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1. INTRODUCTION

A heat pump that is used for the heating of a building relies on
a suitable heat source in the surroundings. A possibility that
has attracted considerabie interest during the last years is to
extract the heat from the ground via horizontal pipes which are
buried at a certain depth. Intensive studies of these systems are
in progress.

Water with a temperature below the ground around the pipe is
circulated in the pipes. A heat flux to the pipe is obtained. The
ground around the pipe is coo]éd. This will in turn induce a
thermal recharge process from the ground surface and warmer ground
further away. This thermal recharge process determines the long-
term heat extraction potential of the system. The thermal process
in the ground is analysed in this study.

A heat pump has a certain time-varying heat requirement during
the annual heating cyclie. The temperature of the heat carrier
fluid that circulates through the pipes and on the cold side of
the heat pump determines, in interaction with the temperature
field in the ground around the pipe, the heat extraction rate at
each time. The basic question is now: What temperatures must be
imposed on the fluid in order to obtain the required heat uptake?
This study will provide answers and guide-lines for different
situations. The temperature of the fluid should not become too
low for several reasons. The efficiency of the heat pump decreases
with decreasing temperature on the cold side. The environmental
impact and in particular freezing of the ground will impose
restrictions on the cooling of the ground around the pipes.

The analyses which are presented in this study are based on
analytical solutions of the heat conduction equation in the
ground. The aim is to provide basic mathematical methods to
assess the heat extraction potential in different situations. The
mathematical derivations are given in the appendices. Many
numerical examples are considered.



The dynamical, multidimensional thermal process in the ground with
its coupling to the heat extraction strategies is often quite
complicated. It is therefore important to start the analysis with
simple basic situations. These are then put together to represent
more complex cases. A deeper understanding of the processes is
obtained in this way.

The case when the ground freezes is not considered in this study.
Rapid hourly or shorter temperature and heat extraction fluctua-
tions at the pipe are not dealt with. The starting point of the
analysis is a prescribed heat extraction rate which may vary on a
time-scale from a few hours to years. The ground is assumed to
consist of a homogeneous material. The case of two soil layers
and the effects of ground water and infiltration are however also
discussed. The temperature at the ground surface is a given func-
tion of time. The ground surface may have a constant thermal
resistance. The case with variable resistance due for example to
snow of changing depth is not dealt with.

The basic principle of superposition is expounded in chapter 2.
By this the thermal process is separated into different basic
ones. The steady-state component is discussed at length in
chapter 4. Heat extraction pulses and superposition of pulses are
discussed in chapter 6, while periodic variations are analysed in
chapter 7. Next chapter is devoted to the effects of ground water
flow and infiltration. Finally temperature variations along the
pipes, pipe end effects, thermal influence on the surroundings,
and the influence between pipes for different pipe configurations
are discussed. The various formulas are summarized in chapter 11.
The study is ended by various conclusions and a summary of results.



2. SUPERPOSITION PRINCIPLE

The complex thermal process in the ground may be considered as a
superposition of more elementary ones, if the heat conduction
position technique will be used throughout this study. It will
therefore be discussed here in some detail.

The superposition is not valid if there is freezing in the ground.
This case is therefore excluded throughout this study. The second
basic requirement is that the boundary condition at the ground
surface is of a linear type as given by formula 5.1.1. More
refined conditions at the ground surface such as a variable
thermal surface resistance due to snow or other climatic condi-
tions such as the wind velocity cannot be accounted for. A time-
independent ground water flow or infiltration is allowed, while
time variations of mass flows render the use of superposition
invalid. The thermal properties of the ground are allowed to be
different in different parts.

Figure 2.1 illustrates the superposition principle for a vertical
cross-section in the ground with a single pipe. The temperature
process may be regarded as the sum of two other ones as shown in
the figure.
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Figure 2.1. Superposition of two temperature processes.

142 is the sum of the two processes T1

and T2, which are defined by the boundary temperatures T1(t) and

The temperature process T



Tz(t) and by the heat extraction rates q1(t) and q2(t) respectively.
The superposed process 1+2 has the ground surface temperature
T1(t)+T2(t) and the heat extraction rate ql(t)+q2(t). Care must be
observed concerning the initial condition at t=0. The initial
temperatures are of course also to be superimposed:

2(x,2,0) = TV (x,2,0) + T2(x,2,0) (2.1)

Figure 2.2 shows a case of superposition for two pipes in the
ground. The ground surface temperature is To(t) and the heat
extraction rates are q1(t) and qz(t). The thermal process may be
regarded as a sum of three more elementary cases.

Tolt) Tylt) T=0 1=

7 /Y, 7

% ¢ - ///’/«5,////«7+ /&
) A5 ) 40 //5,(t)

Figure 2.2. Superposition of three basic thermal processes.

The first process accounts for the boundary temperature To(t). The
other two processes are then to have zero boundary temperature.
The heat extraction rates are put equal to zero at both pipes.
This case therefore represents the ordinary temperature field
without heat extraction pipes. The second case accounts for the
heat extraction of the left pipe. The heat extraction at the other
pipe is put equal to zero. The second case therefore represents
the heat extraction q1(t) with a single pipe, when the ground
surface temperature is zero. The third case accounts in the same
way for the other pipe. The initial temperatures at t=0 are also
to be superimposed. If one of the three cases has the initial
temperature of the original left case in Figure 2.2, then the other
two cases to the right are to have zero intial temperatures in

the ground.



The thermal process due to a certain heat extraction q(t) to a
pipe may by superposition be regarded as a sum of two extraction
rates 9=q4+G,- Figure 2.3 shows a case when a heat extraction
pulse during a time t1 <tX< t, s regarded as a sum of two
simpler step pulses.
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Figure 2.3. Superposition of two step pulses into a finite pulse.

A time-varying heat extraction may be regarded as a sum of finite
pulses of the type that is shown to the left in Figure 2.3. These
finite pulses may in turn be regarded as sums of step pulses of
the type shown to the right in Figure 2.3. So a time-varying heat
extraction is by superposition given by the sum of a number of
elementary step pu]ées. The basic problem to solve is then the
thermal process due to a step pulse of heat extraction of a single
pipe in a ground with zero ground surface temperature. This is
done in chapter 6.

Another important case is the steady-state heat extraction.
Chapter 4 is devoted to this. Instead of regarding the heat
extraction q(t) as a sum of finite pulses one may use a Fourier
representation of q(t). Such periodic heat extraction rates are
analysed in chapter 7.

The analyses of this study are systematically made with prescribed
extraction rates q(t). One may instead start with prescribed fluid
temperatures in the pipe and then compute the ensuing extraction
rates. This is however not to be recommended, since it leads to a
far more complicated analysis. This is due to the fact that the
superposition now requires that the fluid temperatures at certain
pipes are zero. This means in general that there are singularities



at these pipes. One cannot isolate the processes of different pipes
from each other any more. The present analysis with prescribed
extraction rates is therefore much simpler.



3. TIME SCALES

The heat extraction and the thermal process in the ground involve
quite different time scales from hourly fluctuations to the annual
cycle and even variations from year to year. A clear appreciation
of the time scales of the fundamental processes that are involved
is of great use in the understanding of these heat extraction
systems. The different time scales will lead to different types
of analyses.

Let us first consider the basic situation of a constant heat
extraction rate q for t > 0 to a single pipe at a depth D below
the ground surface. The quantity q is the heat extraction rate

per unit length along the buried pipe. The (outer) radius of the
pipe is R. The thermal conductivity of the ground is A (W/moc) and
the diffusivity a (m2/s). See Figure 3.1.

Figure 3.1. Constant heat extraction g to a single pipe from a
starting time t=0.

The pure effect of the extraction q is considered. So the boundary
temperature at the ground surface is T=0. The temperature of the
ground at the starting time is also zero. The solution of this
problem is given in chapter 6.

A characteristic time for this process is:

2
2D
ty = S (3.1)

This time tD is of fundamental importance so it will be used
throughout the study.



We take the following data:

D=1m R=0.02m
= 1.5 W/m°C  a = 0.75-107% n%/s (3.2)
g =10 W/m
The characteristic time tD is then:
t, = 2.1 s = 30.9 days ~ 1 month (3.3)
0 ™ G T '

The temperature fields of this particular case are shown in Figure
3.2 for four different times t = 0.5'tD, tD’ Z-tD, ~, The last
time gives the steady-state situation. It should be remembered
that the given temperature field is the one that is due to the
heat extraction. A complete picture will require the superposition
of other contributions. In particular there is always a contribu-
tion from the temperature at the ground surface; cf Figure 2.2.

-1 lo +1 <(m) -1 0 +1 <(m)
J=-1C =1°C
g PN
/ ﬁ\\—Nz NI\ ‘
+1 ¢ +l v
| K4 K\@ )
z(m)} z(m)

3.2a 3.2b
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Figure 3.2. Temperature fields due to a constant heat extraction

in the case of 3.2. tD = 1 month.

The displacement of the isotherm T = -1 °C is shown in Figure 3.3.

| — x{m)

+1

z(m)

Figure 3.3. The displacement of the isotherm T = -1 °C in the case
(3.2) for t = 0.5tD, tD’ ZtD and o,

The temperature profiles in a vertical cut through the pipe are
shown in greater detail in Figure 3.4.

x {m)
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Figure 3.4. Temperature profiles along a vertical cut through the
pipe. Data according to 3.2.

The temperature TR at the pipe radius is of particular importance.
One shall have this temperature at the pipe in order to obtain the
prescribed constant heat extraction rate q. Figure 3.5 shows TR‘

Talo0)
N
01 12 ?10 20 30 40 S0 60 70 80 9, t (days)
-1 !
!
-2 l
-3 L
NG .
-4 ~—\
l“\-__
-5 S PR PRy spuepey sxprepags gy Pyepey 373 x>

Figure 3.5. Heat extraction temperature Tp at the (outer) pipe
radius as a function of time. Data according to 3.2.
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Another basic thermal process is the temperature recovery after
the termination of the heat extraction. The heat extraction is

q t<0
q(t) ={ (3.4)
0 t>0

The data of 3.2 are used. We take a very long extraction pulse, so
that the temperature becomes steady-state for t < 0. The pulse is
terminated at t=0, when the temperature field is given by 3.2 d.
The process for t > 0 gives the thermal recovery after the heat
extraction.

Figure 3.6 a shows the temperature profiles on the vertical line
through the pipe (x=0). The displacement of the isotherm

T = -0.5 °C is shown in Figure 3.6 b. The pipe temperature TR(t)
is given in Figure 3.7.

-2 -1 0 1 2
0 x(m)
/“‘\ t_o
//—'_\ —T1
2 A0 L / ey | —t=0.25t,
— T(c%//ﬁ—: 2 /] ™\
\<%*d / ( /\ }7L—t=0.5t0
%tm _La 3 \\\/ —=0.75t)
2 \ Wl
° 5
Z(m) z(m)
3.6a 3.6b

Figure 3.6. Thermal recovery after a pulse 3.4. Data from 3.2.
a: Temperatures along x=0. b: Evolution of isotherm
T = -0.5 °C.



12.
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Figure 3.7. Pipe temperature TR during thermal recovery after
heat extraction. Data according to 3.2 and 3.3.

The recovery at the pipe is as we see from figure 3.7 very rapid
in the beginning. We have after an infinite pulse:

Ta(tp/30) = 0.36 T,(0)

TR(tD/3) = 0.1 TR(O) (3.5)

Ta(tp) = 0.05 Tp(0)
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4.  STEADY-STATE HEAT EXTRACTION

This chapter is devoted to a rather extensive study of the steady-
state heat extraction from one or several pipes. The steady-state
case may seem to be quite far from real, dynamical heat extraction
situations. But the time scale tD of obtaining more or less steady-
state conditions is often smaller than the extraction period. The
steady-state heat extraction is then a base load contribution to
the total thermal process. The applicability and importance of the
steady-state contribution is quite wide.

4.1 One pipe in the ground

The considered case of steady-state heat extraction by a single
pipe in the ground is shown in Figure 4.1.

7 //
z:nch/axz azz

Figure 4.1. Steady-state heat extraction by a single pipe in the
ground.

The pipe has its center at (x,z) = (0,D). The rate of heat extrac-
tion from the ground to the pipe is q per unit length of the pipe
(W/m). A negative value of q means that heat is flowing from the
pipe to the ground.

The ground is assumed to be homogeneous with a thermal conductivity A
(W/mK). The steady-state temberature T(x,z) shall satisfy the

Laplace equation. See Figure 4.1. The temperature at the ground-
surface z=0 is zero. The superimposed effect of the real



temperature variation at the ground surface is discussed in
chapter 5. The present solution T(x,z) represents the additional
temperature field due to the heat sink q. The thermal process is
assumed to be two-dimensional in the (x,z)-plane perpendicular to
the pipe. Three-dimensional effects will be discussed in chapter
9. Modifications due to ground water flow and water infiltratian
will be discussed in chapter 8.

The temperature due to a single 1ine sink in an infinite homogeneous
medium with a thermal conductivity A is:

q
VS In(r) (4.1.1)
Here r is the distance to the line sink.

In the present case of Figure 4.1 the medium is semi-infinite. The
temperature is to be zero at the boundary z=0. This will be
satisfied if we imagine that a mirror line sink with the opposite
strength -q is placed in (0,-D).

The temperature T consists of two terms of the type 4.1.1. We get
the basic solution:

VX +(Z'D) )

_ 9
T(x,2z) = VIS AP

5 In(

(4.1.2)
The nominator of the argument of the logarithm is the distance from
(x,z) to the 1ine sink at (0,D), while the denominator is the
distance to the mirror sink at (0,-D).

Let R be the outer radius of the pipe. The periphery 6f the pipe
at the soil is given by

x? + (z-D)? = R? (4.1.3)
The distance from a point on the pipe periphery to the Tine sink
+q at (0,D) is of course R, while the distance to the mirror line
sink varies from 2D-R to 2D+R. But the radius R will always be much
smaller than the depth D:



R<D (4.1.4)

The assumption 4.1.4 will be used throughout this study. The
minute variation of the denominator in the logarithm of 4.1.2 is
then negligible. We have the approximation:

sz + (z+D)2 ~ 2D for x2 + (2-0)2 = R2 (4.1.5)
This type of approximation will be used throughout this study.

Let TR denote the temperature at the pipe periphery 4.1.3. Then we
have from 4.1.2, 3 and 5:

Tp = 73 - 1n(,§5) (4.1.6)

The logarithm and the extraction temperature TR are of course
negative, since heat is extracted from the ground to the pipe.

Formula 4.1.6 may be written in the following way:
_ 1 2D
'TR =gy ]n(TT) (4.1.7)

The driving temperature difference between the ground surface and
the pipe periphery is O—TR. The ensuing heat flux is gq. The second

and the ground surface. We may write

0 - Tp = meq (4.1.8)

Here m is the thermal resistance of the ground per unit length of
the pipe:

m= e 1n(%) (4.1.9)

15.
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The dimension of m is K/(W/m). The thermal resistance m represents
the necessary driving temperature for unit heat extraction rate.

The quantity 2mxm, where m is the thermal resistance per unit
pipe length, is dimensionless. We will call it the thermal

pipe in the ground:

2mm = 1n(%3) (4.1.10)

It is given in Table 4.1. The relatively slow variation with the
quotient R/D is note-worthy. A twenty-fold decrease of R/D from

0.1 to 0.005 will only double the thermal resistance.

R/D | 0.001 0.005 0.01 0.02 0.05 0.07 0.1 0.2

2mam ' 7.60 5.99 5.30  4.61 3.69 3.35 3.00 2.30

Table 4.1. Thermal resistance factor for a single pipe.

The inverse of the thermal resistance is a heat transfer
coefficient:

q= %-(O—TR) (4.1.11)

The quantity 1/m (W/mK) gives the steady-state heat flux per unit
pipe length for a unit driving temperature difference.

The thermal conductivity of soils varies between, say, 0.8 and 2
W/mK, while the heat capacity C normally is about 2-106 J/m3K. As

A= L5WmK  a=3s 0.75-107% n?/s (4.1.12)

6

(€ = 2.10% a/mK)
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For the pipe in the ground we take the following reference case:

D=1m R=20.02m g =10 W/m (4.1.13)

For this reference case 4.1.12-13 we have the characteristic time
tD (3.1):

2
_ 20t
tD = 1 month (4.1.14)

The thermal resistance factor is:
241
1"(0_02) = 4.61 (4.1.15)

The thermal resistance is from 4.1.10:

-1 -
ms= 5 4.61 = 0.49 Km/W (4.1.16)

mel.

The pipe temperature is from 4.1.8:
Tp = =0.49:10 = -5 % (4.1.17)

So in order to obtain a steady-state heat flux g=10 W/m a temperature
of -5 °C is to be maintained at the pipe perphery. It must be
remembered that we are talking about the temperature contribution

due to the heat extraction. If the natural temperature at the pipe
depth is, say, +7 °C, then the real pipe temperature is +7 - 5 o =
+2 °c.

The thermal resistance between the fluid in the pipe and the ground
at the outer periphery of the pipe will require that a still lower
temperature is maintained in the fluid. This is discussed in
section 4.3.

The complete steady-state temperature field of the reference case
4.1.12-13 is shown in Figure 4.2.
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4.2 Thermal influence region

The thermal influence region around the heat extraction pipe is

of interest in order to assess the effect on other heat extraction
pipes. The temperature change from natural conditions is also of
interest from an environmental point of view. It should be
observed that the steady-state representsessentially the greatest
thermal impact on the surrounding ground except for the immediate
vicinity of the pipe, where dynamical effects are dominating. Cf
Figure 3.2 a-d.

The temperature field of reference case 4.1.12-13 is shown in
Figures 3.2 d and 4.2-4.

z{m)

-015

z{m}

Figure 4.2. Stead-state temperature field around a single heat
extraction pipe. Reference case 4.1.12-13.

The isotherms of the temperature field 4.1.2 are circles. The
center and the radius of a certain isotherm Tare given by

.coth(ZALTL D 2.
(0, D Coth( q )) and m (4 2 1)

respectively.
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The temperature profile in the vertical cut x=0, z>0 is shown in
Figure 4.3. The steep temperature gradient near the pipe is note-
worthy. The temperature increases from -5%C to -2.5°C within the

first 20 centimeters.

T(0,2) (C) A
o

N

z(m)

-5

Figure 4.3. Temperature profile in the cut x=0 for reference case
4.1.12-13.

The temperature profile at the pipe depth z=1 m is shown in Figure

4.4,

Tix, 1) (°C)

0 x{m}

0

e

/
//

Figure 4.4. Temperature profile at the pipe depth z=1 m for reference
case 4.1.12-13.

-5
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The temperatures at the depth z=D are of particular interest, since
they give the influence on other pipes at the same depth. We have
from 4.1.2:

T(x,D) = (4.2.2)

1n( ..
sz 4D "7

The second factor o gives the relative temperature at a distance
x from the pipe. It is given in table 4.2.

x/D| 0.0t 0.02 0.05 0.1 0.5 1 1.5 2 3 4

5

o +-5.3 -4.6 -3.7 -3.0 -1.4 -0.8 -0.5 -0.3 -0.2 -0.M1

x/D| 7 10 20 50

a | -0.04 -0.02 -0.005 -0.001

Table 4.2. Relative temperature at the depth z=D for a single pipe
according to 4.2.2.

The following simpler expression for the temperature 4.1.2 may be
used at a certain distance from the pipe:

.. 9, 2D Vo2, 2
T(X,Z) = ﬁ ?:;2 ( X +z~ > 3D) (4.2.3)

The error in the formula is only a few percent. For the reference
case 4.1.12-13 we get from 4.2.3 for example:

x=0,z=5m T=-0.42 %
X=5m z=1m T=-0.08 °C (4.2.4)
Xx=5m z=5m T=-0.21°%

These temperatures shall be compared to the pipe temperature
Tg = -5 °C (4.1.17).

-0.07
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4.3 Fluid-solid thermal resistance at the pipe

The pipe temperature TR that we have discussed so far is the
temperature in the soil at the outer periphery of the pipe. There
is always a certain thermal resistance between the fluid in the
pipe and this outer periphery in the soil. The fluid temperature
Tf must therefore be lower than TR in order to sustain the heat
flux q over this thermal resistance.

Let mp (Km/W) denote the total thermal resistance at the pipe, per
unit pipe length, between the fluid and the surrounding soil. Then
we have the relation:

TR - Tf = q.mp (4.3-1)

Adding formulas 4.1.8 and 4.3.1 we have:

0 - Tf = q-(m+mp) ‘ (4.3.2)

The total thermal resistance between the fluid in the pipe and the
ground surface is given by the sum m+mp.

Let us first consider the steady-state heat flux over aﬁ annulus
with an inner radius R1 and an outer one RZ' Let as usual q be
the heat flux per unit length and X the thermal conductivity of
the annulus material. The temperature difference is T2—T1. See
Figure 4.5.

Figure 4.5. Steady-state heat flux through an annulus.
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For this case we have the well-known formula:
R
1n(§%
T2 - T1 = q '—m——- (4.3-3)

The second factor defines the thermal resistance of the annulus:

mpy = o In62) (4.3.4)
12 = Zax ‘ﬁ; *oe

It should be remembered that the thermal resistance refers to a
unit length of the annulus or of the pipe.

There are three contributions to the total pipe resistance mp. The
first part mpf is the fluid and boundary layer resistance between
the bulk of the fluid and the inner pipe wall. The second part mpw
is the thermal resistance of the annulus of the pipe wall itseif.
The third part m s is the contact resistance between the outer side
of the pipe wall and the bulk soil at the radius R. We have:

+m_ +m (4.3.5)

The pipe-wall resistance is given by an expression of type 4.3.4.
Let Ap be the thermal conductivity of the pipe wall material and
R_ be the inner radius of the pipe. Then we have from 4.3.4:

_ R
mpw = 1n(§—) (4.3.6)

The first contribution mpf may be obtained from standard works

on heat transfer. See for example [1]. The thermal resistance will
depend on the fluid velocity. It turns out to be quite small in
the present applications with turbulent flow in the pipe. We will
neglect this term:

mpf ~ (4.3.7)



The third contribution, the contact resistance between the pipe
and the soil, must be measured.

Let us consider some numerical examples. The soil resistance, i.e.
the resistance between the ground surface and the outer periphery
of the pipe, of reference case 4.1.12-13 was (4.1.16):

m = 0.49 Km/W (4.3.8)

From [1] we get the fluid-to-pipe-wall resistance for two fluid
velocities:

Ve 0.1 m/s mpf =~ 0.019 Km/W (4.3.98)

Ve = 1 m/s mpf =~ 0.003 Km/W (4.3.9B)

Let us assume that the thickness of the wall is 3 mm:

R=0.020 m R_.=0.017m

The pipe-wall resistance depends on the thermal conductivity of
the wall. We may have for example:

i

Polyethene: Ap 0.40 W/mK

mpw = 0.06 Km/W (4.3.10A)

PVC - D

H

17 W/mK = 0.15 Km/W 4.3.10B
p = 017 W/m Mow / ( )
The values of 4.3.9 and 4.3.10 shall be compared to the soil
resistance 4.3.8. We see that the contribution mpf is indeed
negligible in accordance with 4.3.7. The pipe wall resistance may
be quite important as the values of 4.3.10 show. It is clearly

important to avoid pipe materials with low thermal conductivity.

The contact resistance mpS between the pipe and the ground must
be carefully considered. Let us as an illustration of the dangers
assume that the contact resistance correspond to a gap of air of
1 mm around the pipe. The thermal conductivity of air is 0.024
W/mK. The thermal resistance of the air gap is then (4.3.3):

_ 1 0.021y - _ ,
m,lmm of air = mo ]n(m) = 0.32 (Km/'v‘j) (4.3.11)

23.
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This would give a thermal resistance which is 65% of that of the
soil (4.3.8).

The fluid temperature of our reference example is now from 4.3.2,
5, 7, 8, 9A and 10A:

0 - Te = 10-(0.49 + 0.019 + 0.06 + 0) = 5.7°C

The fluid shall thus in this particular example be kept 5.7°C below
the undisturbed soil temperature at the pipe in order to obtain the
required steady-state heat flux g=10 W/m.

The soil region near the pipe may have another thermal conductivity
than the rest of the soil due to changes in moisture content.

Let us assume that a cylindrical region R < r < R1 around the pipe
has the thermal conductivity A\ instead of A. The thermal resistance
of this region is given by an expression of type 4.3.3. If R1»is
much less than D, then 4.1.9 can be used for the remaining soil

resistance:

M=ot 1In (R1)+ 1 1n (2D (4.3.12)
BRI R YL -3

More generally, Ay can be a function of the distance from the pipe:
A = A1(r), R < r < R,. Then the thermal resistance is:
R

1
-1 dr 1 2D
m= - £ 7?(?7? t oy Tn (ﬁT) (4.3.13)

4.4 Ground surface thermal resistance

The boundary condition at the ground surface has until now been
that the boundary temperature is given. The heat extraction part
of the thermal process has then as boundary condition zero
temperature (T(x,0) = 0); cf. Figure 2.2. The contribution from the
boundary temperature is discussed in chapter 5.



A more realistic boundary condition is to have a contact resistance
at the ground surface and a given temperature above the contact
Tayer. See 5.1.1.

Let ag (W/mzK) be the heat transfer coefficient at the ground

surface. We assume that ag is a given constant. The boundary

condition for the steady-state heat extraction part of the heat

transfer process is then:
aT _

-2 3z GS(O'T) 4

1)
o

(4.4.1)

The problem of Figure 3.1. is apart from this unchanged.

The solution to this new problem, when there is a thermal resistance

at the ground surface, is derived in appendix 1. The important
quantity is the temperature TR at the pipe radius. We have from

A1.13:

2Da
S 2D

o
20 Y A (4.4.2)

- =q —
TR m{]ﬂ(R)+29

The first part on the right-hand side gives the previous case with
zero resistance at the ground surface (as = »). See 4.1.9.

The thermal resistance factor is now with the notation of 4.1.8.
2mam = 1In (2—[-)-) + g_(Da_/2) (4.4.3)
R sts T

The function 9 gives the increase of the thermal resistance

factor due to the thermal resistance at the ground surface:
2Dog
X

2Da,

“E, ( 5) (4.4.4)

9 = 2e X

Here E1(s) is the so-called exponential integral. It is given in
a table in [2A]. The function gs(s) is given in table 4.3.

Das
-5 0.5 1 2 3 4 5 10
9s 1.19 0.72 0.41 0.29 0.22 0.18 0.10

Table 4.3. Contribution from a ground surface resistance to the
thermal resistance factor according to 4.4.2-4.
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Let us consider the reference case 4.1.12-13. The thermal resistance
factor was (4.1.15):

2mm = 4.61 (4.4.5)

We consider two cases:

Da
S _ _ 0.18

- = 5 : 9g = 0.18 T8 " 0.04 ( )
4.4.6

Dag ) 0.75 _

— =1 : 95-0.75 ’4—61'—0.16

Da
The case —75 = 1 means that the thermal resistance 1/as of the

ground surface is equal to that of a soil layer with the thickness
D. The second case therefore corresponds to a very high surface
resistance. The first case 1/as = D/5x is more realistic since the
resistance corresponds to a soil layer of D/5 = 0.2 m.

The second extreme case gives an increase of thermal resistance
due to the ground surface of 16%, while the first more normal case
only gives 4% increase. The conclusion of this is that the effect
of the ground surface resistance is quite small in the present
applications.

It may at first sight be surprising that the effect is so small.
The reason is that the major part of the temperature fall from the
pipe to the ground surface occurs close to the pipe. Thermal
resistances close to the pipe are therefore quite important, while
a change further away at the ground surface is of minor importance.

The thermal resistance at the ground surface will be neglected in
the following. This means that we have the simple boundary condi-
tion T=0 at z=0 for the heat extraction part of our problem.

4.5 Two pipes

Figure 4.6 shows the present case of steady-state heat extraction
for two parallel pipes in the ground.



Figure 4.6. Steady-state heat extraction by two pipes in the
ground.

The pipes 1ie at the points (x1, D1) and (x2, DZ)’ The distance
between the pipes is B. The heat extraction rates are 94 and 9,
respectively.

