
to include all attributes. The preprocessed compute-Ti-3 rule looks like

(p compute-Ti-3
(- PID-controller

k -
Ti off
Td -Td)

-->

7.3 YAPS extenstons 81

(modify 1 Ti ~(* 4 -Td))).

The modify functions removes the corresponding database element and adds it in
the modified form. The described way to represent frames correspond to the first
list alternative presented earlier. A drawback is that, since during modification,
the entire database element is added again, rules which were not directly affected
by the modification may be instantiated again with “old”. attribute values. This
drawback 1s, however, shared with OPS5.

An alternative representation that circumvents the problem would be to use
multiple object-attribute-value lists to represent a frame. This would however
complicate the preprocessing. Each frame pattern would be transformed into a
number of list patterns and the enumeration of the patterns would change. The
removal of an entire frame would also be more difficult. The chosen approach is
also favorable with respect to rule execution efficiency. According to Brownston
et al (1985), rules with a few large conditions execute faster than rules with many
simple cenditions when RETE-type algorithms are used.

A tempting approach for frame representation would be to use Flavers. Since
YAPS allows Flavor instances in the database this is principally possible. Con-
sider the following example where a rule sets Ti to off when its value is below
zero. Here, the PID-controller is stored as an instance of the PID-controller flavor
in the list

(<pid-instance> PID-controller).

(defflavor PID-controller
(k Ti Td)
O

(p turn-Ti-off

(-PID-instance PID-controller)
test

(<= (<~ -PID-instance ’Ti) 0)
-—>

(<~ -PID-instance ’set-Ti ’off))

This seclution is dangerous. The changes which are made to the PID instance
by message passing will not be notified by the pattern matching network. The
network is only affected by explicit database additions and removals. The only
way Flavor instances can be referred to is as atomic entities.

82 Chapter 7 A Real-time Ezpert System Framework

How? explanations

Extensive explanation facilities are normally associated with backward chaining
frameworks. In these systems the explanation facilities are built-in and generates
explanations automatically. The user has the possibility to ask how a certain
conclusion was derived or why the system needs certain information from him.

Asking questions to the user is not an inherent feature of forward chaining
systems and therefore, ‘why’ questions are not appropriate. ‘How’ explanations
can, however, be implemented. This has been done in the following sense. Each
fact in the database has been associated with information about which rule that
added that fact, which database elements that caused this rule to fire, and in
which YAPS database the rule was fired. Each frame element has information
regarding both the frame as a whole and each individual attribute. The ex-
planation information is associated with the fact when the fact is added to the
database. Frame modifications require special attention. The explanation infor-
matien from the old frame must be transfered to the modified frame.

The following commands have been added for explanation requests.

(explain ’<number> ’<number> ...)
Generate explanations for the database elements that match the numbered
pattern elements. May only be used in the RHS.

(expl ’<cycle> ’<cycle> ...)

(<~ ’<database> ’expl ’<list of cycle-numbers>)
Generate explanations for the facts with the given cycle numbers in the
database. a ‘

(explain-attribute ’<number> ’<attribute>)
Generates an explanation for an individual attribute of the frame which
matches the numbered pattern element. May only be used in the RHS.

(expl-attribute ’<cycle> <attribute>)

(<~ ’<database> ’expl-attribute ’<cycle> ’<attribute>)
Generate an explanation for an individual attribute of the frame with the
given cycle number.

The explanation format is shown in the following example.

(p compute-Ti-5
(New controller created)
(frame PID-controller

Ti off
Td -Td)
test
(> -Td 0)

-=>

-

7.3 YAPS extensions 83

(remove 1)
(modify 2 Ti ~(* 4 Td))
(fact Ti changed))
~>{make PID-controller K 7 Td 2)

->(fact New controller created)

->(db)

Facts in db <database f0>

Cycle Fact

1. (PID-controller-frame-0 PID-controller K 7 Ti off Td 2)
2. (New controller created)

->(run)

->(db)

Facts in db <database fO0O>

Cycle Fact

3. (PID-controller-frame-0 PID-controller K 7 Ti 8 Td 2)-
4, (Ti changed)

~->(expl 4)

v

(Ti changed) was concluded by <database f£0>
using rule:

(p compute-Ti-5

(New controller created)

(frame PID-controller Ti off Td -Td)
test (> -Td 0)
-=> (remove 1)

(modify 2 Ti ~(* 4 Td))

(fact Ti changed))

together with the facts

1. (PID-controller-frame-0 PID-controller K 7 Ti off Td 2)
2. (New controller created)

->(expl 3)

(PID-controller-frame-0 PID-controller K 7 Ti 8 Td 2) was
entered from top-level.

84 Chapter 7 A Real-time Ezpert System Framework

->(expl-attribute 3 k)

The attribute

k

of the fact

(PID-controller-frame-0 PID-controller K 7 Ti 8 Td 2) was
entered from top-level.

->(expl-attribute 3 Ti)

The attribute

Ti

of the fact

(PID-controller-frame-0 PID-controller K 7 Ti 8 Td 2) was
concluded by <database f0>

using rule:

(p compute-Ti-5
(New controller created)
(frame PID-controller Ti off Td -Td)
test (> -Td 0)
--> (remove 1) .
(modify 2 Ti ~(* 4 Td)) . '
(fact Ti changed))

together with the facts

1. (PID-controller-frame-0 PID-controller K 7 Ti’ off Td 2)
2. (Wew controller created)

The value of automatically generated explanations are debated (Swartout, 1983).
A disclaimer often heard is that the explanation given is too dependent on the
actual representation of the domain knowledge than on the domain knowledge
itself. This results in explanations which are unnatural to the user and thus
difficult to understand. For debugging purposes during development, however,
the feature is valuable. Another fact that points in direction of mainly using the
explanation feature during development is that it is time and space extensive.
Due to this, the generation of explanation information can be turned on and off
with a switch.

Rules as methods

Another slight modification that has been done allows the association of methods
to frame structures. The methods are implemented as rules.

Normally, the (run) command only returns nil. It has been modified to
return the value returned by the RHS of the last rule executed. The value re-

=

7.3 YAPS extensions 85

turned by a RHS is the value returned by the last Lisp expression in the RHS.
This modification in combination with the possibility to start the rule execu-
tion automatically when a new fact is added enables a programming style which
resembles object-oriented programming with message passing. Consider the fol-
lowing example.

(defframe ship ""
(x-velocity y-velocity)
O

(p speed-method-of-ship
(send -ship :speed)
(-ship ship

x~velocity —-x
y-velocity -y)

-=>

(remove 1)
(sqrt (+ (* -x -x)
(*x -y -y))))

->(make titanic ship x-velocity 5 y-velocity 5)

->(fact send titanic :speed)
7.071 ’

This only works if the messages are added from outside the database. Facts
added from rules within the database will not cause (run) to be called since the
database already is running.

Other modifications

The rule syntax of YAPS can sometimes be difficult to understand. To somewhat
remedy this, an optional description string can be included in the rule definition.
This looks as follows.

(p rule-name
["Textual description']
<rule-body>)

Apart from the major modifications described, several new functions have been
added to the system. The most important of these are as follows

(<- ’<database> ’facts)
Returns a list of all the facts in the database.

86 Chapter 7 A Real-time Ezpert Sysiem Framework

(remove-fact ’'<fact>)
(<~ ’<database> ’remove~fact ’<fact>)
Removes a fact equal to <fact> from a database.

(fact-nr ’<number>)
Returns the fact matched by pattern element <number>. RHS function.

(describep ’<rule-name> ...)
Prints the textual description of the rules.

The possibility to easily modify the YAPS system is mainly credited to the clean
Flavor implementation. It is the author’s conviction that access to good quality
source code is necessary if a conventional expert system framework is going to
be used for non-standard applications.

7.4 ‘The scheduler

An implementation of the knowledge-based control framework described in Sec-
tion 7.1 has been performed on a VAX 11/780. The implementation is based
on the YAPS system and the key feature exploited is the ‘ability to use Flavor
instances as database elements.

The scheduler is implemented as a flavor which inherits a YAPS database.
The scheduling strategy is represented with rules. Each knowledge source is
represented as a knowledge source frame in the scheduler database. The definition
of the knowledge source frame looks as follows in a slightly simplified form.

(defframe knowledge-source
"Contains domain knowledge for a certain task"

(name
(type "The type of the knowledge source e.g.
forwvard, backward ..")
(status "External state of the knowledge source,
active or inactive" :default inactive)
(state "Internal state of the knowledge source,
inactive, waiting, ready or running"
:default inactive)
(description "Textual description of the knowledge
source")
(instance "Flavor instance that actually implements
the knowledge source'))
0D

7.4 The scheduler 87

Scheduler - YAPS system

Scheduler database

1
I
I
I
Knowled : Global B .
nowleage I Database ’
sources ,
I
Rules = —

Scheduling rules

Figure 7.2 Implementation structure

The different types of knowledge sources are represented as different flavors. Each
individual knowledge source is implemented as an instance of the corresponding
flavor. The implementation structure is shown in Figure 7.2. The actual interface
between the knowledge sources and the scheduler consists of a relatively small
set of messages for which the knowledge source flavors should supply methods.
This makes it easy to add new types of knowledge sources to the system. The
message set contains, e.g., the messages run, fact, make, modify, rm-fact,
db, etc.

The attribute status has the value active when the knowledge source has
been started and not yet is finished. The attribute state indicates the internal
state of the knowledge source when it is active. Legal values are running, ready,
and waiting. The meaning of these values are the same as in a conventional
operating system.

A slightly simplified example of a rule in the scheduler is given below.

(p schedulel
"If a knowledge source is ready and no other operator is
running then run this operator"
(frame knowledge-source
status active
state ready
instance -x)
(® (frame knowledge-source

88 Chapter 7 A Real-time Ezperl Syslem Framework

state running))
-—>
(modify 1 state running)
(<= -x ’run))

The recency-based conflict resolution strategy of YAPS gives rise to a last-in, first-
out (LIFO) queue of ready knowledge sources in the scheduler. Other strategies
such as first-in-first-out (FIFO) queues or priority-based queues are, however, eas-
ily implemented with only a few rules. This is one example were the flexibility of
rule-based programming shows up. Concurrent process scheduling follows a well-
defined algorithm and could thus just as well be implemented with conventional
programming techniques. During the development phase of the knowledge-based
control framework, when frequent changes were made to the scheduler, the rule-
based approach, however, showed very suitable

Database elements belonging to the global database are represented both
in the scheduler and in every single knowledge source. Database elements local
to a knowledge source are only represented there. The scheduler also contains
database elements that are specific to the scheduling activity, e.g., the knowledge
source frames. Other such elements are described in the next section.

Adding a fact to the global database or modifying a frame in the global
database has the effect that the modifications are performed in every single knowl-
edge source and in the scheduler. This is ineffective but has the advantage of a
clean implementation. It also has the advantage that local and global database
elements are treated equally within each knowledge source. The effectlvny 1ssues
are discussed more in the next section.

The scheduler flavor implements methods for a number of messages. Some of
them are global-fact, global-remove, global-make, global-modify and
global-db. These messages correspond to the standard YAPS messages de-
scribed in Sections 7.2 and 7.3 and operate on the global database. The global-
db message prints out the database elements which are members of all the knowl-
edge sources and the scheduler. Apart from the db method, every knowledge
source must also implement the local-db method which prints the database
elements of a knowledge source that not belongs to the global database.

The scheduler 1s connected to the other processes by a rule that waits for
incoming messages. This rule is executed whenever no other rules are matched.
A local mailbox with priorities is used according to the description in Section 4.2.
Messages from the man-machine communication are evaluated as Lisp expressions
and their results are returned. All other messages are added as database elements
locally in the scheduler. The rule looks as follows.

(p restart-rule
(restart)
-->

7.4 The scheduler 89

(refresh 1)
(getmessage))

The getmessage function performs the actual reading from the internal mailbox.
The refreshing of the restart element before the call to getmessage will give the
restart element a smaller cycle number than elements which are added due to the
incoming message. The recency based conflict resolution strategy causes this rule
to be run again when no other rules are matched. If the order of the refreshing
and the call to getmessage were interchanged, an infinite loop would be created
where the restart-rule was executed all the time.

7.5 Forward chaining knowledge sources

The forward chaining knowledge sources are implemented as instances of a flavor
that inherits a YAPS database. This gives a structure where several YAPS
systems reside as database elements inside the scheduler YAPS system. The goal-
directed conflict resolution strategy is used without any goal elements, i.e., the
rule execution must be started by an explicit (<~ <knowledge source> ’run)
command. The reason for this is that the scheduler should have control over
which knowledge source that is currenily running. :

Several new functions are provided for database manlpulatlons apart from
the ones already available through YAPS. The most important of these are the
following.

(global-fact <expression> ..) ~
Encapsulated the expressions in a list and adds them to the global database
Calls the global-fact method of the scheduler.

(fact-in <knowledge source> <expression> ..)
Encapsulates the expressions in a list and adds it to the specified knowledge

source.
(scheduler-fact <expression> ...)
Encapsulates the arguments in a list and adds it to the scheduler. Equivalent
to

(fact-in scheduler <expression> ..).

(global-make <make-body>)
Creates a frame instance in the global database. Calls the global-make
method of the scheduler.

(make-in <knowledge source> <make-body>)
Creates a frame instance in the given knowledge source.

(scheduler-make <make-body>)
Creates a frame instance in the scheduler. Equivalent to
(make-in scheduler <make-body>).

90 Chepler 7 A Real-time Ezxpert Sysiem Framework

(global-remove ’<number> ...)
Removes the database elements corresponding to the enumerated patterns
globally. Calls the scheduler’s global-remove method.

(remove-in <knowledge source> ’<number> ...)
Removes the database elements, corresponding to the enumerated patterns,
in the given knowledge source.

(global-remove-fact <fact>)
Removes a fact equal to <fact> globally. Calls the scheduler’s global-
remove method.

(remove-fact-in <knowledge source> <fact>)
Removes a fact equal to <fact> in the given knowledge source.

(global-modify ’<number> <attri> <valil> ...)
Modifies a frame globally. The number corresponds to the patterns in the
LHS of the rule.

(modify-in <knowledge source> ’<number> <attri> <vall> ...)
Modifies a frame in the given knowledge source. The number corresponds
to the patterns in the LHS of the rule.

(global-modi <name> <attri> <vali> ...)

Modifies a frame globally. The frame is specified through its unique identi-
fier.

(modi-in <knowledge source> <name> <attri> <vall> ...)
Modifies a frame in the given knowledge source. The frame is specified
through its identifier.

Efficiency

Global database alteration is potentially ineffective since it requires that the al-
terations are performed in every single knowledge source. Knowledge sources
implemented in YAPS improves the situation. YAPS stores rules and partial
pattern matchings in a discrimination network. All YAPS systems share the
same discrimination network. This is favorable with respect to space require-
ments. Different knowledge sources which contain the same rules or rules with
similar condition elements will share the corresponding parts of the network. It
is, however, still inefficient with respect to speed. Consider the following ex-
ample. Suppose that the system contains n YAPS knowledge sources. A frame
modification would then require 2%(n + 1) network traversations. The extra one
comes from the scheduler.

The situation can be improved with a slight modification. What is needed is
network traversing functions for database addition and removal that perform the
alterations in all YAPS databases. This would decrease the number of traversions
to 2. The implementation of these functions is not a major effort.

-

7.5 Forward chaining knowledge sources ‘ 91

The described solution would only decrease the time taken into account for
the network traversation. The time taken into account for the actual pattern
matching which is performed during the traversation would still be the same. In
the current system, facts are added and removed to a knowledge source indepen-
dently if it is active or inactive. This results in a lot of, sometimes innecessary,
matching activity in inactive knowledge sources. Consider, e.g., the situation
where global database modifications cause rules to be matched and later un-
matched in an inactive knowledge source. One solution to this would be to
associate a small database buffer to each YAPS knowledge source. For inactive
knowledge sources, database alterations are stored in this buffer in their order of
appearance. When the knowledge source eventually gets activated, the database
alterations are performed. The important thing is that not all database alter-
ations need to be performed. Examples of this are facts which are added and
later removed or several modifications of the same frame which can be merged
to a single modification. The drawback of the solution is that the activation of a
knowledge source will take longer time.

Real-time primitives

Several real-time primitives have been added to the forward chaining knowledge
sources. The primitives basically halt the execution of the knowledge source for
a certain time or until a certain database element is added. They are the forward
chaining equivalents of the waittime and waitevent primitives of an ordinary
operating system.

(wvaittime ’<time> ’<tag>) o~ :
The knowledge source suspends its operation after the current RHS has
been executed. After the given time, the fact (wakeup <tag>) is added to
the knowledge source and it is resumed. The format of <time> is a string,
"hh:mm:ss". The <tag> could be either a string or a symbol. Since the
RHS of a rule is considered atomic, several waittime requests can be pending
simultaneously if they are issued in the same rule.

(timer-request ’<time> ’<tag>)
A waittime function where the knowledge source is not suspended until all
executable rules have been fired. The knowledge source is resumed and the
fact (wakeup <tag>) is added after the specified time.

(vaitentry ’<symbol1> ... [:timeout ’<time> ’<tag>])
The knowledge source is suspended after the current RHS has been executed.
The knowledge source is resumed when a fact that matches (<symboll>
<symbol2> <symbol3> ...) has been added to the scheduler, i.e., locally
in the scheduler or in the global database. The matching fact is added
to the knowledge source if it is not already there. A maximum number
of three significant symbols in the beginning of a fact are allowed. General
patterns would be desired instead of the sequence of constant symbols above.

92 Chapter 7 A Real-tyme Ezpert System Framework

This would, however, require that facts with variables were allowed in the
database and thus a unification type of pattern matching. If the optional
timeout arguments are given, the fact (timeout <tag>) is added to the
knowledge source if the wait condition is not fulfilled during <time>.

(vaitmessage ’<symboll> ... [:timeout ’<time> ’<tag>])
The same as waitentry with the matching fact restricted to an incoming
message.

(entry-request ’<symboll> ...[:timecut ’<time> ’<tag>])

Is to waitentry as timer-request is to waittime.

(message-request ’<symboli> ... [:timeout ’<time> ’<tag>])
Is to vaitmessage as timer-request is to waittime.

(vaitattribute ’<name> ’<attribute> ’<value> [:timeout ...])
The knowledge source is suspended after the current RHS has been executed.
The knowledge source is resumed when the <attribute> of the global frame
<name> takes the given <value>. Timeout is optional.

(attribute-request ’<name> ’<attribute> ’<value> [:timeout ...])
Is to waitattribute as timer-request is to waittime.

The above real-time primitives allow a knowledge source to be waiting for sev-
eral different things simultaneously. They do not allow the knowledge source to
express, e.g., that it wants to wait until one out of several database elements
has been added to the database, 1.e., a disjunctive wait or.that it wants to wait
until a number of database elements are in the database simultaneously, ie., a
conjunctive wait. '

The requirement posed by the implementation that individual knowledge
sources may not be interrupted, influences the operation of the real-time primi-
tives. For example, a knowledge source which is waiting a certain time will only
be resumed at that time if no other knowledge source is then running. Otherwise
the waiting is prolonged.

The basic real-time primitives presented have been used for construction of
higher-level real-time primitives. One example of this is testing of rules with a
certain time interval. This is arranged with the following rules.

(p test-1
(vakeup test-1)
(rule test-1 -period)
<rule patterns>
-2
(remove 1)
<actions>
(timer-request -period test-1))

7.5 Forward chaining knowledge sources 93

(p not-fulfilled
(wvakeup -tag)
(rule -tag -period)
-—>
(remove 1)
(timer-request -period -tag))

(p initialize
(rule -name -period)
(start -name)
—-—>
(remove 2)
(fact wakeup -name))

The rule test-1 is the actual rule that should be tested with a certain time
interval. The LHS side of this rule is possibly satisfied when the wakeup element
1s added. If so, the actions of the rule are evaluated and a request for a new
wakeup is made. The use of timer-request instead of waittime allows other
rules, which become satisfied due to the actions, to be evaluated. The not-
fulfilled rule acts as the else part in an if .. then .. else .. construct.
It is always satisfied when the wakeup element arrives. It is, however, only
fired if the pericdic rule is not satisfied. This is due to the conflict resolution
strategy which favors rule complexity. The initialize rule starts the timing.
’Theinitializeznuinot—fulfilledtuksameconnnontogﬂlpeﬁgdh:mﬂes’The
rule period can be changed by modifying the rule database element. With the
described constructs it is possible for one forward chaining knowledge source to
have multiple periodic rules.

Since the periodic rules wait a certain time interval and not for an absolute
time, a certain time sliding will occur. This could have been avoided with similar
real-time primitives where instead an absolute time was given.

Another real-time feature that has been implemented is the possibility to
associate duration times with database facts and frame attributes. This is done
with the following syntax.

(global-fact Example of a fact :duration 00:01:00)

(global-modify 1 attributel valuel :duration 00:00:45
attribute2 value2 :duration 00:02:00)

In this example, the (Example of a fact) fact will be removed after one minute.
The values of the frame attributes will only hold for the specified duration. After
that they will take their default values, if specified, or else nil. An alternative

-

94 Chapter 7 A Real-time Ezperi System Framework

solution for frame attributes would be to use the previous values of the attributes
instead of the default values. Duration times can also be automatically associ-
ated with certain frame attributes. This is done with the :duration keyword in
the frame declaration. Durations are not automatically propagated to database
elements whose addition have been caused by elements with durations. In the cur-
rent implementation, duration times may only be associated with global database
elements. .

Other real-time constructs are easy to implement. One example could be
database modification primitives where the actual modifications take place after
a given time. This feature is available in the YES/MVS system (Milliken et al,
1986) which is built upon OPS5. This feature could also be used to implement
periodic rules.

The combination of the real-time primitives described, with numerical al-
gorithms gives additional possibilities. For example, a level crossing detection
algorithm can be used to construct primitives for waiting until a certain signal,
e.g., the measured signal, y, exceeds a certain value.

Real-time primitives implementation

The real-time primitives are implemented using an extra timer process. The
call to a real-time primitive usually results in two things: A frame that con-
tains information about the calling knowledge source is added to the sched-
uler and a message is sent to the timer process. Consider the following exam-
ple. A knowledge source, k-s-1, evaluates the primitive (waittime "00:00:30"
"Start again"). This creates an instance of the following frame in the sched-
uler: '

(defframe waittime-entry

"Contains information about a pending
vaittime request"

((name "The knowledge source that is waiting")
(receive-time "Absolute time when the waiting is over")
(tag "Request identification"))

0)

Suppose that the actual time was 14:45:00 at the time of the call. The instance
will then look like

(waittime-entry-frame-0 waittime-entry
name k-s-1
receive-time '14:45:30"
tag "Start again").

7.5 Forward chaining knowledge sources 95

Timer
box

Timer
Process

Scheduler
YAPS system

Figure 7.3 Implementation structure

A message that contains the desired wakeup time and the identification tag is
sent to the timer process. A high-priority message with the identification tag is
returned to the scheduler when the waiting time has elapsed. The fact (wakeup
"Start again") is added to the knowledge source k-s~-1 and.its state'is changed
to ready. The system together with the timer process is shown in Figure 7.3.

A forward chaining knowledge source is considered to be finished, and thus
becomes inactivated, when no matching rules are found and the knowledge source
has no pending wait requests.

The timer process is written in Pascal. The basic data structure is a linked
list of nodes. A node contains the absolute wakeup time and the request identi-
fication tag for a wait request. The nodes are inserted in the linked list in time
order. The basic structure of the process is as follows.

while true do
begin
if queue_empty then set_timer(infinitely_long_time)
else set_timer(first_node_time);
w: wait_for(timer or incoming_message) ;
if incoming_message then
begin
read_message;
create_node;

96 Chapter 7 A Real-time Ezpert System Framework

insert_node_in_time_oxrder;
if queue_was_empty or
(new_time < first_node_time)
then set_timer(new_time);
go to w;
end;
remove_first_ncde;
write_return_message;
end;

The possibility to simultaneously wait for two different events, i.e., the timer and
an incoming message, is implemented with the asynchronous system trap (AST)
facility in VMS.

