LUND UNIVERSITY

Path Constrained Robot Control

Dahl, Ola

1992

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Dahl, O. (1992). Path Constrained Robot Control. [Doctoral Thesis (monograph), Department of Automatic
Control]. Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/7700bb32-31fb-480f-9111-e5c03f166b58

Path Constrained
Robot Control

Ola Dahl

Department of Automatic Control, Lund Institute of Technology

(Lejon)
(9 35 mm)

ISSN 0280-5316
ISRN LUTFD2/TFRT--1038--SE

Path Constrained
Robot Control

Ola Dahl

Lund 1992

To Emma

Department of Automatic Control
Lund Institute of Technology

Box 118

S-221 00 LUND

Sweden

ISSN 0280-5316
ISRN LUTFD2/TFRT--1038--SE

© Ola Dahl, 1992
Printed in Sweden by KF-Sigma
Lund 1992

Document name

Department of Automatic Control DOCTORAL DISSERTATION

Lund Institute of Technology Date of issuc
P.O. Box 118 April 1992
§5-221 00 Lund Sweden Document Number
ISRN LUTFD2/TFRT--1038--SE
Author(s) Supervisor
Ola Dahl Lars Nielsen, Karl Johan Astrém

Sponsoring organisation
Swedish National Board for Technical Development
(NUTEK), contract 87-01384P

Title and subtitle
Path Constrained Robot Control

Abstract

Fast motion along a predefined path is important in many robot applications, and requires utilization of the
maximum allowable torque range. If the torque is at the limit, there is no margin to cope with disturbances
or modeling errors, which may result in deviation from the path. A path velocity controller outside the
ordinary robot controller modifies a nominal velocity profile, which is specified in advance, e.g. by minimum
time optimization or by a robot operator/programmer. Existing minimum time optimization methods for
rigid robots give the nominal velocity profile and also insight into the constraints. Flexible joint robots are
treated by a polynomial approximation of the robot velocity along the path, and the specific approximation
is chosen such that the boundary conditions on zero velocity and nonzero torque are satisfied.

The path velocity controller modifies a scalar path parameter, giving computetional efficiency and coordination
of joint motions. A basic algorithm limits the acceleration, which may be inadmissible due to modeling errors.
An extended algorithm handles the added problem of inadmissible velocity. The path velocity controller is
verified by experiments on an industrial robot. The experiments are done such that it is possible to separate
the performance of the path velocity controller from the performance of the robot controller. Path deviation
and torque utilization are discussed and evaluated. The experiments show that the path velocity controller
can adjust a nominal minimum time velocity profile, such that the result is good path following and good
utilization of the available torque range.

The use of path velocity control makes it possible to have a nominal velocity profile which exceeds the robot
capability. This is not possible if the reference trajectory is fixed. The experimental results also show how
path velocity control makes it possible to use minimum time optimization in a nonideal situation.

Key words
Robot control, path following, torque limits, trajectory planning, minimum time optimization, velocity profile,
feedback, reference trajectory generation, path velocity control, experimental evaluation.

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN
0280-5316

Language Number of pages Recipient's notes
English 177

Security classification

_The report may be ordered from th%Depnrtment of Automatic Control or borrowed through the University Library 2, Box 1010,
'S-221 03 Lund, Sweden, Telex: 33248 lubbis lund. \

Contents

Preface R

1. Introduction ¢
2. AnExample 12
2.1 Path Velocity Planning e
2.2 Using the nominal path parameter e e .. 20
2.3 Path Velocity Control25

3. Path Velocity Planning S, 28
3.1 Problem Formulation 29
3.2 Reducing the State Dimension A /)
3.3 Phase-plane Optimization - 14
3.4 An Optimality Result T €
3.5 Optimization over a Fixed Interval oo .. B2
3.6 Parametric Optimization R ¥
3.7 Numerical Examples 1)
3.8 Conclusions R
4. Path Velocity Control N
4.1 Controller Parametrization R ¢
4.2 Limits on path acceleration T .3 |
4.3 A Basic Algorithm 82
4.4 Velocity Profile Scaling 88
4.5 Simulations R ¢ 14
4.6 Extension to Higher Order Systems 115
4.7 Conclusions e e e e 123

5. Experimental Evaluation T 1.7
5.1 Experimental Environment O 2]
5.2 Experimental Evaluation R b ¢
5.3 Experimental Results B 5 1
5.4 Conclusions e e 163

5

=

. Conclusions .

References

. Implementation
A.1 Implementation of Path Velocity Control

165
167

170
171

Preface

This work started in 1987, and has since then been financially supported
by the Swedish National Board for Technical Development (NUTEK), under
contract 87-01384P. Professor Lars Nielsen has been my supervisor. Lars has
provided continuous guidance and support during the work. He has been
of great help in the production of the thesis, both in the structuring of the
manuscript, and in the consideration of small details. It'is a great pleasure
to work with Lars, and I want to express my gratitude to him. I also want to
thank Professor Karl Johan Astrém and Docent Per Hagander for their help.
Karl Johan has been a source of inspiration in valuable discussions, and his
comments and suggestions have clearly improved the presentation of the ma-
terial. Per has provided constructive criticism on both the thesis manuscript
and on the predecessor, the Licentiate thesis. Rewarding discussions with
Per have led to substantial improvements in Chapter 3. I am also grateful to
Ulf Holmberg for his comments on the manuscript.

The efforts of Klas Nilsson and Rolf Braun have made the experimental
work possible. In addition, I want to thank Klas for many valuable dis-
cussions on different aspects of industrial robots. I also want to thank Eva
Dagnegard for helping me with the preparation of the final manuscript. Kjell
Gustafsson, always being one step-ahead in the thesis preparations, has given
me important pieces of information at the right moments. The excellent com-
puter facilities, administrated by Leif Andersson and Anders Blomdell, have
also been important for the thesis work. Finally, I want to thank all my
colleagues for making the Department of Automatic' Control a stimulating
and friendly place to work in.

0.D.

Introduction

Motion along a predefined path is common in robotics. Typical examples are
gluing, arc welding, and laser cutting. There are several occasions in these
applications, where the robot performance is limiting the production speed,
and it is natural to look for a time optimal solution along the path. The
path is given from the application and a first step is to obtain a nominal
motion specification along the path. This can e.g. be done by a robot opera-
tor/programmer. However, if a rigid body model is available, minimum time
optimization can be used [Bobrow et al., 1985; Shin and N.D.McKay, 1985;
Pfeiffer and R.Johanni, 1986]. The optimization algorithm computes a veloc-
ity profile, i.e. the velocity is expressed as a function of the position along the
path. Using such a velocity profile implies utilization of the maximum allow-
able torque range. However, if the torque is at the limit, there is no margin to
cope with disturbances or modeling errors. An approach to solve this robot
path following problem is presented, where a path velocity controller is used
for modification of a nominal velocity profile. The path velocity controller is
used outside the ordinary robot controller, which is assumed available. The
path velocity controller modifies the reference trajectory for the robot con-
troller. The path velocity control concept was first presented in [Dahl and
Nielsen, 1989; Dahl and Nielsen, 1990b], where it is called trajectory time
scaling. The time scaling view is advantageous when designing the feedback
laws and for tuning of parameters. It is also described in [Dahl and Nielsen,

1990a] and [Dahl, 1989].

A path following example is presented in Chapter 2, where also notations
and terminology are introduced. Especially, the representation of a trajectory
as a time function and as a velocity profile, is introduced and exemplified. An

9

Chapter 1 Introduction

example of a minimum time optimization is given, and the sensitivity to mod-
eling errors is demonstrated. The use of path velocity control is discussed,
and illustrated in a simulation.

Chapter 3 presents methods for minimum time optimization of the nom-
inal velocity profile. A review of minimum time optimization for rigid robots
is given. The presentation includes the specific optimization algorithm, and
a description and interpretation of the underlying constraints on velocity and
acceleration. The constraints, which are obtained by combining the torque
constraints, the robot dynamics, and the path constraint, provide useful in-
formation for the design of the path velocity controller, and are also useful
when interpreting the result of using path velocity control. The minimum
time solution for rigid robots is bang-bang in the sense that at least one
torque is always at the limit. An optimality result shows that this property
carries over to the practically important case of joint flexibility. The flexible
joint model used is the simplified model given in [Spong, 1987].

The optimization algorithm for rigid robots [Bobrow et al., 1985; Shin
and N.D.McKay, 1985; Pfeiffer and R.Johanni, 1986 is a tractable way to ob-
tain the minimum time solution. The algorithm can however not be extended
to the case of joint flexibility. Another approach, which is approximate, but
can be used both for rigid and flexible joint robots, is to use polynomial ap-
proximation to obtain a parametric optimization problem. A method based
on this idea is presented. A function of the robot velocity along the path is
approximated. The choice of function to approximate is considered, and a
choice which allows zero initial and final velocity, and initial and final torques
different from zero is given. The method is illustrated by numerical exam-
ples. The examples demonstrate the properties of the solution, showing the
bang-bang structure, which is present also in the rigid case, but also showing
how the velocity profile of the flexible solution differs from the rigid velocity
profile.

Chapter 4 presents algorithms for path velocity control. A parametriza-
tion of the robot controller in the path parameter is presented. The paramet-
rization allows computation of limits on the path acceleration. These limits
are used for adjustment of the nominal path acceleration, which may be inad-
missible due to modeling errors. A basic algorithm is obtained by combining
the acceleration limits with feedback using the nominal velocity profile. An
extended algorithm, designed to handle the added problem of inadmissible
path velocity, is also given. The algorithm uses a scaling of the velocity
profile, and the scaling factor is modified by feedback. The path velocity
controller is evaluated by analysis and simulations. The nominal velocity
profiles used in the simulations are computed using minimum time optimiza-
tion. The path velocity control algorithm is not dependent on this choice.
The choice of minimum time gives however an especially demanding velocity

10

profile, and is therefore considered throughout the thesis.

An experimental evaluation on an industrial robot is presented in Chap-
ter 5. The experiments are done such that it is possible to separate the per-
formance of the path velocity controller from the performance of the robot
controller. Evaluation measures are proposed. Path deviation is evaluated
using visual inspection, and a quantitative measure of the torque utilization
is suggested. A decoupled rigid body model is obtained from system iden-
tification, and minimum time optimization is used to compute the nominal
velocity profile. The properties of the minimum time solution, described in
Chapter 3, are used for interpretation of the result of using path velocity con-
trol. Experimental tests show how the path velocity controller can adjust a
nominal minimum time velocity profile such that the modified velocity profile
gives good path following and good utilization of the available torque range.
It is also demonstrated how the path velocity controller is able to compensate
for time variations in the robot dynamics.

11

An Example

An example is used as an introduction to the detailed presentation given in
the following chapters. The example also introduces notations and terminol-

. -~

ogY' /

Robot Model

The robot model used is a decoupled linear model, given by

m 0 g T
as(p DR e
0 y q2 T2
The parameters m; and m, represent the mass of the robot, ¢; and ¢, are
the joint positions, and 7; and T2 are the input torques.

Torque Constraints

The torque constraints are constant upper and lower limits for each torque.
The constraints are expressed by the inequalities

2

R A (2.2)

This type of torque constraints are used throughout the thesis.

12

Path Description

The path is represented as a parametrized curve f(s) € IR? where s is a
scalar path parameter. In this example, the path is a straight line segment,

described by

f(s) = [;:8] = (::] , s0<s<sz (2.3)

where sy and sy represent the beginning and the end of the path.

Trajectories

A trajectory is obtained from the path by specifying the path parameter s
as a function of time. The function s(¢) is defined on the interval [to,%s]
where s(to) = so and s(ts) = s¢. Since we assume that the path is fixed, i.e.
the function f(s) is given, the trajectory f(s(t)) can be represented by the
path parameter s(t). We assume that the path parameter s(t) is piecewise
twice differentiable with respect to time. The first derivative () is called the
path velocity and the second derivative 5(t) is called the path acceleration.
Further, we assume that $(¢) > 0 for ¢ < ¢t < ty. This means that we only
con51der trajectories which represent forward motion along the path

The assumption $(¢) > 0 implies that (¢) can be expressed as a function
of s(t). This function is called the velocity profile and is denoted v;(s). The
function v;(s) is defined on the interval s9 < s < s ; and is given from ()
and s(t) as

5(t) = v1(s(2)) (2.4)

Similarly, the path acceleration 3(¢) can be expressed as a function of s(t).
This gives the acceleration profile vy(s), defined by

5(t) = va(s(t)) (2.5)

A relation between the profiles v;(s) and vy(s) is found by writing 3(t) as

3(t) = jtvl(S(t)) = vi(s(£)3(#) = vi(s(t))va(s(2))

which shows that i1
va(8) = vi(s)vi(s) = Eivl(s)z (2.6)

The velocity profile v; and the acceleration profile v, are used in Chapter 4
to represent the nominal trajectory in the path velocity controller.

13

Chapter 2 An Ezample

2.1 Path Velocity Planning

Path velocity planning is the computation of the path parameter s as a
function of time. Optimization can be used to compute s(f) and a typical
criterion is minimum time. A minimum time optimization for the chosen
example is formulated as: minimize the traversal time

ty
/ at (2.7)
1o

subject to the path constraint ¢ = f(s), where f(s) is defined in (2.3), the
torque constraints (2.2), and the dynamic constraints (2.1). This is an op-
timal control problem for a fourth order system (2.1). Two of the state
variables, ¢; and gz, are constrained by equality constraints ¢ = f(s). The
inputs are constrained by (2.2). The optimal control problem can be reformu-
lated as a second order problem by substituting the path constraint ¢ = f(s)
into the robot dynamics (2.1). Using the chain rule for differentiation gives

g=f(s), d=1Ff'(s)8, G=f"(s)s"+f'(s)s (2.8)
Substituting into the robot dynamics (2.1) now givés *‘ ’
Mf'(s)s + Mf'(s)s* =7 (2.9)
For the path (2.3), we get

miog

Mf'(s) = [] , Mf"(5)i* =0 (2.10)

maQy

which, substituted into (2.9), gives the torque vector

r=Mf'(s)i = [e] i (2.11)

ma0ia

The minimum time optimization of (2.1) along the path (2.3) is now
formulated as an optimal control problem for a double integrator with states
s and §, and input 8. The loss function is the traversal time (2.7). The
constraints are the dynamic constraints

ds .

— = 8

dt

i (2.12)
-’

14

2.1 Path Velocity Planning

and constraints on the input 5. The constraints on § are obtained by com-

bining (2.2) and (2.11), which gives

Tz.mi" < m=mias < T, 1=1,2 (2.13)

We also have boundary conditions on s and 3, given by

f(tO) = 50, .S(tf) =55 (2.14)
5(to) =0, 5(ty)=0
where the boundary conditions on § require that the robot should start and
finish the motion with zero velocity.
Numerical solutions to this optimal control problem are presented below.
For the chosen example, it is also possible to derive an analytical solution,
which is presented for comparison.

Analytical Solution

The path acceleration § is constrained by (2.13). These constraints are in
this example especially simple, since they can be replaced by constant limits
on 3. The limits are obtained by requiring that § should be chosen so that
both torques in (2.13) are inside the torque limits. Assume that a; and oy
in (2.13) are both positive. The limits on § then become

maez
7!

Smaz = min = (2.15a)

1=1,2 ;04
Tmin

‘;min = max — (215b)
1=1,2 m; o

The minimum time optimization for the robot (2.1) along the path (2.3)
thus becomes a minimum time problem for the double integrator (2.12) with
constant input limits. The solution to this optimal control problem is bang-
bang with one switch, e.g. [Bryson and Ho, 1975]. The solution has the
form

Smaz, to <t <1
5:{3 o=t = (2.16)

gm’in, 31 Ststf

where the switching time is denoted ¢;. This gives the path parameter

(2.17)

w 2
S(t): Smaz't‘z"{“zo, OStStl
gmin(t_gl) + él(t - tl) +s1, t1 <t<{iy

15

Chapter 2 An Ezample

where the velocity at the switching time %, is denoted 3;. The torque limits
in (2.2) and the parameters in (2.1) and (2.3) are chosen as

Tl =-1, T =1, mi‘:l, 1:21,2

: ¢ (2.18)
ar =2, ay=1, s =0, s5=1
This gives, using (2.15a) and (2.15b),
. .1) 1 1
Smaz = mln(i’l) = 5, Smin = ma,x(—i,—l) = ———2— (219)

Using the boundary conditions (2.14), the variables t1,s1, $1, and ¢ in (2.17)
are determined as

1 . 1
tlz\/i, 8125, 31-—%, tf

This gives the time optimal path parameter

40:{%H’ 0<t<v2 ©(2.20)

(= V2P + Lt -Vv2)+3 V2<i<2V2

Velocity and acceleration profiles The above solution (2.20) can of
course be represented by the corresponding velocity and acceleration profiles
(2.4) and (2.5). These profiles could be computed by differentiating s(t) in
(2.20) to obtain 5(t) and 5(t), and then express 5(t) and 5(t) as functions
of 5(t). However, v1(s) and v,(s) are instead calculated directly using (2.4),
(2.5) and (2.6). The acceleration profile v3(s) is given, using (2.16), by

The relation (2.6) now gives

1 2 Emazs+50, SOSSSSI o
Evl(s) B { Smin(8 — 81) + 8mazs1 + 80, 81 <8 < sy (2:21)
Using (2.18) and (2.19), (2.21) becomes
1 9 lg 0<s< s
Z - 2% Ss<
5?1(3) {_ashﬁ)+%h,3153gl (2.22)

16

2.1 Path Velocity Planning

s (1) | .é (%)

1 0.8
0.8 u 7 0.6 | a
0.61 .
04} .
04} .
02k i 02} .
O 1 1 () 1 1
0 1 2 3 0 1 2 3
T1, T2 (t)
1 T ¥ |
0 = .
-1 i] 1
0 1 2

Figure 2.1 The analytical solution for the example.

The boundary condition §(tf) = 0 in (2.14), ie. vi(sf) = v1(1) = 0, now
gives s; = % This gives the velocity and acceleration profiles

w={ V2

wn(s) = {

The solution is shown in Figure 2.1, both as a time function s(t), and
as a velocity profile v;. The upper left plot shows the path parameter s(t)
in (2.20). The upper right plot shows the path velocity §(¢). The lower left
plot shows the velocity profile v;(s) in (2.23). The lower right plot shows the
torques 71(t), solid line, and 73(t), dashed line. The torques are computed
from the path acceleration §(t), using (2.11).

IA IA
—t B

(2.23)

[a—y
!
)
w ® N D

| B =
N O

IA INA
IAA A IA
s B ®

N

17

Chapter 2 An Ezample

vy (8)

0.8 T T T T T T T T T

0.6

04

T
i

Figure 2.2 The phase plane solution for the example. The upper plot shows
the optimal velocity profile. The lower plot shows the torques 71, solid line, and
T2, dashed line, as functions of the path parameter s. ‘

Phase Plane Optimization

For the example used here, it was possible, due to the constant limits on &,
(2.15), to derive an analytical minimum time solution. In general, due to the
robot model and/or the path description being more complicated, the limits
on § depend on s and §, and it is not possible to derive an analytical solution.

For rigid robots, the minimum time optimization along a predefined path
can be solved using phase-plane techniques [Bobrow et al., 1985; Pfeiffer and
R.Johanni, 1986; Shin and N.D.McKay, 1985]. The time optimal solution is
computed in the phase-plane, i.e. in the s-s-plane. The result is a velocity
profile v;(s), i.e. a curve $ as a function of s. The curve consists of segments
where for each segment, the path acceleration 3 is typically maximum or min-
imum. The result of using the phase-plane method on this example is shown
in Figure 2.2. The upper plot shows the velocity profile v1(s). The velocity
profile was obtained by numerical integration of (2.12) using maximum and
minimum path acceleration (2.15). The lower plot shows the corresponding
torques, computed from (2.11).

18

2.1 Path Velocity Planning

Parametric Optimization

The phase plane method is an efficient numerical method for minimum time
optimization for rigid robots. It can however not be applied to higher order
systems, e.g. flexible joint robots. An intuitive reason is that the phase-
plane, i.e. the s-s-plane is then not a sufficient state representation, because
higher order derivatives are needed. Another approach is to use polynomial
approximation to obtain a parametric representation of the velocity profile.
The optimization can then be done using parametric optimization. An opti-
mization method using this technique is presented for the flexible joint case
in Chapter 3. As an illustration, an example of using the method for the
rigid case is given. The method is based on polynomial approximation of the
function
v1(s)®

y(s) = 220 (2.24)

Note that direct approximation of the velocity profile v1(s) would lead to
difficulties. This is seen as follows. Assume that v;(s) is approximated by a
piecewise polynomial function. The boundary condition $(¢5) = 0 in (2.14)
gives, using (2.4), that v;(sg) = 0. It then follows from (2.6), since v;(s) is
polynomial, that va(s) = 0, i.e. 3(tp) = 0, which gives 7(¢9) = 0 by (2.11).
A consequence of approximating vi(s) by a piecewisé polynomial function
would thus be that the initial value of the torque 7 is zero, which of course
makes it impossible to obtain a good approximation of the optimal velocity
profile, where 7(ty) # 0, see e.g. Figure 2.1.

If instead the function y(s) in (2.24) is approximated and the boundary
conditions for y(s) at s = sy are chosen as ('

_ dy(so)
y(so) =0, ds #0

we get, using (2.24), v1(so) = §(to) = 0, and, using (2.6), v2(s0) = 3(¢0) # 0,
ie. 7(tp) #0.

An example of an optimization where y(s) in (2.24) is approximated by a
piecewise polynomial function with third degree polynomial pieces is shown
in Figure 2.3. The number of third degree polynomial pieces was 40, and
the s-vector was discretized in 223 points. A comparison with the phase-
plane solution in Figure 2.2 shows that the switch in the torques is somewhat
smoothened. Nevertheless, for this example, the loss in traversal time due
to polynomial approximation is small. Computation of the traversal time for
the parametric solution in Figure 2.3 assuming constant path acceleration §
between the discretization points in s gives ¢ty = 2.83 seconds, which, up to
two decimal places, is the same as the analytic traversal time ¢; = 24/2 ~ 2.83
seconds.

19

Chapter 2 An Ezample

v1 (8)

0.8 T T T T T T T T T

0.6

0.4

0.7 08 0.9 1

Figure 2.8 The parametric solution for the example. The upper plot shows
the velocity profile. The lower plot shows the corresponding torques.

2.2 Using the nominal path parametex;

The time optimal path parameter s(¢) in (2.20) is used to form a reference
trajectory for a robot controller. The sensitivity to modeling errors is demon-
strated by simulations.

The reference trajectory is denoted ¢,(t) and is computed as g.(t) =
f(s(t)), where f(s) is the path description, given in (2.3). The reference
trajectory g.(t) = f(s(t)), and its first and second time derivatives are, using
the chain rule as in (2.8), given by

gr(t) = f(s(t))
gr(t) = f'(s(t))3(2) (2.25)
G (1) = f"(s(8))3(t)* + £'(s())3(2)

The robot controller is a computed torque controller [Asada and Slotine,
1986] for the model (2.1). The controller is given by

~

T = M(§ + Ko(¢r — ¢) + Kp(g- — q)) (2.26)

20

2.2 Using the nominal path parameter

Motion o
Planning | $S S T qq
s(t) Controller - /|- Robot

s(t)
S(t)

Figure 2.4 The system structure when the nominal path parameter is used
directly. The block “motion planning” generates or reads out stored values of the
time functions s(t), §(t), and 5(%).

where M is an estimated mass matrix, and K, and K, are feedback matrices.
If M = M, combining (2.1) and (2.26) gives, introducing the tracking error
e = ¢, — ¢, that

§+ Kyé+ Kpe =0 (2.27)

which gives asymptotic tracking of any reference trajectory.

The reference inputs to the robot controller (2.26) are g.(t), ¢-(t), and
gr(t). It follows from from (2.25) that the robot controller (2.26) can be
regarded as having three scalar inputs, s, $, and §. ’ ,

The system structure is shown in Figure 2.4. The inputs to the robot
controller are the nominal time functions s(¢), $(¢), and 5(¢). The torque
constraints are represented by a saturation block, which limits the output of
the robot controller. k

Simulations

Simulations of the system in Figure 2.4 are presented. The ideal case with a
perfect model is first discussed. A simulation where the controller (2.26) is
used on a perfect model, i.e. (2.1) with m; = m3 = 1, is shown in Figure 2.5.
The model parameters were chosen as in (2.18) and the feedback matrices
K, and K, in (2.26) were chosen as diagonal matrices with diagonal elements
20 and 100, respectively. The lower left plot in Figure 2.5 shows the path
parameter s(t) in (2.20) together with sz, which represents the end point of
the path. The mid left plot shows the velocity profile v;(s) in (2.23). The
path parameter and the velocity profile are the same as in Figure 2.1, the
upper left and the lower left plots. The reference trajectory gy, (t) = fi(s(%)),
t = 1,2, is shown in the upper right plot. The resulting torque outputs from
the controller (2.26) are shown in lower right plot. Due to the ideal situation
these torques coincide with the nominal torques, shown in Figure 2.1, the
lower right plot. The actual trajectories ¢1(¢) and g¢2(t) are shown in the
upper right plot. This plot shows that the tracking is perfect, as is expected
since the simulation is done for an ideal case. The mid right plot shows that

21

Chapter 2 An Ezample

q2(q1)a qr, (91-1)

1 T T T 1 01 T T T T 1
0 0.5 1 1.5 2 0 1 2 3 4 5
v1(8) e1, ez (1)
0; 1 -~
0.4 e
—4.107°4
04 T T T T -1 T T f T n
0 02 0.6 1 0 1 2 3 4 5
s, s5 (1) 71, 72 ()
o84 L ___]
0.4 0
O| T T T T 1 -1 AL T T T 1
0 1 2 3 4 5 0 1 2 3 /4 5

Figure 2.5 A simulation where the nominal time optimal path parameter is
used in the reference trajectory. The model is perfect and the path following is
good.)

there are however small tracking errors e; = ¢, — ¢i, # = 1,2. These errors
are due to errors in the numerical integration. The simulation was done with
the initial conditions e(0) = é(0) = 0, i.e. from (2.27), the correct solution
has e(t) = 0. The upper left plot shows the desired path (2.3) and the actual
path, obtained by plotting ¢5(¢) as a function of ¢1(¢). As can be seen, the
path following is perfect.

Introducing model errors The sensitivity to modeling errors is illus-
trated by using a robot model with increased mass and viscous friction.
Equation (2.1) is thus modified to

mig; +digi =1, 1=1,2 (2.28)
where the parameters are chosen as
my =11, my=1, d; =01, dy=0 (2.29)

A simulation where the robot model (2.28) is used, and where the robot

22

2.2 Using the nominal path parameter

qz(q1), qr, (91-1) 91, 9ryy 925 4r, (t)

0.4
O 1 I 1] 1 i
0 02 0.6 1
8, §¢ (t)
0.8 ;
0.4 1
0]] 1 1

7
0 1 2 3 4 5

Figure 2.6 A simulation where model errors are introduced. As can be seen
from the upper left plot, the path cannot be followed.

controller and the time optimal path parameter s(t) are unchanged is shown
in Figure 2.6.

The lower left plot and the mid left plot show the path parameter s(#)
and the velocity profile v, (s). These plots are the same as in the previous
simulation, shown in Figure 2.5. Thus, the same reference trajectory gr;(t) =
fi(s(t)), i = 1,2, as in the previous simulation is used. However, since the
path parameter s(t) and the robot controller are based on the, now erroneous,
model (2.1), the situation is no longer ideal. This is seen in the upper right
plot which shows the reference trajectories and the actual trajectories. The
dashed line in this plot is the reference trajectory g, (t). The solid line is the
actual trajectory gi(t). As can be seen, the actual trajectory cannot track
the reference trajectory. Consider the situation around ¢ — 1.5 seconds. The
actual trajectory ¢;(t) is then behind the reference trajectory g, (t), i.e. the
tracking error e;(t) = ¢, (t) — q1(t) is positive. This is seen in the mid
right plot. The resulting torques are shown in the lower right plot. The
nominal switching time is /2 ~ 1.41 seconds, see (2.20). However, the large
tracking error in joint one has the effect that the torque 7y, solid line in
the lower left plot, remains at the limit 71"*® = 1 also after the switch. A

23

Chapter 2 An Ezample

92(91)s gr.(gr,) 41y Gry> 925 9r, (1)

Figure 2.7 A simulation of the perturbed model, when the torque limits are
removed. Note that the torque 7 required to track the nominal trajectory gr, (%)
is outside the limits +1. ‘ .

similar phenomenon is seen in the final switch, where 7; remains at the limit
7" = —1 longer than 7. This is a result of a large negative tracking error,
as can be seen in the mid right plot. This error is also seen in the upper right
plot, as an overshoot in the actual trajectory ¢;.

As a consequence, the path cannot be followed. This is seen in the upper
left plot which shows the desired path (2.3), dashed line, and the actual path,
solid line.

The simulation example in Figure 2.6 shows the degradation in perfor-
mance that occurs when the model is not perfect. Note however that the
modeling error used here is not large from the robot controller perspective.
This is seen by simulating the same system as in Figure 2.6, but without the
torque limits. The result of this simulation is shown in Figure 2.7. As can
be seen from this figure, the path following is good when the torque limits
are removed. Note that the torque 7, the solid line in the lower right plot,
is outside the torque limits +1.

24

2.3 Path Velocity Control

B B

Motion ¥

Planning lofele] T qq
vi(-) ™77 PVC ,.| Controller —s /" = Robot
va(-) —l

Figure 2.8 The system structure when the path velocity controller is used. The
feedback signals from the robot controller are 8; and 8;.

2.3 Path Velocity Control

As was shown in Figure 2.6, using the nominal path parameter s(¢) in (2.20)
resulted in path deviations, due to the limited torques. This section demon-
strates in a simulation how a path velocity controller can be used to modify
this nominal path parameter to a path parameter o(¢) which results in good
path following. A detailed presentation of path velocity control is given in
Chapter 4.

The path parameter o(t) is used by the robot controller in the refer-
ence trajectory as ¢.(t) = f(o(t)). The reference trajectory and its time
derivatives are thus, using (2.25) with s(t) replaced by o(t) .

a(t) = f(o()
(1) = £'(o(1))5 (1) O (230)
(1) = (o5 () + F(o(1)5(1) |

i.e. the reference inputs to the robot controller are now o(t), &(t), and &(t).
The system structure when using path velocity control is shown in Figure
2.8. The path velocity controller uses feedback from the robot controller.
The feedback signals are denoted §; and B2. A nominal velocity profile,
given by the function v; in (2.4), and a nominal acceleration profile, given
by the function vy in (2.5), are also used. The block “Motion planning”
represents the profiles v; and v3. The dashed line between this block and
the path velocity controller means that these functions are in fact internal to
the path velocity controller. They are used in the path velocity controller as
nonlinear functions v;(o) and vz(c), i.e. they give the nominal velocity and
acceleration as functions of the position o. As can be seen in Figure 2.8, the
path velocity controller introduces an additional feedback loop in the system.
The path velocity controller uses feedback to modify the reference trajectory
for the robot controller. Compare with Figure 2.4.

25

Chapter 2 An Ezample

92(q1)s ar,(gr,)

Figure 2.9 A simulation where the path velocity controller is used for modifi-
cation of the nominal minimum time trajectory.

Simulation

A simulation where a path velocity controller is used as in Figure 2.8 and
where the robot model is given by (2.28) and (2.29) is shown in Figure 2.9.
The reference trajectory ¢-(t) = f(o(t)) is shown, together with the actual
trajectories, in the upper right plot. As can be seen in this plot, the tracking
is good. Note that the robot model used in this simulation is the same as in
Figure 2.7, where the path following was unsatisfactory. The robot controller
(2.26) is also unchanged. The reason for having good tracking in this simula-
tion is that the reference trajectory is different from the reference trajectory
in Figure 2.7. The reference trajectory is now ¢,(t) = f(o(¢)) where o(t) is
generated by the path velocity controller. The reference trajectory used in
the previous simulations was ¢.(t) = f(s(f)) where s(¢) is the nominal time
optimal path parameter (2.20).