The steady-state temperature in the ground is obtained from the
one-pipe solution 4.1.2 by superposition. We have:

V(x-x ) +(z D )

T(x, 1
(x2) = 7—— " (vrx )2+(z+D )2 )

(4.5.1)
V(x-xz) +(z-02)2

+-;L—-1n ( )
™ v?x-x2)2+(z+D2)7

The thermal influence region is obtained directly by superposition
of the single-pipe influence as discussed in section 4.2.

Let us assume that the two pipes have the same outer radius R.
The pipe periphery temperatures become with the use of approxima-
tions of type 4.1.5, where the temperature variation around the
pipe periphery due to another pipe is neglected:

q
Tt =z | (’zn") + 7 10 ()
(4.5.2)

B
TRe “m In (’zrrz“) *m In (g)

Here B_ is the distance between one of the pipes and the mirror
one of the other:
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B_ = /(;(1'X2)2 + (D1+Dz)2 =\/Bz + 4D,D

1Do (4.5.3)

Let us introduce the following notations:

, 20, , 20,
M= gx 10 7)) My = s T () )
4.5.4

\/§2+4D1DZ

K
My = 7oy 0 (—g—)

The quantities m, and m, are single-pipe soil resistances
according to 4.1.9. The quantity Mo represents the interaction
between the pipes. It tends to zero, when B tends to infinity.
The resistances 4.5.4 all refer to a unit length of the pipes.

The equations 4.5.2 may now be written:

“TR1 = Gpemy + QMg

(4.5.5)

“Tpp = 9p°My + Ggmyy

The fluid temperatures in the pipes are denoted Tf1 and sz, while
the pipe resistances are mp1 and mpz. Then we have by definition:

TR = Teq = qpemyy

(4.5.6)

Ty = T

R2 ~ 'f2 T 27T

Adding 4.5.5 and 4.5.6 gives the relation between fluid temperatures
and extraction rates:

TTeqg = Gqemyy + QoM
(4.5.7)
“Te2 = My + G1°Myp
Here we have introduced the notation:
My = my + mp1 My = m, + mp2 (4.5.8)



The resistance m . is the total thermal resistance for a single

ti
pipe between the fluid in the pipe and the ground surface.

The fluid temperature variation along a pipe is rather small for
normal fluid velocitites. The temperature difference between two
pipes is also normally rather small. An important special case is
therefore, when the two fluid temperatures are equal:

Teg = Tep = T¢ (4.5.9)
The equations 4.5.7 and 9 define a relation between Tf and a and
between Tf and 9y- We get for pipe 1:

2
MyqMep~Mo

mt1'm12)
Mi2~Mi2

-7 =1
M2 M2

PERH = qqe(mgy + My, (4.5.10)
The expression for pipe 2 is of course analogous. We note that the

ratio between the heat extraction rates becomes:

Y9 _ MM (4.5.10")
9% MM

The extraction rates are equal, when the resistances My 4 and mo
are equal.

The total heat extraction rate from the two pipes per unit length
is Qq+0,- We get from 4.5.10 and 10':

Te = (q1+q2)-m1+2 . (4.5.11)

where

2
m,,m,_,—-m
t1 7t2 12
m = (4.5.12)
-
1+2 My g+ o 2m12
The quantity My,2 is the total thermal resistance between the
fluid in the two pipes and the ground surface.

- An important case is when the two pipes lie at the same depth as
shown in Figure 4.7.
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Figure 4.7. Two pipes at the same depth.

We assume that the process is symmetrical with respect to the two
pipes:

Teg =T, =T

£2 £ mp1 = mp2 =m (4.5.13)

f1

Then we have:

_ _ 1 2D
Mep = Mep = My * 7y 0 ()
(4.5.14)

4.
lf Q'"lp + q X I” +g 4. .'

The factor g' is given by

hZoan?.
"= In (_%E‘P_) (4.5.16)

g
It represents the influence of the other pipe. It is given in

Table 4.4. These values are to be added to the value of 1n{2D/R)
as given by Table 4.1.

B/D I 0.1 0.25 0.5 0.75 1 1.5 2 3 5 10

g' I 3.00 2.09 1.42 1.05 0.80 0.51 0.35 0.18 0.07 0.02

Table 4.4. Contribution g' of a second pipe at the same depth to
the thermal resistance factor according to 4.5.15-16.
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Let us consider the following example with data from the reference

case 4.1.13.
R/D = 0.02 : 1n(%§) = 4.61

B/D | 0.25 0.5 1 2

g' 2.09 1.42 0.80 0.35
g'/4.61 | 0.45 0.3t 0.17 0.08

(4.5.17)

The second pipe increases the thermal resistance factor from 4.61
to 4.614g'. For example, a second pipe at a distance of B=D meter
increases the resistance factor with 17%. We see that the second
pipe must lie quite close in order to have a significant influence.

Another way to represent the effect of the influence between the
pipes is to compare the two pipes with two independent pipes. The
total heat extraction is compared for the same fluid temperature
Tf. The heat extraction 944, from the two pipes is given by 4.5.11
and 12. The heat extraction 2q from two independent single pipes

is given by 4.3.2. The ratio n is thus:

) Q4+4, -Tf . m+mp ) m+mp
My ZCTe) - Zmp,

n —zq—-

For two pipes at the same depth have from 4.5.12-16:

anmp+1n(ZD/R)
n= znxmp+1n(2n/k)+g‘

As an example we take:

R— -
p = 0.02 m =0

(4.5.18)

(4.5.19)

(4.5.20)

The extraction ratio n is then a function of B/D only. It is given

in Table 4.5.



32.

B/D | 0.05 0.1 0.2 0.4 0.6 0.8 1.0

B/D] 1.6 1.8 2.0 2.25 2.5 3 4

n 0.56 0.61 0.67 0.74 0.79 0.82 0.85 0.87 0.89

10

n 0.91 0.92 0.93 0.94 0.95 0.96 0.98 0.98 0.992 0.996

Table 4.5. Heat extraction with two pipes according to Figure 4.7
relative to that of two independent pipes. Data according

to 4.5.20.

AN

The function n of Table 4.5 is shown in Figure 4.9 together with

the case of two pipes in the same ditch.

It is also shown in Figure 4.14, where n is given for different

number of pipes.

Another interesting case is when the two pipes are buried in the

same ditch at the depth D and D+B respectively

. See Figure 4.8.

Figure 4.8. Two pipes which have been buried in the same ditch.

The thermal resistances are from 4.5.4 and 8:

) 1 ., 2D
M1 = Moy * 7y IN00)
) 1 . 2B+2D
Mip = Mo + 7o M)
1 B+2D
Mo = 75 1Ng—)

(4.5.21)

The total heat extraction from these two pipes are given by 4.5.11,

12 and 21.
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This case offers an illustrative optimization problem. The total
flux 44+4, of 4.5.11 is to be as high as possible for a fixed Tf.
The thermal resistance My,2 of 4.5.12 is to be minimized. Let us
first consider the case, when the ditch depth B+D is fixed, while
D is varying. The extraction rate increases with decreasing D, so
the upper pipe is just to be placed as close to the ground surface
as possible.

The interesting optimization occurs on the other hand, when the
position of the upper pipe is fixed, while the lower one is
varying. It is clear that the lower pipe should not be to close
to the upper one or to deep in the ground. There must exist an
intermediate optimum. The resistance My,o is to be minimized for
varying B, while D is kept fixed.

We will study this optimum for the following particular data:

R=0.02m D=1m
(4.5.22)

1.5 J/ms°C

>
}]

mp1 = mp2 =0

Then we get from 4.5.12:

My = 0.49 msK/J

B(m)|0.1 0.25 0.5 0.75 1 2 3 4 5 6 10 50

Mo 0.41 0.37 0.34 0.33 0.32 0.31 0.30 0.30 0.30 0.30 0.31 0.32

Me1

m 1.20 1.33 1.44 1.50 1.53 1.59 1.61 1.62 1.62 1.61 1.61 1.53
142

Table 4.6. Thermal resistance My, o of example 4.5.22. The third line
gives the increase of heat extraction when the second,
lTower pipe is introduced.

The quotient m“/m1+2 gives the increase of heat extraction for a

fixed fluid temperature Tf, when the second, lower pipe is introduced.

The thermal resistance my .o has in the present case a minimum for

~
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B = 4.8 m. The two pipes will in this optimal case deliver 62% more
heat than the single upper pipe alone. It should be remembered that
in the present discussion we fix the temperature and compare extrac-
tion rates.

The table shows for example that a pipe at the depth 1 m and the
second at the depth 2 m will deliver 53% more heat than the upper
pipe alone.

There are some important conclusions to be drawn from Table 4.6.
The increase of heat extraction capacity increases rapidly in the
beginning when B is small. There is a gain of 44% for B = 0.5 m
and of 53% for B = 1 m, when we compare with a single upper pipe.
The increase of the gain is then rather small up to the maximum
62% for B = 4.8 m. The maximum is extremely flat. The variation of
the extraction rate is below 3% when the lower pipe lies between

2 and 20 meters of depth. It is also note-worthy that this
theoretical optimum 1ies so deep as 5 m.

Let us also compare the two pipes in one ditch with two independent
4.5.22, are again used. The heat extraction ratio n is given by
4.5.18. The values of the lowest line of Table 4.6 are to be halved
since we are comparing with two pipes. The result is shown in
Figure 4.9, which also shows the previous case with two pipes at
the same depth.

"ﬂ
P
/Zf/’
°5-%A——— 7 e

Figure 4.9. Heat extraction by two pipes compared to that of two
independent pipes.



4.6 Three pipes

We shall here only consider the case when the three pipes lie at
the same depth. We also assume that the two distances between the
pipes are equal. See Figure 4.10.

7
_

Figure 4.10. Considered case of steady-state heat extraction by

three pipes.

The heat extraction rate of the central pipe is - The outer pipes
are by assumption thermally equal with the extraction rate Q- The
temperature field has three contributions of type 4.1.2.

The fluid temperatures of the central pipe and the outer ones
become:

“Tep = qpe(mgem) + gy (mypem, o)

(4.6.1)

H

Tep = Gpe(myrmemyy) + qqemyy
The pipe resistance mp is discussed in section 4.3, while m is
the single-pipe soil resistance 4.1.9. The coupling resistances
between pipes 1 and 2 and between the outer pipes become:
I T, vB2sap?
12 = Zmx B

1 v‘EE:;EE (4.6.2)
()

Moz = Zax~ 1M

He‘now assume that the central pipe and the outer pipes have the
same fluid temperature Tf. The ratio between 9 and 9, is then
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from 4.6.1:
q M, o~m .
B R _.ﬁlgﬁ:%§~ (4.6.3)
2 P 12

The central pipe extracts less heat than the outer ones so the
ratio is less than 1.

For the total thermal resistance between the three pipes and the
ground surface we have:

Te = (ag+2ay)emy 4,0
2
(mp+m)(mp+m+m22)-2m12

m = (4.6.4)
2+ 142 3(mp+m)+m22-4m12
We use the data 4.5.20 again:
R/D = 0.02 m =0 (4.6.5)

p

We compare the heat extraction q1+2q2 with that of three single

pipes for the same extraction temperature Tf:

q4+29, i -Te ' mmy i (m+mp)/3
39 My g 30T T My,

n = (4.6.6)
The result is given in Table 4.7 and shown in Figure 4.14.

B/D |0.05 0.1 0.2 0.4 0.6 0.8 1 1.2 1.4

n |0.41 0.46 0.53 0.62 0.69 0.74 0.78 0.81 0.84

1.6 1.8 2 2.25 2.5 3 4 5 7 10

0.86 0.88 0.90 0.91 0.92 0.94 0.96 0.98 0.99 0.994

Table 4.7. Heat extraction with three pipes relative to that of
three independent pipes. Data according to 4.6.5.

We see again that there is a considerable gain, when B is increased
for small B. The heat extraction of three pipes with a spacing of
0.2 D is 53% of that of three free pipes. The extraction increases



to 78%, when the distahce is increased to B = D.  The gain after,
say, B = 2D 1is marginal.

The ratio 4.6.3 of fluxes becomes in the present example for
B = D:

4.7 Four pipes

Figure 4.11 shows the next case to be studied.

Figure 4.11. Considered case with four pipes.

The four pipes'1ie at the depth D. They lie symmetrically with
respect to the z-axis. The distance between the outer pipes is 2L.
The distance 2xi between the inner pipes is variable 0< xi< L.

The steady-state heat extraction rates are a andq2 for inner and
outer pipes respectively. The temperature field is a sum of four
terms of type 4.1.2. The fluid temperatures become:
-Tf1 = q1(mp+m+m11) + qz(m12+miz)
(4.7.1)

n

“Ten qz(mp+m+m22) + q1(m12+mi2)

The coupling resistances are:

37.
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/ 2 .2
My, = o In ;4D S AL2.ap
1=z " ag 22 = 7 o
1 (L-x;)"+4D 1 (L+x;)"+4D (4.7.2)
m12 = 22N 1n( -Xi ) m12 T Zma ‘n( +x_i )

T, ) ™2 T G

When the inner and outer temperatures are equal, we get from 4.7.1
the following ratio between the extraction rates:
9

mp+m+m22-m12-mi2
2 mp+m+m“~m12-m12

(4.7.3)

The total thermal resistance between the four pipes and the ground
is from 4.7.1 and 4.7.3:

“Te = (2ay+29)my 4 4,0

1 (mp+m+mn)(mp+m+m22)-(m12+miz)2 (4.7.4)

m = T
2+1+142 ~ 7 2mp+2m+m11+m22-2m1242m12~

Let us compare the system of four pipes with four single pipes.
The ratio between the total heat extraction for the same fluid
temperature is from 4.3.2 and 4.7.4:

) 2q1+2q2 B -Tf q mem

(m+m_)/4
n = ) P

o M2 T T Mot

(4.7.5)

The ratio n is a function of the dimensionless variables Amp,
xi/D, L/D and R/D. We consider again the particular case:

R =
p = 0.02 m, =0 (4.7.6)

Figure 4.12 shows n as a function of x;/D for some values of L/D.
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1
> ~ 'IL,'=2
Loy
D
0 A
0 1 2 3 + 0

Figure 4.12. Heat extraction 4.7.5 of four pipes according to
Figure 4.11 relative to that of four independent

pipes. m_ = 0, R/D = 0.02.

p

The relative extraction rate n has, as a function of Xis @ maximum,
which is very flat. In fact we have:

L X3
‘5 =1: Y\max = 0.65 for —'D—'—' 0.40
X.
ne~0.65 for 0.21 <1}< 0.55
L X3
D=2 My =0.80 for —5=0.72
X.
n=~0.80 for 0.51 <-t}< 0.93
L X5
D=4 Ny =092 for 5=1.38

X.
ne0.92 for 1.10<1>1<1.69

As Tong as the pipes are not too close to each other it does not
matter much where the inner pipes are placed.

The maximal n is in the three cases obtained with an accuracy of
two digits for the case of equal spacing between the pipes
(X.i = L/3)-



Figure 4.13 shows the case with equal spacing B between the pipes.

Figure 4.13. Four pipes with equal spacing B.
This case is obtained if we take L = 1.5B and X; = 0.5B in 4.7.2.

The relative heat extraction n is given-by 4.7.5. Table 4.9 gives
n as a function of B/D for the particular case 4.7.6.

B/D | 0.05 0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

n I 0.33 0.38 0.45 0.56 0.63 0.69 0.74 0.78 0.81 0.84

1.8 2 2.25 2.5 3 4 5 7 10

0.86 0.88 0.89 0.91 0.93 0.96 0.97 0.98 0.99

Table 4.9. Heat extraction with four pipes accoring to Figure 4.13
relative to four independent pipes. Data according to
4.7.6.

Figure 4.14 shows the relative heat extraction rate n for two,
three and four pipes at the depth D. The spacing between the pipes
is B. The values of n are taken from Tables 4.5, 4.7 and 4.9
respectively.

The result for N=6, N=10 and N== are also shown. The Timit with an
infinite number of pipes is discussed in section 4.9.
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Figure 4.14. Steady-state heat extraction from N pipes compared to
N independent pipes. The pipes lie at a depth D. The
spacing between the pipes is B. R/D=0.02 , mp=0 .

4.8 N pipes

The general formulas for steady-state heat extraction by N pipes
are now easy to give. Let q; be the heat extraction rate of pipe
i, which lies at X=X1s z=Di. The steady-state temperature is a
sum of N contributions of type 4.1.2:

T(x,2) g AR ( bony) o0y (4.8.1)
X,Z) = n .8.
i1 2k v«x-xi)2+(z+Di)2}
The soil resistance of pipe i alone is
1, 20y
m_i = m ]n(T) (4-8.2)

The radius R could without problems be different for different
pipes: R » Ri' The distance between pipe i and pipe j is:

By = v4xi-xj)2 + (oi-nj)z (4.8.3)
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The distance between pipe i and the mirror of pipe j is:

2 2 _. /o2
V%xi-xj) + (Di+Dj) _\/éij + 4DiDj (4.8.4)

The coupling resistance between i and j is then:
62
1.‘],+4D1.DJ.)
iJ

1
m_ij = 1n( (4-8-5)

The fluid temperature of pipe i, which has the pipe resistance mpi’
is now:

N
“Tes = qi(mi+mpi) + jZ1 a5 My 5 i=1,2,...N (4.8.6)
J#i
This is a linear equation system between the fluid temperatures
Tfi and the heat fluxes q;- An important particular case is when
the fluid temperatures are essentially equal:

£ = Ts i=1,2, ...N (4.8.7)

The heat fluxes are proportional to Tf. They are obtained by
solving 4.8.6.-7. The cases considered in the previous sections
led to two equations for which the solution is simple to write
down. The general case for higher N is simple to solve with a
computer.

4.9 Infinite array of pipes

The extreme case of an infinite array of pipes is of interest,
since it gives a Timit for many pipes. The case is shown in
Figure 4.15. '

Figure 4.15. Infinite array of pipes.



The pipes 1ie at the depth z=D. The distance between the pipes is
B. The heat extraction rate q is the same for all pipes. The
temperature at the surface z=0 is zero.

The well-known solution of this problem is:

cosh(gﬂig—zl) cos(z"x)
2"(D+Z))'COS(%)

T(x,2z) = 1%‘1" ) (4.9.1)

cosh(

Our particular interest is the temperature at the pipe radius
x2+(z—D)2 - g2, There is a single pipe contribution of the type
1n(R). The remaining part represents the contribution from the
other pipes and from the mirror pipes at z = -D. The variation
around the pipe periphery of these contributions are as in the
previous discussions neglected, since R is much smaller than D
and B. We get after some manipulations from 4.9.1 the temperature
at the pipe radius:

Tp = 2—— 1n( = s1nh(2"D)) (4.9.2)

The thermal resistance of the soil between one of the pipes and
the ground is then:

- 1n(_ﬁ sinh(380)) = 1 (InBD) + £(E)3, (4.9.3)
where
- 2wD
f( ) 1n(2——'s1nh( }) (4.9.4)
The part 1n(2D/R) is the thermal resistance factor 4.1.10 of a
single pipe. The second part f(B/D) in 4.9.3 gives the influence
of the other pipes in the infinite array. The function f(B/D) is

given in Table 4.10.

B/D| 0.1 0.25 0.5 0.75 1.0 1.5 2 4 10

f I 58.0 21.2 9.34 5.56 3.75 2.06 1.30 0.35 0.06

Table 4.10. The function 4.9.4 which-gives the influence of
surrounding pipes in an infinite array.
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Let us consider an example:

R _ . 2Dy _

Tj = 0.02 : 1n(-—R = 4.61
B _ . By -

D= 1 : f(ﬁ) = 3.75

The infinite array increases the thermal resistance factor from
4.61 to 4.61 + 3.75; i.e. with 81%.

Let n as usual denote the ratio between the heat extraction of a
pipe in the infinite array and that of a free pipe. Then we have
from 4.9.3 and 4.3.2:
2D
2wxmp + ]n(TTJ

. (4.9.5)
Zw)\mp + 1n(—2R9) + f(%)

A particular case of 4.9.5 is shown in Figure 4.14.

4.10 Influence between pipes

We will in this section illustrate somewhat further the influence
on the pipe temperature from adjacent pipes. Consider a pipe at a
depth D. There is an array of N pipes to the right. These pipes
lie at the same depth. The spacing between the pipes is B. See

_

Figure 4.16. Influence on a pipe 0 from an array of N pipes.

We assume for simplicity that the heat extraction rate q is the
same for all N+1 pipes. This will not exactly be the case, when
the fluid temperatures are to be equal. But we have seen that the
difference between the extraction rates are relatively small.



The coupling resistance between pipe 0 and pipe j is from 4.8.5:

N ]n(\/(jB)j+4Dz)

m(]j il B (4.10.1)
The temperature of pipe 0 is then from 4.8.6 with 9;=9:
- = g q 2D B
Teg = asmy + ooy (In(3e) + hy(p)) (4.10.2)
Here hN is given by
N PRV
(@) = ) ‘"(——(38)3540) (4.10.3)

j=1

The sum hN represents the influence of N adjacent pipes. This term
is to be compared to the thermal resistance factor 1n{2D/R) of the
pipe itself.

The function f(B/D) of 4.9.4 represented the influence of an
infinite array to the right andto the left. We therefore have:

. B 1 ¢(B
hlz hN(ﬁ) =% f(ﬁ) (4.10.4)

The function f is given by 4.9.4. The function hN is shown in
Figure 4.17.

Let us take the case

= 0.02 1n(%) = 4.61

ol

The values of Figure 4.17 shall then be compared to 4.61. We have
for example:

B . =2 - 15
7= 1T, N=2 hN = 1.15 7gr = 0-25

The two pipes increases the thermal resistance with 25%. As
another example we take a pipe with two pipes to the left and
three pipes to the right. This gives two contributions which are
to be added.
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hy B/D
| 0.25 0.5 1
10
| 1]2.09 1.42 0.80 0.35 0.11
__\N=oo 2[3.50 2.22 1.15 0.46 0.14
304.55 2.73 1.3¢ 0.51 0.16
\ 4{5.36 3.08 1.45 0.54 0.16
. 5(5.99 3.33 1.52 0.56 0.17
513 N| 6|6.50 3.51 1.57 0.57 0.17
\\ 716.92 3.65 1.61 0.58 0.17
8 |7.27 3.76 1.64 0.59 0.18
1‘\\‘ 9 |7.56 3.85 1.67 0.60 0.18
AN 10 |7.80 3.93 1.69 0.60 0.18
R 20 |9.08 4.28 1.78 0.63 0.18
00 1 2 3 48/0
~ [10.6 4.67 1.88 0.65 0.18

Figure 4.17. The function hN(B/D) (4.10.3), which represents
approximate influence of an array of N pipes on

side according to Figure 4.16.

A
n
N

=
"
~nN

=
"

N=3 : hy,=1.34

1.15 1.15 + 1.34 _
——rsr =

0.54

There is an increase of 54% for the thermal resistance.

the
one

We note from Figure 4.17 that the influence of surrounding pipes
is quite small for B/D > 2, and considerable for B/D < 0.5.

4.11 A bundle of pipes

Sometimes a few pipes are put together in a bundle and buried at
the same depth in a ditch. The heat extraction potential would
however be increased, if the pipes are brought apart from each
other. We shall in this section illustrate how much there is to

be gained.

Figure 4.18 shows two pipes directly in contact with each other

and at a distance B from each other. We assume that B is reasonably

1arge compared to the radius R, but small compared to the depth D.




Figure 4.18. Two pipes in direct contact (left) and at a moderate
distance B (right).

Let % be the steady-state heat extraction from the two pipes,
when they lie together. The previous formulas cannot be used
directly, since the outer boundary of the two pipes is not
circular. But we can introduce an equivalent radius Req' The heat
extraction from the two pipes in contact is then given by
_ 1 1 2D

'Tf" qb(? mp*'m]n(R—e—q—)) (4.11.1)
The pipe resistance between the soil and the fluid is halved
since there are two pipes. The equivalent radius must satisfy:

R < Req < 2R (4.11.2)

Let us consider the example:

D=1m R=10.02m

R =R Tn(g= ) = 4.61

eq R;q

R =vZR  1n(2) - 4.2 (4.11.3)

eq r - . -
eq
2D

R = 2R In(&= ) = 3.91

eq Req

We take
Req = V2R (4.11.8)

The error with this choice should not exceed a few percent.
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The thermal resistances for the two pipes at the moderate distance
B are given by 4.5.4. The two depths D1 and D2 are essentially
equal to D independent of the relative positions of the two pipes,
since B is assumed to be much smaller than D. Then we have with
good approximation:

Te = amy +q2—{1n( )+1( D)} (4.11.5)
The term B2 was neglected compared to 402 in the Tast logarithm.

The quotient between the heat extraction rates is now from 4.11.1
and 5:

D_)
- V?R (4.11.6)
b 2nxmp+1n(¢r)+1n( )

27Am +2 In{

29 _
ky =

The function k2 is given in Table 4.11 in a particular case. We
note that there is a gain of the order of 10-20% for a moderate
distance B.

Figure 4.19 shows three pipes either together or separated

somewhat from each other. We assume in the latter case that the
pipes form an equilateral triangle with the side B.

7
3

Figure 4.19. Three pipes in a bundle (left) or separated a

distance B from each other.
The maximal distance for B is determined by the width of the ditch.

Let 9 be the heat extraction from the three pipes in the bundle.
We have in analogy with 4.11.1:

“Te = qb‘{';' my + 2— 1n( )} (4.11.7)
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We take

Req = V3R (4.11.8)

The coupling resistance between two of the pipes, when they are
at the distance B, is given by 4.8.5. The depth is essentially
the same for all three pipes, since B is much smaller than D. The
term 82 can also be neglected compared to 402 in 4.8.5. Then we
have for the heat extraction q for one of the three pipes (4.8.6):

. 1 20 20
T = aemy + Qe {In(F) + 2:In(5)} (4.11.9)

The quotient between the heat extraction rates is now from 4.11.7-9:

2D
2mam_+31n (—5=)
k, =39 - P~ V3R (4.11.10)

39 2ﬁxmp+1n(%[f)+2-1 n(g

The ratio k3 is given in a particular case in Table 4.11.

As a further illustration we shall compare the heat extraction
rate of three pipes in the two cases of Figure 4.20.

Figure 4.20. Comparison of heat extraction rates for three pipes
in triangular (left) and linear (right) configurations.

The total space used has the linear extension B. The heat extraction
in the Tinear case is given by 4.6.4 and in the triangular case by
4.11.9. Let us take:

R _ _ B _
D 0.02 my = 0 p=0.2 (4.11.11)

We can use 4.6.7 and Table 4.7 (B/D = 0.1) in the linear case:
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—Tf

7m N
Here q is the heat extraction of the corresponding single pipe.

4 + 29, = 3n+q = 3:0.46 (4.11.12)

From 4.11.9 we have for the heat extraction 3q in the triangular
case:
-Tf

3q = 3 (4.11.13)
?715 (1n(%2)+2-1n(%)}

The quotient is

39 _ 1n(100) -
mq_z_m’rmm_ 1009 (4011014)

The simple change from a linear to a triangular configuration gives
in this example an increase of 9% for the heat extraction.

Let us finally consider the case of four pipes which are put either
in a bundle or at the corners of a square with the side B. See
Figure 4.21.

7

_

Figure 4.21. Comparison of heat extraction rates for four pipes in

a bundle (left) or in a gquadratic configuration
(right).

Let q, be the heat extraction rate of the bundle with four pipes.
Then we have ’

. 1 1 2D

Te = Gt ig My * ooy 1n(E)} (4.11.15)
We take

Req = 2R (4.11.16)

Any one of the four pipes has two pipes at a distance B and one pipe
at a distance V2 B. The heat extraction rate is then with the
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argument of 4.11.5 and 9:
) 1 20y . o (2D 20
Te = qmp+q-?;i {In(TT) + 21n(TTJ + 1n(;§i?} (4.11.17)

The quotient between the heat extraction rates in the two ,cases of
Figure 4.21 is from 4.11.15-17:

2D
_ 4q _ 21T)\mp+4’]n(*2-R')
7% " 2o @ e2n @) 2 o118
ﬂ)\mp+ n(—R— + n(-B—)+ n(m

Let us as usual consider the case:

R -
7= 0.02 m, = 0 (4.11.19)

Table 4.11 gives the function k4 for some values of B/D. It also
gives the corresponding values k2 and k3 from 4.11.6 and 10.