7.6 Backward chaining knowledge sources

A limited version of backward chaining knowledge sources has been implemented.
It was inspired by a small expert system example in Winston and Horn (1981)
which has been extended and embedded into Flavors.

The global database may contain two different types of information, arbi-
trary lists and frames. The backward chainer internally ‘represents frames as
object-attribute-value triplets. The syntax for how a rule is added locks as fol-
lows.

(<~ ’<knowledge source> ’buildp
’<rule name>
’(<antecedent form> ...

-=>
<consequent form> ...))

<antecedent form> :== <list>|

(<frame> <attribute> <value>)
<consequent form> :== <list>|

(<frame> <attribute> <value>)
<frame> :== <frame identifier>|

<matching variable>
<attribute> :== <symbol>
<value> :== <1lisp value>|

<matching variable>
<frame identifier> :== <symbol>

The antecedent forms are combined by an implicit ‘and’, i.e., all the antecedents
must be fulfilled for the rule to be considered true. The result of an object-
attribute-value triplet consequent is the modification of the corresponding frame.

2

7.6 Backward chaining knowledge sources 97

A list consequent is added as a fact. All database modifications are global.
Backward chaining knowledge sources may not have any local databases.

Matching variables may be used in the rules. The variables may however
only be used in the object place and in the value place of an object-attribute-
value triplet. The backward chainer can basically be used in two ways. A value
for an empty frame attribute may be searched for. Empty here means that it
has the value nil. In this case, the query looks like (frame-1 attribute-3
-x). Alternatively stated, the goal of the backward chainer is to find a value for
a certain attribute. The second way is for verifying a certain hypothesis. The
hypothesis is expressed as a frame attribute having a certain value. The query
now looks like (frame-1 attribute-3 value).

Queries which should be verified by a backward chaining knowledge source
are added to the scheduler in the following form.

(verify <query>)

An extra attribute, verify-list, has been added to the knowledge source frame in
the scheduler. The list contains the attributes or facts which can be verified by
that knowledge source. The scheduler sends the message

(<~ <knowledge source> ’fact ’(verify <quer§>3)

to the knowledge source and changes the state of the knowledge source to ready.
The knowledge source adds the query to a list of unanswered queries. The verifi-
cation of the queries begins when the knowledge source receives the run message.

Backward chaining systems usually ask the user when a goal cannot be de-
duced in any other way. The user in this case is the operator. A knowledge based
controller is mainly an autonomous system. The relevance of asking the operator
could therefore be questioned. For some tasks, however, it is appropriate. One
example is the knowledge extraction phase where the operator is asked for a pri-
ori process knowledge. Another example is tasks that require information which
is difficult to extract by numerical algorithms. The human eye can easily extract
qualitative information from, e.g., plotted time series.

Frame attributes may be declared as being allowed to ask for. This is done
with the keyword :askable in the frame declaration. Facts can also be declared
askable. This is done by including them in the global association list *askable-
fact-list=*, :

Asking questions to the user also creates real-time problems. Consider the
following situation. A backward chaining knowledge source asks the operator
for information. During the time which elapses before an answer is given, new
messages may arrive that require attention. It is therefore not acceptable to halt
the entire knowledge-based system subprocess when a question is asked. If instead
the individual knowledge sources were implemented as individual subprocesses,
it would be possible to suspend only the subprocess which asked the question.

a

98 Chapter 7 A Real-time Ezpert Sysiem Framework

This does, however, not solve the problem completely. A situation can occur
where, during the question, new information arrives that change the conditions
which generated the question.

The backward chaining knowledge sources solve the problem as follows. The
actual question is written on the terminal. Each question has an associated
unique number. The goal which raised the question is saved and the knowledge
source is suspended. The reason for the suspension is that the knowledge source
is waiting for a database element that looks like

(answer <unique number> <answer>).

When an answer with the corresponding number has been given, it is sent to
the knowledge source. The answer is saved in the knowledge source. When
a run message is received, the knowledge source starts to verify the original
top-level query again. If nothing has changed, the need to answer the same
question will arise again. Before actually asking, the knowledge source checks if
it already has an answer for the question. In that case, this answer is used. If
something does have changed, the backward chainer will notice it and alter its line
of reasoning. The unique number associated with each question allows multiple
backward chaining knowledge sources to be active and ask questions without risk
of intermixing the answers. This solution, where the partial verification of a
goal may be repeated is simple but inefficient. It is, however, correct from the
real-time aspect.

It is not obvious when a backward chaining knowledge source should be con-
sidered finished and thus become inactivated. The solution taken here considers
a backward chaining knowledge source to be active as long as it is not explicitly
inactivated by another knowledge source. Explicit activation and inactivation
are described in Section 7.8. An extra state value, pending, has been added to
take care of the situation when a backward chaining knowledge source is active
and ready to receive verification requests.

The questions that are posed to the user has the following forms.

Goal: (<frame> <attribute> <value>)

Question: 7 Is the attribute <attribute> of the frame <frame>
equal to <value>?

Legal answers: yes,no,?,(why <number> ...)

Goal: (<frame> <attribute> -x)

Question: 8 What is the <attribute> of <frame>?

7.6 Backward chaining knowledge sources 99

Legal answers: <value>,unknown,?,(why <number> ...)

Goal: <fact>
Question: 9 Is this true: <fact>?

Legal answers: yes,no,?,(why <number> ...)

All answers should be preceded by the corresponding question number. Negative
answers to any of the questions are not recorded in the database. This means that
the current system basically works according to the negation as failure principle.
A frame attribute that has the value nil is considered to have no value and may
thus be asked for.

Answering with a question mark gives an explanation about the attribute
or fact in question. The explanation text used is the attribute description string
of the frame declaration. In the case of an ordinary fact, the text is taken from
the association list *askable-fact-listx*.

“Why?” explanation facilities are provided. Answering a question with, e.g.,
the list (why 1), will print out the rule which caused the question to be asked
Subsequent numbers refer to consequents in the first rule and so on. Consider
the following example.

(defframe control-loop "" N
((changed-sign? "Yes or no depending on if the
derivative changed sign at
the relay switching time'" :askable)
(system-type '"SPR, Dominating-time-delay
or Second-order" :askable)
(noise-level "low, normal or high" :askable))
(design-principle "high-gain-feedback,
dead-time-compensation oxr
PID design" :askable))
)

(<- backward-1 ’buildp
‘rule-1
»((-x system-type SPR)
(-x noise-level low)
-2
(-x design-principle high-gain-feedback)))

(<~ Vackward-1 ’buildp
‘rule-2
’((-x changed-sign? yes)

100 Chapter 7 A Real-time Ezpert System Framework

-->
(-x system-type SPR)))

(global-make loop-3 cocntrol-loop)

The query (loop-3 design-principle -x) will result in the following interac-
tion. ’

Question: 0 Is the attribute changed-sign? of the frame locp-3
equal to yes?
->(answer ¢ 7)

Yes or no depending on if the derivate changed sign at the
relay switching time

Question: 1 Is the attribute changed-sign? of the frame loop-3
equal to yes?

~>(answer 1 (why 1))

It is needed during the evaluation of

Rule rule-2
(loop-3 changed-sign? yes)
-—>

(Loop~3 system—type SPR)

Question: 2 Is the attribute changed-sign? of the frame loop-3
equal to yes?

->(answer 2 (why 1 1))

It is needed during the evaluation of
Rule rule-1 |
(loop-3 system—type SPR)
(Loop-3 noise-level low)
-2
(loop-3 design-principle high-gain-feedback)))

Question: 3 Is the attribute changed-sign? of the frame loop-3
equal to yes?

~->(answer 3 (vhy 1 1 1))

(loop-3 design-principle -x) is the top-level goal

7.6 Backward chaining knowledge sources ‘ 101

Question: 4 Is the attribute changed-sign? of the frame loop-3
equal to yes?

->(answer 4 yes)

The current 1mplementation has semantic restrictions on the usage of variables.
The value in an object-attribute-value query may, e.g., not be a frame. This has
as an effect that it is impossible to express antecedents referring to frames which
are the values of other frames. For example, the following rule is not allowed.

(rule-x

(-x subframe -y)

(-y interesting-value OK)
-=>

(-x situation checked))

In order to circumvent this problem, all attributes belonging to a frame and to
the subframes of this frame may be accessed as if they all belonged directly to
the top-level frame. This is applied recursively on the subframes. The above
example now looks as ' '

N
-

rule-x
(-x interesting-value OK)
——>
(-x situation checked).

This solution is similar to what is allowed in EMYCIN (van Melle et al, 1981).

The backtracking that occurs when a subgoal fails does not handle variable
assignments, etc. This limits the power and expressability of the rules. The
reason for the short-comings is ease of implementation. An better solution would
be to use Prolog for backward chaining. The unification type of pattern matching
in Prolog would allow variables to be used freely. Prolog would also allow the
use of predicates in the backward chaining rules. Small Lisp implementations of
Prolog are available, e.g., (Nilsson, 1983; Carlsson, 1983; Abelson and Sussman,
1985).

The only way for backward chaining knowledge sources to obtain knowledge
which cannot be concluded from rules is currently to ask the operator. An in-
teresting modification would be to allow the backward chainer to ask questions
to other knowledge sources, i.e., to activate knowledge sources that extracts the

S

102 Chapter 7 A Real-time Ezpert System Framework

needed knowledge, and await their result. One building block of such a modi-
fication would probably be the possibility to use rules as methods described in
Section 7.3.

7.7 Procedural knowledge sources

Certain subtasks are best represented procedurally. Since the knowledge-based
system is implemented in Lisp, the most straightforward choice would be to
use Lisp. A knowledge source would then consist of a Lisp function that was
evaluated when the knowledge source was activated.

This would suffice if the knowledge source could immediately compute its
result and become inactivated. If, however, the knowledge source needs to be
suspended, e.g., in order to wait for an incoming message, standard Lisp is in-
sufficient. What is needed is a possibility to suspend the execution of a Lisp
function and to later resume the execution according to the following:

(Lisp function)
(Suspend)
(Lisp function) ; Evaluated after a resume

-

What is basically needed is a way to save and restore the state of the computation.
The catch and throw primitives of standard Lisp implements this in a limited
way. They can, however, only be used as an escape mechanism to jump out of
computations. What is needed is a way to also jump into computations. The
Lisp dialect Scheme, (Sussman and Steele, 1975; 1978), allows for this. It is done
with continuations which are first-erder data objects that represent the future of
a computation. The approach taken in this system is to use Lisp to implement an
interpreter for a procedural Lisp-like language that allows the computation to be
suspended. The language will in the sequel be referred to as SLisp (Suspendable
Lisp).

The interpreter

The interpreter is based on the interpreter for the language SCHUM (Charniak
et al, 1980). A similar interpreter is described in Abelson and Sussman (1985).
The interpreter is constructed as a register machine with six registers and a
stack. The interpreter is frame-based, 1.e., during a recursive call to a function,
all registers are pushed onto the stack instead of just the ones that are affected
by the call. This simplifies the interpreter.

-

7.7 Procedural knowledge sources 103

The syntax of SLisp is similar to Lisp. The SLisp language is lexically
scoped and functions are first order data types. All elements, also the first, are
evaluated in a function application form. The value of the first element is then
applied to the values of the rest of the arguments. SLisp data types are ordinary
S-expressions. Ordinary Lisp functions and symbols may be used inside SLisp.
The basic SLisp functions are the following:

(s~defun <name> (<arg> ...) <expression> ...)
Defines a new SLisp function.

(s-let (<var1l> <vall> <var2> <val2> ...) <expression> ...)
Binds the variables in the variable list to the corresponding values and eval-
uates the expressions. Returns the value of the last expression. The variable
values can be lambda-expressions which have the syntax (lam (<arg> ...)
<expression> ...).

(s-setq <variable> ’<value>)
Assigns the value to the variable. The SLisp equivalent of setq.

(s-cond (<expr> [<expr> ...]1) [(<expr> [<expr> ...1)1)
The SLisp equivalent of cond.) .

(s~do ...)
The SLisp equivalent of do with the same syntax.

The SLisp interpreter is implemented as a flavor. Methods that handle the mes-
sage set necessary for a knowledge source have been implemented. Each procedu-
ral knowledge source is connected to one SLisp function. A procedural knowledge
source returns the value of the last expression in the body of the associated SLisp
function when finished. This value is usually not used since the knowledge sources
normally are called from the scheduler. It is, however, also possible for a proce-
dural knowledge source to start another procedural knowledge source and await
its returned value.

The SLisp function connected to a procedural knowledge source may have
arguments. This is usually not the case when the knowledge source is called from
the scheduler. The arguments are used when the knowledge source is explicitly
started from another procedural knowledge source. This is described in more
detail in the next section. The stack machine registers and the global database
are stored as instance variables of the procedural knowledge source flavor. SLisp
variables can refer to the contents of the global database. This is done with the
following functions.

(the-frame <type> <arg> <val> <arg> <val> ...)
Returns the unique identifier of a frame that matches the given pattern.

104 Chapter 7 A Real-time Ezperi System Framework

Evaluation of the arguments can be forced with a ~. If no matching frame is
found the value nil is returned. The function can be used in the following
way.

(s-setq x
(the-frame control-loop
atttribute4 a-value))

(all-frames <type> <arg> <val> <arg> <val> ...)
Returns a list of the unique identifiers of all the frames that match the given
pattern. If no matching frame is found nil is returned.

(the-attribute ’<attribute> ’<frame-identifier>)
Returns the value of the attribute <attribute> in the frame identified by
<frame-identifier>.

(fact-match <pattern>)
Returns t if a fact that matches pattern belongs to the database. Otherwise,
it returns nil. o

SLisp can also modify the contents of the global database. This is done with the

functions global-fact, fact-in, scheduler-fact, global-make, make-in,

scheduler-make, global-modi, modi-in, global-remove-fact, and remove-
fact-in. They have the same meaning and syntax as in forward chaining knowl-

edge sources.

Real-time primitives

Real-time primitives have been added to the procedural knowledge sources in
approximately the same way as for forward chaining knowledge sources. They
are

(vaittime ’<time>)
Returns t when the time is over.

(waitentry ’<symboli> ... [:timeout ’<time>])
Returns t when a matching fact has been added. Returns nil if a timeout
has occurred.

(vaitmessage ’<symboll> ... [:timeout ’<time>])
The same as waitentry with the matching fact restricted to an incoming
message.

7.7 Procedural knowledge sources 105

Moni-
toring
Manual Relay Compute
control tuning PID
PID
control

Figure 7.4 Knowledge source sequences

(waitattribute ’<name> ’<attribute> ’<valued [:timeout ’<time>])
The same as waitentry for the frame case.

The stack machine interpreter simplifies the implementation of the real-time
primitives. A suspend operation is basically equivalent to an extra push op-
eration on the stack. ‘

7.8 Combination of knowledge sources N
The operation of the knowledge-based controller typically consists of a sequence,
with parallel parts, of knowledge source activations. Figure 7.4 describes a typical
startup situation. The rightmost part of the figure reflects the monitoring phase
during steady-state control. Several knowledge sources are then active simul-
taneously. One knowledge source takes care of the control algorithm currently
executing while the other knowledge sources implement different monitoring as-
pects. Three different methods for combining knowledge sources into sequences
have been implemented.

1. Knowledge source controlled sequencing

The most straightforward way to combine knowledge sources is to let knowl-
edge sources activate and deactivate each other. This is done with the following
constructs.

(activate ’<knowledge source>)
Activates a knowledge source, i.e., changes its status to active and its state
to ready.

106 Chapter 7 A Real-time Ezpert System Framework

Figure 7.5 Knowledge source sequence

(deactivate ’<knowledge source>)
Deactivates a knowledge source, i.e., changes its status and state to inactive.
Pending waittime requests, if any, are removed.

A knowledge source also has the possibility to wait until another knowledge source
is finished. This is done by waiting for the database element (inactivated
<knowledge source>). S

Procedural knowledge sources also have the possibility to call other proce-
dural knowledge sources and await their result. This is done with the function

(call ’<knowledge source> [<argument> ...]) ,
The current knowledge source is suspended and the-specified knowledge
source is activated. The optional arguments are passed to the SLisp func-
tion associated with the activated knowledge source. The original knowledge
source is resumed when the called knowledge source becomes inactivated.
The function returns the value returned by the called knowledge source.

A possible extension to the system would be to allow backward chaining knowl-
edge sources to ask questions to the controlled process using the described con-
struct.

2. Pre-stored sequences

Another alternative is to have a number of pre-stored sequences. Each sequence
transforms the state of the system from some initial state to a desired final state.
The state concept in this sense contains both the internal state of the knowledge-
based system and the state of the controlled process. One example of a sequence
could be the initial tuning sequence. Other sequences could be used to return to
steady-state control when different alarm conditions have been detected.

A small example of a sequence is shown in Figure 7.5. The capital letters
denote the knowledge source names. A sequence can be stored as a nested list

o

7.8 Combination of knowledge sources : 107

structure together with its initial and final states. The sequences are expressed
in the following EBNF syntax where p and s denote parallel and sequential,
respectively.

PLAN ::= (OPERATOR ARGUMENT [ARGUMENT..])
OPERATOR ::= <p> | <s>
ARGUMENT ::= <knowledge source> | PLAN

The example in Figure 7.5 looks like (s A (p (s B C) D) E (p F G)) in this
notation. The sequence notation has no possibility to express that certain parts of
the sequence should be executed conditionally or that a sequence conditionally
splits into different branches. Instead, the pre-stored sequence represents the
most probable sequence for each initial and final state. Conditional execution is
solved by having several pre-stored sequences. Each knowledge source has a set
of preconditions that must be fulfilled for the knowledge source to be applicable.
Before a knowledge source is started, the preconditions are checked. If they are
not fulfilled a new pre-stored sequence must be chosen.

Combination of knowledge sources into sequences is basically a procedural
operation. It is therefore natural to express it with procedural knowledge sources.
This is not possible with the procedural knowledge source primitives described
hitherto. What is needed is wait primitives that allows waiting for multiple
events. This is shown in the following example were the sequence from Figure
7.5 is implemented in a procedural knowledge source.

(s-defun example-sequence ()
(s-let (x nil)
(activate A)
(vaitentry inactivated A)
(activate B)
(activate D)
(s-setq x (waitentry (or (inactivated B)
‘ (inactivated D))))
(s-cond ((equal x ’(inactivated B))
(activate C)
(vaitentry (and (inactivated C)
(inactivated D))))
((equal x ’(inactivated D))
(vaitentry inactivated B)
(activate C)
(vaitentry inactivated C)))
(activate E)
(vaitentry inactivated E)
(activate F)
(activate G)))

108 Chapter 7 A Real-tvme Ezpert System Framework

The changes that have been made are that waitentry also allows conjunctions
and disjunctions of fact patterns. The conjunctive form of waitentry returns t
when all the separate patterns have been matched. This does not necessarily
mean that they all still remain in the global database when the knowledge source
1s resumed. The disjunctive form returns the pattern that first is matched.

This solution is attractive in that it relieves the scheduler from much of the
knowledge source combination task. It also easily allows conditional knowledge
source execution and sequences with different branches. The sequence selection,
1.e., the choice of which procedural knowledge source that should be active, can
also be handled by a separate knowledge source. This knowledge source could
be viewed as a ‘meta-knowledge source’ which contains knowledge about other
knowledge sources.

3. Dynamic sequence generation

The last and most complex method is to dynamically generate sequences. This
can principally be accomplished by associating goal states, i.e., post-conditions,
and initial states, i.e., pre-conditions, with each knowledge source. Each know}-
edge source can be viewed as an operator that transforms the state of the system
from its initial state to its goal state. A sequence is recursively generated by com-
paring the desired goal and the current state with the pre- and post-conditions
of the operators.

This formulation turns the problem into a planning problem. The scheduler
generates a plan which then is executed. Planning is an~Al area where much
work has been done. An overview of planning from an AI perspective is given in
Appendix E.

Planning possibilities

The current planning possibilities of the system are limited. FEach knowledge
source has associated sets of preconditions and goals. The planning information
is contained in a.planning frame in the scheduler.

(defframe plan-module
"Planning information for a certain control loop"

((actual-plan "The plan that the system is currently
following")

(control-loop "Name of the control loop'")

(actual-goal "The goal which the actual-plan tries
to fulfill")

(goal-stack "Stack of goals to be fulfilled")

0D

7.8 Combination of knowledge sources 109

The goal-stack consists of a stack of goal expressions. The planning process
begins with that the top element of the goal-stack is being popped to actual-
goal. The syntax of a goal expression is the following;:

(or (<state-description> ...)
(<state-description> ...)
o)

The elements in each disjunction term are implicitly combined by conjunctions.
The planning system tries to generate a plan for the first term of the disjunction.
If that does not succeed, then next disjunction term is tried. The disjunctive goal
expressions make it possible to express that either one of two goals are allowed
but that one goal is preferred before the other. When a plan has been generated
the execution of it starts. The plan execution continues until all the knowledge
sources in the last part of the plan are finished. Then the next goal element on
the goal-stack becomes the actual goal.

The preconditions of the individual knowledge sources has the same syntax
as the global goal expressions. The different disjunctive terms describe the dif-
ferent situations under which the knowledge source is applicable. The goals of a
knowledge source consists of a conjunction of state descriptions.

A plan is generated in reverse order by comparing the final goal with the
goals of the individual knowledge sources. Each knowledge source that is needed
to fulfill a goal generates a parallel branch in the plan. The preconditions of the
chosen knowledge source now become new goals, etc. This results in a plan that
is represented in reverse order and which branches every-time multiple knowl-
edge sources are needed. When a complete plan has been generated, the plan
representation is reversed and rearranged so that parallel plan parts with equal
partial knowledge source orderings are combined. Plans are stored using the pre-
stored sequence syntax. The plan in Figure 7.5 has the following form before it
is rearranged:

(s (p (s FE (p (s D A)
‘ (s C B A)))
(s GE (p (s D &)
(s CB A

The planning is performed in a dynamic environment. The dynamic environ-
ment may generate events that affect the plan execution. For example, load
disturbances may affect a tuning experiment and thus prevent the corresponding
knowledge source from fulfilling its goal. To avoid such problems, it is necessary
to check that a knowledge source actually has attained its expected goal after
its execution. This is implicitly done by checking that the preconditions of each
knowledge source are fulfilled before it is applied. If they are not fulfilled, replan-
ning is performed. Replanning is also the means to handle plans with conditional

S

110 Chapter 7 A Real-time Ezpert System Framework

branches. The original plan represents one branch.
The syntax of the state descriptions in the goals and preconditions are as
follows:

<state-description> :== <symbol>|
(<attribute> <value>)

<attribute> :== <symbol>

<value> :== <lisp value>

All information concerning a control loop is stored in the global database as
an instance of the control-loop frame. The information could be stored either
directly as attribute values or as subframes. All state information concerning
the planning is stored in a list as the value of the attribute planning-facts.
A state description in the form of a symbol is satisfied when the symbol is a
member of the planning-facts attribute of the control-loop frame or of any of
its subframes. A state description in the form of an attribute-value list is satisfied
if the attribute <attribute> in the control-loop frame or in any of its subframes
has the value <value>.

An example of a planning situation is the initial tuning phase. A plan is
generated which ends in a steady state situation where several knowledge sources
are active in parallel. One of these knowledge sources typically takes care of the
control algorithm while the others implement different monitoring aspects. The
goal expression which generated this plan could, e.g., be

(steady-state-control stability-monitoring).

The knowledge sources in the final phase of this plan will under normal circum-
stances never finish. This means that the execution of this plan will never finish.