A comparison can be seen in the mid left plot. The solid line is the
nominal velocity profile v; in (2.23). The dashed line is the actual velocity
profile, i.e. ¢ as a function of 0. As can be seen, the actual velocity profile is
lower than the nominal velocity profile. The result of using the path velocity

26

2.3 Path Velocity Control

controller is thus that the reference trajectory is modified, via feedback, such
that the path velocity is reduced. Compared to the simulation in Figure 2.6,
see the upper right plot around ¢ = 1.5 seconds, where the actual trajectory
was behind the reference trajectory, the reference trajectory is now adjusted
to cope with the actual velocity obtained using maximum torque. This has
the consequence that the desired path (2.3) can now be followed. This is seen
in the upper left plot, which shows the desired and the actual paths.

The lower left plot shows the nominal path parameter s(t), solid line,
and the actual path parameter o(t), dashed line. As can be seen, the actual
path parameter is delayed, resulting in larger traversal time. The traversal
time ¢y was computed as the time when the reference trajectory reached the
end of the path, i.e. o(tf) = sy. The traversal time was t; = 3 seconds. The
nominal traversal time is given in (2.20) as 2v/2 ~ 2.83 seconds. Computation
of the optimal traversal time for the perturbed model (2.28), using phase-
plane optimization for computation of the minimum time velocity profile,
gives the traversal time 2.97 seconds, i.e. the traversal time 3 seconds when
the path velocity controller is used agrees well with the optimum. The motion
is however not optimal, as can be seen in the lower right plot in Figure 2.9,
where there is a time interval, approximately between 1.5 and 2.3 seconds,
where none of the torques are at the limit. The mid right plot in Figure
2.9 shows the tracking errors. These errors are of the same magnitude as
the tracking errors shown in Figure 2.7, where there are no torque limits.
Hence, these errors are a result of decreased control performance for the
robot controller, due to the model errors, and are not caused by the path
velocity controller.

Using the path velocity controller gives a synchromzatlon eﬁ'ect between
the two joints. This is seen by comparing the first torque switch in the lower
right plots in Figures 2.6 and 2.9. The lower right plot in Figure 2.9 shows
that the torques now switch simultaneously. Note also that the switch occurs
later in Figure 2.9, compared to the nominal switch, shown in Figure 2.5.

The path velocity controller will not be further evaluated here. A de-
tailed discussion is deferred to Chapter 4, where specific algorithms for path
velocity control are presented. Let it suffice to mention that the path velocity
controller seems to work well in the simple example discussed here.

27

Path Velocity Planning

A nominal velocity profile can be obtained using minimum time optimization.
Examples of such optimizations were given in Section2.1. The robot model
was chosen as a decoupled linear model (2.1), and the path was a straight
line segment (2.3). This chapter extends the presentation to account for more
complicated robot models and paths. A review of phase-plane optimization
for rigid robots [Bobrow et al., 1985; Shin and N.D.McKay, 1985; Pfeiffer
and R.Johanni, 1986; Shiller and Lu, 1990] and a new method for flexible
joint robots are presented. The robot models considered are a rigid body
model [Asada and Slotine, 1986] and a model with joint flexibility [Spong,
1987], which is a natural and practically important first extension of the
rigid model. The optimization methods are derived from a common optimal
control formulation, which is presented in Section 3.1. The optimal control
problem is of order pn, where n is the number of joints, and where p = 2 for
rigid robots and p = 4 for flexible joint robots. In Section 3.2, the optimal
control problem is reformulated, as was done in Section 2.1, by substituting
the path constraint ¢ = f(s) into the robot dynamics, i.e. (2.9)is generalized.
The result of the reformulation is an optimal control problem of order p. The
dynamic system is a chain of p integrators, constrained by state dependent
input constraints. These constraints are a generalization of (2.13).

An optimality result on the structure of the minimum time solution
for the optimal control problem of order p is presented in Section 3.4. The
result shows that for conditions that are typically satisfied for most parts of a
path, the time optimal solution is bang-bang in the sense that the p-th order
derivative of the path parameter s should either be maximized or minimized.

Section 3.5 presents an optimal control problem of order p — 1. This

28

optimal control problem is obtained from the optimal control problem of or-
der p in Section 3.2 by interpreting the path parameter s as the independent
variable. A parametric optimization method for flexible joint robots is pre-
sented in Section 3.6. The method is an approximation of the optimal control
problem of order p — 1. A function of the robot velocity along the path is
approximated by a piecewise polynomial function. This was also done in
the subsection on parametric optimization in Section 2.1. The method has
been implemented for the minimum time case. It is illustrated by numerical
examples in Section 3.7.

3.1 Problem Formulation

An optimal control formulation of robot motion along a predefined path is
presented.

Robot Models

The optimal control problem is formulated for a dynamic model where the
input torque 7 is given as a function of the joint variables ¢ and its time
derivatives up to order p. We will concentrate on two specific robot models,
where p = 2 for the rigid model, and p = 4 for the flexible joint model.

Rigid body model The rigid model is given by

T = H(q)§ +v(q,4) + d(q)d + g(q) (3.1)

where ¢ € IR™ is the vector of joint variables, 7 € IR™ is the vector of
input torques, H(q) is the inertia matrix, v(q, ¢) is the vector of coriolis and
centrifugal forces, d(q) is the viscous friction matrix, and g(q) is the vector of
gravitational forces, all with obvious dimensions [Asada and Slotine, 1986].

Flexible joint model The flexible joint model is given by

H(q)§ +v(q,9) + d(q)d + g(q) + K(g—0) =0 (3.2)
Jh =7+ K(q—0)

which is the simplified model found e.g. in [Spong, 1987; Spong, 1990]. The
vector of joint angles is denoted ¢, the actuator angles are denoted 6, and
7 is the input torque. The joint stiffness matrix is denoted K, and J is

the actuator inertia matrix. The variables H(q), v(q, ¢), d(g), and g(g) are
defined as in (3.1). The model (3.2) is simplified from a full model on the

29

Chapter 3 Path Velocity Planning

form [Spong, 1990]
[0] _ [Mii(q) Mia(q) } (ﬁ]
T le(q) .Mzz)
v1(q, 4,0 K(g— 90
+[1(qg .)] N [y(q)] +[(g—9) }
v2(q, 4, 6) 0 —K(g—9)
where the modeling assumptions done in the simplification are that the ki-

netic energy of the actuators is purely rotational, and that the actuator inertia
is symmetric about the axis of rotation [Spong, 1987].

(3.3)

Common form for the robot dynamics For the models (3.1) and (3.2),
the torque 7 can be written as a function of q and its time derivatives as

7 =h(g,¢,...,qP) (3.4)

The rigid body dynamics (3.1) are already on this form with p = 2. The
flexible joint model (3.2), can be transformed to the form (3.4) by solving for
6 in the first equation in (3.2) to obtain

-

6 =K '(H(q)§ +v(g,9) +d(9)d + 9(q)) + ¢ (3:5)

which then can be substituted into the second equation in (3.2) to obtain an
expression on the form (3.4) with p = 4. The expression becomes

T=JK™! W(H(q)q +(g,9) + d(9)d + 9(q))
+ (H(q) + J)§ +v(q,9) + d(9)d + 9(q)

(3.6)

For the full model (3.3), it is not possible in general to express the torque as
in (3.4).

Torque Constraints

The torque constraints are given by limiting each joint torque, i.e.
T S <Mt 1<i<n (3.7)

where 7 is the number of joints. We use the notation 7 € E as a shorthand
notation for the torque constraints (3.7).

30

3.1 Problem Formulation

Path Description

The path is parametrized in joint space by a vector function f(s) € IR™ of
the scalar path parameter s € IR, s < s < sy, where f(sq) is the starting
point and f(sy) is the end point of the path. We assume that the path is
parametrized so that

f'(s) #0, s0<s5<sy (3.8)

where 0 means the zero vector, i.e. forall sg < s < sy, at least one component
of f'(s) is nonzero.

Optimal Control Problem

An optimal control problem is formulated. The formulation is done for a gen-
eral loss function. The loss function is specialized to traversal time in Sections
3.3 and 3.6, where specific optimization methods are presented. The general
loss function is however kept in Sections 3.2 and 3.5, where reformulations of
the optimal control problem are presented.

Assume that the loss function to be minimized is a function of the robot
state (g,q,... ,q(P_l)), and the input 7. An optimal control problem is then
formulated as: find the function 7(¢) that solves

ty
min / L(g,q,...,¢P V), 7)dt (L1)
to

T

where 1 is specified and 7 is free. The constraints are the robot dynamlcs,
written in the form (3.4) as

T:h(q,d,...,q(”)) (D1)

the path constraint and the torque constraints, formulated as
g=f(s), 7€E (C1)

and the boundary conditions that the initial and final states

q(to),...q" (to)
q(ts),... 4" 1(ty)

should be given. An example of solving this optimal control problem for
the case p = 2 was given in Section 2.1, e.g. (L1) corresponds to (2.7), (D1)
corresponds to (2.1), the path f(s) is given in (2.3), and the torque constraints
7 € E are given in (2.2). For the general case, the optimal control problem
(L1, D1, C1, B1) has pn states, state equality constraints ¢ = f(s), and input
inequality constraints 7 € E.

(B1)

31

Chapter 3 Path Velocity Planning

3.2 Reducing the State Dimension

The state dimension of the optimal control problem (L1,D1,C1,B1) can be
reduced from pn to p. The reduction is done by rewriting the robot dynamics
(D1) and the loss function in (L1), using the path constraint ¢ = f(s).
The idea is the same as in Section 2.1, i.e. the path constraint ¢ = f(s)
is differentiated and substituted into the robot dynamics. For the general
formulation (L1,D1,C1,B1), the substitution is done also for the loss function
in (L1).

Substitution of ¢ = f(s) and its time derivatives up to order p, com-
puted using the chain rule as in (2.8), into (D1) and (L1) gives the the loss
function in (L1) and the robot dynamics (D1) as functions of s,3,...,s®.
The resulting loss function is written as

ty
/ Ly(s,8,...,sP))dt (3.9)

to

and the robot dynamics are written as
T = hy(s,5,...5P) (3.10)

where the functions obtained after the substitution are denoted h, and L,.
For the two models (3.1) and (3.2), a special form for the function h, can be
obtained, giving the torque 7 as

7 = b1(8)s\P + by(s,...,sP71) ! (3.11)
Explicit expressions for the vectors b; and b, are given below in Lemma 3.1.

Reduced Optimal Control Problem

Introducing a p-integrator with states s,...s~1), and input s(®), an optimal
control problem of order p can now be given as

12,
min/ Ly(s,8,...,5®)dt (L2)
3(1’) to
where L, is introduced in (3.9). The dynamic constraints are the p-integrator
ds .
=’
ds .
p—]
ds(p_l) _ s(p)
dit

32

3.2 Reducing the State Dimension

The constraints corresponding to (C1), i.e. the constraints on the variables in
the dynamic system, are obtained from the rewritten robot dynamics (3.10)
as

T = hy(s, 8, ... ,s(p))

Te E (C2)

For the models (3.1) and (3.2), we can use (3.11) to write these constraints
as

7 =by(8)sP) + by(s,...,sP™D)

c2'
TeEE ()

The boundary conditions now become that the initial and final states in the
p-integrator, i.e.

S(to), .. ,S(p_l)(to)
s(t)y. .., sV (ty)

should be given. A comparison with the reformulated optimal control prob-
lem in Section 2.1 shows that (L2,D2,02’,B2) corresponds to (2.7), (2.12),
(2.13), and (2.14).

(B2)

Rewriting the robot dynamics

We show that the expression (3.11) is valid for the two models (3.1) and (3.2).
The result is obtained by straightforward substitution of the path constraint
g = f(s) into the robot dynamics. For rigid robots, the result is obtained, as
in [Bobrow et al., 1985; Shin and N.D.McKay, 1985; Pfeiffer and R.Johanni,
1986], by substitution into the model (3.1). For the flexible joint case, the
result is obtained by substitution into the model (3.6).

LEMMA 3.1
For the two models (3.1) and (3.2), the torque can be written as (3.11).

Proof: The rigid and flexible cases are considered separately.

Rigid Robots Moving the robot (3.1) along the path f(s) gives, as in (2.8)

q= f(s)
q=f'(s)s (3.12)
d=f"(s)s* + f'(s)3

This can be substituted into (3.1) to get

7= a1(5)5 + az(5)s® + as(s)s + as(s) (3.13)

33

Chapter 8 Path Velocity Planning

where ’
a1(s) = H(f(s))f' ()
az(s) = H(f(s))f"(s) +v(f(s), f'(s))
as(s) = d(f(s))f'(s)
as(s) = g(f(s))
and where the expression for as(s) is obtained by using the fact that the
elements of the coriolis and centrifugal vector v(q,q) are of the form v; =

>k Vijk(9)d; g [Asada and Slotine, 1986]. We see that (3.13) can be written
as (3.11) with p = 2, and

(3.14)

bi(s) = ai(s)

ba(s,) = az(s)s? + as(s)é + as(s) (3.15)

Flexible Joint Robots For the flexible robot (3.2), the result is derived
from (3.6). Introduce the “rigid” torque 71 as

T = H(q)§ +v(g,4) + d(a)d + 9(a) (3.16)
The expression (3.6) can then be written as o /
d*r
_ —1 1 -
T=JKT = tJitm (3.17)

Since (3.16) is on the same form as (3.1), 7 can be written as

71 = a1(8)§ + az(s)5% + as(s)s + as(s) (3.18)

The final result is now obtained by expressing %2{?— as a function of s and its

time derivatives. Taking time derivatives of 71 gives

d

01 01905 + (0} (5) + 20a(5))55 + a(6)3° + a(0)3% + aa(s)8 + ay(s)3
d2
LT s (5)50 + 20} (5) + aa(6))3s) + (a(5) + 0} (6))4%3

4 (@} () + 2a5(8))5? + af (5)3* + as(s)s® + 3al(s)s3

+ag(5)8° + ag(s)3 + aif(s)$?
(3.19)

Substituting %:—51 from (3.19), ¢ from (3.12), and 7 from (3.18) into (3.17)
now gives that the torque 7 can be written as

= a(s)Tp(5,5,53),54) (3.20)

34

3.2 Reducing the State Dimension

where
o7 = (s<4) ORI I TN CORST I O N 1] (3.21)

and

((JKa;(s))T \
(JK~2(a1(s) + a2(s)))”
(JE*(af(s) + 5ay(s)))”
(JK (a1 (s) +2aa(s)))”
(JK " ay(s))"
(JKa3(s))T
“T (JK~13d}(s))7 (3.22)
(JE~1aj(s))"
(JEtay(s) + T f'(s) +ax(s))”
(JE " a{(s) + T "(s) + az(s))T
as(s)”
\ as(8)T)
and we see from (3.20), (3.21), and (3.22) that the torque can be written as
(3.11) with p = 4. 0

3.3 Phase-plane Optimization

This section presents a review of phase-plane optimization [Bobrow et al.,
1985; Pfeiffer and R.Johanni, 1986; Shin and N.D.McKay, 1985; Shiller and
Lu, 1990].

Optimal Control Problem

The optimal control problem is a specialization of (1.2,D2,C2’,B2) with p = 2.
The problem is to minimize the traversal time

S

ty sy
dt
tfz/dt:/z;ds:/%ds (L3)
0 80 N

S0

subject to the dynamic constraints

ds .
— =8
dt
di (D3)
di
35

Chapter 38 Path Velocity Planning

and the state-dependent input constraints
T =>01(8)8+ ba(s,8) € E (C3")

where b, and b, are defined in (3.15). We specialize the boundary conditions
(B2) to

S(to)zso, é(to):O, S(tf):‘sfa ‘é(tf):() (BS)

Phase-plane Optimization

From the expression (L3) for the traversal time, it is seen that minimizing
traversal time can also be seen as finding a velocity profile § = v1(s) with as
high velocity as possible. In the minimum time example in Section 2.1, this
was done by integrating (D3) forward from s = s, with maximum acceler-
ation (2.15a), and integrating backward from sy with minimum acceleration
(2.15b), and then connecting the curves. The resulting velocity profile then
has one switch from maximum to minimum acceleration, see Figure 2.2. For
the general case, the time optimal velocity profile may have more than one
switch. The reason for this is that the maximum and-minimum values of §
generally depend on s and 4. This means that for a given s, there may exist
path velocities § such that there is no acceleration § that gives all torques
inside the limits. A consequence of using the simple strategy that was used in
Section 2.1 could then be that the forward integration cannot continue after
a certain s-value, e.g. s = s, due to the path velocity $ being too large, i.e.
§ is such that there is no § that results in 7 € E. Similarly, the backward
integration may not be possible to continue for s less than a certain s-value,
e.g. 8 = 83. If 83 < 83, it is thus not possible to connect the curves. The
algorithm for phase plane optimization takes this into account in order to
find switching points, where the path acceleration § switches from maximum
to minimum acceleration or vice versa. The algorithm is presented below in
Algorithm 3.1. The constraints are first presented.

Constraints on path acceleration The torque constraints (C3’) give
admissible values of § which are defined as follows.

DEFINITION 3.1

For given values of s and §, the admissible values of § are those that result
inT€eE. O

The admissible values of § are computed by finding the maximum and mini-
mum admissible §. The torque 7; is constrained by

qum'in S T; = bl,’(s):s. + b2,’(373.) S T{I’LGE, 1 S { S n (3'23)

36

3.8 Phase-plane Optimization

Each joint ¢ now gives upper and lower bounds on 3, denoted 3¢ __ and §¢

and computed by e i
) (Tz:m“w — b2;(5,8))/b1:(s), b1;(s) >0
Br0a(5,5) = { (777 — by,(5,4))/bis(5)s bas(s) < 0 (3.24)
oo, blg(s) =0
and _
. (/™" — by (s, 8))/b1,(s), b1, (s) >0
Smin(8,8) = (T*® — by, (s,38))/b1.(s), b1,(s) <0 (3.25)

—0Q0, bl'.(S) =0
The bounds on § are then obtained by maximizing and minimizing over 7

Smas(8,8) = min &y, (s,3), min(s,4) = max iy, (s,4) (3.26)

These bounds give an admissible interval [$min(S,$), $maz(3,)] for the path
acceleration §. Further, the bounds are finite. This is seen from the path
assumption (3.8), which, using (3.14), (3.15), and the fact that the inertia
matrix H(f(s)) in (3.14) is positive definite, shows that all components of
the vector b;(s) cannot be zero simultaneously. This shows that the bounds

(3.24) and (3.25) are finite, and hence the bounds on § (3.26) are finite.

Constraints on path velocity The bounds on 3 (3.26) depend on s.
Thus, there may exist values of § such that there is no § that gives 7 € E.
The admissible values of § are therefore defined as follows. '

DEFINITION 3.2
For a given value of s, § is admissible if there exists admissible &, i.e. § that
gives T € E.

For the example in Section 2.1, the bounds on § (2.15) are independent of 3,
i.e. all values of § are admissible.

Interpretation of the constraints The constraints on § and § can be
given a geometric interpretation. The torque vector T is written as in (C3’),
i.e.

7 = b1(8)5 + ba(s, $)

The admissible torques satisfy 7 € E. Given s and §, consider the line
with a direction given by b;(s), and passing through the end point of the
vector by(s,$). The boundary cases for the admissible values of i are then
found as the intersections between this line and the region E. If there is no
intersection, there are no values of § resulting in admissible torques, i.e. the
path velocity § is not admissible. Figure 3.1 illustrates these constraints for
the two-joint case.

37

Chapter 3 Path Velocily Planning

Figure 3.1 A geometric interpretation of the constraints on $ and §. The region
E, where 7 is admissible, is illustrated by a rectangle.

Admissible region in the phase-plane The constraints on s and $ define
an admissible region in the phase-plane,i.e. in the s-$-plane. The constraints
on s are 89 < s < sy, and the constraints on § are, for each s, the admissible
values of $. It is thus a necessary condition on a feasible velocity profile to
be inside this region. :

Boundary of the admissible region The boundary of the admissible
region is used in the optimization algorithm. For a given s, if § is admissible
then 3min(s,8) < 8maz(s,$). Hence, if §,min(s,8) > §maz(s,$), then § is not
admissible. One might then conclude that at the boundary of the admissible
region, it holds that §m,in(s,8) = 8mas(s,§). It can however happen, for
certain values of s, that at the boundary of the admissible region, it holds
that $min(8,8) < 8maz(8,8). These values of s are called critical points and
are defined as follows.

DEFINITION 3.3
A critical point is a value of s such that one or more components of the vector

by(s) in (C3’) are zero. O

This means that a critical point is where the vector b;(s) is perpendicular to
one or more of the coordinate axes. For the two joint case, shown in Figure
3.1, a critical point is where b; is parallell to one of the coordinate axes.

A characterization of the boundary of the admissible region is given as

38

3.3 Phase-plane Optimization

follows. For a given s, separate the joints so that, perhaps after renumbering,

bli(s);éﬂ, 1€ 14 =1,...,n1
bli(S)ZO, i€I2=n1-|—1,...,n

For § admissible, we have §;,in(3,3) < 8maz(s,8). Using (3.26), it is seen
that an equivalent formulation is

Srmin(8)8) < 87,45(5,8) (3.27)

for all i,5 € I;. For é admissible, it must also hold that
T < by(s, §) < TMO° (3.28)

for all © € I;. At the boundary of the admissible region, we then have,
either 3% ; (s,8) = §,,,(s,8) for some 1,j € I, i.e. by (3.26), Smin(s,$) =
8maz(8,8), or by(s,s) = 7/" for some i € Ip, where 7/" is either 7/"*® or 7",

We have thus established the following: at the boundary of the adm1s51-
ble region, either of the following alternatives hold.

1. There is one admissible value of §, i.e. 8min(s,$) = §maz(s,$).

2. The admissible values of § are an interval [§,,in(s,3), §maz(s, s)] This
can only happen at critical points.

Computation of the admissible region The admissible region can be
computed from quadratic inequalities in § [Shin and N.D.McKay, 1985]. This
is seen as follows. Using (3.24) and (3.25), (3.27) can be written as

™ — by, (s, $) 7 —by;(s,8)
OBy

where 7] and 7" are either the upper or the lower torque limits. From (3.15),
it is seen that this gives a quadratic inequality in 5. Each pair 7,5 € I; thus
gives an admissible set for 5. Similarly (3.28) gives, for each ¢ € I,, admissible
sets of 3, also from quadratic inequalities in §. The intersection of these sets
then give an admissible set for §. Computation of the admissible set for 3,
for each s, then gives the admissible region.

Mazimum velocity curve Assume that the admissible region is simply
connected. Further, assume that § = 0 is admissible for all s. This means
that, for a given s, the admissible values of § are defined as 0 < 5 < 8,4, < 00,
where $,,4, is the maximum admissible 5. The boundary of the admissible
region can then be found by maximization of 3, pointwise in s. This gives a
maximum velocity curve vpqz(s), which is defined as

VUmaz(8) = max § (3.29)

39

Chapter 8 Path Velocity Planning

subject to the constraints (C3’).

Remark 1. In [Shin and N.D.McKay, 1985] it is shown that the admissible
region is not always simply connected. An algorithm for handling this case
is given. It is also shown that if there is no viscous friction, i.e. d(g) =0 in
(3.1), the admissible region is simply connected.

Remark 2. The assumption that 5§ = 0 is always admissible means that we
assume that it is always possible to stop anywhere on the path. The available
torque must then be larger that the gravity torque. This is seen by setting
$ = 0 in (3.13), which shows that if 7" < a4,(s) < 7% for 1 < i < n,
then § = 0 is admissible, since e.g. § = 0 results in 7 € F.

Possible trajectory points Since the goal of the optimization is to con-
struct a velocity profile with as high velocity as possible, it seems reasonable
to search for points on the maximum velocity curve which are also possible
points on a velocity profile. We call these points possible trajectory points.
Note that, generally, the possible trajectory points are isolated points on the
maximum velocity curve. This is due to the fact that the maximum velocity
curve is obtained by pointwise maximization of 3 (3.29), i.e. the curve itself is

not a possible velocity profile. The possible trajectory points are, e.g. [Shiller
and Lu, 1990]:

1. Critical points where the admissible values of 5§ are an interval.

2. Tangency points. These are noncritical points where the unique admis-
sible § satisfies p

5= Umas(s) = Vinas(s)01 (s)

dt .
Using (2.5) and (2.6), it is seen that this is equivalent to v!(s) = v!_,_(s),
i.e. the slope of the velocity profile is equal to the slope of the maximum
velocity curve.

3. Points where the maximum velocity curve is discontinuous. This can
happen if f"(s) is discontinuous.
Optimization algorithm

The optimization algorithm constructs the time optimal velocity profile by
forward and backward integration with either maximum or minimum accel-
eration §. This means that one of the differential equations

5= Bmas(8,8), 5= Emin(s, $) (3.30)

is integrated. The integration can also be done in s. This is seen using (2.6)
which is equivalently written as

40

3.3 . Phase-plane Optimization

2

Introducing y as in (2.24), i.e. y = £, now gives that (3.30) can be written
as

d . d ,
—(—l% = 8maz(8,v2y), d_Z = Smin(8, v 2y) (3.31)

The optimization algorithm is formulated as

ALGORITHM 3.1—Phase-plane Optimization
1. Set 81 := 3¢, and § := 0.

2. Integrate forward from s; with maximum 3. Stop if s = s; or if in-
tegration with max § cannot continue without violating 7 € E, i.e. if
integration with max § cannot continue without leaving the admissble
region. If s = sf, goto 6, otherwise set s; to the current s-value and
goto 3.

3. From s; search forward along the maximum velocity curve for the first
possible trajectory point. If no such point is found, goto 6. Denote the
possible trajectory point s;.

4. Integrate backwards from s; with minimum 3. Stop if integration with
minimum § cannot continue without violating 7 € E or an intersection
with the previously computed curve occurs. If integration cannot con-
tinue without violating 7 € E, search for a new possible trajectory point
by setting s; := s; and goto 3, otherwise goto 5.

5. Now we have constructed a curve going backwards from s,, and which in-
tersects the previously computed curve. Start a new iteration by setting
81 := sz and goto 2. ‘

6. Integrate from s; backwards with minimum §. If the curve intersects
the previously computed curve, stop, else the algorithm cannot find a
solution.

Remark. It may happen that for a possible trajectory point that also is a
critical point, it is not possible to use minimum acceleration when integrating
backward in step 4, and/or maximum acceleration when integrating forward
in step 2. This means that the algorithm cannot proceed at these points.
These points are called singular critical points in [Shiller and Lu, 1990], where
a modified algorithm to handle this is given. This algorithm also handles the
case when the critical points are not isolated. This is called critical arcs in
[Shiller and Lu, 1990]. For example, forward integration from an isolated
singular critical point s is done by using maximum feasible acceleration for a
small interval [s,s+¢], and then using maximum acceleration $mqz(s,$). The
maximum feasible acceleration is chosen so that the resulting velocity profile
follows the maximum velocity curve in the interval [s, s + €]. For a singular
critical arc, the same technique is used, but for a longer s-interval, i.e. a
velocity profile that follows the maximum velocity curve is constructed. [

41

Chapter 3 Path Velocity Planning

Numerical Examples

Examples of minimum time velocity profiles are given. These velocity profiles
are used in the simulation examples in Chapter 4 as nominal velocity profiles
for the path velocity controller.

ExAMPLE 3.1

The first example is a decoupled robot, moving along an elliptical path. The
robot model is the decoupled linear model (2.1). The torques are constrained
by (2.2). The parameters are chosen as in (2.18), i.e.

The path is the ellips
fi(s) =2sin(s), fo(s)=1-—cos(s), 0<s<2r (3.32)

The path and the minimum time solution are shown in Figure 3.2. The path
(3.32) is shown in the upper plot. The solid line in the mid plot is the min-
imum time velocity profile, computed by Algorithm 3.1. The dashed line in
the mid plot is the maximum velocity curve (3.29).-The dotted line is 0.5 if
3§ is maximum, and 0 if § is minimum. The lower plot shows the torques 7,
solid line, and 73, dashed line, as functions of s. The torques are computed
from the velocity profile using (2.9). The traversal time was computed by as-
suming constant acceleration between the discretization points in s, resulting
in the traversal time ¢y = 9.66 seconds. S

The switching points for the path acceleration § are shown in Figure 3.2
as those points where the dotted line in the mid plot changes value. For this
example, the switching points are s = 0.52, s = 1.56, s = 3.14, s = 4.70,
and s = 5.77. The path acceleration switches from maximum to minimum
at the switching points s = 0.52, s = 3.14, and s = 5.77, and from minimum
to maximum at the switching points s = 1.56, and s = 4.70. The switching
points s = 1.56, and s = 4.70 were used as starting points for backward and
forward integration in steps 2 and 4 in Algorithm 3.1. Since the integration
starts from points on the maximum velocity curve, the minimum time velocity
profile touches the maximum velocity curve for these points. This can be
seen in the mid plot in Figure 3.2. For this example, the velocity profile also
touches the maximum velocity curve for the switching point s = 3.14. This
point was however not used as a starting point for backward and forward
integration. Instead, it is a point found both by forward integration from
s = 1.56 in step 2 of the algorithm, and by backward integration from s = 4.70
in step 4 of the algorithm.

The switching points s = 1.56 and s = 4.70 are also critical points,
see Definition 3.3. For this example, the critical points can be computed

42

3.3 Phase-plane Optimization

1.5

T
1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

V1, Vmez (5)

Figure 3.2 An example of a minimum time velocity profile. The upper plot
shows the path. The mid plot shows the minimum time velocity profile, solid
line, and the maximum velocity curve, dashed line. The dotted line is 0.5 if § is
maximum, and 0 if § is minimum.

analytically. From (2.9) and (3.11) with p = 2, it is seen that b;:(s) = M f'(s).
Since M is constant and diagonal, this gives, by Definition 3.3, the critical
points as those where one or more components of f'(s) are zero. The path
(3.32) gives fi(s) = 2cos(s), f3(s) = sin(s). This gives the critical points
§=0,s=m/2,s =7, s =3r/2 and s = 2r. The numerically obtained
critcal points s = 1.56, and s = 4.70 thus correspond to the critical points

43

Chapter 3 Path Velocity Planning

s =m/2~ 1.57 and s = 37w/2 =~ 4.71.

EXAMPLE 3.2

The same robot and torque constraints as in the previous example are used.
The path is composed of two line segments and a circular arc. The path is
shown in the upper plot in Figure 3.3. The path is parametrized as

fi(s) =

2s, 0<s<1

2.1 — 0.1cos(10s — 10) 4+ 0.2sin(10s —10), 1 <s<1+ 55

134+s— X, e T
fa(s) =

s, 0<s<1

0.8 + 0.2 cos(10s — 10) + 0.1sin(10s —10), 1<s<1+ =

2.9—-2s+ {5, 1+55<s<2+ 5

The minimum time velocity profile is shown in the mid plot in Figure 3.3.
The traversal time for this example was 5.60 seconds. For this path, the
maximum velocity curve is finite only for 1 < s < 1+ 5. This is seen as
follows. From the path parametrizarion (3.33), it is seen that for 0 < s <1
and 14+ % < s < 24 %, the second derivative f"(s) is zero. Using (2.9),
this gives that the torque 7 only depends on 5. Hence, the limits on § are
independent of 5. All values of § are therefore admissible, see Definition 3.2.
The switching points are s = 0.52, s = 1.05, and s = 1.63. The path
acceleration switches from maximum to minimum at the switching points
s = 0.52 and s = 1.63, and from minimum to maximum at the switching
point s = 1.05. The minimum time velocity profile touches the maximum
velocity curve at this switching point, as can be seen in the mid plot. The
switching point s = 1.05 is also a critical point. This can be verified from

f2(s8) = —2sin(10s — 10) + cos(10s — 10) =0

which has the solution s = (7/2 + 10 — arctan(2))/10 ~ 1.046.