B/D
0.1 0.2 0.3
k, 1.12 1.23 1.31
k3 1.15 1.32 1.45
k4 1.18 1.40 1.57

Table 4.11. Improvement of heat extraction when the pipes in a
bundle are put apart. See Figures 4.18, 19 and 21.

It is quite clear from Table 4.14 that one shall always put the
pipes as much apart as possible.

We see from 4.11.5, 9 and 17 that the thermal resistances and the
formulas for the heat extraction rate of a number of pipes are
consider the general case with N pipes. The distances between

the pipes are denoted Bij’ We assume:

R K Bij KD (Di =~ D) (4.11.20)
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The thermal resistances 4.8.2 and 5 are now with good accuracy
e ] 2D _ 1 2D ,
m_i =m-= Do In (T) m_ij sy ]n(-%—) (4.11-21)

Secondly, we assume that the N pipes lie symmetrically relative
to each other. The heat fluxes are then equal. Formula 4.8.6-7
becomes:

T = q(m_ +m+ m; (4.11.22)

)
P j#i J
The sum of coupling resistances is, in the case where the pipes lie
in a symmetric pattern, independent of i. Formulas 4.11.5, 9 and
17 are special cases of 4.11.22.
The N pipes may be treated as a unit. Let my be the total thermal
resistance between N pipes which are placed in a symmetric pattern
at moderate distances (i.e. 4.11.20 is valid). Then we have from
4.11.22:

—Tf = Ng - my
(4.11.23)

N N
1 1 2D 2D
LN [mp * oy {]n(TT) + jZZ 1n(§;3)}]

4.12 Two layers of soil

The soil has in the cases discussed so far been of a single type
with the thermal conductivity A. The case with two layers of soil
will be considered in this section.

The ground z> 0 consists of two layers 0 < z < H and z > H with
different thermal conductivities. We will only consider the steady-
state heat extraction by a single pipe at a depth z=D. See Figure
4.22. The extraction pipe may lie in the Tower stratum D>H or in
the top lTayer D<H. The thermal conductivity in the layer where the
pipe lies is a.
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Figure 4.22. Steady-state heat extraction by a singie pipe in a
two-layered soil.

The conductivity in the other layer is denoted Ay
The temperature field and in particular the thermal resistance of
the soil between the pipe and the ground are derived in appendix

2. We have from A2.16 and A2.22:

m= o (G2 + p(d, o)) S (4.12.1)

The parameter ¢ is given by

(4.12.2)

The value of o ranges from +1 to -1, when M varies from zero to
infinity. The function p is given by the infinite sums A2:16 and
A2:22 for D>H and D<H respectively. They give the influence due to
the introduction of a different conductivity A1 in the second so0il
layer. The function p is shown in Figure 4.23.

The two extremes A1=0 and A== are quite interesting in the case
D<H, when the pipe Ties in the top layer.

The case A1=w implies that the temperature at the interface z=H is
the same as at the ground surface. This would be the case, if
there were a sufficiently strong ground water stream in the region
z>H. We have from 4.12.1 and A2.23:

m= ?%X {1n(%g) + 1n($%~sin(%?))} (4.12.3)

(H>D, Aq=e or T=0 for z=H)
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Figure 4.23. The function p, which represents the influence of a
second soil Tayer with different thermal conductivity.
Formulas 4.12.1-2.

In the other extreme A1=0 we have from 4.12.1 and A2.23:

m= e (02 + & tangh))) (4.12.4)
(H>D, 1,=0 or 2T = 0 for z=H)

Let us consider two examples. The first one is a granite bedrock
which is covered by 1.5 m of a sandy soil. We take:
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A= 0.9 W/moc A = 3.5 W/m°c
R=0.02m H=1.5m (4.12.5)
0<D<H

The thermal resistance of the soil is given by 4.12.1:

m= 7;%57g {1n(3$§7) + p(iﬁi, -0.6)} (4.12.6)

The thermal resistance 4.12.6 is shown in Figure 4.24.A. We note
that there is a maximum for D=1.0 m. It is interesting to see that
the thermal resistance decreases, when the depth D to the pipe is
increased from D = 1.0 m. This effect is due to the much higher
conductivity in granite. There is a considerable gain to put the
pipe directly on a granite bedrock with its high thermal
conductivity.

As the second example we consider a case with a ground water level
at z=H. The upper, dry soil has a smaller conductivity:

R = 0.02m H=1m
0<D< 1: A = 0.9 W/mK Ay = 2.1 W/mK (4.12.7)
D> 1 A= 2.1 WK A, = 0.9 W/mK

The thermal resistance of the soil is given by 4.12.1. The result
is shown in Figure 4.24.B. We see from the curve that it is better
to put the pipe in the lower layer with the higher conductivity.
The pipe should be placed at a certain distance from the upper
layer. There is actually a local minimum for the thermal
resistance at the depth z = 1.5 m.
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Figure 4.24. Thermal resistance in a two-layered soil as a function
of pipe depth D.
A: Example 4.12.5. B: Example 4.12.7.

4.13 Heat flux at the ground surface

The heat extraction pipes change the natural temperature conditions
in the ground. The thermal influence fegion has been discussed in
section 4.2. Another important aspect of the thermal impact is the
change of the heat flux at the ground surface. This influences for
example the melting of the snow in springtime.

This section is devoted to a study of the additional steady-state
heat flux at the ground surface due to the heat extraction pipes.
Let F_(x) be this heat flux into the ground:

F,(x) = = il ' (4.13.1)

3z 2=0

The temperature field of the single pipe is given by 4.1.2. The
heat flux down through the ground surface due to this pipe is
then with 4.1.2 and 4.13.1:

D2

F0 = %2, (4.13.2)
z D X" +D
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The integrated flux from -x to x becomes:

X

Fr(x) = ){ F(x')dx* = % arctan(%) (4.13.3)

The functions FZ and FI are given in Table 4.12.

x/D 0 0.5 1 2 3 5 10 25

%?~ 2 1 0.80 0.50 0.20 0.10 0.04 0.01 0.002

Fi 0 0.30 0.50 0.70 0.80 0.87 0.94 0.97

of—

Table 4.12. Heat flux F2 (4.13.2) and integrated heat flux FI
(4.13.3) at the ground surface for steady-state heat
extraction with one pipe.

The maximum heat flux right above the pipe is g/(wD). The relative
value decreases to 0.5 for x=D and to 0.1 for x=3D. The integrated
heat flux FI tends of course to q as x tends to infinity. A1l heat
is provided through the ground surface in steady-state. The idea
that some of the extracted heat is furnished by geothermal heat
from below is not correct.

The ground surface heat flux due to several pipes is obtained from
4.13.2 by superposition:

2
F_(x) g 3 __2_201. (4.13.4)
X) = .13.
z i=1 ?ﬁ; (X—Xi) +Di

Let us consider an example with four pipes. For simplicity we
assume that the heat extraction rates are equal:
N=4 4 =9, = 3 =094 = Q

D.=D=1m
(4.13.5)
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The resulting heat flux is shown in Figure 4.25.

Fq
05

/ \

0.2

o1

-6 L = 0 ) . g >xm)

Figure 4.25. Heat flux at the ground surface due to four extraction
pipes. Example 4.13.5.
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5.  EFFECT OF GROUND SURFACE TEMPERATURES

The thermal conditions and the temperature at the ground surface
-vary with time. This gives under natural conditions without heat
extraction a certain temperature in the ground, which is a function
of time and depth. This natural temperature field is, according to
the superposition technique of chapter 2, to be added to the
temperature fields due to heat extraction pipes. See Figure 2.2.
This chapter is devoted to a brief discussion of the undisturbed,
natural temperature field in the ground.

5.1 Boundary conditions at the ground surface

In general, the following type of boundary condition at the ground
surface is assumed to be valid:

(Tg-Tag = -2 %; z=0 (6.1.1)
Here Ts(t) is the temperature in the air at the ground surface. It
is a given function of time. It may include a part that in an
approximate way accounts for solar radiation. The heat transfer
coefficient ag of the surface is a given constant. The thermal
resistance at the ground surface may often in our present heat
extraction applications be neglected (uszw). An example is given
in section 4.4. The boundary condition at the ground surface is
then:

T=T.(t) 2=0 (5.1.2)

The boundary condition 5.1.1 (and the special case 5.1.2) is a
linear one. This is a prerequisite for the use of superposition.

A more precise boundary condition would require a variable o -

It depends for example on the wind velocity. The effect of snow
cannot be considered. The radiation makes ag dependent of the
surface temperature. A1l these complications are however neglected.
They are judged to be of minor importance at the depth D of the
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pipes, since D is of the order of one meter. The diurnal variations
at the surface do not reach this depth. It is only the average
conditions over days that matter at a depth of one meter.

5.2 Natural ground temperatures

The natural ground temperatures are determined by Ts(t). The
surface temperature and the ensuing thermal process in the ground
may by superposition be regarded as a result of more elementary
cases. We will here only consider two basic cases in order to
illustrate what happens. For simplicity we use the simpler
boundary condition 5.1.2.

The first case is a step change of the ground surface temperature
at the time t=0:

T t <0
T () = (5.2.1)

The solution of this well-known case is given in [3a].

Ty t<0

T(z,t) = (5.2.2)

To+T, serfe(—= t>0
01 (v4at)

Here erfc denotes the complementary error function [2B].

The response at a depth z=D to a unit step change at the surface is
given by:

_ 1 _ at
f = erfc(—zv:c;) T = Ez‘ (5'2'3)

This function is given in Figure 5.1.
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Figure 5.1. Response at a depth D to a unit step change of
ground surface temperature.

the

The time Dz/a gives the time scale of the response at the depth D
to a change of the surface temperature. About 50% of the surface

change is felt at z=D after the time t = Dz/a. Numerically we have

for example:

-6 2

a=0.7510 ~ m"/s

The time scales for different

D=0.1m  D%/a = 3.7 hours

D=0.5m  D%/a = 3.9 days

D=1m 0%/a = 15 days
D=2m Dzla = 2 months
D=4m Dz/a = 8 months

depths (5.2.4) are of great

(5.2.4)

importance for a good appreciation of the thermal processes that

we discuss.

The second case to be considered is a sinusoidal surface

temperature:

Ts(t) =Ty + T1 sin

Here tO is the period of the temperature variation. The temperature

2wt
(‘—%*‘(\0)

0

(5.2.5)

in the ground due to this surface temperature is given by [3B]:

T(z,t) = T0 + T1-e

z
do

. 27t z
sin(5= + ¢ - ) (2>0)
t o &

(5.2.6)

61.
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The penetration depth d0 is given by
d0 =y — (5.2.7)

The amplitude of the temperéture oscillation at the depth z is:
2

T e d (5.2.8)
We have the damping at z = dO’ z = 2d0 and z = 3d0:
el -0.37, 2 -0.14, 3 = 0.05 (5.2.9)
So 5% of the amplitude remains at the depth z = 3d0.
Numerically we have for example:
t0 = 1 hour d0 =0.03m
t0 = 1 day d0 =0.14m
a=0.75100 n’/s  t) = 1week  dj=0.38m

ot
"

0 1 month d 0.79 m

ot
i

0 1 year d0 2.7 m

The annual variation retains 14% of the surface amplitude at the
depth z = 5.4 m. A weekly variation has 5% of the surface amplitude
at the depth z = 1.1 m.

The natural ground temperatures for more complex ground temperatures
Ts(t) may be obtained from the above basic solutions by superposi-
tion.

5.3 Ground surface influence

Let us summarize how the superposition accounts for the influence
of the ground surface with its varying temperature.
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The total temperature field in the ground with the boundary
condition 5.1.2 or 5.1.1 and with a certain number of pipes with
prescribed heat extraction rates is denoted Ttot' Let Tundist
denote the temperature field in the undisturbed ground without
heat extraction. The temperature field due to the heat extraction

pipes Tpipes is defined by:
Ttot = Tundist * Tpipes (5.3.1)
The temperature field T . shall account for the prescribed heat

pipes
extraction rates at the pipes. The boundary condition at the

ground surface becomes according to 5.1.2 and 5.3.1:

Tpipes =0 z=0 (5.3.2)

With the more general boundary condition 5.1.1 we have instead:

oT

Jag = -2 __Pipes z =0 (5.3.2")

(0 oz

_TMpu

The important result of this discussion is that the undisturbed
heat flow process is completely decoupled from the heat extraction
problem. The two processes can be dealt with separately. This
simplification is due to the fact that the original problem is
formulated in terms of prescribed heat extraction rates. A

prescription of fluid temperatures in the pipes would have resulted
in a more complicated problem without this direct decoupling.

We can in the following chapters concentrate ourselves upon the
thermal process in the ground due to the heat extraction pipes with
zero temperature at the ground surface according to 5.3.2.

It must always be remembered that the total temperature in the
ground contains the contribution from the natural, undisturbed
temperature field.
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5.4 Optimal heat extraction depth

The optimal depth for heat extraction pipes is a compromise between
many aspects: Digging cost, environmental impact, thermal
performance and so on. We will in this section discuss an
optimization for which only pure thermal aspects are taken into
consideration.

Let us consider the steady-state heat extraction by one pipe at a
depth z=D. The surface temperature during the annual cycle is
assumed to follow 5.2.5.

The temperature field due to the steady-state heat extraction is
given by 4.1.2. The undisturbed temperature field due to ground
surface temperature is given by 5.2.5. The total temperature field
is by superposition given by the sum of these two cases in
accordance with 5.3.1. The fluid temperature in the pipe is then
from 4.3.2, 4.1.9 and 5.2.6;

D
Te(t) = _q(?%i 1"(%g)+mp)+T0+T1-e -s1n(g%3+ Dy (5.4.1)

This expression gives the temperature Tf(t) in the fluid, which
is to be maintained in order to obtain the prescribed constant
heat extraction rate q.

The temperature Tf varies sinusoidally during the year. The lowest

fluid temperature during the cycle is from 5.4.1:
D

“do

1 2D )
Tfm,in = q'(-m 1n(T)+mp) + TO T1 e (5.4.2)

As optimization criterion we take that the Towest extraction
temperature 5.4.2 is to be as high as possible. The expression
5.4.2 is to be maximized as a function of D, D >> R > 0.

Let us first consider the following example:



T = 10°C T, = 10% ty = 1 year
A= 1.5 WmC  a=0.75-10"% mess (5.4.3)
q =5 W/m my =0 R=0.02m

The penetration depth is from 5.2.7 d0 = 2.74 m. The resulting
extraction temperature 5.4.2 as a function of D is shown in
figure 5.2.

Temin (°C)

6

1/
0 / D (m)

2 10 20

Figure 5.2. Minimum heat extraction temperature as a function of
pipe depth. Data according to 5.4.3.

Values of D up to 20 m are included in order to illustrate the
trend although they are not practically possible.

The curve for Tfmin is quite interesting. The extraction temperature
Tfmin has a Tocal minimum for a depth D = 0.15 m. There is a rapid
increase from say D = 0.7 m to D = 4 m. In fact there is an increase
all the way down to D = 12 m. From that on there is a minor decrease
again. The character of the curve is due to the interaction between
the logarithmic and exponential terms of 5.4.2.

It is interesting to note that the maximum lies so deep as 12 m.
This is of course not a realistic depth to bury pipes. The lesson
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is however that the optimal depth, considering purely thermal
aspects, is indeed very deep.

In order to analyse the general behaviour of T
the function

fmin(D) we introduce

f(s,p) = =™ - p In(s) (5.4.4)
The minimum extraction temperature 5.4.2 may then be written:

2d
= - 1 0 . D q
Tfm'in - T0 q(21r)\ Tn( R ) + mp) + T1 f(aa, m) (5.4.5)

The function f(s,p) is thus to be maximized as a function of s for
fixed p. The derivative is

-S
g_g - se"-p - P (5.4.6)

The function se”S has the maximum 1/e = 0.37 for s=1. The derivative
is therefore always negative, if p is greater than 1/e. The
derivative has two zeros s, and S» (0 < sy < 1< 52), when p is

less than 1/e. Figure 5.3 shows the character of f(s,p).

f(s,p)
o’:\ 3 4 S s
0.2 P02
\\\ -\
-0.45— "\ PyHe—
-0.6 p=90.5 T el
-0.8

Figure 5.3. Character of the function f(s,p) (5.4.4) for p > 1/e
and p < 1/e.

The minimum Sy and the maximum s, are given in Table 5.1 for some
values of p.



p 0.05 0.1 0.2 0.3 0.35 0.368

Sy 0.053 0.112 0.259 0.489 0.717 1
f(s1) -0.802 -0.675 -0.502 -0.399 -0.372 -0.368

Sy 4.50 3.58 2.54 1.78 1.32 1
f(sz) -0.086 -0.155 -0.265 -0.342 -0.364 -0.368

Table 5.1. Minimum and maximum of f(s,p) (1/e = 0.368).

Let us summarize. The minimum fluid temperature Tfmin for steady-
state heat extraction by a single pipe, when the ground surface
temperature varies sinusoidally during the year (5.2.5), is given
by 5.4.5 and 5.4.4. The variation of this minimum temperature with
the pipe depth D is as follows.

The value of Tfmin decreases steadily with increasing D if

p:E‘iT_1>-;. (5.4.7)
There is a local minimum and a local maximum for Tfmin’ when
0< 9 <1 (5.4.8)
??XT? e o

The local minimum occurs for D/d0= Sy and the local maximum for
D/d0 = So. Here Sy and s, are the two solutions of:

se =p= m (5-4-9)

(0 < 5 < 1K« 52)
Some values are given in Table 5.1. The minimum extraction
temperature decreases in the interval 0 < D/d0 < 51,'increases in

$4 < D/d0 < $o» and decreases again in D/do > So- The optimal depth
occurs for D/d0 = S,.

It should be noted that the optimal depth lies quite deep.
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6.  HEAT EXTRACTION PULSES

The time-dependent part of the heat extraction rate may by super-
position be regarded as a sum of extraction pulses of simpler
character. An arbitrary extraction q(t) may in fact be regarded as
a sum of elementary step changes. So the starting-point of the ana-
lysis will be the basic step line sink of 6.1.1 and figure 6.1.
The temperature field of this case is discussed in section 6.1.

More complicated extraction rates are analysed in the following sec-
tions with the aid of the basic step 1ine sink. We will not try to
give a complete study of heat extraction pulses. The aim is to ana-
lyse and elucidate various dynamic effects of heat extraction.

6.1 Basic step line sink

Consider an infinite line sink with a heat extraction rate q(t)

(W/m). The line sink lies along the y-axis. The temperature field

is thus two-dimensional in the (x,z)-plane: T = T(x,z,t). The surround-
ing soil extends to infinity in all directions.

q(t)

Figure 6.1. Line sink in an infinite surrounding.

The heat extraction rate is

0 t<o
q(t) ={ (6.1.1)
q t>o



A negative value of q means that heat is injected into the ground.
The temperature in the ground at t = 0 is zero:

T(X,Z,O) =0 (6.1.2)
We will call this case the basic step line sink.

The solution for the basic step line sink is given by [3C]. The
temperature is a function of the distance r = /xz + zz to the pipe
and of time:

2
T(r,t) = - 1%1 E, <I§E> (6.1.3)

The temperature in the ground is negative, as heat is extracted. The
function E1 is the so-called exponential integral:

Ey(x) = %~e_s ds (6.1.4)

X 8

This function is discussed and given in tables in [2A].

The expression 6.1.3 is quite simple. The temperature is a function
of r2/(at) only. Let us consider the case:

1.5 W/mCc a=0.75-10"% m¥/s

>
H

(6.1.5)
10 W/m

fal
n

The resulting temperature profiles are shown in figure 6.2. The tem-
perature development at certain distances r 15 shown in figure 6.3.

We are interested in the radial temperature profiles and the time
development for a given radius. We therefore introduce two represen-
tations of the solution 6.1.3:

T(r,t) = 9.-Er < r_ ) (6.1.6)

T(r,t) = 3. €, (;%t—) (6.1.7)
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Figure 6.2. Temperature profiles at different times for the basic
step line sink. Data according to 6.1.5.
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Figure 6.3 Temperature development at different distances from the
basic step 1ine sink. Data according to 6.1.5.

This means that

E(s) = 7= E, (5'4—) (6.1.8)
E, (1) ='211; Eq (2[1;) (6.1.9)

The function Er(s), s = r/vat, gives the radial variation of the tem-
perature at each time. It is given in table 6.1 and figure 6.4.



1.

s 0.001  0.002  0.005 0.01  0.02  0.05 0.1
E.(s) | -1.164  -1.053 -0.908 -0.797 -0.687 -0.541 =-0.431
s 0.2 0.5 1 2 5 10

E.(s) | -0.321 -0.180 -0.083 -0.018 -2.2-107°  -4.3.107"

Table 6.1. Radial temperature profile Er(s), s = r//at, for the basic

step line sink.

Erls)

0 .
0 1.0

-01 =

-05

j
/
/

Figure 6.4. Radial temperature profile for the basic step line sink.

Asymptotically for large s we have from 6.1.8 and [2A]:

2

1 7 r
el ek

E(s) = -
(s) e

> 5)

(6.1.10)

The temperature is extremely small for large s because of the exponen-

tial factor.

The temperature depends on r//at. The length /at is a measure of the
influence range around the pipe. The temperature change in the region
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r//at > 3 is virtually zero. Let us consider an example:

6 2

a=0.75-10"" m“/s (6.1.11)
t ‘ 1 min 10 min 1 hour 24 hours 1 week
/at (m)l 0.007 0.02 0.05 0.25 0.67
t ‘ 1 month 3 months 1 year 3 years 10 years
Vat (m) ! 1.4 2.4 4.9 8.4 15

Table 6.2. Example of influence radius /at for the basic step line sink.

The temperature development at a radius r was given by 6.1.7:

T= %—-Et(r) T

Im
N ot

(6.1.12)
r

Here 1 is a dimensionless time. The function Et(r) is shown in
figure 6.5 and given in table 6.3.

Eylx) Eyl)
0 0 05 10 15 2,0‘ - - 0 1 2 3 tnlx)
\ o1 RN 3 10 ;
\
—_—
>\\/01)6“. T in(z

-005 \-o.oeu.- 2 Tnt) o \
E \\/ A S

Figure 6.5. The function Et(T), T = at/rz, which gives the tempera-
ture development for a given radius (6.1.12).



T Et T Et T Et T Et
0.1 -0.00198 1 -0.0831 10 -0.250 100 -0.431
0.15] -0.00623 1.5 | -0.109 15 ~-0.281 150 -0.463
0.2 -0.0117 2 -0.129 20 -0.304 200 -0.486
0.25| -0.0175 2.5 | -0.145 25 -0.321 250 -0.504
0.3 -0.0233 3 -0.158 30 -0.336 300 -0.518
0.4 -0.0344 4 -0.180 40 -0.358 400 -0.541
0.5 -0.0446 5 ~-0.196 50 -0.376 500 -0.559
0.6 -0.0537 6 -0.210 60 -0.391 600. | -0.574
0.7 -0.0621 7 -0.221 70 -0.402 700 -0.586
0.8 -0.0697 8 -0.232 80 -0.413 800 -0.596
0.9 -0.0767 9 -0.241 90 -0.423 900 -0.606
T Et T Et T Et

1 000 -0.614 10 000 | -0.797 100 000 | -0.981
1 500 -0.646 15 000 | -0.830 150 000 | -1.013
2 000 -0.669 20 000 | -0.852 200 000 | -1.036
2 500 -0.687 25 000 | -0.870 250 000 | -1.053
3 000 -0.702 30 000 | -0.885 300 000} -1.068
4 000 ~0.724 40 000 | -0.908 400 000} -1.091
5 000 -0.742 50 000 | -0.925 500 000 | -1.109
6 000 -0.757 60 000 | -0.940 600 000} -1.123
7 000 -0.769 70 000 | -0.952 | 700 000 { -1.135
8 000 -0.780 80 000 } -0.963 800 000 -1.146
9 000 -0.789 90 000 | -0.972 | 900 000 | -1.155

Table 6.3. The function Et(T)'

For small values of t we have from 6.1.9 and [2A]:

_1
E() = -Te T (12404 322.00) (6.1.13)

We see again Et(T) is quite small for small ¢ due to the exponential

factor.
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For large values of t we have from 6.1.9 and [2A] the important
representation:

1 1 /1 1 1
Et(T)g- 0-0644 'H]H(T) '-1—6?(;'-1—6-':2 + ...) (6.1.14)
In particular we have the useful approximation
E,(t) = - 0.0644 - 2= n(x) (6.1.15)

The error in the range t 2 5 is less than 2%.

The denominator of dimensionless time ¢ = t/(rz/a) is a time-scale for
the process at the distance r from the Tine sink. Let us consider a
numerical example:

a=0.75-10"% m?/s

r(m) | 0.01 0.03 0.05 0.10 0.5

r2/a l 2 min 20 min 1 hour 4 hours 4 days

r(m) | 1 2 5

rz/a I 15 days 2 months 1 year

Table 6.4. Time-scale factor for different distances.

This table is quite instructive. Consider for example the radius

r = 1m. The time-scale factor is 15 days. The influence of the line
sink starts to be felt for t equal, say, 0.2. This means that it is
felt after 3 days at the radius r = 1m. The temperature rise after
15 days is -0.08 « q/x. The logarithmic approximation 6.1.15 is
followed reasonably after 30 days and very closely after 75 days.

OQur main interest is the temperature at the radius r = R of the pipe:

_ _q at
Tp = T(R,t) = 3 E}: (_2\ (6.1.16)
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The function Et shows with appropriate scaling directly the tempera-
ture development at the pipe radius. Let us consider the following
case with data in accordance with reference case (3.2):

A = 1.5 W/m°C a=0.75- 1070 n/s
(6.1.17)
q =10 W/m R=0.02m
Then we have:
R2 q 0
= = 533 s = 9 min 3 s 6.7°C (6.1.18)

The logarathmic formula is valid with very good accuracy after
45 minutes:

- . 1 AR
To = <6.7 (0.0644 + 7= 1n(§§§)) -

= -1.44 - 0.53 1n (§§UU) <§gﬁg > %)

We get a very simple expression for TR according to the last line
of 6.1.19. We have the following values:

(6.1.19)

t [1h 2h 5h 24h 7d 30d 90d 1y
0 =14 -8 2.3 3.1 4.2 4.9 -55 6.3

The temperature at the pipe is to be lowered according to this suite
of values in order ot obtain the prescribed extraction rate gq=10 W/m.
It is note-worthy that the required decrease changes rapidly in the
beginning. The change becomes slower and slower as time goes. Let us
compute the times that correspond to TR equal -1°C, -2°C and so on:

Tp = -1% t = 24 min

Tp = 2°C t=3h

T, = 3% t=19h

T, = -4°¢ t=5d (6.1.20)
Tp = -5%C t=34d

Tp = -6°C t=2304d

Tp = -7°% t=4y
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We get a time-span from 24 minutes to 4 years.

The time-scale factor Rz/a at the pipe radius is quite small. The
logarithmic expression 6.1.15 for E
have then:

t is therefore soon valid. We

__qf 1 at 2
Te(t) = - & (0.0644 ‘g <?)) (t > 5R%/a) (6.1.21)
Formula 6.1.21 is very useful due to its simplicity.

The 1ine heat sink extracts heat at the rate q at r = 0. The heat
flux at a finite radius becomes by derivation of 6.1.3-4:

2

r

=A2qr T -qee dat

a7 (6.1.22)

The heat flux is because of the exponential factor less than q for
r > 0. In fact we have:

at ‘ 0.1 0.5 2 5 10 20
2
r
Y‘Z .
“Zdat | 0.08 0.61 0.78 0.88 0.95 0.98 0.99

Our requirement that the heat flux at r = R shall be equal to q is

not fulfilled for small values of at/RZ. The heat flux is within an
error of 5% equal to g, when at/R2 exceeds 5. Thus we have the fcllow-
ing requirement.

The Tine sink solution is applicable after a time:

R2

a

t>5. (6.1.23)
This is not any severe limitation in the present applications. In
example 6.1.17 we have then from 6.1.18 the requirement that t is

to be greater than 45 minutes. We discuss here time periods of
months, weeks and days. Condition 6.1.23 is then of no consequence.