During steady-state control, changing control conditions may cause the con-
trol performance to deteriorate. This should hopefully be deizcted by a moni-
toring knowledge source which then pushes a new goal onto the goal stack. This
new goal would cause a replanning. The new plan could, e.g., involve a re-tuning
of the controller followed by the original goal.

The knowledge sources can typically be divided into two groups: those who
have a defined termination and those who continues forever. The latter group
causes problems considering when the goals of these knowledge sources should
be considered fulfilled. Normally, goals are considered to be fulfilled when the
knowledge source is finished. Intuitively, the goals of the never-ending knowledge
sources can be considered fulfilled as soon as the knowledge source has started.
The planning system does currently not do that. For example, consider the above
steady-state control situation. A natural precondition for the stability monitoring
knowledge source would be steady-state-control. This is, however, not possible
to express in the described planning language. The reason for this is that steady-
state-control will never be fulfilled as the result of a finished knowledge source.

=

7.8 Combination of knowledge sources 111

What is needed is a way to express that the stability monitoring could start as
soon as the steady-state control knowledge source has been started.

A possible solution would be to increase the granularity of the knowledge
sources. This would mean that the steady-state control knowledge source was
divided into two. Omne which initialized the controller and one which merely
monitored it. This is however not a tempting solution .since it would force the
decomposition of already well-defined knowledge sources. After all, the main
motivation for the knowledge source structure is an attempt to divide the system
into natural, well-defined modules. In the current system, the individual state
descriptions of the goals are explicitly ordered in a way that ensures that the
corresponding knowledge sources will be activated in correct order. In the above
example, the steady-state control knowledge source would be started before the
stability monitoring knowledge source.

7.9 Discussion

A real-time expert system framework has been developed along the lines of an
ordinary operating system. Different knowledge representation methods could be
used. The intentional use for the system has been as a framework for development
of knowledge-based controllers. The real-time expert system framework per se
has probably a much wider applicability, e.g., in signal processing or process
monitoring.

The description of the system has mainly touched upon functionality. The
user interface is another very important part of an expert system framework. In
our case two groups of users can be seen: the process operator who is the end user
and the control engineer who is responsible for entering the control knowledge.
The reason why the user interface has been ignored in the presentation is mainly
that this part of the system is not as well-developed as the other parts.

The major reason for the poor user interface is the VAX implementation
with alpha-numerical terminals which, e.g., prevents window-based interfaces
with mouse interaction. Another reason is that the framework is mainly intended
for autonomous applications where the user support is not as important as in a
standard, consultative expert system application. Section 8.4 gives an example
of the interaction with the system.

The framework also has features which have not been described. The “How?”
explanation facility has been carried through in all different knowledge source
types. This means that a database element will be explained differently de-
pending on what type of knowledge source that added it. The system also has
functions that allow on-line editing and definition of new forward or backward
chaining rules and SLisp procedures.

The individual knowledge sources of the current system always run to com-
pletion before the control is transfered to the scheduler. With small modifications,
the system can be changed to allow interrupts among knowledge sources. The

=

112 Chapter 7 A Real-time Ezpert System Framework

events that may cause a knowledge source to become ready for execution are
either external, i.e., the arrival of a message from either the timer process, the
algorithm process, or the user interface process, or internal, i.e., the addition or
modification of a database element. These events can easily be detected from
the knowledge sources. The arrival of an external event is detected by checking
the number of messages in the incoming mailbox, Inbox. Internal events are
detected by examining the number of elements in the scheduler’s conflict set im-
mediately before and after a global database modification has been performed. If
the number of elements has increased, the database modification caused a match
in the scheduler, 1.e., the conditions for some waiting knowledge source have been
met.

Procedures which performs these types of checks can easily be added to the
forward chaining and the procedural knowledge sources. In the forward chaining
case the rule interpreter is extended in order to check the number of messages
in Inbox between each rule execution. If a message has arrived, the knowledge
source is suspended. Similarly, the knowledge source is suspended if a global
database modification caused an increase of the conflict set of the scheduler. For
procedural knowledge sources, the mailbox test can be performed each time a
new expression is evaluated. In the backward chaining case, it is not as clear
which modifications that are needed. L

The current system can only handle one single controlfloop. The expansion to
a multi-loop, DDC-type of system is, however, straightforward. This is basically
due to the pattern matching facilities of the system.

The scheduler of the system currently consists of around 25 rules. The
dynamic sequence generation feature requires around 20 additional rules. '

Examples of Knowledge

Based Controllers

The purpose of this chapter is twofold. Firstly, to prox?fdé examples that show
how the real-time expert system framework described in the previous chapter may
be used for implementing a knowledge-based controller. This involves examples
that show how algorithms and logic can be separated, what knowledge sources
may contain and how they can be combined, etc. Secondly, to illustrate vari-
ous types of “intelligent” behavior that may be exhibited by a knowledge-based
controller. The vision behind the knowledge based controller is a controller that
1s able to reason about process dynamics and specifications. The examples il-
lustrate these ideas in simple settings. The examples are focussed on the initial
tuning phase of the controller. Tuning procedures and heuristics for different con-
trol design techniques are presented. It should be emphasized that the examples
presented are mere examples and thus have limitations.

Two examples are described. The first is an elaborated version of relay
auto-tuning. Knowledge about the three points on the open-loop Nyquist curve
where the phase is 0°, —90° and —180° is extracted and used as the basis for the
control design. The knowledge-based controller has possibilities for P, PI, PD,
PID, and discrete pole-placement design. The knowledge source combination.of
the first example is done with a pre-stored sequence implemented as a procedural
knowledge source as described in Section 7.8.

In the first example it is assumed that the process is linear. The second
example considers the initial tuning for nonlinear processes. A less sophisticated
tuning procedure is used than in the first example. The controller estimates the
degree of linearity of the process and if required automatically builds up a gain-
scheduling table. The knowledge source combination is in this example instead

=

113

114 Chapter 8 Ezamples of Knowledge Based Controllers

Operator
inquiry
1

Manual
control

Relay tuning

ist order = 2nd order
Crude control Crude control
design design
1 1
Reference Reference
change change
I ' I
Final control Relay tuning
design with integrator
1
Final control
design

Figure 8.1 Three-point based tuning procedure

implemented using the planning mechanisms described in Section 7.8.

A detailed description of the tuning procedure of the first example is given in
Section 8.1. The next sections describe the tools. The numerical algorithms used
are given in Section 8.2 and the knowledge sources are described in Section 8.3.
A session with the system is described in Section 8.4. Section 8.5. outlines how
the first example may be extended. This section further shows some of the power
of the knowledge-based control framework. The second example is described in
Section 8.6. Less details are given since the tools used are basically the same as
in the first example.

8.1 The tuning procedure

The tuning procedure that will be described in this example is relay based. It
uses three points on the Nyquist curve: the “—180° point”, the “—~90° point”
and the steady state gain. The standard relay auto-tuning method, (j\striim and
Hagglund, 1984b), only uses the first of these points as the basis for the control
design. This does not work well for all types of processes, (Astrém and Hagglund,
1984c).

The tuning procedure follows the flow-diagram of Figure 8.1. The system
starts by asking the operator a few questions. The operator is then required to

-

8.1 The tuning procedure 115

manually control the process until it is in rest at the desired operating point. A
relay experiment is performed and based on its results the process is classified
either as being of second or higher order or as having dynamics that well may
be approximated by a first order system. In the first case, a second relay experi-
ment with an integrator inserted into the feedback loop is performed to acquire
the “—90° degree” point on the Nyquist curve. A change in reference value is
performed to find out the static gain of the process.

The tuning procedure contains considerable amounts of heuristics. For ex-
ample, at several stages of the tuning procedure, approximating process models
are obtained. The choice of model structure depends on different measurements
which may be contradictory. It is often the case that, given a model structure,
the parameters in the model can be calculated from different principles with dif-
ferent result. Which model to choose is determined heuristically. The tuning
procedure is also a good example of the large complexity of the problems. The
following description illustrates the main ideas behind the tuning procedure as
well as some of the heuristics used. Space requirements prevent a complete listing
of the contents of the different knowledge sources.

Operator inquiry

Three different types of questions may be posed to the operator during the initial
phase. The first type concerns information that may be useful for the controller
to determine the process dynamics. Currently, only a rough estimate of the
dominating time-constant of the process is asked for.

The second type of questions concerns closed loop control specifications. The
questions that are currently asked is the value of the maximum allowable relative
steady state error and the control objective. The control objective indicates what
is most important: fast set-point response or good load disturbance rejection.
Other types of specification information that could be requested are closed loop
bandwidth, closed loop overshoot or maximum variations in the control signal
due to measurement noise during steady state control. Currently, the overshoot
and the allowable variations in the control signal are given default values and a
reasonable bandwidth is determined by the controller.

The third type of information that is required by the controller regards the
configuration. This involves, e.g., information about allowable signal ranges.
These are currently given default values.

Manual control

A precondition for most auto-tuning experiments is that the process is in steady
state at the desired tuning point. To achieve this, the human operator is required
to manually control the process until the system is at rest at the desired operating
point. It may be argued that involving the operator in the tuning procedure is in
contrast to the spirit of auto-tuning. During the initial phase of the tuning when
no process knowledge has been acquired, it is, however, the only sensible thing

P

116 Chapter 8 Ezamples of Knowledge Based Controllers

to do. It assures that the system works and that the process can be controlled
around the desired operating point. The argument is supported by extensive
industrial experiments with simple auto-tuners (Baath, 1987).

When the operator has reported that the process is in steady state, the
controller attempts to verify this by comparing the mean value of the process
output over two subsequent time intervals with the length taken as the time-
constant estimation. The measurement noise is determined as the difference of
the maximum and minimum values of the process output.

Adding an integrator to the relay feedback loop in order to find out the
—90° point is only reasonable for processes without pure integrators. Indica-
tions whether this is the case can also be found during manual control. In this
experiment, it is assumed that the process has no integral action.

Relay initializations

The value of the relay hysteresis, ¢, is determined from the measurement noise.
The more measurement noise that is present, the larger hysteresis is needed in
order to avoid erroneous relay switchings. A minimal value of the hysteresis is
prescribed to avoid problems with too fast relay oscillations. For example, the
oscillation frequency for first order system goes to infinity when the hysteresis
approaches zero. Since the relay is implemented as an algorithm in the computer,
it has a smallest allowable execution rate which may not be exceeded by the
relay oscillation frequency. A value of the desired oscillation amplitude is also
determined from the noise range. The relay bias is set as the current steady state
control signal. During the first half-period of the oscillation the relay amplitude
is increased lineary from zero until either it reaches a defaiilt amplitude or the
error signal exceeds the desired oscillation amplitude. These initializations are
similar to the what is used in the regular auto-tuner.

Oscillation measurements

During the relay experiment, the amplitude and hysteresis of the relay are ad-
justed in an attempt to obtain the desired oscillation amplitude. When the
oscillations have stabilized, the oscillations are measured. Several quantities are
measured as shown in Figure 8.2. The lengths of two subsequent half periods,
T./2 are measured by counting the time between the relay switching. The oscilla-
tion amplitude, A for two subsequent half periods are measured as the peak values
of the amplitudes during the half periods. The time, 7 that it takes for the error
signal to reach its maximum value is measured for two half periods. Six equidis-
tant values of the error signal during one oscillation period, eg, e, €3, €3, e4, and
es, are measured in order to fit a discrete model to the relay oscillations. The
error signal is low-pass filtered to decrease the influence of measurement noise.
Three values on a half period are sufficient to fit the second order pulse transfer
function H(z) = (b1z + b2)/(2® — az), corresponding to the continuous model
G(s) = kye™*L /(1 + sT), to the oscillations. The reason for taking all measure-

=

8.1 The tuning procedure 117

I:
I2

Tc/2 1Tc/2
T

)

)
s

C
S

Figure 8.2 Relay oscillation measurements. The value A stands for the peak error
amplitude during one half-period.

ments at two subsequent half periods is twofold. It decreases the influence of
noise and it gives an estimate of how symmetric the oscillations are.

Oscillation analysis I

The magnitude and phase of the transfer function at the oscillation frequency can
be estimated. Using describing function arguments, the phase at this point would
be slightly less (since the hysteresis is positive) than —180°. This estimate is often
poor. It is particularly poor for systems with low order dynamics. For example,
first order systems have a phase which always is larger than —90° degrees.

A better estimation of the phase can be made from the value of 7. The
estimate is computed as

27T

T

arg G(iw,) = ——7—2T— -

where w, is the oscillation frequency and T, is the oscillation period. Processes
where the process output is sinusoidal will have 7 = T, /4, i.e., a phase of —.
Processes with 7 = 0, i.e., the class of PI-controllable systems defined in Section
3.1, will all have the estimated phase —m/2 even if the correct phase is larger. A
better estimate of the phase would be attained if a FFT analysis was performed
during the relay experiment. This would also give an accurate measurement of
how sinusoidal the output is. This has not been implemented.

The magnitude of transfer function is determined using the describing func-

118 Chapter 8 Ezamples of Knowledge Based Controllers

tion method. The relay has the equivalent gain

4d
ko=

where A is the measured peak error amplitude. Hence,

; TA
|G (iw,.)] = i
The quality of this estimate depends of the actual phase and will be best for
processes with —180° phase. For Pl-controllable systems the estimate is entirely
wrong. Here, the measured oscillation amplitude is determined only by the relay
hysteresis. The lack of information is no problem since for these processes, the
control design is not based on measured points on the Nyquist curve.
At this stage in the tuning procedure the process is classified either as a
PI controllable system, i.e., it has dynamics that well may be approximated by
a first order system, or as a system of second or higher degree. The criterion
7/T. < 0.05 is used to test if the process can be approximated with a first order
system, G(s) = k, /(1 + sT).

PI-controllable systems

For Pl-controllable systems it is not worthwhile to proceed with a new tuning
experiment with an integrator. Instead, a discrete model fitting is performed.
The proper discrete model would be H(z) = b,/(z — a). Using the arguments
behind the discrete model fitting method of Appendix A, it can be shown that a
model fitting here only requires 2 samples per half peried. It is however possible
to use the previous second order discrete time model. For a first order system
the coefficient b, is small compared to b; and may be set to zero. Comparing
the magnitudes of b; and by gives an additional possibility to test if a first order
niodel is appropriate. In the current system this is not done.

A continuous model is computed from the discrete model and and validated.
Several alternative methods can be used. In the system, the phase and magnitude
of the model at the oscillation frequency is compared against those calculated
from the measurements. The measured oscillation period is also compared against
the theoretically computed value. For a first order system, G(s) = k, /(1 + sT),
under relay feedback with relay amplitude d and hysteresis ¢, the exact value of
the oscillation period is

kod —e 4T

In the current version the result of validation is merely printed on the terminal.
An alternative would be to reject the model, if the result of the validation is
not good enough. A third validation method which not has been implemented is

=

8.1 The tuning procedure 119

to compare the measured values of the error signal against the theoretical ones
given by Theorem 3.2.

The measured discrete model does not always has realistic parameter values,
e.g., 0 <a < 1. Problems arise in particular when the relay hysteresis is small,
L.e., the oscillation frequency is high. In that case, the oscillation curve becomes
piecewise linear, i.e., the system has the dynamics of a pure integrator. The
measured values then approach the values

€

€9 = ——

€
€ = € €1 — -3' v 3
and hence, according to Appendix A, a = 1. In this case, noise disturbances
may easily cause a to become larger than one. This means that the continuous
model parameters k, and T' cannot be computed. The ratio between them can,
however, be computed through Equation (8.1).

In order to complete the continuous model one of the coefficients k, and T
must be determined. This can be done in several ways. The relay experiment
can be repeated with a larger hysteresis value. This takes some time. The
approach taken in the experiment is to design a crude controller from the available
knowledge and to make a small change in the reference value. The steady state
gain k, can then by computed by measuring the difference in steady state control
signals. e ,

A PI controller is designed as if the process had integrator dynamics, i.e.,
G(s) = k;/s, where k; is determined from the equation for the exact oscillation

period for an integrator

R
T, = —
dk;
The gain K of the PI controlier is determined as
_ A
T An

where Au is the specified allowed steady state control signal deviations and An
is the measured noise range. The integration time 7} is determined from the
characteristic equation

Kk;
52 + 2{wps + wg = 52 + Kk;s + —T——
Hence
_ 4
YKk

When an estimate of the steady state gain has been achieved, T; is adjusted to
instecd {11! the characteristic equation
14+ Kk Kk
2 _|_(+ Kky) 4
T TT;

s? 4+ 2(wos + wl =s

120 Chapter 8 Ezamples of Knowledge Based Controllers

This design is also used if a complete first order model is obtained initially. The
integral part may be omitted if the steady state error with proportional control,
1/(1 + Kk,), is smaller than the specified allowed steady state error.

Systems of second or higher order

If the system cannot be approximated by a first order model, a discrete-time
process model is computed. Three alternative models can be computed depending
on the relation between the time delay of the process and the sampling interval
of the discrete model. The models are

_ b12+b2
(z) = z(z — a)
b12+b2
(=) = o)
blz-i-’.’-’g
B:(:) = 5=y

Guidelines for selecting one of these models are found from 7 and from the model
coefficients in the three cases. The model that has a realistic value of a, if one
exist, and where the time delay is larger than 7, is considered correct and the
corresponding continuous process model is computed. This model coincides with
the true process dynamics for frequencies around the oscillation frequency.

The model is validated by comparing the phase and magnitude against those
calculated from the measurements and by comparing the.measured. oscillation
period with the theoretical oscillation period. For the model G()= kpe /(14
sT') the period is
kyd — ¢

Te= 2 e 1 ¥ <

As before, the results of the validation are only printed on the terminal.

A crude PI controller is designed in order to determine the true steady state
gain. Since it is not certain that a process model is available, the design is based
only on the oscillation frequency and amplitude. The Ziegler-Nichols rules are
currently used to determine the controller parameters. A better solution would
be to use a modified version with more conservative behavior. A small change in
the reference value is performed and the steady state gain is computed.

Relay tuning with an integrator

A second relay experiment is performed with an integrator inserted in the feed-
back loop. For most physical processes, the amplitude and frequency curves of
the Bode plot decreases with increasing frequency. The oscillation frequency will
then typically decrease when an integrator is used. For the same reason, the
oscillation amplitude will be larger.

-

8.1 The tuning procedure 121

mn I\
yref e 1 y
— - G(s)
-1 o

Figure 8.3 Relay experiment with an integrator after the relay.

The experiment can be performed in two different ways. The integrator can
either be inserted after the relay or before the relay. An integrator after the
relay according to Figure 8.3 give rise to a triangle wave being fed to the process.
This signal contains less high frequencies than a square-wave signal and is thus
better suited as input signal for the discrete model fitting at a lower frequency.
Also, a relay with an integrator like this does not need any bias value. This
means that the step where a crude controller is designed in order to find out the
steady state gain may be omitted. The new relay experiment could instead be
started immediately at a slightly different operating point and the steady state
gain could be computed through comparing the mean values of process input and
output during the two experiments.

The disadvantages mainly concern the robustness of the experiment. Since
the process gain is usually much higher at the —90° point than at the —180° point,
the relay amplitude must be much smaller than before to maintain reasonable
signal amplitudes during the experiment. This implies that the relay hysteresis
must also be decreased to obtain an oscillation point close to —90°. This is,
however, not possible due to the measurement noise. Putting the integrator after
the relay also causes problem for the discrete model fitting. The equations of
Appendix A can no longer be used.

Inserting the integrator before the relay, as shown in Figure 8.4, gives a
more robust experiment. The signal fed to the relay is internal to the computer
and may thus take values that would be far too high in the real process. This
means that the old values of the relay amplitude and hysteresis can be used. The
integrator also has a low-pass filtering effect on the measurement noise. In the
discrete model fitting the same equations can be used as before. Consequently,
this way of inserting the integrator is used in the experiment.

It is important to choose a correct initial value for the integrator. The
error signal, yr.y — y, is close to zero when the experiment is started in steady
state. During steady state oscillations, the integrated error reaches its peak
value when the true error signal is zero. Because of this, the integrator should

S

122 Chapter 8 Ezamples of Knowledge Based Controllers

DA O e

Figure 8.4 Relay experiment with an integrator before the relay

be initialized to the peak value of the integrated error to get fast convergence
to periodic oscillations. This value is not known in advance. In the experiment,
it is estimated based on the previously measured oscillation amplitude when no
integrator was used.

Oscillation analysis IT

When the relay oscillation is stable, the same measurements as before are made
with the difference that the curve form measurements eg..e5 are made on the
true error signal. A new point on the open loop Nyquist curve is extracted using
the same technique as before. A discrete time model that approximates the true
process dynamics around the oscillation frequency might also be obtalned This
process model is validated in the same way as before. o

A third process model that approximates the true process dynamics for
frequencies close to zero is obtained from the measured steady state gain, G(0),
and the —90° degree oscillation point. The model is computed from the following
equations

k, = G(0)
G iw—90)| = —2
1 -+ (w_goT)2
arg G(tw_gp) = —arctanw_goT — w_go L

Knowledge of three different points on the Nyquist curve have now been
extracted. At best, three different models have also been computed that each fits
the true process at a certain frequency. The knowledge can be used to classify the
process in different ways. For example, a dominating time delay can be indicated
in several ways. One way is to look at 7 in the first experiment. If 7 > T, /4,
Conjecture 2 of Section 3.1 indicates that the process has a dominating time
delay. If |G(iw_go)| ~ |G(tw—180)| and w_1g9 ~ 2w_gq, the same thing is true.

The coefficients of the three different process model need not be the same.
On the contrary, they are often not even close to each other. If they are close, it

8.1 The tuning procedure 123

is probable that the true process dynamics consists of a first order system with
a time delay.

The choice of final model

Based on the information available, the system selects the final process model
which will be used for the controller design. The system currently has two choices,
either a first order system with time delay, G(s) = k,e™*F /(1 4 sT) or a second
order system, G(s) = k, /(s> + a15 + ay). The first order system with delay is
intended for processes with a dominating time delay and for processes with high
order dynamics, e.g. G(s) = 1/(1+ sT)" for large values of n. The second order
model is intended for processes with second order dynamics.
The rules for selecting between the final models are as follows.

1. If 7 > 0.8 x T /4 then a first order model with delay is chosen. This rule
catches processes with a dominating time delay and processes with high order
dynamics.

2. If the magnitudes of the frequency curve at the —90° point and the —180°
point are close and the frequency at —180° is about twice the frequency at —90°
point then a first order model with delay is chosen. This rule catches processes
with a dominating time delay.

3. If the frequency at —180° is about twice the frequency at —90° point then
a first order model with delay is chosen. This rule catches processes w1th high
order dynamics. 4

4. If the parameter values of the three available first order models with
delay are close then a first order model with delay is chosen. This rule catches
processes with first order dynamics and time delay.

5. Otherwise, a second order model is chosen.

The calculation of the final model

Depending on what type of final model that has been selected, different methods
are used to compute the parameters in the model.

If the final model is a first order model with delay and this choice has been
based on Rule 4 above, the parameters are calculated as the mean values of the
parameters of the models. If the final model is of the same type but the choice
has been based on some other rule, the calculation of the model parameters is
not as straightforward. In this case, the models are ambiguous and it is not
clear which model that can be trusted. Due to this, the calculation of the final
parameters is not based on the models. Instead, a first order model with delay
1s fitted to the three measured frequency points.

ES

124 Chapter 8 Ezamples of Knowledge Based Controllers

One method is to approximate the three known points of the Nyquist curve
to a first order model with delay using least squares fitting, (Lilja, 1987). The
calculations involved for this are, however, substantial. Instead, a model is fitted
to the —180° point and the steady state gain. The final parameters are computed
as the mean values of the parameters in this model and the parameters in the
model previously obtained by fitting to the —90° point and the steady state gain.

If the final model is a second order system, the parameters are obtained by
fitting the model to the —180° point and the steady state gain. The reason why
the —90° point is not used is that for second order systems, a PID controller will
be selected as the final controller. The regulator design is sensitive to the closed
loop behavior at the cross-over frequency. For PI control, the cross-over occurs
when the open-loop dynamics has a phase of —60° — —90°. For PID control, it
occurs closer to —180° degree. Therefore it is in this case important to have a
good model around the —180° point.