From the path parametrization (3.33), it is seen that for 0 < s <1, this
path is the same as the path used in Section 2.1, i.e. (2.3) with a; = 2 and
as = 1. The robot models are also the same. From Figure 2.2, it is seen
that the minimum time solutions are also the same for 0 < s < 0.5. The
switching point in Figure 2.2 is s = 0.5. For this example, the switch occurs
at s = 0.52. This is seen in the mid plot in Figure 3.3, where the dotted line
changes value slightly after s = 0.5. For the example shown in Figure 2.2, the
velocity at s = 1 is determined by the boundary condition on zero velocity
5(ty) = vi(sy) = v1(1) = 0. Here, it is possible to have v;(1) > 0. The
reason for this is that the constraint on the velocity at this point is given by

44

3.3 Phase-plane Optimization

Figure 3.8 An example of a minimum time velocity profile. The path is shown
in the upper plot. The path is composed of two straight line segments and a
circular arc. The mid plot shows the minimum time velocity profile, solid line,
and the maxium velocity curve, dashed line. The maximum velocity curve is not

defined for the straight line segments of the path. The dotted line in the mid plot

is 0.1 if § is maximum and 0 if § is minimum. The lower plot shows the torques.

45

Chapter 8 Path Velocity Planning

the maximum velocity at the critical point s = 1.05. It is therefore possible
to delay the switch from s = 0.5 to s = 0.52.

The point s = 1 is also a possible trajectory point, since it is a discon-
tinuouity point on the maximum velocity curve. Backward integration from
this point would actually give a higher velocity profile than the time optimal.
It is however not possible to integrate forward from s = 1. This means that
in Algorithm 3.1, forward integration in step 2 is not possible, and the algo-
rithm moves directly to step 3, and searches for the next possible trajectory
point, which is the critical point s = 1.05.

The velocity profile in Figure 3.3 also touches the maximum velocity
curve for s =1 + 35+ Lhis is however no switching point, as can be seen in
the mid plot where the dotted line shows that the path acceleration is kept
at maximum through this point. Note also that the torques 7; and 75 are
discontinuous at s = 1 and that 7, is discontinuous at s = 14, even though
the path acceleration does not switch at these points. The reason for the
discontinuouity in the torques at these points is that f"(s) is discontinuous
at these points.

ExAMPLE 3.3
In this example, a nonlinear robot model is used. The dynamic equations are

[Asada and Slotine, 1986] o

1 = mal3(G1 + Go) + malilaca (261 + Ga) + (my + ma)2Gy — malylasy gl

— 2malilysagiga + malagers + (my + ma)lige

Ty = malilaeady + mzlllzszq'f + malagers + mzl§(§1 + §2)

(3.34)
where the parameters are chosen as
m=mg=Ili=lh=1
The path is a circle in cartesian space, described by
fz(s) =14 0.5cos(s), fy(s) =0.5sin(s), 0<s<2x (3.35)

The origin of the cartesian space is at the beginning of link 1. The torques
are constrained by | 73 |< 30, | 2 |< 10. The path in joint space and the
minimum time solution are shown in Figure 3.4. The path in joint space is
shown in the upper plot. The mid plot shows the minimum time velocity
profile and the maximum velocity curve. The lower plot shows the torques.
The torques are computed from the velocity profile using (3.13). The traversal
time for this example was 1.82 seconds.

The switching points are s = 1.67, s = 4.49 and s = 6.09. The path
acceleration switches from maximum to minimum at s = 1.67 and s = 6.09,

46

Figure 3.4 A minimum time velocity profile for a nonlinear robot model. The
upper plot shows the path in joint space. The dotted line in the mid plot is 2 if
§ is maximum and 0 if § is minimum. The torque limits are £10 and +30.

and from minimum to maximum at s = 4.49. The critical points were com-
puted as s = 1.06, s = 2.33, s = 3.27, and s = 4.49. The switching point
s = 4.49 is thus a critical point. The velocity profile touches the maximum
velocity curve for the critical points s = 3.27 and s = 4.49. Note however
that the critical point s = 3.27 is not a switching point. The acceleration is
kept at minimum through this point.

47

Chapter 3 Path Velocity Planning

Matlab Implementation
The algorithm 3.1 has been implemented in Matlab [MathWorks, 1990] as a

set of m-files. The main functions are the computation of the maximum veloc-
ity curve (3.29) and the minimum time optimization according to Algorithm
3.1. The following Matlab commands are used to generate the minimum time
solution in Figure 3.2.

>> robot = makerobot([1 1],[0 0]);

>> path = makeellips([1 0],[-1 2],500,0,2%pi);
>> pr = makepathrobot(path,robot);

>> taumin [-1 -13;

>> taumax [1 1];

>> vmax = makevmax(pr,taumin,taumax);

>> mt = makemt (pr,vmax,taumin,taumax);

>> plotmt(mt);

Listing 3.1 Matlab commands for minimum time optimization

First, a robot is created by makerobot where the arguments are the param-
eters m; and d; in the model
mig;+digi =7, 1<i<n ’ ,

The elliptical path, which is shown in the upper plot in Figure 3.2, is then
created and the representation for the robot dynamics on the path is stored
in the variable pr by calling the function makepathrobot which computes the
vectors a;(s) in (3.14). The torque limits are then chosen and the maximum
velocity curve is computed by the function makevmax. The minimum time
optimization is then done by the function makemt and the result is displayed
by the function plotmt.

Nonlinear two-link robots with revolute joints, i.e. nonlinear dynamics
of the type (3.34), are also handled in the implementation. For example, the
minimum time solution in Figure 3.4 is generated by the commands

>> robot = makerobot([1 1],[0 0],[1 11,[1 11,[0 01);
>> path = makeellips([1 0],[0.5 0.5],1000,0,2*pi);
>> gpath = pathinvkin(robot,path);

>> pr = makepathrobot(qpath,robot,9.81);

>> taumin = [-30 -10];

>> taumax = [30 10];

>> vmax = makevmax(pr,taumin,taumax);

>> mt = makemt(pr,vmax,taumin,taumax);

>> plotmt(mt);

Listing 8.2 Matlab commands for minimum time optimization for a nonlinear
two link robot

48

3.8 Phase-plane Optimization

The argument list to the function makerobot is here extended with specifi-
cation of the link lengths, the distance from the joints to the centers of mass,
and the moment of inertias for the links. The path is specified in carte-
sian space by makeellips and then converted to joint space by the function
pathinvkin. The minimum time optimization is then done, and the result
is displayed.

Singular critical points Consider the critical point s = n/2 in Figure
3.2. This critical point is also a singular critical point, i.e. the optimization
algorithm could not use maximum or minimum acceleration at this point. For
a singular critical point, the algorithm actually chooses the acceleration such
that the limiting torque, in this case 71, is continuous through the critical
point. This acceleration is used for a small interval [s, s + €], and then max-
imum or minimum acceleration is used. Another approach taken by [Shiller
and Lu, 1990] was discussed following the Algorithm 3.1, where the idea in-
stead is to follow the maximum velocity curve for a small distance, and then
use maximum or minimum acceleration.

Note however, that if the critical points are isolated, then, for ¢ suffi-
ciently small, any choice of acceleration in [s, s +¢] would suffice. This follows
from the bounds on § (3.26) being finite, see the discussion following (3.26).
The contribution to the loss function (L3) of using different values of § then
tends to zero as as € — 0.

3.4 An Optimality Result

We give here an optimality result for the minimum time case, when the
optimal control problem is (L2,D2,C2’,B2). The result is that for s such
that all components of b;(3) are nonzero, i.e. for s not being a critical point
or part of a critical arc, see Definition 3.3, the minimum time solution of
(L2,D2,02’,B2) has the property that s(?) is either maximum or minimum.
The case p = 2 was treated by [Chen, 1988], however not considering the
possibility of critical points. The proof is a straightforward application of
section 13.11 in [Leitmann, 1981].

For the case p = 4, the result shows that for the minimum time control
of the flexible joint robot (3.2) along the path f(s) we have, for those s where
all components of b; (s) are nonzero, either maximum or minimum s{). Note
also that, if J and K in (3.2) are diagonal, then the s-values for which the
result does not hold, i.e. where one or more components of b;(s) are zero,
are the same as for the rigid case, since, using (3.21) and (3.22), we get

bi(s) = JK ay(s)
where a;(s) is defined in (3.14).

49

Chapter 3 Path Velocity Planning

THEOREM 3.1

For the optimal control problem (1.2,D2,C2’,B2), the minimum time solution
has the property that u = s(?) is maximized or minimized when s is such
that all components of the vector b;(s) are nonzero.

Proof: Introduce the notation

z=|: | = : , u=s® (3.36)

The p-integrator (D2) is then written in state space form as

z=Az+ Bu (3.37)
where
(0 1 0 0
0 0 1 0
T
A=10 0 o , B= (0 0 1), (339)
0 0
\0 0 0 0)

The result is now obtained by applying Theorem 11.1 in [Leitma:nn; 1981, p.
118], with the extension to state dependent constraints on the input [Leit-
mann, 1981, p. 173]. Suppose that the function w*(¢), with the corresponding
state 2*(t), given by (3.37), minimizes (L2) with L, = 1, and the constraints
(D2,C2’,B2). Further, define the set U(z) such that

welU(z) <= r1€E
where 7, using (3.11) and (3.36), is written as

T = b1(z1)u + ba(2)

Then there is a vector function

A(t) = (Al(t) A,,(t)]T

50

3.4 An Optimality Result

and a function H(A,z,u), given by

H(X z,u) = XA + AT (Az + Bu)

(3.39)
=)\0 + Alzz -+)\223 + ...+)\p_lzp + Ap'll,
where)g is constant, such that
max H(X,2%,u) = H(X 2",u")
w€U(2) (3.40)
H(Az%u*)=0
and where A(t) is a nonzero solution to the adjoint equations
AT =-2T4A+ VT% (3.41)

The function R is formed from the active constraints in (C2’) and v is given
by
P
Ou
One should note that the adjoint equations (3.41) may, be different for differ-
ent subintervals of [to,%¢]. This is due to the fact that different constraints
may be active in different subintervals.

We now show that for s such that all components of b;(s) are nonzero,
the optimal control is found by maximizing or minimizing u. The derivation is
analogous to the example given in section 13.11 in [Leitmann, 1981].. Suppose
t € [ta,tp] and that in this interval it holds that b1;(21(¢)) # 0,1 < i < n.
Further suppose that [constraints are active during [ts,tg], i.e. [components
of the torque vector 7 are at the limit. It is however then no restriction to
assume | = 1, since, if 7; is at the limit for some ¢, this gives 4 uniquely from

=)TB (3.42)

bii(z1)u + bai(z) = 7"

where 7" is either the maximum or the minimum limit for joint 7, and hence
the other active constraints must also result in the same u. We now have two
possibilities. If [= 0, no constraints are active and we get v = 0 in (3.41). If
I =1, this gives the function R as

R = byi(z1)u + byi(z) — 7" = 0 (3.43)
where 7/ is either 7/"* or 7/*". We now compute the right hand side in

(3.41), using (3.42). This gives

OR
_BZ = bli(zl)

51

Chapter 3 Path Velocity Planning

and
OR Obs; by Oby 8by;
5;=[3i“+ﬁi B2 ~-sﬁ]
This gives, using (3.38), the two possibilities for the adjoint equations (3.41)
as

A =0
: (3.44)
AJ - A_7'—17)= 2) ' P
or

. X Bby by

Al o bh(zl)((921 (9z1)

' X, by (3.45)

Aj=—X 4 -, 2<j<p

The idea is now to show that assuming A,(¢) = 0 for ¢ € [t4,1g] leads to all
components of A being identically zero. We get the following implications

M) =0=2,1)=0= 0 1(H)=0=> A 1(8) =0= ... = W(8) =0
= A(t)=0= () =0

which shows that A(t) = 0 on the subinterval [to,%5]. This implies, by the
bilinear structure of (3.44) and (3.45), and since A(f) is continuous, that
A(t) = 0 on the interval [ty,?;]. This gives a contradiction to the optimality
condition of a nonzero solution to the adjoint equations (3.41). Since the
interval [to,%g] is any subinterval of [to,tf] where all components of b; are
nonzero, this shows that there cannot be any such subinterval where), is
identically zero. Hence, the first equation in (3.40) together with (3.39) shows
that u = s(?) must be either maximized or minimized. O

3.5 Optimization over a Fixed Interval

The optimal control problem with reduced state dimension, (L2, D2, C2,
B2) is defined over an unspecified time interval [ty,t]. The problem will
now be converted to a fixed time optimal control problem, where the path
parameter s is interpreted as time variable. This idea is also used in phase-
plane optimization, Section 3.3, where the optimization algorithm constructs
the solution as a function of s.

The conversion to optimization over a fixed interval is done by deriving
a dynamic system in s. The system is of order p — 1, and the input is, as in
(D2), the p-th order time derivative of the path parameter, s(*), however now

52

3.5 Optimization over a Fized Interval

regarded as a function of s. The states in the system are denoted ©1,...,25_1.
The state variable = is chosen as

sP

p

The parametric optimization method, which is presented in Section 3.6, is
based on polynomial approximation of z; in (3.46).

The motivation for the choice (3.46) is that the boundary conditions
when using polynomial approximation become consistent. This was discussed
for the case p = 2 in Section 2.1, see the discussion following (2.24). The case
p = 4 is treated in Section 3.6.

A Dynamic System in s

A dynamic system is derived by finding p— 1 first order differential equations
in s for the state variables #1,...,2,_1. Define the function g as

g(z1) = (pz1)'/? (3.47)

The path velocity § can then be expressed as a function of z1, using (3.46),
as

5 =g(zy) (3.48)
Let the state variables z;,...,2,-1 be related as
dmk_
Tp = dsl, k=2,...,p—1 (3.49)
A dynamic system in s is now obtained by expressing 3,. .., s(?) as functions
of £1,...,2p-1, and dzj’;l. The following result is used.

LEMMA 3.2
The p-th order time derivative of s can be expressed as

s(p) = g’(a)l)g(ml)p_ T + Fp(:cl, ‘e ,mp—l) (350)

The function F}, is given below in the proof.

Proof: The proof is by induction. Differentiation of (3.48) with respect to
time gives

5= g(z1)
de; (3.51)

" dz, |
§= gl(ml)d—sls = 9'(931)9(301)—(5

53

Chapter 3 Path Velocity Planning

Thus, (3.50) holds for p = 2 with F; = 0. Suppose now that the Lemma
holds for s(*=1), where k > 3, i.e. that

d
s = g'(zy)g(e1)2 mdk =2+ Fy—1(@1,. - Tr2) (3.52)

Differentiating (3.52) with respect to time gives, using (3.48) and (3.49),

s = g"(21)zag(21)g(21)F 2 2Ry
+¢'(z1)(k — 2)g(z1)**g'(21)29(21) 2h—1

dz d
+¢'(e)g(e1)" = g(m1) + 3 Feoa (@1, 202)

Further, we get

d 22 0F (T1,...,Tk—2)
EFk ~1(®1y. -5 2Th—2) z:: 5,9:1 zit19(z1)

which gives ' ,

d
sk =!J'(f'31).¢](1131)lc ! mdk 1 + Fr(z1,. .. 2k—1)

where

)k—z

Fo(z1,...,zp-1) = ¢"(21)z29(21)g(21 Th_1

+ g'(z1)(k — 2)g(z1) 2 ¢' (21)z29(21)TE—1

+28Fk l(ml, ‘Bk~2)

92 $i+19(“31)

Using (3.47), we now get

1
g'(z1)g(z1)P = E(Pwl)l/p—lp(lml)(p“l)/p =1

which, using Lemma 3.2, gives that the p-th order derivative of s can be

written as
de,_
(p) _ % + Fp(Z1,y. .-y Tp—1) (3.53)

54

3.5 Optimization over a Fized Interval

A dynamic system in s is now obtained using (3.49) and (3.53). Introduce
the notation u = s(?). The dynamic system is then given by

dwl__
ds -
dwz
— =3
ds
(3.54)
dz -2
;s = Ppl
dz,_
;s L - Fp(z1,...,2p1)

The function g The definition of g (3.47) has the following consequences.

. . . de,_
1. It gives a constant, nonzero term, i.e. one, in front of —F=*. Compare

(3.50) and (3.53). This means that the order of the dynamic system
(3.54) is constant.

2. The system (3.54) is feedback linearizable. This will be used in Chapter
40 " -~

For the two models (3.1) and (3.2), we have p = 2 and p = 4. The /dynamic
system (3.54) is now derived for these two cases.

EXAMPLE 3.4

For the case p = 2, the input is v = §, and the state variable @y is.obtained
from (3.46) as

52

T, = —

2
This gives s as
§ = (22,)1/?

Computing §, using the chain rule, then gives

. 1 ~1/2 de;, 1 ~1/2 dz,
§ = 5(201)7 72308 = 5(2e0) 725

dml

1/2 —
(2m1) ds

which gives the dynamic system (3.54) as a linear system in s as

dml

55

Chapter 3 Path Velocity Planning

EXAMPLE 3.5
For the case p = 4, we get, using (3.46)

§ = (4ay)4

which gives § as

Further differentiation gives

s = z5(4ay) "V — 222(4a,) 75/

RO ST T L

ds S_m'f - 4z,

The dynamic system (3.54) is now obtained as

d(l)l

—_—

ds 2

d(Ez —

ds

d(l‘,g wg L2T3
T N T)

where u = (%),

Optimal control problem

(3.56)

The optimal control problem (L2,D2,C2,B2) can now be reformulated as an
optimal control problem over the fixed interval [sq, s¢]. The loss function in
(L2) depends on s, §,... ,8(?), From Lemma 3.2, it is seen that 3,...,s(®1)
can be expressed as functions of z1,...,2,—1. Using u = s, this gives that

the loss function in (L2) can be written as

85
/ Lo(s,21,...,p_1,u)dt

80
Similary, the function h, in (C2) can be written as
hao(s,@1,...,2p—1,%)

56

- 8.5 Optimization over a Fized Interval

The following optimization problem is obtained: find the function u(s) that
solves

2
min/ Lo(s,21y... @p—1,u)dt (L4)

u(a) 80

with the constraints (3.54), i.e.

d(l)] —
ds ~ ?
d:l}z .
ds 3
(D4)
dz -2
;s = Pp
de,_
#1 =u— Fp(®1,...,2p-1)
and
ha(sy1,...,@p—1,u) =T (c4)
TEE o
For the models (3.1) and (3.2), (C4) can be written as '
bl(s)u—l—bz(s,wl,...,mp“l) =T (04')
TEE '
The boundary conditions now become that
331(30),... ,33p_1(80) (B4)

21(85)y - »Tp—1(85)

should be given. For minimum time optimization, the loss function (L4) is
obtained from (L2) as

it 55 1 8¢
/ dt = / las = / (po1) /7 ds (3.57)
t() 80 s 80

3.6 Parametric Optimization

A parametric optimization problem is now obtained from the optimal control
problem (L.4,D4,C4’,B4) by approximating the first state variable z;(s) = 3;:

57

Chapter 8 Path Velocity Planning

by a piecewise polynomial function. We choose B-splines [de Boor, 1978] for
doing this, and then get

ng
z1(s) =) BiBi(s) (3.58)
=1
where the functions B;(s) are B-splines. Introduce the vector

B= (8 - Bua)

From (3.58), it is seen that z; can be regarded as a function of 3. Using
(3.54), it is seen that the variables z3,...,2,—1, and u are also functions of
the vector 4. Hence, the loss function in (L4) and the torque 7 in (C4’) are
also functions of 3. Suppose that s is discretized in m discretization points
8;. The loss function in (L4) is then approximated by a sum as

m

Z Lz(si; ml(siaﬁ)> s a“’p—l(siaﬂ))u(siaﬂ))
i=1

The torque vector in (C4’) is evaluated at the discretization points in s as

Ti = by(8:)u(si, B) + ba(si, 21(54,8), ..y 2p—1(85,8)), i=1,...,m

The following optimization problem is now obtained: find the vector 3 that
solves

Hgnz L2(57 ml(‘“aﬁ)) R 7:31)-1(51'76))”’(‘91'7:3)) (L5)
=1
with the constraints

T = bl(Si)’U«(Si,ﬂ) + bz(Si, $1(5i,ﬂ)a cee amp—l(s‘bﬂ))

C5'
neE, i=1,...m (C5)
The boundary conditions are the same as before, i.e.
:131(80),. .o ,(Bp_l(b‘o) (B5)

w1(ss)s- - Zpoa(ss)

should be given. For minimum time optimization, the loss function becomes,

using (3.57)
Z(pml(si, B))~t/» (3.59)

58

3.6 . Parametric Optimzzation

The optimization problem (L5,C5’,B5) is a nonlinear parametric optimization
problem with nonlinear inequality constraints (C5’). The number of variables
is ng, see (3.58), and the number of constraints is 2nm + 2(p — 1), i.e. upper
and lower limits for each of the n joints that must be satisfied at the m
discretization points in (C5’), and 2(p — 1) boundary conditions from (B5).

Rigid Robots

For the case p = 2, we get z1(s) = ’2, ie. "—; is approximated Another
approach is taken by [Marin, 1988] Where instead the function 1 3 is approxi-
mated. The boundary conditions on zero robot velocity at the start and end
points of the path is there solved by requiring f'(so¢) = 0 and f'(sy) = 0.

The method is also only given for the rigid case.

Boundary Conditions for p =4

We discuss the choice of boundary conditions for the case p = 4. The bound-
ary conditions for the case p = 2 were discussed in Chapter 2, see the discus-
sion following (2.24).

The dynamic system is given by (3.56). Assume that z,(s) is chosen as
a polynomial satisfying

dzq(s;) _ d*z1(s;)
Ly, 22 £0 (3.60)

where s; = sg or s; = sy. Using (3.49), this can be written as

21(s:) =0, wa(s:) =0, ws(s:)=0, za(s:)#0,

”

a3 a:l(s)

131(3{):0, :0’

We now show that these boundary conditions imply
s(t)=0, 3t)=0, s®)=0, sB()#£0, (3.61)
where t; = tg or t; = t;. Using (3.60), ©1(s) can be written as
21(s) = (s — 5:) P(s) (3:62)
where P(s;) # 0. From the derivation of (3.56), we get

§ = (4zq)'/*
§= w2(4w1)_1/2
sG) = m3(4m1)_1/4 — 2z2(4z,)5/ (3.63)
deg %
KON 223
ds + (8:131 4z,)

Substitution of (3.62) into (3.63), using (3.49), now gives the result (3.61).

59

Chapter 3 Path Velocity Planning

3.7 Numerical Examples

The parametric optimization method for the cases p = 2 and p = 4 has been
implemented, using Matlab [MathWorks, 1990] and the optimization routine
NPSOL [Gill et al.,, 1986]. The implementation is done for the minimum
time case. The optimization problem is thus to minimize (3.59) subject to
the constraints (C5’) and (B5). The computation of the loss function (3.59)
and the constraints (C5’) are implemented as m-files, which are supplied to
the optimization routine. The B-spline calculations are done in Matlab using
routines from [de Boor, 1990]. An example for the case p = 2 was presented in
Chapter 2. The result of the optimization is shown in Figure 2.3. Numerical
examples for the case p = 4 are presented below.

Robot Model

The robot model is a linear, decoupled, flexible joint model with two joints.
It is written on the form (3.2) as

Mi+K(qg—0)=0

Jo=1+K(q—9)) (3.64)
where /
m; 0 Ji 0 kBt 0
M:[Ol mz]’ J:[Ol «72]’ K:[Ol kz]! (3.65)
The torques are constrained by ' |
T < <ot i=1,2 (3.66)
Using (3.6), the model (3.64) can be written as
T=JK ' M¢® + (M + J)§ (3.67)
When K — oo, this model reduces to the rigid model
T=(M+J)§ (3.68)

The model (3.64) is now written in the form (3.11). This can be done by using
(3.20), (3.21), and (3.22). It can also be done more directly by differentiating
g = f(s) with respect to time, and substituting into (3.67). The result is

T =JK T M(f'(8)s®) + 4f"(5)55®) 4 65" (5)525 + 3f"(s)5% + " (5)3%)

+ (J + M)(f'(s)8 + f"(s)8?)
(3.69)

60

3.7 Numerical Ezamples

Exact solution

In the first three examples, Example 3.6-3.8 below, the path is chosen as
(2.3). Substitution of f(s) from (2.3) into (3.69), using (3.65), then gives
_ Jim; (4) . .
T = s + (Ji + my)oyd, 1=1,2 (3.70)
i

Assume now that the time optimal solution has the property that one of the
joints, e.g. joint one is limiting the motion, i.e. assume that the minimum
time solution is such that the other torque, in this case 73, never reaches

the torque limit. The optimization problem then becomes a point to point
optimization problem for the scalar system

J .
T = ~1kln—£a13(4) + (J1 +m1)a1 8 (3.71)

1

The problem is then to minimize traversal time subject to the constraints
Tirnin < Tl < 7_J:m,a.:zz
and the boundary conditions

s(to) = 80, 4(t0) =0, 3(t)=0, s () =0
s(tr) =57, 4(tf) =0, 3(ts)=0, s®(t;)=0 |

A method for obtaining an exact solution to this problem has been imple-
mented [Dahl, 1992] and is used below for comparison with the result of the
polynomial approximation. The exact solution is obtained by integrating
the system dynamics (3.71) analytically when the input 7; is alternating be-
tween 7" and 7/"°®. The resulting state is then set to a specified value,
and equations for the switching times for 7, are obtained. The optimality is
then checked as in [Ben-Asher et al., 1987], by substituting the solution into
the necessary, and in this case also sufficient, conditions for optimality. The
implementation was done using Maple [Char et al., 1988] to obtain the equa-
tions for the switching times. The implementation uses Matlab [MathWorks,

1990] for numerical calculations to check the optimality of a given solution.

Parametric Optimization

The parametric optimization requires the computation of the constraints
(C5’). The constraints are obtained by expressing 7 in (3.69) as a func-
tion of the parameter vector 8 in (3.58). This is done as follows. Using
(3.63), 3, s, 53 and s(*) can be expressed as functions of Ty, &2, 3, and %.

Using (3.58) and (3.56) then gives T as a function of 3.

61

Chapter 3 Path Velocity Planning

1 (s)

0.08 T T T T T 4 T T T

0.06

0.04

0.02F

Figure 3.5 The exact time optimal solution. The joint stiffness constants are
ky = k3 = 1. The upper plot shows the optimal z;(s). The lower plot shows the
corresponding torques 71, solid line, and 73, dashed line.

Numerical Examples

ExAMPLE 3.6
The path is the same as was used in Chapter 2, i.e. (2.3) with the parameter
choice a; = 2 and a3y = 1. The parameter values in (3.65) are chosen as

myp = My = 05, J1 = Jz = 05, kl = kg =1 (372)

The torque limits are chosen as

For the parameter choice (3.72), the corresponding rigid model (3.68) be-
comes the model (2.1) with m; = my; = 1, which is the model used in
Chapter 2. The rigid solution, shown in Figure 2.2, is used below for com-
parison. The exact solution is shown in Figure 3.5. The upper plot shows the
optimal z1(s), i.e. the optimal % as a function of s. The lower plot shows

62

.3.7 Numerical Ezamples

0.08

0.06

0.04

0.02

Figure 3.6 The result of using parametric optimization. The upper plot shows
the optimal z1(s) = $*/4 as a function of s. The lower plot shows the corre-
sponding torques as functions of s.

the corresponding torques. As can be seen in the lower plot, there are three
switches in the torques. Compare with the rigid solution shown in Figure
2.2, where there is only one switch. The traversal time for the exact solution
is 3.56 seconds. The traversal time for the rigid solution is given in (2.20) as

ty = 24/2 ~ 2.83 seconds.

The solution shown in Figure 3.5 was computed by a point to point
optimization for joint one using the method described above. The result of
this was the exact 7y, shown in the lower plot in Figure 3.5. The torque
71(t) was then used as input to the system (3.71), which was integrated
numerically. The result was the optimal s(t), §(t), 3(t), s®)(¢), and s(*)(¢).
The optimal s(t) and 5(t) were then used to compute the optimal z; = "‘%;,
shown in the upper plot in Figure 3.5. The torque 73, shown in the lower
plot, was computed from (3.70) for ¢ = 2, using the optimal 5(¢) and s(*)(¢).
Note that for this example, the torques are actually related as 7 = 273, as
can be seen from (3.70).

A parametric solution is shown in Figure 3.6. The number of B-spline
coefficients in the B-spline was 40, i.e. the length of the vector 8 in (3.58) was

63

Chapter 3 Path Velocity Planning

40. The s-vector was discretized in 67 points. The degree of the polynomial
pieces, i.e. the functions B; in (3.58) was chosen as five. This means that
the function z;(s) in (3.58) has continous fourth order derivatives [de Boor,
1978]. Using (3.11) and (3.63), it is seen that this implies continuous and
differentiable torques, i.e. continuous and differentiable constraints for the
optimization.

The upper plot in Figure 3.6 shows the optimal z1(s). The lower plot
shows the corresponding torques. The torques are computed as in (C5’), i.e.
only for the discretization points. As can be seen from this plot, the torque
switches are smoothened. This was also the case in the rigid example in Chap-
ter 2, shown in Figure 2.3. The traversal time for the parametric solution
was computed by assuming constant acceleration between the discretization
points in s. The result was the traversal time 3.6 seconds.

The optimization was done on a Sun Sparc Station 2. The computation
time was 247 seconds. The computation time for Matlab calculations, i.e.
the computation time for the evaluation of the loss function (3.57) and the
constraints (C5’), was 177 seconds,

A comparison with the rigid solution is shown in Figure 3.7. The upper
plot shows the B-spline velocity profile v;(s), solid line. This curve is thus
related to z1(s) in Figure 3.6 as v1(s) = (4z1(s))*/*. The upper plot also
shows the exact velocity profile, dashed line. As can be seen in this plot, the
B-spline solution agrees well with the exact solution. The dotted line in the
upper plot is the rigid velocity profile. This velocity profile is also shown in
Figure 2.2. The lower plot shows the limiting torque 7. The solid line is the
result of the B-spline optimization, also shown in Figure 3.6. The dashed line
is the exact flexible torque 7y, also shown in Figure 3.5. The dotted line in
the lower plot is the rigid torque 7. As can be seen, the switch in the rigid
torque, s = 0.5, conicides with second switch in the exact flexible solution.

As can be seen in the upper plot in Figure 3.7, the velocity for the
flexible joint model is for most parts of the path larger than the velocity for
the rigid model. One might then expect that the traversal time for the flexible
solution is smaller. This is however not the case. The numerical values for
the traversal time is 3.56 seconds for the exact flexible joint case, and 2.83
seconds for the rigid case. The difference in traversal times can be seen in
Figure 3.8 which shows the time optimal path parameters as functions of
time. The solid line is the B-spline solution, and the dashed line is the exact
solution. As can be seen, these solutions agree well. The dotted line is the
rigid solution. As can be seen, the rigid path parameter starts much faster,
i.e. even if it has lower velocity for a large s-interval, the fast start makes
a large difference in traversal time. The rigid solution is also shown in the
upper left plot in Figure 2.1.

64

3.7 Numerical Ezamples

0.6

Figure 3.7 A comparison with the rigid solution. The upper plot shows the
B-spline velocity profile, solid line, the exact velocity profile, dashed line, and the
rigid velocity profile, dotted line. The lower plot shows the limiting torque 7.
The solid line is the B-spline solution, the dashed line is the exact solution, and
the dotted line is the rigid solution.

O i 1] ' 1 1 1
0.5 1 15 2 25 3 35

Figure 3.8 The time optimal path parameters as functions of time. The solid
line is the B-spline solution, the dashed line is the exact solution, and the dotted
line is the rigid solution. The dashed-dotted line is s¢, the maximum value of the
path parameter.

65

Chapter 3 Path Velocity Planning

1 (f)

0.04 T . r

0.03

0.02

0.01

——mm———————— e cd st e, —————]

Figure 3.9 The exact time optimal solution. The joint stiffness constants are
ki = k2 = 10. The upper plot shows the optimal z1(s). The lower plot shows
the corresponding torques 1, solid line, and 75, dashed line. '

EXAMPLE 3.7
The path is the same as in the previous example. The parameters in (3.65)
are chosen as

m; = My = 05, J]_ - Jz = 0.5, k1 = kz =10

i.e. compared to the previous example, the stiffnes constant is increased from
1 to 10. The torque limits are the same as in the previous example.