It should however always be remembered that the present theory does
not include heat extraction periods which are shorter than, say, a
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few hours. Shorter variations are not considered in this study.
Here and in the following we mostly deal with the temperature TR
at the pipe radius. The thermal resistance m between the soil at
the pipe and the heat carrier fluid gives an additional temperature

fall to the fluid. We have from 4.3.1:

Te(t) = Tp(t) - m - q(t) (6.1.24)

6.2 Step extraction pulse

The solution 6.1.3 is valid for a step extraction pulse under the
assumption of an infinite surrounding ground. The corresponding

step extraction pulse for a pipe at depth z = D has a semi-infinite
surrounding z > 0, -» < x < ». The boundary condition at the ground
surface z = 0 is that the temperature shall be zero. See figure 6.6.

t+
AVAVAN

| 71-0
// Z q(tg/ "
/ / aw) = {
i

Figure 6.6. Step extraction pulse to a pipe at a depth D.
The initial condition 6.1.2 is still valid.

The solution to this new problem is readily obtained from the pre-
vious case by introducing a mirror sink at x = 0, z = -D with the
opposite strength -q(t). The temperature at the ground surface is
then by anti-symmetry automatically zero. We have by superposition
from 6.1.3 the temperature field due to a step extraction pulse.

Tz =gy {g (L2E0) ¢ (S0t o
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The nominators of the arguments for E1 are the square of the dis-
tance from the point (x,z) to the pipe and to the mirror pipe.

The thermal process in the ground has the characteristic time scale
ty which is given by (3.2):

2
_ 2D
T (3.2)

t
Let us consider the reference example 3.2. The characteristic time
tD is then 1 month (3.3). The temperature field due to the heat
extraction pulse at the times tD/Z, tys 2tD and t = «» are shown in
figure 3.2. The temperature field is also illustrated in figures 3.3
and 3.4. The temperature TR at the pipe is shown in figure 3.5. We
see from the figures that the thermal process around the extraction
pipe is quite uninfluenced by the ground surface or the mirror pipe
for t < tD. The process near the pipe is on the other hand virtually
a steady-state one for t > ZtD.

In the limit, when t goes to infinity, we can use expression 6.1.15.
The temperature 6.2.1 becomes a difference between two logarithms,
where the time t cancels. The steady-state temperature distribution
4.1.2 is then obtained.

The temperature at the pipe periphery X2 (z—D)2 2

6.2.1 and 6.1.9:

ORT (;—g) - £, (i-";-z)} (6.2.2)

= R™ is according to

Here the approximation 4.1.5 is used for the distance from the pipe
periphery to the mirror line sink.

The logarithmic expression 6.1.15 can be used for the first Et-function
of 6.2.2.

We get from 6.2.2 and 6.1.5:
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TR(t) = = 5 1n (ERE) +3E <§%> (6.2.3)

2
at at R
-5 >5 or > 5(—> )
(RZ pZ " \D
The function Ep(T) is given by:

- . A TY _p (T
Ep(r) = - 0.0644 T 1n(z) Et(I) (6.2.4)
The first part of 6.2.3 represents the steady-state extraction
according to 4.1.7. The second part, which contains the function Ep
gives the transient effect. It should be noted that this part depends
only on at/D2 with the scale factor q/x.

The function Ep(T) is shown in figure 6.7. For large r we have the
series expansion from 6.1.14 and 6.2.4:

S Y i R
SORS (8 il } (6.2.5)

For small 7 we have from 6.2.4 and table 6.3:

E(r) = - 0.0684 - = n (Y (x < 0.4) (6.2.6)

Let us consider the reference example 3.2 again. Figure 6.8 shows

the pipe temperature TR(t) from figure 3.5 with a logarithmic time-
scale. The curve is closely approximated by the two straight lines
6.2.8A and 6.2.8B. The first line 6.2.8A is obtained from 6.2.3 and
6.2.6. It is in fact the temperature 6.1.21 from the pipe alone with-

out the mirror pipe. The second line gives the steady-state heat extrac-

tion. We get a quite good approximation of TR

lines.
The two straight lines coincide for

r=1§ ~1.78 (6.2.7)

D

by using the two straight
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Ep (T)
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Figure 6.7. The function Ep(T) which gives the transient part of the
pipe temperature for a heat extraction pulse (6.2.3).

TRt (°C)
-0 5  In{t/days)
1 3 10 30 100 365 t/days
_.1-
Y
el  (6.2.8A)
5 N(6.2.6B)

Figure 6.8 Pipe temperature TR and the approximations 6.2.8A,B for a
step extraction pulse. Data according to 3.2.
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We have the following simple expressions for the pipe temperature
during a step extraction pulse:

[ _9q. { at\l at _
2 - {0.0644 +.—- n (E7>J RRRRL (6.2.8A)
at \
20 ) at _
L '21[— 1n<-R—} B‘?_ = 1.78 (6.2.88)

The largest error occurs at the breaking-point of the two lines. The
relative error at that point is

To() - TR(1.8D2/a) e (LTA) 5 (6.2
- LR - /2D o - 3
Tp(=) In \T> ()

The logarithm in the denominator is of the order 3-5, so the maximal
relative error for 6.2.81is only around 6%.

The two expressions 6.2.8A and B illustrates the characteristic time

= ZDZ/a. For t <t (or to be precise t < O.89tD) the single-pipe
expression 6.2.8A is valid, while steady-state conditions prevail for
t> tD according to 6.2.8B.

6.3 Temperature recovery after a pulse

The thermal process after a heat extraction pulse is of great interest,
since during a new heat extraction period, one has to work against

the residual temperature fields from previous pulses. The negative
temperatures of the pipe?from preceding pulses are to be added in

order to get the total extraction temperature.

We consider the thermal recovery process during t > 0 after an extraction
pulse during -t1 <t<0:

0 t< -t
q(t) = < q -ty <t <0 (6.3.0)
0 t>0
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The pulse 6.3.0 may be considered as the sum of a pulse +q
from t = -t1 and astep pulse -q from t = 0. Then we have from
6.2.1 by superposition:

Txz,) = - g { € (M) . (.&Jﬁ)

4a(t+t ) 4a(t+t1)
2 2 2
£ (X +(z-D)? o £, (X22(zD)5)
1( 4at ) ! ( 4at /}
(t>0) (6.3.1)

The 1imit t1 + » is also of interest. The two first terms of 6.3.1
tends to the steady-state solution 4.1.2, when t1 tends to infinity
according to 6.1.9 and 6.1.15. The temperature field 6.3.1 will in

this case give the thermal recovery after a very long extraction pulse.
At the time t = 0 one starts with the steady-state temperature field
4.1.2.

Let us consider the reference case 3.2. The thermal recovery for

t > 0 after a pulse g = 10W/m during t < 0 is shown in figure 3.6. The
temperature along the line x = 0, z < 0 is shown in figure 3.6A for
different times. The movement of the isotherm T = -0.5°C is shown in
figure 3.6B.

The temperature at the pipe is as usual the most important
quantity. We have in accordance with 6.3.1, 6.2.1 and 6.2.2:

e -3 e () e (S5 g, ()

at
. E <EZ)} (t > 0) (6.3.2)

For the first and third term we can use (for greater than, say, an
hour) the approximation 6.1.15:

o -4k () -k (O e, (2)

at (6.3.3)



83.

If the influence of the mirror sink is negligible we get the follow-
ing simple formula for the temperature recovery at the pipe after
an extraction pulse:

t+t,
...a . 1)
Trt) = - 75 ]"( T

The temperature recovery after a pulse may be expressed with the

(6.3.4)

Ep function 6.2.4. From 6.3.3 and 6.2.4 or directly by superposition
from 6.2.3 we have the alternative expression:

w35 (50 - 5fE)

Here the characteristic time tD = 202/a is used. The dimensionless
pipe temperature ATR/q is a function of t/tD with the parameter t1/tD'
It is shown in figure 6.9.

Mg
q
0 05 1
0 194¢
| =—I

7
/

-01}

-02

-03

Figure 6.9. Thermal recovery after an extraction pulse during
-t4 £t £ 0 according to 6.3.5.

The series expansion 6.2.5 gives for 6.3.5:

t t t, (t,+2t)
T (t) = - 23 . D™1 1. D1 +.._> (6.3.6)
R 8w t(t+t1’ gt(t+t1j
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So we have the following simple formula for the temperature recovery
after an extraction pulse:

q tDt1

The error of the approximation is obtained from the next term of
6.3.6.

Let us consider the reference example 3.2:

9 _10 o ty = 1 month

A 1.5

Then we have for example with 6.3.7:

t, = 0.1 month T, = -0.003°
t; = 1 month Tp = -0.022°%
t = 3 months o (6.3.8)
t1 = 6 months TR = -0.059°C
= = = 0
t, = Tp = -0.088%

We see that the remaining temperature three months after the end of
the pulse is quite small.

It is sometimes suggested that one should recharge the ground around

the pipe during the summer. Let us consider a case, when the ground
is recharged strongly during three months. The value of q is then
negative. We take:

-30 W/m A = 1.5 W/mo¢C

b s (6.3.9)

q
D

Tm a =20.75 10
(tD = 1 month)

Let us compute the temperature in the mid-winter. We have from 6.3.9
and 6.3.7:

t1=3|mnms t = 3 months
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T .. =30 1.3

- .. - )
R= ™ 8-135 373+ - 0-13¢C (6.3.10)

The ground is only 0.13°C warmer than the natural case without re-
charge.

We can draw the important conclusion that it is completely useless

to recharge the ground in order to improve the heat extraction after
a period of several months. We see from the curves of figure 6.9 that
the temperature decline is quite rapid. So even short term recharge
is normally not of any value.

Formula 6.3.7 for the temperature recovery after a pulse is valid for

times that are much greater that t,. We will derive another asymptotic

D
formula which is valid after a time that is much greater than the
pulse length t1. Consider a Taylor expansion of the two Ep-functions
(6.3.5) around the point T = (2t+t1)/tD. The lowest term, which is

a good approximation of TR(t) after some time, becomes:

t D
-9 1 - e T
To(t) = m"ZtTfT'<1 e 2t+t1) (t 2 2t,) (6.3.11)
The next term of the Taylor expansion is:
t t

S E Il I 0
2w 2t+t1 2t+t1

f=0.4 (6.3.12)

IA

The factor f is a function of tD/(2t+t1), which lies in the indicated
range for positive t. The formula 6.3.11 is therefore valid for, say,
t greater than 2t1.

Let us consider a case of a strong rechange during one day:

q=-30W A = 1.5 W/m°c
(6.3.13)
t1 = 1 day tD = 30 days
Then we have after the pulse from 6.3.11:
-30 1 - 30
W“)”'?FTS'EH”O'e ﬁﬂj (6.3.14)

(t in days, t > 2 days)
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t(days) | 2 3 4 5 10 30 100

TR (°c) I 0.64 0.45 0.34 0.27 0.12 0.02 0.002

We see as before that the effect of the strong recharge during one
day vanishes within a few days.

6.4 Superposition of pulses

We will in this section only consider a few examples for which the
process is analysed as a superposition of heat extraction pulses.
We will use the data of the reference case:

6 m2

A = 1.5 W/mK a =0.75-10" /s D=1m (6.4.1)

Example 1.

Let us first consider a case for which the heat extraction rate is
constant during each month. The total amount of extracted heat is

12 0000 kWh which may represent the demand of a one-family house. The
total pipe length is taken to be 200 meters. We assume that the diffe-
rent parts of the pipe do not influcence each other. The required
extraction rate during each month is shown on top in figure 6.10.

The highest extraction rate 16.7 W/m occurs during the fifth month.

16.7
q(W/m)
10
0 T t (months}
(] L t (months)
Tp (°O)
/
\
.
-5 7
<

Figure 6.10. Prescribed extraction rate (top) and required pipe
temperatures (bottom) of example 1.
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The pipe temperature TR is obtained as a superposition from the
pulse of the present month, eq. 6.2.2, and remnants from the pre-
vious pulses, eq. 6.3.2. The procedure is quite simple.

The pipe temperature is shown in figure 6.10. The shape of the tem-
perature curve during each month is very characteristic. There is,
when the extraction rate is changed, a rapid temperature change
during the first days.

The lowest extraction temperature TR = -7.9%C is obtained at the
end of the fifth month. A superimposed daily variation of the ex-
traction rate will lower this temperature. This will be illustrated
below.

There is no heat extraction during the last three months. It is note-
worthy that the pipe temperature TR has virtually recovered its ini-
tial value at the end of the year. In fact we have during the re-
covery period:

t(month) | 9 9.1 9.5 10 1" 12
%0 | -7 -048  -0.21 =013 -0.07  -0.05
Example 2

In this example we consider an extraction period of one week and an
ensuing recovery period. The case with a constant heat extraction
rate q = 15 W/m is compared to a case with daily pulses as shown in
figure 6.11 (top). The mean extraction rate is taken to be 15 W/m.

The pipe temperature TR(t) is obtained by superposition of the daily
pulses. We see in figure 6.11 how the pipe temperature (full line)
varies around the pipe temperature in the case of constant extraction
(dashed 1ine).

The minimum extraction temperature in the variable case is -10°C,
while the minimum temperature in the constant case is -6.5°C. The
temperature during the recovery is however very similar. The diffe-
rence after three days is only a few tenths of a degree.
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Figure 6.11. Extraction rate and pipe temperature in a comparison
of a constant pulse during a week with variable dai]y
pulses.

Example 3

Let us now consider even shorter pulses of two hours. These can still
be handled by the line source solutions with reasonable accuracy.
The three pulses during a period of 12 hours are shown on top in
figure 6.12. The dashed 1ine shows the corresponding case of con-
stant extraction with the same mean effect. The ensuing pipe tempera-
tures-are shown below.

The temperature at the pipe during the thermal recovery after the
extraction period is almost the same in both cases. We note that the
pulsating case requires a minimum temperature of -4.39C, while the
case with constant extraction requires -2.8%C. The puisation may in-
crease considerably the required extraction temperature difference.
The daily and hourly variation of extraction rate may be quite im-
portant.

Example 4

As a last example we will consider a series of diurnal pulses during
18 days. Only the pulsating part is considered, so the mean extrac-
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Figure 6.12. Extraction rate and pipe temperature for example 3
with two-hour pulses.

tion rate is zero. There is a unit extraction rate during the
first day. During the next day there 1is a unit heat injection, and

so on. See top of figure 6.13. The ensuing pipe temperature is
shown below.

The shapes of the pulses are very similar. The process becomes
rapidly periodic with the period time of 2 days. The table below
shows the temperature in the middle of each extraction period:

t(days) | 0.5 2.5 4.5 6.5 8.5 10.5
TR(°C) -0.276 -0.246 -0.240 -0.238 -0.237 -0.2367
t(days) | 12.5 14.5 16.5

TR(OC) -0.2363 -0.2360 -0.2357

The change from the first to the second pulse is 10%, from the
second to the third 2%. Thereafter the change is less than 1%. We
may conclude that after a few cycles of the pulse train the process
is periodic to a high degree.
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Figure 6.13. Extraction rate and pipe temperature for example 4
with a pulse train during 18 days.

6.5. Sequence of pulses

An important special case is a sequence of equal pulses. The time
between the beginning of the pulses is t,» and the length of the

pulse is uto, 0<a< 1. Let q, denote the mean extraction rate.

The extraction rate of the pulse is then qo/a. The pulse train is
shown in figure 6.14.

/

7

3

/

0 <a<t

0.

2t0 o

F{gure 6.14. Sequence of heat extraction pulses with the mean ex-
traction rate 95+

The case of an infinite surrounding ground is first considered. The
effect of the ground surface and a negative mirror pulse is discussed
at the end of this section.
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The pipe temperature is obtained by superposition of step Tine
sinks (6.1.3). We consider first an example:

~+
it

1 day q, = 10 W/m a = 1/3

>
i

1.5 W/mK a =0.75 10°% n?/s (6.5.1)

The obtained pipe temperature is shown in figure 6.15. The dashed
line shows the extraction temperature with the constant mean value
4

q{Wim)

30

0

RO

0

S O O s Y R

| ] t
H 9 b 49 50 Hldays)

50, days)

Figure 6.15. Pipe temperature for example 6.5.1. The dashed line refers
to the corresponding mean extraction rate.

The pipe temperature of the pulse train oscillates around the tem-
perature from the mean extraction rate. The transient change from day
to day diminishes rapidly. The oscillation around the mean-extraction
curve is very similar during the fifth, tenth and fiftieth day.

These oscillations around the mean-extraction curve represent the
effect of the pulsation. This effect is to be superimposed on the
effect of our previous analyses without pulsation.

The analysis does not have to be restricted to the pipe radius r = R.
So we will consider an arbitrary radius r. Let To(r,t) denote the tem-
perature for the constant extractions rate a5 From eq. 6.1.3 we have
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q 2
0 0 r
T (r,t) = - . (———) 6.5.2
(r,t) P E 201 ( )
The oscillating part is denoted T*(r,t). The total temperature

at a distance r from the pipe is then

T(r,t) = T°(r,t) + T*(r,t) (6.5.3)

The expression for T* is obtained by superposition of E1-functions
with the effect factor g /o and the argument r2/4a(t-t'). The time
t' is the start of each step pulse. The two components of T(r,t) are
shown in figure 6.16.

Tirt)
2,

Figure 6.16. Temperature T(r,t) due to a pulse train. Definition of
E; and Eg.

The extreme values of the oscillation T*areour main interest. These
values are obtained at the end of the pulse (E% for pulse i) and at
the end of the period (Eg for period i). See figure 6.16. We introduce
for period i the notations

2
. 9% ( r )
T™(r, to(1 1) + ato) = - W'Ei Ef;’ a
q 2 (6.5.4)
sy = - O pn r
T*(p, ty i) = -5 E (Ef;’ a)



93.

The values E% and Eg are functions of r2/(at0) and the relative

pulse length «. The functions Ei,

6.17 - 6.20. The functions for other pulses are normally not

Eq, Eé and Eg are shown in figures
necessary to have, since the variation with i is rather small.

Our first example concerns a pulse train with the period of two hours:

to = 2 hours a = 0.5
9, = 10 w/m R=0.02m (6.5.5)
-6 2
A= 1.5 W/mK a=0.7510 " m"/s
The result is given in table 6.5.1.
Period | t(hours) | E} EY TO(R,t) | TH(R,t) | T(R,t)
P21 1 0.218 -1.46 -1.46 -2.92
2 -0.166 | -1.82 +1.103 | -0.72
is2 3 0.198 -2.03 -1.316 | -3.35
- 4 -0.175 | -2.18 +1.165 | -1.02
i=5 9 0.188 -2.61 -1.259 | -3.87
= 10 -0.1804 | -2.67 +1.203 | -1.46
T 0.1865 -3.01 -1.244 | -4.25
20 -0.1825 | -3.03 +1.126 | -1.82
i-20 | 39 0.1855 -3.39 -1.236 | -4.62
40 -0.1834 { -3.40 +1.223 | -2.18
i =100 | 199 0.1846 -4.25 -1.231 -5.48
200 -0.1842 | -4.25 +1.228 | -3.03
i = 500 | 999 0.1845 -5.106 | -1.230 | -6.34
1000 -0.1844 | -5.106 | +1.229 | -3.88

Table 6.5.1. The different contributions to the pipe temperature for
a pulse train. Data according to {6.5.5)

The contribution T® increases of course steadily. The oscillation T*
around T° stabilizes rapidly. The change from the fifth to the
hundredth pulse is only 0.03°C. The change from the first to the
fifth pulse is around 0.2%.
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Figure 6.17. Pulse extraction function Ei for the first pulse. See
figure 6.16 and eqs. 6.5.2-4.
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Figure 6.19. Pulse extraction function Eé for the fifth pulse.

figure 6.16 and eqs. 6.5.2-4.

4 tn(zr)

See
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Our second example concerns a pulse

train with the period of one

day:
t0 = 1 day a = 0.3
q, = 10 W/m R=0.02m D=1m (6.5.6)
-6 2
A= 1.5 W/mK a =0.7510 " m /s
The result is given in table 6.5.2.
Period | t(days)| E! E TO(R,t) | T*(R,t) | T(R,t)
i=1 0.3 0.872 -2.49 -5.82 -8.31
1 -0.375 -3.13 +2.50 -0.63
i=-5 4.3 0.812 -3.90 -5.41 -9.31
5 -0.395 -3.98 +2.63 -1.35
i = 100 99.3 0.806 -5.57 -5.37 -10.94
100 -0.400 -5.57 +2.67 -2.90

Table 6.5.2. The different contributions to the pipe temperature for
a pulse train. Data according to (6.5.6).

We note again that the difference between the fifth and the hundredth
pulse is quite small except for the contribution from 1°.

The effect of the ground surface will now be considered. The influence
at the pipe is obtained with the preceding formulas putting r = 2D
and changing the sign (qo > -qo).

Let us take example 6.5.6 again (D = 1 m).The effect of the first pulse
is less than 0.001°C. The effect of the hundredth pulse contains an
oscillating part T* and a steady-extraction part 7°. The oscillating
part is less than 0.01°C, while we have for T°:
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q 2
0 B 0 4b _ -
T°(2D,t) = + 2y (15€-) =0.76 t = 100 days (6.5.7)

So the pipe temperature becomes:

ct+
n

99.3 days T, = -10.94 + 0.76 + 0 = -10.18°C

(6.5.8)

-+
"

100 days T, = -2.90 + 0.76 + 0 = -2.14°¢C

As a last example we consider an example with a period of one week:

to = 1 week a = 0.5
a, = 10 W/m R =0.02m D= 1m (6.5.9)
x = 1.5 W/nK a = 0.75.107% n?/s

The contriubtion at the pipe radius from the pipe itself is given

by eqs. 6.5.2-5 with r = R. The mirror pipe has the steady-extraction
contribution (6.5.7). The contribution from the pulsating part is
ess than 0.001°C. The result is given in table 6.5.3.

Period | t(weeks)| E! B4 TO(R,t) | T*(R,t) | T°(2D,t) | T(R,t)
. 0.5 0.569 23,79 | -3.97 |o -7.58
i=1 1 -0.514 | -2.16 | +3.43 | +0.02 -0.71

) 9.5 0.535 -5.36 | -3.57 | +0.59 -8.34
i=10 1 9 -0.531 | -5.38 | +3.54 | +0.61 -1.23
100 | 995 0.533 6.60 | -3.56 | +1.73 -8.43
1= 100 -0.533 | -6.60 | +3.55 | +1.73 -1.32

Table 6.5.3. The contributions to the pipe temperature for the pulse
train of (6.5.9).

Let us summarize the results. The pipe temperature corresponding to
a sequence of pulses is given by 6.5.2-4. The functions E% and Eg
give the amplitudes of the oscillations around the mean-extraction
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contribution. The contribution due to the ground surface is given
by the mirror source 6.5.7. The oscillating part of the mirror

source is negligible except for quite long pulses (t0 > 1 month).
The values of E% and Eg do not change much for i z 5.
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7.  PERIODIC HEAT EXTRACTION

The heat extraction rate q(t) to a pipe may be regarded as a
superposition of a steady-state component and various periodic
components. The temperature field due to a harmonic extraction
is well-known. The solution is presented in appendix 3. We will
in this chapter give some basic periodical solutions and illu-
strate how they can be used in the thermal analysis.

The periodic heat extraction to the pipe is given by

q(t) = q4 «sin (g%f) (7.1)

Here t, is the period, which may be equal to a year. We will use a
complex notation:

e2ﬂ1t/t0

q(t) = qq - (7.2)

Eq. 7.1 is the imaginary part of 7.2. The temperature fields corre-
sponding to 7.2 will be complex-valued. The real and imaginary parts

give two solutions which correspond to a cosine- and a sine-extraction
respectively.

The penetration depth do associated with a period to is defined by
~ 0
d, = /= (7.3)

The distance to the pipe is denoted r. We will use the following
notations:

re T R = B2 (7.4)

(0] ¢]

7.1 Periodic sink in an infinite surrounding

Figure 7.1 shows the considered case. There is a periodic extraction
q(t) according to eq. 7.2. The surrounding ground around the pipe
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extends sufficiently far away in all directions. The radial dis-
tance to the pipe is r.

////5 o,
s /
%/ o

Figure 7.1. Periodic extraction to a pipe in an infinite surrounding.

We will first consider the case when the pipe radius is small compared
to the penetration depth. We assume:

RZ
R' < 0.3 or to 270 » 3 (7.5)
The solution (7.6) is then valid with an error below 5%.
The periodic temperature around the pipe is from A3.9:
99 vy Jd2nt/t + g (r'))
T(Y‘,t) = = Iy No(r ) e o] o] (7.6)

Here N0 and 9 are the amplitude and phase of a Kelvin function. They
are given in table 7.2 and figure 7.2.

The following asymptotic expressions are valid with an error below 1%:

N(r) = e - 02+ 226 (e <01)  (7.70)

8o(r") = - arctan /——T’li.—-_) y = 0.5772 (7.7
\ln(2/r')-v

No(r') - /_2-_1;—'_ e-r'//?

(r' > 7) (7.8)

The radial variation of the amplitude of the temperature field is
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given by No(r'). The temperature amplitude at the pipe radius r = R
is represented by NO(R').

Let us consider the reference example:

9 = 10 W/m R=10.02m
-6 2
X = 1.5 W/mK a=0.75-11" m"/s (7.9)
a4 o
m =1.06C
Condition 7.5 reads:
t0 2 10 hours
For a weekly cycle we have
t0 = 7 days d0 =0.38 m
[ |_Y‘
R' = 0.074 r' = g7

The temperature amplitude and phase is then for different r:

r(m) 0.02 0.10 0.5 1 2
-1.06 -No(r/0.27)oC -2.97 -1.41 -0.23 -0.046 -0.003
¢0(r/0.27) -0.275 -0.54 -1.66 -3.0 -5.6
t0¢0/2n (days) -0.31 -0.60 -1.8 -3.3 -6.2

The Tast 1ine gives the time Tag of the temperature compared to the
effect. So the temperature amplitude at the pipe is -3%C. The maximum
temperature occurs +0.3 days after the maximum effect. The temperature
amplitude is halved at r = 0.10 m. Only 10% of the amplitude remains
at r = 0.4 m. At r = 2 monly 0.1% of the amplitude remains.
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The temperature amplitude as a function of r for different periods
t0 is given in table 7.1.

to 1 day 1 week 1 month 1 year
r=0.02m -2.06 -3.08 -3.71 -5.08
r=20.1m -0.60 -1.40 -2.12 -3.40
r=0.2m -0.22 -0.83 -1.44 -2.70
r=20.5m -0.02 -0.23 -0.68 -1.75
r=1m -0.0004 -0.046 -0.23 -1
r=2m 1] -0.003 ~-0.05 -0.57
r=5m 0 0 -0.0008 -0.13
r=10m 0 0 0 -0.01

Table 7.1. Temperature amplitude at different distances for different
periods t . Data according to (7.9),

So 10% of the pipe amplitude occurs at the distance 0.2 m for

t0 = 1 day, 0.4 m for to = 1 week, 0.8 m for t0 = 1 month and 2 m
for to = 1 year. Only 1% of the amplitude remains at the distance
0.5 m for to = 1 day, 1.2 m for t0 = 1 week, 2 m for to = 1 month
and 6 m for to = 1 year.