The final control design

Different control design methods are used depending on the chosen model. A
PID design is performed using the oscillation measurements of the first relay
experiment and the modified Ziegler-Nichols methods of Appendix A. This is
basically the design method used in the standard relay auto-tuner (Astrém and
Hagglund, 1984b). This controller is calculated only for comparison and is not
selected as the final controller.

If the final model is a first order system with a time delay and L > 1.5 % T,
a discrete pole-placement design is performed. The sampling interval is chosen
as L and the two discrete poles are placed at 0.2. A digital low-pass filter is used
on the process output y. This discrete design has its limitations. For example,
the sampling interval is quite long. This means that disturbances will not be
detected immediately.

If the final model is of second order, a PID controller is designed to give the
closed loop characteristic equation

(82 + 2Cwps 4 2) (s + wp) =0

The value of ¢ is by default taken as 0.707. The value of wy is implicitly deter-
mined from the choice of K in the PID controller. This choice is based on the
steady state gain of the PID controller according to

Au
K1+ N)=—
(1+N) An
The value of N is always chosen as 5. ‘
If the final model is of first order with a time delay such that L < 1.5 x T,
a dominant pole design is performed. The poles can be placed using either PI,
PP sy PID control.

-

8.1 The tuning procedure 125

In the PI case, the controller parameters are chosen so that the closed loop
poles are dominant. This means that the controller parameters k and k; in the
PI controller, Gg(s) = (k + k;/s), are chosen so that

k; .
14+ (k+ et z.wo\/1762_)6’(—((.00 + zwo\‘/l -¢2)=0

where (is specified and wg is a design parameter. Solving this equation for
different values of wq gives a set of controller parameters. Similar equations are
obtained for PD control.

In the PID case the poles are chosen as s = —(wptiwgy/1 — (% and s = —wy.
This gives the equations

1+(k+%+kds)G(s):0 , 8= —Cwgxiwgy/1—(?

and k
1+ (k + — kdwo)G(—wO) =0
—wp

Scanning the design parameter wy for the three different controllers gives
three sets of controller parameters. For each set, the best controller is selected.
For the PI and PID controllers, the choice is the controller parameters where the
integral gain k; takes it maximum value under the additional constraints that all
of the controller parameters in that case should be positive and that not wq is so
large that additional closed loop poles on the real axis move in and destroy the
selected pole dominance. This is checked by investigating™ the solutions to the
equation

1+ Gr(—p)G(~p) =0

with Gg(s) as either the PI or the PID transfer function (Astrom and Hagglund,
1988).

‘or the PD case, the best choice is the one where the proportional gain k is
maximized under the same constraints as before.

Which controeller type that should be selected is determined differently de-
pending on what is most important: fast set point response or good load dis-
turbance rejection. It the set point response is most important, the controller
with the largest value of wy should be selected. If this happens to be the PD
controller, it must be ensured that the steady state error is acceptable. If so, the
PD controller is selected as the final controller. If not, the values of wy for the
best PID and the best PI controller are compared. The PID controller is selected
if 0.7 * woprp > wopy. Otherwise, the PI controller is selected. The reason for
the factor 0.7 is a desire to not choose the mere complex PID controller if the
return in performance does not motivate it.

When good load disturbance rejection is most important, the PD controller
is first investigated. If the steady state error is acceptable, the PD controller is

o

126 Chapter 8 Ezamples of Knowledge Based Controllers

selected. 1If not, the values of k; for the best PID controller and the best PD
controller are compared. The PID controller is selected if 0.7 % kiprp > kipy.
Otherwise the PI controller is selected. The reason for the factor 0.7 is the same
as before.

At this point a controller has been selected and started. The process has
been approximated with either a first order system, a first order system with a
time delay, or a second order system. Depending on the model, an appropriate
design method has been used.

Limitations of the tuning procedure

The implemented tuning procedure has limitations. It is assumed that the process
has a finite, positive steady state gain. The tuning procedure is sensitive to load
disturbances. Disturbances that occur during the relay experiment might be
detected by monitoring sudden changes in the relay frequency. In that case
the tuning procedure could be interrupted or the relay bias adjusted. This is
currently not done. Since the tuning procedure is based on relay experiments,
it cannot handle all types of processes. One example is processes with poorly
damped oscillatory modes.

8.2 The numerical algorithms

The numerical algorithms needed for the described tuning procedure are the
following, ' ‘

v

The PID algorithm
The PID control law used is the following due to Astrém (1987),

Ty

ult) = K (Byres (1) — y(t) + me(t) ~ T

Tip

where p = d/dt is the differential operator. The parameter 8 gives a possibility
to position the zero introduced by the regulator and to thus reduce the overshoot
to step changes in the reference signal. The PID controller introduces a closed
loop zero at —1/8T;. By choosing f as B = 1/Tiw where w is the real, closed
loop pole closest to origin, the overshoot will be reduced. The control law with
anti-reset windup is discretely implemented as

€ = yref - y;

zZ = ad * z -~ bd * (y - yold);

7 := k * (beta * yref - y) + ipart + z;
u = v;

if u < ulow then u := ulow;

8.2 The numerical algorithms 127

if u > uhigh then u := uhigh;

analog_out(u);

if ti > O then ipart := ipart + aw * (u - v) + aixe;
yold := y;

With ai, ad, bd, and aw defined as

ai := k * h / ti;

ad := (2 *td-n*h) / (2*td +n * h);
bd := 2 * k *n * td / (2 * td + n * h);
aw := h / t0;

with appropriate safeguards when ti and td are small. The parameter h is
the sampling interval. The parameter t0 can be interpreted as a time constant
that determines how quickly the integral is reset when u has saturated. The
parameters that may be set are: h, k, ti, td, n, beta, t0 and u0. The
parameter u0 is the correct steady state control and is used to set the integral
part of the controller, i.e:

ipart := u0 + K*(1 - beta)*yref.

The message (Pid Stop Ustat walue) with the steady state control signal is
sent when the algorithm is stopped.

The relay algorithm
The relay algorithm implements a relay with hysteresis where an integrator can
be inserted before the relay. The relay algorithm contains the logic needed for
adjusting the hysteresis and the amplitude and for determining when the relay
oscillations are in steady state. The relay typically needs somewhere between 4
and 7 half periods to reach steady state oscillations depending on whether the
relay parameters need to be adjusted or not. When the relay is initialized, the
amplitude increases linearly as a precaution against processes with very high
gain. In the OPS4 prototype system, the adjustment logic was implemented
as rules in the knowledge based system. As more experience was gained and
the logic became more and more stable, it has been natural to move it to the
algorithm. The integrator could also be implemented as a separate algorithm.
The interaction between the relay and the integrator is however so substantial
that it is easier to implement it together with the relay.

The parameters which may be set are the relay amplitude d, the hysteresis ¢,
the desired oscillation amplitude, the bias value, and a parameter that determines
whether the integrator should be used or not and sets the initial value of the
integrator.

The relay algorithm sends the following messages to the knowledge based

128 Chapter 8 Ezamples of Knowledge Based Controllers

system.

(relay d changed value eps walue) The relay amplitude and hysteresis have
been changed.

(relay d decreased value) The relay amplitude has been decreased.

(relay ready half-periods value) The relay oscillation has become stable
after value half periods.

(relay load disturbance) A load disturbance has been detected during the
experiment. This is the case if a relay switching still has not taken place twice
the time after it was expected, i.e., twice the previous half period time.

The oscillation analyzer

The oscillation analyzer measures the steady state relay oscillations. The mea-
surements take four half periods and they start when the relay switches from
negative to positive. During the first two half periods, the peak amplitudes, os-
cillation half periods, and 7 values are measured. Six equidistant samples of the
error signal are measured during the two last half periods. The error signal is
low-pass filtered with a first order filter with a time constant of 1/10’th of an
oscillation half period. The algorithm has no parameters. ,

When the measurements are ready, two messages are sent to the knowledge
based system:

(osc-analyzer periods val val amplitudes wal val tau wal val)

(osc-analyzer sample-values el el e2 e3 ef e5)

=

The algorithm for computing the statistics of y and e

This algorithm gathers statistical information about the process output and the
error signal. It contains two arrays where the actual y and e values are stored each
time the algorithm is executed. When the arrays have been filled with values,
the mean values, variances, and maximum and minimum values are reported to
the knowledge based system.

The parameters which can be set are sampling time of the algorithm and
the length of the arrays. The product of these parameters determine the rate at
which the statistics are reported.

The messages which are sent back are

(y-statistics meany val vary val maxy val miny wval)
and

(y-statistics meane val vare val maxe val mine wval)
The algorithm can respond to the following questions:

(y-value time) returns the answer message (yval val) where valis the value
of y, as specified by fime. If time is zero, the last measured value is returned.

=

8.2 The numerical algorithms 129

(y-stat {ime) returns statistics information about y measured over the time
specified. If time is negative, the statistics are measured over the time period
beginning when a statistics message last was sent.

Similar questions are available for the error signal.

The algorithm for computing the statistics of u

The statistics algorithm for u is identical to the previously described algorithm
but instead operates on the control signal u. The reason for the separation is
that the control signal typically changes much slower than the process output
and error.

The level crossing detector

The level crossing detection algorithm detects level crossings for the signals y, e
or u. When a signal crosses a specified level in a specified direction, the mes-
sage (level-crossing signal level time {ime) is sent to the knowledge based
system. The message contains the time that the signal has taken to reach the
level.

The parameters that can be set are which signal that is concerned, the level,
and information about up or down crossings. Several signals and levels can be
monitored simultaneosly. ‘

When a signal has crossed a level, that signal is no longer monitored around
that level. A useful extension to the algorithm would be to send return messages
each time a signal crosses a level. The algorithm should haye hysteresis and it
should return the time since the last crossing.

The digital filter
The second order filter

k(bos2 + b12<LU08 + bzw(z))
s2 + 2Cwos + wi

G(s) =

is implemented using Tustin’s approximation. The b; parameters are used to give
different filter characteristics. The values bg = by =0, by = 1 gives a low-pass
filter, by = by = 0, b; = 1 gives a band-pass filter, and b, = by = 0, by =1
gives a high-pass filter. A notch filter can also be obtained. The parameters that
can be set are the sampling interval, wg, {, k, bo, by and b,.

The filter is currently used only as a low-pass filter on the process output y.
In a more elaborate system, the discrete filter would be a standard component
will: many usages.

130 Chapter 8 Framples of Knowledge Based Controllers

The linear discrete controller

The algorithm implements the RST-control law

R(q)u(k) = T(q)yres (k) — S(q)y(k)

with the order of the R, S and T polynomials limited to 2. The control law
is implemented with anti windup compensation using an observer polynomial
according to Astrom and Wittenmark (1984, p. 372).

Ao =Ty — Sy+ (4o — R)u

u=sat v

The parameters are the sampling interval, the coefficients in the R, S, T and
A, polynomials, and the initial steady state value of the controller.

The execution order

The algorithms are executed in the following predetermined order:

while true do
begin
Set_sampling_eventflag(main_sampling_time);
y := AnalogIn(inchannel);
if actively_stat_algorithm] then Y_statistics(execute);
if activel[dig_filter_algorithm] then Dig_filter(execute); -
if active[pid_algorithm] then Pid(execute); ,
if activel[rst_algorithm] then Rst(execute);
if activelrelay_algorithm] then Relay(execute);
if activelosc_analyzer_algorithm] then Osc_analyzer(execute);
if active[u_stat_algorithm] then U_statistics(execute);
if active[level_algorithm] then Level_cross(execute);
if message_in_Outbox then read_message;
vait_for_sampling_eventflag;
end; ‘

This ordering ensures that the statistics is measured on the non-filtered process
output. The oscillation analyzer accesses a few variables that belongs to the relay
algorithm, e.g., the current value and the last value of the relay output. These
values are needed by the oscillation analyzer to detect relay switchings.

The algorithm handler

A separate module, the algorithm handler, provides a common interface between
the knowledge sources and the algorithms. Its main task is to convert the mes-
sages sent from the knowledge sources to the algorithms into the correct syntactic

-

8.2 The numerical algorithms 131

form and to keep an up-to-date record of the status of all the numerical algo-
rithms.

The algorithm handler is implemented as a YAPS system. The algorithm
information is stored in the following frames.

(defframe algorithm
"Information about one algorithm"
(name

(shortname "The name used in the communication")

(description "Brief description of the algorithm")

(state "Inactive or active depending

if the algorithm is executing."
:default inactive)

(parameters "List of parameter-description frames

describing each parameter.')

(questions "List of question-description frames
describing each question that the
algorithm can answer")

(return-messages '"List of return-message-description

frames describing the messages that may
come from the algorithm")) .

0)

(defframe parameter-description

"Information about an algorithm parameter"

(name '

shortname

algorithm

description

(actual-value "Current value')

default-value

(argument "Used or not-used depending on if the
argument is a dummy variable or not"
:default used))

)

(defframe question-description

"Information about a question to an algorithm"
(name

shortname

21lzorithm

description

(argument :default used)

(answer "Description of the returned answer"))

132 Chapter 8 Ezamples of Knowledge Based Controllers

0))

(defframe return-message-description
"Information about a return message"
(algorithm
(description "Description of the syntax and semantics
of the returned message')) ’

O

Global parameters such as the main sampling period, the set point and the con-
trol signal during manual control, are stored as parameter-description frames
where the algorithm attribute has the value global.

When a message is sent to the algorithms, the algorithm handler converts
it to the correct syntax, e.g., substitutes shortnames against parameter names,
and changes the attribute values of the different frames.

The knowledge sources may access the information about the algorithm and,
e.g., acquire parameter values. This is implemented through the emulation of
object-oriented programming described in Section 7.3. For example, when a
knowledge source adds the fact (parameter-value algorithm parameter) to the
algorithm-handler, a rule is triggered which returns the actual value of this pa-
rameter to the knowledge source. This rule looks as: !

(p parameter—value.

(parameter-value -algorithm -parameter)
(frame parameter-description
name -parameter
algorithm -algorithm
actual-value -value)
-->
(remove 1)
-value)

The algorithm handler also contains rules that print out different descriptions of
the algorithm status.

8.3 The knowledge sources

The following knowledge sources are used in the first example:

Operator-inquirer: Asks the operator a few questions about the process char-
acteristics and the control specifications.

8.3 The knowledge sources 133

Manual-control-supervisor: Supervises the manual contrel phase. Checks
that the process is in steady state and measures the noise range.

Relay-supervisor: Initializes and supervises the relay experiments. Performs
preliminary analysis of the relay measurements.

Modeller: Contains knowledge about continuous model building and valida-
tion. This involves, e.g., fitting models to frequency measurements, converting
between discrete time and continuous time models, choice of final model, etc.

Designer: Contains knowledge about control design, e.g., characterization of
the control problem, selection of controller structure, computing controller
parameters, etc.

Control-supervisor: Takes care of manual parameter changes commands to
the different controllers.

Explainer: Generates explanations for questions about the process and the
controller.

Y-statistics: Gathers statistics on the process output and error.
U-statistics: Gathers statistics on the control signal.

All of these knowledge sources are of the forward chaining type except the
Operator-inquirer which uses backward chaining. The combination of the knowl-
edge sources is performed by a procedural knowledge source, the Initial-relay-
tuner. It contains the following S-Lisp procedure that controls the sequencing of
the knowledge sources. 4 '

s

(s—defun initial-relay-tuning ()
(s-let (control-loop ’process)
(write-welcoming-information)
(activate Operator-inquirer)
(fact-in scheduler
verify “control-loop time-constant-estimation -x)
(fact-in scheduler
verify “control-loop allowed-steady-state-error -x)
(fact-in scheduler
verify “control-loop control-objective -x)
(deactivate Operator-inquirer)
(vaitentry
inactivated Operator-inquirer)
(set-up-specifications-frame)
(activate Y-statistics)
(activate Explainer)
(start-and-wvait-for ’Manual-control-supervisor)
(fact-in Relay-supervisor
tune at 180)

134 Chapter 8 Ezamples of anwledge Based Controllers

(start-and-wait-for ’Relay-supervisor)
(start-and-wait—for ’Hodeller)
(s~cond
((and (fact-match first order system)
(fact-match complete model))
(activate U-statistics))
((fact-match first-order-system)
(fact-in Designer
design and start crude PI for first order system)
(activate Designer)
(activate U-statistics)
(vaitentry
inactivated Designer)
(fact-in Modeller
check steady state gain)
(start-and-wait~for ’'Modeller))
(t
(fact-in Designer
design and start crude PI for higher order system)
(activate Designer)
(activate U-statistics)
(vaitentry T
inactivated Designer)
(fact-in Modeller
check steady state gain)
(activate Modeller)
(fact-in Relay-supervisor .
tune at 90)
(start-and-wait-for ’Relay-supervisor)
(start—~and-wait-for ’Modeller)
(fact-in Designer
design and start-up good controller)))
(start-and-wait-for ’Designer)
(activate Control-supervisor)))

(s-defun start-and-wait-for (knowledge-source)
(activate (s-eval knowledge-source))
(vaitentry inactivated “knowledge-source))

The procedure starts by writing some initial information. It then activates the
Operator-inquirer and poses three questions. Based on the answer of the ques-
tions, the closed loop specifications are set up. When the process is in steady
state, i.e., the Manual-control-supervisor is finished, the first relay experiment
is started. Three different situations may arise when the Modeller has analyzed
the measurements. Firstly, a complete first order model has been obtained. Sec-
ondly, an incomplete first order model has been obtained. In that case, a crude

=

8.8 The knowledge sources 135

controller is designed and a small set point change is made in order to measure
the steady state gain. In the third case, the relay measurements indicate a higher
order process model and a new relay experiment with an integrator is initiated.

The sequence is finished when an acceptable controller has been designed
and with the knowledge sources Control-supervisor, Y-statistics, U-statistics, and
Explainer being active.

Frame definitions

To obtain a clean structure of the rules, it is important to group associated
information into frames.

The information about an entire control loop is gathered in the control-loop
frame.

(defframe control-loop
"Contains information about a control loop"
(name
(a-priori-information "A-priori-info. frame containing
the information obtained by the
Operator-inquirer")
(specifications "Specifications frame")
(noise-range ''Measurement noise")
(tuning-at-180 "Relay-experiment frame containing info.
about the tuning without an integrator")
(tuning-at-90 "Relay-experiment frame‘containing info.
about the tuning with an integrator')
(nyquist-points "List of frequency-point frames each
describing one point on the open-loop
Nyquist curve")
(discretely-fitted-models "List of first-order-with-delay
frames containing the model
achieved through discrete
model fitting")
(final-model "Frame describing the finally chosen model")
(controller-alternatives "List of frames describing the
different controller alternatives
computed.")
(final-controller "Frame describing the finally chosen
controller"))

0D

In the general case, this frame would also contain configuration information, e.g.,
where in the process the control loop is. The a-priori-information frame
contains the information that is acquired by the Operator-inquirer.

136 Chapter 8 Ezamples of Knowledge Based Controllers

(defframe a-priori-information
"A-priori information from the Operator-inquirer"
((time-constant-estimation "Crude estimate of the dominating
time constant " :askable)
(allowed-steady-state-error "Allowed steady state error in
percent" :askable)
(control-objective "Allowed values are load-disturbance
or set-point depending on what is
most important"
:askable))
)

This frame would probably be extended significantly in a more general applica-
tion. The closed loop specifications looks as follows.

(defframe specifications
"Closed loop control specifications"
((relative-damping :default 0.707)
(u-range "Allowed variations in the steady state
control signal due to measurement noise"
:default 0.1) Tt
(amplitude-margin :default 1.5)
(phase-margin :default 45)
(steady-state—error :default 0.05))
)

e
-

Information regarding a relay experiment are grouped together in the relay-
experiment frame.

(defframe relay-experiment
"Information about a relay experiment"
((yref "Actual set point")
(10 "Steady state control signal")
(point "180 or 90 depending on if an integrator
is used or not")
(d "Relay amplitude'")
(hysteresis "Relay hysteresis")
(h "Oscillation period")
(amp "Peak-to-peak oscillation amplitude")
(wc "Oscillation frequency")
(k¢ "Ultimate gain, 1/1G(iwc)|")
(tau "Time between relay switching and change of
derivative sign")
(approx-order "i or 2 depending on the value of tau,
1 means that the system is PI-controllable,

8.3 The knowledge sources _ 137

2 means that the order is >=2")
(delay "Number of pure time delays in the discrete model")
(samp "Sampling time for the discrete model")
al bl1l b21 a2 bi2 b22 a3 bi3 b23)
)]

The a and b attributes are the value of the a, b1, and by barameters for the three
discrete models.

Information about one point on the open-loop Nyquist curve is stored in a
frequency-point frame.

(defframe frequency-point

"Information about one frequency point"
((w "Frequency")

gain

phase-shift)

0D

Information about different models are stored in the following frames.

(defframe continuous-model
"Information about a continuous model"
((frequency "Frequency range where the model is valid")
(status '"Takes the values not-validated, validated, or
in-complete")) T
0O)

(defframe first-—order

"First order model k/(1 + sT)"

(x

T

(T/k "Ratio for incomplete model™))
(continuous-model))

(defframe first-order-with-delay

"First order model with delay, kexp(-sL) / (1 + sT)"
(L)

(first-order))

(defframe second-order

"Second order model, k / (s2 + al s + a2)"
(x a1l a2)

(continuous-model))

Notice the use of inheritance. Information about the different controllers are

P

138 Chapter 8 Ezamples of Knowledge Based Controllers
stored in the following frames.

(defframe controller
"Controller information"
((h "Sampling interval'')
(active "Has the value t if it is used")
(status "A symbol denoting from which
principles the controller was
designed"))

o))

(defframe Pid-controller
"PID controller"
(k Ti Td beta N)
(controller))

(defframe discrete-controller
"Discrete RST-controller"

(r1i r2 t0 t1 t2 s0 s1 s2 al a2)
(controller))

The attributes al and a2 in the discrete-controller frame are the coefficients in
the observer polynomial A4,.

The Operator-inquirer knowledge source

.

The operator questioning phase has been kept very simple in the examples. Due
to this, the Operator-inquirer knowledge source does not contain any rules at all.
For example, when the fact

(verify process time-constant-estimation -x)

is added to the scheduler, it becomes the current goal of the Operator-inquirer
knowledge source. Since it has no rules for how to derive a value for the time-
constant-estimation attribute and this attribute has been declared askable, a
question is posed to the operator. The operator has the possibility to ask for
further explanation of the question, in which case the description string for this
attribute is written.

The Manual-control-supervisor knowledge source

The Manual-control-supervisor knowledge source contains 5 forward chaining
rules. During manual control the operator has the possibility to change the
control signal and the reference value until the process is in steady state at the
desired operating point. The operator then checks that the process is in steady

=

8.8 The knowledge sources 139

state and measures the noise-range. The rule which measures the noise range
looks as follows.