The exact solution is shown in Figure 3.9. As can be seen in this plot,
the switches in the torques are now closer to the mid point of the path. The
number of switches is the same as before. The traversal time for the exact
solution is 2.91 seconds.

The result of the B-spline optimization is shown in Figure 3.10. As can
be seen, the torque switches are again smoothened. The number of B-spline
coeflicients in the B-spline was 40. The s-vector was discretized in 69 points.
The computed traversal time from the B-spline solution is 2.94 seconds. The
computation time was 349 seconds, and the computation time for Matlab

66

0.04

0.03

0.02

0.01

Figure 3.10 The result of using parametric optimization. The upper plot shows
the optimal z1 (s) = s*/4 as a function of 5. The lower plot shows the correspond-
ing torques as functions of s.

calculations was 292 seconds. A comparison with the rigid solution is shown
in Figure 3.11. As can be seen in the upper plot, the B-spline solution and
the exact solution agree well. For this example, the maximum velocity of
the rigid solution is larger than the maximum velocity for the flexible joint
solution. This was not the case in the previous example, shown in Figure 3.7.
The difference in traversal times between the rigid solution and the flexi-
ble joint solution is now smaller than for the previous example. The numerical
values are 2.83 seconds for the rigid solution and 2.91 seconds for the exact
flexible solution. The optimal path parameters are shown as functions of
time in Figure 3.12. As can be seen in this plot, the difference between the
rigid solution and the flexible solution is now smaller. Compare with Figure
3.8. Note that the slope of the rigid solution, the dotted line, is for some time
intervals larger than the slope of the flexible solution. This is also seen as a
difference in the velocity profiles, shown in the upper plot in Figure 3.11.

67

Chapter 8 Path Velocity Planning

0.8 T T ¥ T T T ¥ T T

0.6

0.4

02

Figure 3.11 A comparison with the rigid solution. The upper plot shows the
B-spline velocity profile, solid line, the exact velocity profile, dashed line, and the
rigid velocity profile, dotted line. The lower plot shows the limiting torque 1.
The solid line is the B-spline solution, the dashed line is the exact solution, and
the dotted line is the rigid solution.

0.5 1 1.5 2 2.5

Figure 3.12 The time optimal path parameters as functions of time. The solid
line is the B-spline solution, the dashed line is the exact solution, and the dotted
line is the rigid solution. The dashed-dotted line is s¢, the maximum value of the
path parameter.

68

0.06

0.04}

0.02

Figure 3.18 The exact time optimal solution. The joint stiffness constants are
k1 = k2 = 100. The upper plot shows the optimal z;(s). The lower plot shows
the corresponding torques 7y, solid line, and 73, dashed line. .

ExAMPLE 3.8

In this example, the stiffness constants are further increased to k; = k; = 100.
The exact solution is shown in Figure 3.13. As can be seen in the upper plot,
the optimal x;(s) oscillates more than in the previous example, shown in
Figure 3.9. Further, the s-interval for the torque switches is reduced. The
exact traversal time was 2.84 seconds. The difference to the rigid traversal
time 2.83 seconds, is thus further decreased.

The result of the B-spline optimization is shown in Figure 3.14. Note
that the torques are now more irregular compared to the previous examples.
Numerical problems when the stiffness constants k; increases can however be
expected, since from (3.70) the term in front of 5(*) decreases as k; increases.
For this example, the quality of the solution can be increased by increasing the
number of B-spline coefficients. This however gives increased computation
time.

The computation time for this example was 333 seconds, and the com-
putation for Matlab calculations was 294 seconds. The number of B-spline
coeflicients in the B-spline was 40. The s-vector was discretized in 65 points.

69

Chapter 3 Path Velocity Planning

21 (8)

0.06 T r T r T T . T T

0.04

0.02

Figure 8.14 The result of using parametric optimization. The upper plot shows
the optimal z1(s) = 5*/4 as a function of s. The lower plot shows the correspond-
ing torques as functions of s. ‘

The computed traversal time from the B-spline solution is 2.89 seconds. A
comparison with the rigid solution is shown in Figure 3.15. As can be seen in
the upper plot, the difference between the B-spline solution, solid line, and
the exact flexible solution, dashed line, is now slightly larger. This can be
expected, since the function z;(s) now varies more compared to the previ-
ous examples, but the number of B-spline coeflicients is still 40. Compare
with Figures 3.7 and 3.11. Note also that the average distance between the
rigid solution and the flexible solution is now smaller than for the previous
examples.

The optimal path parameters are shown as functions of time in Figure
3.16. As can be seen in this plot, the difference is reduced. Compare with

Figures 3.8 and 3.12.

ExaMPLE 3.9

The path used in this example is the same elliptical path as in Example 3.1.
The path is shown in the upper plot in Figure 3.2. The robot model and
the torque constraints are the same as in Example 3.7. The rigid solution is

70

3.7 Numerical Ezamples

/\ PV
0 0.1 0.2 03 04 0.5 0.6 0.7. 0.8 09 1

Figure 3.15 A comparison with the rigid solution. The upper plot shows the
B-spline velocity profile, solid line, the exact velocity profile, dashed line, and the
rigid velocity profile, dotted line. The lower plot shows the limiting torque 7.
The solid line is the B-spline solution, the dashed line is the exact solution, and
the dotted line is the rigid solution.

0 I} L 1 L 1
0.5 1 L5 - 2 2.5

Figure 3.16 The time optimal path parameters as functions of time. The solid
line is the B-spline solution, the dashed line is the exact solution, and the dotted
line is the rigid solution. The dashed-dotted line is s¢, the maximum value of the
path parameter.

71

Chapter 8 Path Velocity Planning

zq (8)

0.25 ' r . T T T

Figure 3.17 The result of using parametric optimization for the elliptical path.
The upper plot shows the optimal z;(s) = §*/4 as a function of s. The lower plot
shows the corresponding torques as functions of s. ‘

shown in Figure 3.2.

The result of using parametric optimization is shown in Figure 3.17.
The number of B-spline coefficients in the B-spline was 80. The s-vector was
discretized in 149 points. The computed traversal time from the B-spline
result is 9.68 seconds. The rigid traversal time was given in Example 3.1 as

9.66 seconds.

As can be seen in the upper plot, z;(s) is oscillatory. The lower plot
shows that joint one is limiting the motion. The computation time was 2872
seconds, and the computation time for Matlab calculations was 2600 seconds.
A comparison with the rigid solution is shown in Figure 3.18. The upper plot
shows the B-spline velocity profile, solid line, and the rigid velocity profile,
dashed line. As can be seen in this plot, the B-spline velocity profile oscillates
around the rigid solution. The same phenomenon is seen in the torque T3,
shown in the lower plot. The torque 7; is however different. It is at the
limits, and compared with the rigid torque, each rigid switch is replaced by
three flexible switches.

Note that the reason for z;(s) being oscillatory depends both on the

72

3.7 Numerical Ezamples

Figure 3.18 A comparison with the rigid solution. The upper plot shows the
B-spline velocity profile, solid line, and the rigid velocity profile, dashed line. The
mid plot and the lower plot show the torques.

stiffness constant and on the path, in the sense that the number of oscillation
periods in the traversal time determines the structure of z;(s). This is seen
by a comparison with Example 3.7, which uses the same robot model as this
example, i.e. k1 = k2 = 10. The solution for Example 3.7, shown in Figure
3.10, is not as oscillatory as the solution for this example, shown in Figure
3.17. Instead, this example is more similar to Example 3.8, compare e.g.

73

Chapter 3 Path Velocity Planning

Figures 3.15 and 3.18. The oscillation period is given from (3.71) as

7o,)hitmy
J1m1

The parameter choice my = J; = 0.5 then gives T = \/— ~ 0.99. For
this example, the traversal time is 9.68 seconds, i.e. there are 9.8 periods in
the traversal time. In Example 3.8, the situation is similar. The parameter
choice k3 = 100 gives T' = \/_ \/W ~ 0.314. The traversal time was
2.84 seconds, which gives 9.0 periods in the traversal time. For Example 3.7,
where, as in this example, k; = 10, i.e. T' = 0.99, the traversal time was 2.91
seconds, which gives 2.9 periods in the traversal time.

ExAMPLE 3.10
This example demonstrates how a “bang-bang” solution can be constructed
from a B-spline optimization. The idea is to guess switching points where s(4)
switches from maximum to minimum or vice versa. The bang-bang solution is
then constructed by integration of (D2) for p = 4 with maximum or minimum
5. The maximum and minimum values of s(*) are computed from (3.11)
with p = 4, in the same way as limits on § are computed in phase-plane
optimization, see (3.23)—(3.26).

The path is the first quadrant of the unit circle, ie. fi(s) = cos(s),
f2(8) = sin(s), where 0 < s < /2. The parameter values in (3.65) are
chosen as

mi; = mg = 4, Jl - Jz = 5, kl - kz =30 .) (373)

The torque limits are chosen as

Figure 3.19 shows the result of B-spline optimization. The traversal time
was 2.67 seconds, the number of B-spline coefficients was 60 and the s-vector
was discretized in 109 points. The computation time was 1270 seconds, and
the computation time for Matlab calculations was 990 seconds. Guessing the
switching points s = 0.51, s = 0.78, and s = 1.06 gives the solution shown in
Figure 3.20.

74

3.8 Conclusions

e

]

Figure 38.19 The result of B-spline optimization. The path is the first quadrant
of the unit circle.

1 ()
0.25

0.2
0.15

10 ------- : T L] T ¥ T T ¥
0 v

10} v
0 0.2 0.4 0.6 0.8 1 1.2 1.4

Figure 8.20 The switching solution, constructed by integration with maximum
and minimum s(4),

75

Chapter 8 Path Velocity Planning

3.8 Conclusions

Methods for specifying minimum time motion along a predefined path have
been presented. The rigid body model (3.1) and the simplified flexible joint
model (3.2), which is a practically important extension of (3.1), was used.
Both models can be written with the torque 7 as a function of the vector of
joint variables ¢ and its derivatives, equation (3.4). This makes it possible to
use a common optimal control formulation (L2,D2,C2,B2) for both the phase
plane optimization method [Bobrow et al., 1985; Shin and N.D.McKay, 1985;
Pfeiffer and R.Johanni, 1986] and a new method for flexible joint robots.

A review of phase-plane optimization was presented. The velocity and
acceleration constraints were discussed, and were also given a geometric in-
terpretation as in Figure 3.1. An optimality result, Theorem 3.1, shows that
similar bang-bang properties hold for both rigid and flexible joint robots.
With the exception of critical points, the p-th order time derivative of the
path parameter, s(P), with p = 2 for rigid robots, and p = 4 for flexible joint
robots, should either be maximized or minimized.

A method for minimum time optimization using parametric optimization
was presented. The method is based on polynomial approximation using B-
splines. Choosing the function to approximate as 3P/p gives the desired
boundary conditions on nonzero initial and final s(®, (3.61). The method
has been implemented, and numerical examples show the properties of the
solution, and also how it differs from the rigid solution. For a given path,
the flexible joint velocity profile can vary from the behavior shown in Figure
3.7, to a solution that oscillates around the rigid solution, Figure 3.15. It
was also discussed, in Example 3.9, how the solution depends on both the
joint stiffness and the path, in the sense that the number of oscillations in
the traversal time determine the behavior. It was also shown how a “bang-
bang” solution can be constructed, using the optimality result, by finding the
switching points in the optimal B-spline, and then integrating with maximum

or minimum s(*¥).

76

Path Velocity Control

From the construction of the minimum time velocity profile by Algorithm
3.1, and also from Theorem 3.1 for p = 2, it is seen that the minimum
time solution is bang-bang in the sense that the path acceleration ‘is either
maximum or minimum, with the possible exception of critical points. The
result of this is that at least one torque is always at the limit. This means that
there is no margin for the limiting joint to control in the case of disturbances
or modeling errors. This may result in large tracking errors, which then gives
deviations from the path.

One approach to decrease the sensitivity of the minimum time solution
is to reduce the torque limits in the minimum time optimization [Asada and
Slotine, 1986, p.170]. The idea is to ensure that there is always torque avail-
able for closed loop action by having a prespecified torque margin for the
controller. The result will most likely be a conservative motion, where the
maximum allowable torque range is not utilized. Further, since the reduced
torque limits are prespecified, it may be difficult to guarantee in advance that
the actual torques required during motion are not outside the torque limits.
Another method in the same spirit is described in [Shin and N.D.McKay,
1987}, where bounds on parametric model errors are used for off-line modifi-
cation of the velocity profile.

The above schemes are open loop, resulting in a nominal motion speci-
fication for the robot. A different approach is to use feedback.

In [Slotine and Spong, 1985], feedback is used to obtain a correction to
a nominal reference trajectory. The nominal reference trajectory, which is
defined on a time interval [to,%y,,], is modified when the torques saturate.
The modification is done such that the modified reference trajectory is defined

7

Chapter 4 Path Velocity Control

on the same time interval [to,%y,,,.]. The idea is to maintain the traversal
time, while choosing a different path than the nominal.

Path Velocity Control

It is obvious from the minimum time optimization problem that if the path
cannot be traversed in the nominal minimum time, the traversal time has
to be increased if path following is to be maintained. In path velocity con-
trol, this is done via feedback modification of the velocity of the reference
trajectory. As in [Slotine and Spong, 1985], a nominal reference trajectory,
defined on the time interval [¢o,%y,,], is modified when the torques saturate.
However, in path velocity control, the reference trajectory is modified such
that the modified reference trajectory defines the same path as the nominal.
The modified reference trajectory is thus defined on a time interval [to,%y],
where, generally, t; > t7, .

The nominal reference trajectory is represented by a nominal velocity
profile vq, defined in (2.4), and a nominal acceleration profile v3, defined in
(2.5). The purpose of path velocity control is then to modify the nominal
velocity profile, using feedback, such that the modified velocity profile results
in motion along the path. The modification is done such that the modified
velocity profile does not require more torque than what is available. If the
robot controller has enough tracking performance, this will result in small
tracking errors, which then will give motion along the path.

The path velocity controller was demonstrated in Chapter 2. A sim-
ulation example, shown in Figure 2.6, was used to illustrate how a a time
optimal velocity profile may result in path deviations due to modeling errors.
It was also illustrated, as shown in Figure 2.9, how the path deviations could
be eliminated by using path velocity control.

This chapter gives a detailed presentation of path velocity control, and
specific control algorithms are presented in Sections 4.3 and 4.4. The control
algorithms are evaluated by simulation in Section 4.5. The focus in this
chapter is on rigid robots, where the path velocity controller is a second
order dynamic system. It is however possible to obtain also higher order
path velocity controllers. This is described in Section 4.6.

Path Velocity Control Algorithms

In the simulation example in Chapter 2, shown in Figure 2.6, the effect of the
modeling error was that, during the initial part of the motion, the maximum
allowable acceleration for the actual robot model was lower than for the
nominal model. This was seen in the simulation in Figure 2.6 where initially
the robot was not able to track the reference trajectory. The path velocity
controller presented in Section 4.3 aims at solving this problem of inadmissible

78

acceleration by adjusting the acceleration of the reference trajectory such that
the resulting acceleration does not exceed the maximum allowable.

Another aspect of the sensitivity of the minimum time solution can be
seen from the construction of the minimum time velocity profile by Algorithm
3.1. Consider step 4 in Algorithm 3.1. The backward integration used in this
step constructs a curve with minimum acceleration, starting from a point
on the maximum velocity curve. The integration, if successful, is continued
until an intersection with the previously computed curve occurs. This means
that the velocity at the intersection point is the highest possible velocity that
results in a velocity profile inside the admissible region. An example of this
is seen in Figure 3.2, where the velocity at the point s = 0.52 is the highest
possible velocity that results in admissible velocity at the point s = 1.56.
If this velocity profile is used to form a reference trajectory it may happen
during motion that the velocity at s = 0.52, due to modeling errors, is too
high to meet the velocity constraint given by the maximum velocity curve.
This means that even if minimum acceleration is used from s = 0.52, the
velocity at s = 1.56 will be too high. As a result of this, the rest of the
motion cannot be continued without moving away from the path. The path
velocity controller presented in Section 4.4 aims at solving this problem of
inadmissible velocity by introducing a scaling of the velocity profile, and then
adjust the scaling factor by feedback. ’

4.1 Controller Parametrization

A robot controller for reference trajectory tracking is assumed available. The
robot controller is designed for good tracking performance, disturbance re-
jection etc., and is kept unchanged in our scheme for path velocity control.
The robot controller is however parametrized in the path parameter o.

The reference trajectory used by the robot controller is denoted g¢.(t) €
IR™. The output of the robot controller is the torque 7 € IR®. We assume
that the second time derivative of the reference trajectory is used by the
robot controller. The reference trajectory and its derivatives are then given
by (2.30).

The controller parametrization is, for a given controller, obtained by sub-
stituting ¢,(t) = f(o(t)) into the controller equation for 7. The parametriza-
tion has the form

This parametrization defines the feedback signals 8; and Bs, shown in Figure
2.8. The controller parametrization (4.1) is exemplified by some commonly
used robot controllers.

79

Chapter 4 Path Velocity Control

EXAMPLE 4.1
The controller (2.26), which is used in the simulation example in Chapter 2,
is parametrized as

T = ,31(0')0' +ﬁ2(0)&7 Q1q.) (42)
where
Bi(0) = Mf'(o)
Ba(2,6,4,4) = M(f"(0)6” + Ko(f'(0)6 — §) + Kp(f(0) — 9))
As can be seen in (4.3), the vector B, depends on the measured quantities ¢

and g, thus giving a feedback path from measured signals to the path velocity
controller.

(4.3)

EXAMPLE 4.2
For a rigid robot, described by the model (3.1), typical robot controllers are
a feedforward controller with position and velocity feedback, given by

T= ﬁ(qr)q.r + 9(gr,¢r) + ‘j(qr)q'r + 9(g-) + Kpe + Kyé (4.4)

and a computed torque controller [Asada and Slotine, 1986]

7= H(q)(dr + Kpe + Koé) +9(q,4) + d(g)d + §(a) ~ (4.5)

which both can be parametrized as (4.1). For the feedforward controller (4.4),
the result is

Bi(o) =H(f(o))f' (o)
B2(0,6,9,4) =(H(#(0))f" (o) + 3(f(c), f (o)) (4.6)
+ (d(f(0))f ()5 + §(F(o)) + Kpe + Kyé

and for the computed torque controller (4.5), the result is

Bi(o,q) =H(q)f' ()

: PV VPRI € X/
B2(0,6,4,4) =H(q)(f"(0)6” + Kpe + Ky€) +9(q,4) + d(q)d + 3(q)

EXAMPLE 4.3

The controller parametrization can also be obtained when there are additional

dynamics in the controller. A PID controller, obtained by extending the robot

controller (2.26) with integral action is written as

7= M(§r + Ko(dr — §) + Kp(qr — q) +1)
di

5= Ki(gr —q)

80

4.1 Controller Parametrization

The controller parametrization then becomes

T = 161(0')0' + :62(0'a &aqu.’i)
where

pr(o) = M{'(o)

B2(7,6,4,4,i) = M(f"(0)6 + Ko(F'(0)6 — §) + Kp(f(0) — q) +71)
EXAMPLE 4.4
An example of a controller parametrization similar to (4.1) for the case of

joint flexibility is given. Equation (3.6), which is obtained by rewriting the
robot model (3.2), can be written on the form

T = JK ' H(q)¢® + F(q,4,,4>)
A feedback linearizing controller [Spong, 1987] is now obtained by choosing
r=JK " H(q)w + F(q,4,d,¢®) (4.8)

which gives the linear system ¢(*) = w. A linear controller for w is éiven by

3
w =g+ k(¢ —) (4.9)
i=0 - C
The parametrization of the controller (4.8) and (4.9) is then obtained by

differentiation of q,(t) = f(c(t)) to obtain gr(t),...,q?(¢) as functions of
&(t),. .., (t). This gives a controller parametrization on the form

T = B1(0,9)e™® + Ba(0,6,5,6,q,4,4,¢) (4.10)

A path velocity controller for this type of parametrization is described in
Section 4.6.

4.2 Limits on path acceleration

The controller parametrization (4.1) is used in the path velocity controller as
the basis for connecting measurements to the path parameter o by computing
limits on the the path acceleration &. This is done in the same way as is done
in phase-plane optimization, see (3.23)-(3.26), but with the vectors b; and b,
in the parametrization of the robot dynamics (3.11) replaced by the vectors

81

Chapter 4 Path Velocity Control

B1 and B in the controller parametrization (4.1). Thus, each torque 7; is
constrained by

T-Znin S T, = ,61;5' + ﬂZ.’ < Timaz$ 1 < i S n (4'11)

Each joint 7 now gives upper and lower limits on &

(r"*® — B2,)/B1s» B1; >0

Finas(Brir Ba;) = { (T — Ba,)/Br;y Pr; <0 (4.12)
00, :51:' =0
and '
, (Tz:mm - :HZi)/ﬁln /Bli >0
&:nin(ﬁl."ﬂh) = ('T,:maz *“,32,-)/,31,-, ,31.- <0 (4.13)
—0o0, :31.' =0

which gives the limits on & as

&maz(ﬁhﬂZ) = Inzln &:rina.z(lglihgh)
&min(ﬁlaﬂZ) = m'?‘xa-:rinin(ﬁli)ﬁh)

.

(4.14)

The limits (4.14) provide a way to modify the reference trajectory, via mod-
ification of &, such that the torque limits are not violated. The idea is thus
that if the nominal reference trajectory results in inadmissible torques, it is
modified by limiting &.

Inadmaissible limits Note that the limits (4.14) depend on measured
quantities through the vectors 8; and (. It can therefore not be guaranteed
that Gmin(B1,02) < Gmaz(B1,32). This is further discussed below.

4.3 A Basic Algorithm

It was shown in the previous section how limits on & can be computed from
the controller parametrization (4.1). This section presents an algorithm for
path velocity control, which is obtained by combining the limits on path
acceleration with feedback from a nominal velocity profile. The nominal
velocity profile is given as the function v; in (2.4). The nominal velocity
profile can be computed from optimization as in Chapter 3, but can also be
specified by a robot operator/programmer. A nominal acceleration profile
vz, defined by (2.5), is also used in the path velocity controller.

The algorithm presented in this section was used in the simulation ex-
ample in Chapter 2, Figure 2.9, and will also be used in the experimental
evaluation in Chapter 5.

82

4.3 A Basic Algorithm

Limiting path acceleration

A possible algorithm for path velocity control could be to use the limits
(4.14) to limit the nominal path acceleration, expressed as a function of &
by v3(0), and then let & be the result of the limitation. Define the function
3at(Z, Tmin, Tmaz) as the function that limits z by the limits z;, and Tmaz.
The algorithm is then given by the second order dynamic system

do s

dt

do (4.15)
a7

6 = sat(v2(0), Omin(B1,02); Fmaz(B1,02))

This algoritm limits the nominal acceleration v(o) so that, if v2(o) is not
feasible, i.e. if v2(0) < Fmin(B1,02) or va(o) > Fmaez(P1,02), then & =
Fmin(B1,02) or & = Gmaz(P1,P2), i.e. the path acceleration & is chosen as
the minimum or maximum acceleration that gives all torques inside the limits.

.

/

Feedback using the nominal velocity profile

Suppose that the algorithm (4.15) is used for path velocity control and that
the motion starts at time ¢ = ¢y. As long as the limits on & are not active,
i.e. as long as Gmin(B1,02) < v2(0) < Fmaz(B1,02), we have & = va(0).
If the initial conditions are chosen as the initial conditions for the nominal
path parameter s(t), i.e. o(tg) = s(to) and &(¢o) = 5(to), this gives, by (2.5),
o(t) = s(t), and hence, by (2.4), 6 = v1(0), i.e. the algorithm generates the
nominal velocity profile.

However, when the limits on & are active, then ¢ saturates and we have
& = Fmaz(BP1,B2) Or 6 = Gmin(B1,32), and the path velocity & deviates
from the nominal velocity profile v;(o). This means that when the nominal
acceleration is again feasible, i.e. when min(f81,02) < v2(0) < Fmaz(P1,52),
a situation where ¢ # vi(0) and & = vz(o) can occur. This may then lead
to a path velocity 6 moving away from the nominal velocity profile. For
example, if ¢ = vy(0) = 0 during a time interval, & will be kept constant
at a level which depends on the previous limitation of v;(c), which in turn,
since the limits depend on measured quantities, may depend on disturbances
acting on the system.

We therefore introduce feedback from the nominal velocity profile v1(o)
to ensure that the path velocity & approaches v;(o) when the limits on & are
not active. Choosing the feedback as a nonlinear state feedback (o, &) gives

83

Chapter 4 Path Velocity Control

the path velocity controller

do s

dt

do

F7and (4.16)

Upr = ¢(0-7 0')
o= sat(ur, &min(ﬁlaﬂZ), 6."m.a.z (,61,:62))

where the variable u, is an auxiliary variable. The purpose of the feedback
¥(0,6) in (4.16) is to ensure that ¢ approaches the nominal velocity profile
v1(0), when the limits on & are not active, i.e. When Gmin(B1,02) < up <
Omaz(B1,02). The function 7 is specified below, where it is chosen such that
the resulting system becomes linear when written as a differential equation
with o as the independent variable. The chosen ¥ actually includes also v,
and v, i.e.

"»b(a7 d') = "Z(Ua 0,01 (0-)7 V2 (0'))

Before giving the specific choice of i, some general properties of 1 are dis-
cussed. T

s

Time translation The result of having a feedback 1 that makes & ap-
proach v;(o) is that if & converges to v1(c), the path velocity controller
(4.16) generates a time delayed version of the nominal path parameter. This
is seen as follows. Suppose that the path velocity controller (4.16) is used,
and that the motion starts at time ¢ = ¢y. Further, suppose that the limits
on ¢ are activated at ¢ = t;. This results in a path velocity & that deviates
from the nominal velocity profile v;(c). The limits on & are deactivated at
t = t; and the result is that the feedback (o,) makes & approach the ve-
locity profile v;(o). At some further time ¢ = t,, the path velocity & has
converged to the nominal velocity profile, i.e. ¢ = v1(o) for a finite time
interval after #,. This gives, using (2.6), that & = v3(0), i.e. after ¢ = t,, the
path parameter o satisfies the differential equation

& = v3(0) (4.17)

with the initial values o(t,) and 6(t,). Since the nominal path parameter s(t)
also satifies the differential equation (4.17), see (2.5), there must be a time
t =1, such that o(t,) and &(¢,) are related to the nominal path parameter
s(t) as

o(te) = s(ts)

o(ts) = 5(ts)

84

4.3 A Basic Algorithm

Introduce A by t, = t, + A. This gives that for ¢ > t,, the path parameter
o satisfies the differential equation

& = va(0o)
o(ts) = s(te — A) (4.18)
o(te) = $(te — A)

This shows, by time invariance of the differential equation & = v,(z), that,
for t > t,, o(t) and s(t) are related as o(t) = s(t — A).

The result of using the feedback 9 is thus that if & converges to v1(o),
the path velocity controller generates a time delayed version of the nominal
path parameter. The path velocity controller thus has the desired effect that
when the limits on & are active, i.e. when the torques saturate, the traversal
time is increased in order to maintain path tracking. Further, if the nominal
path parameter is the result of a minimum time optimization, the use of the
path velocity controller (4.16) then gives that when the path velocity & has
converged to the nominal velocity profile v (o), the trajectory generated from
that time is a time translated optimal trajectory. This means e.g. that the
synchronization between the torques is preserved, i.e. the switching occurs
simultaneously as for the nominal case, but at different time instants.

2

Choice of the feedback 7

When the limits on & are not active, the path velocity controller (4.16) re-
duces to the dynamic system

do .
a7
do . (4.19)
—d{ = 0

& =1(o,0)
The feedback 1 is now chosen as

$(0,6) = va(0) + 5 (01 (0)? — %) (4.20)

The dynamic system (4.19) then becomes

do‘_,

—g-t-'—(f

do

ind 4.21
=8 (4.21)

& = va(0) + 5 (vs(0)? = 57)

85

Chapter 4 Path Velocity Control

The path acceleration & in (4.21) is a sum of two terms, of which the first
is the nominal acceleration profile v3(o), and the second is a feedback from
the nominal velocity profile v;(o) and the actual path velocity 6. We now
show that the dynamic system (4.21) has the property that & approaches the
nominal velocity profile. The relation

ds dodoe d1,

is used. Using (2.6), with s replaced by o, and (4.22), the last equation in
(4.21) can be written as

d1, d1 1 1,
‘EEG'Z = 3-55’01(0')2 + a(—2~v1(0')2 — 50’2)
which, introducing the notation
1 1,
‘”r(”)zivl(a)z, "32502
can be written as p dzn (o) o
T z(o ,
= g T af(z,(o) —) (4.23)

This shows that choosing ¢ according to (4.20) gives a linear system when
the path parameter o is interpreted as time variable. This means that the
chosen feedback has the property that # — (o) with a o-time constant é
Assuming ¢ > 0, this gives & — v;1(0).

The basic algorithm for path velocity control
The complete path velocity controller (4.16) is now obtained as

do .

—_— =0

dt

o .

@ (4.24)

wr = 02(0) + 5 (0 (0)? - &%)

o= sat(u,., &min(ﬁl,ﬂz), &maz(ﬂlaﬂ2))

A block diagram of the complete system when this controller is used is shown
in Figure 4.1.

The path velocity controller (4.24) is a feedback mechanism for generat-
ing the path parameter o(¢) and its time derivatives ¢(¢) and &(¢). The feed-
back is through the input signals 8; and (2, which are functions of measured

86

- 4.8 A Basic Algorithm

& tmis

Controller qq
— . - — ! Robot
T = B0+p, —/—

s

Figure 4.1 The complete system when the basic algorithm for path velocity
control is used

quantities, as shown e.g in (4.3) and (4.7). There is also internal feedback,
defined by u, in (4.24). : o

The path velocity controller uses the nominal velocity profile v; in the
form vy(o), i.e. as a nonlinear function of one of the states in the system.
This means that the “reference value” v,(o) for the path velocity controller
is not a given time function. It is instead a function that gives the nominal
velocity as a function of the current position. The purpose of the internal
feedback is then to achieve the nominal velocity for the current position, i.e.
to achieve 6 — v1(0). This means that if the reference trajectory is behind
the nominal reference trajectory, the path velocity controller does not try to
catch up, i.e. it does not try to achieve o(t) — s(t). Instead, as shown in
(4.18), it tries to achieve o(t) — s(t — A).

Inadmissible limits Since the limits on ¢ (4.14) depend on measured
quantities, it can happen that ¢min(61,02) > Fmaz(B1,02). In our imple-
mentation, we choose to ignore the result of the computation (4.11)-(4.14) if
this occurs. This means that if Gmin(B1,02) > Fmaz(B1,02), we use 6 = u,
in (4.24). This gives a stable generation of the reference trajectory since,
when the limits are not active, we get a linear system in o (4.23). Further,
there are no parameters to tune.

87

Chapter § Path Velocity Control

Computational Complexity An advantage with the path velocity con-
troller (4.24) is the limited amount of computation needed. Using the path
velocity controller requires that the robot controller is written in the form
(4.1). The computation of 8; and f3; is of the same complexity as the compu-
tations done in the unparametrized controller, compare e.g. (4.6) and (4.4).
The path velocity controller then adds a second order dynamic system (4.24),
which includes the computation of the limits on & according to the compu-
tational procedure (4.11)-(4.14). In conclusion, the computations are of the
same complexity as for the case of using only the robot controller.

Also the memory requirements are of the same order as for conventional
schemes. The nominal velocity profile and acceleration profile are stored as
functions of ¢ in v1(o) and vy(0), and the path and its derivatives are stored
as f(o), f'(0), and f"(o). If a conventional scheme is used, the reference
trajectory is instead stored as functions of time ¢ in ¢,(t), ¢-(t), §-(t).