The exact solution without the restriction (7.5) is obtained by
correcting the heat flux of the line source at r = R. We have from
appendix 3
q, N.(r') . ' .
T(Y‘,t) = - __1 R 0 e](Z'ﬂt/to + ¢0(r ) + G(R )) (7.10)
Zﬂk F(Rl)

The temperature at the pipe radius r = R is of particular interest.
We have:

TR.E) = Tolt) = = o AR) - &1 (2786 = BR'D) (5 4y
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Figure 7.2. Amplitude and phase functions for a periodic heat sink
according to eqs. 7.6, 7.10 and 7.11.
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The functions F, G, A and B are given in table 7.2 and fiqure 7.2.

riR No(r") “4o(rt)  F(RY) G(R") A(R*) B(R') 1/A(R")
0.001 7.067 0.111 1 0 7.067 0.111 0.142
0.002 6.379 0.123 1 0 6.379 0.123 0.157
0.003 5.977 0.132 1 0 5.977 0.132 0.167
0.004 5.692 0.138 1 0 5.692 0.138 0.176
0.005 5.471 0.144 1 0 5.471 0.144 0.183
0.006 5.291 0.149 1 0 5.291 0.149 0.189
0.007 5.138 0.153 1 0 5.138 0.153 0.195
0.008 5.006 0.158 1 0 5.006 0.158 0.200
0.009 4.890 0.161 1 0 4.890 0.161 0.204
0.01 4.786 0.165 1 0.000  4.786 0.165 0.209
0.02 4.104 0.193 1 0.001 4.104 0.192 0.244
0.03 3.707 0.214 1.000 0.002 3.707 0.212 0.270
0.04 3.426 0.231 0.999 0.003  3.429 0.228 0.292
0.05 3.209 0.247 0.999 0.005  3.212 0.242 0.311
0.06 3.033 0.261 0.999 0.006  3.036 0.255 0.329
0.07 2.884 0.276 0.998 0.008 2.890 0.268 0.346
0.08 2.756 0.289 0.998 0.010  2.762 0.279 0.362
0.09 2.643 0.302 0.997 0.012  2.651 0.290 0.377
0.1 2.542 0.311 0.996 0.015  2.552 0.29 0.392
0.2 1.892 0.412 0.986 0.045 1.919 0.367 0.521
0.3 1.525 0.501 0.971 0.086 1,571 0.415 0.637
0.4 1.275 0.585 0.949 0.131 1.344 0.454 0.744
0.5 1.088 0.665 0.925 0.181 1.17% 0.484 0.850
0.6 0.942 0.744 0.899 0.235 1.048 0.509 0.954
0.7 0.823 0.820 0.870 0.291 0.946 0.529 1.057
0.8 0.725 0.89% 0.840 0.349 0.863 0.547 1.16
0.9 0.643 0.971 0.810 0.408 0.794 0.563 1.26
1 0.572 1.046 0.779 0.469 0.734 0.577 1.36
2 0.207 1.774 0.489 1.119

3 0.084 2.490 0.284 1.800

4 0.036 3.202 0.158 2.492

5 0.0161 3.913 0.086 3.189

Table 7.2. Amplitude and phase functions for a periodic heat sink
according to eqs. 7.6, 7.10 and 7.11.

7.2 Correction for the ground surface

Let us now consider the periodic extraction from a pipe at the
depth z = D below the ground surface. The temperature at the ground
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surface shall be equal to zero. This is obtained by adding a nega-

tive mirror sink at z = -p above the real pipe, see fig. 7.3.

Figure 7.3. Periodic heat sink and a mirror sink.

The total temperature in the ground is given by the two sinks q(t)
at (x,z) = (0,D) and -q(t) at (x,z) = (0, -D). We get two terms of
type 7.6 or 7.11. For the mirror pipe we can always use the simpler

expression 7.6. The reason is that the period is quite short if

eq. 7.5 is not fulfilled. The effect of the mirror source is then
negligible in the ground since it lies at the distance 2Dfrom the

sink.
The pipe temperature is now:

+

q : '
+ g No(01) e (7T + (D"

Here we have used

o _ /22D
0= ——

(o]

Let us consider case (7.9) again. We have for D = 1 m:

(7.12)

(7.13)
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to = 1 week

To(t) = 3.1 e (2rt/8 = 0:37) 5 g7 H(2nt/ty - 14.3)
to = 1 month

To(t) = 3.7 e (2t = 0:22) g g o1 (2nt/E, - 2.9)

to = 1 year

1'(211t/t0 - 0.17) 1(2nt/t0 -1.1)

TR(t) = -5.1e + 0.56 e

(7.14)

We see that the effect of the mirror pulse is negligible for the
monthly period and certainly for the weekly one. The case to = 1 year
is shown in figure 7.4. The total pipe temperature TR(t) (full line)
is shown during the year together with its two components (dashed
Tines). It is interesting to compare TR(t) with a steady-state tem-
perature using the actual q(t) at each time. This should be reasonable
since the time-scale to attain steady-state conditions is tD = 1 month
while the period is one year. We have the approximation:

To(t) = - gfr;‘) 1n(2—£> - -4.89 « sin (%‘f) (7.14")

(steady-state approximation)

This approximation is shown by the dotted 1ine of fig. 7.4. The
approximation gives a rather good fit. The difference between 7.14
and 7.14'1is characteristically 0.4%C. There is a time lag of around
3 days. The difference of temperature amplitude is only 0.15°C.

7.3 Two pipes

The steady-state analysis for two or more pipes may be repeated in
an analogous way for the periodic extraction. In order to illustrate
this we will consider two pipes as shown in figure 7.5. We assume
that there is symmetry with the same temperature at the two pipes.
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Figure 7.4. Annual periodic temperature (7.14) for example 7.9. The

05

, t(year)

109.

dashed lines show the two components from the pipe and its

mirror. The dotted 1ine shows the steady-state approxima-

tion at each time (7.14')

T
TR 5%

YAV V4

/

Figure 7.5. Periodic heat extraction from two pipes.

The pipe temperature TR is now obtained as a superposition from the
pipe itself, from the other pipe, and from the two mirror pipes.

gives:
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q : _ ,
Ta(t) = = gy {nr) 1B - BRD)
+ N (B') ci(2nt/t, + ¢,(B')) _
- NO(D') e1(21Tt/to + q)O(D')) -

- NO(BH) e'i(ZTTt/to + ¢O(B"))} (7.15)

Here we have

ot . 22D g B g VZe/40% 4 8
S 4 S Ay I N VA

The quantity B" represents the distance between one of the pipes
and the mirror of the other pipe. We assume here that B is much
larger than R.

7.4 Steady-state and periodic heat extraction

Let us as another illustration consider a case with a steady-state
and a periodic part for the heat extraction q(t):
_ 2nit/t
q(t) =q, + g, e ° (7.16)
There is also a periodically varying ground surface temperature. The

situation is shown in fig. 7.6. A phase factor, is included in the
surface temperature.

T1 -e1(2ﬂt/to + wo)

/J'= Tyt
S S 7 /S S 7
%Q(t)/o

Figure 7.6. Steady-state and periodic heat extraction. The ground surface
temperature varies periodically.
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The contribution to the total temperature field from the steady-state
extraction q, and from the ground surface temperatures is given by

an expression of type 5.4.1. The contribution from the periodic extrac-
tion is given by 7.12. The total pipe temperature is then:

2D\

9 -D/d_ i(2nt/t_ +¢@ - D/d)
TR(t) = Tn (TT} + To + T1 e o-e 0 0 o’ -

- %13 {A(R.) H(@rt/ty - BR'D) _y gy i(2rt/t, + %(D'))}

(7.17)

Here we have used the notation (7.13).

Let us as an example consider a heat pump application with a heat de-
mand which is proportional to the difference between the room temperature
T, and the air temperature:

2
4y + 9y 2/t . a{T2 - T, - Ty el(2nt/ty + wo)}

(¢} 0
or
A = o (Ty = Tp)
(7.18)
_ T A
q = aT1e o

As an example we consider the following case with data for To and T
from Grenoble:

1

_ 40 _ 50 _ o0
T0 = 13°C T1 =7¢C T2 = 20°C
i, _ _ -
e o = -1 to = 1 year mp 0
-6 2
A= 1.5 W/mK a =0.75+10 "m"/s R =0.02m

D=1m o= 1.0 W/mK (7.19)
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The mean effect and the effect amplitude become:

9 = 7 W/m qq = 7 W/m (7.19")

Taking the imaginary part of the complex contributions we get:

e-1/2.74 sin (Znt

To(t) = = ot T (U%%?) + 13 - 7. w - ?%71>

7 . 2rt _ . 2nt -
- ?}7773-{4.79-s1n ( Tt . 0.165) 0.56 - sin (—f—- 1.07)}

0 0
or
, 2nt
T (t) = 13 - 4.86 - sin (2"t - 0.36)- 3.42 -
R £
- 3.56-sin( 2"t = 0.165) + 0.42 - sin(2Tt _ ¢ g7 (7.20)
tO tO

The pipe temperature 7.20 and the different contributions are shown in
figure 7.7. The lowest extraction temperature is 1.5°¢.

The variation of the extraction temperature with the depth D is of
great interest. Let us consider case 7.19 for

D=0.4, 0.7, 1.0, 1.5, 2.0m (7.21)

The resulting extraction temperatures during the annual cycle are
shown in figure 7.8.

The minimum extraction temperature 1ies around 1.5°C or higher.

It is interesting to compare the obtained minimum extraction tempera-
ture with the steady-state analysis of chapter 5. We use the maximum
extraction rate

q =9

o *dp = 14 W/m (7.22)
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Figure 7.7. Pipe temperature of example (7.19) togéther with the different
contributions according to (7.20). The heat extraction rate

is shown below.

T7,(°C)
20 R

Figure 7.8. Pipe temperature of example 7.19 for different values of

the depth D to the pipe.

year
1
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The minimum temperature is then given by eq. 5.4.2 (mp = 0) or
eq. 5.4.5. We have the following result:

D(m) 0.4 0.7 1.0 1.5 2.0

TR,min, fig. 7.8 1.5 1.4 1.5 1.9 2.5

TR’ min, eq. 5.4.5.{ 1.5 1.3 1.3 1.5 1.8
(7.23)

We see that the simpler steady-state approximation using the maximum
extraction rate gives quite good results. The error increases of
course with D, since the steady-state assumption becomes less valid
with increasing D. The variation of Tfmin with the depth D is in the
steady-state approximation given by the function f(s,p)(5.4.4). The
steady-state minimum as a function of D is shown in figure 7.9. There
is a minimum extraction temperature for D = 0.8 m. The exact values
are also indicated.

%mmfm

D

0 05 10 15 20 25 30
Figure 7.9. Minimum extraction temperature of case (7.19) as a function

of D in the steady-state approximation with maximum extraction
rate (7.22). The rings show exact values.

The factor o determines the magnitude of the extraction. Let us consider
case 7.19 for different a:
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a = 0.5, 0.75, 1.0, 1.25, 1.5 W/mK (7.24)

The result is shown in figure 7.10. The pipe temperature falls just
below zero for o = 1.25.

0
TR(7C)
10 |
a=0.5 W/mK
a=0.75
a=1
a=1.25
a=1.5
0 \\\-//, t(year)
. . , SE— 1

Figure 7.10. Pipe temperature of example 7.19 for different values of
the extraction factor a.

The steady-state approximation of chapter 5 using (7.22) gives the
following result:

o (W/mK) 0.5 0.75 1.0 1.25 1.5
TR, min, fig. 7.10 | 4.8 3.2 1.6 -0.2 -1.8
Tp> min, eq. 5.4.5 | 4.7 3.0 1.3 -0.4 -2.1

We see that the steady-state analysis gives quite good results.
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7.5 Infinite array of pipes

The extreme case of an infinite array of pipes is shown in figure 4.15.
The distance between the pipes is B. The steady-state heat extraction
was studied in section 4.9. The thermal resistance between one of the
pipes and the ground was given by eq. 4.9.3. The corresponding periodic
part of the heat extraction process will be studied in this section.

The infinite array of pipes is shown in figure 7.11. The two closest
pipes have index 1, while the next two pipes to the left and to the
right have index 2, and so on. The mirror pipes above the ground sur-
face are also shown in the figure. We assume as usual that B is much
greater than the pipe radius R.

3! 2' 1! 1" 2' 3!
O O O O O O O

3 ¢ ¢ =% 2 g

w

Figure 7.11. Infinite array of pipes and the mirror pipes above the
ground.

The periodic heat extraction rate at the pipes is given by eq. 7.1

or 7.2. The heat extraction rate at the mirror pipes is given by the
corresponding negative value. The contribution to the pipe tempera-

ture from the considered pipe itself and its mirror pipe is given by
eq. 7.12. The other contributions from the pipes 1, 1', 2, 2' and so
on are obtained as an infinite sum of expressions of type (7.6). We

then have

Te(t) = - 1 g amit/t {A(R-)e“'B(R') - N, (0)e o0

21 (7.25)

+ Mo(D/dO,B/D)e”’o(D/dO,B/D)}
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Here R' is given by eq. 7.4 and D' by 7.13.

R LN i¢ (B.) _ R T (BE)} (7.26)
Myee 0= 2j21 {No(Bj)e 0'"j NO(Bj)e 0'"]
The arguments Bj and B& are obtained from eq. 7.4 with r equal to
the distance between the considered pipe and pipe j and j' respective-
ly:

jB V2

(7.27)

_/(8)¢ + a2 V2
= d
0

The amplitude MO and the phase ¥, of the contribution from the sur-
rounding pipes depend according to 7.27 on D/d0 and B/D. These
functions are given in figures 7.12 and 7.13.

As an illustration we consider the following case:

D=1m B=20.5m to = 1 year
(7.28)
a = 0.75 107 m?/s R = 0.02m
Then we have:
d, = 2.7438 m
R' = 0.0103 D' = 1.0308 (7.29)
D/d0 = 0.3645 B/D = 0.5
The amplitudes and phases of the terms of 7.25 are:
A(R') = 4.76 B(R') = 0.17
NO(D‘) = 0.561 ¢O(D‘) = -1.07 (7.30)

M0(0.364, 0.5) = 5.724 W0(0.364, 0.5) = -0.414
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30

201

15

101

0 " 05 10 %o 0 ' 05 " 10

Figure 7.12. The functions M0 and L which give the contribution
from an infinite array of pipes, eq. 7.25.
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Figure 7.13., The functions M0 and Wo’ which give the contribution
from an infinite array of pipes, eq. 7.25.
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The pipe temperature becomes

q : f s s
T(t) = - _1__. e2n1t/t0 14.76e i0.17 0.561.0 i1.07
R 27X (7.31)
. 5.724e-10.414}
The three complex contributions of 7.31 are shown in figure 7.15.
Adding these we may rewrite 7.31:
To(t) = - ol 10.0¢ (2nt/ty - 0.263) (7.32)
R T T 7 Ve :

The total temperature amplitude is thus q1/(2wx) .10.0 °C. The phase
lag is
to
0.263 - — = 15.3 days (7.33)
27
So the minimum temperature occurs 15 days after the maximum extraction.
As a comparison we have for the single pipe the amplitude q1/(2nx) . 4.4
and a time-lag of 4 days.

The contributions from the surrounding pipes, eq. 7.26, are for the
present example shown in figure 7.14. The first terms for j = 1, i.e.
the two pipes 1 and their mirrors 1' of figure 7.11, give a complex
vector denoted 1 + 1'. The next term j = 2 gives the vector 2 + 2' and
SO on.

imaginary

axis

0 real
axis

-3

Figure 7.14. Contribution from surrounding pipes to the sum -

My .exp(iwo). See figure 7.11 and eq. 7.26.
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As a second illustration we consider case 7.28 for three spacings
B:

B =20.5 0.8, 1.0m (7.34)
We get:
B=0.8m M0 = 2.92 ¥, = -0.476
(7.35)
B=1.0m M0 = 2.03 ¥, = -0.502

The three cases 7.34 are shown in figure 7.15.

imaginary
axis
0 1 2 3 4 5 6 7 8 9 10
1 [ ! 1 1 L L 1 1 rea't

mirror pi axis
V2 ptpe

pipe itself

losllosles]
Honn
(=R
o o

-1 total surrounding pipes

temperature

Figure 7.15. The three complex contributions of eq. 7.25. Data
according to 7.28 and 7.34.

The total complex amplitudes and phase lags are summarized below:

B(m) 0.5 0.8 1.0 ©
Amplitude (°C) 10.0 7.2 6.3 4.4
Phase lag (days)| 15.3 13.3 11.7 3.8

This example shows the strong influence between the pipes for small
values of B compared to D. We also note that the influence is small
for larger spacing B.
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The curves for ¥, have certain maxima and minima. There is
for example for B/D = 2 a maximum near D/dO = 0.32. We have:

D/d0 = 0.30 M0 = 0.634 ¥, = -0.641
B/D = 2 D/do = 0.32 My = 0.584 ¥, = -0.785 (7.36)
D/d0 = 0.35 M0 = 0.505 ¥, = -0.592

The occurence of local maxima and minima is due to the fact that
the influence from different pipes are added with different phase
lags.

Let us now consider the outermost pipe in a large array of pipes. The
situation is shown in figure 7.16.

) 04 0
Figure 7.16. The end pipe in a large array of pipes.
The end pipe has an infinite array of pipes 1,2,... to the right.

We assume a periodic heat extraction rate 7.2 to each pipe. The heat
extraction rateis assumed to be the same for all pipes. The required
temperature will then be different from pipe to pipe. For a pipe far
away from the end we can use the preceding expressions.

The end pipe sees an infinite array to the right. In the previous
case there was also an infinite array to the left. See figure 7.11.
The influence will due to symmetry be halved. The pipe temperature
for the end pipe is thus from eq. 7.25 given by

T(t) = - ZL 2Tt/ t {A(R-)e"'B(R') } NO(D.)EWO(D')
A

i (7.37)
+ 3 MO(D/do’ B/D)e-“yo(D/doaB/D)}
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8. EFFECT OF GROUND WATER FLOW AND INFILTRATION

The previous analyses were made under the assumption of pure heat
conduction. Convective heat transfer in the ground due to moving
ground water or infiltration from rain was not considered. In this
chapter these effects will be analysed.

The analysis is based on analytical solutions. Only steady-state

cases are dealt with. The heat extraction rate is constant, and the
convective flow does not change in time.

8.1 Steady-state line sink in moving ground water

We will first consider the case with one pipe in an infinite surround-
ing ground with moving ground water. The pipe lies at the center

(x,z) = (0,0). The heat extraction rate q is constant. The ground
water f]ows in the x-direction. The volumetric water flow is 9,

(m /m s or m/s). The flow 9, x does not vary in time. The cons1dered
case is shown in figure 8.1.

‘-: i' 232 :::,:.~ e .
AR PSRRI W
e e NS AE N
2 el

Figure 8.1. Constant heat extraction q to a pipe in moving ground
water.

The thermal conductivity in the ground is », and the volumetric heat

capacity of the ground with its water is C. The volumetric capacity
of the water is Cw:

3
Cw ~4.18 MJ/mWK (8.1)
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The temperature far away from the pipe is zero, since we are only
considering the contribution from the sink.

The water flow q, will displace a temperature field in the flow direc-
tion with a certain velocity Vi This thermal velocity depends on
the capacity ratio CW/C and the water flow Oy* In fact we have

Cy

The temperatuer field from a sink in a moving stream is given in
ref. 3E (U = VT)' We have

77
T(x,2) = - 53 X/ 2 K, < X 1z ) (8.3)

Here Ko(s) is a modified Bessel function. It is shown in figure 8.2.

The parameter ¢ has the dimension of a length:

2

>

2 = =_2_2‘_
COw (8.4)

E

The Tength ¢ has the following physical interpretation. Consider a tem-
perature difference AT over a length 2/2. The steady-state heat flow

is ATer/(2/2) = AT Cwqw. The right-hand side is the convective heat
transfer in the corresponding case. So & is the length scale for which
convective and diffusive heat transfer are of the same order.

Let us Took a bit closer on the temperature field (8.3) around the
pipe. We have from the pipe downstream, upstream and perpendicular
to the flow the following temperature profiles:

x>0, z=0 T~es Ko(s) S = x/%
x<0, z=0 T~e® Kky(s) s =-x/g (8.5)
x =0 T ~ K, (s) s = |z|/2

These three curves are shown in figure 8.2. The influence region around
the pipes is scaled with the basic Tength 2.



Near the pipe, i.e. for small s, we have the approximation:

Ky(s) = - 1n(§> -y (s < 0.2)
' (8.6)
y = 0.5772

The temperature downstream approaches asymptotically the following
expression:

T(%,0) = - 5o\ [ (x/2 > 3) (8.7)

The temperature near the pipe is given by

T(x,z) =~ - q { - 1n('/X_2_;Z—2)- Y} (8.8)
2

N 2

/2 2
( X2 0.05)
gni !
\ | )
\ I 1y=0.5772 pd
| /]
AN !
od “ \ :
N !
! N Kfs) I /]
\ \\ : // f(s)=K°[s)+ln(% +yY
10 |
\\} ™ \\J\ /
-n3)-y
YK/! ! bf\ Ry i
\ \Ko(s) | =N ‘(Z_st
AL N il i
0,5'_9'5K0(s) \ // | e
N |
YERNENR
pdk Sl
0 | AN : — s
0 1 2 3 4L S 6 1
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Figure 8.2. Functions associated with the pipe in moving ground water.
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Let us consider the case:

_ B _ n
A= 1.5 W/mK G, =N m/year = 360025365 m/s
(8.9)
R=0.02m D=1m
Then we have:
_ 2.1.5 3600.24.365 22.6
bs——%" n T m
4.18.10
So we have:
9 = 0.1 m/year L =226 m
9, =1 m/year g =22.6m
A = 10 m/year R =2.26m
q, = 100 m/year ¢ =0.23m
The temperature at the pipe radius is from eqg. 8.8:
--.9 28\ _
To=-z% {m (R) Y} (8.10)
We assume here
2> >R (8.11)

This assumption is made throughout this chapter.

From 8.10 we have the thermal resistance between the pipe and the
surrounding ground:

m= o {ln (?) -Y} (8.12)

This resistance may be represented by an equivalent circle around the
pipe with a radius Rw:
W

R
2 - Y a1 1.
m~m- ]n <T) Rw— 2‘e 2—1.1 ,Q, (8.13)
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Considering again example (8.9) we have:

7.1 n=1
o (11e22.6\ . f1243\ [ /-
nezo = W (Srgzae )= n (B2 - s (8.14)

These values may be compared to our previous reference case 4.1.12
and the value 4.6 (eq. 4.1.15).

The effect of the ground surface can only be neglected if the

depth D to the pipe is large compared to g. Figure 8.3 shows a

case which is easily solved analytically with the mirror sink tech-
nique. The pipe lies at the depth z = D. We assume that there is a
constant horizontal ground water flow q, in the x-direction. The
ground water level is assumed to 1ie very close to the ground sur-
face. This 1is not a very realistic case but the result is anyhow of
interest for an understanding of the effects of the ground water
movement. The temperature at the ground surface is zero. The effect
of variable surface conditions is as usual accounted for by super-
position.

- X
- e .
— — e —
. - . - -t - - “ v
" . .
R .. .
L KR K B
~ . — .'J s T e _
o - o . N .. _ ~
S I SR - Qy=qw X
‘—a — e — ——
. . .
. - P
7 . PR r Tt
-" —_— ' —
. . - -
z

Figure 8.3. Heat extraction in moving ground water with the ground
water level virtually at the ground surface.

The boundary condition at z = 0 is fulfilled if we imagine a negative
mirror sink at (x,z) = (0,-D). We get two contributions of type (8.3):
The temperature becomes:

T02) = - 8 Sk ( /_xz*f_(z-D_)Z) X, (/x2+(z+n)2)} (5.15)

L L
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The temperature at the pipe radius is with the usual approximation
for the distance to the mirror pipe:
S| ,
To = - 25 { K(R/2) - Kp(2o/m)} (8.16)

From eqs. 8.6 and 8.11 we have

K,(R/2) - K (20/2) = - Tn (%) -y - K, (2D/2) =

(8.17)
_ 2D 2D D
- (R) - (6 (F) @) )
We introduce the function
f(s) = K (s) + In(s/2) + v (8.18)

Then we have

e (@) @)

So the thermal resistance for a pipe with moving ground water
according to figure 8.3 is

e { In <3%3) - f (?%1> } (8.20)

The first Togarithm is the usual resistance. The function f repre-
sents the decrease due to the ground water flow. The function f is
shown in figure 8.2.

Let us consider example 8.9. We have:

n (3R9>=4.61 B
n=1 f (%?) = £(0.09) = 0.001 (8.21)
n=10 f (%?) = £(0.9) = 0.25
n=100 f (%?) - £(8.85) = 2.06
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We see that the effect of the ground water flow is completely
negligible in the first case (qw ~ im/year). There is a reduction

of the thermal resistance with 5% in the second case (qw ~ 10m/year).
In the third case (qw ~100m/year) the resistance is reduced with

45%.

8.2 Vertical infiltration

The case with a steady-state vertical infiltration may be treated
with the same solution as above. The situation is shown in figure 8.4.

Figure 8.4. Steady-state vertical infiltration around a heat extraction
pipe.

The assumption of steady-state vertical infiltration is not a realistic
one, since the infiltration often varies with rain and snow melting.
But the results obtained will still be of use if a suitable average
infiltration rate is considered.

The temperature at the ground surface is to be zero. So we imagine a
_negative mirror sink at (x,z) = (0, -D). There are two contributions
of type (8.3). But the temperature fields are not symmetrical in
the z-direction. The boundary condition at z = 0 turns out to be
fulfilled if the strength of the mirror sink is -q e 2D/%. The tem-

perature field is then:



130.

/ 2 2
T(x,z) = - ?gi' {e(Z'D)/l . KO( —5—1%5:92—> - o
.22
{ ¢x2+(z+D)2> }
2

_e720/s | (z+D) /1 d

K
The pipe temperature becomes:
-_._3 -
To = ’z‘ﬂ{ K (R/2) = K_(2D/2) } (8.23)

The expression is identical with (8.16). The thermal resistance
of the case shown in fiqure 8.4 is then:

m = Z%{ n (%) - f(%)} (8.24)
Here f is given by (8.18).
Let us again consider example 8.9. A reasonable value of q, is

q, = 0.5 m/year (8.25)
Then we have

_ 22,6 _ (2-1Y _
2= g =45.2m f\m> = 0.002 (8.26)

o

2nx »m = 4.605 - 0.002

The infiltration gives a 0.04% decrease of thermal resistance. A
very high value of Ay is

q, = 5 m/year

Then we have

1=28 4o ¢ (ng's%) - 0.10 (8.27)

2ea m = 4.61 - 0.10
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The very strong infiltration reduces the thermal resistance with
2%. Let us finally consider the extreme case

9 = 50 m/year

Then we have

2.6 2.1\ _ )
p=28 052 £ (m) - £(4.4) = 1.38

27a m = 4,61 - 1.38 = 3.23
This extreme infiltration reduces the thermal resistance with 30%.

We may from this example conclude that the infiltration is in normal
cases unimportant for the heat extraction rates. It must be remembered
that we are talking about the convective effect. The strong infiltra-
tion may change the water content in the ground and the thermal con-
ductivity. This will of course directly change the heat extraction
potential. The periodic boundary condition at the ground surface causes
a damped periodic variation at the pipe. This is discussed in section
5.2. The infiltration will increase the amplitude of the periodic
variation at the pipe. This effect of the infiltration is however
negligible, if 2 is much bigger than the penetration depth do'

8.3 Ground water flow below a pipe

The ground water level Ties in most cases below the heat extraction
pipes. The steady-state heat extraction from a single pipe with a
horizontal ground water flow in a region below the pipe will be dis-
cussed in this section.

The case is shown in figure 8.5. The ground water level lies at the
depth z = H, H > D. There is a constant horizontal ground water flow
in the region z > H.sThe thermal conductivity in the ground above the

ground water Tevel is A. The value in the ground water region is Ay
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Figure 8.5. Steady-state heat extraction from a pipe with an under-
lying ground water flow.

The temperature field of this case is derived in appendix 4. The solu-
tion is rather complicated. The thermal resistance m between the pipe
radius and the ground surface is given by eq. A4.15. We have:

1 20\ _ 1
m= oy { n <?) Py | (8.28)
The logarithm is our standard thermal resistance of a pipe. The function
Pw represents the effect of the flowing ground water and the other

thermal conductivity Ay The function Py depends on three dimension-
less parameters:

(8.29)

p =p (D il "o
w wi\H?> 2° A\

The exact expression is given by eq. A4.17.

The 1imit with a very strong ground water flow gives the maximum
effect of the ground water. The Timit i o implies that the tempera-
ture at the ground water level z = H is zero ; T{(x,H) = 0. The
solution in this case is given by A4.19, We have from A4.21:

P, = In (?%HT) g, == (T=0,2=H (8.30)

This function is given below:



D/H 0 0.1 0.2 0.3 0.4 0.5
Pw(D/H,A1/A,m) 0 0.02 0.07 0.15 0.28 0.45
D/H 0.6 0.7 0.8 0.9 0.95
Pw(D/H,A1/k,w) 0.68 1.00 1.45 2.21 2.95

These values are to be compared with In(2D/R), which is equal to 4.61

in reference case (4.1.12).
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(8.31)

We have the following general conclusion. The maximal increase of the

heat extraction with a very strong ground water flow is less than
around 10% for D/H < 0.5. It is less than about 1% for D/H = 0.2.