(p measure-noise-range

"Heasures the noise-range in steady state manual control.
It is computed as the difference between the maximum value
and the minimum value of y during a time given by the
estimated time constant"

(frame control-loop
a-priori-information -frame
noise-range nil)

(-frame a-priori-information
time-constant-estimation -time)

(steady-state)

-—>
(remove 3)
(let ((max (max-—of y -time))
(min (min-of y -time)))
(global-modify 1 noise-range “(difference max min)))
(deactivate self))

The Relay-supervisor knowledge source

The Relay-supervisor knowledge source contains 8 forward chaining rules. They
initialize the relay experiment, awaits messages from the relay algorithm, starts
the oscillation analysis and makes an initial analysis of the relay measurements.
The rule which starts the relay experiment without integrator looks as follows

(p initialize-relay-without-integrator
"Starts a relay experiment without integrator"

(tune at 180)
(frame control-loop
tuning-at-180 nil
noise-range -noise)
-->
(let ((desired-error
(cond ((>= -noise 0.02) 0.06)
((>= -noise 0.01) (times 3 -noise))
(t 0.03)))
(hysteresis
(cond ((>= -noise 0.005) (times 2 -noise))

140 Chapter 8 Ezamples of Knowledge Based Conirollers

(t 0.01)))
(bias (parameter-value global u)))
(glebal-modify 2
tuning-at-180 ~(global-make relay-experiment
yref ~{parameter-value global yref)
u0 “bias
point 180
hysteresis "hysteresis
d 0.2))
(send start relay
hysteresis “hysteresis
d 0.2
desired-error “desired-error
bias “bias)
(message-request relay)))

In the let statement, the bias variable gets its value through an access to the
algorithm-handler. The send function inserts the message into the algorithm-
handler which converts it and sends it to the algorithms. The rule ends by
setting up a request for incoming messages from the relay.

The Modeller knowledge source

The Modeller knowledge source contains about 15 rules for model building and
model validation. The following rule checks if the initial relay experiment has
resulted in a reasonable discrete model corresponding to a continuous first order
mode! and in that case computes the continuous model and stores it in a first-
order frame.

(p compute-first-order-model
"Computes a first order model"

(frame control-loop
tuning-at-180 -frame)
(-frame relay-experiment
samp —h
delay 1
al -a
bit -b
b21 0)
(* (frame first-order
frequency 180))
test
(and (numberp -a)
(> -a 0)

8.3 The knowledge sources 141

(xk -a 1)
(> -b 0))
-=>
(let* ((time-constant
(calc (- -h) / (log -a)))
(kx (calc -b / (1 - -a)))
(frame (global-make first-order
k "k
T “time-constant
frequency 180
status not-validated)))
(global-fact first order system)
(global-modify 1
final-model “frame)))

The calc function allows for infix notation in mathematical expressions. The
rule choose-final-model-3 chooses the final models as a first order model with
delay if the oscillation frequency at the —180° point is about twice the frequency
of the —90° point.

(p choose-final-model-3

"If the oscillation frequency at the —-180 point is about twice
the frequency of the -90 point then choose a first order model
with delay as the final model"

-

(frame control-loop

final-model nil)
(frame frequency-point

w -wiso)
(frame frequency-point
v -w20)
(* (final-model . -))
test
(and (> -w180 -w90)
(> -w90 0)

(< (calc -wi80 / -w90) 2.1))
-—>

(fact final-model first-order-with-delay high-order-dynamics))

The Designer knowledge source

The Designer knowledge source contains about 15 rules for design of different
cutrollers. The information needed for the accurate dominant pole design of
PID controllers are stored in a separate frame.

-

142 Chapter 8 Ezamples of Knowledge Based Conirollers

(defframe pid-design-table-entry
""Contains the ceontroller parameters for one value
of the natural frequency wO"

(w0
(k~pi "Prop. gain in PI design")
(ki-pi "Int. gain in PI design")
(Ti-pi "Integration time in PI design')
(p10-pi "Normalized real pole in PI design")
(vcross-pi “Cross-over frequency with PI design")
(k-pid "Prop. gain in PID design")
(ki-pid "Int. gain in PID design")
(kd-pid "Der. gain in PID design")
(Ti-pid "Integration time in PID design")
(Td-pid "Derivation time in PID design")
(p10-pid "Normalized real pole in PID design')
(w-cross-pid "Cross-over frequency with PID design")
(k~pd "Prop. gain in PD design")
(kd-pd '"Der. gain in PD design")
Td-pd "Der. time in PD design")
(p10~-pd "Normalized real pole in PD design") .
(w-cross-pd "Cross-over frequency with PD design"))

0D

During the design stage, the database contains one instance of this frame for
each frequency wy under consideration. The instances may be viewed as rows in
a table with different controller parameters for different values of wy. The design
is performed by searching for rows where certain parameters, e.g. ki-pi, reaches
it maximum value. This can easily be expressed through pattern matching. For
example, the following patterns which will match the row where ki-pi has its
maximum.

(frame pid-design-table-entry
ki-pid -ki-1)
(" (frame pid-design-table-entry
ki-pid -ki-2)
with (> -ki-2 -ki-1))

The Control-supervisor knowledge source

The Control-supervisor knowledge source contains around 5 rules which allows
manual set point changes and parameter changes for the different controllers.

8.3 The knowledge sources 143

The Explainer knowledge source

The Explainer knowledge source contains rules for answering questions about the
current process model and controller. Some questions that can be answered are:

Which controller is running?

How is the controller designed?

Which process model has been derived?
Why was this model derived?

How was this model derived?

What is happening now?

The statistics knowledge sources

The statistics knowledge sources, Y-statistics and U-statistics, collect statistical
infermation about the process output signal and error signal, and the control
signal, using their associated numerical algorithms. The algorithms can be viewed
as consisting of shift registers where the signal values are stored. When the shift
register is full, the statistics is computed and sent to the knowledge-based system.
Similarly, the statistics knowledge sources store the incoming information in shift
registers. When these registers are full, statistics are again computed and these
are stored in new shift registers. The result is that the statistics information is
stored at different time scales. ’ : ‘ '
The information about a signal is stored in the following frame.

(defframe statistics
"Statistics information about a signal®
((neme "Signal name: y e or u'")
(sampling-time "Sampling interval for the shift register
in the algorithm" :default 1)
(first-length "Length of the shift register in the
algorithm" :default 120)
(counter "Counter for the second shift register')
(first-time "The time interval at which the first
shift register is filled i.e. the rate
at which the second shift register
gets a neuw value,
sampling-time * first-length" :default 120)
(second-length "Length of second shift register" :default 5)
(second-time "The time interval at which the second
register is filled" :default 600)
(third-length "Length of third shift register" :default 6)
(third-time "The time interval at which the third register

144 Chapter 8 Ezamples of Knowledge Based Controllers

is filled" :default 3600)
mean-second var—-second min-second max-second
mean-third var-third min-third max-third)

o))

The last attributes are the actual shift registers which are stored as lists. If the
above default values are used, the statistics information are stored on a 1-second,
2-minute, and 10-minute basis over the last hour.

The statistics knowledge sources are designed to run as soon as a new fact is
added to them according to Section 7.3. They implement the following functions,
which may be called by the other knowledge sources.

(mean-of signal {ime) Returns the mean value of the signal over the last
time seconds. If the time is negative the mean value is taken around time
seconds ago with the resolution available. For example, with the above de-
faults the function (mean-of y 300) returns the mean value over the last 5
minutes, whereas (mean-of y -300) returns the best approximation of the
mean value as it was around 5 minutes ago.

(variance-of signal time) The same as above for the variance.
(max-of signal tme) The same as above for the maximum value.

(min-of signal {tzme) The same as above for the minimum value.
(value-of signal ttme) Returns the signal value time ’seconds ago. If the
time is larger than what is stored in the first shift register, the mean value
around that point is returned.

Each knowledge source contains 6 rules. Five of the rules are shared among the
two knowledge sources.

8.4 A session with the system

This section contains an example session with the system as well as a performance
evaluation of the finally designed controiler for different types of processes. The
simulation program Simmnon (Elmqvist, 1975) running in real-time mode is used
to represent different physical processes. During the session two terminals are
used. On the alpha-numerical terminal, commands are given to the system and
results are written out. The graphics terminal shows the y, yref and u signals
according to Figure 8.5.

During the example session, the process which is being simulated has the
transfer function G(s) = 1/(1+155)%. The output messages from the system will

=

8.4 A session with the system 145

IE S

Figure 8.5 Terminal set-up

be typeset in typewriter type and the input will be typeset in slanted type.
The signals y, u and yref from the experiment are shown in Figure 8.6. To better
visualize the interaction with the system, the Simnon times when commands are
given are written in the example. These times correspond to Figure 8.6. The
example session will be run in a verbose mode with large amounts of information
being printed on the terminal.

The system starts by asking the user a few questions about the process. /
**% WELCOME **

I will start by asking different questions about the process
The answer to the questions are entered with - .

I0>>answer a-<question-number> <ans> The values that <ans>
can take are:

y, yes ~--- confirmation
n, no --= negation
u --~ unknown
7 --- explains the question
(why <nr> ..) --- gives WHY? explanations
\ according to Section 7.6 of the
thesis

Question 0: What is the control-objective of process?

I0>>answer a-0 ?
t
I0>>

Allowed values are load-disturbance or set-point depending
on what is most important

R |
146 Chapter 8 FEzamples of Knowledge Based Controllers
_yand yref
0.8 - F
AN
o N_A_A_A_
0.4 1 N NN
O I T | T
500 1000 1500 2000
U |
0.8 -
0.4
0 T 1 — —
500 1000 1500 2000

Figure 8.6 The signals y,yref and u during the example session

=

Question 0: What is the control-objective of process?
answer a-0 set-point

t

I0>>

Question 1: What is the allowed-steady-state-error
of process?

answer a-1 7
t
I0>>

Allowed steady state error in percent

Question 1: What is the allowed-steady-state-error
of process?

answer a-1 10

8.4 A session with the system

t
I0>>

Question 2: What is the time-constant-estimation of
process?

answer a-2 10
t
I0>>

147

When the question phase is finished, the operator is instructed to manually con-

trol the process.

Control the system manually until the controlled value
steady state at your desired operating point.
The control signal is changed

is in

with the command u *value* and the reference value with yref

value. When you are finished type ready.

u 0.4

t

I0>>yref 0.4
t

I0>>ready
t

Now, the first relay experiment is performed.

I0>>what is happening?

A relay experiment is being performed to determine the
process dynamics around the -180 degree phase
point.

t
I0>>

The process is classified as being
of second order or higher.

The first order model with delay computed
from the discrete time model fitted around
the ~180 point is

kp = 0.317

T =13.63

(** 300 s.¥*)

(** 310 8.%%)
(** 320 S.**)

(]** 470 S.**)

(** 700 s.**)

(** 800 5.%%)

148 Chapter 8 Examples of Knowledge Based Conirollers

L = 8.451

The oscillation period from the model = 35.7
The measured oscillation period = 34.5

The phase from the model = -2.73
The estimated phase = -2.53

The magnitude from the model = 0.119
The estimated magnitude = 0.123

A crude controller is designed and a small set-point change is made in order to
determine the steady state gain.

The measured steady-state gain = 1.056 (** 1000 s.¥*)

Since the process has been classified as a high order system, a second relay
experiment is performed.

The first order model with delay computed (** 1700 s.¥*)
from the discrete time model fitted around
the ~-90 point is

kp = 4.37

T = 120.2 -
L =6.52

The phase from the model = -1.84
The estimated phase = -1.49

The magnitude from the model = 0.58
The estimated magnitude = 0.54

The first order model with delay fitted
to the steady state gain and the -90 point is

kp = 1.06
T = 27.3
L=7.3

Cross-validation of the -90 model at
the -180 point

The phase from the model = -2.71
The estimated phase = -2.53

8.4 A sesstion with the system _ 149

The magnitude from the model = 0.20
The estimated magnitude = 0.123

Cross-validation of the -180 model at
the -90 point

The phase from the model = -1.23
The estimated phase = -1.49

The magnitude from the model = 0.24
The estimated magnitude = 0.54

After the second relay experiment, a process model has been derived and a con-
troller has been designed. The user has now the possibility to ask questions about
the process model and controller.

I0>>which process model has been derived?
t

The derived process model is
G(s) =k / (72 + al s + a2)

with

k = 0.00462
al = 0.119
a2 = 0.00437

I0>>why was this model selected?
t

A second order model is chosen as default when no
first order model with or without delay is appropriate

I0>>how was the model computed?
t

The model was derived by fitting to the steady state gain and
the -180 degree point.

I0>>why was the model computed like this?
t

A good process model is required at the closed loop
cross—over frequency. A second order model will be controlled

150 Chapter 8 Ezamples of Knowledge Based Controllers

by a PID controller. For PID control, the cross-over occurs
close to -180 degrees.

I0>>which controller is running?
t

The controller is a PID controller with the‘pgrameters

Sampl. interval = 1
K=1.14

Ti = 20.87

Td = 6.38

n=>5

beta = 1.52

I0>>how is the controller designed?
t

K is determined from the allowable steady state control
signal range and the measured noise range as

Delta-u / (Delta—n * (1 + n)) where n has the default
value 5. The controller parameters are chosen to give
the closed loop characteristic equation T

(8”2 + 2 zeta w0 s + w0"2)(s + wd) =

with :
zeta = 0.707 and w0 = 0.063 -

IO>>yref 0.7 (** 1840 s.%%)
t

Several switches can be set in order to get more information about the internal
behavior of the system. The **print-messages** switch will cause messages
between the numerical algorithms and the knowledge-based system to be printed
out. The **print-k-s-state** switch will cause messages to be printed when
state of the knowledge sources is changed.

I0>>@(setq **print-messages™* t)
t
** Hess. in*x*

(y-statistics ymean 0.701 yvar 0.00013 ymax 0.712 ymin 0.695)
** Mess, inxx*

(y-statistics emean 0.001 evar 0.00013 emax 0.05 emin -0.012)
** Mess. in*x*

(u-statistics umean 0.699 uvar 0.00054 umax 0.73 umin 0.66)
% Mess. in**

(y-statistics ymean 0.697 yvar 0.00022 ymax 0.709 ymin 0.697)

8.4 A session with the system 151

** Mess. in*x*
(y-statistics emean 0.003 evar 0.00022 emax 0.03 emin -0.09)
** Mess. in*x*
(u-statistics umean 0.701 uvar 0.00077 umax 0.77 umin 0.67)
I0>>@(setq **print-k-s-state™* t)
t
I0>>yref 0.6
Knowledge source Control-supervisor resumed
** Mess. out#**
(glob yr 0.6)
Knowledge source Control-supervisor suspended
t
I0>>@(setq **print-messages™* nil)
nil
I0>>@(setq **print-k-s-state** nil)
nil

The @ character preceding a Lisp-expression written on the terminal will cause
the expression to be remotely evaluated in the knowledge-based system process
and the resulting value to be sent back. Tracing can be turned on to various
degree. For example, the function (yaps-trace ’short) will cause the name of
all YAPS rules to be printed as they are executed.

I0>>@(yaps-trace ’short)
t
Running rule: main-restart

I0>>yref 0.4

t

Running rule: Schedule-16

Running-rule: Schedule-1

Knowvledge source Control-supervisor resumed
Running-rule: yref-change

Running-rule: algolO

Knowledge source Control-supervisor suspended
Running rule: main-restart

I10>>@(yaps-untrace ’short)
t

The possibility to evaluate arbitrary Lisp expressions in the knowledge-based
system process simplifies development and debugging. Functions which examine
or alter the internal state of the knowledge-based system process can be evaluated
or-iine. For example, the command (global-db) prints out the contents of the
2 lobal database.

=

152 Chapter 8 Ezamples of Knowledge Based Conirollers

I0>>@(global-db)

Cycle nr Fact

56. (second-order-frame-0 k 0.00462 ai 0.009
a2 0.00437 frequency all status final)

“How” explanations can be generated on arbitrary database entries if the switch
hoy-explanations was set when the database element was added. For
example, the frame shown above that represents the final second order model
can be explained by

I0>>@(expl 56)
t

This generates a lengthy explanation according to Section 7.3. Various debugging
commands have been implemented. The current status of the numerical algo-
rithms can be shown with the command describe-algorithm-status. Similar
commands exist that show the status of the different knowledge sources. Rules
can be added, edited and deleted on-line. In the following small example a rule
that prints out the variance of the control error every two minutes, is added to
the Control-supervisor knowledge source.

I0>>@(add-new-rule Control-supervisor
‘(periodic-variance-check

(wakeup periodic-variance-check)

(rule periodic-variance-check -period)
—>

(remove 1)

(patom ”The variance of e is ”)

(patom (variance-of e 120)) (terpr)
(timer-request -period periodic-variance-check)))
t

I0>>@(fact-in Control-supervisor

rule periodic-variance-check 700:02:006”)
t

8.4 A session with the system 153

I0>>@(fact-in Control-supervisor

wakeup periodic-variance-check)

t

I10>>

The variance of e is 0.00021

The variance of e is 0.00031 (** 2 min. later **)

Control performance evaluation

The performance of the derived controller will be examined through some exam-
ples. Measurement noise is added to the process output in the examples. The
control objective is fast set-point response.

EXAMPLE 8.1 — First order system

In this example, the simulated process is G(s) = 1/(1+50s). Based on the curve
form of the first relay experiment, the process is classified as a first order system
and the estimated model is computed as G(s) = 0.89/(1 + 66.3s). The resulting
controller is a PI controller with K = 5.822, T, = 17.97 and # = 0.84. The step
response of the closed loop system is shown in Figure 8. 7

y and yref

0.8

0.4

T T 1
250 300 350 400 450
0.8

0.4+

0 T T T
250 300 350 400 450

Figure 8.7 Step response for Example 8.1.

Since the process is classified as being of first order, an explicit estimation
of a point on the Nyquist curve is not performed. O

154 Chapter 8 Ezamples of Knowledge Based Controllers

y and yref
0.8
0.4 ‘/
0 T T T 1
700 750 800 850 ° 900
u N
0.8 'M
0.4
0 T T T 1
700 750 800 850 900

Figure 8.8 Step response for Example 8.2.

EXAMPLE 8.2 — First order system with short delay

In this example the simulated process is G(s) = e71%%/(1 + 20s). Based on the
first relay experiment, the process is classified as having dynamics of second order
or higher. The three estimated points on the Nyquist curve are:

0° point —90° point | —180° point
Measured w 0 0.058 0.138
Estimated gain 1.005 (1) - 0.659 (0.650) . 0.429 (0.341)
Estimated phase 0 (0) —1.286 (—1.447) ~ 3.020 (—2.603)

The true values are shown in parentheses. The three first order models with
delay are:

—180° model —90° model Steady state gain model

kp 0.700 1.353 1.005
T 13.62 30.03 19.71
L $13.04 12.52 7.36

The finally computed model is G(s) = 1.005¢71%53¢ /(1 4 17.525). The choice
of a first order model with delay is based on the curve form of the first relay
experiment. The discretely fitted models varies too much to be reliable. Instead,
the model parameters are computed based on the estimated frequency points
as described in Section 8.1. The resulting controller is a PID controller with
k=1.44,T; =16.75, Ty = 2.45, § = 0.85 and N = 5. The step response of the

closed loop system is shown in Figure 8.8. O

8.4 A session with the system 155

_y and yref
0.8 4
0.4 fy_f
0 T T T £ L
750 800 850 900 950
_u
0.8
0.4 ﬁ_l—’__‘
0 T T T 1
750 800 850 900 950

Figure 8.9 Step response for Example 8.3.

EXAMPLE 8.3 — First order system with long delay

In this example the simulated process is G(s) = e715¢/(1+5s). Based on the first
relay experiment, the process is classified as having dynamics of second érder or
higher. The three estimated points on the Nyquist curve are:

0° point . —90° point —180° point
Measured w 0 0.0714 T 0136
Estimated gain 0.9995 (1) 1.015 (0.942) 0.833 (0.826)
Estimated phase 0 (0) —1.392 (—1.413) —3.210 (—2.646)

The three first order models with delay are:

—180° model —90° model Steady state gain model

kp 1.102 1.029 0.9995
T - 7.33 9.43 0
L 14.95 14.55 19.51

The finally computed model is G(s) = 0.9995¢719-233 /(1 + 4.855). The choice is
based on the curve form of the first relay experiment and on the facts that the
magnitudes of the frequency curve at the —90° point and the —180° point are
close and that the frequency at the —180° point is about twice the frequency at
the —90° point. The parameters of the final model are calculated by fitting to
the estimated frequency points. Since L > 1.5 % T, the resulting controller is a
discrete pole-placement controller which will give dead-time compensation. The
parameters are b = 19, r; = —0.3810, ry = —0.6190, t; = 0.6527, s, = 0.6647

-

156 Chapter 8 Ezamples of Knowledge Based Controllers

_y and yref
0.8 1
M
0.4
0 T T T 1
2100 2150 2200 250 2300
u
0.8 -W
0.4
0 T ¥ T 1]
2100 2150 2200 2250 2300
Figure 8.10 Step response for Example 8.4.
and s; = —0.012. The step response of the closed loop system is shown in Figure

8.9. The value 0 for the time constant in the third model is explained by the
estimated gain at the —90° point which is larger than the estimated steady state
gain. T , |

EXAMPLE 8.4 — Second order system

In this example, the simulated process is G(s) = 1/(1 + 15s)?. Based on the first
relay experiment, the process is classified as having dynamics of second or higher
order. The three estimated points on the Nyquist curve are: '

0° point —90° point —180° point
Measured w 0 0.0622 0.182
Estimated gain 1.056 (1) 0.536 (0.535) 0.123 (0.118)
Estimated phase 0 (0) —1.493 (—1.501) —2.527 (—2.439)

The three first order models with delay are:

—180° model —90° model Steady state gain model

ky 0.317 4.366 1.056
T 13.63 120.2 27.31
L 8.45 6.52 7.31

The finally computed model is G(s) = 1.067w?/(s? + 2¢ws + w?) with ¢ = 0.9
and w = 1/15.2. A second order model was chosen as the default since no rule
for selecting a first order model with delay was fulfilled. The parameters were
obtained by fitting to the —180° point and the steady state gain. The resulting
controller is a PID controller with I = 1.14, T; = 20.87, Ty = 6.38, 8 = 1.52 and
N = 5. The step response of the closed loop system is shown in Figure 8.10. O

=

8.4 A session with the system 157

y and yref
0.8
O T T T 1
400 450 500 550 ° 600
0.8
0.4 A—/
0 T T T 1
400 450 500 550 600

Figure 8.11 Step response for Example 8.5.

EXAMPLE 8.5 — High order system

In this example, the simulated process is G(s) = 1/(1 + 55)®. Based on the first
relay experiment, the process is being classified as having dynamics of second or
higher order. The three estimated points on the Nyquist curve are:

0° point —90° point —180° poin{t
Measured w 0 0.0496 0.101
Estimated gain 1.002 (1) . 0.8581(0.836) 0.537 (0.509)
Estimated phase 0 (0) —1.42 (-1.46) .~ -=3.00 (=2.79)

The three first order models with delay are:

—180° model —90° model Steady state gain model

kp 1.26 1.54 1.002
T 22.18 30.12 12.16
L 18.21 15.45 17.57

The finally computed model is G(s) = 1.002¢7*879/(1 4+ 13.95). A first order
model with delay was chosen based on the oscillation curve form of the first
relay experiment and since the frequency at the —180° point is about twice the
frequency at the —90° point. The model parameters were obtained by fitting to
the estimated frequency points. The resulting controller is a PI controller with
I =0.39, T; = 14.43 and § = 1.11. The reason why not a PID controller was
chosen was that the performance improvement was neglectable. The reason for
this is the large time delay. The step response of the system is shown in Figure
8.11. O

The examples show that the tuning procedure is able to come up with rea-
sonable controller designs for a wide range of processes. They also give a feeling

=

158 Chapter 8 Ezamples of Knowledge Based Conirollers

for how contradictory the estimated frequency information and process models
may be. To base the contrel design upon only one of estimated frequencies or
process models may give poor results.

8.5 KExtensions to the example

The current example does not show all the features of the real-time expert sys-
tem framework developed. It also has limitations, e.g., it cannot handle load
disturbances during the relay experiments. This section outlines how the exam-
ple could be modified in order to overcome the limitations as well as give some
general examples of how different knowledge sources may interact.

Other algorithms

The described tuning procedure estimates three points on the open-loop Nyquist
curve. A better estimate could be obtained if an FFT algorithm was added. The
tuning is based entirely on relay experiments. This is of course not the only
method one may use. Alternatives would, e.g., be to use a parameter estimator
at some stage in the tuning procedure or to instead use step or pulse response
methods. This would require different kinds of numerical algorithms.