4.4 Velocity Profile Scaling

A time optimal velocity profile may touch the maximum velocity curve for
some s-values. This is seen, e.g. in the mid plot in Figure 3.2. If the computa-
tion of such a velocity profile is based on an erroneous model, it may happen
that for s-values close to the touching points, the velocity profile computed by
the minimum time optimization is actually above the true maximum velocity
curve. - ’
One possibility to prevent the velocity from being too high is to introduce
a constant scaling of the nominal velocity profile. Choosing a scaling factor
less than one then gives a reduction of the velocity profile, and hence a margin
to the maximum velocity curve.

A continuation of this idea is to try to estimate a suitable scaling factor
during motion. A path velocity controller, where this is done is presented
below. The control algorithm is an extension of the basic algorithm (4.24).
The algorithm modifies the scaling factor using feedback. The scaling factor

is then used in the basic algorithm as if it was constant.

Constant scaling in the basic algorithm

A constant scaling of the velocity profile is introduced in the basic algorithm
(4.24) by replacing the nominal velocity profile v; with a scaled nominal
velocity profile yv,, where v is a constant scaling factor.

Constant time scaling A constant scaling of the nominal velocity profile
is equivalent to a constant time scaling of the nominal path parameter s(t).
This is seen as follows. Introduce a time scaled nominal path parameter by

88

4.4 Velocity Profile Scaling
5(t) = s(+t). This gives

3(1) = 3 o(rt) = 3(rt) = 7o (s(r)) = 7or(5(2)

which shows that the velocity profile of the time scaled path parameter is
~v;. Further differentiation gives

(1) = 2 i) = 25(18) = yPva(ayt)) = 70a(5(1) (4:25)

which shows that the acceleration profile of the time scaled path parameter
soN2
is y*v,.

Path Velocity Controller A path velocity controller with constant ve-
locity profile scaling is now obtained from (4.24) by replacing v; with yvq,
and replacing vy with y%v;. This gives the controller

do .

a ~°

do.- — had . .

a ’ . (4.26)

wr = v va(0) + %('yzvl(a)z —&2)
o = Sat('u,r,&min(ﬂl,ﬁz),&maz(ﬁhﬁZ))

The path velocity controller (4.26) has the property that when the limits on
& are not active, & approaches yv;(o). A similar analysis as resulted in (4.18)
gives a relation between o(t) and s(¢).

Suppose that the algorithm (4.26) is used, and this results in & = yv;(0)
in a time interval after e.g. ¢ = t,. This gives, using (2.6), that & = y%v,(0),
i.e. after t = t,, the path parameter o satisfies the differential equation
& = 7*vz(c) with the initial values o(f,) and &(¢,). Since, from (4.25),
the time scaled nominal path parameter 5(¢) also satisfies this differential
equation, there must exist A such that

& = v vy(0)

o(te) = 3(te — A)

i(te) = 5(ts — A)
which shows that o(t) and 5(t) are related as o(t) = 5(¢t — A). Using the
relation 5(t) = s(vt), this gives o(t) = s(y(t — A)), i.e. for ¢t > t,, the path

velocity controller (4.26) generates a time scaled, time translated version of
the nominal path parameter.

89

Chapter 4 Path Velocity Control

Feedback modification of v

A feedback scheme for adjusting the scaling factor v in (4.26) is given. The
idea is to obtain a scaling of the nominal velocity profile such that the scaled
nominal velocity profile is not above the true maximum velocity curve, which
may be unknown due to modeling errors. The algorithm for doing this is
as follows. Suppose that, during an acceleration phase, i.e. when the path
acceleration is nominally maximum, the limits on & are activated due to
the nominal acceleration being too high. This is is treated as an indication
that the velocity may be too high further along the path, and the algorithm
therefore decreases 4. The reduction of 7y is done such that the scaled nominal
velocity profile yv1(0) approaches the actual velocity profile &, when the
upper limit on ¢ is active, i.e. when ¢ is maximum. The specific feedback
used is a filtering of the actual scaling factor obtained during motion. This
scaling factor, denoted 4, thus satisfies ¢ = 4vy(o). A first order low pass
filtering of 4 is written in the o-time scale as

dvy

do k(¥ —7) o (4.27)

7

The result of using the filter is that v approaches ¥ with a o-time constant
%. The o-time scale facilitates tuning of the parameter k. The value of k is
e.g. chosen, by inspection of the nominal velocity profile, so that % is smaller
than the length of the first acceleration interval. If the initial acceleration
is too high, then v will adjust to the actual velocity profile during the first
acceleration interval. The filter (4.27) is implemented, using the relations

dy., dv . .
EEGZE, 0':7'01(0-)

as

P ok(6/vi(o) —7) (4.28)

Path velocity control including velocity profile scaling

A path velocity controller with feedback modification of the scaling factor is
now obtained by combining the path velocity controller (4.26) with adjust-

90

4.4 Velocity Profile Scaling

ment of v according to (4.28). The complete controller becomes

do .
at ~°
do
a =~ °
up = y2v3(0) + g—('y%l(a)z —6?) (4.29)

o= sat(ur, o'mzn(ﬂl) /52)7 &maz (131 ’ 182))

k(e une)) yu(e) 25
7= {0, yvi(0) < &

where (4.28) has been extended with the condition that « is only modified
when the actual velocity ¢ is lower than the scaled nominal velocity profile
vyv1(o). The algorithm used in the simulations also includes logic such that
~ only is adjusted when the limits on & are active.

Analysis of Constant Scaling

The algorithm (4.29) tries to estimate a suitable scaling factor. This sub-
section gives an approximate analysis in order to investigate when this is
possible, i.e. when the scaling factor obtained during acceleration can be
used also during the following deceleration without violating the torque lim-
its. The analysis also gives insight into what type of model errors that can
be handled by the path velocity controllers (4.24) and (4.29).

The idea is to derive requirements on a scaling factor that results in
admissible torques. This problem was also treated by [Hollerbach, 1984],
where, given a nominal trajectory, a scaling factor is chosen such that the
scaled trajectory results in admissible torques. The robot model used in
[Hollerbach, 1984] was the rigid model (3.1).

We will here treat the specific problem of choosing a scaling factor that
results in admissible torques when the nominal trajectory is represented by a
nominal velocity profile, computed from a minimum time optimization as in
Algorithm 3.1. The analysis is based on the structure of the minimum time
solution, and gives requirements on the scaling factor, that are functions of
real and estimated parameters in the robot model.

A simplified robot model is used. The model is a decoupled linear model
on the form

mi; + dy; sign(di) = 7i (4.30)
where 1 < ¢ < n, the number of joints. The torque constraints are given by

TZTM’IL S Ti S T;ma.z

91

Chapter § Path Velocity Control

Moving the robot (4.30) along a path f(s) gives, using ¢; = fi(s),
m;i(fi(s)s + fI'(s)§?) + dy, sign(fi(s)s) = = (4.31)

Since 3 > 0, the friction term dy, sign(f!(s)3) can be written as
6i(s) = dpysign(f1(s)3) = dysign(f(s) (432)
The model (4.31) can now be written as
mi(fi(s)s + fi'(s)5*) + 8i(s) = i (4.33)
Using (2.4) and (2.5), (4.33) can be written as
mi(£ (s)oa(s) + £ (on (5)2) + 8i(s) = 7 (434)

Suppose now that the velocity profile v; is a constant scaling of a nominal
velocity profile vy, ie. v1(s) = yv1,(s), and v2(s) = ¥%v,,(s). Equation
(4.34) is then written as

mi(fi(s)7"v2,(8) + f1' ()17, (8)*) + 8u(s) = 7 (4.35)

/

This shows how a constant scaling of the velocity profile, or, equivalently, how
a constant time scaling, influences the torques. In order to have admissible
torques, the scaling factor v must be chosen so that

T < = ma (e (s) + F () Por, (s)) 4 6i(s) < 7T (436)

for all sand 4,1 <7< n.

Requirements on v Suppose that, for a given s, joint j is the limiting
joint, and that the limitation is max, i.e. if 4 is chosen so that 7; < 7/"%,
all other torques will also be inside the torque limits. Using (4.36), this gives
that the scaling factor v should satisfy

my*(£5(8)v2, () + £ (8)v1,(5)?) + §5(s) < 7= (4.37)

Suppose now that the nominal velocity profile vy, (s) is computed from a
minimum time optimization, based on the model

mig; + Jf,-sign(q'i) =7, 1<i<n (4.38)
From (4.30) and (4.34), it is seen that (4.38) can be written as
s £1(5Yoaa () + £ (on. (5)7) + Bi(s) = m
92

4.4 Velocity Profile Scaling

where
8i(s) = dy,sign(f'(s)) (4.39)

Further, suppose that joint j is limiting also in the minimum time optimiza-
tion. Since the nominal velocity profile v;,(s) is a minimum time velocity
profile for the model (4.38), the limiting joint j is at the limit, i.e.

i (£i(s)02, () + £ ()01, (8)%) + §5(s) = 7] (4.40)

A reasonable assumption on the friction level is that both the real friction

level 6;(s) and the estimated friction level §;(s) are smaller than the maxi-
mum allowable torque, i.e. 7/**®—§;(s) > 0, and 7**® —§;(s) > 0. Inserting
(4.40) into (4.37) then gives

2<mJ ;naz—é(s)

7 - ma.m 5 (S)

If the limitation instead is min, i.e. if 7 is chosen so that 7; > T}”i", then all
other torques are inside the torque limits, the inequality (4.37) is replaced by

miy? (fi(son, (5) + F()or, (5)?) + 65(s) > 7+ (4.41)

and (4.40) is replaced by
3 (F1(5Y0a, (5) + F (8o, (8)2) + B(s) = 7im - (4.42)

Inserting (4.42) into (4.41), under the assumption that 7/*" — §;(s) < 0, and
T}”in — S,-(s) < 0, gives
2 ™m; T il 8i(s)

- mj mzn 5 (S)

The requirements on v that result in admissible torques for a given s, can
now be summarized as
9 m m - 5(3)
!

< m, T h) (4.43)

where 7/ = 7/"%% or 77" = 7",

EXAMPLE 4.5—TFTriction errors

Requirements on v when friction is underestimated are given. Suppose that
the nominal velocity profile is given by Figure 3.2. From the figure it is seen
that joint one is limiting during the first acceleration and deceleration phase.

93

Chapter 4 Path Velocity Control

The velocity profile in Figure 3.2 was computed using the model (2.1), with
the parameters m; = my = 1. With the notation used here, these are the
parameters 72 and 7, in (4.38). In (4.43), we thus have j = 1 and h; = 1.

For the acceleration phase we have 7/* = 7**® = 1, and for the deceleration

phase we have 7™ = 7/"" = _1. It remains to compute 31(3) and é;(s) in
(4.43).

From Figure 3.2, it is seen that the first deceleration phase ends at s = 7.
From (3.32), we get f{(s) = cos(s) > 0for 0 < s < 7,ie. fi(s) > 0 both
for the acceleration phase and for the deceleration phase. The model (2.1)
contains no friction, which gives dAﬁ = 0 in (4.38). Using (4.39), this gives
b1(s) = 0. Assuming dy, > 0, we get, using (4.32), &1(s) = ds, > 0, both for
the acceleration phase and for the deceleration phase. The requirement on 5
(4.43) during acceleration then becomes

1
2<yl="(1-d 4.44
T % mi (f1) ()
For the deceleration phase we get, using 7™ = ™" = —1,
2 2 1 7 /
7 <vi=—(1+dys) (4.45)
m;

Suppose now that the mass parameter is known and that the friction is
underestimated, i.e. m; = m; =1 and dy, > ‘2f1 = 0. This means, as is
seen from (4.44), that v,, the required v during acceleration satisfies v, < 1.
From (4.45), it is seen that 74, the required 7 during deceleration satisfies
Y4 > 1.

This indicates, by the following reasoning, that the basic algorithm (4.24)
would suffice. Since the required scaling during acceleration is v, < 1, the
nominal velocity during acceleration is too high. Using the basic algorithm
(4.24) would then lead to activation of the upper limit on &, which then
reduces the velocity. Further, since the requirement on v during the decel-
eration is v4 > 1, using the basic algorithm where ¢ — v;(0) will result in
admissible torques also during the deceleration. In fact, since the algorithm
uses 7 = 1, the motion during deceleration would be conservative, i.e. the
maximum allowable torque range is not utilized. }

Note that if there are both mass errors and friction errors, the require-
ment during the deceleration (4.45) may result in either 74 < 1 or y4 > 1,
depending on the actual parameter values m; and dy,. For the latter case,
the basic algorithm can be used. O

94

4.4 Velocity Profile Scaling

EXAMPLE 4.6—Mass errors
Suppose now that the model error is in the mass parameter and that there
is no friction, i.e. m; # 1 and dy, = 0. From (4.44) and (4.45), we then get

the same requirement

<L (4.46)

m

for the deceleration and the acceleration. This indicates that the algorithm
with velocity profile scaling (4.29) can be used, since, if the v obtained during
acceleration satisfies v2 < le’ and this v also is used during the following
deceleration, the requirement (4.46) is satisfied for both the acceleration and
the deceleration. However, if the v obtained during acceleration is slightly
larger than the required, the velocity during the deceleration phase will be
too high. Note however that if the actual robot model has a small amount
of friction, i.e. df, = € > 0, the requirement on acceleration (4.44) becomes

1
7' <va=—(1-¢
my
and the requirement on deceleration (4.45) becomes
2 2 1
7 <vg=—(1+¢)
mi

This shows that v, < v4. Hence, if the result of adjusting v during accelera-
tion is 7y = v,, then this v can be used also during the following deceleration,
which indicates that it is possible to use the algorithm (4.29). O

4,5 Simulations

The performance of the path velocity controller is illustrated by simulations.
The simulations demonstrate the effect of modeling errors. The nominal
velocity profile is computed from minimum time optimization, and model
errors are introduced by having an actual robot model in the simulation
that is different from the model used in the minimum time optimizaton.
It is shown how the nominal minimum time velocity profile results in path
deviations, and how the path deviations can be reduced by using path velocity
control.

The simulations are described in Examples 4.7-4.13 below. The nominal
velocity profiles were presented in Examples 3.1-3.3. The nominal velocity
profiles from Examples 3.1 and 3.2 are used in all simulation examples except
Example 4.9, where the nominal velocity profile is taken from Example 3.3.

95

Chapter 4 Path Velocity Control

Robot models
The robot model used in Examples 3.1 and 3.2 is the linear model

mig; =71, t=1,2 (4.47)
with the parameters 7y = 7y = 1. The actual robot model used in the
simulations is given by

mig; + d,:qi + df.' Si_qn(q‘,’) =1 t=1,2 (4.48)

The robot model used in Example 3.3 is the nonlinear model (3.34). The
actual robot model used in the simulations is obtained by adding viscous
friction d;g;, 2 = 1,2, and nonlinear friction d;sign(¢;), ¢ = 1,2 to the right
hand sides in equation (3.34).

Nominal minimum time solution

The nominal velocity profiles from Examples 3.1-3.3 are used in the simu-
lations as nominal velocity profiles for the path velocity controller. We give
here also the nominal time functions s(¢), f(s(t)), and-7(¢).

The velocity profile from Example 3.1, and the corresponding time func-
tions are shown in Figure 4.2. The upper left plot shows the nominal velocity
profile. This velocity profile is the same as shown in Figure 3.2. The lower
left plot shows the nominal path parameter s(¢). The upper right plot shows
the nominal trajectories ¢:(t) = fi(s(t)) and ga(t) = fa(s(t)). The lower
right plot shows the torques 71(¢) and m2(%).

The velocity profiles from Examples 3.2 and 3.3, and the corresponding
nominal time functions are shown in Figures 4.3 and 4.4.

Simulations

EXAMPLE 4.7—TFriction compensation, elliptical path

This example demonstrates the path velocity controller when there is fric-
tion in the actual robot model used in the simulation, but not in the nominal
model used in the minimum time optimization. The nominal velocity profile
was computed in Example 3.1. The path is thus the elliptical path shown in
the upper plot in Figure 3.2. The nominal velocity profile and the nominal
time functions are shown in Figure 4.2. The model (4.48) was used in the
simulation. Nonlinear friction was added to joint one by choosing the param-
eters in (4.48) as m; =my =1l and d; = d, = 0,dy, = 0.1, and dy, = 0. The
robot controller is the linear controller (2.26). The controller parameters K,
and K, in (2.26) were chosen as diagonal matrices with diagonal elements 18
and 81, respectively.

96

4.5 Simulations

1 () g1, g2 (1)
1 o ' j _
05k -
0 1 1 I3 I
0 2 4 6 0 5
T1, T2 (1)
1 : -
/| \
0 _"‘I' \‘\\\.\ ‘4/"' ‘\\\\—
‘\\\\ I,""
a1t ‘:
0 5

Figure 4.2 The velocity profile from Example 3.1, and the corresponding time

functions.
v1 (s) a1, g2 (1)
0.8 T T T T

0.6

0.4

0.2

Figure 4.8 The velocity profile from Example 3.2, and the corresponding time
functions.

97

Chapter 4 Path Velocity Control

vy (s) q1, g2 (t)

Figure 4.4 The velocity profile from Example 3.3, and the corresponding time
functions.

The result of using the nominal path parameter without the path velocity
controller is shown in Figure 4.5. The lower left plot shows the nominal path
parameter s(¢) and sy, which represents the end of the path. The nominal
velocity profile is shown in the mid left plot. The reference trajectories and
the actual trajectories are shown in the upper right plot. The dashed line
is the reference trajectory ¢;(t) = fi(s(¢)). This reference trajectory is also
shown in the upper right plot in Figure 4.2, solid line. The solid line in the
upper right plot in Figure 4.5 is the actual trajectory ¢;(t). As can be seen
in the plot, there are large deviations from the reference trajectory. These
deviations are also seen in the mid right plot, which shows the tracking errors
e1(t), solid line, and ey(t), dashed line.

The lower right plot in Figure 4.5 shows the torques, 71(¢) and 72(t),
which are the outputs of the robot controller, in this case the linear controller
(2.26). The solid line is 7y and the dashed line is 73. As can be seen in this
plot, the torque 7, agrees well with the nominal 72, shown in the lower right
plot in Figure 4.2. This is expected since there is no model error in joint
two. The torque 7 is however different from the nominal. Consider the
first nominal switch in 7. From Figure 4.2, it is seen that the switch occurs
at approximately 1.5 seconds, and that the nominal switch is synchronized
with 7 in the sense that 7 is discontinuous at the switching point. In the

98

4.5 Simulations

, q2(q1), qr,(gr,) q1, Grys 92, 9r; (1)

=3

O T T -1 \,I
0 5 10 0 5 10

Figure 4.5 Using the nominal velocity profile on a model where friction has
been added to joint one, results in path deviation.

, 92(q1)s ¢r,(gr,) , g1y Gryy 92, 9ry (1)

Ehami®

T Y -1
0 5 10 0

Figure 4.6 The result of using the basic algorithm on a model where friction
has been added to joint one.

99

Chapter 4 Path Velocity Control

simulation in Figure 4.5, it is seen that the torques are not synchronized
in the same way. Instead, 7; remains at the limit after the first nominal
switching time. The same phenomenon occurs around 5 seconds, which is
the second nominal switch in 7, as can be seen from Figure 4.2. The time
interval where 7; remains at the limit has here increased. The interval where
71 remains at the limit is further increased at the final nominal switch in 7.

The actual robot model in this simulation has increased friction in joint
one, compared to the nominal model. From the lower right plot in Figure
4.2, it is seen that the torque for joint one is nominally at the limit. The
result when using the reference trajectory is then that the torque 7; saturates,
which makes it impossible to track the nominal reference trajectory. This is
seen at the first nominal switch in 71, where, as can be seen in the mid right
plot in Figure 4.5, there is a positive tracking error. The feedback action in
the robot controller then gives that 7; remains at the limit after the nominal
switching time. Further, as can be seen in the mid right plot in Figure 4.5,
the tracking error for consecutive switching times is increasing.

The upper left plot in Figure 4.5 shows the desired path, dashed line,
and the actual path, solid line. As can be seen in this plot, the path cannot
be followed, a result of the large tracking error in joint one.

A simulation where the basic algorithm for path velocity control (4.24)
is used is shown in Figure 4.6. The mid left plot shows the nominal velocity
profile v; (o), solid line, and the actual velocity profile, dashed line, obtained
by plotting ¢ as a function of . The dotted line in the mid left plot is
a signal that indicates if the limits on & are active, i.e. if ¢ is maximum
or minimum. The dotted line is nonzero when the limits are active and
zero otherwise. From the mid plot in Figure 3.2, where the dotted line
indicates if the path acceleration is nominally maximum or minimum, it
is seen that for the simulation in Figure 4.6, the limits on & are activated
during acceleration. This means that the nominal acceleration is too high,
and therefore limited by the path velocity controller. The result is that the
path velocity is reduced, resulting in an actual velocity profile below the
nominal velocity profile. During deceleration, the limits on & are not active.
The actual velocity profile then converges to the nominal velocity profile with
a o-time constant -clx- The parameter a was chosen as o = 10.

The result of the velocity reduction is that the reference trajectory can
now be followed. This is shown in the upper right plot, where it is seen that
the tracking is good. The tracking errors are also small, as can be seen from
the mid right plot.

The torques are shown in the lower right plot. As can be seen in this
plot, the first switch in 7y is now synchronized with 5. Compare with the
lower right plot in Figure 4.5. The second and third switches in 7; are
also synchronized with 7. The second switch occurs in this simulation at 5

100

4.5 Simulations

seconds. A comparison with the lower right plot in Figure 4.2 shows that the
switch is delayed. This agrees well with the discussion following (4.18), where
it was shown that the path velocity controller maintains the synchronization,
but delays the switching times.

As can be seen in the lower right plot in Figure 4.6, the torque 71 is for
some intervals not at the limit. A comparison with Figure 3.2 shows that the
path acceleration is nominally minimum in these intervals. When the path
acceleration is nominally maximum, the torque 7y is at the limit. The behav-
ior thus agrees with what could be predicted from the approximate analysis
in Example 4.5, where it was indicated that when friction is underestimated,
which is the case here, the basic algorithm would suffice, and also that the
motion during deceleration whould actually be conservative, i.e. none of the
torques are at the limit.

The lower left plot shows the path parameter o(¢) and sy. The traversal
time was computed as o(tf) = sy, resulting in ¢y = 9.99 seconds. The
nominal traversal time, given in Example 3.1, is t5, . = 9.66 seconds.

The upper left plot shows that the path can now be followed, a result of
the reference trajectory modification done by the path velocity controller.

EXAMPLE 4.8—Friction compensation, corner path

In this example, the same model as in the previous example is used in the
simulation. The path and the nominal velocity profile are now from Example
3.2. The path is thus the corner path, shown in the upper plot in Figure
3.3. The nominal velocity profile and the nominal time functions are shown
in Figure 4.3. ,

A simulation where the nominal path parameter is used is shown in
Figure 4.7. The lower left plot shows the nominal path parameter. The
nominal path parameter is also shown in the lower left plot in Figure 4.3.
The mid left plot in Figure 4.7 shows the nominal velocity profile, also shown
in the upper left plot in Figure 4.3. The upper right plot shows the reference
trajectories and the actual trajectories. As can be seen, the trajectory ¢(t),
solid line, deviates from the reference trajectory g, (t), dashed line. This
deviation is also seen as a tracking error e;(t), shown in the mid right plot.
A comparison with the previous example, shown in Figure 4.5, shows that
the tracking error in this simulation is significantly smaller.

The lower right plot shows the torques. As can be seen in this plot, the
torque 7, agrees well with the nominal 75, shown in the lower right plot in
Figure 4.3. This is expected, since, as in the previous example, the model
error is only in joint one, where the friction is underestimated. As was the
case in the previous example, the torque 71 remains at the limit after the
first nominal switch. It can also be seen that 7y remains at the lower limit
after the second discontinuity in 75. This is not the case for the nominal 1,
as can be seen in Figure 4.3.

101

Chapter 4 Path Velocity Control

92(q1)s 9r,(gr,)

OI I I Ll
0 2 4 6

41, Grys 92, Gr, (1)

-1

Figure 4.7 The result of using the nominal velocity profile on a model where
friction has been added to joint one. The result is path déviation, however not
as large as for the elliptical path, shown in Figure 4.5.

. q2 (ql)a ar, (qu)

q1, qrys 925 4r, (t)

-1

Figure 4.8 The result of using the basic algorithm on a model where friction

has been added to joint one.

102

4.5 Simulations

The upper left plot shows the desired and the actual path. As can be
seen, the path deviation is not as large as for the elliptical path, shown in
the upper left plot in Figure 4.5.

Using the basic algorithm for path velocity control (4.24) gives the result
shown in Figure 4.8. The mid left plot shows the nominal velocity profile,
solid line, and the actual velocity profile, dashed line. The acceleration and
deceleration intervals are shown in Figure 3.3, where it is seen that joint one
is limiting during the first acceleration interval. Since the model used in the
simulation was obtained from the nominal model by adding friction to joint
one, it is expected that the nominal acceleration is too high in this interval,
and hence that the limits on & should be activated. The dotted line in the
mid left plot in Figure 4.8 shows that this is indeed the case. The limits
on ¢ are activated during the first acceleration interval, and the velocity is
reduced. For this simulation, the limits are also used for a short interval
around o = 1.2. From Figure 3.3, it is seen that the nominal 7; reaches the
limit at this point. As can be seen from the dotted line in the mid left plot in
Figure 4.8, the limits are also used during the final deceleration. From Figure
3.3, it is seen that joint two is limiting during this interval. Since the model
for joint two is perfect, it is not expected that the limits on ¢ are active during
the final deceleration. There is however no visible difference in the velocity
profiles during this interval, i.e. the acceleration modification done by the
path velocity controller is small, indicating that the nominal acceleration,
due to numerical inaccuracy, is slightly lower than the minimum possible.

The torques are shown in the lower right plot. As can be seen, the torques
are now synchronized. Further, as was the case in the previous example, the
motion is conservative during the first deceleration phase, as can be seen from
71 not being at the limit in this interval.

The upper right plot shows that the tracking is good. As a result of this,
the path can be followed. This is seen in the upper left plot. The traversal
time for this simulation was ¢y = 5.62 seconds. The nominal traversal time,
given in Example 3.2, was tf, = 5.60 seconds.

A comparison with the previous example shows that the percentual in-
crease in traversal time is smaller, and also that the path deviation when the
nominal path parameter is used is smaller. Except that the shape of the path
is different, in this example, joint one, i.e. the joint with increased friction,
is limiting only during the first line segment. In the previous example, joint
one was limiting for the entire path. '

EXAMPLE 4.9—Friction compensation, nonlinear robot model

In this example, the nonlinear model (3.34) is used. The nominal velocity
profile was computed in Example 3.3. The path is the cartesian circle (3.35).
The path in joint space is shown in the upper plot in Figure 3.4. The nominal
velocity profile and the nominal time functions are shown in Figure 4.4. The

103

Chapter 4 Path Velocity Control

92(q1)s gr,(qr,) 41, Grys 925 G, (1)

3

Figure 4.9 The result of using the nominal velocity profile on a nonlinear robot
model where friction has been added to joint one. Due to the coupled dynamics,
there are tracking errors in both joints.

q2(q1)’ qr, (qu) q1, 9ry5 925 qr, (t)

1.5

OI ¥
0 1

Figure 4.10 The result of using the basic algorithm on a nonlinear robot model
where friction has been added to joint one.

104

4.5 Simulations

robot model used in the simulation is obtained from (3.34) by adding non-
linear friction to joint one. This means that the term dy, sign(q4;) is added
to the right side in the equation for 71 in (3.34). The parameter choice was
ds, = 3. Compared with the previous examples, the friction level is also here
10 % of the maximum torque. The robot controller is the computed torque
controller (4.5). The controller parameters K, and K, in (4.5) were chosen
as diagonal matrices with diagonal elements 40 and 400, respectively.

The result of using the nominal path parameter is shown in Figure 4.9.
The nominal velocity profile is shown in the mid left plot. The nominal path
parameter is shown in the lower left plot. The nominal velocity profile and
the nominal path parameter are also shown in Figure 4.4.

The reference trajectories and the actual trajectories are shown in the
upper right plot. The reference trajectories g,,(t), dashed line, and g,,(t),
dashed-dotted line, are also shown in the upper right plot in Figure 4.4.
As can be seen in the upper right plot in Figure 4.9, the actual trajectories
q1(t), solid line, and g¢2(t), dotted line, deviate from the reference trajectories.
Note that there is only model error in joint one. Due to the coupled nonlinear
dynamics (3.34), this results in tracking errors in both joints. This was not
the case in the previous examples, as can be seen in Figures 4.5 and 4.7.

The lower right plot shows the torques. A comparison with the lower
right plot in Figure 4.4 shows that both torques are now different from the
nominal.

The upper left plot shows the desired and the actual path in JOlnt space.
As can be seen in this plot, the path cannot be followed.

The result of using the basic algorithm for path velocity control (4.24) is
shown in Figure 4.10. The nominal and the actual velocity profiles are shown
in the mid left plot. The acceleration and deceleration intervals are shown by
the dotted line in the mid plot in Figure 3.4. From the dotted line in the mid
left plot in Figure 4.10, it is seen that the limits on ¢ are used during the first
acceleration interval. The limits are also used during the final acceleration
interval. This the same behavior as for the previous examples, where the
acceleration phase was not feasible due to underestimation of friction. In this
example, the limits are used also during the first deceleration phase, resulting
in an actual velocity which is above the nominal velocity profile. This occurs
around o = 3, as can be seen in the mid left plot. It is however difficult
to judge if the activation of the limits is a result of numerical inaccuracy,
or if the deceleration is really unfeasible. The limits were also used during
deceleration in Figure 4.8, even though the nominal minimum acceleration
was feasible.

The reference trajectories and the actual trajectories are shown in the
upper right plot. As can be seen in this plot, the result of using the path
velocity controller is also in this example that the reference trajectory is

105

Chapter 4 Path Velocity Control

modified so that the tracking is good. As a result of this, the path can
be followed, as can be seen in the upper left plot. The traversal time for
this simulation was ¢t = 2.04 seconds. The nominal traversal time, given in
Example 3.3, was t¢,, . = 1.82 seconds.

EXAMPLE 4.10—Errors in mass parameters, corner path

This simulation demonstrates how the path velocity controller can compen-
sate for mass errors. The algorithm (4.29) is used. The path and the nom-
inal velocity profile are the same as in Example 4.8. The model (4.48) is
used in the simulation. The parameters were chosen as m; = 1.1, my =1,
di =dy =0,ds =0, and d, =0, i.e. compared to the nominal model, the
mass of joint one is increased.

A simulation where the nominal path parameter is used is shown in
Figure 4.11. The mid left plot shows the nominal velocity profile, and the
lower left plot shows the nominal path parameter. These plots are the same
as the corresponding plots in Figure 4.7.

The upper right plot in Figure 4.11 shows the reference trajectories and
the actual trajectories. As can be seen in this plot, the actual trajectory
q1(t), solid line, deviates from the reference trajectory g, (t), dashed line.
The deviation is also seen in the mid right plot, which shows the tracking
€rrors. /

The lower right plot shows the torques. The nominal torques are shown
in the lower right plot in Figure 4.3. As can be seen in the lower right plot in
Figure 4.11, the torque 7y remains at the limit after the first nominal switch.
The same behavior is seen in Figure 4.7. The behavior for ¢t > 2 seconds is
however different. In Figure 4.11, 7; is saturated for the rest of the motion.
This is not the case in Figure 4.7, where for ¢ > 4 seconds, the torque 7 is
not at the limit. This has the consequence that it is possible to achieve zero
tracking error before the end of the path in Figure 4.7. This is not the case
in Figure 4.11. By comparing the upper left plot in Figures 4.7 and 4.11, it
is seen that the path deviation is also different for the two cases. The path
deviation in Figure 4.11 is larger, i.e. for this specific path, the sensitivity to
increasing the mass of joint one by 10% is larger than adding friction with a
level of 10% of the maximum torque.