In order to illustrate the effect of the ground water flow for differ-
ent flows q, we will take a few examples. The function Pw’ which is
given by the integral A4. 17 , has been computed numerically. We take:

D=1m

>
1]

1 W/mK

R=0.02m

1n (2D/R) = 4.61

A = 2 W/mK

)\1/). =2

(8.32)

The table below shows the computed values of Py for different flow

rates a for three values of the depth H to the ground surface:

qw(m/year) 0 1.5 7.5 37.5 187.5 =
H=1.5m | 0.21 0.22 0.30 0.50 0.60  0.88
H=2m 0.10 0.11 0.17 0.28 0.37  0.45
H=4m 0.02 0.03 0.05 0.08 0.09  0.11
(8.33)

These values

are to be subtracted from 4.61.
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We see that the ground water flow must be quite strong and the
ground water level must lie rather close to the pipe in order to
affect significantly the heat extraction.

The flowing ground water may cause an increase of the apparent

thermal conductivity. This so-called macrodispersion is due to

inhomogeneities in the ground and the ground water flow pattern.
Let us therefore also consider a case with a very high thermal

conductivity x1.We take the case:

D=1m H=2m
(8.34)
X =1 WK Ay = 10 W/mK
Then we get:
q,(m/year) | 0 1.5 7.5 37.5 187.5 ®
Pw l 0.32 0.32 0.33 0.36 0.41 0.45

We note again that the effect of the ground water is rather small
even in this extreme case.



9.  TEMPERATURE VARIATION ALONG THE PIPE. PIPE ARRANGEMENT.

This chapter is devoted to a study of the temperature variation
along the pipes and the effect of this on the heat extraction rate.
Only steady-state is considered.

New factors that affect the heat extraction is the fluid flow
rate, the length of the pipes and the fluid flow arrangements
through the different pipes.

The three-dimensional temperature field around the end of a heat
extraction pipe is discussed in appendix 5. It is shown that the
particular end effects only concern one or two meters of pipe.
So these end effects are not considered in this chapter.

9.1 Temperature variation along a single pipe

Figure 9.1 shows the considered case. There is a single heat ex-
traction pipe along (x,y,z) = (0,y,D), 0 < y < L. The length of
the pipe is L. The inlet fluid temperature is Tin' The temperature
at the outlet at y = L is denoted Tout' The fluid flow rate is

Qf (m3/s), and the volumetric fluid heat capacity is Cf (J/m3K).

L
'///////////////7/y
D

T, —D 7

Tf()’)

out

4
Figure 9.1. Steady-state heat extraction with a varying temperature
along the pipe.

The temperature at the ground surface is zero. Let q(y) (W/m) denote
the heat extraction rate and Tf(y) the fluid temperature. The total
thermal resistance between pipe and ground surface is m+mp. Then we
have from eq. 4.3.2:

135.
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“Tely) = (m+ mp) 9(y)

The heat extraction increases the fluid temperature:

de

chf W = Q(Y)

We have for Tf the differential equation

dT

dy Ty

where we have introduced a characteristic thermal length:

f

1
f

V¢ = (m + mp) Cf

)

Q¢

The solution of (9.1.3) is simple:

- R 74
Tf(y) =T, e f

T(0) =T

f( in

In particular we have the outlet temperature:

T

out

=T, ey

in

The mean fluid velocity v (m/s) is

i

VT2

nR_

Let us consider the reference example:

1l

n

1.5 W/mK

m

4.18 W/mK

0.38 m/s

a = 0.75:10"%n%/s

R_~R =0.02m L = 100m
1 2D\ _
m = 5 In (TT) = 0.489 mK/W

(9.1.

(9.1

(9.1

(9.1

(9.1.

(9.1

.2)

.3)

.4)

5)

.6)

.8)
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Then we have

6

Y = 0.489 +4.18:10° . 0.38.7.0.02% = 976 m (9.1.9)

Let g (W/m) denote the mean heat extraction over the pipe length:

1

q =1 faly)dy (9.1.10)

[=h L

Then we have,using eq. 9.1.6

L3 = CQp(T

- -L/y
out = Tin) = CeQp(1 -eE) (T, ) (9.1.11)

We can define a total mean thermal resistance ﬁt per unit length:

0- T, =m-q (9.1.12)

L

My = =
~L/y.:
(1-e f)Qfo

t (9.1.13)

The temperature along the pipe declines exponentially according
to eq. 9.1.5. The length Ye is often, as example 9.1.8 shows,
much larger than the pipe length L. A linear approximation is
then valid with good accuracy:

= . “y/y o2 . - _'Y_
Tely) =T, - e =T, 2 (1 yf) (y << yg) (9.1.14)

The error is less than 2% when

Y ¢o20r L <o.2 (9.1.15)

Y¢ Ye
This linear approximation will be used in the following.

Let us introduce the quantity u:

L
b=l (9.1.16)
CeQf
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The dimension of y is that of a thermal resistance per unit length
(Km/W). The length e becomes

m+m
P

yf=lJ
The mean thermal resistance ﬁt from eq. 9.1.13 may be written:

- 1

m, = ?:;:ﬁ7rﬁ:ﬁ;7 (9.1.18)

A series expansion in u/(m+mp) of 9.1.18 gives:

2
fiy = (mem s ) (1— H + ...) (9.1.19)
P 24 (m+m_ ) (mem )
p p
The first factor of 9.1.19 is a linear approximation:

m o u
my o m+mp+ 5 (9.1.20)

We see from 9.1.19 that the relative error is

o .(m:h ) (9.1.21)

For the example 9.1.8 we have:

. 100
4.18% < 0.38-7-0.02°

= 0.05 mK/W

m+mp = 0.489 mK/W

The relative error 9.1.21 is then only 0.0004. We may conclude
that the linear approximation may be used with very good accuracy
in normal situations.

Formula 9.1.20 gives a very simple correction for the changing
temperature along the pipe. The mean thermal resistance is equal to
the earlier cross-section resistance m+mp plus an additional term u/2.

L (9.1.17)
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Figure 9.2 shows two parallel pipes at the depth z = D. This
case is easily solved with the above solution.

7 777 7777 Y

[ —

*
.

z
Figure 9.2. Two parallel pipes at the depth z = D.
The fluid temperature Tf(y) along the two pipes is the same due to

symmetry. A relation of type (9.1.1) is still valid. We have from
eq. 4.5.10:

Tely) = (my, + my5)-qly) (9.1.22)

We get the same solution 9.1.6 as before with a new thermal resi-
stance in the formula for Ve

Ye = (mgy + m,)-CeQe (9.1.23)

9.2 Linear temperature approximation for two pipes

In the following we assume that the steady-state temperature varies
linearly along each pipe. The case with two pipes is studied in this
section, while the case with an array of N pipes is dealt with in
section 9.4,

Figure 9.3 shows a cross-section through the two pipes for any y,
0syzs=lL.
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)
Figure 9.3. Steady-state heat extraction by two pipes, 0 <y < L.

The two-dimensional analysis of section 4.5 may be used with good
accuracy for each y. We have from eqs. 4.5.7 the general relations:

"Tﬂ()’) = q1(Y) * mt1 + qz(y) ‘m12

(9.2.1)
“Teo(y) = anly) emey + qqly) e my,
Integration over 0 < y < L gives
“Tep = AyMyy *+ Gy
(9.2.2)

g2 = Gy + Iy

Here 61 and 52 denotes the mean extraction rate for pipe 1 and pipe 2.
The left-hand side gives the mean fluid temperature along the pipe.

In our Tinear approximation we have:

Tes = T (0) + T (L)) (9.2.3)

There are two possibilities for the fluid flow in the two pipes.
The flow may be in parallel as shown in figure 9.4A. The pipes are
connected in series in the other case as shown in figure 9.4B.

In the paraliel case we have from eq. 9.2.3:

- Lag
Teg = Tin * HTe(L) = Ty) = Ty v bl (= 12) (9.2.0)
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in f2
y=L y=0 y=L
y=0
A B

Figure 9.4. Parallel (A) or series (B) connection of two pipes.

Eq. 9.2.4 may, using notation 9.1.16, be written:

n u
Ter = Tin * 5 9

-+
N

1
—
=

+
o=

0

)

From eqs. 9.2.2 and 9.2.6 we have in the parallel case:
Tin = (Mg + ) Gy + My 9,
Tin = (M +5) 8y + my, q

In the series case of figure 9.4B we have for pipe 1 as above:
Tep = Tin 5 8

For the second pipe we get:

But we also have:

Teo(l) = Te,(L) =

I
—
+

=
Kal
-

Tea(0) - Tep(L) =

1l
=
Kal

N
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(9.2.5)

(9.2.6)

(9.2.7)

(9.2.8)

(9.2.9)
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Finally we get for the second pipe:

ffz =T +wdy +3a, (9.2.10)

roje

For the series case we get from egs. 9.2.2, 7 and 10:

- = Xy 3 qa
Tin = (mgy +5) 4g + myp qy

(9.2.11)
- = E a a
Tin = (mgp + 5) 4y + (m; + ) q
The mean thermal resistance per unit length of the two pipes is
defined by:

-Tin =M -(q1 + q2) (9.2.12)
We get from eq. 9.2.6 in the case with parallel flow
U My _ 2
_mgy + Pmy + ) -y

Miv2 = My + My + 0 - 2m12 (9.2.13)

In the series case we have from eq. 9.2.11:

u uy
= (myy )y +g) - mppmppe) (9.2.14)
1+2 Myg + My = 2m12

The quantities of 9.2.13-14 are defined by eqs. 4.5.8, 4.5.4 and
9.1.16.

9.3 Three and four pipes

The analysis of sections 4.6 and 4.7 for three and four pipes is
readily extended to account for the linear variation along the pipes.

Let us first consider the case with three pipes at the depth D. The
case is shown in figure 4.10. We assume that the three pipes are in
parallel. See figure 9.5.
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Figure 9.5. Three pipes in parallel.

We have directly with the notations of section 4.6 from eqs. 4.6.1:

- = l‘l q q
jn = (mmy + 5) qp + 2my, 9,
" _ _ (9.3.1)
“Tin = (m+mp *op ot m22) Gp + My, Qy
The thermal resistance of the three pipes together is:
Tin = Mouqep (g + 20)) (9.3.2)
2
_ (mem_ + B)(mem_ + B + m,,) - 2m
n - ¢ p 7 22 12 (9.3.3)
2+1+2

H -
3(m+mp + 7) + My 4m12

The considered case with four pipes is shown in figure 4.11. The
notations of section 4.7 are used. Two fluid flow arrangements will
be discussed. See figure 9.6.

A B

Figure 9.6. Four pipes in parallel (A) or in a bifilar arrangement (B).

In the parallel case we have in accordance with eqs. 4.7.1:
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- = By 3 ! q
T. (m+mp LTI 2) qq + (m12 + m12) 9

(9.3.4)
-T

Uy o 'y =
jn = (mmy + Moy +5) Gy 4 (myy +my,) G
The mean thermal resistance per unit length of the four pipes becomes:

(mem + myy + %)(m+mp + My + ) = (myy + miz)z

m = 1.

2+1+142 I
2m 4+ 2m_ + My, + My, + oy - 2M,, - 2M

p 1" 22 12 12 (9.3.5)

In the bifilar case of figure 9.6B we have instead:

. by & R
Tin = (mmp+myy + 5) qq + (mp + mp,) Gy

(9.3.6)

. Mz ' -
Tin = (memy +myp + 5) qp + (my, + myy +3)

The thermal resistance becomes:

By - | ]
(m+mp+m11+ %)(m+mp+m22+ 2) (m12+m12)(m12+m12+u)

Mytee2 = 2°

]
2m + 2m. + Myq + Myy = Zm12 - Zm12

P (9.3.7)

The above expression is not changed if the fluid flow direction is
reversed so that the inlet is into the outer pipes.

9.4 General formulas for N pipes

Let us now consider the general case with N pipes that lie in parallel.
We use the notations of section 4.8. The mean relation for pipe number
i is from eq. 4.8.6:

-Tfi = (mi +m (9.4.1)

pi

~
o1
=
+
[
-
=
Qi

The mean temperature ffi along pipe i is determined by the inlet
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temperature Tin and the fluid flow arrangement in the pipes. Let

Si denote the set of indices of the pipes through which the fluid
flows before it reaches the considered pipe i. The set is empty

if the pipe is directly connected to the inlet with the temperature

T. .
in

As an example we can take a case when pipes 1,6,7 and 10 Ties in
series. Then we have:

S1 = [-] S6 = [1]
(9.4.2)
S7 = [1,6] 510 = [1,6,7]
The increase of temperature along a pipe k is ”ak' So we have
= " - _
Tei = Tin v 79 ¢ L v (9.4.3)
keS.
i
From 9.4.1 and 9.4.3 we have the following equation system for the
N pipes:
My = N = p
“Tip = (mi LY 7) q; + ) mis 95 + Y owu a4y (9.4.4)
J=1 k€Si
Jj#i

The equation system is solved by inversion, when Tin is given. We
have in particular a relation between Tin and the total extraction
rate a1 + az T aN per unit length of pipes.

The mean thermal resistance of the N pipes is defined by:

T = Moe o ® (q1 LICPRR qN) (9.4.5)

9.5 Comparison of pipe arrangements

In this section the heat extraction rates for a few simple pipe
arrangements will be compared. The data of 9.1.8 will be used. So we
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use:

x = 1.5 W/nmK = 0.02

(= Do}

(9.5.1)
0.05 mK/W

3
I
o
=

]

Our first comparison concerns the effect when a second pipe is added
to a single pipe. The heat extraction rate of the single pipe is

given by eq. 9.1.20. The extraction rate of two pipes in parallel

or in series are given by eqs. 9.2.13 and 9.2.14. The relative in-
crease of the steady-state heat extraction rate as a function of the
spacing B/D is shown in figure 9.7 for four cases. The first and
second case concern two pipes at the same depth D with parallel and
series flow respectively. The third and fourth cases concern two pipes
in the same ditch with parallel and series flow respectively. The
added pipe Ties below the first one.

%o

100
100

1: parallel E
2: series

B

// —{
——2_| 3:parallel
//———-—'“‘ 4: series 0
B|

y &
v

0 05 10 15

B
D

0
0

Figure 9.7. Relative increase of steady-state heat extraction rate
when the second pipe is added. Data according to eq.
9.5.1 or 9.1.8.

We see from figure 9.7 that the case with parallel flow is better, but
the difference between parallel and series flow is rather small.

Our other comparison concerns N pipes that all T1ie at the depth D with
a spacing B. The heat extraction is compared to that of N independent
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pipes. The relative extraction rate for N equal 2 and 4 iS shown
in figure 9.8 as a function of the spacing B/D. Parallel (a), bi-
filar (b) and series (c) flow are considered.

10 N=1

e

///Z/’////’,///,///””/’/Z:::::::::::::: ZZ

" oooTa

WA

0 B
0 05 10 15 D

Figure 9.8. Relative extraction efficiency of N pipes at the depth D
with a spacing B for different pipe arrangements. Data
according to eq. 9.5.1 or 9.1.8.

We see that the extraction decreases when the water flows in series
for two or more pipes. The decrease between parallel and series
flow for four pipes (4a and 4c) is around 10% in this particular
example. The arrangement of pipes in series may decrease the ex-
traction rate relatively strongly.

9.6 A pipe through two regions

A heat extraction pipe may pass through different regions. The ground
material or the depth to the ground may change. Such cases can also
be analysed. We will consider a single example.

Figure 9.9 shows the considered case. The pipe passes two different

regions with different thermal conductivities and height to the ground
surface.
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y
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Figure 9.9. Steady-state heat extraction to a pipe that passes two
different regions.

The analysis of section 9.1 is applicable for each region. We in-

troduce:
2D 2D
21 1 _ 1 2
= 7 (T) " = Zww, " (T)
(9.6.1)
T Gl 2 Cele
Then we have for the first region:
IJ1 -
'Tin = (m1 + mp + 7?)’q1 (9.6.2)
For the second region we get
- Wy o
Ty = up g+ (my v M+ ) G (9.6.3)
The mean thermal resistance per unit length is defined by
A I AT: (9.6.4)

“Ti, =M ,eQ q
in 1+2
L1 + L2

From eqs. 9.6.2-4 we have
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( o 2)
m,+m_ + 5—){m,+m_ +
- _ 17p " 2 27 2
Mo = (L1 + L2) (9.6.5)
"2 1
L1(m2+mp * _?) * L2(m1+mp h 77)

As an example we consider the case:

L1 = L2 = 100m D1 = 1m D2 = 0.75m

A o= 1.0 W/mK Ay = 2.0 W/mK mp =0 (9.6.6)

0.02m

My = up = 0.05 mK/W R
The mean thermal resistance 9.6.5becomes:
Mo = 0.519 mK/W

Suppose that we want to extract 10 W/m in mean. The inlet temperature
is then

- - - - - 0
Tin = 0.519410 = -5.19°C

So the inlet temperature must Tie 5.2°C below the undisturbed ground
temperature in order to obtain the prescribed heat extraction.
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10.  THERMAL IMPACT ON SURROUNDING GROUND

We will in this chapter discuss the disturbance of the ground tem-
perature due to the heat extraction pipes. We will deal with the
temperature field at some distance from the pipes.

The two-dimensional temperature field around a pipe is discussed
in chapter 3. Figure 3.2 a-d and 3.3-5 show the increasing thermal
disturbance around a heat extraction pipe. The steady-state part
gives the largest disturbance except for the region near the pipe.
We will therefore now restrict ourselves to the steady-state
situation.

The thermal influence region for steady-state heat extraction of a
single pipe is discussed in section 4.2. The temperature field is
given by the simple expression (4.2.3) at a distance greater than

3D from the pipe. The expression is a dipole approximation of the line
source with its mirror source above the ground surface. The corre-
sponding three-dimensional analysis will be made here.

10.1 Single pipe of finite length

Our first case concerns a single straight heat extraction pipe with
the Tength 2L. The pipe lies at the depth z = D along the y-axis. The
center-line of the pipe is defined by

A
-

(x,y,2) = (o0,y,D) L =gy (10.1.1)
The heat extraction rate from the pipe will vary along the pipe. But
the variation along the pipe is normally rather small except for the
very ends of the pipe. We assume as a necessary simplification that the
heat extraction rate q (W/m) is constant along the pipe. So we have

a finite line sink along the pipe. There is a negative mirror sink
above the ground surface.
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The steady-state temperature field of this case may be obtained
explicitly. The expression is greatly simplified, if a dipole
approximation along the pipe is used. The solution is derived in
appendix 6. The dipole approximation is only valid for points that
1ie more than 3D from the pipe.

We have according to eq. A6.6 the following approximate expression
for the temperature field around a heat extraction pipe of finite
length:

T(X,Y;Z)u-z%\- . 2DZ .I L -y +

A e
X + Z X2+ (L_y)Z + 22
L+y

(10.1.2)
\/xz + (L+y)2 + 22

+

(valid at distances greater than 3D
from the pipe)

The first two factors are the two-dimensional dipole expression (4.2.3),
which is valid for L = », The last factor accounts for the finite

length.

Let us consider the following case

q =10 W/m X = 1.5 W/mK
D=1m A =20m R=0.02m (10.1.3)
R 0 - .4 2D\ | 4 90

S = 1.06% m”‘(R)‘ 4.9°

The temperature at the pipe radius is -4.9%C. We consider the temperature
along three lines at the pipe depth z = 1 m. The first Tine lies per-
pendicular to the pipe mid-point (y

0). The second and third ones
start from the end of the pipe (y = L = 10 m). They lie perpendicular
and parallel to the pipe. We have in these three cases from eq. 10.1.2:
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1 20
7(d,0,1) = -1.06- .
1+ d® /2% + 100

1 20
T(d,10,1) ks '1.06 . L —————a (d 2 3)
1+ d® /a2 + 400

-d 20 + d
700,10 + d,1) = <1.06-{ + ) (10.1.4)
Va2 « 1 J20+d) + 1

We get the following temperatures:

d(m) 3 5 10 25 50 100

-T(d,0,1) (°c)| 0.202 0.073 0.015 0.0013 0.00017 0.00002
-T(d,10,1) 0.105 0.039 0.010 0.0011 0.00016  0.00002

-T(0,10+d,1) 0.053 0.020 0.004 0.0006 0.00011 0.00002

These values are to be compared with the pipe temperature -4.9°C.

We can conclude from this example that the thermal disturbance from a
single heat extraction pipe is quite small. The temperature change
relative to undisturbed conditions at a distance of 5 m or more from
the pipe at the pipe depth will never exceed 0.07°C in this case.

10.2 Rectangular heat extraction area

The heat extraction pipes often cover a certain rectangular area. We
will consider the case, when a rectangular area -L < y <L, -M<x <M
is used. The pipes lie at the depth z = D. The steady-state heat extrac-
tion per unit area of the rectangular field is denoted qa(w/mz). If

the spacing between the pipes is B and the steady-state heat extraction
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per unit pipe length is q, then for a single layer of pipes

ol.0

q, = (10.2.1)
The heat extraction a, will vary over the field. But normally this
variation is small except for the outer pipes. We assume here how-

ever that a is constant over the rectangular area:

Q, W/n? L<y<L (10.2.2)
M<x <M

The heat extraction is in reality located to the pipes. The temperature
field at a distance larger than 3D from all pipes may be approximated
by dipole fields. The exact position of the extraction sources is not
important. In this approximation the rectangular heat extraction field
may be replaced by a rectangular dipole field. The solution in this
case is given in appendix 6. We have from A6.8:

q,D
T(x,y,2z) = - - {a(M-x, L-y,z) + a(M+x, L-y,z)
+ a(M-x, L+y,z) + a{Msx, L+y,z)} (10.2.3)

(valid at distances larger than 3D from
the pipes)

Here we have used the notation:

a(x',y',z) = é% arctan Xy (10.2.4)
<ZAXI)2 + (y|)2 + 22>

The temperature field (10.2.3) has another interpretation which is
illustrated in figure 10.1. There is steady-state heat conduction

in the ground region z > 0. The temperature at the ground surface is
T-= -an/A over the rectangular region -L <y <L, -M <z <M.

The temperature is zero outside the rectangle at the ground surface.
The temperature field in this case is exactly given by (10.2.3).
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Figure 10.1. Equivalent interpretation of the dipole field (10.2.3)

So the temperature disturbance due to a rectangular heat extraction
field at distances larger than 3D from the pipes is the same as if
there were a constant temperature Ta on the rectangular area at the
ground surface. This equivalent surface temperature is

T
a ) AB (10.2.5)
We have for example:
q=10Wm D=1m B=1m
A= 1.5 W/mK
T = - 14l - -6.7% (10.2.6)

As an example of the thermal effect of the rectangular heat extraction

area we take

2L =10m 2M=20m (10.2.7)

Let us first consider the z-axis downwards:

1. x =0 y =0 z=4d
d(m) 0 1 2 3 4 5 6 7 8 9
T/Ta (1) (0.86) (0.73) (0.61) 0.52 0.44 0.37 0.32 0.27 0.24




d(m) 10 12 15 20 30 40 50 100

T

a 0.20 0.16 0.11 0.07 0.033 0.019 0.012 0.003

We see that the temperature disturbance extends far downwards. The
values for d < 4 are not valid, since we are too close to the pipes.

2. x =0, y = 5+d, z=1m
d{m) 0 3 5 15
T/T, | (0.46) 0.06 0.03 0.004
3. x = 10+d, y =0, z=1m
d(m) 0 3 5 15
/T, | (0.44) 0.05 0.02 0.003

We see from these values that the thermal disturbance is quite smali
at the pipe depth z = Imoutside the pipe field. The value 3 meters
outwards is about -6.7 - 0.06 = -0.4°C. Five meters away at the depth
of one meter the disturbance is -0.2°C.

We can in general conclude that the disturbance at the pipe level
(and upwards) is negligible at a distance of 5D from the pipes.
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11.  SUMMARY OF FORMULAS

Steady-state heat extraction

The thermal resistance m is defined by the equation
AT = gem

Here AT is the driving temperature difference for example between the
fluid in the pipe and the ground surface. The heat extraction rate

per unit length of the pipe is g. The dimension of m is K/(W/m) = Km/W.
The inverse 1/m gives the heat flux per unit temperature difference:

= AT .-
q =AT. =

It must be kept in mind that m refers to a unit length of the pipe.
It must also be kept in mind that the thermal resistance only con-
cerns the steady-state component of the heat extraction.

Single_pipe_

Soil resistance:

T=0
D _
20) ‘ [ OT =Tg

-] (2D
M7y MR
2R
0 - TR =qem
Fluid-soil or pipe resistance:
pipe
wall
= P
mp mpf * mpw * mps v fluid ground
1
: Tf TR
TR -Te=9q .mp :
B, :egs. 4.3.9-11 bom
pf.q. % : P mpw mps
mpw: eq. 4.3.6 A r

mps: from measurement
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Total resistance between fluid and ground surface:

mt = m+mp

0 - Tf = q-mt

Soil resistance including ground surface resistance:

m= —2—113 . [M (%D) + gS(DaS/A)] s
D
95 €q. 4.4.4, table 4.3
O
Soil resistance including a different region around the pipe:
R
_1 2D 1 (™
m—m-1n<R—1) +~2“—)\1']H\T) N

More general A = A1(r):

m: eq. 4.3.13

Total resistance between ground surface and pipe fluid:

mo=m+m 0 - Tf =q-m
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In particular Ap = et
m: eq. 4.12.3
In particular a, = 0:

1

m: eq. 4.12.4

Two pipes

F15 917 Mg * G "My
f2 = 92° M2 * 97Ty ay B
Miys My Myot eq. 4.5.8, 4.5.4

In particular Tf1 = sz = Tf:

0 - '[‘f = (q1 + q2) <My o my ot €d. 4.5.12

Two pipes at the same depth:

0 - Te=q- (mp+m)
m: eqgs. 4.5.15-16, table 4.4
Two pipes'in the same ditch:

m: 4.5.21 D

Three pipes

0 - Teq = qq - (mprm) + gy« (mypemy )

£2 = qz(mp+m+m22) + q1 . m12

Myos Moyt eq. 4.6.2
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In particular Tf1 = T, = Tgo

f2 = T¢:

0-Te= (q1+2q2)- M), 142 My, 142 €G- 4.6.4
Four_pipes

D
0 - Teq = ay - (mprmemyy) + qy - (mypemi,) O O O
2 9 9 Y9
- = . . ' P
0 - Tep = ap = (moememyp) + gy« (myyvmys) 2%

L etc: eq. 4.7.2

In particular T., = T

£1 = Tep = T

0 - T.=(2q,+29,) * m .
f 17772 2+1+1+2 Mo, 14142° €9+ 4.7.4

N_pipes
N
O Tei ai(mpem) ¢ LG my s,
J#i
m.: eq. 4.8.2 [
i D, D, Dy
mij: eq. 4.8.5 A | ...
1~ ; N
12
Infinite array of pipes
21 {2D\ B
n=ox {0 (%) ) 0
..... 5—© O--....

f: eq. 4.9.4, table 4.10 B
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R<B<KD
0 - Tf =q -{mp + E%XA(1n (%g) + g')}
Two pipes: —;—
o () il
B
Three pipes in an equilateral triangle: D
o210 () ‘E;;@
Four pipes in a square: D
g' =2-1n (%) + 1n (32705)

Effect of ground surface temperatures

The undisturbed temperature field in the ground is determined by
the ground surface temperatures. This temperature is to be added
to the effect of the heat extraction pipes.

T [
Step change at the ground surface: s
Eq. 5.2.2 2 /
Periodic ground surface temperature:
T 1N

Eq. 5.2.6
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Penetration depth:

ato

d = /— (amplitude ~ e—z/do)

Steady~-state heat extraction by one pipe + periodic ground surface

temperature:
TS:JCXYJ’
o

Minimum extraction temperature: eq. 5.4.2 or eq. 5.4.5 and figure 5.3.

Tf(t): eq. 5.4.1

Heat extraction pulses

The temperature due to heat extraction pulses is by superposition
to be added to the undisturbed ground temperature (and a steady-
state contribution).