A few of these have, fully or partially, been implemented. One such ex-
ample is an explicit recursive least-squares identification algorithm. The input
parameters to this are, e.g., the sampling interval, the number of A and B pa-
rameters, the forgetting factor, initial values for the parameter estimates, initial
values for the diagonal elements of the covariance matrix, and limits on the resid-
ual for when the adaptation should be interrupted. The algorithm can be asked
questions about the estimated parameters, the covariance matrix, and about the
residual. Messages are sent to the knowledge based system when the adaptation
is interrupted and restarted.

Another algorithm that has been implemented solves the Diophantine equa-
tion. These two algorithms could be used to implement a pole-placement self-
tuner in the knowledge-based controller. If a spectral factorization algorithm was
added, LQG self-tuners could also be implemented.

For pulse response based tuning methods, a pulse response algorithm is
needed. It is designed to measure the different integrals in the method of moments
of Appendix B. Zero-crossings and the time period between zero-crossings are also
measured. "

Error recovery

In the current example, the Initial-relay-tuner knowledge source is by default
activated when the controller is started. If an error occurs during the tuning
experiment that is not anticipated by the Initial-relay-tuner, the tuning procedure
and the entire knowledge-based controller stops. One solution to this problem

-

8.5 [Exlensions to the example 159

is to have a separate source that contains knowledge of what actions to take if
an error occurs. This knowledge source could be viewed as a ‘meta-knowledge’
source, i.e, a knowledge source which contains knowledge about other knowledge
sources. The following rule could be used for starting the Initial-relay-tuner
knowledge source.

(p initial-start

(start-up)
~-—>
(remove 1)
(activate Initial-relay-tuner)
(vaitentry Initial-relay-tuner))

A load disturbance can be detected by the relay algorithm. A rule may be added
to the Relay-supervisor that adds the global-fact (relay succeeded) if the relay
experiment is successfully completed and the global-fact (relay failed load
disturbance) if a load disturbance is detected. In the Initial-relay-tuner, the
statement

(start-and-wait-for ’Relay-supervisor)

is replaced by

(start-wait—-for ’Relay-supervisor)
(s-cond ((fact-match relay succeeded)
(global-remove relay succeeded))

((fact-match relay failed load disturbance)
(global-remove relay failed load disturbance)
(global-fact

Initial-relay-tuner failed
load disturbance in first experiment)
(halt-procedural-knowledge-source)))

The statement (global-fact Initial-relay-tuner succeeded) is added as
the final statement in the knowledge source. The same modifications are per-
formed at the second relay experiment but with a different failure message. Tt
is now easy to write rules in the ‘meta-knowledge’ source that takes care of the
erTors.

(p load-disturbance-1

(Initial-relay-tuner failed

160 Chapter 8 Ezamples of Knowledge Based Conirollers

load disturbance in first experiment)
-->

(global-remove 1)

(activate Initial-relay-tuning-2)

(vaitentry Initial-relay-tuning-2))

The Initial-relay-tuning-2 is another procedural knowledge source that does not
contain the query phase and which may make use of the partial information that
already has been acquired. In the same way, a rule may be written to take
care of the situation where the load disturbance occured during the second relay
experiment.

The example only considers the initial tuning phase. Monitoring of steady
state control may also be implemented using the ‘meta-knowledge’ source. Sup-
pose that steady state monitoring was implemented. The initial-relay-tuning
knowledge source would then typically end as

(activate Control-supervisor)

(activate Monitoring-k-s-1)

(activate Monitoring-k-s-2)

(global-fact Initial-relay-tuning succeeded)))

where Monitoring-k-s~1 and Monitoring-k-s-2 are knowledge sources that
implements different monitoring aspects.

The monitoring could typically result in two different thmgs Elther the con-
troller parameters are slightly adjusted or a new tuning experiment is initiated.
Parameter adjustments may be implemented by rules in the existing knowledge
sources. A new tuning experiment, however, typically involves a sequence of
knowledge source activations. The start of a procedural knowledge source for
this could be handled by the ‘meta-knowledge’ source as in the following

(p re-tuning

(Monitoring-k-s-1 stopped retuning needed)
-

(deactivate Control-supervisor)

(deactivate Monitoring-k-s-2)

(activate Re-tuning-k-s)

(vaitentry Re-tuning-k-s))

where Re~tuning-k-s is the procedural knowledge source that performs the re-
tuning experiment. The same arrangements could be made to handle, e.g., mode
changes initiated by the operator.

-

8.5 [Extensions to the example 161

Control performance monitoring

The implementation of different monitoring alternatives will be outlined.

When the Initial-relay-tuning knowledge source has finished, a ‘good’ con-
troller has been designed and started. One way to judge the quality of the
controller designed is to involve the operator and give him the opportunity to
judge the controller performance. It would, e.g., be possible to add commands
for changing the bandwidth or overshoot of the system.

Another possibility is to leave it to the knowledge-based system to assess
the quality of the designed controller. The performance during set-point changes
could be assessed by measuring the overshoot and settling time when set-point
changes are made. The overshoot could be estimated by examining the extreme
values of the process output during a time determined by the closed loop dy-
namics. The settling-time could be estimated with the help of the level-crossing
algorithm.

An extra algorithm is needed to adjust the controller based on load distur-
bances. This algorithm should be designed to detect peaks in the error signal. It
should also measure the time interval between error peaks. This algorithm, to-
gether with a knowledge source that performs the necessary control adjustments
could be used to implement the tuning mechanism of the Exact auto-tuner (Kraus
and Myron, 1984). o

Another possibility is to use the statistics gathered. If, e.g., the variances
are slowly increasing, it may be the case that the process dynamics has varied
since the tuning and that a re-tuning need to be made.

‘

The possibility to test rules periodically is probably-most useful for moni-
toring. The following rule could be used to check if the process output variance
has exceeded some limit value.

(p periodic-variance-check

(wakeup periodic-variance-check)
(rule periodic-variance-check -period)
(variance-limit -limit)
(measurement-time -time)
-->
(remove 1)
(cond ((> (variance-of y -time) -limit)
(global-fact initiate retuning))
(t
(timer-request —period periodic-variance-check))))

Good use of the possibility to associate duration times to database elements can
be made in this case. Suppose that, the variance check only should be performed
when the system is not in a transient mode. This could be accomplished by

162 Chapter 8 Ezamples of Knowledge Based Controllers

modifying the rule to

(p pericdic-variance-check

(wakeup periodic-variance-check)
(rule periodic-variance-check -period)
{(variance-limit -limit)
(measurement-time -time)
(" (transient-mode))
-->
(remove 1)
(cond ((> (variance-of y -time) -limit)
(global-fact initiate retuning))
(t
(timer-request -period periodic-variance-check))))

and by introducing a rule which adds the fact (transient-mode) with a certain
duration, when a set-point change is made.

(p set-point-change e

(new set-point -yrefi)
(set-point -yref2)
(settling-time -time)
-—> J
(send global yref -yrefl)
(remove 1 2)
(global-fact set-point -yrefl)
(global-fact transient-mode :duration ~(seconds -time)))

One of the actions of the periodic rules could be that it, if something unnormal
has been detected, activated a knowledge source that performed further exami-
nations. This construct is similar to the focusing facility of PICON (Picon, 1985)
and G2 (Gensym, 1987). Periodic rules can, e.g., be used to periodically run
procedural tests

(p periodic-test-procedure

(vakeup periodic-test-procedure)
(rule periodic-test-procedure -period)
<pattern>

-=>
(activate procedural-test-1)

8.5 Fziensions o the example 163

(activate procedural-test2)
<concluding actions>
(timer-request -period periodic-test-procedure))

Procedural-test-1 and procedural-test-2 would in this case be procedural
knowledge sources that performed the tests. Another example is where periodic
rules are used to regularly perform hypothesis verifications using the following
construct:

(p periodic-hypothesis~-verification

(vakeup periodic-hypothesis-verification)
(rule periodic-hypothesis-verification -period)
<patterns>

-—>
(fact-in scheduler
verify process <attribute> <value>)
<concluding actions>
(timer-request -period periodic-hypothesis-verification))))

This assumes that a backward-chaining knowledge source is active which can
verify the given hypothesis.

8.6 Automatic generation of gain schedules

The second example considers the initial tuning of processes where it can be
suspected that gain-scheduling is necessary. The tuning procedure used is less
sophisticated than the previously described. It performs a relay experiment with-
out an integrator and based on that classifies the process as either PI-controllable
or being of second or higher order. In the PI-controllable case, a PI design is made
which assumes that the process can be approximated by a pure integrator. If the
process is of higher order, a modified Ziegler-Nichols PID design is made. The
reason why a less elaborated tuning procedure is used is mainly chronological.
This example was developed earlier than the previous one.

When the tuning has been performed at one set-point, the controller perfor-
mance around that set point is assessed. This is done by measuring the steady
state variances and by performing small set-point changes around the set-point
and measuring the overshoot and settling-time.

The need for gain-scheduling is judged based on the linearity of the static
gain characteristic. The static gain at five equally spread set-points is recorded
by measuring the steady state control signal needed at every point. The control
performance around each new set-point is compared with the originally assessed

=

164 Chapter 8 Ezamples of Knowledge Based Controllers

performance. If the performance has deteriorated significantly, a tuning exper-
mment is performed around the new set-point and a new controller is designed.
When the static characteristic i1s known at five points, the linearity of the charac-
teristic is roughly estimated. If the process is considered to be nonlinear, tuning
experiments are performed around each set-point where previously no tuning has
been performed. The controller parameters are stored in a gain-scheduling table.

In this experiment, the frame definitions are somewhat different than before.
For example, the controller frames also has associated what static point they were
designed for.

The knowledge sources used are roughly the same as before, although many
of the rules are different. The modelling knowledge is contained in the Relay-
supervisor. The Start knowledge source is new and is used only for initiating
the Operator-inquirer. The sweeping between different set-points is performed
by the procedural knowledge source Linearity-checker.

The knowledge sources are in this example combined through dynamic se-
quence generation. The different knowledge sources have the following associated
preconditions and goals:

Knowledge source Preconditions Goals
Operator-inquirer nil (a-priori-collected)
Start nil T ¢ (started)
Manual-control-supervisor (started a-priori-collected) (steady-state noise-known)
Relay-supervisor (noise-known steady-state) (relay-ready)
Designer (relay-ready) (pid-control)
Linearity-checker (pid-control) (linearity-info-available)
Control-supervisor (linearity-info-available) (pid-monitoririg-on)
Y-statistics nil (y-statistics-on)
U-statistics (pid-control) (u-statistics-on)

When the controller is started the goal-stack has the value

goalstack ((u-statistics-on
pid-monitoring-on
y-statistics-on))

The plan in Figure 8.12 is generated from this. Planning is also used when a
new relay experiment needs to be done. In that case, the goal (pid-control) is
pushed onto the goal stack. This will cause the plan

(s Relay-supervisor Designer)

to be created and executed.

1uc possibility to combine knowledge sources using planning ideas can be
used as an alternative to the pre-stored sequences used in the first example. It is,
however, the author’s experience that, at least for the knowledge-based control

ES

8.6 Automatic generation of gain schedules 165

Y-statistics

U-statistics

Manual-control- | | Relay-

supervisor supervisor —
Operator- Linearity-] | Control-

inquirer checker [~ | supervisor

—1 Designer

Figure 8.12 Tuning plan.

problem, the pre-stored sequences gives a better understanding of how the system
operates. This could of course depend on the implementation of this particular
planning system. Similar experiences have also been found by others (Trankle,
1986). A motivation for the planning approach is that it gives the system the pos-
sibility to generate new solutions when confronted with situations that weren’t
anticipated from the beginning. The new solutions would consist of new combi-
nations of knowledge sources. To make this possible, the individual knowledge
sources must be extremely carefully designed. It is the author’s experience that
this is very difficult to do. In practice, it would mean that the individual knowl-
edge sources should be designed to handle all different cases that the designer
can think of. Using pre-stored sequences seems to be a better alternative.

Conclusions and

Suggestions for Future Work

There is currently a significant interest in expert system techniques in the process

control community. A common application is to use the expert system as an
operator aid for process monitoring on top of a conventional, distributed control
system. The topic of this thesis has been to. explore the possibilities of using
expert system techniques in feedback control systems. This application requires
a much tighter integration of the expert system with the control system. It also
points towards a different structure of process control systems. A problem with
using expert systems on-line is that they are slow. Most industrial processes are,
however, also slow. The dynamic computer development may also allow the ideas
to be applied to faster control loops.

In Chapter 2, it was argued that the need for the expert system approach
1s just as large on the local, controller level as on the plant-wide level. The
local control problem is, however, also simpler and thus a good starting point
for research. It is also of interest to see that even conventional feedback loops
contain a significant amount of heuristic logic. The need for separation between
the numeric algorithms and the heuristic logic as well as the need for a structured
implementation of the heuristics was pointed out. ,

The initial tuning of a regulator is a good example of a problem where heuris-
tic decisions are mixed with theoretical knowledge and numerical algorithms.
Chapter 3 treated relay tuning. New theorems which describe the oscillation
curve form under relay feedback were given. The theoretical results were used to
derive empirical rules for determining different classes of process dynamics. An
empirical method was presented which can be used for sorting out processes with
dynamics that well may be approximated with a first order system. The method

=

166

167

is based on measuring whether the derivative of the process output changes sign
at the relay switching time or not.

The main contribution in the thesis concerns the design and architecture
of a knowledge based controller. Chapter 4 presented an architecture where the
heuristic logic and the numerical algorithms are implemented as separate concur-
rent processes. The implementation of the architecture on a VAX 11/780 com-
puter was described. A flexible implementation environment for the numerical
algorithms where the algorithms can be re-configured on-line and independently
of each other was considered important.

Chapter 6 describes a prototype system where the conventional, off-the-shelf
expert system framework OPS4 was used to implement the heuristic logic. Sev-
eral conclusions can be drawn from this prototype. The separation between
heuristics and numerics is valuable. It also proved relatively straight-forward
to extend the system and add new functionality by introducing new algorithms
and logic. The need for structuring facilities was, however, apparent. It is not
natural to express all problem types with a single representation technique. It
is therefore desirable to have a system that allows different representations. For
example, diagnosis may be stated as a rule-based backward chaining problem.
The monitoring of incoming events is easily done with forward chaining rules.

ther tasks are best represented sequentially. The need for structuring the com-
mon database was also clear. The simple list structures ‘of OPS4 are not suited
for representing related information. The possibility to have frame structures
is important. Another observation was the lack of real-time constructs in the
majority of existing expert system frameworks. Real-time constructs are needed
in real-time applications. For example, the monitoring task requires that tests
may be performed periodically.

To overcome the problems with existing expert system shells a real-time
expert system framework has been developed. This was described in Chapter
7. A modular approach, inspired by the blackboard ideas, has been followed.
It allows a decomposition of the problems into a number of subtasks which are
implemented as separate modules in the form of knowledge sources. The knowl-
edge representation in each individual knowledge source can be chosen to fit the
actual problem structure. Currently, rule-based forward or backward chaining
can be used as well as a procedural representation. The object oriented imple-
mentation makes it easy to extend the system with new methods for knowledge
representation. The common database allows both frame structures and lists.
The implemented framework can be compared with a conventional real-time op-
erating system and has similar real-time constructs. Knowledge sources can be
suspended for a certain time or until some database condition is fulfilled. Rules
can be executed periodically and duration times may be associated with database
elements.

Examples of how the framework is used were presented in Chapter 8. The
examples were focussed on the initial tuning of a regulator. A relay based auto-
tuning procedure was presented which makes use of three points on the open-loop

-

168 Chapter 9 Conclusions and Suggestions for Fulure Work

Nyquist curve and can design controllers in many different ways. The separation
between algorithms and knowledge sources was shown and examples were given
of what rules may look like.

How to encode automatic control knowledge into a program is a research
topic in itself. The examples presented have been iterated and re-implemented
several times and still have limitations. During this development, the knowledge-
based approach has proved very valuable. The modularity of the system has
made it possible to develop and test the individual knowledge sources quite in-
dependently. The rule-based programming style has supported the structured
implementation of separate pieces of knowledge. The “parallel” control structure
of forward chaining supports extensions of the system with new rules. All rules
are treated equally where the current contents of the database determine which
rule that should be fired. The possibility to combine procedural and rule-based
representation has shown to be natural way to handle problems with a large
sequential element.

It may be questioned if the tuning procedure could not just as well be imple-
mented with standard techniques. It would of course be possible to implement
a system with the same functionality or ‘input-output’ behavior. The internal
structure would, however, be entirely different. It is the author’s opinion that
the knowledge based approach has many advantages, e.g., the ease at which the
system can be modified and extended, the explicit, declarative representation of
knowledge,the interactive development environment, etc.

Suggestions for future work

This thesis may be continued in several different ways.” When the work was
started, the focus was more on the control part of it than on the expert system
parts. Due to the short-comings of existing expert system tools, the emphasis
gradually slided over towards real-time expert systems. As a result of this, many
things remains to be done before a true “intelligent” controller has been built.
The examples presented can be extended and some of their limitations may be
removed. For example, load disturbances that occur during the relay experiment
need to be handled, the heuristics for choosing the final process model can be
refined, the control design can be improved. It is, however, probably not that
much work that remains before a true “smart” PID controller would be available.
Such a system would incorporate knowledge about simple control loops at the
level of a good process engineer. A further extension would be to add adaptivity
to the system. Correctly initialised conventional parameter estimation methods
may then be used. Another extension would be to develop tuning procedures
that also work for e.g. cascaded control loops.

The examples provided deal only regarded the initial tuning of a regulator.
Monitoring is an equally important part of the knowledge based controller. The
human is good at extracting symbolic information by looking at plotted signal
curves. To develop algorithms that can do the same is an important issue. Nu-

2

169

K-B K-B
Area
System Area, System

/ \ s -

>, I e
I d] ~
Unit K-8 Unit | K-B
System System

Control
loops

Figure 9.1 Hierarchical knowledge-based control structure

merical algorithms that can extract phase and amplitude-margins for a process
under, e.g., PID control would be very useful tools. o

The current implementation can only handle one control loop at a time.
The pattern matching based system makes it relatively easy to extend it to allow
multiple control loops. In the current system, the numerical algorithm and the
knowledge based system are implemented as concurrent processes in one proces-
sor. An alternative is to represent them in separate procegsors. The numerical
algorithms could then be implemented with standard hardware, e.g. one mi-
croprocessor for each control loop, and the knowledge based system could be
implemented with special purpose hardware. The communication issues between
the separate processors then becomes an important issue. A hierarchical struc-
ture with knowledge-based systems at different levels is an attractive solution..
On the lowest level, the knowledge-based system handle the control loops in a
certain unit. Higher up another knowledge-based systems may be used to coor-
dinate the different units that belong to a certain area of the plant as seen in
Figure 9.1. ‘

A different future direction is to instead focus on the real-time expert system
framework. Exploring how and if truth maintenance techniques might be used
is one key problem. Others could be to develop the planning mechanisms of the
system or to improve the backward chaining capabilities. There is also much
that can be done in order to improve the speed of the framework. Some of this
is outlined in Chapter 7. Currently, the scheduler is implemented as a rule-based
YAPS system. An implementation with this part in plain Lisp will probably run
faster. The same thing is true about the algorithm handler.

References

ABELSON, H. and G.J. SUSSMAN (1985): Structure and Interpretation of Computer
Programs, The MIT Press, Cambridge, MA.

ALLEN, E.M. (1983): “YAPS: Yet another production system,” TR-1146, Department
of Computer Science, University of Maryland.

ALLEN, J.F. (1984): “Towards a general theory of action and time,” Artificial
Intelligence 23, 123-154.

ArzEN, K-E. (1986a): “Expert systems for process control,” in D. Sriram and R.
Adey (Eds.): Proc. of First International Conference on -Applications of Artificial
Intelligence in Engineering Practice, Springer Verlag, Berlin, pp. 1127-1138.

ARVﬁN E. (1986b): “Use of expert systems in closed loop feedback control,” Pmc
of Amencan Control Conference, Seattle, WA. :

ASTROM, K.J. (1979): “Simple self-tuners I,” Technical report TFRT—7184 Depart—
ment of Automatic Control, Lund Institute of Technology, Lund, Sweden.

AsTROM, K.J. (1982): “Ziegler-Nichols auto-tuners,” Technical report TFRT-3167,
Department of Automatic Control, Lund Institute of Technology, Lund, Sweden.

AsTROM, K.J. (1983): “Implementation of an auto-tuner using expert system ideas,”
Technical report TFRT-7256, Department of Automatic Control, Lund Institute of
Technology, Lund, Sweden.

;\STRéM, K.J. (1987&): “Adaptive feedback control,” Proc. of IEEE 75, 2, 185-217.

j\STRC‘M K.J. (1987b): “Implementation of PID regulators,” Technical report
TFRT-7344, Department of Automatic Control, Lund Institute of Technology, Lund,
Sweden.

ASTROM, K.J. and J.J. ANTON (1984): “Expert control,” Proc. 9'th IFAC World
Congress, Budapest, Hungary.

AsTrOM, K.J. and P. EYKHOFF (1971): “System identification — a survey,”
Automatica 7, 123-167.

AsTrOM, K.J. and T. HAGGLUND (1984a): “Automatic tuning of simple regulators,”
Proc. IFAC 9’th World Congress, Budapest, Hungary.

170

References ' 171

AsTrOM, K.J. and T. HAGGLUND (1984b): “Automatic tuning of simple regulators
with specifications on phase and amplitude margins,” Automatica 208, 645-651.

AsTrOM, K.J. and T. HAGGLUND (1984c): “A frequency domain approach to
automatic tuning of simple feedback loops,” Proc. 23rd IEEE Conf. on Decision
and Control, Las Vegas.

AsTROM, K.J. and T. HAGGLUND (1987): “A new auto-tuning design,” Technical
report TFRT-7368, Department of Automatic Control, Lund Institute of Technology,
Lund, Sweden.

ASTR@M, K.J. and T. HAGGLUND (1988): Automatic Tuning of PID Regulators, To
appear, Instrument Society of America, Research Triangle Park, North Carolina.

AsTROM K.J. and B. WITTENMARK (1984): Computer Controlled Systems, Pren-
tice-Hall, Englewood Cliffs, New Jersey.

AsTROM K.J. and B. WITTENMARK (1988): Adaptive Control, To appear, Addi-
son- Wesley, Reading, MA.

AsTROM, K.J., J.J. ANTON and K.-E. ArzEN (1986): “Expert control,” Automatica
22, 3, 277-288.

ATHERTON, D .P. (1975): Nonlinear Control Engineering, van Nostrand Reinhold Co.,
London, UK. N

BAATH, L (1987): “Personal communication,”.

BmpweLL, J.D., J.R.B. CockeTT, R. HELLER, R.W. ROoCHELLE, A.J. LAUB, M.
ATHANS and L. HATFIELD (1985): “Expert systems techniques in a computer based
control system analysis and design environment,” Proc. 3rd IFAC/IFIP Int. Symp.
on Computer Aided Design in Control and Engineering Systems, Lyngby, Denmark.

BoBrow, D.G. and M. STEFIK (1983): “The LOOPS manual,” Xerox Corporation,
Palo Alto, CA.

BoBrow, D.G. and T. WINOGRAD (1977): “An overview of KRL, a knowledge
representation language,” Cognitive Science 1, 1, 3-486.

BoBrow, D.G., K. KauN, G. KiczaLEs, L. MASINTER, M. STEFIK and F.
ZDYBEL (1985): “COMMONLOOPS: Merging Common Lisp and object-oriented
programming,” Intelligent Systems Lab. Series ISL-85-8, Xerox Palo Alto Research
Center, Palo Alto, California. :

BracuHMAN, R.J. (1979): “On the epistemological status of semantic networks,” “in
N.V. Findler (Ed.): Associative Networks: Representation and Use of Knowledge by
Computers, Academic Press, New York.