A simulation where the algorithm (4.29) is used is shown in Figure 4.12.
The mid left plot shows the nominal velocity profile and the actual velocity
profile. The dotted line in this plot shows that the limits are used during the
first acceleration interval. This results in a velocity profile which is lower than
the nominal. However, since the algorithm (4.29) is used, the scaling factor v
is simultaneously reduced. This is seen in the lower right plot, which shows
v as a function of o. The parameter k in (4.29) was chosen as k = 10. This
corresponds to a o-time constant % = 0.1. As can be seen in the lower right
plot, this seems to be the case for the actual v obtained in the simulation.

106

4.5 Simulations

q2(q1), 9r,(gr,) 41, Grys 92, 9r; (1)

04 T T T -1 T ' r 1
0 2 4 6 0 2 4 6
Figure 4.11 The result of using the nominal velocity profile on a model where
the mass in joint one is increased. The result is path deviation, which is larger
than for the case of increased friction, shown in Figure 4.7. /

q2(q1), gr,(gr,) q1, Gris 92, 9r; (1)

1. T1, T2 (t)
= \
' - |
_1 1 = —I- 1
0 2 4
7 (o)
0.99
0.97
0| 1 | 1 1 0'95 1 1 1
0 2 4 6 0 1 2

Figure 4.12 The result of using the algorithm with velocity profile scaling on
a model where the mass in joint one is increased. The lower right plot shows the
scaling factor v, which is decreased during the first acceleration interval.

107

Chapter 4 Path Velocity Control

q2(q1); 4r,(gr,) 91, Gryy G2, 9r; (1)

T, T2 (t)

r——

1 ==
-1 T ! T T
0 2 4 6

Figure 4.13 The result of using the nominal velocity profile on a model with
increased mass and viscous friction. The path deviation is comparable to the case
shown in Figure 4.11.

The final value of vy obtained from the simulation was 0.953. The theoretical
v, computed from (4.43), is 7, = 0.954. Thus, the simulation agrees. with the
approximate analysis resulting in (4.27) and (4.43).

The algorithm (4.29) tries to estimate a suitable v during acceleration
such that the following deceleration is feasible. This was done succesfully in
this simulation. However, the algorithm keeps the so obtained v also during
the rest of the motion. For this simulation, this results in a conservative
motion during the second line segment of the path. This can be seen in the
mid right plot in Figure 4.12, where during the second half of the motion,
none of the torques are at the limit.

The conservative motion is here expected. The algorithm adjusts v dur-
ing the first line segment, and hence compensates for the model error in joint
one. For the second line segment, as can be seen in Figure 3.3, joint two is
limiting. Since there are no model errors in this joint it would have been pos-
sible to increase vy during the second line segment. An improved algorithm
(4.29) would e.g. be to reset v to one at the start of each acceleration phase.

EXAMPLE 4.11—Mass errors and friction compensation, corner path

This example demonstrates how the basic algorithm (4.24) can be used when
the model used in the simulation has increased mass and viscous friction

108

4.5 Simulations

1 92(q1), 9r,(gr,) 41, Grys 92, Gr, (1)

4 6

Figure 4.14 The result of using the basic algorithm with @ = 5 on a model
with increased mass and viscous friction.

1 a2(q1)s 9r,(gr,) g1, Gris 92, Gry (1)

4 6

Figure 4.15 The result of using the basic algorithm with « = 10 on a model
with increased mass and viscous friction.

109

- 110

Chapter 4 Path Velocity Control

compared to the nominal model. The model (4.48) is used in the simulation.
The parameters in (4.48) are chosen as my = 1.1, my = 1 and d; = 0.1,
d =0, dy, =0, and df, =0, i.e. compared to the nominal model, the mass
of joint one is increased, and viscous friction is added. The path and the
nominal velocity profile are the same as in Examples 4.8 and 4.10.

The result of using the nominal path parameter is shown in Figure 4.13.
The nominal velocity profile is shown in the mid left plot, and the nominal
path parameter is shown in the lower left plot. These plots are the same as
the corresponding plots in Figures 4.7 and 4.11.

The reference trajetories and the actual trajectories are shown in the
upper right plot. A comparison with the corresponding plot in Figure 4.11
shows that the behavior is similar. This is true also for the torques, shown in
the lower right plot, and the path deviation, shown in the upper right plot,
i.e. the added viscous friction does not change the qualitative behavior of
the system. A difference in the torques can however be seen around the first
nominal switch in 7;. In Figure 4.13, the torque 7y remains at the limit for
a longer time interval than in Figure 4.11, an effect probably caused by the
added viscous friction.

The model used in this simulation is the same as was used in the sim-
ulation example in Chapter 2. Further, the first line segment of the path
coincides with the path used in Chapter 2. A comparison with Figure 2.6
shows that the path deviation during the first line segment, shown in the
upper left plot in Figure 4.13 is similar to the path deviation in Figure 2.6.
The path deviation during the last line segment is however larger. The com-
parison shows that when the path is continued, the given model error gives
larger path deviation than for the simple straight line path.

The result of using the basic algorithm for path velocity control (4.24)
is shown in Figure 4.14. The mid left plot shows the nominal and the actual
velocity profiles. As can be seen from the dotted line in this plot, the limits
on ¢ are used during the first acceleration interval.

The parameter a in the path velocity controller (4.24) was chosen as
a = 5. This means that, when the limits on & are not active, 62 — v;(o)?
with a o-time constant —}& = 0.2. This was the parameter choice also in the
simulation example in Chapter 2. As can be seen in the mid left plot in
Figure 4.14, the limits are not used during the first deceleration phase. A
comparison with Figure 2.9 shows that the actual velocity profiles are similar
in this interval.

A simulation where « is increased to @ = 10 is shown in Figure 4.15.
The mid left plot shows the nominal and the actual velocity profiles. As
can be seen, the actual velocity profile now approaches the nominal velocity
profile faster than in Figure 4.14. It is also seen that the limits are used more
often than in Figure 4.14. Another difference is seen in the torques, shown in

4.5 Simulations

q2(q1)a 07‘2 (01"1)) q1, 0"‘1’ q2, 9"‘2 (t)

10

Figure 4.16 The result of using the nominal velocity profile on a model with
joint flexibility. The torque limits have been removed. .

the lower right plot. The time interval between the first and second switch
in 7 is now smaller. This interval is the first deceleration phase, which thus
is executed faster than in the previous simulation. The result of increasing
a for this simulation is a decreased traversal time. The traversal time for
the simulation in Figure 4.14 was 5.80 seconds. The traversal time for the
simulation in Figure 4.15, where a was increased, was 5.64 seconds.

EXAMPLE 4.12—Joint flexibility

This example demonstrates how the path velocity controller can be used
when the minimum time optimization is based on a rigid model, and the
robot model used in the simulation has joint flexibility. The flexible joint
model is chosen as the linear model (3.64) and (3.65). The parameters in
(3.65) are chosen as

my1 = My = 05, J1 = Jz = 05, kl = kz =30 (449)

The controller is a linear second order controller. The controller measures the
actuator angles 6 in (3.64). The reference trajectory is now denoted 6, and
is given by 8,.(t) = f(c¢(t)). The controller is the same as used in previous
simulations, i.e. (2.26). The controller is here written as

7= M8, + Ky (6, —) + K,(6 — 6)) (4.50)

111

Chapter 4 Path Velocity Control

QZ(QI)a 01‘2 (01'1) q1, 01‘1) 92, 01‘2 (t)

-

Figure 4.17 The result of using the nominal velocity profile on a model with
joint flexibility when the torques are limited. /

92({11), 01‘2(97’1) q1, 0’!‘1, q2, 01'2 (t)
2 2 .

P

Ol I]

0 5 10

Figure 4.18 The result of using the algorithm with velocity profile scaling on
a model with joint flexibility.

4.5 Simulations

This example uses the nominal velocity profile from Example 3.1. A simula-
tion where the nominal path parameter is used, and where the torque limits
have been removed is shown in Figure 4.16. The nominal velocity profile and
the nominal path parameter are shown in the mid left and in the lower left
plots. These plots are the same as the corresponding plots in Figure 4.5. The
reference trajectories 6,,(t), i = 1,2, and the actual trajectories g;(¢), 7 = 1,2
are shown in the upper right plot. As can be seen in this plot, the tracking
is good. This shows that the robot controller, which is designed for the rigid
model (4.47), is robust with respect to the chosen flexible joint model. There
are however small, oscillative tracking erorrs, as can be seen in the mid right
plot. These errors are the actual tracking errors used by the robot controller
(4.50), i.e. ei(t) = 0,,(¢) — 0:(¢), 2 = 1,2.

The lower right plot shows the torques. As can be seen in this plot, the
torque 7y is outside the limits +1.

A simulation where the torques are limited is shown in Figure 4.17. The
upper right plot shows that the reference trajectory of joint one cannot be
followed. This is also seen as a large tracking error in the mid right plot.
The lower right plot shows the torques. As can be seen, 7; is saturated. The
result is that the path cannot be followed, as is seen in the upper left plot.

A simulation where the path velocity controller (?4.29) is used is shown
in Figure 4.18. The mid left plot shows the nominal and the actual velocity
profiles. The acceleration and deceleration intervals are shown in Figure 3.2.
The dotted line in the mid left plot in Figure 4.18 shows that the limits are
used during the first acceleration interval. This has the effect that the scaling
factor v is reduced. This is shown in the lower right plot. The limits are also
used during the first deceleration interval. In this interval v is not modified,
as can be seen in the lower right plot. The reason for this is the conditions on
¥ in (4.29), where 7 is only modified when the actual velocity profile is below
the scaled nominal velocity profile. The result of using the limits during the
first deceleration interval is that the actual path velocity is for some intervals
above the nominal velocity profile.

The upper right plot shows the reference trajectories 8,, (1), 1 = 1,2, and
the actual trajectories g;(t), ¢ = 1,2. As can be seen in this plot, the tracking
is good.

The torques are shown in the mid right plot. As can be seen in this
plot, the torque 71 occasionally reaches the limit. A comparison with the
corresponding plot in Figure 4.16 shows that the torque obtained when the
path velocity controller is used has the same oscillative behavior, but the
oscillations that are outside the limits are cut off. Note that this effect is
not seen when using the torque limits only, as in Figure 4.17. Instead, when
the path velocity controller is used, the path acceleration is adjusted so that
the oscillations that are outside the limits instead become variations in the

113

Chapter 4 Path Velocity Control

QZ(QI), 07‘2(01'1) ql, 01‘17 q2, 01‘2 (t)

o, 85 (t) 7'1, 7’2 (t)

“l\l\

Ol T 1
0 5 10

Figure 4.19 The result of using the basic algorithm and a constant scahng
factor on a model with joint flexibility.

path acceleration. Thus, the path velocity controller “leaves room” for the
variations in 71, by adjusting the path acceleration. Since the torque is
oscillatory, the limits on acceleration are used only when the oscillation is
outside the limits. In Figure 4.18, this is seen in the mid left plot, where
the dotted line is more irregular than in previous simulations. This also has
the effect that the adjustment of v is more irregular, as can be seen in the
lower right plot. This is because v is only adjusted when the limits are used.
Compare the lower right plots in Figures 4.18 and 4.12. The parameter choice
k = 10 is used in both simulations, but the behavior of v is different.

The result of using the path velocity controller in this simulation is
however good tracking. This is seen in the upper right plot, and in the
upper left plot, which shows that the desired path can now be followed.
The traversal time when the path velocity controller is used was t; = 10.04
seconds.

EXAMPLE 4.13—Constant velocity profile scaling

The algorithm (4.29) tries to estimate a scaling factor during acceleration,
which also can be used during the following deceleration. Another application
of the algorithm to use the resulting v as a basis for choosing a constant
scaling factor. As was seen in the previous simulation, v was decreased in two
steps. Picking the final value of « is of course one solution, but since traversal

114

4.5 Simulations

time is to be minimized, one could try as large scaling as possible, while
keeping the basic algorithm for path velocity control. Choosing v = 0.93 by
- inspection in.the lower right plot in Figure 4.18, and then using this v as a
constant scaling factor in the basic algorithm as in (4.26), gives the result
shown in Figure 4.19. A comparison with the simulation in Figure 4.18,
where the algorithm (4.29) was used, shows that the behavior is qualitatively
the same. The traversal time has however decreased. The traversal time is
now ty = 9.84. The traversal time for the simulation in Figure 4.18, where
the algorithm (4.29) was used, was t; = 10.04 seconds.

4.6 Extension to Higher Order Systems

This section demonstrates how higher order path velocity controllers can be
obtained. The controller (4.24) is generalized. The result is a controller of
order p. The states in the controller are the path parameter ¢ and its time
derivatives up to order p — 1, i.e. 0,4,...,0P" D, The feedback 9 in (4.16)
is, as before, a nonlinear state feedback, now written as

P(o,0,... ,a'(p"l)) C . (4.51)
The controller parametrization (4.1) is generalized to
7= B10® + 8, (4.52)

An example of the controller parametrization (4.52) for the case p = 4 was
given in Example 4.4.

The controller parametrization (4.52) can be used to compute limits on
o(P) in the same way as the limits on & (4.14) are computed by the computa-

tional procedure (4.11)~(4.14). The resulting limits are denoted o*) (81,082)

min

and ag,fc)w(ﬂl,ﬂz). The basic algorithm (4.16) is then generalized as

do .
—Et— =
do .,
da
- (4.53)
— (p)
i 7
u, = YP(0,... ,cr(p_l))
o ® = sat(u,,o8), (B, B2), 08, (81, B2))
115

Chapter 4 Path Velocity Control

The purpose of the feedback 1 in (4.53) is to make & — v1(o) when the limits
on o{P) are not active. The feedback includes, as before, the nominal velocity
profile v;(o) and the nominal acceleration profile v3(o), but now also higher
order derivatives are used. These are represented by the functions vs,...,v,,
defined together with v; and v, as

§(8) = v1(s(2))

3(t) = va(s(2))
. (4.54)

sP(t) = vp(s(2))

The definitions of v; and v, are also given in (2.4) and (2.5).

The path velocity controller (4.53) limits o(P), When the limits on o()
are not active, the path velocity controller (4.53) reduces to the dynamic
system

do .
a7’
& . _
a7 ’
(4.55)

dt
(P = P(o,... ,0'(’“1))

The feedback) is below chosen such that the dynamic system (4.55) becomes
a linear system when o is interpreted as time variable.

A Dynamic system in o

The feedback % is derived from a nonlinear system of order p—1. This system
was also derived in Chapter 3, section 3.5, and is given in (3.54). We will
here use the same system, but with s replaced by o. Introduce therefore

&P

o= 4.56
1= (4.56)

which is (3.46) with s replaced by o and

dzy_q
Tk = do ’

k=2,...,p—1 (4.57)

116

4.6 Eztension to Higher Order Systems

which is (3.49) with s replaced by ¢. Introducing the notation u = o{?), the
‘nonlinear dynamic system is given by (3.54) with s replaced by o as

d(l}]_

—_—

do 2

e R

do (4.58)
de,_

dz;l =u— Fp(21,...,2p-1)

Feedback linearization

The feedback 1 is obtained by choosing u in (4.58) as a feedback linearizing
controller. A feedback linearizing controller for the system (4.58) is given by

u =0+ Fp(e1,...,2p_1) (4.59)

where v is considered as a new input. Introduce a reference value z.(o) by

/

%@j:(mnw).“ MPJ@)

:l}:((bl e mp—l]

A linear state feedback for v in (4.59) is then given by

v:§@ﬂ£Q+L@4@—m) (4.60)
do
The controller (4.59) with v given by (4.60) gives a linear system in o. The
system has the property that ©; approaches z,,(o) with a o-time constant
depending on the feedback gains in the vector L.
Assuming ¢ is always positive, i.e. the reference trajectory is always
moving forward along the path, we can then, since z; and ¢ are related as
in (4.56), achieve 6 — v1(0) by choosing z,, (o) as

’01(0')p

T (0) = 4.61

(o) » (4.61)
and p

:crk(a'):—de_;(iz, k=1,...,p—1 (4.62)

117

Chapter 4 Path Velocity Control

The feedback
The final feedback law (4.51) is now obtained from (4.59) and (4.60) by

expressing @1,...,2,—1 as functions of &,...,0(P~1) and by expressing
dz (o) . LI
€7, (0)y - 2r,_,(0), and —272-— as functions of v;(c),...,vp(c). This is

done as follows.
From (4.56) and (4.57), it is seen that (3.51) can be written, with s
replaced by o, as

&= g(z1)
& =g'(z1)g(z1)z2
Using (3.50) and (4.57), higher order derivaties of o can be expressed as

(4.63)

o® = g'(21)g(21)*2s + Fy(a1,22)

4.64
oV = g(21)g(21)P*2p_1 + Fpos(e1,...,2p—2) (64)
qdzy
P = g'(z1)g(z1)? 1——d’; L Fp(z1,...,2p-1)
Introduce the function ®(z1,...,z,-1, i‘%’;—‘) by combining equations (4.63)
and (4.64), i.e.
o
de,_
= ®(21,...,Tp_1, —;i”;l) | (4.65)
P
Inversion of (4.65) now gives
L3
=371(5,...,0P) (4.66)
Tp—1
de._j_
do
Using (4.66), z1,...,2,—1 can be expressed as functions of 7,...,s(P~1),
Equation (4.66) actually gives also z,,(c),...,2,,_,(s), and f—zi%i"—a@
as functions of v1(0),...,vp(0), i.e.
(@ (0)
= & (v (a),...,vp(0)) (4.67)
m"'p—l(o-)
dz,p_l(a)
. do

118

4.6 Eztension to Higher Order Systems

This is seen as follows. Introduce Z;,...,Z,_1 by replacing o by s in (4.56)
and (4.57), i.e.

_ 5P _ dzp_,
T, = — T =
? ls ?

k=2,...,p—1

Then (4.65) can be written, with o replaced by s, as

5
dzp_1

= (4.68)

= ®(Z1,...,Tp_1,

s(P)

Using (4.54), and replacing o by s in (4.61) and (4.62), then gives that (4.68)

can be written as

v1(8)
= (0, (5),- -+ 2ry_,(5), if’ld——;@) (4.69)

vp(s)
Inverting (4.69) and replacing s by o now gives (4.67).

Derivation of ¢ The following algorithm can be used for derivation of
the feedback law (4.51).

ALGORITHM 4.1—Derivation of 1
1. Define ©1,...2p—1 as in (4.56) and (4.57).

. . dz,_ .
2. Express &,...,0(as functions of T1y...,Tp_1, zd"a L. This gives the

function ® in (4.65). It also gives the function F, in (4.64), and hence
the dynamic system (4.58) with u = o(?) as input.

3. Choose u as a feedback linearizing controller (4.59) and (4.60). This gives

. de, (o)
o(?) as a function of z;,... yBp—1, Tr;(0)y s 2r,_, (0), and _'_r;i_;_

4. Invert (4.65) to to obtain (4.66). This gives 1,...,z,_1 as functions of
& a(P—1)
IR
5. Replace d,...,0 in (4.66) by by vi(c),... ,vp(0). Using (4.67), this

gives z,(0),...,2,,_,(0), and fz—r%i as functions of v1(o),...,vp(o).

Path velocity control

Algorithm 4.1 is exemplified by deriving the path velocity controller (4.53)
for the cases p =2 and p = 4.

119

Chapter 4 Path Velocity Control

ExAMPLE 4.14

For p = 2 we get
<2

G
Ty = -—2—
From the derivation of (3.55), we get, with s replaced by o,
& =(22)'/?
. dzy (4.70)
7 4o
The dynamic system (4.58) is then given as (3.55) with s replaced by o, i.e.
d:l:l —u
do
where u = &. The feedback 9 is in this case a linear feedback
dz,,
u= ﬁ—d?((ﬂ + a(zy, (o) — z1) (4.71)
Inversion of (4.70) gives
(5'2
Ty =— -
2
©(4.72
o _ (412
do
Replacing ¢ and & in (4.72) by v, (o) and v,(0), gives, using (4.67),
_vi(o)? |
1137-1(0') - 2
de,, (o
L2 <o)
From (4.71), the feedback % is now obtained as

$(0,8) = va(o) + (2L _ &)

The resulting path velocity controller {4.53) then becomes

do .

e —

dit

s .

a =

up = v3(0) + = (v1(0)? — 6?)

2
o= Sat('uﬂm &min(ﬁlang)’ &mﬂz(ﬂl’ﬂz))

which is the same as (4.24)

120

4.6 Eztension to Higher Order Systems

EXAMPLE 4.15

For p = 4 we get
4
231:0—

4
From the derivation of (3.56), we get, with s replaced by o,

o= (4:121)1/4
o= (B2(4{B1)-1/2
o) = z3(4e,) "H/* — 222 (42,) 75/4 (4.73)
NN =223)
do 8z 4z

The dynamic system (4.58) is then given as (3.56) with s replaced by o, i.e.

diI)l

e

dmz .

o~ 7 /
d:l)3 mg T2T3

do - 8:1:% 42,)

where u = o(4), The feedback 1 is then given by the feedback linearizing
controller (4.59) and (4.60) as

:D3 Tol3
—u 4+ 5(—2 _ 227
vt S T o)
d 3 (4.74)
Lr
v z—d—o_a + ;li(wm(a) —z;)
Inversion of (4.73) gives
&t
T1 = z—
m =0 475
T3 = o3 + 252 (4.75)
- 3
do o
121

Chapter 4 Path Velocity Control

Replacing ¢, ...,0(*) in (4.75) by v:(o),. .. v4(0), gives, using (4.67),

() = 22000
2r,(0) = v1(0)?v2(0)
:Bra(a) = '01(0')'113(0') + 21}2(0') (4'76)
d:l:,.a(O') ’02(0')'03(0')
do =14 0') + SW

From (4.74), the feedback 1 is now obtained as

va(o)vs (o) B &o(3)
v1(o) o

P(o, 0,0, 0'(3)) =v4(o) + 5(
SR 4.77
+ zl(”—l(z) — Z0) + b(v1(0)v5(0) — 65) (4.77)
+ l3(v1(0)vs(0) + 2v2(0) — 03 — 25?)
The resulting path velocity controller (4.53) then becomes

do _
dt
do _
dt
do
b ¢-) |
a7
3

dt

Uy = ¢(07&,&70(3))

0'(4) = Sat(um O"Erfz?n(ﬁlaﬁz)7 0-533.2 (ﬂ1,,32))

o

&

where 1 is given by (4.77).

122

4.6 Eztension to Higher Order Systems

4.7 Conclusions

A path velocity controller can be used to utilize the available torque range
by feedback modification of the reference trajectory. The modification is
done such that the modified reference trajectory defines the same path as the
nominal, which results in motion along the path, at the expense of increased
traversal time.

The robot controller is parametrized in the scalar path parameter, but
otherwise unchanged, i.e. a well tuned control behavior is kept. A basic
algorithm (4.24) uses limits on acceleration together with feedback using the
nominal velocity profile. The limits on acceleration are computed from the
controller parametrization. When the acceleration saturates, the maximum
or minimum acceleration that gives admissible torques is used. When the
acceleration is not saturated, the feedback (4.20) gives a linear system with
the path parameter o as independent variable. The parameter a in the path
velocity controller then determines a o-time constant %, and can be tuned
by inspection of the nominal velocity profile. An extension to higher order
systems shows that the feedback can be chosen such that the resulting system
becomes linear also for higher order path velocity controllers. A constant
time scaling of the nominal path parameter can be introduced as a constant
scaling of the velocity profile as in (4.26). An extended algorithm (4:29) uses
feedback for modification of the scaling factor. An approximate analysis of
constant scaling gives insight into what type of model errors that can be
handled by the path velocity controller, and it was e.g. exemplified how
underestimation of friction can be handled, Examples 4.5 and 4.7. .

The design of the path velocity controller reflects properties of the mini-
mum time solution. The nominal minimum time solution has maximum and
minimum path acceleration. Modeling errors may then result in the nomi-
nal acceleration being inadmissible. The basic algorithm (4.24) handles this
problem by limiting the acceleration, using a controller parametrization (4.1),
of the same type as the parametrization (3.11) of the robot model used in
the minimum time optimization. The minimum time velocity profile gen-
erally touches the maximum velocity curve. Model errors may then result
in inadmissible path velocities around the touching points. The extended
algorithm (4.29) handles the added problem of inadmissible velocities using
velocity profile scaling.

The path velocity controller was shown to work well in simulation exam-
ples. It was shown how modeling errors result in path deviation, when the
path velocity controller is not present, e.g. Figure 4.5, and also how the path
velocity controller can reduce the path deviation, e.g. Figure 4.6. The use of
path velocity control thus adds robustness to the minimum time solution, in
the sense that the sensitivity to modeling errors is reduced.

123

Experimental
Evaluation

/

The path velocity controller is experimentally evaluated on an industrial
robot. The original robot control system has been reconfigured, and an exter-
nal computer is used for the control. Evaluation measures are discussed and
proposed, and experiments illustrating the performance of the path velocity
controller are presented.

The purpose of path velocity control is to achieve fast motion along a
path. A measure of path deviation therefore has to be considered. The paths
used in the experiments are measured using only joint positions, and there are
no external sensors, e.g. for measuring the actual position of the end-effector.
The path deviation is measured using visual inspection, either in joint space
or in cartesian space, where the paths in cartesian space are obtained from
the joint space paths using forward kinematics.

One also has to consider a measure of fast motion. A measure of the
utilization of the torque range is proposed for this purpose. The measure is
denoted 7, and satisfies 0 < 7, < 1. The torque utilization 7, achieves its
maximum value when the motion has bang-bang character, i.e. 7, = 1 when
one torque is always at the limit.

Another aspect of the evaluation is the possibility to evaluate the path
velocity controller separately from the robot controller. In the simulation in
Figure 2.7, the torque limits were removed, and it was possible to investigate
the effect of the modeling error on the robot controller. The torque limits

124

can however not be removed in experiments. Instead, two different levels
of torque limits are used. The lower level is used in the minimum time
optimization, and when using the path velocity controller. The upper level
represents the condition of removed torque limits, and is used to check the
performance of the robot controller. The purpose is that the torques should
never reach the upper limit. The path velocity controller is then evaluated
by comparing the path deviation when the path velocity controller is used,
with the path deviation that occurs when the torque limits are set to the
upper level. The performance of the path velocity controller is considered
acceptable, if the path deviation for the two cases is comparable. The path
velocity controller has then adjusted the reference trajectory such that the
path error is of the same magnitude as when there are no torque limits, and
the remaining path error is due to the robot controller.

Having decided upon evaluation strategy, one has to select proper exper-
iments. One type of experiments is to first compute a nominal velocity profile
by minimum time optimization, and then investigate the effect of using this
nominal velocity profile without the path velocity controller. The path ve-
locity controller is then used, and the result is evaluated. Three experiments
of this type are presented. The first experiment uses a path where only two
joints move. This shows more clearly effects which also can be seen in simu-
lation. The second and third paths are specified in cartesian space, and three
joints are involved in the motion. The two paths result in different behavior
with respect to both path deviation and path velocity control performance.

Another effect is time varying robot dynamics. An experiment where the
path velocity controller is used to handle this is presented. The experiment
is done by repeated motion along a path. The motion is started after having
the robot kept at zero velocity for approximately 5-10 minutes. This has
the effect that as time elapses, the robot is able to move faster, probably
due to decreased friction. The result of using path velocity control is then
that the velocity of the reference trajectory increases, while path following is
maintained.

In the simulations, model errors were introduced such that the nominal
motion specification should result in inadmissible torques, e.g. by increasing
mass or friction in the model used in the simulation. The nominal motion
specification in the previously discussed experiments is also of this type. It
could however also happen that the nominal model is too conservative, i.e.
the minimum time velocity profile computed from the model results in good
path following, but unsatisfactory utilization of the available torque range.
One alternative to increase the performance in such a situation is to use ve-
locity profile scaling in the path velocity controller as in (4.26) to increase
the velocity, i.e. the opposite to what was discussed in Chapter 4, where the
algorithm (4.29) decreases the scaling factor. It is demonstrated in an ex-

125

Chapter 5 Ezperimental Evaluation

periment how this results in smaller traversal time compared to the nominal.
The low utilization of the torque range can however be seen as an indication
that the dynamic model can be improved. It is shown in an experiment that
if the nominal velocity profile is computed from a different model, better
performance is achieved, in the sense that the same traversal time as when
the velocity profile scaling was used is obtained, but with both smaller path
deviation and larger torque utilization.

The path velocity controllers (4.24) and (4.26) are used in the experi-
ments. The nominal velocity profile is computed by minimum time optimiza-
tion using Algorithm 3.1. The model used in the optimization is a decoupled
linear robot model, obtained from experiments on the robot using system
identification for estimation of the model parameters. A short description of
the experimental environment is given in Section 5.1. The evaluation mea-
sures are described in Section 5.2, and the experimental results are presented
in Section 5.3.

5.1 Experimental Environment

The experiments were done on an industrial robot of the type ABB Irb-
6. The robot control system has been reconfigured, and the resultiné system
provides general interfaces that allow control using external computers [Braun
et al., 1990]. The computer system used in the experiments is a VME-based
system consisting of a Motorola M68030 processor and an AT&T digital
signal processor (DSP). The VME-system is connected to a Sun workstation
using Ethernet. The software used in the experiments is written mainly
in C++ and Modula-2. The path velocity controller is written in C++,
and runs in the DSP. The implementation is described in Appendix A. The
M68030 processor handles the operator interface, and the data that should
be sent to the Sun for plotting and/or storage in files. A facility to connect
Matlab running on the Sun to the VME system is used for the data transfer
[Nilsson, 1992b]. The system software for the DSP is described in [Mattsson,
1991]. The software for the Motorola processor is based on a real time kernel
developed at the Department of Automatic Control [Andersson and Blomdell,
1991]. A system for real time implementation of control algorithms [Dahl,
1991] is used as a software tool for the other parts of the Motorola software,
e.g. for parameter editing in the running controller in the DSP. A schematic
diagram of the system is shown in Figure 5.1. The robot is shown in Figure

5.2

126

5.1 Ezperimental Environment

Ethernet = =] -
Sun Sun File Sun
Host work— work- Server work—
Computers station station station
L N SO
Real-Time
Micro- Ethernet DSP-
Computer processor Node board
boards (M68030, Processor (6 x
M68882) (M68010) DSP32C)
|l I J
VME bus Z L’ -
Sensor 10: I
I0-boards
Sensor Interface
Industrial Original
robot Robot
system Controller

Figure 5.1 A schematic description of the experimental environment.
5.2 Experimental Evaluation

This section describes the chosen criteria for evaluation. It also describes the
robot models used, and the robot controller.

Evaluation measures

The purpose of using the path velocity controller is to achieve fast motion
along the path. Our main criteria is therefore path deviation, which is mea-
sured using visual inspection. As a measure of the closeness to the unknown
minimum time, we measure the utilization of the torque range. The torque
utilization 7, is computed as

N
1 () — "
Tw=1-——= min | nlt) — " | (5.1)

N 1<i<n Tm
t=1 — — ®

where N is the number of data points, and n is the number of joints. For
the robot used here, n = 5. The notation 7/ denotes here the torque limit

127

Chapter § Ezperimental Evaluation

Main power control panel,

ASEA original processor unit.
Not used

Control, power drive unit. LTH.

ASEA power drive unit.

P

Resolver and speed converter
and amplifier. LTH.

Figure 5.2 Therobot usedin the experiments. The coordinate axes in cartesian ~
space are also shown. The origin of the cartesian space is at the base of the robot.

128

5.2 Ezperimental Evaluation

which is closest to 7;. Note that for minimum time motion, where one joint
is always on the limit, 7, = 1.

An indirect measure of the path deviation is found by computing the
mean square tracking error. The mean square tracking error in joint space is
denoted mse, and is computed as

me = = 33 (ans(t) — a(t))? (5.2)

t=1 i=1

The corresponding quantity in cartesian space, denoted cmse, is computed
as

N
cmse = % Z(m,.i (t) — 2i(£))? + (yr; (t) — %:(£))? + (2 (2) — z()? (5.3)

where the cartesian values are obtained using forward kinematics. The carte-
sian coordinate system is defined in Figure 5.2. The quantities mse (5.2) and
cmse (5.3) are indirect measures of path deviation, in the sense that small
values of mse and cmse result in small path deviation, but not vice versa,
e.g. when the motion is along a line and the robot is behind the reference
trajectory, we get large tracking errors but zero path deviation.