Radial profile function

T(r,t) = 3. Er(%)

Er: eq. 6.1.8, table 6.1, figure 6.4

Temperature development at a given radius:

2

T(r,t) = 1€, (EE)
r

Et: eq. 6.1.9, figure 6.5, table 6.3
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Pipe temperature approximation:

Tp(t) = T(R,t) = - % . (0.0644 + 21%-m (%})) (t > 5R%/a)

Step_extraction pulse below_the ground surface

q(t)
- __9 2Dy ¢ at
(1) = - gip 1 (B) + L, (;) T=0
SRR /8
E,(x): eq. 6.2.4, figure 6.7 o~ — t
Characteristic time-scale tD:
2
)
=%

The process is essentially steady-state for t > tD‘ The influence

from the ground surface is small for t < tD' We have the approxi-
mations

q 1 at
- 9 (0.0688 + ;1 1n (EZ>)

TR(t) = t <t
- i In @
2mA R t> tD
The maximum relative error is 0.25/1n(2D/R)
IQE‘EQ!@EL‘E‘E-C?EQ!?C}{_éf295_2_9‘11§§
q(t)

Without mirror pulse:

Tplt) = - o5
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With mirror pulse, i.e. the ground surface is accounted for:

TR(t): eq. 6.3.3

Approximations:
tnt
S D™1
T(®) = - gox - et t >3t
LGS WUR O B A e tp/ (2t+t)) t> 2t
R = Zmx 2t+t1 1
Sequence of pulses (pulse_train) a(t)
%
q, mean extraction rate *
- - - --a,
a pulse fraction l t
e e 4
ato to
T=1%4+7T* 1 2 3 4

T is the contribution from q(t) = 4y It is given by the basic
step line sink below the ground surface.

T* is the pulsating part. The largest values are obtained at the
end of a pulse i and at the end of a period i.

2
. - _9¢c (R
R0 v atg) = - g (G )
2
V- -9 (R
T*(R,tol) = X E] \*é-ro N (2)

E%, E? : figures 6.17-20
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Periodic heat extraction

q(t) - q1 . e2'ﬂ1t/t0

eq. 7.6, NO and 9 from figure 7.2
T(r,t) :
eq. 7.10, F and G from figure 7.2

Ta(t) = - ok AR el (2rE/t, - BRY)

RS

A, B: figure 7.2 and table 7.2

""""""""""""""" T=0

(t): . 2\_
To(t): eq. 7.12 O/q 4

Two_pipes
T=0

Tp(t): eq. 7.15 O/Q(t) O/q(t):f_\_f

T=TO+T1e1(2"t/to+wo)

o/q(t)=q0+q1e

Zﬂit/to

TR(t): eq. 7.25
0 O O O -
Q(t):‘:r\(;r

Mo’ ¥ figures 7.12-13
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End pipe (in semi-infinite array):

TR(t): eq. 7.37

Effect of ground water flow and infiltration

We only consider steady-state cases with a constant volumetric
ground water flow q,

Infinite surrounding: . . q
T: eq. 8.3 e e e e e
0 - Tp=9q-m
b i (2e) } 2 _
m= m‘ 1]n \—R—} Y L = qwcw Y = 0.5772
Ground surface at the water table:
T=0
7. eq. 845 T
U q .
——
m=- [0 (2D) _¢(2D .'.;Q?w..';.'..f.
2 1R L
f: eq. 8.18, figure 8.2
Vertical infiltration T=0
T: eq. 8.22 e e e e q.
1 " - ...lqW ne J .
w ot fin (2) - ¢ (T)f ..........

f: eq.8.18, figure 8.2
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Ground water flow below a pipe =0
D q
1 {2D\ _ 1 Ho O]
m-m{ln\T> ij O/A
Ay M
Pw: eq. A4.17, tables 8.31-34 . . .. ..o .o 0. .

In particular for a very strong ground water flow (qw = w):

Pw: eq. 8.30

Temperature variation along the pipe

The formulas below concern only the steady-state case. The previous
formulas are extended to the three-dimensional case with a changing
fluid temperature along the pipe.

Temperature field around_the end _of a pipe

T(x,y,2z): eq. A5.2 —9 y
TR(y): eq. A5.3 4 9 9
Zz q
Temperature variation along a_single pipe
X
— —y
Tf(y): eq. 9.1.4-5 '
T.
. T E—
Mean thermal resistance: L
z
0 - Tin = Meq m.: eq. 9.1.13 or 9.1.18

Approximation: ﬁt = m+mp+u/2 e t%ﬁ;



Parallel flow

[:L—a-——-.

Eq.

9.2.6 Mot €q. 9.2.12-13

Series flow

[j : ] Eq. 9.2.11 Mot eq. 9.2.12,14

Et: Eq. 9.3.1 Moy 140t €9. 9.3.3

Eq. 9.3.4 My, 1i142: €9. 9.3.5

=

E.: Eq. 9.3.6 m2+1+1+2: eq. 9.3.7

m1+2+_.+N: eq. 9.4.5

A pipe through two regions

Egs. 9.6.2-3

Region 1 Region 2

D

My,2° €4. 9.6.4-5

]
[}
.
[
+
1
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Thermal impact on surrounding ground

Steady-state heat extraction to _a_single pipe

T(x,2): eq. 4.1.2 q

Dipole approximation: eq. 4.2.3

Heat flux at the ground surface: eq. 4.13.2

T(x,y,z): eqs. 10.2.3-4 See figure 10.1
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12. CONCLUSIONS AND SUMMARY OF RESULTS

We will in this chapter make a summary of the results and present
various conclusions that can be made from this mathematical analysis
of the thermal processes.

The basic assumption throughout this study is that the superposition
principle for the heat transfer process is valid. The complete
thermal process or temperature field is obtained as a superposition
of basic, simpler ones.

This requirement of superposition or linearity entails the assump-
tions:

1. No freezing in the ground.
2. Linear boundary condition at the ground surface.
3. No time-varying moisture migration or ground water flow.

The soil is in most cases assumed to be homogeneous.

The use of superposition makes it possible to isolate various
processes, influences and effects from each other. It provides the
tools for a better and deeper understanding of the heat extraction
process.

The thermal process has one component due to natural conditions.
It is governed by the temperature and other conditions at the
ground surface. This is the process with zero heat extraction

to the pipes. Superimposed on this there is the temperature field
due to the heat extraction to the pipes. This part has zero ground
surface temperature.

The basis of the analysis is given or prescribed heat extraction

rates to the pipes. The ensuing temperature fields and in particu-
lar the required fluid temperature in the pipes are obtained. The
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analysis becomes much simpler, if one starts with given ex-
traction rates and then calculates the fluid temperature.

The heat extraction from several pipes is obtained by superposition
from the analysis of a single pipe. A basic problem is the heat
extraction by a single pipe with zero temperature at the ground
surface. The heat extraction rate to the pipe is any function

of time. This extraction rate may be considered as a superposition
of more fundamental ones. Firstly, there is an important steady-
state component which accounts for the mean extraction rate. Se-

condly, there is a time-varying component, which may be regarded
as a sum of step-extraction pulses. Another important component

is a harmonically varying pulse. Any periodic extraction is ob-

tained by a Fourier expansion. These basic thermal processes are
analysed in this study.

There is a characteristic time-scale for the heat extraction with
pipes at the depth D: tD = ZDZ/a. The effect of the ground surface
on the pipe temperature is virtually negligible during the first
time 0 < t < ty of an extraction pulse that starts at t = 0. The
pipe temperature is more or less equal to the steady-state limit
for t > tD‘

The characteristic time tD is one month in reference case (3.2).

The therma]lrecovery after the termination of a heat extraction
pulse is quite rapid. One third of the heat extraction temperature
remains after the time tD/30. Only 10% remains after the time
tD/3. See eq. 3.5.

The steady-state component of the heat extraction accounts for

the base load for mean values over times that are longer than tD.
The steady-state heat extraction temperature at the pipe is pro-
portional to the prescribed heat extraction rate. The proportion-

ality constant is the thermal resistance (per unit pipe length).



The temperature gradients become very steep near the pipes.
Characteristically around 50% of the extraction temperature lies
in a circle with a radius D/5 around a pipe. The value of the
thermal conductivity near the pipe is therefore much more im-
portant than the values further away.

The thermally influenced region around a heat extraction pipe is

rather limited. A simple dipole approximation is given by eq. 4.2.3.

The temperature at the pipe depth D decreases rapidly outwards.
Less than 10% of the pipe temperature remains at the distance 2D.
At the distance 5D around 1-2% remains.

The steady-state component gives the maximum thermal impact on the
surrounding ground except for the vicinity of the pipe where dy-
namical effects also are of importance.

The thermal resistance of the soil for a single pipe is given by
the simple expression (4.1.9). The resistance depends logarithmi-
cally on pipe depth over pipe radius (D/R). So the steady-state
heat extraction is not too sensitive to moderate changes of the
depth or pipe radius.

The thermal resistance between the fluid in the pipes and the soil
at the outer pipe radius may be quite important. Materials with
Tow thermal conductivity should be avoided for the pipe wall. The
fluid to pipe thermal resistance is negligible for turbulent flow.
An air gap between the pipe and the adjacent soil can increase the
thermal resistance considerably.

The thermal resistance at the ground surface contributes character-
istically with about 4% to the total thermal resistance. So it is
essentially negligible, and it is henceforth neglected in this
study.

The steady-state heat extraction for two parallel pipes is readily

obtained by superposition. There are two linear equations that re-
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late the extraction temperatures to the heat extraction rates.
The single-pipe thermal resistance and a coupling resistance
occur as coefficients. The special case with a single fluid
temperature gives a relation between this temperature and the
total heat extraction from the two pipes. This may be expressed
as a simple formula for the thermal resistance of the two pipes.

A few cases with three and four pipes with two independent tem-

peratures or heat fluxes are dealt with in the same way. A simple
system of two equations 1is obtained, and formulas for the total
thermal resistance of the pipes with a common fluid temperature
are given.

A study of four pipes at the same depth shows that the heat ex-
traction potential is rather insensitive to the exact position
of the pipes. The maximum extraction is virtually obtained for
equal spacing between the pipes. These maxima are quite flat as
a function of the lateral position.

The general formulas for N pipes are readily obtained by super-
position, The relation between the fluid temperatures and the
heat extraction rates is given by N linear equations. The co-
efficients are the single-pipe thermal resistances and coupling
resistances. The solution of the equation system on a computer is
immediate.

The heat extraction potential for a pipe in an infinite array of
pipes is also given. The formula for the thermal resistance is
quite simple.

The influence between N pipes at the same depth with equal spacing
is illustrated in figure 4.14 for a particular case. The relative
heat extraction compared to N independent pipes, n, is given as

a function of relative spacing B/D. We have for example for
N=2,3,4,10 and » and B = D the values n = 0.85, 0.78, 0.74, 0.64
and 0.55. We see that the influence between pipes and the decrease
of heat extractions increase rather strongly with the number



of pipes. The value of n lies between 0.93 (N = 2) and 0.80

(N = «) for B = 2D. For B = 0.5D n lies between 0.77 (N = 2) and
0.33 (N ==). The influence of surrounding pipes is quite small
for B > 2D, and it is considerable for B < 0.5D.

" A few pipes may be put together in a bundle. The heat extraction
potential is however increased when the pipes are separated from
each other as much as possible. Formulas for the improvement,
when the pipes are separated a moderate distance, are derived.
From table 4.11 we see that there is a gain around 10-20% when
two, three or four pipes are separated a distance B = 0.1D. The
gain is around 20-40% for B = 0.2D. Pipes that are put in the
same ditch should from this point of view be separated as much
as possible from each other.

The thermal resistance for a pipe in the case of a soil with two
layers is given. It may be advantageous to put the pipe deeper,
if the lTower region has a higher thermal conductivity. See figure
4.24 A.

The extracted heat is obtained through the ground surface. Half
the heat to a single pipe is provided through the strip from
-D to +D, while 87% is provided from -5D to +5D.

The natural undisturbed temperatures at the pipes are needed in
the superposition in order to get the total temperature at the
pipes. They are determined by the ground surface temperatures.
The time-scale for a step-change at the ground surface to be
felt to 50% at the pipe depth D is t = Dz/a. This time is in a
reference case two weeks. Daily fluctuations at the ground sur-
face are certainly not felt at the pipe depth. A periodic tem-
perature variation at the ground surface is associated with a
penetration depth do’ which depends on the length of the period,
t_. In a reference example we had: d0 = 0.14 m for t0 = 1 day

)
and dO = 0.8 m for ty = 1 month.
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The optimal depth for steady-state extraction to a single pipe
with an annual periodical ground surface temperature is discussed
in section 5.4. There may be an optimal depth that lies quite
deep. In this optimization only purely thermal aspects are con-
sidered.

The time-dependent part of the heat extraction process may be ana-

lyzed by superposition of step extraction pulses, which have a
constant extraction rate from the starting-time. The temperature

process around a pipe in an infinite surrounding for a step ex-
traction pulse is discussed in detail. The radial temperature pro-
file and the temperature response at a certain distance from the
pipe are given by simple functions and diagrams. The temperature
at the pipe radius is given by the simple expression 6.1.21.

The pipe temperature for a step extraction pulse for a pipe at a
depth D is given by simple formulas and diagrams. An approximation
that uses the steady-state temperature for t > tD and the single-
pipe analysis for t < tD turns out to give very precise results.
The pipe temperature for the step pulse is given by the simple
approximations 6.2.8.

The thermal recovery after a pulse is analysed. Simple formulas
are provided. The results may be used to analyse the effect of

a thermal recharge of the ground during the summer. Let us quote
example 6.3.9-10. There is a strong recharge during three months.
The temperature at the pipe after another three months is only in-
creased 0.1 °C. The conclusion is that it is futile to recharge
during the summer in order to improve the heat extraction during

the winter. The recharge for shorter periods is also of small or
no value due to the rapid recovery after an injection or extraction
pulse.

The superposition of step pulses in order to analyse various time-
dependent heat extraction cases are illustrated by several examples
in section 6.4. The technique is quite simple.
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A pulsating extraction is of particular interest. The mean ex-
traction provides a base load. It is analysed with the simple

step pulse. The superimposed oscillating part is added. It is
often quite important. The particular case with a sequence of
equal pulses is dealt with in detail. Extensive diagrams to
assess the extreme values of the temperature are provided. The
oscillating part of the pipe temperature is essentially periodic
after five pulses. The thermal recovery after a sequence of pulses
is not very different from the corresponding simplified case

with a constant mean extraction rate.

A periodic heat extraction is an important basic case. The period

to may be the whole year or a shorter one. The temperature solu-
tions are given in a complex-valued form. The real temperatures are
obtained from the real and the imaginary parts.

The periodic process is associated with a penetration depth qo.
The temperature amplitude is dampened outwards with the length-
scale do' It is negligible at the distance 3d0.

The basic solution is the periodic sink in an infinite surrounding.
The pipe temperature is given by diagrams and simple asymptotic
expressions. The dampening of the temperature amplitude may be
illustrated by the example of table 7.1. Only 10% of the amplitude
at the pipe remains at the distance 0.2 m for t0 = 1 day, 0.4 m for
to = 1 week, 0.8 m for t0 = 1 month, and 2 m for t0 = 1 year.

The periodic sink below the ground surface is as usual obtained by
the introduction of a mirror sink above the ground surface. The

contribution from the mirror to the pipe temperature is however
negligible for periods below one week. It is normally also insigni-
ficant even for a monthly period. The annual periodic case is on
the other hand closely approximated by a steady-state analysis in
which the actual heat extraction rate is used.
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The periodic case for several pipes is readily obtained by super-
position. The formulas for two pipes are given.

The complete process for a pipe with steady-state and periodic

heat extraction, and with a periodic ground surface temperature

is dealt with in section 7.4. A critical point is the lowest ex-
traction temperature during the year, when freezing is to be avoided.

The considered examples again show that a steady-state analysis
for the slowly varying extraction rate gives quite accurate re-
sults concerning the minimum extraction temperature.

The periodic case for an infinite array of pipes is dealt with.

The contribution from surrounding pipes is given by extensive
diagrams. The distance between the pipes is of course quite im-
portant.

Effects of ground water flow and infiltration are analysed in

chapter 8. A few solutions for steady-state water flow and steady-
state heat extraction are given. The basis is a steady-state sink
in moving ground water.

There is a characteristic length scale ¢ (eq. 8.4) for the con-
vective-diffusive thermal process. The length & is inversely pro-
portional to the volumetric ground water flow Qe

‘The thermal resistance for an extraction pipe in an infinite sur-

rounding is given by a simple formula. The case with horizontal
ground water flow and a ground water level close to the ground
surface is also solved. The effect of the ground water movement
is negligible for slow water movement (qw = 1 m/year). It is
modest ( 5% change) for qy = 10 m/year. The thermal resistance
is halved for 4y = 100 m/year.

The thermal resistance in the case of steady-state vertical in-
filtration is given by a simple formula. The effect of the in-
filtration is surprisingly small for normal infiltration rates.
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It should here be remembered that we are only considering the
convective effect. The change of thermal conductivity with the
water content is not dealt with here. Let us quote the results
of example 8.9. The change of thermal resistance for the in-
filtration rate q = 0.5 m/year is only 0.04%. The very strong
infiltration Qy = 5 m/year gives a change of only 2%. The con-
clusion is that normal vertical infiltration is not important for
the heat extraction (except for the influence of water on the
thermal conductivity).

The case with horizontal ground water flow in a region z > H

below the pipe at z = D is also solved. The numerical examples
show that the effect of the ground water is quite small except
for the case of strong ground water movement with the ground
water table close to the pipe.

The limit with a very strong ground water flow gives an upper
Timit on the influence of the ground water. The formula for the
thermal resistance is simple. Let us quote the results of (8.31).
The maximal increase of heat extraction due to ground water flow
is less than 10% for Hz2D. It is less than 1% for H > 5D.

The effects of the temperature variation along the pipes are dis-
cussed in chapter 9. Only steady-state cases are considered. The
three-dimensional effects around the end of a pipe affect only
one to two meters so they are essentially negligible.

The average thermal resistance along a single pipe is given by a
simple formula. The quantity u/2 is to be added to the previous
thermal resistance. The resistance u, eq. 9.1.16, is inversely
proportional to the fluid flow rate in the pipe.

The average thermal resistance for two parallel pipes are given.
One must distinguish between the case of parallel fluid flow in
the pipes and the case of series flow.
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The previous thermal resistance formulas for three and four
pipes are extended to account for the variable temperature. A
few flow arrangements through the pipes are considered.

The general relations for N pipes are given. The only change is
the addition of u/2 and u in the thermal resistance factors of
ﬁhe equation system. Any flow arrangement is dealt with in a
rather simple way.

The relative heat extraction of two and four pipes as a function
of the spacing for different flow arrangements is discussed.
Let us quote the results of figure 9.8. The parallel and series
cases for two pipes are studied. The parallel case is about 4%
better in this particular example with a pipe length of 100 m.
Parallel, bifilar and series flow are compared for four pipes.
The parallel case is about 8% better than the series case. The
bifilar case lies in between.

Formulas for a pipe that passes two different regions are given.

The thermal impact of the pipes on the surrounding ground is
readily obtained from dipole approximations of the temperature
field. These are valid for distances larger than 3D from the
pipes. Here only steady-state need to be considered.

The temperature field for a single pipe is given. Let us quote
example 10.1.3-4. The temperatures three meters from the pipe lie
in the region 0.2 - 0.05°C. Ten meters away they are around 0.01°C.
We can conclude that the thermal impact a few meters or more from
the pipes is quite small.

The case with a rectangular area with heat extraction pipes are

also dealt with. The dipole approximation corresponds to the case
when there is a certain temperature Ta’ eq. 10.2.5, on the rec-

tangular surface. See figure 10.1. Let us quote example 10.2.6-7.
The equivalent temperature is -7°C. The temperature change due to
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the pipes is around 0.4°C at three meters distance from the

pipes on the pipe level z = 1. Fifteen meters away the temperature
disturbance is 0.03°C. We can in general conclude that the dis-
turbance at the pipe Tevel and upwards is negligible at a dis-
tance of 5D from the pipes.

The multifarious formulas are summarized in chapter 11.
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NOTATIONS

Symbol

A(R')

Defining
equation

x/C

7.11, App.3

Fig. 4.6

4.5.3

4.8.3

7.11, App.3

5.2.7

Definition, (dimension)

thermal diffusivity of the ground

temperature amplitude at the pipe
for a periodic heat sink

distance between two adjacent
pipes

distance between one pipe and the
mirror of the other

(m’/s)

(-)

(m)

(m)

distance between pipe i and pipe j (m)

phase lag of the temperature at
the pipe for a periodic heat sink

volumetric heat capacity of the
ground

volumetric heat capacity of water
(=4.18 MI/mK)

volumetric heat capacity of the
fluid in the pipes

penetration depth of a periodic
surface temperature

depth to the heat extraction pipe
depth to pipe i

dimensionless depth to the pipe

(-)

(3/mK)

(3/m3K)

(m)
(m)
(m)

(-)



Symbol

erfc

Ep(T)

Et(T)

ES

f(s,p)

f(B/D)

£(20/3)

F(R")

Defining
equation

ref. 2B

6.1.4

6.1.8

6.2.5

6.1.9

6.5.4

6.5.4

5.4.4,fig. 5.3

4.9.3-4

8.18-20

7.10, App.3
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Definition, (dimension)

complementary error function (=)
exponential integral (=)

function that gives the radial
profile for a step pulse (-)

transient part of pipe tempera-
ture for a step pulse below the
ground surface (=)

function that gives temperature
response at a fixed distance for a
step pulse (-)
temperature amplitude factor at

the end of pulse i in a pulse train,
figure 6.16 (-)

temperature amplitude factor at the
end of period i in a pulse train,
figure 6.16 (-)

(-)

contribution from surrounding pipes
in an infinite array to the thermal
resistance factor (-)

contribution from moving ground water
in the cases of figures 8.3 and 8.4
to the thermal resistance factor (-)

amplitude function for a periodic
heat sink, figure 7.2. (-)
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Symbol Defining Definition, (dimension)
equation

Fz(x) 4.13.1 heat flux downwards at the ground
surface due to steady-state heat
extraction (W/m?)

9 4.4.4 contribution from the ground sur-
face resistance to the thermal re-
sistance factor (-)

g' 4.5.16 contribution from a second pipe at
the same depth to the thermal re-
sistance factor (-)

G(R") 7.10, App.3 phase function for the periodic
heat sink, figure 7.2 (-)

hN(B/D) 4.10.3 contribution to thermal resistance
factor from N adjacent pipes (-)

H fig. 4.22, 8.5 thickness of top soil layer or

depth to the ground water level (m)

i pipe number or pulse number (-)
i va imaginary unit (-)
J pipe number (-)
k summation index

k2’ k3, k4 4.11.6,10,18 relative heat extraction rate of

2, 3 or 4 pipes at a moderate dis-
tance B when compared to the corre-
sponding bundle of pipes (-)



Symbol

Ky (s)

pf

pw

Defining
equation

fig. 8.2

8.4

fig. 4.11

fig. 9.9

4.1.8

4.8.2

4.3.1

4.3.6

183.

Definition, (dimension)

modified Bessel function of zeroth
order (-)

length associated with the convective-
diffusive process in ground water (m)

length or half the length of the
pipe (m)

half the distance between the outer
pipes for four pipes at the depth D
(m)

length of pipe in region 1 and region 2,
respectively (m)

thermal resistance per unit length of
the pipe between the pipe periphery

and the ground surface for a single
pipe (Km/W) (Km/W)

thermal resistance for pipe i (Km/W)
thermal resistance per unit length

of the pipe between the fluid in the
pipe and the outer pipe periphery in

the ground (Km/W)

thermal resistance between fluid and
inner pipe wall (Km/W)

thermal resistance of pipe wall  (Km/W)
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Symbol

m
ps

pi
ti
22
M1:M22
My2:Mi2

™42

Mo+1+2

m2+1+1+2

Defining
equation

4.3.4

4.5.4

4.8.5

4.11.21

4.5.8

fig.4.10, 4.6.2

fig. 4.11, 4.7.2

4.5.11

4.6.4

4.7.4

Definition, (dimension)

thermal resistance between outer pipe
wall and the adjacent ground (Km/W)

thermal resistance over an annulus (Km/W)

coupling thermal resistance between
pipe 1 and pipe 2 (Km/W)

coupling thermal resistance between
pipes i and j (Km/W)

thermal resistance of N pipes near
each other (Km/W)

fluid-ground thermal resistance
m, for pipe i (Km/W)

total thermal resistance between
fluid and ground surface for pipei (Km/W)

coupling thermal resistance for the
case of figure 4.10 (Km/W)

coupling thermal resistance for
the case of figure 4.11 (Km/W)

thermal resistance for two pipes (Km/W)

thermal resistance for the three
pipes of figure 4.10 (Km/W)

thermal resistance for the four
pipes of figure 4.11 (Km/W)



Symbol

Mos14142

M,(D/d,B/D)

p(H/D,a)

Defining
equation

9.1.13,20

9.2.12-14

9.6.4,5

9.3.3

9.3.7

fig. 10.1

7.26

7.6

5.4.7

4.12.1, fig.4.23

8.28-29, app.4
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Definition, (dimension)

mean total thermal resistance
along a pipe (Km/W)

mean thermal resistance for two
pipes (Km/W)

mean thermal resistance for a pipe
that passes through two regions (Km/W)

mean thermal resistance for the three
pipes of figures 4.10 and 9.5 (Km/W)

mean thermal resistance for the
four pipes of figures 4.11and 9.6 (Km/W)

half the width of rectangular heat
extraction area (m)

amplitude of the contribution from
an infinite array of pipes (-)

number of pipes (-)

amplitude of the zeroth Kelvin
function, figure 7.2 (-)

(-)

contribution to the thermal resistance
factor when the soil consists of
two layers (=)

contribution to the thermal resistance

factor from moving ground water in a

‘layer below the pipe, figure 8.5 (-)
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Symbol

q(t)

Defining
equation

10.2.1

E.g. 4.11.1

fig. 8.1,3,4,5

fig. 6.14

7.16

9.1.10

9.6.4

Definition, (dimension)
constant heat extraction rate to a
pipe (W/m)

time-dependent heat extraction rate
to a pipe (W/m)

heat extraction rate per unitarea(w/mz)

heat extraction rate of a bundle of
pipes (W/m)

constant heat extraction rate to
pipe i (W/m)

time-dependent heat extraction rate
to pipe i (W/m)

volumetric ground water flow (mi/mzs
or m/s)

mean extraction rate of a pulse
train (W/m)

mean value and amplitude of periodic
heat extraction (W/m)

mean extraction rate along the
pipe (W/m)

mean extraction rate for a pipe
through two regions (W/m)

mean extraction rate along pipe i (W/m)
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Symbol Defining Definition, (dimension)
equation
Qf volumetric fluid flow in the pipe (m3/s)
r radial distance to the pipe (m)
r' 7.4 dimensionless distance to the pipe
in the periodic case (-)
R outer radius of the pipe (m)
R1, R2 fig. 4.5 inner and outer radius of an annulus
around the pipe (m)
R_ innner pipe radius (m)
Req equivalent radius of a bundle of
pipes (m)
R' 7.4 dimensionless pipe radius (-)
Si section 9.4 set of indices of pipes through
which the water flows before it
reaches pipe i (-)
t time -~ (s)
tD 3.1 characteristic time scale of the

extraction process of figure 3.1 (s)
t1 duration of heat extraction pulse (s)
t period time (s)

T temperature (°c)



188.