BRISTOL, E.H. (1977): “Pattern recognition: An alternative to parameter identification
~ sdaptive control,” Automatica 13, 197-202.

BrROWNSTON, L., R. FARRELL, E. KANT and N. MARTIN (1985): An Introduction to
Rule-based Programming, Addison-Wesley, Reading, MA.

172 References

BYRNES, C.I. (1985): “Necessary conditions in adaptive control,” in C.I. Byrnes and A.
Lindquist (Eds.): Proc. 7th International Symposium on the Mathematical Theory
of Networks and Systems, North Holland, Amsterdam.

CANNON, H.I. (1982): “Flavors: A non-hierarchical approach to object-oriented

»

programmirg,,” unpublished paper.

CARLSSON, M. (1983): “On implementing Prolog in functional programming,”
Technical Report no. 5, UPMAIL, Uppsala University, Uppsala, Sweden.

CARROLL, J. M. and J. MCKENDREE (1987): “Interface design issues for advice-giving
expert systems,” Communications of the ACM 30, 1, 14-31.

CHARNIAK, E., C.K. RIESBECK and D.V. MCDERMOTT (1980): Artificial Intelligence
Programming, Lawrence Erlbaum Associates, Hillsdale, New Jersey.

CLARK, D.W. (1984): “Implementation of adaptive controllers,” in Harris and Bildings
(Eds.): Self-tuning as Adaptive Control, Peter Peregrinus, U.K..

CLOCKSIN, W.I'. and C.S. MELLISH (1984): Programming in Prolog, Springer-Verlag,
Berlin.

Cox, B.J. (1986): Object Oriented Programming - An Evolutionary Approach,
Addison-Wesley, Reading, MA.

CrossMAN, E.R.F.W. and J.E. COOKE (1962): “Manual-.centrol of slow-response
systems,” in E. Edwards and F.P. Lees (Eds.): The Human Operator in’ Process
Control, Taylor and Francis, Ltd., London, 1974.

DanL, O.J. and K. NYGAARD (1966): “SIMULA-an algol-based simulation language,
C'ormnrmmcatmnQ of the ACM 9, 671-678.

DE KLEER, J. (1986): “An assumption-based TMS,” Artificial jntélligence 28, 127-162.

D1GITAL EQUIPMENT CORPORATION (1984): Introduction to VAX/VMS System
Routines, VAX/VMS Version 4.0, Digital Equipment Corporation, Maynard, MA.

DoyLE, J. (1979): “A truth maintenance system,” Artificial Intelligence 20, 231-272.

DrEscHER, G.L. (1985): “The ObjectLisp user manual (preliminary),” LMI Corp.,
Cambridge, MA.

Dupa, R.O., P.E. HART and R. REBOH (1977): “A rule-based consultation system for
mineral exploration,” Proc. of the Lawrence Symposium on Systems and Decision,
UC Berkeley, California, pp. 306-309.

ErmqQvisT, H. (1975): “SIMNON, An interactive simulation program for nonlinear
systems,” Technical report TFRT-3091, Department of Automatic Control, Lund
Institute of Technology, Lund, Sweden.

Ensor, J.R. and J.D. GABBE (1985): “Transactional blackboards,” Proc. of the 9th
International Joint Conference on Artificial Intelligence, William Kaufmann, Inc.,
Los Altos, CA, pp. 340-344.

EYKHOFF, P (1974): System Indentification: Parameter and State Estimation, Wiley,
London.

References 173

FaGcan, L.M. (1978): “Ventilator Manager: A program to provide on-line consultative
advice in the intensive care unit,” Heuristic Programming Project Memo HPP-78-16,
Department of Computer Science, Stanford University, California.

Fikes, R.E. and N.J. NiLssoN (1971): “STRIPS: A new approach to the application
of theorem proving in problem solving,” Artificial Intelligence 2, 189-208.

FISHER, E.L. (1986): “An Al-based methodology for factory design,” Al Magazine 7,
4, 72-85.

FopErARrO, J.K., K.L. SKLOWER and K. LAYER (1983): “The Franz Lisp Manual,”
UC Berkeley, California.

Foragy, C.L. (1979): “OPS4 User’s manual,” Technical repert CMU-CS-79-132,

Department of Computer Science, Carnegie-Mellon University.

Foray, C.L. (1981): “OPS5 User’s manual,” Technical report CMU-CS-81-135,
Department of Computer Science, Carnegie-Mellon University.

Foragy, C.L. (1982): “Rete: A fast algorithm for the many pattern/many object pattern
match problem,” Artificial Intelligence 19, 1, 17-37.

Francis, J.C. and R.R. LEITCH (1985): “Artifact: A real-time shell for intelligent
feedback control,” in M.A. Bramer (Ed.): Research and Developments in Expert
Systems, Cambridge University Press, UK.

Fu, K-S.(1970): “Learning control systems — review and outlook,” IEEE Transactions
on Automatic Control 15, 210-221.

Fu, K-S. (1971): “Learning control systems and intelligent control systems: An
intersection of artificiall intelligence and automatic control,” IEEE Transactions on
Automatic Control 16, 70-73. o

GALE, W.A. and D. PREGIBON (1982): “An expert system for regression analysis,”

Proc. of the 14th Symposium on the Interface, Troy, N.Y., Springer Verlag, New
York, pp. 110-117.

GENSYM (1987): G2 User’s manual, Gensym Corp., Cambridge, MA.

GEORGEFF, M .P. and A.L. LANSKY (1986): “Procedural knowledge,” Proceedings of
the ILEE 74, 10, 1383-1398.

GLATTFELDER, A.H. and W. SCHAUFFELBERGER, “Stability analysis of single-loop

control systems with saturation and antireset-windup circuits,” IEEE Transactions
on Automatic Control 28, 12, 1074-1081,

GOLDBERG, A. and D. ROBSON (1983): Smalltalk-80: The Language and its
Implementation, Addison-Wesley, Reading, MA.

GREEN, C. (1969): “Application of theorem proving to problem solving,” Proc. IJCAI,
Washington DC, pp. 219-239.

HAGGLUND, T. (1981): “A PID tuner based on phase margin specification,” Technical
report TFRT-7224, Department of Automatic Control, Lund Institute of Technology,
Lund, Sweden.

174 References

HAGGLUND, T. and K.J. ASTROM (1985): “Automatic tuning of PID controllers based
on dommzmt pole design,” Proceedings of IFAC Conference on Adaptive Control of
Chemical Processes, Frankfurt, W. Germany.

HaMmEL, B. (1949): “Contribution a I’etude mathematique des systemes de reglage par
tout-cu-rien,” C.E.M.V. Service Technique Aeronautique 17.

HarMON, P. and D. KING (1985): Expert Systems, Artiﬁciélxlntelligence in Business,
John Wiley & Sons, Inc., New York.

HAYES P. (1973): “The frame problem and related problems in artificial intelligence,”
in A. Elithorn and D. Jones (Eds.): Artificial and Human Thinking, Jossey-Bass

Inc..

Haves-RotH, F., D. WATERMAN and D. LENAT (1983): Building Expert Systems,
Addison-Wesley, Reading, MA.

HEIN, U. (1983): “PAUL-The kernel of a representation and reasoning system
designed for knowledge engineering tasks,” AILAB Working paper No 16, Linkoping
University, Sweden.

HoLMmBLAD, L.P. and J.J. OSTERGAARD (1981): “Control of a cement kiln by fuzzy
logic,” F. L Smidth Rev1ew, Copenhagen, Denmark.

Hoores, H.S., W.M. HAWK JR. and R.C. LEwIs (1983):" “A‘self-tuning controller,”
ISA T;ansachons 22, 49-58.

INFERENCE CORP. (1984): ART - User Manual.

INTELLICORP (1984): Knowledge Engineering Environment (KEE) — User Manual
Menlo Park, CA. s

ISERMANN, R. {1982): “Parameter adaptive control algorithms — a tutorial,” Automat-
ica 18, 513-528.

James, J.R., D.K. FREDERICK and J.H. TAYLOR (1985): “The use of expert-system
programming techniques for the design of lead-lag compensators,” IEE Conference,
Contirol ’85, Cambridge, England.

Jury, E.I. (1964) Theory and Application of the Z-Transform Method, John Wiley,
New York.

Kasutan, D.L. (1982): “EUNICE: A system for porting UNIX programs to
VAX/VMS,” Artificial Intelligence Center, SRI International, Menlo Park, Califor-

nia.
KnurH, D.E. (1984): The TEpXbook, Addison-Wesley, Reading, MA.

Kraus, T'W. and T.J. MYRON (1984): “Self-tuning PID controller uses pattern
recognition approach,” Control Engineering, June, 106-111.

LARSSON, J.E. and P. PERSSON (1987): “An expert system interface for IDPAC,”
Technical report TFRT-3184, Department of Automatic Control, Lund Institute of
Technology, Lund, Sweden.

et -

References ‘ 175

LiLia, M. (1987): “Least squares fitting to rational transfer function with time delay,”
Technical report TFRT-7363, Department of Automatic Control, Lund Institute of
Technology, Lund, Sweden.

LiNDQvisT, T. (1985): “En auto-tuner for PI regulator,” Master thesis TFRT-5332,
Department of Automatic Control, Lund Institute of Technology, Lund, Sweden, In
swedish.. ‘

LiuNg, L. (1987): System Identification: Theory for the user, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey.

Lukas, M.P. (1986): Distributed Control Systems, Their evaluation and design, Van
Nostrand Reinhold Company, New York.

MARTENSSON, B. (1986): “Adaptive stabilization,” PhD thesis, TFRT-1028, Lund,
Sweden.

MAMDANI, E.H. and S. ASSILIAN (1975): “A fuzzy logic controller for a dynamic plant,”
Int. Journal of Man-Machine Studies 7, 1-13.

McCARTHY, J. and P.J. HAYES (1969): “Some philosophical problems from the
standpoint of artificial intelligence,” in B. Meltzer and D. Mitchie (Eds.): Machine
Intelligence, American Elsevier, New York.

McCarTHY, J. (1980): “Circumscription-A form of non-mondtonic resoning,” Artifi-
cial Intelligence 13, 27-39. ‘

McDERMOTT, D. and J. DOYLE (1980): “Non-monotonic logic I,” Artificial Intelligence
13, 41-72. ‘

McDERMOTT, D. (1982): “A temporal logic for reasoning abotit-processes and plans,”
Cognitive Science 6, 2.

McDERMOTT, J. (1980): “R1: A rule-based configurer of computer systems,” Technical
report 8§0-119, Carnegie-Mellon Department of Computer Science.

MicHALSKI, R.S., J. CARBONELL and T. MITCHELL (1983): Machine Learning : an
artificial intelligence approach, Tioga Press, Palo Alto, CA.

MicHIE, D, and R.A. CHAMBERS (1968): “BOXES: an experiment in adaptive
control,” in E. Dale and D. Michie (Eds.): Machine Intelligence 2, Oliver and Boyd,
Edinburgh, pp. 137-152.

MiLLikeN, K.R., A.V. Cruise, R.L.. Ennis, A.J. FINKEL, J.L. HELLERSTEIN, D.J.
LoeB, D.A. KrEIN, M.J. MasuLrLo, H.M. VAN WOERKORN and N.B. WAITE

(1986): “YES/MVS and the automation of operations for large computer complexes,”
IBM Systems Journal 25, 2, 159-180.

MINSKY, M. (1975): “A framework for representing knowledge,” in P.H. Winston (Ed.):
The Psychology of Computer Vision, McGraw-Hill, New York.

MooRrg, R.L., L.B. HAwkINSON, C.G. KNICKERBOCKER and L. .M. CHURCHMAN
(1984a): “A real-time expert system for process control,” Proc. First Conf. on Al
Applications, IEEE Computer Society, Denver, Colorado, pp. 529-576.

=

176 : References

Moore, R.L., L.B. HawkinsoN, C.G. KNICKERBOCKER and L.M. CHURCHMAN
(1984b): “Expert system applications in industry,” Proc. Instrument Society of
America, Int. Conf., Houston.

Moorg, R.L., L.B. HawkiNsoN, M.E. LEVIN and C.G. KNICKERBOCKER (1985):
“Expert control,” Proc. American Control Conf., Boston, MA, pp. 885-887. -

NELSON, W.R. (1982): “REACTOR: An expert system for diagnosis and treatment of
nuclear reactor accidents,” Proc. of the National Conference on Artificial Intelligence,
Pittsburgh, PA, pp. 296-301.

NEWELL, A. and H.A. SiMON (1972): Human Problem Solving, Prentice-Hall,
Englewood Cliffs, NJ.

NEwWELL, A., J.C. SHAW and H.A. SIMON (1960): “Report of a general problem-solving
program for a computer,” Proc. of an International Conference on Information
Processing, UNESCO, Paris, France, pp. 256-264.

N1, H.P. (1986a): “Blackboard systems: The blackboard model of problem solving and
the evolution of blackboard architectures,” AI Magazine 7, 2, 38-53.

N1, H.P. (1986b): “Blackboard systems: Blackboard application systems, blackboard
systems from a knowledge engineering perspective,” AI Magazine 7, 3, 82-106.

Nu, HP., E.A. FEIGENBAUM, J.J. ANTON and A.J. ROCKMORE (1982): “Sig-
nal-to-symbol transformation: HASP/SIAP case study,” AT Magazine 3, 2, 23-35.

Nupa, K. and T. UMEDA (1986): “Process control systeni synthesis by an expert
system,” in M. Morari and T.J. McAvoy (Eds.): Chemical Process Control - CPCIII,
CACHE, Elsevier, Amsterdam.

NiLssoN, M. (1983): “FOOLOG — A small and efficient Prolog-interpreter,” Technical
report no. 20, UPMAIL, Computing Science Department, Uppsala University,
Sweden.

NiussoN, N.J. (1982): Principles of Artificial Intelligence, Springer-Verlag, Berlin.

OHTA, T., N. SANNOMIYA, Y. NISHIKAWA, H. TANAKA and K. TANAKA (1980): “A
new optimization method of PID control parameters for automatic tuning by process
computer,” Proceedings of the IFAC Symposium Computer Aided Design of Control
Systems, Pergamon Press, Oxford, pp. 133-138.

PICON (1985): “PICON User Guide,” LMI, Cambridge, MA.

ParowrrcH JRr, B.L. and M. A. KRAMER (1985): “The application of knowledge-based
expert system to chemical plant fault diagnosis,” Proc. ACC, Boston, MA,
pp. 646-651.

Pang, G.K.H. and A.G.J. MCFARLANE (1987): An Expert System Approach to
Computer-Aided Design of Multivariable Systems, Springer Verlag, Berlin.

PELAVIN, R. and J.F. ALLEN (1986): “A formal logic of plans in temporally rich
domains,” Proceedings of the IEEE 74, 10, 1364-1382.

QUILLIAN, M.R. (1966): “Semantic memory,” Report AFCRL-66-189, Bolt, Beranek
& Newman, Cambridge, MA. :

References 177

REITER, R. (1980): “A logic for defaunlt reasoning,” Artificial Intelligence 13, 81-132.

RiTcHIE, D.M. and K. THOMPSON (1978): “The UNIX time-sharing system,” The Bell
System 'Technical Journal 57, 6, 1905-1929.

ROSENBLATT, F. (1961): Principles of Neurodynamics: Perceptrons and the Theory of
Brain Mechanisms, Spartan Books, Washington DC.

SACERDOTI, E.D. (1974): “Planning in a hierarchy of abstraction spaces,” Artificial
Intelligence 5, 115-135.

SACERDOTI, E.D. (1975): “A structure for plans and behavior,” Tech. note 109, Al
Center, SRI International Inc., Menlo Park, CA.

SAKAGUCHI, T. and K. MaTsumMoTO (1983): “Development of a knowledge-based

expert system for power system restoration,” IEEE Transactions on Power Apparatus
and Systems PAS-102, 2.

SANDEWALL, E. (1972): “An approach to the {frame problem, and its implementation,”
in B. Meltzer and D. Michie (Eds.): Machine Intelligence, Wiley, New York,
pp. 195-204.

SANDEWALL, E. and R. RONNQUIST (1986): “A representation of action structures,”
Proc. of the 5th National Conf. on Artificial Intelligence, AAAI, Philadelphia.

SANOFF, S.P and P.E. WELLSTEAD (1985): “Expert identification and control,” Proc.
IFAC Identification and System Parameter Estimation, York, UK, pp. 1273-1278.

SARIDIS, G.N. (1977): Self-Organizing Control of Stochastic Systems, Marcel Dekker,
Inc., New York.

SARIDIS, G.N. (1983): “Intelligent robotic control,” IEEE Transactions on Automatic
Control 28, 5, 547-557.

SCHINSKEY, F.G. (1986): “An expert system for the design of distillation controls,” in
M. Morari and T.J. McAvoy (Eds.): Chemical Process Control - CPCIII, CACHE,

Elsevier, Amsterdam.

SHORTLIFFE, E.H. (1976): Computer Based Medical Consuitations: MYCIN, Elsevier,
New York.

SMITH, S.F., M.S. FoX and P.S. Ow (1986): “Constructing and maintaining detailed
production plans: Investigations into the development of knowledge-based factory
scheduling systems,” Al Magazine 7, 4, 45-61.

STEELE JR., G.L. (1984): Common Lisp, Digital Press, Digital Equipment Corp..

STEFIK, M. and D.G. BoOBROW (1986): “Object-oriented programming: Themes and
variations,” AI Magazine 6, 4, 40-62.

STENERSON, R.O. (1986): “Integrating Al into the avionics engineering environment,”
Computer, Febr, 88-91.

STROUSTRUP, B. (1986): The C++ Programming Language, Addison-Wesley, Read-
ing, MA.

178 References

SussMAN, G.J. and G.L. STEELE (1975): “SCHEME: An interpreter for extended
lambda calculus,” Memo 349, MIT Al Laboratory, Cambridge, MA.

SUSSMAN, G.J. and G.L. STEELE (1978): “The revised report on SCHEME,” Memo
452, MIT AI Laboratory, Cambridge, MA.

SWARTOUT, W.R., “XPLAIN: a system for creating and explaining expert consulting
programs,” Artificial Intelligence 21, 3, 285-325. '

Tonag, B.M. (1977): “A control engineering review of fuzzy systems,” Automatica 13,
559-569.

ToNG, R.M. (1984): “A retrospective view of fuzzy control systems,” Fuzzy Sets and
Systems 14, 199-210.

TRANKLE, T.L. and L.Z. MARKOSIAN (1985): “An expert system for control system
design,” Proc. of IEE Conference Control ’85, Cambridge, UK, pp. 495-499.

TRANKLE, T.L., P. SHEU and U.H. RABIN (1986): “Expert system architecture for
control systems design,” Proc. ACC, Seattle, WA, pp. 1163-1169.

TRANKLE, T.L. (1986): “Personal communication,”.

TSYPKIN, Y.Z. (1958): Theorie der Relais Systeme der automatischen Regelung, R.
Oldenburg, Munich, W. Germany.

TSYPKIN, Y.Z. (1984): Relay Control Systems, Cambridgé: University Press, Cam-
bridge, UK. : 4

TURNER, R. (1984): Logics for Artificial Intelligence, FEllis Horwood Limited,
Chichester, England.

VAN MELLE, W., A.C. ScoTT, J.S. BENNETT and M. PEAIRS,,(«1981): “The EMYCIN
manual,” Technical report HPP-81-16, Computer Science Department, Stanford
- University, California. |

VAN VALKENBURG, M.E. (1960): Introduction to Modern Network Synthesis, John
Wiley & Sons, Inc., New York.

VERE, 5.A.(1983): “Planning in time: Windows and durations for activities and goals,”
IEEE ‘Transactions on Pattern analysis amd Machine intelligence 5, 3, 246-267.

WATERMAN, D.A.(1986): A Guide to Expert Systems, Addison-Wesley, Reading, MA.

WEIss, S.M. and C. A. KULIKOWSKI (1981): “Expert consultation systems: The
EXPERT and CASNET projects,” Machine Intelligence, Infotech State of the Art
Report, Pergamon Infotech Ltd., Maidenhead Berks, U.K..

WIDROW, B. (1962): “Generalization and information storage in networks of Adaline
neurcns,” in M.C. Yovits, G.T. Jacobi and G.D. Goldstein (Eds.): Self-Organizing
Systems 1962, Spartan Books, Washington DC.

WILKINS, D. (1984): “Domain independent planning: Representation and plan
generation,” Artificial Intelligence 22, 269-301.

WinsToN, P.H. and B.K.P. HorN (1981): Lisp, 1st edition, Addison-Wesley,
Reading, MA.

References 179

WiINSTON, P.H. and B.K.P. HORN (1984): Lisp, Addison-Wesley, Reading, MA.

WITTENMARK, B. and K.J. ASTROM (1984): “Practical issues in the implementation
of self-tuning control,” Automatica 20, 5, 595-605.

YARBER, W.H. (1984): “Electromax V Plus, A logical progression,” Proc. Control
Expo ’84.

ZADEH, L.A. (1965): “Fuzzy sets,” Inform. Control 8, 338-353.

ZIEGLER, J.G. and N.B. NICHOLS (1943): “Optimum settings for automatic
controllers,” Trans. ASME 65, 433-444.

Relay-based
control design methods

This appendix contains a survey of different control design techniques based on
relay experiments.

The original Ziegler-Nichols method: The Ziegler-Nichc;ls'rules, (Ziegler and
Nichols, 1943), can be used both for design of P, PI and PID controllers. The

recommended parameters are

Controller K T; Ty

P : 0.5k,
P1 0.4k. 0.8t
PID 0.6k, 0.5¢. 0.12¢,

where k. and ¢, denotes the ultimate gain and ultimate period. The Ziegler-
Nichols rules are generally considered to give too small relative damping.

Modified Ziegler-Nichols methods: In Astrom and Hagglund (1984b), modified
Ziegler-Nichols design techniques are presented. They are based on knowledge
of one point on the Nyquist curve. This point can be moved to an arbitrary
position in the s-plane using P, I, and D action. This may be used to obtain
controllers with a prescribed amplitude margin or phase margin. For example,
a PID controller that gives a prescribed phase margin of ¢,, can be obtained as

=

180

181

follows.

K =k.cosd,

tan ¢ + 4/ = + tan® g
Ty =

2w,

T = Ty
The choice of « gives an additional degree of freedom.

High-gain PI design: Systems for which the output derivative change sign at the
relay switching times may theoretically be controlled arbitrarily well by constant
high gain feedback. In practice, control signal saturation and measurement noise
limit the maximum allowed feedback gain and thus integral action might be
needed. The proportional gain can be chosen as

Au

K=—
An

where

An = Measured noise variations

Ay = Maximum allowable control signal variations

The integration time can be determined by specifying the relative damping of
the closed loop system, (, under the assumptmn that the open loop system is
only an integrator.

k;
G(s) = — o
()=~
The value k; may be approximated as
4e
ki, = —
t.d

The characteristic equation of the system now looks as

Kk;
s +Bks+ T =0
This gives
4¢?
L= &r

Discrete system fitting: The Ziegler-Nichols method and its modifications make
only use of the oscillation period and amplitude. And underlying assumptions in
these methods is that the process fulfills the describing function conditions and
.itus have a pure sinusoidal oscillation curve form. As shown in Section 3.1, this
is, e.g., not true for simple first order systems.