In the experiments, the traversal time is also computed. The traversal
time is computed as the time when the reference trajectory reaches the end
of the path. The traversal time ¢; is thus given from o(ts) = sy¢..

Evaluation from limits on path acceleration Another evaluation mea-
sure is obtained using properties of the minimum time solution. When the
limits on & (4.14) are inadmissible, the path velocity controller (4.24) cannot
adjust the path acceleration such that all torques are admissible, which then
may result in path deviations. From the characterization of the admissible
region in Section 3.3, it is seen that for velocities above the maximum velocity
curve, with the exception of critical points, the limits on the nominal path
acceleration (3.26) are inadmissible, i.e. §min(s,$) > Smaz(s,$). Inadmissi-
bility of the limits on the actual path acceleration (4.14), i.e. Fmin(B1,082) >
Fmaz(B1,P2) can therefore be seen as an indication that the velocity is too
high.

An evaluation of the result of using path velocity control can therefore
be done by checking the admissibility of the limits afterwards. If the limits
were inadmissible, this indicates that the nominal velocity was too high.
Moreover, the inadmissibility can also be seen as a possible explanation of
path deviations caused by a too high nominal velocity profile, i.e. path
deviations that can be eliminated if the nominal velocity profile is modified,
e.g. by using the path velocity controller (4.26) with a scaling factor v < 1.

129

Chapter 5§ Ezperimental Evaluation

In the presentation of the experiments in Section 5.3, the admissibility of the
limits is checked by plotting the limits on path acceleration (4.14) together
with the actual path acceleration . This also makes it possible to investigate
when the limits were used, and also which of the limits that were activated.

Robot Controller

The robot controller is an individual joint PD controller, written as
T = ﬁ’Liq',,.’. + (iiq',.‘. + k-,,.. é; + kp.. e;, 1<1<5 (5.4)

where €; = ¢, — ¢;. The feedback gains k,, and k,,, 1 <i < 5, in (5.4) were
empirically tuned. There were some small differences in the feedback gains
between different experiments, but a typical choice is

kp, = 0.14, ky, = 0.15, ky, = 0.14, k,, = 0.05, k,, = 0.05
ko, = 0.02, ky, = 0.015, ky, = 0.02, k,, = 0.01, k,, = 0.01

Robot models

In the experiments, only joints 1 to 3 are active in the motion. The reference
values for joints 4 and 5 are zero. System identification [Ljung, 1991] was
used to obtain the parameters in a linear decoupled model on the form

mi§; + d;g; = T, 1=1,2,3 (55)

This model is used in the minimum time optimization. It also gives the
feedforward parameters r; and d,, 1 <¢<3,in (54). The feedforward
parameters for joints 4 and 5 were set to zero.

The identification was done in closed loop. A prbs test signal was first
used as reference value. The identification was done by parametric identifica-
tion of a first order discrete time transfer function for each joint. The discrete
model was then converted to a continuous time model. The sampling interval
used in the identification was 10 ms. The identification results were

my = 6.6840-107%, m, = 4.8197-107%, m3 = 0.0011 (5.6)
di = 0.0027, dy =0.0034, d; = 0.0060 '
As a first test, a model with the parameters (5.6) was used to compute a
minimum time velocity profile for some test paths. The result was a con-
servative motion, with unsatisfactory torque utilization. A new model was
then identified, using the minimum time velocity profile obtained from (5.6)
as reference trajectory. The result of this identification was
my =6.0429-107%, my =4.0817-107%, my = 6.7348.107% (5.7)
d; = 0.0019, d; =0.0024, ds = 0.0059 '

130

5.3 Ezperimental Results

Experiment 1 Nominal With limits With PVC
Path following Figure 5.4 Figure 5.5 Figure 5.6
Tu - 0.99 0.94
iy 1.59 1.59 1.83
mase 2.33 145 1.98
cmse 32.2 5040 31.2

Table 5.1 The result of experiment 1

Experiment 2 Nominal With limits With PVC
Path following Fig. 5.12-13 Fig. 5.14-15 Fig. 5.16-17
Tu - 0.92 0.90
iy 4.57 4.57 4.95
mse 3.35 94.1 3.16
cmse 46.6 3160 38.3

Table 5.2 The result of experiment 2

5.3 Experimental Results - /
The experimental results are presented in Experiments 1-5 in this section.
The nominal velocity profiles in Experiments 1-4 were computed by minimum
time optimization using the robot model (5.7). In Experiment 5, a nomlnal
velocity profile based on the model (5.6) is also used.

For all experiments, the traversal times are measured in seconds, the
joint variables are given in radians for the motor shaft, and the cartesian
values are given in millimeters. The lower level of torque limits were chosen
as £0.5 for all joints. The upper level of torque limits were &1 for all joints.
The parameter choice a = 10 in the path velocity controller (4.24) was used
in all experiments. The sampling frequency for the robot controller and the
path velocity controller was 1 Khz, and the data logging was done with 100
Hz. Experiments 1 to 3 are summarized in Tables 5.1-5.3. The first row refer
to the Figures that are used for evaluation of the path following by visual
inspection. The following rows show the torque utilization 7,, computed as
in (5.1), the traversal times, and the mean square tracking errors mse and
cmse, computed as in (5.2) and (5.3). The first column shows the result of
using the nominal velocity profile “without” the torque limits, i.e. with the
torque limits 1. The torque utilization (5.1) is not defined for this case. In
column 2, the nominal velocity profile is used together with the torque limits
4+0.5. Column 3 shows the result when the path velocity controller is used.

131

Chapter 5 Ezperimental Evaluation

Experiment 3 Nominal With limits With PVC
Path following Fig. 5.22-23 Fig. 5.24-25 Fig. 5.26-27
Tu - 0.95 0.93
17; 3.40 3.40 3.78
mase 3.16 40.8 3.36
cmse 27.0 604.8 32.5

Table 5.3 The result of experiment 3

Experiment 1 — Ellips in joint space

The first experiment is evaluated in joint space. The path is an ellips in joint
space for joints 1 and 2, parametrized as

Ji(s) = 50(1 — cos(s)), fa(s) =20sin(s), 0<s<2rm (5.8)

The nominal velocity profile was computed using minimum time optimiza-
tion. The model parameters are given in (5.7). The path and the minimum
time solution are shown in Figure 5.3. The path (5.8) is shown in the upper
plot. The mid plot shows the minimum time velocity profile, solid line, and
the maximum velocity curve, dashed line. The dotted line in the mid plot is
2 if § is maximum, and 0 if § is minimum. The lower plot shows the torques
71, solid line, and 73, dashed line, as functions of s.

An experiment where the nominal velocity profile is used, and where
the torque limits are removed (actually set to +1) is shown in” Figure 5.4.
The upper right plot shows the path velocity §(t), dashed line, and the path
parameter s(t), solid line. The path parameter s(t) is reset to zero at the end
of the path. The path velocity $(t) in this plot is the time function corre-
sponding to the velocity profile v;(s) in Figure 5.3. The lower left plot shows
the reference trajectories ¢, (t) = fi(s(t)), ¢ = 1,2, and the corresponding
actual trajectories g;(t).

The lower right plot shows the torques 7(t), solid line, and 7(t), dashed
line. As can be seen from the plot, the torques required to track the nominal
trajectory are outside the limits £0.5. It can also be seen that the torque m;
is for some intervals actually limited by the limits +1, i.e. the assumption of
an experiment where the torque limits are removed is violated, however only
for a small part of the motion.

The upper left plot shows the desired path, solid line, and the actual
path, dashed line.

The result of using the nominal velocity profile and the torque limits +-0.5
is shown in Figure 5.5. The upper right plot shows the path velocity 3(t),
dashed line, and the path parameter s(¢), solid line. The lower left plot shows
the reference trajectories g, (t) = fi(s(t)), 2 = 1,2, and the corresponding

- 132

5.8 Ezperimental Results

I3

10 20 30 40 50 60 70 80 90 100

V1, Ymaz (3)
10 Li 1

-
-
-
-
"
-—
-

[}
)
L]
[}
]
)
'
N,)
pS i
¥
—

Figure 5.3 The minimum time solution for Experiment 1, mid plot, and the

corresponding torques, lower plot. The path in joint space is shown in the upper
plot.

actual trajectories g;(t). The solid line is the reference trajectory gy, (¢), and
the dashed line is the actual trajectory q;(t). As can be seen in the plot, the
trajectory gi(t) deviates from the reference trajectory g, (t).

The lower right plot shows the torques 7;(t), 2 = 1,2. As can be seen in
the plot, the torque 71, solid line is saturated for most parts of the motion.
The torque 73 is also saturated, but for shorter time intervals. From Figure

133

Chapter 5 Ezperimental Evaluation

r, (a1), 22(q1)

20
0 50 100

grys 915 Gryy 92 (t)
100 L) - L)

50

1

Figure 5.4 The result of using the nominal velocity profile without the torque
limits. The traversal time was £y = 1.59 and the mean square tracking error was
mse = 2.33. '

5.3 it is seen that for the initial part of the motion (s ~ 0—0.2), the nominal
7; and 7, are synchronized in the sense that 7, leaves the upper torque limit
as soon as 7 reaches the limit. In the lower right plot in Figure 5.4, ¢ =~ 0.8,
it is seen that 75 remains saturated after 71 reaches the limit. A similar
phenomenon is seen around ¢ = 1.3, where 7; remains saturated after 7
leaves the lower limit. This is not the case for the nominal torques, shown
in Figure 5.3. This type of behavior was also observed in simulation, see e.g.
the lower right plot in Figure 4.5.

The upper left plot shows the desired path, solid line, and the actual
path, dashed line. As can be seen in the figure, the path cannot be followed,
a result of the large tracking error in joint one. ,

Using the path velocity controller (4.24) gives the result shown in Figure
5.6. The upper right plot shows the actual path velocity &(t), dashed line,
and the actual path parameter o(¢), solid line. A comparison with the corre-

sponding plot in Figure 5.5 shows that the path velocity is reduced, resulting
in increased traversal time.

The lower left plot shows the reference trajectories g, (f) = fi(a(t)),

134

5.3 Ezperimental Results

8, 5 (t)
8 T 1
6_ -
4t , i
0 ;
0 1 2 3
T1, T2 (t)
05F ' i

—————

i
27
2
- "
STF=T

=

-
T,
=
yor 2
o
z
P

POPEY T

p——
[,

o
WL
T
1

Figure 5.5 The result when the torques are limited. The torque utilization was
7u = 0.99, the traversal time was ¢y = 1.59, and the mean square tracking error

was mse = 145.

i = 1,2, and the corresponding actual trajectories ¢;(t). A comparison with
the corresponding plot in Figure 5.4 shows that the tracking performance
when the path velocity controller is used is similar as for the case of removed
torque limits.

The torques are shown in the lower right plot. A comparison with the
nominal torques, shown in Figure 5.3, shows that the torques are now syn-
chronized in the initial path of the motion, i.e. 72 leaves the upper limit,
when 71 reaches the upper limit. It is also seen that the torques are synchro-
nized for ¢ ~ 1.5, where 71 leaves the upper limit when 7, changes direction.
This was not the case when the nominal velocity profile was used, as can be
seen in the corresponding plot in Figure 5.5. There is also a time interval,
around t =~ 1.6, where none of the torques are at the limit.

The upper left plot shows the desired and the actual paths. As can be
seen from the figure, the path following performance is comparable to Figure
5.4. The numerical results corresponding to Figure 5.6 are given in Table 5.1,
the right column. As can be seen in Table 5.1, the mse and the cmse are of
the same magnitude as for the nominal motion.

135

Chapter 5 Ezperimental Evaluation

qry (q‘f‘1)) q2(q1) a, o (t)
20 T T= 8 T T
10+ .
of :
-10} ‘
_20 1 ..
-50 0 50 100
Grys 91y Gryy G2 (2)
100 : —

1

Figure 5.6 The result when the path velocity controller is used. The torque
utilization was 7, = 0.94, the traversal time was £; = 1.83, and the mean square
tracking error was mse = 1.98

Figure 5.7 shows the actual paths from Figures 5.4 and 5.6. The solid
line is the desired path, the dashed line is the path obtained when the path
velocity controller is used, and the dotted line is the path obtained from the
experiment in Figure 5.4 where the torque limits were removed. As can be
seen in the figure, both the dashed line and the dotted line deviates from the
desired path. However, the deviations are similar. This shows that when the
path velocity controller is used, the behavior with respect to path deviation
is qualitatively the same as for the case when the torque limits are removed.
This can to some extent be expected, since the path velocity controller has
the property that when the robot controller requires more torque than what
is available, this is compensated by adjusting the path acceleration. Thus; as
long as the limits on ¢ are admissible, then from the robot controller’s point
of view, there are no torque limits.

An evaluation plot for the case when the path velocity controller is used is
given in Figure 5.8. The dashed line in the upper plot is the nominal velocity
profile v; (o). The solid line in the upper plot is the actual velocity profile,
i.e. 0 as a function of 0. The dotted line in the upper plot indicates if the

136

5.3 Ezperimental Results

q'PZ (q""l)’ q2(q1), qznom(qlnom)
20

15

T

10

-10

T

-15

-
2 0 A e e ST

-20 0 20 40 60 80 100

Figure 5.7 A comparison showing the actual path from the experiment with-
out the torque limits, dotted line, and the actual path when the path velocity
controller is used, dashed line. The solid line is the desired path.

limits on ¢ are used or not, i.e. the dotted line is one if the limits are used,
and zero otherwise. The lower plot shows the limits on path acceleration
(4.14), and the path acceleration &, as functions of o. The solid line is Fmqgz
and the dashed line is Gin. The dotted line is the path acceleration &. The
nominal acceleration and deceleration intervals are shown in Figure 5.3 by
the dotted line in the mid plot. From the dotted line in the upper plot in
Figure 5.8, it is seen that the limits are used during the acceleration intervals.
From the lower plot in Figure 5.8, it is seen that the upper limit is active,
1.e. 0 = Gmaz in these intervals. It can also be seen that the lower limit &,,;,
is active during parts of the deceleration intervals. For this experiment, the
limits are admissible, i.e. Gmin < Fmaz, for the complete motion. When the
limits are admissible, the lower plot in Figure 5.8 is related to the torques,
shown in the lower right plot in Figure 5.6, in the sense that in the intervals
where the limits are active, i.e. when either & = d.,in O & = Gpnas, at least
one of the torques are at the limit, and, conversely, when dmin < & < Fmaz,
then none of the torques are at the limit.

Figure 5.9 shows the nominal path acceleration vs(c), dashed line, and

137

Chapter §

Ezperimental Evaluation

o, v1 (U)

R s i
Y L

LTS
Pl (‘
3 PURYOMRR VL LAl
P \ rone
50 ‘ -
- -

Figure 5.8 Evaluation of Experiment 1. The nominal and actual velocity pro-

files are shown in the upper plot. The path acceleration ¢ and the limits Gyn
and Gmax are shown in the lower plot.

the actual path acceleration ¢ as a function of o, solid line. Consider e.g.
the interval 1 < ¢ < 2. From the lower plot in Figure 5.8, it is seen that the
upper limit on acceleration is active in this interval. In Figure 5.9, it is seen
that the actual acceleration & is rapidly varying, but the nominal acceleration
is smooth. This is expected, since the activation of the upper limit has the
effect that the torque is kept at maximum, and the variations that would
have been variations in the torque in the case of no torque limits, are instead

seen as variations in ¢. Thus, the variations in & in Figure 5.9 correspond to
variations in the torques in Figure 5.4.

138

5.3 Ezperimental Results

5', V2 (0’)
60 T T

40

>

20F

-
Pl
-

™)
(=
T

S
()
T

o
=
T
D ettt

Figure 5.9 The nominal and actual path accelerations.

Experiment 2 — y-z-square

The path used in this experiment is specified in cartesian space. The path is
a square with rounded corners, aligned with the y and z-axis of the cartesian
coordinate system. The cartesian coordinate system is shown in Figure 5.2.
The path specification is done as follows. B-splines [de Boor, 1978] are used
to represent the cartesian path. Inverse kinematics is then used for transfor-
mation of the cartesian positions to joint positions. The transformed joint
values are approximated by a B-spline function in joint space. This gives the
functions f(o), f'(¢), and f"(o). Figure 5.10 shows the path in joint space,
and the corresponding cartesian path. The path parameter s is for this path
defined in the interval 0 < s < sy where sy = 56.3. The starting point s = 0
and the points s = 0.25s¢, s = 0.5s¢, s = 0.75sf are marked in the upper
right plot, and in the lower right plot. As can be seen in the upper right plot,
the path for joints 1 and 3 is almost aligned with the coordinate axes. The
path is traversed counterclockwise in the g;-¢3-plane, upper right plot, and
clockwise in the y-z-plane, lower right plot.

The minimum time solution is shown in Figure 5.11. The upper plot
shows the maximum velocity curve, dashed line, and the minimum time ve-

139

Chapter 5 Ezperimental Evaluation

42(91)

—
(=
T
1
L
<
T

Ny
(=}
T
1
<
T

30 4
50 N
40y ! 22
-50 . ‘ . -100 L~ L
-100 -50 0 50 100 -100 100
y(z)
400 . 1400 . .
s=14.0
200} . 1200} -
or i 1000+ .
200k - J=128.1
800} -
_400 1 1] 1
0 929.993 1859.987 5000 .0 500

Figure 5.10 The path in joint space for Experiment 2, upper plots, and the
corresponding cartesian path, lower plots.

locity profile, solid line. The dotted line is nonzero when § is maximum and
zero when § is minimum. The lower plot shows the torques 71, solid line, 75,
dashed line, and 73, dotted line, as functions of s. For 0 < s < 15, which
corresponds to the first straight line segment, shown in the upper right plot
in Figure 5.10, 71 is at the limit, except for a small interval around s =~ 12,
where 75 is at the limit. For 17 < s < 27, which corresponds to the next
straight line segment, 73 is at the limit. This behavior repeats itself for the
third and fourth line segments, i.e. for the third straight line segment, 7; is
at the limit, and for the final straight line segment 73 is at the limit.

The result of using the nominal velocity profile without the torque limits
is shown in Figure 5.12. The upper plot shows the path parameter s(t) and
the path velocity $(¢). The mid left plot shows the desired and actual paths
in joint space for joints 1 and 2, i.e. ¢, as a function of ¢,,, and ¢; as a
function of ¢;. The mid right plot is the corresponding plot for the desired
and actual paths for joints 3 and 1. The lower left plot shows the reference
trajectories and the actual trajectories, i.e. ¢, (t) and ¢;(¢) where 1 =1,2,3.
At t =0, the trajectories are, in order of decreasing values, q;, g3, and g3.

The lower right plot shows the torques 7 (t), solid line, 75(¢), dashed line,

140

5.9 FEzperimental Results

V1, Vmaz (3)

60~

...........

40

'
Y

-

20

T

\
A
)
1
)
———————
(m————

Figure 5.11 The minimum time solution for Experiment 2, and the correspond-
ing torques.

and 73(¢), dotted line. As can be seen from this plot, the torques are outside
the limits +0.5. The corresponding motion in cartesian space is shown in
Figure 5.13. As can be seen in the lower plot, the cartesian path deviation
in the z-direction is approximately 6mm.

The result of using the nominal velocity profile and the torque limits is
shown in Figure 5.14. The corresponding plot in cartesian space is shown in
Figure 5.15. As can be seen from the plots, the path cannot be followed. In
cartesian space, the path deviation in the y-z-plane is concentrated to the
corners. The path deviation in the z-y-plane has also increased, compare the
lower plots in in Figures 5.13 and 5.15. In joint space in the ¢;-gs-plane, the
path deviation is also concentrated to the corners, as can be seen in Figure
5.14, the mid right plot. The explanation for this is as follows. From Figure
5.10, the upper right plot, it is seen that the path in the g;-gs-plane starts
in the upper right corner. During the first line segment, joint one is limiting
the motion, and the nominal reference trajectory cannot be followed, see the
lower left plot in Figure 5.14. This means that when joint 3 starts to move,
joint 1 has not reached the corner, which results in deviation from the path.
During the next line segment, joint 3 is limiting, but the tracking error is

141

Chapter § Ezperimental Evaluation

40+

20+

ars(ar,), 93(q1)

\

W
<

o
< (=4
T T

'
W
[en]

T
'
19,1
<
]
[

B
=]
T

.
1 1 1 - 100 1 1 i
-100 -50 0 50 100 -100 -50 0 50 100

100

1 T

qryy 915 9rys 925 9r3y 43 (t) T1y, T2, T3 (t)

Figure 5.12 The result of using the nominal velocity profile without the torque
limits. The traversal time was t; = 4.57 and the mean square tracking error was
mse = 3.35.

now smaller, see the lower left plot in Figure 5.14. This has the effect that
the path following through the next corner, i.e. the lower left corner in the
mid right plot in Figure 5.14, is good. During the third line segment, joint
one is again limiting, which results in path deviation in the lower right corner
in the mid right plot in Figure 5.14.

The result of using the path velocity controller (4.24) is shown in Figures
5.16 and 5.17. As can be seen from the plots, the path following is good.

142

5.8 Ezperimental Results

z(yr), 2(y)
1400 T ¥ T T

1200+ i ~

1000+ .

800 e : T = —
-400 -300 -200 -100 0 100 200 300 400

400 ‘ | _ wrlen) y(e)

200 A e N

-200

- 400 L 1 1 1 1 I} Il 1 Il
920 925 930 935 940 945 950 955 960 965 970

Figure 5.18 The nominal motion in cartesian space. The axes are scaled in
millimeters.

The path deviation in the corners has been reduced. The motion through
the corners has been synchronized, in the sense that during the first line
segment, the velocity of the reference trajectory has been reduced so that
when joint 3 starts to move, there is no tracking error in joint 1, and motion
along the path through the corner is possible. The path deviation in the
z-y-plane is also reduced, see the lower plot in Figure 5.17, which shows that
the path deviation is now comparable to the case when the torque limits are
removed, see the lower plot in Figure 5.13.

Figure 5.18 shows the actual cartesian paths from Figures 5.13 and 5.17.
The solid line is the desired path, the dashed line is the path obtained when
the path velocity controller is used, and the dotted line is the path from
Figure 5.13. As can be seen in the figure, the path velocity controller gives
the same qualitative behavior with respect to path deviation as for the case
when the torque limits are removed. The same observation could be done
in Figure 5.7. In Figure 5.18 it is also seen that the path deviation when
the path velocity controller is used is actually smaller than for the artificial
experiment. An explanation for this could be that the velocity is reduced
compared to the experiment where the torque limits were removed.

143

Chapter 5 Ezperimental Evaluation

s, 5 (1)
60 L} T T
4
40+ :
20+ .
0
0 6
0
{’/')
-10}F . |
20} . or |
30} - ol ' |
-40F . _‘,/
-5 . ' : -100 - : -
-100 -50 0 50 100 -100 -50 0 50 100
0 Qris Q15 9rey 925 9ryy 93 (t)
' | 05k , |
o
i i
LS %
':;_\i]

-

Figure 5.14 The result when the torques are limited. The torque utilization

was T, = 0.92, the traversal time was t; = 4.57, and the mean square tracking
error was mase = 94.1.

The evaluation plot for this experiment is shown in Figure 5.19. As can
be seen from the lower plot, the limits on & are inadmissible for short intervals.
This happens e.g. at the end of the deceleration phase for the first and the
third line segments. As can be seen from the nominal minimum time velocity
profile in Figure 5.11, the points where the optimal velocity profile touches the
maximum velocity curve corresponds roughly to the points where the bounds
on & are inadmissible, see the lower plot in Figure 5.19. For velocities above

144

5.8 Ezperimental Results

zr(yr), 2(y)
1400 T T T .

-~

1200 5 .

1000

\

)

\ -

\

\
\

\,
~

gogl— == =
400 300 200 100 0 100 200 300 400

4(X) T T T

-

200}

~

-——

———

-

200F i,

-

- 400 1 1 \ L 1 2 Il 1
920 925 930 935 940 945 950 955 960 965 970

Figure 5.15 The torque limited motion in cartesian space.

the maximum velocity curve, with the exception of critical points, the limits
on the nominal path acceleration (3.26) are inadmissible, i.e. &min(s,5) >
Smaz(8,8). It can therefore be expected that close to the touching points, the
limits on & also become inadmissible, i.e. Gmin(81,02) > Fmaz(B1,02), which
is the case for this experiment. Note however that in spite of the inadmissible
bounds, the path following is comparable to the experiment where the torque
limits were removed, as is seen in Figure 5.18. The numerical results for this
experiment are given in Table 5.2. As can be seen in Table 5.2, both the
mse and the cmse are of the same magnitude as for the nominal motion.
For this experiment, the mse and the ¢mse are smaller than for the nominal
motion. This agrees with the visual inspection of Figure 5.18, where the
path deviation when the path velocity controller is used is smaller than for
the experiment where the torque limits were removed.

145

Chapter 5 Ezperimental Evaluation

o, o (1)
60 L} 1 T L] ¥
40} -
20F -
0
0 6
(g,)y 93(q1)
0 50 . : :
¢ \
10} -
20} . o]
30f - ol |
40} i
_50 1 1 1 -100 1 1 1
-100 -50 0 50 100 -100 S50 00 50 100

Grys Q15 Gryy 925 9rss> 93 (t)
100 T T

Figure 5.16 The result when the path velocity controller is used. The torque
atilization was 7w = 0.90, the traversal time was t; = 4.95, and the mean square
tracking error was mse = 3.16.

5.8 Ezperimental Results

Zr(yr)a z(y)

1400 T L} 1 1 T 1
1200+ 4
1000+ 4
Sm L I 1 1 I3 1
-400 -300 -200 -100 0 100 200 400
Yr (Tr)) y(z)
4(X) 1 T L T 1 T L L} L
200 o 1’,7‘"" 9
of SN .
A
-200} S]
w3
Y
_4(X) 1 1 L i 1
920 925 930 935 940 945

950 955 960 965 970

Figure 5.17 The motion in cartesian space when the path velocity controller

i d. /
is use Zr(yr), z(y), znom('ynom)

1400

1200+

1000+

800
-400

-200 -100 0 100

200 400

Jraese:

927 928 929 930 931 932 933 934 935 936 937

Figure 5.18 A comparison in cartesian space, showing the actual path from
the experiment where the torque limits were removed, dotted line, and the actual

path when the path velocity controller is used, dashed line. The solid line is the
desired path.

147
v o~

Chapter 5 Ezperimental Evaluation

40

200

-200 .

-400

o, V1 ('0)

.
CAYY »
YN

\\\\\\

\“.‘7"

1]
RPN

')

1

’
=y c\’-\"d..

A
L

Y

b

v
1
1}

V2 I\—‘l

b

10

30

40

Figure 5.19 Evaluation of Experiment 2. The nominal and actual velocity
profiles are shown in the upper plot and the path accelera.tlon ¢ and the limits
on ¢ are shown in the lower plot. ’

148

5.3 Ezperimental Results

g2(q1)
0 . :
50+
-10+ i
0 -
201+ 4
30+ _ -50F
-40 : -100 '))
-50 0 50 -50 0 50
y(z) z(y)
400 : 1400 ,
s=0
2001 | 1200 .
ofF . 5 = 2.56
1000 -
200+ J
5.13
800} -
-400 - s
0 929.99 1859.98 -500 .0 500

Figure 5.20 The path in joint space for Experiment 3, upper plots, and the
corresponding cartesian path, lower plots.

Experiment 8 — Rotated y-z-square

The path used in this experiment is a rotated square with rounded corners.
The path is obtained by 45 degrees rotation of a square which is aligned with
the y and z-axis of the cartesian coordinate system. Figure 5.20 shows the
path in joint space and the corresponding cartesian path. The path in the
¢1-gs-plane starts at the upper corner and is traversed counterclockwise, as
can be seen in the upper right plot in Figure 5.20. In cartesian space, the
path in the y-z-plane starts in the upper corner and proceeds clockwise.

The minimum time velocity profile and the corresponding torques are
shown in Figure 5.21. As can be seen in the lower plot, the torque 73, dotted
line, is at the limit, except for small intervals where 71, solid line, is at the
limit. This happens in the left and right corners of the path in the ¢;-gs-
plane, shown in the upper right plot in Figure 5.20. The result of using
the nominal velocity profile is shown in Figure 5.22. As can be seen in the
lower right plot, the torque 73, dotted line, is outside the limits +0.5. The
lower left plot shows the reference trajectories and the actual trajectories. At
t = 0, the trajectories are, in order of decreasing values, g3, g1, and ¢;. The

149

Chapter 5 Ezperimental Evaluation

V1, Vmaz (5)

15 1 1 “-'l T L}

............... Rl SN S—
1o} N N -
st y s By
0) 1 1] 1
0 2 4 6 8 10

Figure 5.21 The minimum time solution for Experiment 3, and the correspond-
ing torques.

corresponding motion in cartesian space is shown in Figure 5.23. As can be
seen in the lower plot, the path deviation in the z-direction is approximately
5 mm.

The result of using the nominal velocity profile and the torque limits is
shown in Figure 5.24. The corresponding motion in cartesian space is shown
in Figure 5.25. As can be seen from the plots, the desired path cannot be
followed. For this path, the path deviation occurs along the entire path, as
opposed to the previous experiment, where the path deviation was concen-
trated to the corners. The reason is that the path in the ¢;-gs-plane is not
aligned with the coordinate axes, as was the case in the previous experiment,
compare the upper right plots in Figures 5.10 and 5.20. This means that
tracking errors in one joint, in this case joint 3, see the lower left plot in Fig-
ure 5.24, result in path deviations since the other joints move simultaneously.
This was not the case in the previous experiment where the tracking error
in joint 1 did not result in path deviations during the straight line segments.
The path deviation then occurred at the corner when joint 3 started to move,
see the lower left plot in Figure 5.14.

Using the path velocity controller (4.24) gives the result shown in Figure

150

5.3 Ezperimental Results

s, 5 (t)

15 T L T T L L] L]

10 -
5t i
00 0i5 45 5

qrs (qT1)7 q3(‘11)
50 .
ol N
501 i
-100 L
-50 ‘ 0 50

-

Figure 5.22 The result of using the nominal velocity profile without the torque
limits. The traversal time was ¢; = 3.4 and the mean square tracking error was
mse = 3.16.

5.26. The corresponding motion in cartesian space is shown in Figure 5.27. As
can be seen from the plots, the path following is comparable to the experiment
where the torque limits were removed, shown in Figures 5.22 and 5.23. The
path deviation in the z-direction is however larger when the path velocity
controller is used, as can be seen by comparing the lower plots in Figures
5.23 and 5.27. This is also seen in the lower plot in Figure 5.28, which shows
the path from the experiment where the torque limits were removed together

151

Chapter 5 Ezperimental Evaluation

ze(yr), 2(y)
1400 T T .

1200+

1000

800 L 1 1 L
-300 -200 -100 0 100 200 300

yr(zr), y(z)
400 : : :

200

T

-200

_400 1 L 1 - 1
910 915 920 925 930 935 + 940

Figure 5.23 The nominal motion in cartesian space.

with the path obtained when the path velocity controller is used.

An evaluation plot is shown in Figure 5.29. As can be seen the lower
plot, the limits on & are oscillative. This has the effect that the limits are
used only occasionally, as can be seen in the dotted line in the upper plot.
The oscillations in the limits on & are also seen as oscillations in the limiting
torque 73, the dotted line in the lower right plot in Figure 5.22. It can also
be seen in the lower plot in Figure 5.29 that the limits on & are inadmissible
around o & 5. This is probably the explanation for the increased error in the
z-direction, which can be seen in the lower plot in Figure 5.28. This error
can also be seen as a tracking error in joint 3 in the lower left plot in Figure
5.26, for ¢ ~ 2.5, where g3 ~ —85. A comparison with the corresponding plot
in Figure 5.22 shows that the tracking error is smaller for the experiment
where the torque limits were removed. The inadmissibility of the limits on &
can thus be related to the path deviation, and is hence an indication that the
nominal velocity is too high around o & 2.5. One should however note that
the limits were inadmissible also in the previous experiment, where the path
following when the path velocity controller was used was comparable to the
experiment where the torque limits were removed, as can be seen in Figure

152

5.9 Ezperimental Results

15 —T T T Uy

10

—
<
T

()
(=)
T

-40 L -100 :
-50 0 50 -50 » 0 50

Figure 5.24 The result when the torques are limited. The torque utilization
was Ty = 0.95, the traversal time was t; = 3.40, and the mean square tracking
error was mse = 40.8.