Symbol Defining
equation

T(x,z)
T(x,z,t)

T 10.2.5

Tely)
fi

fmin

in
out

Tos TR(t)

T,| 5.2.5

Definition, (dimension)

temperature in a vertical cross-
section of the ground (°c)

equivalent surface temperature of
a heat extraction area, figure 10.1 (°C)

temperature of the fluid in the
pipe (°c)

fluid temperature along the pipe (°C)
fluid temperature for pipe i (°c)

minimum fluid temperature during

a cycle (°c)
. . 0

inlet fluid temperature (°c)
outlet fluid temperature (°c)

heat extraction temperature at the
pipe radius R in the ground (°c)

heat extraction temperature of
pipe i (°c)

temperature at the ground surface (°C)

mean annual temperature at the
ground surface (°c)

amplitude of periodic ground sur-
face temperature (“c)



T*

Defining
equation

fig. 4.5

7.18

6.5.3

6.5.3

9.1.7

8.2

fig. 4.1, 9.1

fig. 4.6

fig. 4.1

fig. 9.1

9.1.4
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Definition, (dimension)

temperature difference over an
annulus around the pipe (°c)

room temperature (°c)

mean fluid temperature along
pipe i (%)

contribution to the temperature
from the mean extraction rate of
a pulse .train (°c)

contribution to the temperature from
the pulsating part of a pulse train
(°c)

mean fluid velocity in the pipe (m/s)

thermal displacement velocity in
moving ground water (m/s)

horizontal coordinate in the plane
perpendicular to the pipe (m)

x-coordinate of the center of
pipe i : (m)

half the distance between the
inner pipes of figure 4.11 (m)

horizontal coordinate along the
pipe (m)

characteristic thermal length along
the pipe (m)

vertical downward coordinate (m)
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Symbo1

Mo 2y

Defining
equation

fig. 6.14

5.1.1

Y 0.5772

4.5.18, 4.7.5
4.6.6

section 4.3

fig. 4.22

fig. 9.9

9.1.16

9.6.1

Definition, (dimension)

relative pulse length in a pulse
train (-)

heat extraction proportionality
factor (W/mK)

thermal contact resistance at the
ground surface (N/mZK)

Euler's constant (-)

relative heat extraction rate for N
pipes compared to N independent

pipes (-)

thermal conductivity of the
ground (W/mK)

thermal conductivity of pipe wall (W/mK)

thermal conductivity of an annulus
RsrsRy around the pipe (W/mK)

thermal conductivity of the second
s0il layer (W/mK)

thermal conductivities of two
ground regions along the pipe (W/mK)

thermal resistance associated with
the temperature change along the

pipe. (Km/W)

value of u in region i (Km/W)



Symbol

Defining
equation

4.12.2

5.2.3, 6.1.12

6.2.7

7.6

5.2.5, fig. 7.6

7.26

Definition, (dimension)

dimensionless time

phase of the zeroth Kelvins

function, figure 7.2

phase of ground surface tempera-
ture

phase of the contribution from
an infinite array of pipes
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(-)

(-)

(-)

(-)
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APPENDIX 1. EFFECT OF GROUND SURFACE RESISTANCE.

We have the steady-state, two-dimensional heat extraction problem
for a single pipe as described in section 4.1 and Figure 4.1 except

for the boundary condition at z=0. The temperature T(x,z) shall at
the ground surface satisfy 4.4.1:

-2 2=0 (A1.1)
S

Let us define u(x,z) by

2 2
T(x,z) = Q%X-(lnéigé%%%%%%;)+-u(x,z)> (A1.2)

The first part represents the line sink solution for ag = +o
according to section 4.1. It gives the prescribed heat sink at
(0,D). This means that u(x,z) does not have any heat sink.

The function u(x,z) shall satisfy the Laplace equation:

2 2
E_% +3U_9g 250, ~0d x < w (A1.3)
322

X

When At1.2 is inserted in A1.1 we get the following condition for
u--—-—==-2 2=0 ol x £ (A1.4)

A relatively general solution of A1.3 is
u(x,z) = [ f(s) e >%.cos(sx)ds (A1.5)
0

Insertion of At1.5 in At.4 gives:

T + Ls—‘l = - 2>‘. D
(j;f(s) [1 2] costonds = - 2 7 (A1.6)

This is a Fourier integral. We have:

e Ds cos(sx)ds = —72—2 (A1.7)

X~ +D

O3
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A comparison of A1.6 with Al1.7 Jives:

f(s) = - & —1“_ e Ds (A1.8)

s +—=
%
Formulas A1.5 and A1.8 give the solution u(x,z).
We need the complex notation:
cos(sx) = Re(e_isx) (A1.9)

Here Re signifies 'the real part of'.

From A1.5, 8 and 9 we have:

u(x,z) = -Re {22 f 1As e DS.e752,¢71XS 4oy (A1.10)
% o W2

s
This may with elementary substitutions be rewritten in the following
way:

v

u(x,z) = ~2+Re {e % e”S ds} (A1.11)

<38

aS(D+Z+'iX)
vV = 3

The integral in A1.11 is the exponential integral E,(v). This
function is given in [2A] in the form zeZE1(z) for complex
arguments.

The solution T(x,z) is then:

‘2 2
T(X,2) = »3 {ln(;%> -2Re(e" E1(v))}

23 24(z+D)

©

Eq(v) = ‘)I'%e'sds (A1.12)

aS(D+z+ix)
V= :

(Re = real part of)
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The temperature at the pipe radius becomes:
ZDGS
X

q R 2Da
TR = m'[.‘n(m) - 2 e

E, ( XS)] (A1.13)
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APPENDIX 2. STEADY-STATE HEAT EXTRACTION IN A TWO-LAYERED SOIL

The steady-state heat extraction by a single pipe in a two-
layered soil is discussed in section 4.12. The solutions will be
derived in this appendix.

The soil consists of two horizontal layers. The top layer has the
thickness H. The pipe lies at the depth z=D. Figure A2.1 shows the
two possible cases, when D is greater or less than H. The thermal
conductivity in the soil around the pipe is A. It is A, in the
other layer.

1

T=0

N\

D<H

Figure A2.1. Steady-state heat extraction by a single pipe in a
two-layered soil.

may be written:

(2 2
T(x,z) = 2%[1:1(%) +u(x,2)]

The coordinates of Figure 4.1 is used. The logarithmic term takes
care of the heat extraction requirement q (W/m). The temperature
correction u(x,z) shall be regular at the pipe (0,D).

(A2.1)

The function u(x,z) shall satisfy the Laplace equation Au=0 in the
two Tayers 0 < z < H and z > H. We start with the following
expressions:

f(s) é;%%%ﬁ%% cos{xs)ds 0 < z <H

u(x,z) = (A2.2)
-(z-H)s

f(s) e cos(xs) ds z > H

O+-—8 O 38
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The function f(s) is to be determined.

According to A2.2 u{x,z) satisfies:

32U 32u

ey = 0 0<z<H,z>H (A2.3)

X 3z

u=20 z=10 (A2.4)

u = [ f(s) cos(xs) z=H (A2.5)
0

The boundary condition T(x,0) = 0 is satisfied according to A2.1
and A2.4.

There are two internal boundary conditions at z=H. The temperature
and the vertical heat flux are to be continuous. The temperature
is continuous according to A2.5. The heat flux condition is:

o7

oT
Ay = = A= . (A2.6)
19z z=H-0 3z z=H+0

-«

In the second case, when D is less than H, the thermal conductivities
are to change places.

Inserting A2.2 and A2.1 in A2.6 gives the following equation for
f(s):

/ f(s)s-{a+xr coth(Hs)} cos(xs)ds =
° (A2.7)
H+D D-H
= (a,-2) +
1 [ x2+(H+D)2 x2+(D-H)2 ]
We need the integral:
/ e PS cos(xs)ds = —22—2 p>0 (A2.8)
0 poHX
We introduce the conductivity parameter o:
=2y
S = ox (A2.9)

1

By identification we have from A2.7-8:
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£(s) = - g1—"m—§ (e"(D-H)s _o=(e3)s) 5y (a2 10)

-oe

The second factor of A2.10 may be rewritten:

g z 0m+1.e-2mHS (A2.11)

The temperature u(x,z) is obtained from A2.2 and A2.10. The last
factor of A2.10 contains the factor sinh(Hs) of A2.2, which thus
cancels from the upper integral of A2.2. We then get, when A2.10
and 11 are inserted in A2.2, integrals of the following type:

® -ps__-gs 42 2 »
[ 25— cos(xs)ds = 1n(--19-) P>0,q>0 (A2.12)
o ,&2+p2

The validity of A2.12 are easily checked by derivation with
respect to p. It then reduces to A2.8.

From A2.1, 2, 10, 11 and 12 we get after some manipulations the
following expressions in the case D > H.

0< z<H:
T(x,2) = 3 (1+g) § oM 1n (Véz*(D'Z*Zm“)z) (D>H)  (A2.13)
’ Zmx m=0 ;§2+(D+z+2mH)2
z > H:
[2 7
- (D-z)
10 - U )

(A2.14)

® 2 2
20 Um+1 n (v& +(D+z+2H+2mH) 7\ ] (D>H)
m=

Vk2+(Drz-2Hs2mH)2/

We are in particular interested in the pipe temperature TR at
x2+(D-z)2 = R2. We have from A2.14 with x=0, z=D in the infinite
sum:

0_m+1 .]n(D+H+mH) ]

D-F+mH (D>H) (A2.15)

-4 Ry _ 5
o=z ) - T

The thermal resistance between the pipe and the ground surface is
with definition 4.1.8:
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m= o () + p(g, o))
(A2.16)

H
Tis(m+1)
D ) (D>H)

(H, o) = T m
P'D oo "(1+D”(m-1)

The function p(h,o) is here defined for 0 < h <1, -1 < o< 1. In
particular we have:

I
o

p(h,0) =

p(h,1) =

[
8

a
1

=1 & A = 0)
(A2.17)
p(h9-1) = ]n(1'h) (0 = -1 P )\1 = +°°)

p(0,0) = 0

The function p(h,o) is given in Figure 4.23.

See Figure A2.1. Formulas A2.1-5 are still valid. The conductivities
A and x1 are to change places in A2:6 and 7. The factor D-H in

A2.7 is now negative. This must be observed, when A2.8 1is used.

We get:

£(s) = de O (1-e7215) (&7 (D) _ o=(HDIS) pey (2. 18)

1+0€-

wn|—

The second factor of A2.18 may be expanded in a series like A2.11
with o replaced by -o.

The temperature field is given by A2.1, 2 and 18. With the use of
a series 1ike A2.11 we get integrals of type A2.12. The temperature
becomes:

0<z<H:

2 2

T(x,2) = o371 vx“+(D-2)7Y |
Xs2Z 2mA [ n(;&2+(D+Z)2> (A2.19)
ot _\m v‘x2+(2Hm+D-z)2 .\/x2+(2Hm—D+z)2

v 1 (o) m[ :
m=

(D<H)
V24 (2HmeD+2)2 Ahmmmqﬂ“




z > H:

T(x,2) = ___ _ (1+0)- _ VX“+(2Hm-D+z) 7\
X Z0 (\/x2+(2Hm+D+z)

(D<H) (A2.20)

The pipe temperature becomes from A2.19:
To = oL [In(R) + °z° (-o)™ 1n o’ 1 o)y (az.21)
R- 2ot 007 7y HomZ - '

The thermal resistance between the pipe and the ground surface is
with definition 4.1.8:

m= ZT_'{]n( ) + p(D, a)}
H\2 2 (A2.22)

o (%)
(E, 0) = - (-0)™ 1 D (D<H)
P'D mz1 “((%)zmz_1)

The function p(h,o) is here defined for h > 1, -1 < ¢ < 1. In
particular we have:

p(hao) =0

ph,-1) = I sin(@) (0= -1 0 a, = 42)
(A2.23)

p(n,1) = I tan(F)) (o= +1 02y = 0)

p(+m’0) =0
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APPENDIX 3. PERIODIC HEAT EXTRACTION

Figure 7.1 shows a periodic line sink in an infinite surrounding.
The amplitude of the heat extraction rate is qy (W/m), and the
period is to. The sink lies at the center r = o.

A complex notation is used according to eqs. 7.1-2. The temperature
becomes complex-valued. The actual temperature is given by the real
or the imaginary part of the complex solution. They correspond to

a cosine and a sine heat extraction respectively.

We will first consider the line sink for which a periodic heat
extraction occurs at r = o. The case with a finite pipe radius R is
then considered.
The complex-valued temperature is given in ref. 3D.
T(rt) = - o1y ((1eiyrrd ) e2rit/t (A3.1)
2T Zax o 0 :

Here d0 is the penetration depth, eq. 7.3.

The total radial heat flux (W/m) towards the pipe at a distance r
becomes:

3T _ (1+1)r . 2nit/t
S R ((1+1)r/do>e o (A3.2)

The functions Ko(z) and K1(z) are modified Bessel functions. See
ref. 2C. In this appendix z denotes the complex argument. In the deri-
vation of A3.2 we have used

dKo

a7 - -K1(Z) , (A3.3)

The following series expansions are valid:

o~

2 2 4
K (2) = -(n(z/2w)(1+ G s Trw ) + s P v o (A3L4)
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z2 z4
z K1(z) =1+ 1n(z/2)(-7? * 5t N
N R I AT .
2 Y2l g Wyt g e
Here vy is Euler's constant:
vy =~ 0.5772 (A3.6)

We see from eq. A3.5 that zK1(z) tends to 1, when z tends to zero.
So-we have from A3.2 that the heat flux tends to the prescribed
value of eq. 7.2, when r tends to zero.

The modified Bessel functions are needed for the argument

_(Q+i)r _ im/4 w7 dnh
z = . e "7 . N e er

(A3.7)
We have used notation 7.4. We have the so-called Kelvin functions:

K (174 vy - kerg(r') + i-kei (r') = N (r0)ei®("™")  (a3.8")

K™ ) = iker, (r') + ek (r'))= | Ny (et

The functions Nj and ¢j give the modulus and phase of the complex-
valued Kelvin functions.

The temperature in the ground outside the periodic line sink of figure
7.1 is now from eqs. A3.1 and A3.8':

q - .
T(r,z) = - ﬁ#% No(r')e1(2"t/to + ¢0(r )
(A3.9)
at
s aﬁ d =/ 2
) m

The real-valued temperature is obtained in the following way. Let the
periodic heat extraction be
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q(t) = q1-s1'n(21rt/t0 + wo) = Im {q1 ei(znt/to * wo)} (A3.10)

A phase @, has been included. Then we have for the imaginary part
of A3.9 (including an added phase wo):

2nt

q
T(rt) = = gox No(rt) - sin (ZE 4 g (r1) + %) (A3.11)

o]

From eqs. A3.4-5 we have the following series expansions for the
Kelvin functions:

Ko(ei“/4- r') = In(2/r') - vy - —1411 +
2
L (3 s G - ) e (A3.12')

. . 2
N R AN IS L) (1 ¢ (In(2/r") +0.5-y)) +.

T .
(A3.12")
For large r' there is the following asymptotic expansion:
. . -in/4
in/4 S -r'/ /E-1(n/8+r'//—é)_ _ € in/
Ko(e r ) o2 -ZFT e 1 W +..
(A3.13)
From eqs. A3.12' and A3.8' we have for small r':
Ny(r') =V (In(2/r) )8 + o2/16
(r* < 0.1) (A3.14)

4
6 (r') =~ -arctan .
0 <1n(2/r')-y>

" The error of the approximations is less than 1% for r' < 0.1.

For large r' we have from eqs. A3.13 and A3.8':
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' " (A3.15)
¢'o(r)g_7§_—8— (r'>7)

The error is less than 1% for r' > 7. The functions No(r') and
¢o(r‘) are given in figure 7.2 and table 7.2.

The heat flux of the line sink at the distance r is given by eq. A3.2.
It may be written in the following way

2ora L = qp e?" Y L E(r) e"16(r") (A3.16)
Here we have introduced
F(r) e 16(r") _ g in/4 kg™ ) (A3.17)

The functions F and G represent the amplitude and phase of the heat
flux at the distance r. From eq. A3.8" we have

F(r') = r'N1(r')

(A3.18)
G(r') = -¢1(r') - 3x/4
For small r' we have from A3.12":
F(r') 1 G(r') =~ 0 (r' <0.1) (A3.19)

The functions F and G are given in table 7.2 and figure 7.2.

Let us now consider the general case with the prescribed periodic heat
flux at the pipe radius r = R. We have the condition:

a(t) = q e p o (A3.20)
The Tine sink solution A3.1 can still be used. But we have to divide

by the factor A3.17 in order to obtain the prescribed heat flux
at r = R.
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The temperature outside the pipe, r 2 R, is then from egs. A3.9 and
A3.16 given by:

q N(r') . , '
T(r,t) = = gk + oy @121 ¢ dp(r') + 6(R")
(A3.21)
R o RZ
%

Our main interest is the temperature at the pipe radius r = R. We have
from A3.21:

To(t) = T(R,t) = - ;?IJ A(R*)ei(27t/t, - B(R')) (A3.22)

Here we have used the notations:
Ng(R")
F(R')

A(R') =

B(R') = - ¢0(R') - G(R") (A3.23)

The functions A and B are given in figure 7.2. and table 7.2.

The distinction between the 1ine sink and the pipe with a radius R is
negligible for R' < 0.1. The error in the temperature is less than
5%, if R' < 0.3. So the Tine sink approximation is rather good if
. _RVZ
R" =g

2
=R 0.3 ort <70 R (A3.24)
0 0 a



206.

APPENDIX 4. GROUND WATER FILTRATION BELOW A PIPE

The steady-state heat extraction to a pipe, when there is a hori-
zontal ground water filtration or flow in a region below the pipe,
is discussed in section 8.3. The thermal resistance of the pipe con-
tained an additional part Pw,according to eq. 8.29. The explicit
expression for Pw will be derived in this appendix.

The considered case is shown in figure 8.5. The pipe lies at the

depth z = D. The ground water level lies at a lower depth z = H

(H > D). The thermal conductivity in the upper part 0 < z < H is As
while it-is A in the ground water region z > H. There is a constant
horizontal ground water flow a (mi/mzs or m/s) for z > H. The steady-
state heat extraction rate is q (W/m). The temperature at the ground
surface is zero.

The ordinary heat conduction equation is valid in the upper region
outside the pipe:

2 2
3T, Ty 0<z<H
w2 572 "
(A4.1)
x% + (z-0)2 > R?
In the Tower region there is also a convective heat transfer. The
heat balance equation is:
2 2
3T Ty LT
\ (;F?} L 25 H (A4.2)

At the internal boundary z = H the temperature and the vertical heat
flux must be continuous:

T(x,H-0) = T(x,H+0) (A4.3)
aT _ oT
o7 R (A4.4)

z = H-0 z =H+0
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The temperature T(x,z) shall satisfy the conditions of figure A4.1.

q
" V . L AT=0

I
I
|
|
|
i
|
|
l
|
|
I

X

4

Figure A4.1. Steady-state heat extraction with ground water filtration
below.

The following notation is used:

(A4.5)

The temperature field T(x,z) will in the upper region consist of the
previous solution 4.1.2 and an additional part. In order to obtain
that part we note that the following function satisfies eq. A4.1 for
any s:

eiXs +sinh(zs) (A4.6)

This function is also zero for z = 0.

We therefore start with the following expression for the temperature
in the upper region 0 < z < H:

2,002 = ixs si
_ +(2+D) simh{zs)
T0x,2) = - 73 {in C_T(—io_)z> L e o g (A4.7)

The function f(s) is to be determined.
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A sufficiently general solution to A4.2 in the lower region is:

e

The square root in the exponent is complex-valued. In the Tower
region, z > H, we start with the following expression

ixs - /52+iys- (Z-H)dS

T(x,2) = - g3 [ g(s)e

8 8

(A4

The function g(s) is to be determined below.

The two expressions A4.7 and A4.9 satisfies all the conditions of
the problem for any f(s) and g(s) except the two conditions A4.3 and
A4.4. These two determine the functions f and g.

We need a Fourier expansion of the logarithm in A4.7. From ref. 4 we
have

2 2 o .
n (x“+(z+D) ) = f1(s,z)e1sx ds

ixs .~ / 52+1‘Ys .z (A4.8)

.9)

\x2+(z-D)
(A4.10)
-|z-D|+|s| __-|z+D|+]s
f1(S,Z) = € €
['s|
The boundary condition A4.3 is now fulfilled, if
f,(s,H) - f(s) = g(s) (A4.11)

Here A4.7, 9 and 10 were used.

The second boundary condition A4.4 involves the derivatives with re-
spect to z at z = H. We have from A4.7, 9 and 10 the condition:

S| _ (- s[yem (1D s|
Is]

-(H-D)-
A { s |e (H-D) - f(s) s coth(Hs) } =

= e g(s) «(-/ s%+iys) (A4.

12)
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In the absolute values we used that H > D. The two functions f(s)
and g(s) are determined from A4.11-12 with the use of expression

A4.10 for f1.

The following expression is obtained for f(s):

D -D
£(s) = e M+ Isl E_lfl_:_fL_Jfl L F4(s)

Is|

M /52+iys - Als[
A /52+1Ys + s coth(Hs)

(A4.13)

f1(S) =

Our main interest is as usual the pipe temperature at the pipe peri-
phery, eq. 4.1.3. The usual approximation 4.1.4-5 is used. In the
integrand of A4.7 we put x = 0 and z = D. Then we have:

The Togarithm represents our usual thermal resistance, and the
integral the effect of the ground water flow.

The thermal resistance is from A4.14:

1 20\ _
m= o {1n (TT) Pw} | (A4.15)
The function Pw is from A4.13-15 given by:

P, -3 gg‘%‘{%g} ((s) + £(-s)) ds (A4.16)

The integrand of A4.16 is changed with the substitution t=Hs. The factor
f1(s) + f1(-s) is rewritten so that the complex root is eliminated.

We finally have the following expression for Pw:

\ 2
201Dt (g o2t

_.__:?IE*. . B(t) dt (A4.17)

Py = é e
t(1-e
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B(t) = (k')zt/ t2+p2 + 2't{coth(t)-1)A —tzcoth(t)
2

2, ot coth(t)A + t2coth2(t)

4
A=V t4+p2t2 -cos (1 arctan (%))

(") t/t%p
2
Here we have used the dimensionless parameters:

D' = A=

A HC q
jg» p= yH=-NY

Tlo

We note that Pw is a function of D', ' and p.

The Timit with a very strong ground water flow is of particular

(A4.17)

(A4.18)

interest since it gives the maximum effect of the ground water. The
Timit q, »> implies that the temperature in the ground water region

is zero. We have for the upper region the boundary condition:

T(x,H) = 0

The considered Timit 1is shown in figure A4.2.

(A4.19)

Figure A4.2. Steady-state heat extraction in the 1imit of very strong

ground water flow.

The solution to the problem of figure A4.2 is well-known. We have
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cosh("x) - cos (“(Z+D))
T(x,2) = - 7% In cost\(;) — (ﬂ(Z:D)> (A4.20)

The temperature at the pipe radius, eq. 4.1.3, is obtained from
A4.20 in the following way. In the nominator we take x = 0 and

z = D. The denominator is expanded in Taylor series. The lowest term
contains the factor 4.1.3. We get after some rearrangements:

Tp = 53 I <—2H 5‘2}(2““/“)) (Ad.21)

The thermal resistance is then:

m = 12%{ n <3R9> - Tn (%Wﬁ)) } (A4.22)
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APPENDIX 5. TEMPERATURE FIELD AROUND THE END OF A PIPE

The three-dimensional temperature field around the very end of a
heat extraction pipe will be studied here. Consider a semi-infinite
pipe that lies along (x,y,z) = (0,y,D), 0 < y < ». See figure 9.1.
The temperature at the ground surface is zero. Let q (W/m) be the
steady-state heat extraction rate per unit length.

We have a semi-infinite line sink along the pipe and a negative
mirror sink above the ground. The temperature field in the ground
is obtained by the integral:

q 1
Iy

T(X,y,Z) == .
’ /xz+(y-s)2 + (z-D)2

o8

_ 1
/x%4(y-5)% + (24D)2

}ds (A5.1)

The fluid temperature along the pipe will be more or less constant.
The heat extraction rate q is then more or less constant along the
pipe, except for the end region, where three-dimensional effects occur.

The integral A5.1 may be evaluated, when q(s) is known. We will now
assume that q is constant along the pipe including the end region.
The integral is then rather simple to evaluate. We get the following
temperature field in the ground:

T(x,y,z) = - 137-{1n (531&5:91?) - 1n (/X2+y2+(z+D)2+y>
" X2+(Z-D)2 ¢x2+y2+(z-D)2+y

} (A5.2)

The temperature at the pipe radius, eq. 4.1.3, is of particular interest.
We have with the usual approximations from eqs. 4.1.4-5:

yz 0) (A5.3)

(0 () -4 (P225) )

Toly) = - o3 &
R 2 1 \R VAR
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The last term, which depends on y, represents the end effect of
the considered case. The variation with y is given by
n Jy2+4D2+y
Toly) /.2 402
Tiy) =R - b Uy s gy (A5.4)
R 2z
TR(m) 1n (2D
\R
We note that the temperature at the end of the pipe is halved:
] _1 oo -

Ta(0) = 5 Tale) = 1 (A5.5)
This is due to symmetry.
Let us consider the case:

R _

D° 0.02 (A5.6)
Then we get the following values:
y/D 0 0.01 0.05 0.1 0.2 0.3 0.4
Té 0.50 0.55 0.68 0.75 0.81 0.85 0.88
y/D 0.5 0.75 1 2 3 5 10
Tﬁ 0.90 0.93 0.95 0.98 0.990 0.996 0.999

We see that the end region is quite small. There is only a 5% decrease

for y = D.

From this we can conclude that three-dimensional effects only influence
a length, say, D of the end region of the pipe. This will be true also
in the case of constant fluid temperature along the pipe instead of

constant heat extraction rate.
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APPENDIX 6. DIPOLE APPROXIMATIONS OF THE TEMPERATURE FIELD

The thermal impact on the surrounding ground from the heat extraction
pipes is discussed in chapter 10. We are there interested in the tem-
perature field further away from the pipes. Simple, so-called dipole
approximations were used. These formulas will be derived here.

We start by considering a point heat extractionq'(W) at (x,y,z) =
= (0,0,D). The temperature at the ground surface z = 0 becomes as
usual zero by the introduction of a negative mirror sink above the

ground surface. The steady-state temperature due to the point sink
is then:

T(x,y,z) = - 212— { 1 - 1 1 (A6.1)
ARV eI ol

We are interested in the temperature further away from the point sink;
i.e. for

r = Jx2+y2+z2 >>D (R6.2)

A Taylor expansion in 1/r is needed. We get after som manipulations
from A6.1:

2 2 2.,.2
__9qb z .3 0D 15_ D® D"+2z
T(x.y,2) = s {1 2oy g I (A6.3)
The dipole approximation of a point sink q at a depth D is obtained by
the first term in the expansion A6.3.

T(X,Y,2) ~ - ’Z%DX . —23- (r>>0D) (A6.4)
r

A single pipe of finite length is discussed in section 10.1. The
position of the pipe is defined by eq. 10.1.1. The heat extraction
rate g (W/m) is assumed to be constant along the pipe. The temperature
is in this case given as an integral of contributions of the type A6.1
along the pipe length. The corresponding dipole approximation is ob-
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tained by an integral of A6.4. We have:
L
T(X,y,2) = - 32 f L 5 ds (R6.5)
-L 2
z

TA
¢x2+(y-s)2+

The integral is not difficult to evaluate. The temperature may after
some rearrangements be written in the following way:

T00y2) = - g e iy o { =2 et 1 (n6.6)
X +z /><2+(L-y)2+z2 /)(2+(L+y)2+z2

The case with a rectangular heat extraction area is dealt with in
section 10.2. The pipes lie at the depth z = D. They cover an area

-L <y <L, -M< x <M, The heat extraction rate per uqit area is
denoted a, (W/mz). It is determined by eq. 10.2.1. We assume that 9
is constant over the rectangular area. The dipole approximation is
again considered. The rectangular area may be considered as a super-
position of Tine sinks for -L < y < L. The contributions from these
are given by A6.6. The total temperature is obtained as an integral
in the x-direction from -M to +M. We have then:

M
T(X Z) _ o qa Dz L'y
sYs Rl I .

n 2.2
-M (X‘S) +Z @_5)2_'_('—_},)24_22

+

(A6.7)
* Lty ds
//(X-5)2+(L+y)2+22

The evaluation of the integral gives the following result:

an f
T(x,y,z) = - o 1a(M-x, L-y),z) + a(M+x,L-y,z)

+ a(M-x,L+y,z) + a(M+x,L+y),2)} (R6.8)

a(x',y',z) = é% arctan { X'y

Ze /(x')2+(y')2+z2 }