-

182 Appendiz A Relay-based control design methods

lrl

Q
T

N
N

|
——f———pr1-

ij

1

[SJR S T P

-] s e e

—— - ——

.
Ry
5
=)
i

Figure A.1 Discrete model fitting definitions

An alternative method is instead to use the shape of the oscillation curve
form as proposed in Astrém and Hagglund (1987). The basis for the method is
that a relay feedback experiment in stationarity gives pe:iodic input and-output
signals. 2n samplings per oscillation period is chosen as a reasonable sampling
rate. By using Z-transform methods, it is shown that the coefficients in the
input-output model

AlQ)y(k) = B(q)u(k) r=degA—degB
can be determined from the equation
A(z)D(z) + 2"B(2)E(z) = 2" (2™ + 1)Q(2) (A.1)

where

E(z)=d(z"+2z""14+... +2)
-D(Z) =yrz" + yr—f—lzn_l +.oo ot Yrgn—12

The Q(z) polynomial corresponds to the initial conditions that give the steady
state periodic output. The measurements of the oscillation are defined according
to Figure A.1. In the generic case, it is shown that n > 2degA is a neces-
sary condition for Equation (A.1) to be solvable. For special cases, however, n
may be smaller. This method can principally be used to fit a model of arbi-
trary complexity to the signal waveform. A first order system with a time delay,
G(s) = kye™*L /(1 + sT), is a reasonable process model to use. The calculations
for this model are contained in Astrém and Hagglund (1987) and will be summa-
rized here. Three different cases need to be examined depending on the relation

o

183

between the sampling period and the time delay. In all three cases, the discrete
model contains three coefficients.

y(kh + k) = ay(kh) + byu(kh — rh + h) + byu(kh — rh)
L=(r—1)h+1L

From this it follows that n = 3 is the smallest allowed value in order to achieve
a solution for Equation (A.1).
Equation (A.1) has the following solutions.

€2 — €3
a =
€1 — €9
b -e%+e%+e§—eleg+elez—egeg
1 -_—
2({(61 ——-62)
by = e% + e% - eg —e1e3 —e1€2 + eqeg
2d(61 -—62)
e+ el +el—ere3—eres — eqe
qo = 1 2 3 1€3 12 2€3
2d(61 —-62)
=0

where eq, ey, and e3 have the following values for different values of r.

r= 1 2 3

&1 Y1 ¥y2 —Y
€2 Y2 —Y —y1
€3 —Yo —Y1 —¥Y2

-

The equation has a solution provided e; # e,. This correspond to the case when
the waveform is a pure sinusoidal.

The cheice of model depends on the actual value of the time-delay which is
not known in advance. It can, however, be estimated from the maximum point of
the oscillation waveform, 7, defined in Figure A.1. The time delay must be larger
than 7. Several relations exist between the coefficients in the different models
that can be used for model validation purposes.

The outcome of the model fitting is a discrete process model. From this
model, the corresponding continuous model can be calculated.

T=— h
log a
b1+b2€h/T
I:T
L , log—————bl+b2
L=h(r-1)+1I'
by + by

P 1+ e-h/T

184 Appendiz A Relay-based control design methods

An alternative is to instead base the control design directly on the discrete
process model. The coefficients in a RST-controller, Ru = Ty,.; — Sy, with
integral action cculd, e.g., be computed.

Dominant pele design based on conformal mappings: An alternative design
method based on relay feedback is described in Hagglund and Astrém (1985).
This method uses knowledge of two close points on the Nyquist curve. The
points are used to position the dominant poles of the closed loop system.

Many feedback loops have a pole-zero configuration with a pair of complex
peles that dominate the transient response. The dominating poles can be esti-
mated from knowledge of the Nyquist curve of the open loop system. The closed
leop poles are given by the characteristic equation

G(s)+1=0.

A Taylor series expansion around s = tw and neglecting terms of second and
higher order in ¢ gives

1+ G(iw) — icG'(iw) = 0.

From this both ¢ and w can be determined. The derivate G'(iw) can, based
on conformal mapping arguments, be approximated by the difference between
two close points on the Nyquist curve. The following expression is obtained for
determining o.

G(éwz) -— G(zwl) _ 21 + G(sz)

Wo — W1 o A

With a PID controller the dominant poles can be moved to a desired position.
This could be specified in terms of relative damping ¢ and frequency w. Since
a PID controller has three adjustable parameters, one extra condition is needed.
One possibility is to choose Ty = aT;. The two points on the Nyquist curve close
to the ultimate frequency is obtained by relay feedback with different values of
the ratio ¢/d. The two measurements give a feeling for how fast the amplitude
and phase changes around the ultimate frequency. This can e.g. be used to
indicate if the dynamics are dominated by a time-delay. In that case the phase
decreases substantially more than the amplitude. Hagglund and Astrom (1985)
contains examples of the design technique.

Dominant pole design through direct calculations: In Astrém and Hagglund
(1988), the dominant pole design methods are further explored. Here, the open-
loop dynamics are assumed to be known. The characteristic equation under PI
control becomes

L+ (k4 2)G(s) = 0.

The two dominating poles are specified by their relative damping ¢ and natural
frequency wp. It is shown that this equation is solvable under quite general

=

185

conditions and that k and k; are functions of {, wg, A and B, where

A =ReG(—0 +iw)
B =ImG(—0 +iw)

That an solution exists, does however not imply that the closed loop system is
stable or that the chosen poles are dominating. This has to be ensured by other
methods. Similar computations can be made for the PD and PID case. This
design method requires knowledge of the process dynamics. The discrete model
fitting method could, e.g., be used to obtain an approximative process model.

M-circle design: In Astrém and Hagglund (1988) a design technique is described
that attempts to find a compensator so that the magnitude of the closed loop
frequency response has unit gain at low frequencies and a resonance peak M,
which is smaller than a prescribed value. The design method requires knowledge
of one point on the Nyquist curve and the derivative of that point. Similar to the
first dominating pole design method this can be obtained through relay feedback
with different values of the ratio e/d. Trough PID control this point is moved
so that the compensated Nyquist curve is tangential to the M, circle at that
frequency. The value of M, is typically chosen as M, =1.1 - 1.5.

Step and pulse response based
control design methods

This sections contains an overview of different control de31gn methods based on
step and pulse response experiments.

Ziegler-Nichols step response method

The Ziegler-Nichols method is perhaps the most well-known.tuning method based
on step response (Ziegler and Nichols, 1943).

A unit step is entered and the parameters a and b, defined in Figure B.1,
are measured. The PID parameters are calculated from the following table.

Controller K T, Ty
P 1/a

PI 0.9/a 3b
PID 1.2/a 2b b/2

Area calculations

The Ziegler-Nichols method is sensitive to measurement noise since it depends on
calculations of the maximum slope tangent of the step response. A less sensitive
approach is instead to calculate different areas of the step response. This method
was originally proposed in Ohta ef ¢l (1980). The process model which is treated

1s the monotone system
k e-—La

GO = i)

186

187

Figure B.1 Ziegler-Nichols step response set-up

A version exists where one pole is allowed to be in the origin. The formulas for
J = 1 and a unit step input looks as follows.

A0 /
T=2" |
L+ 2
T:AT}—el

The areas A0 and Al are defined in Figure B.2. The ared Al is the aréa under
the step response up to time 7'+ L. Notice that in order to calculate A1 the
values of the entire step response must be saved during the experiment. A pulse
with unit amplitude and the width T, can be used instead of a step. The step
response s(t) can be calculated from the pulse response y(t) according to

(), 0<t<T,
(1) = {?Zu) Lst-Ty, toTy

Using a pulse has two advantages. Firstly, the stationary value of the process
remains the same after the tuning experiment. Secondly, if the stationary value
after the tuning is different from the value before, this may indicate that the
process has integral action. If a step was used the response would, in this case,
never reach a stationary value.

Similar methods exist for the closed-loop tuning experiment. These typically
require the calculation of additional areas and have more complex formulas for
calculating the process model. Experimental results on the use of this tuning
method are described in Lindqvist (1985).

188 Appendiz B Step and pulse response based control design methods

A0

Al

T+L

Figure B.2 Area definitions

The method of moments

In Astrém and Héagglund (1988), the area calculation methods are generalised.
In this method the process model is calculated from the value of the transfer
function and its derivatives at w = 0. For the process model

k s
G(S) - 1 —l-p.sTe ’

it follows that

G(0) = k,
G'(0) = —ky(T + L)
G"(0) = ky(2T? + 2TL + L?)

kp = G(0)
__G'(0)
T+ID=-C

-5 (5)

The value of the transfer function and its derivates at w = 0 can be computed

S

from the following integrals

U(0) = /0 " ()t
U (0) = —-/Oootu(t)dt
U”(O)=/Ooot2u(t)dt
Y(O):/Ooo (1) dt
Y'(0) = ~j£mty(t)dt
Y"(o)zfoootﬂy(t)dt

together with the equations

Y (0) = G(0)U(0)
Y'(0) = G'(0)U(0) + G(0)U'(0)
Y"(0) = G"(0)U(0) + 2G' (0)U" (0) + G(0)U" (0)

This method can be used with arbitrary input signals.

189

The mailbox interface

Mailboxes are created with the system service SYS$CREMBX (Digital Equipment
Corp., 1984). This can be done either from VMS or EUNICE. In this project
all mailboxes are created during initialization in the knowledge-based system
process. The resulting mailbox identifiers are passed to the other subprocesses
through the VMS logical name tables. All this is done in a user-written C func-
tion.

Franz Lisp allows the inclusion of user-written functions in C, Pascal, and
Fortran. These functions may return arbitrary Lisp data abjects. The compiled
user written functions are dynamically loaded into the Lisp. Using C has one
major advantage. Since Franz Lisp is written in C, it is possible to use the
Lisp system’s internal data types in the user-written functions and thus easily
construct valid Lisp objects.

Mailboxes may be accessed from three different layers. The lowest layer
is directly through the system services. The system service SYS$QIO is used
to access a mailbox. The next layer is the VMS Record Management Service
(RMS). Here a mailbox is associated with a file. Access is done through get and
put operations. RMS internally implements this through system services. The
highest layer is to access the mailboxes directly from the high-level languages.
Here the mailbox cannot be separated from an ordinary file. All access is done
with, in, e.g., the Pascal case, read and write statements.

The data structure used for I/O in Franz Lisp is the port. A port is a stream—
oriented I/O channel. The standard input and output port is the terminal, but
ports can also be connected to files or pipes. A pipe is a Unix method for stream
communication between different processes. The mailbox to Lisp interface is
made by connecting the mailboxes to Unix files and then connecting the files to
the internal Lisp structure that represents ports.

By default, the read and write primitives of the mailboxes provide syn-

190

191

chronous communication, i.e., a process which writes a message in a mailbox is
halted until an other process reads the message. This is not sufficient in our
case. For example, the time critical numerical algorithm process cannot wait
for the knowledge-based system to actually read a message being sent to it in
Inbox. Asynchronous communication can, however, be achieved by changing a
time-out parameter in the VMS Record Access Block (RAB). Each VMS file has
an asscclated RAB that contains information about how-the records in the file
are accessed.

The numerical algorithms must also have the possibility to check if there
are any messages in Qutbox before it attempts to read them. If not and the
mailbox is empty, this process will be halted until a message is sent. The system
service SYS$GETDEV provides a possibility to check the number of messages in the
mailbox. This is used as a check before reading.

The details of the mailbox interface is shown in the following examples. The
first example 1s the C function crembx that creates two mailboxes and starts a
Pascal program with these mailboxes as standard input and output. The function
connects the mailboxes to Franz Lisp ports and returns the ports as a dotted pair.

/* Inclusion of type definition files.
Franz Lisp’s type declarations are contalned in
global.h. =*/

include </usr/src/cmd/lisp/franz/h/global.h>
include </usr/include/vms/dibdef.h>

include </usr/include/vms/ssdef.h> g
include </usr/include/eunice/eunice.h>

include <stdio.h>

/* The crembx function returns an arbitrary Lisp expression. */

lispval
crembx ()

{ struct {int 31ze, char *ptr; } inbox, outbox, imagename,
In_Descr, Out_Descr, logname;
int Status, pidnr, fdi, £d2;
short int unitnri, unitnr2;
char mbx_namel[9], mbx_name2[9];
register char *cpl, *cp2;
register int i, j;
FILE *inport, *outport;
lispval list;

define CHECK_STATUS if(!((Status =
define END_CHECK) & 1)) printf("ERROR");

=

192 Appendiz C The mailboz inferface

inbox.ptr = "INBOX";
inbex.size = 5;

outbeox.ptr = "QOUTBOX";
ocutbox.size = 6;
imagename.ptr = "NUMERICS";
imagename.size = 8;
logname.ptr = "NUMERICS";
logname.size = 8;

/* Two mailboxes are created. */

fd1 = creat(&inbox,0777,"ipc",256,"tmp" ,&unitnrl);
£d2 creat (&outbox,0777,"ipc",256,"tmp" ,&unitnr2) ;

/* The mailbox names are created from the unit numbers
and are entered in the group logical name table.
The code is only shown for one mailbox. */

i = unitnri
cpl = &mbx_namel[9]; s

*cpl-— = \0’;
*cpl-- = ’:7;
while (i) {
*cpl-- = (1 % 10) + ’07;
i /= 10; .
) .
*cpl-- = ’A’; *cpl-- = ’B’; *cpl-- = ’NM’; *cpl = ’_’;

In_Descr.ptr = cpl
In_Descr.size = 9;
strcpyn(In_Descr.ptr,cpl,9);

CHECK_STATUS
sys$crelog(l,&inbox,&In_Descr,0)
END_CHECK

/* The process NUMERICS is started with the mailboxes
as standard input and output. */

CHECK_STATUS
sys$creprc(&pidnr,&imagename,&Out_Descr,&In_Descr,&In_Descr,
0,0,%logname,4,0,0,0)
END_CHECK

/* The mailboxes are connected to UNIX files and opened. */

inport = fdopen(fdi,"r");
outport = fdopen(£fd1,"w");

/* The RAB structure of output is changed to allow
asynchronous communication. */

FD_FAB_Pointer[fd2]->rab.rab$l_rop |= RAB$M_THMO;

/* The UNIX files are associated with Lisp ports
and a dotted pair of the ports is returned. */

ioname [PN(inport)] = (lispval) inewstr(In_Descr.ptr);
ioname [PN(outport)] = (lispval) inewstr(Out_Descr.ptr);

list = newdot();
list->d.car = P(inport);
list->d.cdr = P(outport);

return(list);

}

The Pascal program is interfaced as shown in the following example.

[inherit (’SYS$LIBRARY:STARLET’)] program numeriCQkinput,outpﬁt);

type Ptr_to_RAB
unsafefile

"RAB$TYPE;
[unsafe] file of char;

var RAB : Ptr_to_RAB;
function PAS$RAB(var f : unsafefile): Ptr_to_RAB; extern;

{* Function MoreInBox returns true if there are any messages
in the given mailbox. *}

193

function MoreInBox(name:packed array [integer] of char):boolean;

var status : integer;
dbuff : packed array [1..DIB$K_LENGTH] of char;

begin
status := $GETDEV(DEVNAM := name, PRIBUF := dbuff);
if not odd(status) then writeln(’MoreInBox:’,status);
MoreInBox := ord(dbuff[9]) > 0;

194 Appendiz C The matlboz interfece

end;
begin
{* Change to asynchronous communication. *}

RAB := PAS$RAB(output);
RAB™ .RAB$V_TMO := true;

{* Main loop *}
while true do
begin
contrel;
if moreinbox(’SYS$INPUT’) then read_message;
end;
end.

The C written function is compiled separately with the command

%cc —c crembx.c N

This results in an object file that is loaded into Franz Lisp with the corr;mand
>(cfasl ’crembx.o ’_crembx ’crembx "function")

A call to crembx will look like

>(crembx)
(%_MBA:1256 . %_HMBA:1257)

The car and cdr of this list are the ports connected to the mailboxes.

YAPS commands

This appendix contains an overview of the most important messages and func-
tions available in plain YAPS.

(use-yaps-db ’<database>) .
Change the currently active database to <database>.

(p <name> <pattern> ... [test <test> ...] --> <expression> ...)
Define the rule <name> and install it in the active dat’@baSe.

(installp ’<rule> ’<rule> ...)
(<~ ’<database> ’installp ’<rule> ’<rule> ...)
Installs the already defined rules in a database.

(printp ’p1 ’p2 ...)
Print the rules whose names are p1, p2 etc.

(fact <expression> ...)
Encapsulates the expressions in a list and adds it to the currently active
database. The arguments are by default not evaluated with the exception of
pattern matching variables which are substituted by their value. Evaluation
can be forced by preceeding an argument with the = character.

(<- ’<database> ’'fact ’<list-of-expressions>)
Adds the argument list as a fact in <database>. The value of the fact is
given by <expression>.

(db)
<~ ’<database> ’db)
Print the values and cycle numbers of of the facts in a database.

195

196 Appendiz D YAPS commands

(remove ’<number> ’<number> ...)
Removes facts from the current database. May only be used within the RHS
of a rule. The numbers correspond to the facts matching the patterns in the
LHS of the rules. Negated patterns are not counted.

(rm ’<cycle> ’<cycle> ...)
(<- ’<database> ’rm ’<cycle> ’<cycle> ...)
Remove the facts with the given cycle numbers from a database.

(refresh [’<number> ’<number> ...])
Removes all facts, or only the ones specified, from the current database and
adds them again. This causes rules which already have fired to be fired
again. May only be used within a RHS.

(ref [’<cycle> ’<cycle> ...]1)
(<- ’<database> ’ref [’<cycle> <cycle> ...])

Like refresh but instead requires the cycle numbers of the facts to be re-
freshed.

(run [’<n>])
(<=~ ’<database> ’'run [’<n>])
Begins the execution of the rules. If <n> is given only n rules are fired.
therwise it continues until either the conflict set 1s empty or an..explicit
halt has been executed.

(halt)
The rule firing is stopped When the current rule is ﬁnlshed May only be
used within a RHS. -

(yaps-trace [’<all>])
(<~ ’<database> ’trace)
Turn tracing on for the specified database.

(yaps—untrace [’<all>])
(<~ ’<database> ’untrace)
Turn tracing off.

(age-only-strategy)
(<- ’<database> ’age-only-strategy)
Changes the conflict resolution strategy of a database to age-only-strategy.

(directed-strategy [’<keyword>])

(<- ’<database> ’directed-strategy [’<keyword>])
Change the conflict resolution strategy of a database to give priority to
facts which begin <keyword>. The default strategy is (directed-strategy
'goal).

Planning from an

Al perspective

The origin of the work on planning in Al is the General Problem Solver
(GPS), e.g., (Newell et al, 1960). This was the first problem solving program
that separated general problem-solving methods from task-specific knowledge. A
task was described as a triple of an initial object (state), a goal object (state) and
a set of operators. Operators were chosen on the basis of how much the difference
between the initial object and the goal object was reduced. No information was
assumed to automatically carry through from one state to the succeeding state.
This means that the operator was responsible for generating all information in
a succeeding state. The representation format of the states and operators were
not predetermined and varied from one domain to another.

Much of the work in state-based planning is based on situation calculus,
(McCarthy and Hayes, 1969). The representation format is usually first-order
predicate calculus or some extension of it. Resolution is used as the problem
solving method. The domain under consideration is assumed to always be in a
certain state. A state is described by means of predicates. For example, the fact
that an object is at a certain position in certain state can be expressed with the
following predicate.

at(objectl,position6,state’)
Events, or actions, are represented as functions that takes a situation, including

~ s.ate, and returns the resulting state. An axiom that describes that objectl
can be pushed from position6 to position7 looks as follows.

197

198 Appendiz E Planning from an Al perspective

(V) [at(objectl,position6,s) D
at(objectl,position7,push(objectl,position6,position7,s))]

The function push returns the resulting state. An example of a planning system
along these lines is described in Green (1969).

A general problem in planning is the problem of which relations that are af-
fected by an action and which are not. This is referred to as “the frame problem”
(Hayes, 1973). Frame here means the frame of reference in which a relation holds.
In resclution-based planning systems and also GPS, it is necessary to explicitly
state all relations that are left unaltered for each and every actions. For example,
in the above scenario with objects at different positions it 1s, e.g., necessary to
have axioms that says pushing an object from cone position to another doesn’t,
hopefully, change the position of other objects. Since most actions have local
affect, this leads to numerous trivial so called “frame axioms”.

The perhaps most well-known planning system is STRIPS (Fikes and Nils-
son, 1971). In STRIPS, each operator has associated a set of preconditions, an
add list of clauses, and a delete list of clauses. Applying an operator results in the
deletion from the model of all the clauses in the delete list and the addition to the
model of all the clauses in the add hist. All clauses which are not contained in the
add or delete lists are assumed to be unaffected by the operator. This is called
“the STRIPS assumption”. STRIPS is an example of a ﬁonhierarchical planner.
This means that the plan developments consists of one level. The individual
pieces of the plan are generated one after another starting at the beginning.

Hierarchical planners generates a hierarchy of plans with with different de-
grees of details. The highest degree is an abstraction of the plan and the lowest
degree is the full detailed plan. An example of a hierarchical planner is AB-
STRIPS (Sacerdoti, 1974). Another example is the NOAH system, (Sacerdoti,
1975). NOAHM uses procedural nets to represent plans. The procedural nets
incorporate both procedural and declarative knowledge.

Problems with interacting subproblems can occur when a problem has con-
Junctive goals. The order in which the goals are fulfilled are perhaps not specified,
but can be critical for a plan to be found. A different problem arise when the
conjunctive goals must be fulfilled simultaneously. The majority of the work in
planning concerns sequential planning. Planning of parallel activities is a much
more difficult problem. The STRIPS assumption also cause problems for plan-
ning problems in dynamic environments. The presumption that the world only
is changed by the planning agent’s actions makes it difficult to handle externally
generated events.

Several planning systems have tried to extend the possible class of planning
problem beyond what is allowed in a “STRIPS planner”. The SIPE system,
(Wilkins, 1984), can handle plans with concurrent actions. A plan consists of
partially ordered actions. Actions without ordering are considered to be concur-
rent. Actions that do not share the same resource can be executed in parallel.
The DEVISER system, (Vere, 1983), also allows plans with concurrent actions.

[

199

External events which are known to occur at a certain future time are allowed.
Duration times express how long time actions take. Time windows may be spec-
ified for goals, e.g., that a goal should hold between two time points. Deviser
models time as nonnegative real numbers where time zero is the time of planning.

An related area is the work on theories of action, 1.e., on what constitutes
an action. Allen (1984) has developed a temporal logic for reasoning about ac-
tions. The driving force behind this works has mainly been problems concerning
the meaning of action sentences in natural-language understanding. The tem-
poral logic is based on time intervals rather than time points. The logic is a
typed first-order predicate calculus where the types could, e.g., be time inter-
vals, propositions that can hold or not hold during a particular interval, and
objects in the domain. Dynamic aspects of the world are captured by the term
occurrences. Occurrences are divided into processes, which describes activities
not involving a culmination, and events which describes activities that involve a
resulting outcome. A similar temporal logic has been developed by McDermott
(1982).

The temporal logic of Allen has been extended with two modalities that can
be used to support planning problems by Pelavin and Allen (1986). The first
modality is the INEV operator. The statement (INEV i P) means that at time
interval i, statement P is inevitable, i.e., regardless of what happens after i, P
will be true. Using this operator, the possibility operator, P0S, can be defined.
The second modality is the IFTRIED operator. The statement (IFTRIED pi
P) means that if plan instance pi was to be executed then P would be true.
The resulting planning system can handle concurrent activities and externally
generated events. The frame problem is basically solved through frame axioms.
Although this logic system provides a general framework for ’expressing planning
problems it is not obvious how it should be used effectively for practical problems.

A formalism for action structures with partially ordered actions that may
occur in parallel has been developed by Sandewall, (Sandewall and Ronnquist,
1986). In this work actions are described with preconditions, postconditions, and
prevail conditions. The pre- and postconditions correspond to the delete and add
lists of STRIPS. The prevail conditions describe the conditions of the world that
must remain while the action is executed.

A more procedural approach to reasoning about actions and planning is
taken in the work by Georgeff, (Georgeff and Lansky, 1986). In this work, ac-
tions are described by processes that have both a declarative semantics and an
operational semantics. The use of processes is motivated by the fact that much
expert knowledge is procedural in nature and thus is better represented proce-
durally than with action sequences.

200 Chapter £ Conclusions and Suggestions for Future Work