5.18.

A possible explanation for the oscillations in ¢,,i, and e, in the lower
plot in Figure 5.29 could be joint flexibility. The path acceleration & and the
limits on & obtained from the simulation in Figure 4.18 are shown in Figure
5.30. As can be seen in the figure, the limits on & are oscillative, and the
limits are used only occasionally, a behavior which is also seen in the lower
plot in Figure 5.29.

153

Chapter 5 Ezperimental Evaluation

z(yr); 2(y)
1400 : :

1200

1000

300

200+

T

-200

_4(X) 3] -]
910 915 920 925 930 - 935 940

Figure 5.25 The torque limited motion in cartesian space.

The numerical results for this experiment are shown in Table 5.3. The
errors mse and cmse are slightly larger for the case when the path velocity
controller is used, right column, compared to the experiment where the torque
limits were removed, shown in the left column. This agrees with the increased
path deviation when the path velocity controller is used, as can be seen in
the lower plot in Figure 5.28.

154

5.3 Ezperimental Results

o, & (1)
15 1 T v L T Ll T L T
10-]
sk |
% 45 5
4r, (97,)s q2(q1) 4rs(gr,), @3(q1)
0 ‘ 50 ;
.10+ -
of i
20}F 4
50k 4
30k i
-40 L -100 -
250 0 50 °50 | 0 50

Figure 5.26 The result when the path velocity controller is used. The torque
utilization was T, = 0.93, the traversal time was ¢; = 3.78, and the mean square
tracking error was mse = 3.36.

155

Chapter § Ezperimental Evaluation

zo(yr), 2(y)
1400 T T T T r

1200 F

1000 |

800
-300 300

400 T T

200

m 1 1 L 1
910 915 920 925 930 935 940

Figure 5.27 The result in cartesian space when the path velocity controller is

d. /
e z’l‘(yr)a z(y), Znom(y'n.om)
1400 T T T T T
1200 A
1000 - 4
800 1 4 1 1 L
-300 -200 -100 0 100 200 300
y"‘(m'l‘), y(m)a ynom(‘vnom)
4(X) ¥ ¥ T T T T T T T
200 . i
________ s]
‘-‘--:5!%!'3"‘""*:3#%':;.
ey S s
200+ - |

_4(x)). 1 L I3 1] 1 1 1
925 926 927 928 929 930 931 932 933 934 935

Figure 5.28 A comparison in cartesian space, showing the actual path from
the experiment where the torque limits were removed, dotted line, and the actual
path when the path velocity controller is used, dashed line. The solid line is the
desired path.

5.3 Ezperimental Results

a'ma:cy &min, o (0')

T T T
¥

1]

Y

)y

hat «N\h

'J»'\u\fvl

a
.
;f , nﬂﬁ“'

1 1 1 L L

10

Figure 5.29 Evaluation of Experiment 3. The nominal and actual velocity

profiles are shown in the upper plot, and the path acceleration & and the limits

on & are shown in the lower plot.

&maz, a'mi'n.y o (0')
I

I
[
|
A
: I---'
S
b

0

Figure 5.30 The path acceleration & and the limits on ¢ from a simulation
where the path velocity controller is used on a robot with joint flexibility.

157

Chapter 5 Ezperimental Evaluation

r,(ar,), @2(q1) 1 ()
20 . s 6 , . .
4 ;J_/\]
2 - .
0 L L 1
100 0 2 4 6 8
T1y, T2 (8)
0.5 p——r ' /g"_" '.
. N O
T &/ .'.m;
H ,‘:'W S
i pot
051 \-—!' - -
-50 L . - ' L .
0 2 4 6 8 0 2, 4 6

Figure 5.831 Time variations when the torques are limited. The upper left plot
shows the desired path, and the actual paths obtained from repeated motion,
while keeping the nominal velocity profile, shown in the upper right plot. The
lower right plot shows the torques as functions of the path parameter.

Experiment 4 — Adaptation to time varying dynamics

This experiment demonstrates how the path velocity controller is able to
adapt to time varying dynamics. The path and the nominal minimum time
velocity profile are shown in Figure 5.3. The experiment was done by repeated
motion along the path. The motion started after having the robot kept at
the initial position for approximately 5-10 minutes. The result of repeated
motion along the path when the nominal velocity profile and the torque limits
0.5 are used is shown in Figure 5.31. As can be seen from the upper left plot
the path deviation is varying. The time variability is also seen in the lower
right plot which shows the torques 7, and 7, as functions of s. From this
plot it is seen that the switches in 71 occur irregularly. The experiment was
repeated, but with the path velocity controller (4.24). The result is shown
in Figure 5.32. As can be seen from the upper left plot, the path deviation
is kept small. The path velocity is however varying, as can be seen from the
upper right plot. Compared to Figure 5.31, the time variations now appear

158

5.8 Ezperimental Results

ar,(4r)> 22(a1) o (o)
20 r

-20 !
-50 0 50 100

Grys 915 Qryy 92 ()

Figure 5.32 Time variations when the path velocity controller is used. The
upper left plot shows that the path deviation is low, while the path velocity is
varying, as is seen in the upper right plot.

1.9 . . traversal times .

1.8+ i
1.7F 1
I . e |
L5, 20 40 60 80 100 120

Figure 5.833 Traversal time for individual runs as a function of time.

as velocity variations instead of variations in the path deviation. Compare
also the torques for the two cases. In Figure 5.31, the irregularity occurs
mostly in 7. When the path velocity controller is used, the modification of
the reference trajectory affects both torques. This is seen as an irregularity
also in 7o, which can be seen in the lower right plot in Figure 5.32.

159

Chapter § Ezperimental Evaluation

torque utilization

-

0.98

0.96

0.9 4 1 1 1 1 1
0 20 40 60 80 100 120

300 . . trackmlg error

200 . ’

100 [~ \\ -

- -
~~~~~~~~~~~

""""""""
—
---------

0 20 40 60 80 -~ 100 120

Figure 5.34 Torque utilization and mean square tracking error as functions of

time.

Figure 5.33 shows the traversal time for the individual runs as a function
of time. As can be seen from the Figure, the result of using the path velocity
controller is decreasing path traversal time. Figure 5.34 shows the torque
utilization and the mse for the torque limited motion, dashed lines, and for
the case when the path velocity controller is used, solid lines. The tracking
error for the torque limited case is large initially, and decreases slowly. When
the path velocity controller is used, the tracking error is kept at a constant,
and satisfactory level. The torque utilization is approximately the same for
both experiments.

160




5.3 Ezperimental Results

Y1y VYmaz (3)
10 T T T T T L}

Figure 5.35 The minimum time solution for Experiment 5, and the correspond-
ing torques.

Experiment 5 — Influence of the nominal velocity profile

The preliminary model (5.6) is used in this experiment. The path is shown
in the upper plot in Figure 5.3. The nominal minimum time velocity profile,
computed from the model (5.6) is shown in Figure 5.35. The result of using
this velocity profile as nominal velocity profile for the path velocity controller
(4.24) is shown in Figure 5.36. As can be seen from the figure, the path
following is good. The torque utilization is however unsatisfactory, as can
be seen from the lower right plot. Using the scale factor ¥ = 1.15 in the
path velocity controller (4.26) gives the result shown in Figure 5.37. The
torque utilization has increased from 0.86 to 0.92, and the traversal time has
decreased from 1.77 to 1.66. There are however small path deviations, as can
be seen in the upper left plot.

An experiment where the nominal velocity profile is instead based on
the model (5.7) is shown in Figure 5.38. The traversal time was, as in Figure
5.37, 1.66, but the path following is now better, as can be seen by comparing
the upper left plots in Figures 5.37 and 5.38. The comparison shows that if
a conservative model is obtained, it is possible to gain performance by using

161




Chapter 5 Ezperimental Evaluation

r, (gr, ), ‘If(QI) o, o (1)

Figure 5.36 The result when the path velocity controller is used. The torque
utilization was 7, = 0.86, the traversal time was t; = 1.77, and the mean square
tracking error was mse = 1.62. ’

gry (9r, ), 92(q1)

10+ . 6} .
of : . 4+ -
10} . 2F -
20 L 0
-50 0 150 0 3
Gryy Q15 Grys Q2 (1)
150 T . : T
0.5F s
. \
OF " ! !
SAY (A L
R B
Y b
05} v " -
0 1 2 3

Figure 5.37 Theresult when the path velocity controller is used with a constant
scaling factor 4 = 1.15. The torque utilization was 7, = 0.92, the traversal time
was ty = 1.66, and the mean square tracking error was mse = 2.90.




5.3 Ezperimental Results

q’l‘z(q’l‘1)7 ‘.{2(@) . o, 0 (t)

—
(= =4
=T T

-
<
T

50 100

Figure 5.38 The result when the path velocity controller is used with a different
nominal velocity profile. The torque utilization was 7, = 0.99, the traversal time
was £ = 1.66, and the mean square tracking error was mse = 1.90.

a scaling factor v > 1, but also that the same traversal time can be obtained
with lower path deviation, by using another model in the minimum time
optimization.

5.4 Conclusions

The path velocity controller has been tested experimentally. The experiments
were done such that is was possible to separate the performance of the path
velocity controller from the performance of the robot controller. The path
deviation was evaluated using visual inspection, and a quantitative measure
(5.1) for the torque utilization was used.

The experimental results show that the path velocity controller is able
to modify a nominal minimum time velocity profile such that the modified
velocity profile results in path following, and good utilization of the available
torque range. It was shown, Figures 5.7 and 5.18, how the motion obtained
when the path velocity controller was used resulted in the same path as
the motion obtained without the torque limits. This can to some extent be
expected, since the acceleration adjustment done by the path velocity con-
troller has the effect that variations in the torque that would otherwise result

163




Chapter 5 Ezperimental Evaluation

in torque saturation, instead, via the adjustment of the path acceleration,
become variations in the reference trajectory.

If the limits on acceleration become inadmissible during motion, the path
velocity controller is not able to adjust the acceleration such that all torques
are inside the limits. It was shown in Figure 5.19 that this occurred during
motion. It was observed that although the limits were inadmissible, the mo-
tion obtained when the path velocity controller was used, was comparable
to the case of no torque limits, Figure 5.18. It was also observed that the
inadmissibility of the limits, Figure 5.29, could result in path deviation, in
the sense that the path deviation when the path velocity controller was used
was slightly larger than for the experiment when the torque limits were re-
moved, Figure 5.28. The inadmissibility of the limits can thus be seen as an
explanation of path deviation that is the result of a too high nominal velocity
profile. This path deviation is not caused by the robot controller, and can
be reduced if the nominal velocity profile is modified.

It was also demonstrated, Figure 5.32, how the path velocity controller
could compensate for time varying dynamics. Repeated motion along a path
was performed after having the robot kept at zero velocity for 5-10 minutes.
The use of path velocity control then resulted in motion along the path, and
the adaptation to the time varying dynamics could be seen as decreasing
traversal time for repeated runs, Figure 5.33. The path deviation’and the
torque utilization were kept at satisfactory levels, Figures 5.32 and 5.34.

The path velocity controller has the property that if the nominal velocity
profile does not require more torque than what is available, it is not modified.
This may result in a conservative motion with low torque utilization, as shown
in Figure 5.36. It was shown how a constant scaling of the velocity profile
can decrease the traversal time, Figure 5.37, but also how better performance
could be obtained using a different nominal velocity profile, Figure 5.38.




Conclusions

Fast motion along a predefined path is important in many robot applications,
and requires utilization of the maximum allowable torque range. If the torque
is at the limit, there is no margin to cope with disturbances or modeling er-
rors, which may result in deviation from the path. This thesis has presented
an approach to solve this path following problem by using a path velocity
controller for reference trajectory modification. The reference trajectory is
modified when the torques saturate. The modification is done such that the
modified reference trajectory defines the same path as the nominal. The re-
sult is that path following is maintained, at the expense of increased traversal
time.

A nominal velocity profile can be obtained using available methods for
minimum time optimization. The velocity and acceleration constraints used
in the optimization gives insight into the design and interpretation of path ve-
locity control. An optimality result shows that similar bang-bang properties
hold for both rigid and flexible joint robots. With the exception of critical
points, the p-th order time derivative of the path parameter, s(P), with p =2
for rigid robots, and p = 4 for flexible joint robots, should either be max-
imized or minimized. An approximate minimum time solution for flexible
joint robots can be obtained using polynomial approximation. Choosing the
function to approximate as P /p gives the desired boundary conditions on
nonzero initial and final s(P). Numerical examples show the properties of the
solution, and also how it differs from the rigid solution.

The path velocity controller is used outside the ordinary robot controller.
The robot controller is parametrized in the scalar path parameter, but other-
wise unchanged, i.e. a well tuned control behavior is kept. A basic algorithm

165




Chapter 6 Conclusions

handles the problem of inadmissible path acceleration. The algorithm uses
limits on the acceleration, computed from the controller parametrization,
together with internal feedback using the nominal velocity profile. The lim-
its give the maximum and minimum acceleration that results in admissible
torques. When the acceleration is not saturated, the chosen internal feed-
back gives a linear system with the path parameter as independent variable,
which gives a possibility for tuning using the nominal velocity profile. An ex-
tension to higher order systems shows that the feedback can be chosen such
that the resulting system becomes linear also for higher order path veloc-
ity controllers. The added problem of inadmissible velocity can be handled
using velocity profile scaling. An extended algorithm uses feedback for mod-
ification of the scaling factor. An approximate analysis of constant scaling
gives insight into what type of model errors that can be handled by the path
velocity controller.

The path velocity controller has been verified experimentally on an in-
dustrial robot. The experiments were done such that is was possible to sepa-
rate the performance of the path velocity controller from the performance of
the robot controller. The path deviation was evaluated using visual inspec-
tion, and a quantitative measure for the torque utilization was proposed and
used. The experimental results show how the path velocity controller makes
it possible to use minimum time optimization in a nonideal situatiod. It was
also demonstrated how the limits on path acceleration obtained during mo-
tion can be used for evaluation of the path velocity control performance. The
path velocity controller can also be used for compensation for time varying
dynamics, where repeated motion along a path resulted in decreased traversal
time, while keeping the path deviation and torque utilization at satisfactory
levels.

The path velocity controller provides a computationally efficient way to
utilize the available torque range by feedback modification of the reference
trajectory. The feedback provided by the path velocity controller makes it
possible to have a nominal velocity profile which exceeds the robot capability.
This is not possible if the reference trajectory is fixed. The use of path velocity
control can therefore increase performance in the sense that it is possible to
come closer to the minimum possible traversal time, since it is not necessary
to introduce a prespecified margin in the path velocity planning to account
for modeling errors and disturbances in advance.




References

ANDERSSON, L. and A. BLOMDELL (1991): “A real-time programming
environment and a real-time kernel.” In National Swedish Symposium
on Real-Time Systems.

Asapa, H. and J.-J. E. SLOTINE (1986): Robot Analysis and Control. John
Wiley and Sons, New York.

BEN-ASHER, J., J. A. BURNS, and E. M. CLIFF (1987): “Time. optimal
slewing of flexible spacecraft.” In Proceedings of the 26th Conference on
Decision and Control, pp. 524-528, Los Angeles, CA.

BoBrow, J., S. DUBOWSKY, and J. GIBSON (1985): “Time-optimal control
of robotic manipulators along specified paths.” International Journal of
Robotics Research, 4:3, pp. 3-17.

BRrAUN, R., L. NIELSEN, and K. NILSSON (1990): “Reconfiguring an ASEA
IRB-6 robot system for control experiments.” Technical Report TFRT-
7465, Department of Automatic Control, Lund Institute of Technology.

Bryson, A. E. and Y. Ho (1975): Applied Optimal Control. Hemisphere
Publishing Corporation, New York.

CHAR, B. W., K. O. GEpDES, G. H. GONNET, M. B. MONAGAN, and
S. M. WATT (1988): Maple — Reference Manual. Symbolic Computation
Group, Department of Computer Sciences, University of Waterloo,
Waterloo, Ontario, Canada, fifth edition.

CHEN, Y. (1988): Minimum Time Control of Robotic Manipulators. PhD
thesis, Rensselaer PolyTechnic Institute, Troy, New York.

DanL, O. (1989): “Torque limited path following by on-line trajectory

167




Chapter 7 References

time scaling.” Licentiate Thesis TFRT-3204, Department of Automatic
Control, Lund Institute of Technology, Lund, Sweden.

DaHL, O. (1991): “An interactive environment for real time implementation
of control systems.” In Computer Aided Design of Control Systems,
Preprints of the IFAC Symposium, Swansea, UK.

DaHL, O. (1992): “A symbolic/numeric method for time optimal control of
resonant systems.” Technical report, Department of Automatic Control,
Lund Institute of Technology, Lund, Sweden. To appear.

DAHL, O. and L. NIELSEN (1989): “Torque limited path following by on-line
trajectory time scaling.” In Proceedings of the 1989 IEEE International
Conference on Robotics and Automation, pp. 1122-1127, Scottsdale,
Arizona.

DAHL, O. and L. NIELSEN (1990a): “Stability analysis of an on-line algorithm
for torque limited path following.” In Proceedings of the 1990 IEEE
International Conference on Robotics and Automation, pp. 1216-1222,
Cincinnati, Ohio.

DAHL, O. and L. NIELSEN (1990b): “Torque limited path following by
on-line trajectory time scaling.” IEEE Transactions on Robotics and
Automation, 6:5. ’

DE BooR, C. (1978): A Practical Guide to Splines. Springer-Verlag, New
York.

DE BOOR, C. (1990): Spline Toolbox for use with Matlab. The MathWorks,
Inc., Cochituate Place, 24 Prime Parkway, Natick, MA 01760, USA.

GiLL, P. E., W. MURRAY, M. A. SAUNDERS, and M. H. WRIGHT (1986):
“User’s guide for NPSOL.” Technical report, Department of Operations
Research, Stanford University.

HOLLERBACH, J. (1984): “Dynamic scaling of manipulator trajectories.”
ASME J. Dynamic Systems, Measurement, and Control, 106, pp. 102—
106.

LEITMANN, G. (1981): The Calculus of Variations and Optimal Control.
Plenum Press, New York.

LipPMAN, S. B. (1989): C++ Primer. Addison-Wesley.

Liung, L. (1991): System Identification Toolbox User’s Guide. The Math-
Works, Inc., Cochituate Place, 24 Prime Parkway, Natick, MA 01760,
USA.

MARIN, S. P. (1988): “Optimal parametrization of curves for robot trajectory
design.” IEEE Transactions On Automatic Control, 33:2, pp. 209-214.

MATHWORKS (1990): PRO-MATLAB - User’s Guide. The Mathworks, Inc.,
Cochituate Place, 24 Prime Parkway, Natick, MA 01760, USA.

168




MaTTssoN, U. (1991): “Digital reglering med signalprocessorer och C++.”
Technical Report TFRT-5434, Department of Automatic Control, Lund
Institute of Technology. Swedish.

NiLssoN, K. (1992a): “Application oriented programming and control of
industrial robots.” Licentiate thesis, Department of Automatic Control,
Lund Institute of Technology, Lund, Sweden. To appear.

NiLssoN, K. (1992b): “A matlab interface to real time control systems.”
Technical report, Department of Automatic Control, Lund Institute of
Technology, Lund, Sweden. To appear.

PFEIFFER, F. and R.JOHANNI (1986): “A concept for manipulator trajectory
planning.” In IEEE Conf. Robotics and Automation, San Francisco.
SHILLER, Z. and H. Lu (1990): “Computation of path constrained time op-
timal motions with dynamic singularities.” Technical report, Laboratory
for Robotics Automation and Manufacturing, Department of Mechani-
cal, Aerospace and Nuclear Engineering, University of California at Los

Angeles.

SHIN, K. and N.D.McKay (1985): “Minimum-time control of robotic
manipulators with geometric path constraints.” IEEE Transactions On
Automatic Control, 30:6, pp. 531-541. C e

SHIN, K. and N.D.McKaAy (1987): “Robust trajectory planning for robotic
manipulators under payload uncertainties.” IEEE Transactions On
Automatic Control, 32:12, pp. 1044-1054.

SLOTINE, J.-J. E. and M. W. SPoNG (1985): “Robust robot control with
bounded input torques.” Journal of Robotic Systems, 2:4, pp. 329-352.

SpoNG, M. W. (1987): “Modeling and control of elastic joint robots.” ASME
Journal of Dynamic Systems, Measurement, and Control, 109, pp. 310-
319.

SpoNg, M. W. (1990): “Control of flexible joint robots: A survey.” Technical

report, Coordinated Science Laboratory, University of Illinois at Urbana-
Champaign.

169




Implementation

The implementation used in Chapter 5 is described. The velocity and accel-
eration profiles v; and vs, and the path description f, f%, and f" are stored in
vectors. This is however not a necessary requirement, since only the current
values of the states o and & are used in the path velocity control algorithm,
see e.g. (4.24) and (4.3), and it is therefore not necessary to store v;, v5, and
the path description in advance. It would e.g. be possible to use the path
velocity controller as implemented here in combination with a supervisory
system for run-time generation of v; and vy and/or run-time generation of
the path description. In Chapter 5, v; and v, were obtained from minimum
time optimization. The path velocity control algorithm is not dependent on
this choice, and the implementation can be combined also with other types of

‘optimization, e.g. minimum time with both torque constraints and velocity

constraints.

The robot controller and the path velocity controller are implemented
in C++, e.g. [Lippman, 1989], and run in the DSP, see Figure 5.1. The
path description is implemented in a separate class, where the current state
(0,6) of the path velocity controller also is stored. The actual control, i.e.
the execution of the robot controller and the path velocity controller is im-
plemented as two procedures which are executed periodically. This means
that the reference computations and the robot controller are executed at the
same sampling rate, and there is no separate reference trajectory generation.

The robot controllers for the individual joints are represented as five
instances of a class, where there are procedures e.g. for computation of the
jointwise limits on &, (4.12) and (4.13). The actual limits (4.14) are com-
puted separately by combining the individual bounds. The use of jointwise

170




limitation of & means that the computation of the limits on & is distributed
over the different robot controllers, which has the advantage that the imple-
mentation can easily be extended, e.g. to handle more joints, or to obtain
synchronization with external axes, as described in [Nilsson, 1992a).

A.1 Implementation of Path Velocity Control

The implementation is described, and selected pieces of code are listed. The
code is complete with respect to the control aspects, but the code for e.g.
parameter transfer and storage of data that should be plotted have been
omitted.

Robot Controller
The robot controller (5.4) is parametrized as (4.1) with

/81.' :’fhif'(d)

. Al

oy =sf(2)6% + def ()6 + k()6 — 66) 4 gl f() —q) D
where 1 < 4 < 5. The robot controller is implemented in a C++ class. The
five robot controllers for the individual joints are obtained as five instances
of this class. The class interface is shown in Listing A.1. The state variable
xf in Listing A.1 is used for filtering of the robot velocity, which is computed
by taking differences of the position measurements. The filter is a first order
filter with time constant 0.02 seconds. The procedure computebeta computes
B1; and B,; according to (A.1). The robot velocity ¢; is given in the variable
dq, the current values of the path functions f(o), f'(¢) and f'"(o) are given
in qr, qrd, and qrdd, and the path velocity ¢ is given in ds. The procedure
ddsminmax computes jointwise limits on &, i.e. &%,,,(B1,,B2;) in (4.12) and
% in(B1;,P2;) in (4.13) are returned in the variables ddsmax and ddsmin.
The procedure computeu gives the limited value of 7;, i.e. the limitation of
T; = 1,6 + B2, by the torque limits umin and umax.

Path Velocity Controller

The class interface to the path velocity controller is described in Listing A.2.
The number of joints, here five, is given in the variable njs, which defines the
length of e.g. the vector q in Listing A.2. The vectors q, u, and qold contains
the current values of the joint positions g, the torque 7, and the previous joint
position ¢(t — h), where h is the sampling interval. Selected variables, e.g.
the input vector q and the output vector u are sent to the Sun, see Figure
5.1, for plotting and/or storage in files. This is done by the private procedure

171




Appendiz A Implementation

class PD_Controller {
/* state */ float xf;
/* par */ float kp, kv, m, d, umin, umax;
/* auxvar */ float betal, beta2;
public:
PD_Controller();
“PD_Controller();
void computebeta(
float q, float dq,
float qr, float qrd, float qrdd, float ds);
void ddsminmax(float &ddsmin, float &ddsmax);
float computeu(float dds);
void writepars(
float kp, float kv, float m, float d,
float umin, float umax);
void readpars(
float &kp, float &kv, float &m, float &d,
float &umin, float &umax); oo

};

Listing A.1 The class interface for the robot controller

sendtoplot, which is called by newstate. The procedure sendtoplot stores
the values of the variables that should be sent to the Sun in a common
memory area, where they then are collected by the M68030, see Figure 5.1.
The variable P is the path representation. The class interface to this variable
is described below in Listing A.4. The variable RobotController in Listing
A.2 is a vector of the five robot controllers. The class interface to the robot
controller was given in Listing A.1. The variables alfa, scale, smaxeps,
dsmin, and delay are parameters that are used in the path representation
P. The parameter alfa is o in (4.24), scale is the constant scaling factor
v in (4.26), smaxeps is used for detection of completed motion, i.e. the
motion is considered as completed when sy — o is less than smaxeps, dsmin
is a minimum value of ¢, and delay is a delay time between each completed
motion along the path. The actual control is done by periodic execution of the
procedures update and newstate. The implementation of these procedures
is shown in Listing A.3. The procedure call P.getref in Listing A.3 gives
the current values of f(o), f'(¢), f"(0), o, and &, and also the current value
of the variable u, in (4.24). The calls to computebeta and ddsminmax for the
individual joints then give the jointwise limits (4.12) and (4.13). The actual
limits (4.14) are then computed by the procedure calls min5 and max5. It

172




A.1 Implementation of Path Velocity Control

class PVC {
/* input */ float qlnjs];
/* output */ float ulnjs];
/* state */ float qold[njs];
/* par */ float kpl[njs], kv[njs], mlnjs], d[njs],
umin[njs], umax[njs];
/* par */ float alfa, scale, smaxeps, dsmin, delay;
/* par */ float h;
/* auxvar */ float qrlnjs], qrdlnjs], qrdd[njs];
/* auxvar */ float s, ds, dds, ddsmin, ddsmax, limused;
Path P;
PD_Controller RobotController[njs];
public:
PVC();
“PVCQ);
void update(float* q, float* u);
void newstate();
private: 4
void sendtoplot(); /
+;

Listing A.2 The class interface for the path velocity controller

is then checked if the limits should be used or not, i.e. it is checked if
Omin < Omaz and if u, is outside the limits. If the limits are admissible,
i.e. if 6min < Omaz, the procedure call sat(ur,ddsmin,ddsmax) gives the
limited &. If the limits are not admissible, the assignment dds = ur gives
0 = u,, as was discussed in Chapter 4, see the discussion following (4.24).
The controller output 7 is then computed by computeu as 7 = 816 + 8.

The procedure call P.updateref in Listing A.3 updates the states o and
o in the path velocity controller, using a forward Euler discretization. The
procedure updateref also contains logic for handling the case o = s¢, which
means that the reference trajectory has traversed the path. If this is the case,
a delay is introduced by setting a counter. This means that between each path
traversal there is a delay where the reference values given by the procedure
call P.getref(qr,qrd,qrdd,s,ds,ur) in listing A.3 gives zero velocity and
acceleration, i.e. ds = ur = 0, and the robot is kept at a constant position.
The implementation of the procedures getref and updateref are shown in
Listings A.5 and A.6. The interface to the path class is shown in Listing A.4.
The variable svec in Listing A.4 is a vector containing the discretized values
of o, i.e. a discretization of the interval [sg,s¢]. The values in this vector are

173




Appendiz A Implementation

void PVC::update(float* nq, float* nu) {
float dqlnjs], ddsminvec[njs], ddsmaxvec[njs];

float ur;
for (int i = 0; i < njs; ++i) {
qli]l = nqlil;
dq[i] = (ql[i] - qold[il)/h;
}

P.getref(qr,qrd,qrdd,s,ds,ur);
for (i = 0; i < njs; ++i) {
RobotController[i] .computebeta(
qlil,dqlil,qr[il,qrd[i],qrdd[i],ds);
RobotController[i] .ddsminmax(
ddsminvec[i],ddsmaxvec[i]);

}
ddsmax = minb5(ddsmaxvec);
ddsmin = maxb5(ddsminvec);

if ((ddsmin < ddsmax) && (ur > ddsmax || ur < ddsmin))
limused = 1; _

else i ,
limused = 0;

if (ddsmin < ddsmax)
dds = sat(ur,ddsmin,ddsmax);

else
dds = ur;

for (i = 0; i < njs; ++i) {
ulil RobotController[i].computeu(dds);
nuli] = ul[il;

}

L1}

}

void PVC::newstate() {
sendtoplot();
P.updateref (h,dds);
for (int i = 0; i < njs; ++i) {
yold[i]l = y[il;
}
}

Listing A.3 The implementation of the path velocity controller

174




A.1 Implementation of Path Velocity Control

class Path {
floatvec svec, vi, v2;
fmatrix £, £d, fdd;
int waitcount, waiting;
/* par */ float alfa, scale, smaxeps, dsmin, delay;
/* state */ float s, ds;
public:
Path();
“Path();
void writepars(
float alfa, float scale, float smaxeps,
float dsmin, float delay);
void getref(float* qr, float* qrd, float* qrdd,
float &s, float &ds, float &ur);
void updateref(float h, float dds);
private:
int getindex(float s);
}; s

Listing A.4 The interface to the path representation

accessed by the private procedure getindex, which gives the position in the
vector svec corresponding to the value s. The variables vi and v2 are the
nominal velocity and acceleration profiles v;(o) and vy(o). The variables £,
fd, and fdd contain the path description, i.e. the functions f(¢), f'(o), and
f"(o). The variables waitcount and waiting are used to keep the timing
between different runs. The variables s and ds are the current values of o
and &.

Main Program

Both the path velocity controller and the robot controllers are run as one
process by a periodically executed routine, shown in Listing A.7, where the
procedure docontrol is called every sample.

175




Appendiz A Implementation

void Path::getref(float* qr, float* qrd, float* qrdd,
float &sout, float &dsout, float &ur) {

int index = getindex(s);

for (int i = 0; i < njoints; ++i) {
qrli] = f[i][index];
qrd[i] = fd[i] [index];
qrdd[i] = fdd[i] [index];

}
sout = s;
if (waiting) {
dsout = 0;
ur = 0;
}
else {
dsout = ds;
ur = scale*scale*v2[index] +
alfa/2*(scale*scale*vi[index]*vi[index] - ds*ds);
} s

}

Listing A.5 The implementation of the procedure getref. The variable ur is
computed according to (4.26).

176




A.1 Implementation of Path Velocity Control

void Path::updateref(float h, float dds) {
if (waiting) {
waitcount = waitcount + 1;
if (waitcount > delay) {
waiting = 0;
waitcount = 0;
}
}
else {
float news = s + hx*ds;
float newds = ds + h*dds;
S = news;
ds = newds;
if (ds < dsmin) ds = dsmin;
if (s > svec[maxindex] - smaxeps) {
waiting = 1;
s = svec[0];
ds = vi[0];
} -
} ,
}

Listing A.6 The implementation of the procedure updatref. The states o and

o are stored in the variables s and ds, and are updated using forward Euler
approximation. :

void docontrol() {

y = ServoIO.abs5Pos(); //AD-conversion
PVCinstance.update(y,u);

ServoIO0.Ref50ut(u); //DA-conversion
PVCinstance.newstate();

}

Listing A.7 The periodically executed routine for path velocity control.

177




